1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/proc_fs.h>
13 #include <linux/debugfs.h>
14 #include <linux/pfn.h>
15 #include <linux/percpu.h>
16 #include <linux/gfp.h>
17 #include <linux/pci.h>
18 #include <linux/vmalloc.h>
19 #include <linux/libnvdimm.h>
20 #include <linux/vmstat.h>
21 #include <linux/kernel.h>
22 #include <linux/cc_platform.h>
23 #include <linux/set_memory.h>
24 #include <linux/memregion.h>
25
26 #include <asm/e820/api.h>
27 #include <asm/processor.h>
28 #include <asm/tlbflush.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <linux/uaccess.h>
32 #include <asm/pgalloc.h>
33 #include <asm/proto.h>
34 #include <asm/memtype.h>
35 #include <asm/hyperv-tlfs.h>
36 #include <asm/mshyperv.h>
37
38 #include "../mm_internal.h"
39
40 /*
41 * The current flushing context - we pass it instead of 5 arguments:
42 */
43 struct cpa_data {
44 unsigned long *vaddr;
45 pgd_t *pgd;
46 pgprot_t mask_set;
47 pgprot_t mask_clr;
48 unsigned long numpages;
49 unsigned long curpage;
50 unsigned long pfn;
51 unsigned int flags;
52 unsigned int force_split : 1,
53 force_static_prot : 1,
54 force_flush_all : 1;
55 struct page **pages;
56 };
57
58 enum cpa_warn {
59 CPA_CONFLICT,
60 CPA_PROTECT,
61 CPA_DETECT,
62 };
63
64 static const int cpa_warn_level = CPA_PROTECT;
65
66 /*
67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
69 * entries change the page attribute in parallel to some other cpu
70 * splitting a large page entry along with changing the attribute.
71 */
72 static DEFINE_SPINLOCK(cpa_lock);
73
74 #define CPA_FLUSHTLB 1
75 #define CPA_ARRAY 2
76 #define CPA_PAGES_ARRAY 4
77 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
78
cachemode2pgprot(enum page_cache_mode pcm)79 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
80 {
81 return __pgprot(cachemode2protval(pcm));
82 }
83
84 #ifdef CONFIG_PROC_FS
85 static unsigned long direct_pages_count[PG_LEVEL_NUM];
86
update_page_count(int level,unsigned long pages)87 void update_page_count(int level, unsigned long pages)
88 {
89 /* Protect against CPA */
90 spin_lock(&pgd_lock);
91 direct_pages_count[level] += pages;
92 spin_unlock(&pgd_lock);
93 }
94
split_page_count(int level)95 static void split_page_count(int level)
96 {
97 if (direct_pages_count[level] == 0)
98 return;
99
100 direct_pages_count[level]--;
101 if (system_state == SYSTEM_RUNNING) {
102 if (level == PG_LEVEL_2M)
103 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
104 else if (level == PG_LEVEL_1G)
105 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
106 }
107 direct_pages_count[level - 1] += PTRS_PER_PTE;
108 }
109
arch_report_meminfo(struct seq_file * m)110 void arch_report_meminfo(struct seq_file *m)
111 {
112 seq_printf(m, "DirectMap4k: %8lu kB\n",
113 direct_pages_count[PG_LEVEL_4K] << 2);
114 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
115 seq_printf(m, "DirectMap2M: %8lu kB\n",
116 direct_pages_count[PG_LEVEL_2M] << 11);
117 #else
118 seq_printf(m, "DirectMap4M: %8lu kB\n",
119 direct_pages_count[PG_LEVEL_2M] << 12);
120 #endif
121 if (direct_gbpages)
122 seq_printf(m, "DirectMap1G: %8lu kB\n",
123 direct_pages_count[PG_LEVEL_1G] << 20);
124 }
125 #else
split_page_count(int level)126 static inline void split_page_count(int level) { }
127 #endif
128
129 #ifdef CONFIG_X86_CPA_STATISTICS
130
131 static unsigned long cpa_1g_checked;
132 static unsigned long cpa_1g_sameprot;
133 static unsigned long cpa_1g_preserved;
134 static unsigned long cpa_2m_checked;
135 static unsigned long cpa_2m_sameprot;
136 static unsigned long cpa_2m_preserved;
137 static unsigned long cpa_4k_install;
138
cpa_inc_1g_checked(void)139 static inline void cpa_inc_1g_checked(void)
140 {
141 cpa_1g_checked++;
142 }
143
cpa_inc_2m_checked(void)144 static inline void cpa_inc_2m_checked(void)
145 {
146 cpa_2m_checked++;
147 }
148
cpa_inc_4k_install(void)149 static inline void cpa_inc_4k_install(void)
150 {
151 data_race(cpa_4k_install++);
152 }
153
cpa_inc_lp_sameprot(int level)154 static inline void cpa_inc_lp_sameprot(int level)
155 {
156 if (level == PG_LEVEL_1G)
157 cpa_1g_sameprot++;
158 else
159 cpa_2m_sameprot++;
160 }
161
cpa_inc_lp_preserved(int level)162 static inline void cpa_inc_lp_preserved(int level)
163 {
164 if (level == PG_LEVEL_1G)
165 cpa_1g_preserved++;
166 else
167 cpa_2m_preserved++;
168 }
169
cpastats_show(struct seq_file * m,void * p)170 static int cpastats_show(struct seq_file *m, void *p)
171 {
172 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
173 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
174 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
175 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
176 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
177 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
178 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
179 return 0;
180 }
181
cpastats_open(struct inode * inode,struct file * file)182 static int cpastats_open(struct inode *inode, struct file *file)
183 {
184 return single_open(file, cpastats_show, NULL);
185 }
186
187 static const struct file_operations cpastats_fops = {
188 .open = cpastats_open,
189 .read = seq_read,
190 .llseek = seq_lseek,
191 .release = single_release,
192 };
193
cpa_stats_init(void)194 static int __init cpa_stats_init(void)
195 {
196 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
197 &cpastats_fops);
198 return 0;
199 }
200 late_initcall(cpa_stats_init);
201 #else
cpa_inc_1g_checked(void)202 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)203 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)204 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)205 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)206 static inline void cpa_inc_lp_preserved(int level) { }
207 #endif
208
209
210 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)211 within(unsigned long addr, unsigned long start, unsigned long end)
212 {
213 return addr >= start && addr < end;
214 }
215
216 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)217 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
218 {
219 return addr >= start && addr <= end;
220 }
221
222 #ifdef CONFIG_X86_64
223
224 /*
225 * The kernel image is mapped into two places in the virtual address space
226 * (addresses without KASLR, of course):
227 *
228 * 1. The kernel direct map (0xffff880000000000)
229 * 2. The "high kernel map" (0xffffffff81000000)
230 *
231 * We actually execute out of #2. If we get the address of a kernel symbol, it
232 * points to #2, but almost all physical-to-virtual translations point to #1.
233 *
234 * This is so that we can have both a directmap of all physical memory *and*
235 * take full advantage of the limited (s32) immediate addressing range (2G)
236 * of x86_64.
237 *
238 * See Documentation/arch/x86/x86_64/mm.rst for more detail.
239 */
240
highmap_start_pfn(void)241 static inline unsigned long highmap_start_pfn(void)
242 {
243 return __pa_symbol(_text) >> PAGE_SHIFT;
244 }
245
highmap_end_pfn(void)246 static inline unsigned long highmap_end_pfn(void)
247 {
248 /* Do not reference physical address outside the kernel. */
249 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
250 }
251
__cpa_pfn_in_highmap(unsigned long pfn)252 static bool __cpa_pfn_in_highmap(unsigned long pfn)
253 {
254 /*
255 * Kernel text has an alias mapping at a high address, known
256 * here as "highmap".
257 */
258 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
259 }
260
261 #else
262
__cpa_pfn_in_highmap(unsigned long pfn)263 static bool __cpa_pfn_in_highmap(unsigned long pfn)
264 {
265 /* There is no highmap on 32-bit */
266 return false;
267 }
268
269 #endif
270
271 /*
272 * See set_mce_nospec().
273 *
274 * Machine check recovery code needs to change cache mode of poisoned pages to
275 * UC to avoid speculative access logging another error. But passing the
276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
277 * speculative access. So we cheat and flip the top bit of the address. This
278 * works fine for the code that updates the page tables. But at the end of the
279 * process we need to flush the TLB and cache and the non-canonical address
280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
281 *
282 * But in the common case we already have a canonical address. This code
283 * will fix the top bit if needed and is a no-op otherwise.
284 */
fix_addr(unsigned long addr)285 static inline unsigned long fix_addr(unsigned long addr)
286 {
287 #ifdef CONFIG_X86_64
288 return (long)(addr << 1) >> 1;
289 #else
290 return addr;
291 #endif
292 }
293
__cpa_addr(struct cpa_data * cpa,unsigned long idx)294 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
295 {
296 if (cpa->flags & CPA_PAGES_ARRAY) {
297 struct page *page = cpa->pages[idx];
298
299 if (unlikely(PageHighMem(page)))
300 return 0;
301
302 return (unsigned long)page_address(page);
303 }
304
305 if (cpa->flags & CPA_ARRAY)
306 return cpa->vaddr[idx];
307
308 return *cpa->vaddr + idx * PAGE_SIZE;
309 }
310
311 /*
312 * Flushing functions
313 */
314
clflush_cache_range_opt(void * vaddr,unsigned int size)315 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
316 {
317 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
318 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
319 void *vend = vaddr + size;
320
321 if (p >= vend)
322 return;
323
324 for (; p < vend; p += clflush_size)
325 clflushopt(p);
326 }
327
328 /**
329 * clflush_cache_range - flush a cache range with clflush
330 * @vaddr: virtual start address
331 * @size: number of bytes to flush
332 *
333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
334 * SFENCE to avoid ordering issues.
335 */
clflush_cache_range(void * vaddr,unsigned int size)336 void clflush_cache_range(void *vaddr, unsigned int size)
337 {
338 mb();
339 clflush_cache_range_opt(vaddr, size);
340 mb();
341 }
342 EXPORT_SYMBOL_GPL(clflush_cache_range);
343
344 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)345 void arch_invalidate_pmem(void *addr, size_t size)
346 {
347 clflush_cache_range(addr, size);
348 }
349 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
350 #endif
351
352 #ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
cpu_cache_has_invalidate_memregion(void)353 bool cpu_cache_has_invalidate_memregion(void)
354 {
355 return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
356 }
357 EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
358
cpu_cache_invalidate_memregion(int res_desc)359 int cpu_cache_invalidate_memregion(int res_desc)
360 {
361 if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
362 return -ENXIO;
363 wbinvd_on_all_cpus();
364 return 0;
365 }
366 EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
367 #endif
368
__cpa_flush_all(void * arg)369 static void __cpa_flush_all(void *arg)
370 {
371 unsigned long cache = (unsigned long)arg;
372
373 /*
374 * Flush all to work around Errata in early athlons regarding
375 * large page flushing.
376 */
377 __flush_tlb_all();
378
379 if (cache && boot_cpu_data.x86 >= 4)
380 wbinvd();
381 }
382
cpa_flush_all(unsigned long cache)383 static void cpa_flush_all(unsigned long cache)
384 {
385 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
386
387 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
388 }
389
__cpa_flush_tlb(void * data)390 static void __cpa_flush_tlb(void *data)
391 {
392 struct cpa_data *cpa = data;
393 unsigned int i;
394
395 for (i = 0; i < cpa->numpages; i++)
396 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
397 }
398
cpa_flush(struct cpa_data * data,int cache)399 static void cpa_flush(struct cpa_data *data, int cache)
400 {
401 struct cpa_data *cpa = data;
402 unsigned int i;
403
404 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
405
406 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
407 cpa_flush_all(cache);
408 return;
409 }
410
411 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
412 flush_tlb_all();
413 else
414 on_each_cpu(__cpa_flush_tlb, cpa, 1);
415
416 if (!cache)
417 return;
418
419 mb();
420 for (i = 0; i < cpa->numpages; i++) {
421 unsigned long addr = __cpa_addr(cpa, i);
422 unsigned int level;
423
424 pte_t *pte = lookup_address(addr, &level);
425
426 /*
427 * Only flush present addresses:
428 */
429 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
430 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
431 }
432 mb();
433 }
434
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)435 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
436 unsigned long r2_start, unsigned long r2_end)
437 {
438 return (r1_start <= r2_end && r1_end >= r2_start) ||
439 (r2_start <= r1_end && r2_end >= r1_start);
440 }
441
442 #ifdef CONFIG_PCI_BIOS
443 /*
444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
445 * based config access (CONFIG_PCI_GOBIOS) support.
446 */
447 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
448 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
449
protect_pci_bios(unsigned long spfn,unsigned long epfn)450 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
451 {
452 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
453 return _PAGE_NX;
454 return 0;
455 }
456 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)457 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
458 {
459 return 0;
460 }
461 #endif
462
463 /*
464 * The .rodata section needs to be read-only. Using the pfn catches all
465 * aliases. This also includes __ro_after_init, so do not enforce until
466 * kernel_set_to_readonly is true.
467 */
protect_rodata(unsigned long spfn,unsigned long epfn)468 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
469 {
470 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
471
472 /*
473 * Note: __end_rodata is at page aligned and not inclusive, so
474 * subtract 1 to get the last enforced PFN in the rodata area.
475 */
476 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
477
478 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
479 return _PAGE_RW;
480 return 0;
481 }
482
483 /*
484 * Protect kernel text against becoming non executable by forbidding
485 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
486 * out of which the kernel actually executes. Do not protect the low
487 * mapping.
488 *
489 * This does not cover __inittext since that is gone after boot.
490 */
protect_kernel_text(unsigned long start,unsigned long end)491 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
492 {
493 unsigned long t_end = (unsigned long)_etext - 1;
494 unsigned long t_start = (unsigned long)_text;
495
496 if (overlaps(start, end, t_start, t_end))
497 return _PAGE_NX;
498 return 0;
499 }
500
501 #if defined(CONFIG_X86_64)
502 /*
503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
504 * kernel text mappings for the large page aligned text, rodata sections
505 * will be always read-only. For the kernel identity mappings covering the
506 * holes caused by this alignment can be anything that user asks.
507 *
508 * This will preserve the large page mappings for kernel text/data at no
509 * extra cost.
510 */
protect_kernel_text_ro(unsigned long start,unsigned long end)511 static pgprotval_t protect_kernel_text_ro(unsigned long start,
512 unsigned long end)
513 {
514 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
515 unsigned long t_start = (unsigned long)_text;
516 unsigned int level;
517
518 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
519 return 0;
520 /*
521 * Don't enforce the !RW mapping for the kernel text mapping, if
522 * the current mapping is already using small page mapping. No
523 * need to work hard to preserve large page mappings in this case.
524 *
525 * This also fixes the Linux Xen paravirt guest boot failure caused
526 * by unexpected read-only mappings for kernel identity
527 * mappings. In this paravirt guest case, the kernel text mapping
528 * and the kernel identity mapping share the same page-table pages,
529 * so the protections for kernel text and identity mappings have to
530 * be the same.
531 */
532 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
533 return _PAGE_RW;
534 return 0;
535 }
536 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)537 static pgprotval_t protect_kernel_text_ro(unsigned long start,
538 unsigned long end)
539 {
540 return 0;
541 }
542 #endif
543
conflicts(pgprot_t prot,pgprotval_t val)544 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
545 {
546 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
547 }
548
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)549 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
550 unsigned long start, unsigned long end,
551 unsigned long pfn, const char *txt)
552 {
553 static const char *lvltxt[] = {
554 [CPA_CONFLICT] = "conflict",
555 [CPA_PROTECT] = "protect",
556 [CPA_DETECT] = "detect",
557 };
558
559 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
560 return;
561
562 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
563 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
564 (unsigned long long)val);
565 }
566
567 /*
568 * Certain areas of memory on x86 require very specific protection flags,
569 * for example the BIOS area or kernel text. Callers don't always get this
570 * right (again, ioremap() on BIOS memory is not uncommon) so this function
571 * checks and fixes these known static required protection bits.
572 */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)573 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
574 unsigned long pfn, unsigned long npg,
575 unsigned long lpsize, int warnlvl)
576 {
577 pgprotval_t forbidden, res;
578 unsigned long end;
579
580 /*
581 * There is no point in checking RW/NX conflicts when the requested
582 * mapping is setting the page !PRESENT.
583 */
584 if (!(pgprot_val(prot) & _PAGE_PRESENT))
585 return prot;
586
587 /* Operate on the virtual address */
588 end = start + npg * PAGE_SIZE - 1;
589
590 res = protect_kernel_text(start, end);
591 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
592 forbidden = res;
593
594 /*
595 * Special case to preserve a large page. If the change spawns the
596 * full large page mapping then there is no point to split it
597 * up. Happens with ftrace and is going to be removed once ftrace
598 * switched to text_poke().
599 */
600 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
601 res = protect_kernel_text_ro(start, end);
602 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
603 forbidden |= res;
604 }
605
606 /* Check the PFN directly */
607 res = protect_pci_bios(pfn, pfn + npg - 1);
608 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
609 forbidden |= res;
610
611 res = protect_rodata(pfn, pfn + npg - 1);
612 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
613 forbidden |= res;
614
615 return __pgprot(pgprot_val(prot) & ~forbidden);
616 }
617
618 /*
619 * Validate strict W^X semantics.
620 */
verify_rwx(pgprot_t old,pgprot_t new,unsigned long start,unsigned long pfn,unsigned long npg,bool nx,bool rw)621 static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
622 unsigned long pfn, unsigned long npg,
623 bool nx, bool rw)
624 {
625 unsigned long end;
626
627 /*
628 * 32-bit has some unfixable W+X issues, like EFI code
629 * and writeable data being in the same page. Disable
630 * detection and enforcement there.
631 */
632 if (IS_ENABLED(CONFIG_X86_32))
633 return new;
634
635 /* Only verify when NX is supported: */
636 if (!(__supported_pte_mask & _PAGE_NX))
637 return new;
638
639 if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
640 return new;
641
642 if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
643 return new;
644
645 /* Non-leaf translation entries can disable writing or execution. */
646 if (!rw || nx)
647 return new;
648
649 end = start + npg * PAGE_SIZE - 1;
650 WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
651 (unsigned long long)pgprot_val(old),
652 (unsigned long long)pgprot_val(new),
653 start, end, pfn);
654
655 /*
656 * For now, allow all permission change attempts by returning the
657 * attempted permissions. This can 'return old' to actively
658 * refuse the permission change at a later time.
659 */
660 return new;
661 }
662
663 /*
664 * Lookup the page table entry for a virtual address in a specific pgd.
665 * Return a pointer to the entry, the level of the mapping, and the effective
666 * NX and RW bits of all page table levels.
667 */
lookup_address_in_pgd_attr(pgd_t * pgd,unsigned long address,unsigned int * level,bool * nx,bool * rw)668 pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
669 unsigned int *level, bool *nx, bool *rw)
670 {
671 p4d_t *p4d;
672 pud_t *pud;
673 pmd_t *pmd;
674
675 *level = PG_LEVEL_NONE;
676 *nx = false;
677 *rw = true;
678
679 if (pgd_none(*pgd))
680 return NULL;
681
682 *nx |= pgd_flags(*pgd) & _PAGE_NX;
683 *rw &= pgd_flags(*pgd) & _PAGE_RW;
684
685 p4d = p4d_offset(pgd, address);
686 if (p4d_none(*p4d))
687 return NULL;
688
689 *level = PG_LEVEL_512G;
690 if (p4d_large(*p4d) || !p4d_present(*p4d))
691 return (pte_t *)p4d;
692
693 *nx |= p4d_flags(*p4d) & _PAGE_NX;
694 *rw &= p4d_flags(*p4d) & _PAGE_RW;
695
696 pud = pud_offset(p4d, address);
697 if (pud_none(*pud))
698 return NULL;
699
700 *level = PG_LEVEL_1G;
701 if (pud_leaf(*pud) || !pud_present(*pud))
702 return (pte_t *)pud;
703
704 *nx |= pud_flags(*pud) & _PAGE_NX;
705 *rw &= pud_flags(*pud) & _PAGE_RW;
706
707 pmd = pmd_offset(pud, address);
708 if (pmd_none(*pmd))
709 return NULL;
710
711 *level = PG_LEVEL_2M;
712 if (pmd_large(*pmd) || !pmd_present(*pmd))
713 return (pte_t *)pmd;
714
715 *nx |= pmd_flags(*pmd) & _PAGE_NX;
716 *rw &= pmd_flags(*pmd) & _PAGE_RW;
717
718 *level = PG_LEVEL_4K;
719
720 return pte_offset_kernel(pmd, address);
721 }
722
723 /*
724 * Lookup the page table entry for a virtual address in a specific pgd.
725 * Return a pointer to the entry and the level of the mapping.
726 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)727 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
728 unsigned int *level)
729 {
730 bool nx, rw;
731
732 return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
733 }
734
735 /*
736 * Lookup the page table entry for a virtual address. Return a pointer
737 * to the entry and the level of the mapping.
738 *
739 * Note: We return pud and pmd either when the entry is marked large
740 * or when the present bit is not set. Otherwise we would return a
741 * pointer to a nonexisting mapping.
742 */
lookup_address(unsigned long address,unsigned int * level)743 pte_t *lookup_address(unsigned long address, unsigned int *level)
744 {
745 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
746 }
747 EXPORT_SYMBOL_GPL(lookup_address);
748
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level,bool * nx,bool * rw)749 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
750 unsigned int *level, bool *nx, bool *rw)
751 {
752 pgd_t *pgd;
753
754 if (!cpa->pgd)
755 pgd = pgd_offset_k(address);
756 else
757 pgd = cpa->pgd + pgd_index(address);
758
759 return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
760 }
761
762 /*
763 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
764 * or NULL if not present.
765 */
lookup_pmd_address(unsigned long address)766 pmd_t *lookup_pmd_address(unsigned long address)
767 {
768 pgd_t *pgd;
769 p4d_t *p4d;
770 pud_t *pud;
771
772 pgd = pgd_offset_k(address);
773 if (pgd_none(*pgd))
774 return NULL;
775
776 p4d = p4d_offset(pgd, address);
777 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
778 return NULL;
779
780 pud = pud_offset(p4d, address);
781 if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
782 return NULL;
783
784 return pmd_offset(pud, address);
785 }
786
787 /*
788 * This is necessary because __pa() does not work on some
789 * kinds of memory, like vmalloc() or the alloc_remap()
790 * areas on 32-bit NUMA systems. The percpu areas can
791 * end up in this kind of memory, for instance.
792 *
793 * This could be optimized, but it is only intended to be
794 * used at initialization time, and keeping it
795 * unoptimized should increase the testing coverage for
796 * the more obscure platforms.
797 */
slow_virt_to_phys(void * __virt_addr)798 phys_addr_t slow_virt_to_phys(void *__virt_addr)
799 {
800 unsigned long virt_addr = (unsigned long)__virt_addr;
801 phys_addr_t phys_addr;
802 unsigned long offset;
803 enum pg_level level;
804 pte_t *pte;
805
806 pte = lookup_address(virt_addr, &level);
807 BUG_ON(!pte);
808
809 /*
810 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
811 * before being left-shifted PAGE_SHIFT bits -- this trick is to
812 * make 32-PAE kernel work correctly.
813 */
814 switch (level) {
815 case PG_LEVEL_1G:
816 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
817 offset = virt_addr & ~PUD_MASK;
818 break;
819 case PG_LEVEL_2M:
820 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
821 offset = virt_addr & ~PMD_MASK;
822 break;
823 default:
824 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
825 offset = virt_addr & ~PAGE_MASK;
826 }
827
828 return (phys_addr_t)(phys_addr | offset);
829 }
830 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
831
832 /*
833 * Set the new pmd in all the pgds we know about:
834 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)835 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
836 {
837 /* change init_mm */
838 set_pte_atomic(kpte, pte);
839 #ifdef CONFIG_X86_32
840 if (!SHARED_KERNEL_PMD) {
841 struct page *page;
842
843 list_for_each_entry(page, &pgd_list, lru) {
844 pgd_t *pgd;
845 p4d_t *p4d;
846 pud_t *pud;
847 pmd_t *pmd;
848
849 pgd = (pgd_t *)page_address(page) + pgd_index(address);
850 p4d = p4d_offset(pgd, address);
851 pud = pud_offset(p4d, address);
852 pmd = pmd_offset(pud, address);
853 set_pte_atomic((pte_t *)pmd, pte);
854 }
855 }
856 #endif
857 }
858
pgprot_clear_protnone_bits(pgprot_t prot)859 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
860 {
861 /*
862 * _PAGE_GLOBAL means "global page" for present PTEs.
863 * But, it is also used to indicate _PAGE_PROTNONE
864 * for non-present PTEs.
865 *
866 * This ensures that a _PAGE_GLOBAL PTE going from
867 * present to non-present is not confused as
868 * _PAGE_PROTNONE.
869 */
870 if (!(pgprot_val(prot) & _PAGE_PRESENT))
871 pgprot_val(prot) &= ~_PAGE_GLOBAL;
872
873 return prot;
874 }
875
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)876 static int __should_split_large_page(pte_t *kpte, unsigned long address,
877 struct cpa_data *cpa)
878 {
879 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
880 pgprot_t old_prot, new_prot, req_prot, chk_prot;
881 pte_t new_pte, *tmp;
882 enum pg_level level;
883 bool nx, rw;
884
885 /*
886 * Check for races, another CPU might have split this page
887 * up already:
888 */
889 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
890 if (tmp != kpte)
891 return 1;
892
893 switch (level) {
894 case PG_LEVEL_2M:
895 old_prot = pmd_pgprot(*(pmd_t *)kpte);
896 old_pfn = pmd_pfn(*(pmd_t *)kpte);
897 cpa_inc_2m_checked();
898 break;
899 case PG_LEVEL_1G:
900 old_prot = pud_pgprot(*(pud_t *)kpte);
901 old_pfn = pud_pfn(*(pud_t *)kpte);
902 cpa_inc_1g_checked();
903 break;
904 default:
905 return -EINVAL;
906 }
907
908 psize = page_level_size(level);
909 pmask = page_level_mask(level);
910
911 /*
912 * Calculate the number of pages, which fit into this large
913 * page starting at address:
914 */
915 lpaddr = (address + psize) & pmask;
916 numpages = (lpaddr - address) >> PAGE_SHIFT;
917 if (numpages < cpa->numpages)
918 cpa->numpages = numpages;
919
920 /*
921 * We are safe now. Check whether the new pgprot is the same:
922 * Convert protection attributes to 4k-format, as cpa->mask* are set
923 * up accordingly.
924 */
925
926 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
927 req_prot = pgprot_large_2_4k(old_prot);
928
929 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
930 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
931
932 /*
933 * req_prot is in format of 4k pages. It must be converted to large
934 * page format: the caching mode includes the PAT bit located at
935 * different bit positions in the two formats.
936 */
937 req_prot = pgprot_4k_2_large(req_prot);
938 req_prot = pgprot_clear_protnone_bits(req_prot);
939 if (pgprot_val(req_prot) & _PAGE_PRESENT)
940 pgprot_val(req_prot) |= _PAGE_PSE;
941
942 /*
943 * old_pfn points to the large page base pfn. So we need to add the
944 * offset of the virtual address:
945 */
946 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
947 cpa->pfn = pfn;
948
949 /*
950 * Calculate the large page base address and the number of 4K pages
951 * in the large page
952 */
953 lpaddr = address & pmask;
954 numpages = psize >> PAGE_SHIFT;
955
956 /*
957 * Sanity check that the existing mapping is correct versus the static
958 * protections. static_protections() guards against !PRESENT, so no
959 * extra conditional required here.
960 */
961 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
962 psize, CPA_CONFLICT);
963
964 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
965 /*
966 * Split the large page and tell the split code to
967 * enforce static protections.
968 */
969 cpa->force_static_prot = 1;
970 return 1;
971 }
972
973 /*
974 * Optimization: If the requested pgprot is the same as the current
975 * pgprot, then the large page can be preserved and no updates are
976 * required independent of alignment and length of the requested
977 * range. The above already established that the current pgprot is
978 * correct, which in consequence makes the requested pgprot correct
979 * as well if it is the same. The static protection scan below will
980 * not come to a different conclusion.
981 */
982 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
983 cpa_inc_lp_sameprot(level);
984 return 0;
985 }
986
987 /*
988 * If the requested range does not cover the full page, split it up
989 */
990 if (address != lpaddr || cpa->numpages != numpages)
991 return 1;
992
993 /*
994 * Check whether the requested pgprot is conflicting with a static
995 * protection requirement in the large page.
996 */
997 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
998 psize, CPA_DETECT);
999
1000 new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1001 nx, rw);
1002
1003 /*
1004 * If there is a conflict, split the large page.
1005 *
1006 * There used to be a 4k wise evaluation trying really hard to
1007 * preserve the large pages, but experimentation has shown, that this
1008 * does not help at all. There might be corner cases which would
1009 * preserve one large page occasionally, but it's really not worth the
1010 * extra code and cycles for the common case.
1011 */
1012 if (pgprot_val(req_prot) != pgprot_val(new_prot))
1013 return 1;
1014
1015 /* All checks passed. Update the large page mapping. */
1016 new_pte = pfn_pte(old_pfn, new_prot);
1017 __set_pmd_pte(kpte, address, new_pte);
1018 cpa->flags |= CPA_FLUSHTLB;
1019 cpa_inc_lp_preserved(level);
1020 return 0;
1021 }
1022
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)1023 static int should_split_large_page(pte_t *kpte, unsigned long address,
1024 struct cpa_data *cpa)
1025 {
1026 int do_split;
1027
1028 if (cpa->force_split)
1029 return 1;
1030
1031 spin_lock(&pgd_lock);
1032 do_split = __should_split_large_page(kpte, address, cpa);
1033 spin_unlock(&pgd_lock);
1034
1035 return do_split;
1036 }
1037
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)1038 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1039 pgprot_t ref_prot, unsigned long address,
1040 unsigned long size)
1041 {
1042 unsigned int npg = PFN_DOWN(size);
1043 pgprot_t prot;
1044
1045 /*
1046 * If should_split_large_page() discovered an inconsistent mapping,
1047 * remove the invalid protection in the split mapping.
1048 */
1049 if (!cpa->force_static_prot)
1050 goto set;
1051
1052 /* Hand in lpsize = 0 to enforce the protection mechanism */
1053 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1054
1055 if (pgprot_val(prot) == pgprot_val(ref_prot))
1056 goto set;
1057
1058 /*
1059 * If this is splitting a PMD, fix it up. PUD splits cannot be
1060 * fixed trivially as that would require to rescan the newly
1061 * installed PMD mappings after returning from split_large_page()
1062 * so an eventual further split can allocate the necessary PTE
1063 * pages. Warn for now and revisit it in case this actually
1064 * happens.
1065 */
1066 if (size == PAGE_SIZE)
1067 ref_prot = prot;
1068 else
1069 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1070 set:
1071 set_pte(pte, pfn_pte(pfn, ref_prot));
1072 }
1073
1074 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)1075 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1076 struct page *base)
1077 {
1078 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1079 pte_t *pbase = (pte_t *)page_address(base);
1080 unsigned int i, level;
1081 pgprot_t ref_prot;
1082 bool nx, rw;
1083 pte_t *tmp;
1084
1085 spin_lock(&pgd_lock);
1086 /*
1087 * Check for races, another CPU might have split this page
1088 * up for us already:
1089 */
1090 tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1091 if (tmp != kpte) {
1092 spin_unlock(&pgd_lock);
1093 return 1;
1094 }
1095
1096 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1097
1098 switch (level) {
1099 case PG_LEVEL_2M:
1100 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1101 /*
1102 * Clear PSE (aka _PAGE_PAT) and move
1103 * PAT bit to correct position.
1104 */
1105 ref_prot = pgprot_large_2_4k(ref_prot);
1106 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1107 lpaddr = address & PMD_MASK;
1108 lpinc = PAGE_SIZE;
1109 break;
1110
1111 case PG_LEVEL_1G:
1112 ref_prot = pud_pgprot(*(pud_t *)kpte);
1113 ref_pfn = pud_pfn(*(pud_t *)kpte);
1114 pfninc = PMD_SIZE >> PAGE_SHIFT;
1115 lpaddr = address & PUD_MASK;
1116 lpinc = PMD_SIZE;
1117 /*
1118 * Clear the PSE flags if the PRESENT flag is not set
1119 * otherwise pmd_present/pmd_huge will return true
1120 * even on a non present pmd.
1121 */
1122 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1123 pgprot_val(ref_prot) &= ~_PAGE_PSE;
1124 break;
1125
1126 default:
1127 spin_unlock(&pgd_lock);
1128 return 1;
1129 }
1130
1131 ref_prot = pgprot_clear_protnone_bits(ref_prot);
1132
1133 /*
1134 * Get the target pfn from the original entry:
1135 */
1136 pfn = ref_pfn;
1137 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1138 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1139
1140 if (virt_addr_valid(address)) {
1141 unsigned long pfn = PFN_DOWN(__pa(address));
1142
1143 if (pfn_range_is_mapped(pfn, pfn + 1))
1144 split_page_count(level);
1145 }
1146
1147 /*
1148 * Install the new, split up pagetable.
1149 *
1150 * We use the standard kernel pagetable protections for the new
1151 * pagetable protections, the actual ptes set above control the
1152 * primary protection behavior:
1153 */
1154 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1155
1156 /*
1157 * Do a global flush tlb after splitting the large page
1158 * and before we do the actual change page attribute in the PTE.
1159 *
1160 * Without this, we violate the TLB application note, that says:
1161 * "The TLBs may contain both ordinary and large-page
1162 * translations for a 4-KByte range of linear addresses. This
1163 * may occur if software modifies the paging structures so that
1164 * the page size used for the address range changes. If the two
1165 * translations differ with respect to page frame or attributes
1166 * (e.g., permissions), processor behavior is undefined and may
1167 * be implementation-specific."
1168 *
1169 * We do this global tlb flush inside the cpa_lock, so that we
1170 * don't allow any other cpu, with stale tlb entries change the
1171 * page attribute in parallel, that also falls into the
1172 * just split large page entry.
1173 */
1174 flush_tlb_all();
1175 spin_unlock(&pgd_lock);
1176
1177 return 0;
1178 }
1179
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1180 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1181 unsigned long address)
1182 {
1183 struct page *base;
1184
1185 if (!debug_pagealloc_enabled())
1186 spin_unlock(&cpa_lock);
1187 base = alloc_pages(GFP_KERNEL, 0);
1188 if (!debug_pagealloc_enabled())
1189 spin_lock(&cpa_lock);
1190 if (!base)
1191 return -ENOMEM;
1192
1193 if (__split_large_page(cpa, kpte, address, base))
1194 __free_page(base);
1195
1196 return 0;
1197 }
1198
try_to_free_pte_page(pte_t * pte)1199 static bool try_to_free_pte_page(pte_t *pte)
1200 {
1201 int i;
1202
1203 for (i = 0; i < PTRS_PER_PTE; i++)
1204 if (!pte_none(pte[i]))
1205 return false;
1206
1207 free_page((unsigned long)pte);
1208 return true;
1209 }
1210
try_to_free_pmd_page(pmd_t * pmd)1211 static bool try_to_free_pmd_page(pmd_t *pmd)
1212 {
1213 int i;
1214
1215 for (i = 0; i < PTRS_PER_PMD; i++)
1216 if (!pmd_none(pmd[i]))
1217 return false;
1218
1219 free_page((unsigned long)pmd);
1220 return true;
1221 }
1222
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1223 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1224 {
1225 pte_t *pte = pte_offset_kernel(pmd, start);
1226
1227 while (start < end) {
1228 set_pte(pte, __pte(0));
1229
1230 start += PAGE_SIZE;
1231 pte++;
1232 }
1233
1234 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1235 pmd_clear(pmd);
1236 return true;
1237 }
1238 return false;
1239 }
1240
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1241 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1242 unsigned long start, unsigned long end)
1243 {
1244 if (unmap_pte_range(pmd, start, end))
1245 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1246 pud_clear(pud);
1247 }
1248
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1249 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1250 {
1251 pmd_t *pmd = pmd_offset(pud, start);
1252
1253 /*
1254 * Not on a 2MB page boundary?
1255 */
1256 if (start & (PMD_SIZE - 1)) {
1257 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1258 unsigned long pre_end = min_t(unsigned long, end, next_page);
1259
1260 __unmap_pmd_range(pud, pmd, start, pre_end);
1261
1262 start = pre_end;
1263 pmd++;
1264 }
1265
1266 /*
1267 * Try to unmap in 2M chunks.
1268 */
1269 while (end - start >= PMD_SIZE) {
1270 if (pmd_large(*pmd))
1271 pmd_clear(pmd);
1272 else
1273 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1274
1275 start += PMD_SIZE;
1276 pmd++;
1277 }
1278
1279 /*
1280 * 4K leftovers?
1281 */
1282 if (start < end)
1283 return __unmap_pmd_range(pud, pmd, start, end);
1284
1285 /*
1286 * Try again to free the PMD page if haven't succeeded above.
1287 */
1288 if (!pud_none(*pud))
1289 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1290 pud_clear(pud);
1291 }
1292
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1293 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1294 {
1295 pud_t *pud = pud_offset(p4d, start);
1296
1297 /*
1298 * Not on a GB page boundary?
1299 */
1300 if (start & (PUD_SIZE - 1)) {
1301 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1302 unsigned long pre_end = min_t(unsigned long, end, next_page);
1303
1304 unmap_pmd_range(pud, start, pre_end);
1305
1306 start = pre_end;
1307 pud++;
1308 }
1309
1310 /*
1311 * Try to unmap in 1G chunks?
1312 */
1313 while (end - start >= PUD_SIZE) {
1314
1315 if (pud_leaf(*pud))
1316 pud_clear(pud);
1317 else
1318 unmap_pmd_range(pud, start, start + PUD_SIZE);
1319
1320 start += PUD_SIZE;
1321 pud++;
1322 }
1323
1324 /*
1325 * 2M leftovers?
1326 */
1327 if (start < end)
1328 unmap_pmd_range(pud, start, end);
1329
1330 /*
1331 * No need to try to free the PUD page because we'll free it in
1332 * populate_pgd's error path
1333 */
1334 }
1335
alloc_pte_page(pmd_t * pmd)1336 static int alloc_pte_page(pmd_t *pmd)
1337 {
1338 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1339 if (!pte)
1340 return -1;
1341
1342 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1343 return 0;
1344 }
1345
alloc_pmd_page(pud_t * pud)1346 static int alloc_pmd_page(pud_t *pud)
1347 {
1348 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1349 if (!pmd)
1350 return -1;
1351
1352 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1353 return 0;
1354 }
1355
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1356 static void populate_pte(struct cpa_data *cpa,
1357 unsigned long start, unsigned long end,
1358 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1359 {
1360 pte_t *pte;
1361
1362 pte = pte_offset_kernel(pmd, start);
1363
1364 pgprot = pgprot_clear_protnone_bits(pgprot);
1365
1366 while (num_pages-- && start < end) {
1367 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1368
1369 start += PAGE_SIZE;
1370 cpa->pfn++;
1371 pte++;
1372 }
1373 }
1374
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1375 static long populate_pmd(struct cpa_data *cpa,
1376 unsigned long start, unsigned long end,
1377 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1378 {
1379 long cur_pages = 0;
1380 pmd_t *pmd;
1381 pgprot_t pmd_pgprot;
1382
1383 /*
1384 * Not on a 2M boundary?
1385 */
1386 if (start & (PMD_SIZE - 1)) {
1387 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1388 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1389
1390 pre_end = min_t(unsigned long, pre_end, next_page);
1391 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1392 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1393
1394 /*
1395 * Need a PTE page?
1396 */
1397 pmd = pmd_offset(pud, start);
1398 if (pmd_none(*pmd))
1399 if (alloc_pte_page(pmd))
1400 return -1;
1401
1402 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1403
1404 start = pre_end;
1405 }
1406
1407 /*
1408 * We mapped them all?
1409 */
1410 if (num_pages == cur_pages)
1411 return cur_pages;
1412
1413 pmd_pgprot = pgprot_4k_2_large(pgprot);
1414
1415 while (end - start >= PMD_SIZE) {
1416
1417 /*
1418 * We cannot use a 1G page so allocate a PMD page if needed.
1419 */
1420 if (pud_none(*pud))
1421 if (alloc_pmd_page(pud))
1422 return -1;
1423
1424 pmd = pmd_offset(pud, start);
1425
1426 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1427 canon_pgprot(pmd_pgprot))));
1428
1429 start += PMD_SIZE;
1430 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1431 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1432 }
1433
1434 /*
1435 * Map trailing 4K pages.
1436 */
1437 if (start < end) {
1438 pmd = pmd_offset(pud, start);
1439 if (pmd_none(*pmd))
1440 if (alloc_pte_page(pmd))
1441 return -1;
1442
1443 populate_pte(cpa, start, end, num_pages - cur_pages,
1444 pmd, pgprot);
1445 }
1446 return num_pages;
1447 }
1448
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1449 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1450 pgprot_t pgprot)
1451 {
1452 pud_t *pud;
1453 unsigned long end;
1454 long cur_pages = 0;
1455 pgprot_t pud_pgprot;
1456
1457 end = start + (cpa->numpages << PAGE_SHIFT);
1458
1459 /*
1460 * Not on a Gb page boundary? => map everything up to it with
1461 * smaller pages.
1462 */
1463 if (start & (PUD_SIZE - 1)) {
1464 unsigned long pre_end;
1465 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1466
1467 pre_end = min_t(unsigned long, end, next_page);
1468 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1469 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1470
1471 pud = pud_offset(p4d, start);
1472
1473 /*
1474 * Need a PMD page?
1475 */
1476 if (pud_none(*pud))
1477 if (alloc_pmd_page(pud))
1478 return -1;
1479
1480 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1481 pud, pgprot);
1482 if (cur_pages < 0)
1483 return cur_pages;
1484
1485 start = pre_end;
1486 }
1487
1488 /* We mapped them all? */
1489 if (cpa->numpages == cur_pages)
1490 return cur_pages;
1491
1492 pud = pud_offset(p4d, start);
1493 pud_pgprot = pgprot_4k_2_large(pgprot);
1494
1495 /*
1496 * Map everything starting from the Gb boundary, possibly with 1G pages
1497 */
1498 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1499 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1500 canon_pgprot(pud_pgprot))));
1501
1502 start += PUD_SIZE;
1503 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1504 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1505 pud++;
1506 }
1507
1508 /* Map trailing leftover */
1509 if (start < end) {
1510 long tmp;
1511
1512 pud = pud_offset(p4d, start);
1513 if (pud_none(*pud))
1514 if (alloc_pmd_page(pud))
1515 return -1;
1516
1517 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1518 pud, pgprot);
1519 if (tmp < 0)
1520 return cur_pages;
1521
1522 cur_pages += tmp;
1523 }
1524 return cur_pages;
1525 }
1526
1527 /*
1528 * Restrictions for kernel page table do not necessarily apply when mapping in
1529 * an alternate PGD.
1530 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1531 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1532 {
1533 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1534 pud_t *pud = NULL; /* shut up gcc */
1535 p4d_t *p4d;
1536 pgd_t *pgd_entry;
1537 long ret;
1538
1539 pgd_entry = cpa->pgd + pgd_index(addr);
1540
1541 if (pgd_none(*pgd_entry)) {
1542 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1543 if (!p4d)
1544 return -1;
1545
1546 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1547 }
1548
1549 /*
1550 * Allocate a PUD page and hand it down for mapping.
1551 */
1552 p4d = p4d_offset(pgd_entry, addr);
1553 if (p4d_none(*p4d)) {
1554 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1555 if (!pud)
1556 return -1;
1557
1558 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1559 }
1560
1561 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1562 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1563
1564 ret = populate_pud(cpa, addr, p4d, pgprot);
1565 if (ret < 0) {
1566 /*
1567 * Leave the PUD page in place in case some other CPU or thread
1568 * already found it, but remove any useless entries we just
1569 * added to it.
1570 */
1571 unmap_pud_range(p4d, addr,
1572 addr + (cpa->numpages << PAGE_SHIFT));
1573 return ret;
1574 }
1575
1576 cpa->numpages = ret;
1577 return 0;
1578 }
1579
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1580 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1581 int primary)
1582 {
1583 if (cpa->pgd) {
1584 /*
1585 * Right now, we only execute this code path when mapping
1586 * the EFI virtual memory map regions, no other users
1587 * provide a ->pgd value. This may change in the future.
1588 */
1589 return populate_pgd(cpa, vaddr);
1590 }
1591
1592 /*
1593 * Ignore all non primary paths.
1594 */
1595 if (!primary) {
1596 cpa->numpages = 1;
1597 return 0;
1598 }
1599
1600 /*
1601 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1602 * to have holes.
1603 * Also set numpages to '1' indicating that we processed cpa req for
1604 * one virtual address page and its pfn. TBD: numpages can be set based
1605 * on the initial value and the level returned by lookup_address().
1606 */
1607 if (within(vaddr, PAGE_OFFSET,
1608 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1609 cpa->numpages = 1;
1610 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1611 return 0;
1612
1613 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1614 /* Faults in the highmap are OK, so do not warn: */
1615 return -EFAULT;
1616 } else {
1617 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1618 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1619 *cpa->vaddr);
1620
1621 return -EFAULT;
1622 }
1623 }
1624
__change_page_attr(struct cpa_data * cpa,int primary)1625 static int __change_page_attr(struct cpa_data *cpa, int primary)
1626 {
1627 unsigned long address;
1628 int do_split, err;
1629 unsigned int level;
1630 pte_t *kpte, old_pte;
1631 bool nx, rw;
1632
1633 address = __cpa_addr(cpa, cpa->curpage);
1634 repeat:
1635 kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1636 if (!kpte)
1637 return __cpa_process_fault(cpa, address, primary);
1638
1639 old_pte = *kpte;
1640 if (pte_none(old_pte))
1641 return __cpa_process_fault(cpa, address, primary);
1642
1643 if (level == PG_LEVEL_4K) {
1644 pte_t new_pte;
1645 pgprot_t old_prot = pte_pgprot(old_pte);
1646 pgprot_t new_prot = pte_pgprot(old_pte);
1647 unsigned long pfn = pte_pfn(old_pte);
1648
1649 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1650 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1651
1652 cpa_inc_4k_install();
1653 /* Hand in lpsize = 0 to enforce the protection mechanism */
1654 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1655 CPA_PROTECT);
1656
1657 new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1658 nx, rw);
1659
1660 new_prot = pgprot_clear_protnone_bits(new_prot);
1661
1662 /*
1663 * We need to keep the pfn from the existing PTE,
1664 * after all we're only going to change it's attributes
1665 * not the memory it points to
1666 */
1667 new_pte = pfn_pte(pfn, new_prot);
1668 cpa->pfn = pfn;
1669 /*
1670 * Do we really change anything ?
1671 */
1672 if (pte_val(old_pte) != pte_val(new_pte)) {
1673 set_pte_atomic(kpte, new_pte);
1674 cpa->flags |= CPA_FLUSHTLB;
1675 }
1676 cpa->numpages = 1;
1677 return 0;
1678 }
1679
1680 /*
1681 * Check, whether we can keep the large page intact
1682 * and just change the pte:
1683 */
1684 do_split = should_split_large_page(kpte, address, cpa);
1685 /*
1686 * When the range fits into the existing large page,
1687 * return. cp->numpages and cpa->tlbflush have been updated in
1688 * try_large_page:
1689 */
1690 if (do_split <= 0)
1691 return do_split;
1692
1693 /*
1694 * We have to split the large page:
1695 */
1696 err = split_large_page(cpa, kpte, address);
1697 if (!err)
1698 goto repeat;
1699
1700 return err;
1701 }
1702
1703 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1704
1705 /*
1706 * Check the directmap and "high kernel map" 'aliases'.
1707 */
cpa_process_alias(struct cpa_data * cpa)1708 static int cpa_process_alias(struct cpa_data *cpa)
1709 {
1710 struct cpa_data alias_cpa;
1711 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1712 unsigned long vaddr;
1713 int ret;
1714
1715 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1716 return 0;
1717
1718 /*
1719 * No need to redo, when the primary call touched the direct
1720 * mapping already:
1721 */
1722 vaddr = __cpa_addr(cpa, cpa->curpage);
1723 if (!(within(vaddr, PAGE_OFFSET,
1724 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1725
1726 alias_cpa = *cpa;
1727 alias_cpa.vaddr = &laddr;
1728 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1729 alias_cpa.curpage = 0;
1730
1731 /* Directmap always has NX set, do not modify. */
1732 if (__supported_pte_mask & _PAGE_NX) {
1733 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1734 alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1735 }
1736
1737 cpa->force_flush_all = 1;
1738
1739 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1740 if (ret)
1741 return ret;
1742 }
1743
1744 #ifdef CONFIG_X86_64
1745 /*
1746 * If the primary call didn't touch the high mapping already
1747 * and the physical address is inside the kernel map, we need
1748 * to touch the high mapped kernel as well:
1749 */
1750 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1751 __cpa_pfn_in_highmap(cpa->pfn)) {
1752 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1753 __START_KERNEL_map - phys_base;
1754 alias_cpa = *cpa;
1755 alias_cpa.vaddr = &temp_cpa_vaddr;
1756 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1757 alias_cpa.curpage = 0;
1758
1759 /*
1760 * [_text, _brk_end) also covers data, do not modify NX except
1761 * in cases where the highmap is the primary target.
1762 */
1763 if (__supported_pte_mask & _PAGE_NX) {
1764 alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1765 alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1766 }
1767
1768 cpa->force_flush_all = 1;
1769 /*
1770 * The high mapping range is imprecise, so ignore the
1771 * return value.
1772 */
1773 __change_page_attr_set_clr(&alias_cpa, 0);
1774 }
1775 #endif
1776
1777 return 0;
1778 }
1779
__change_page_attr_set_clr(struct cpa_data * cpa,int primary)1780 static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1781 {
1782 unsigned long numpages = cpa->numpages;
1783 unsigned long rempages = numpages;
1784 int ret = 0;
1785
1786 /*
1787 * No changes, easy!
1788 */
1789 if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1790 !cpa->force_split)
1791 return ret;
1792
1793 while (rempages) {
1794 /*
1795 * Store the remaining nr of pages for the large page
1796 * preservation check.
1797 */
1798 cpa->numpages = rempages;
1799 /* for array changes, we can't use large page */
1800 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1801 cpa->numpages = 1;
1802
1803 if (!debug_pagealloc_enabled())
1804 spin_lock(&cpa_lock);
1805 ret = __change_page_attr(cpa, primary);
1806 if (!debug_pagealloc_enabled())
1807 spin_unlock(&cpa_lock);
1808 if (ret)
1809 goto out;
1810
1811 if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1812 ret = cpa_process_alias(cpa);
1813 if (ret)
1814 goto out;
1815 }
1816
1817 /*
1818 * Adjust the number of pages with the result of the
1819 * CPA operation. Either a large page has been
1820 * preserved or a single page update happened.
1821 */
1822 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1823 rempages -= cpa->numpages;
1824 cpa->curpage += cpa->numpages;
1825 }
1826
1827 out:
1828 /* Restore the original numpages */
1829 cpa->numpages = numpages;
1830 return ret;
1831 }
1832
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1833 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1834 pgprot_t mask_set, pgprot_t mask_clr,
1835 int force_split, int in_flag,
1836 struct page **pages)
1837 {
1838 struct cpa_data cpa;
1839 int ret, cache;
1840
1841 memset(&cpa, 0, sizeof(cpa));
1842
1843 /*
1844 * Check, if we are requested to set a not supported
1845 * feature. Clearing non-supported features is OK.
1846 */
1847 mask_set = canon_pgprot(mask_set);
1848
1849 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1850 return 0;
1851
1852 /* Ensure we are PAGE_SIZE aligned */
1853 if (in_flag & CPA_ARRAY) {
1854 int i;
1855 for (i = 0; i < numpages; i++) {
1856 if (addr[i] & ~PAGE_MASK) {
1857 addr[i] &= PAGE_MASK;
1858 WARN_ON_ONCE(1);
1859 }
1860 }
1861 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1862 /*
1863 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1864 * No need to check in that case
1865 */
1866 if (*addr & ~PAGE_MASK) {
1867 *addr &= PAGE_MASK;
1868 /*
1869 * People should not be passing in unaligned addresses:
1870 */
1871 WARN_ON_ONCE(1);
1872 }
1873 }
1874
1875 /* Must avoid aliasing mappings in the highmem code */
1876 kmap_flush_unused();
1877
1878 vm_unmap_aliases();
1879
1880 cpa.vaddr = addr;
1881 cpa.pages = pages;
1882 cpa.numpages = numpages;
1883 cpa.mask_set = mask_set;
1884 cpa.mask_clr = mask_clr;
1885 cpa.flags = in_flag;
1886 cpa.curpage = 0;
1887 cpa.force_split = force_split;
1888
1889 ret = __change_page_attr_set_clr(&cpa, 1);
1890
1891 /*
1892 * Check whether we really changed something:
1893 */
1894 if (!(cpa.flags & CPA_FLUSHTLB))
1895 goto out;
1896
1897 /*
1898 * No need to flush, when we did not set any of the caching
1899 * attributes:
1900 */
1901 cache = !!pgprot2cachemode(mask_set);
1902
1903 /*
1904 * On error; flush everything to be sure.
1905 */
1906 if (ret) {
1907 cpa_flush_all(cache);
1908 goto out;
1909 }
1910
1911 cpa_flush(&cpa, cache);
1912 out:
1913 return ret;
1914 }
1915
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1916 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1917 pgprot_t mask, int array)
1918 {
1919 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1920 (array ? CPA_ARRAY : 0), NULL);
1921 }
1922
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1923 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1924 pgprot_t mask, int array)
1925 {
1926 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1927 (array ? CPA_ARRAY : 0), NULL);
1928 }
1929
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1930 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1931 pgprot_t mask)
1932 {
1933 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1934 CPA_PAGES_ARRAY, pages);
1935 }
1936
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1937 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1938 pgprot_t mask)
1939 {
1940 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1941 CPA_PAGES_ARRAY, pages);
1942 }
1943
1944 /*
1945 * __set_memory_prot is an internal helper for callers that have been passed
1946 * a pgprot_t value from upper layers and a reservation has already been taken.
1947 * If you want to set the pgprot to a specific page protocol, use the
1948 * set_memory_xx() functions.
1949 */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1950 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1951 {
1952 return change_page_attr_set_clr(&addr, numpages, prot,
1953 __pgprot(~pgprot_val(prot)), 0, 0,
1954 NULL);
1955 }
1956
_set_memory_uc(unsigned long addr,int numpages)1957 int _set_memory_uc(unsigned long addr, int numpages)
1958 {
1959 /*
1960 * for now UC MINUS. see comments in ioremap()
1961 * If you really need strong UC use ioremap_uc(), but note
1962 * that you cannot override IO areas with set_memory_*() as
1963 * these helpers cannot work with IO memory.
1964 */
1965 return change_page_attr_set(&addr, numpages,
1966 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1967 0);
1968 }
1969
set_memory_uc(unsigned long addr,int numpages)1970 int set_memory_uc(unsigned long addr, int numpages)
1971 {
1972 int ret;
1973
1974 /*
1975 * for now UC MINUS. see comments in ioremap()
1976 */
1977 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1978 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1979 if (ret)
1980 goto out_err;
1981
1982 ret = _set_memory_uc(addr, numpages);
1983 if (ret)
1984 goto out_free;
1985
1986 return 0;
1987
1988 out_free:
1989 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1990 out_err:
1991 return ret;
1992 }
1993 EXPORT_SYMBOL(set_memory_uc);
1994
_set_memory_wc(unsigned long addr,int numpages)1995 int _set_memory_wc(unsigned long addr, int numpages)
1996 {
1997 int ret;
1998
1999 ret = change_page_attr_set(&addr, numpages,
2000 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2001 0);
2002 if (!ret) {
2003 ret = change_page_attr_set_clr(&addr, numpages,
2004 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2005 __pgprot(_PAGE_CACHE_MASK),
2006 0, 0, NULL);
2007 }
2008 return ret;
2009 }
2010
set_memory_wc(unsigned long addr,int numpages)2011 int set_memory_wc(unsigned long addr, int numpages)
2012 {
2013 int ret;
2014
2015 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2016 _PAGE_CACHE_MODE_WC, NULL);
2017 if (ret)
2018 return ret;
2019
2020 ret = _set_memory_wc(addr, numpages);
2021 if (ret)
2022 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2023
2024 return ret;
2025 }
2026 EXPORT_SYMBOL(set_memory_wc);
2027
_set_memory_wt(unsigned long addr,int numpages)2028 int _set_memory_wt(unsigned long addr, int numpages)
2029 {
2030 return change_page_attr_set(&addr, numpages,
2031 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2032 }
2033
_set_memory_wb(unsigned long addr,int numpages)2034 int _set_memory_wb(unsigned long addr, int numpages)
2035 {
2036 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2037 return change_page_attr_clear(&addr, numpages,
2038 __pgprot(_PAGE_CACHE_MASK), 0);
2039 }
2040
set_memory_wb(unsigned long addr,int numpages)2041 int set_memory_wb(unsigned long addr, int numpages)
2042 {
2043 int ret;
2044
2045 ret = _set_memory_wb(addr, numpages);
2046 if (ret)
2047 return ret;
2048
2049 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(set_memory_wb);
2053
2054 /* Prevent speculative access to a page by marking it not-present */
2055 #ifdef CONFIG_X86_64
set_mce_nospec(unsigned long pfn)2056 int set_mce_nospec(unsigned long pfn)
2057 {
2058 unsigned long decoy_addr;
2059 int rc;
2060
2061 /* SGX pages are not in the 1:1 map */
2062 if (arch_is_platform_page(pfn << PAGE_SHIFT))
2063 return 0;
2064 /*
2065 * We would like to just call:
2066 * set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2067 * but doing that would radically increase the odds of a
2068 * speculative access to the poison page because we'd have
2069 * the virtual address of the kernel 1:1 mapping sitting
2070 * around in registers.
2071 * Instead we get tricky. We create a non-canonical address
2072 * that looks just like the one we want, but has bit 63 flipped.
2073 * This relies on set_memory_XX() properly sanitizing any __pa()
2074 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2075 */
2076 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2077
2078 rc = set_memory_np(decoy_addr, 1);
2079 if (rc)
2080 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2081 return rc;
2082 }
2083
set_memory_p(unsigned long * addr,int numpages)2084 static int set_memory_p(unsigned long *addr, int numpages)
2085 {
2086 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2087 }
2088
2089 /* Restore full speculative operation to the pfn. */
clear_mce_nospec(unsigned long pfn)2090 int clear_mce_nospec(unsigned long pfn)
2091 {
2092 unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2093
2094 return set_memory_p(&addr, 1);
2095 }
2096 EXPORT_SYMBOL_GPL(clear_mce_nospec);
2097 #endif /* CONFIG_X86_64 */
2098
set_memory_x(unsigned long addr,int numpages)2099 int set_memory_x(unsigned long addr, int numpages)
2100 {
2101 if (!(__supported_pte_mask & _PAGE_NX))
2102 return 0;
2103
2104 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2105 }
2106
set_memory_nx(unsigned long addr,int numpages)2107 int set_memory_nx(unsigned long addr, int numpages)
2108 {
2109 if (!(__supported_pte_mask & _PAGE_NX))
2110 return 0;
2111
2112 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2113 }
2114
set_memory_ro(unsigned long addr,int numpages)2115 int set_memory_ro(unsigned long addr, int numpages)
2116 {
2117 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2118 }
2119
set_memory_rox(unsigned long addr,int numpages)2120 int set_memory_rox(unsigned long addr, int numpages)
2121 {
2122 pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2123
2124 if (__supported_pte_mask & _PAGE_NX)
2125 clr.pgprot |= _PAGE_NX;
2126
2127 return change_page_attr_clear(&addr, numpages, clr, 0);
2128 }
2129
set_memory_rw(unsigned long addr,int numpages)2130 int set_memory_rw(unsigned long addr, int numpages)
2131 {
2132 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2133 }
2134
set_memory_np(unsigned long addr,int numpages)2135 int set_memory_np(unsigned long addr, int numpages)
2136 {
2137 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2138 }
2139
set_memory_np_noalias(unsigned long addr,int numpages)2140 int set_memory_np_noalias(unsigned long addr, int numpages)
2141 {
2142 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2143 __pgprot(_PAGE_PRESENT), 0,
2144 CPA_NO_CHECK_ALIAS, NULL);
2145 }
2146
set_memory_4k(unsigned long addr,int numpages)2147 int set_memory_4k(unsigned long addr, int numpages)
2148 {
2149 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2150 __pgprot(0), 1, 0, NULL);
2151 }
2152
set_memory_nonglobal(unsigned long addr,int numpages)2153 int set_memory_nonglobal(unsigned long addr, int numpages)
2154 {
2155 return change_page_attr_clear(&addr, numpages,
2156 __pgprot(_PAGE_GLOBAL), 0);
2157 }
2158
set_memory_global(unsigned long addr,int numpages)2159 int set_memory_global(unsigned long addr, int numpages)
2160 {
2161 return change_page_attr_set(&addr, numpages,
2162 __pgprot(_PAGE_GLOBAL), 0);
2163 }
2164
2165 /*
2166 * __set_memory_enc_pgtable() is used for the hypervisors that get
2167 * informed about "encryption" status via page tables.
2168 */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)2169 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2170 {
2171 pgprot_t empty = __pgprot(0);
2172 struct cpa_data cpa;
2173 int ret;
2174
2175 /* Should not be working on unaligned addresses */
2176 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2177 addr &= PAGE_MASK;
2178
2179 memset(&cpa, 0, sizeof(cpa));
2180 cpa.vaddr = &addr;
2181 cpa.numpages = numpages;
2182 cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2183 cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2184 cpa.pgd = init_mm.pgd;
2185
2186 /* Must avoid aliasing mappings in the highmem code */
2187 kmap_flush_unused();
2188 vm_unmap_aliases();
2189
2190 /* Flush the caches as needed before changing the encryption attribute. */
2191 if (x86_platform.guest.enc_tlb_flush_required(enc))
2192 cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2193
2194 /* Notify hypervisor that we are about to set/clr encryption attribute. */
2195 if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2196 return -EIO;
2197
2198 ret = __change_page_attr_set_clr(&cpa, 1);
2199
2200 /*
2201 * After changing the encryption attribute, we need to flush TLBs again
2202 * in case any speculative TLB caching occurred (but no need to flush
2203 * caches again). We could just use cpa_flush_all(), but in case TLB
2204 * flushing gets optimized in the cpa_flush() path use the same logic
2205 * as above.
2206 */
2207 cpa_flush(&cpa, 0);
2208
2209 /* Notify hypervisor that we have successfully set/clr encryption attribute. */
2210 if (!ret) {
2211 if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2212 ret = -EIO;
2213 }
2214
2215 return ret;
2216 }
2217
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2218 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2219 {
2220 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2221 return __set_memory_enc_pgtable(addr, numpages, enc);
2222
2223 return 0;
2224 }
2225
set_memory_encrypted(unsigned long addr,int numpages)2226 int set_memory_encrypted(unsigned long addr, int numpages)
2227 {
2228 return __set_memory_enc_dec(addr, numpages, true);
2229 }
2230 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2231
set_memory_decrypted(unsigned long addr,int numpages)2232 int set_memory_decrypted(unsigned long addr, int numpages)
2233 {
2234 return __set_memory_enc_dec(addr, numpages, false);
2235 }
2236 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2237
set_pages_uc(struct page * page,int numpages)2238 int set_pages_uc(struct page *page, int numpages)
2239 {
2240 unsigned long addr = (unsigned long)page_address(page);
2241
2242 return set_memory_uc(addr, numpages);
2243 }
2244 EXPORT_SYMBOL(set_pages_uc);
2245
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2246 static int _set_pages_array(struct page **pages, int numpages,
2247 enum page_cache_mode new_type)
2248 {
2249 unsigned long start;
2250 unsigned long end;
2251 enum page_cache_mode set_type;
2252 int i;
2253 int free_idx;
2254 int ret;
2255
2256 for (i = 0; i < numpages; i++) {
2257 if (PageHighMem(pages[i]))
2258 continue;
2259 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2260 end = start + PAGE_SIZE;
2261 if (memtype_reserve(start, end, new_type, NULL))
2262 goto err_out;
2263 }
2264
2265 /* If WC, set to UC- first and then WC */
2266 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2267 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2268
2269 ret = cpa_set_pages_array(pages, numpages,
2270 cachemode2pgprot(set_type));
2271 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2272 ret = change_page_attr_set_clr(NULL, numpages,
2273 cachemode2pgprot(
2274 _PAGE_CACHE_MODE_WC),
2275 __pgprot(_PAGE_CACHE_MASK),
2276 0, CPA_PAGES_ARRAY, pages);
2277 if (ret)
2278 goto err_out;
2279 return 0; /* Success */
2280 err_out:
2281 free_idx = i;
2282 for (i = 0; i < free_idx; i++) {
2283 if (PageHighMem(pages[i]))
2284 continue;
2285 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2286 end = start + PAGE_SIZE;
2287 memtype_free(start, end);
2288 }
2289 return -EINVAL;
2290 }
2291
set_pages_array_uc(struct page ** pages,int numpages)2292 int set_pages_array_uc(struct page **pages, int numpages)
2293 {
2294 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2295 }
2296 EXPORT_SYMBOL(set_pages_array_uc);
2297
set_pages_array_wc(struct page ** pages,int numpages)2298 int set_pages_array_wc(struct page **pages, int numpages)
2299 {
2300 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2301 }
2302 EXPORT_SYMBOL(set_pages_array_wc);
2303
set_pages_wb(struct page * page,int numpages)2304 int set_pages_wb(struct page *page, int numpages)
2305 {
2306 unsigned long addr = (unsigned long)page_address(page);
2307
2308 return set_memory_wb(addr, numpages);
2309 }
2310 EXPORT_SYMBOL(set_pages_wb);
2311
set_pages_array_wb(struct page ** pages,int numpages)2312 int set_pages_array_wb(struct page **pages, int numpages)
2313 {
2314 int retval;
2315 unsigned long start;
2316 unsigned long end;
2317 int i;
2318
2319 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2320 retval = cpa_clear_pages_array(pages, numpages,
2321 __pgprot(_PAGE_CACHE_MASK));
2322 if (retval)
2323 return retval;
2324
2325 for (i = 0; i < numpages; i++) {
2326 if (PageHighMem(pages[i]))
2327 continue;
2328 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2329 end = start + PAGE_SIZE;
2330 memtype_free(start, end);
2331 }
2332
2333 return 0;
2334 }
2335 EXPORT_SYMBOL(set_pages_array_wb);
2336
set_pages_ro(struct page * page,int numpages)2337 int set_pages_ro(struct page *page, int numpages)
2338 {
2339 unsigned long addr = (unsigned long)page_address(page);
2340
2341 return set_memory_ro(addr, numpages);
2342 }
2343
set_pages_rw(struct page * page,int numpages)2344 int set_pages_rw(struct page *page, int numpages)
2345 {
2346 unsigned long addr = (unsigned long)page_address(page);
2347
2348 return set_memory_rw(addr, numpages);
2349 }
2350
__set_pages_p(struct page * page,int numpages)2351 static int __set_pages_p(struct page *page, int numpages)
2352 {
2353 unsigned long tempaddr = (unsigned long) page_address(page);
2354 struct cpa_data cpa = { .vaddr = &tempaddr,
2355 .pgd = NULL,
2356 .numpages = numpages,
2357 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2358 .mask_clr = __pgprot(0),
2359 .flags = CPA_NO_CHECK_ALIAS };
2360
2361 /*
2362 * No alias checking needed for setting present flag. otherwise,
2363 * we may need to break large pages for 64-bit kernel text
2364 * mappings (this adds to complexity if we want to do this from
2365 * atomic context especially). Let's keep it simple!
2366 */
2367 return __change_page_attr_set_clr(&cpa, 1);
2368 }
2369
__set_pages_np(struct page * page,int numpages)2370 static int __set_pages_np(struct page *page, int numpages)
2371 {
2372 unsigned long tempaddr = (unsigned long) page_address(page);
2373 struct cpa_data cpa = { .vaddr = &tempaddr,
2374 .pgd = NULL,
2375 .numpages = numpages,
2376 .mask_set = __pgprot(0),
2377 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2378 .flags = CPA_NO_CHECK_ALIAS };
2379
2380 /*
2381 * No alias checking needed for setting not present flag. otherwise,
2382 * we may need to break large pages for 64-bit kernel text
2383 * mappings (this adds to complexity if we want to do this from
2384 * atomic context especially). Let's keep it simple!
2385 */
2386 return __change_page_attr_set_clr(&cpa, 1);
2387 }
2388
set_direct_map_invalid_noflush(struct page * page)2389 int set_direct_map_invalid_noflush(struct page *page)
2390 {
2391 return __set_pages_np(page, 1);
2392 }
2393
set_direct_map_default_noflush(struct page * page)2394 int set_direct_map_default_noflush(struct page *page)
2395 {
2396 return __set_pages_p(page, 1);
2397 }
2398
2399 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2400 void __kernel_map_pages(struct page *page, int numpages, int enable)
2401 {
2402 if (PageHighMem(page))
2403 return;
2404 if (!enable) {
2405 debug_check_no_locks_freed(page_address(page),
2406 numpages * PAGE_SIZE);
2407 }
2408
2409 /*
2410 * The return value is ignored as the calls cannot fail.
2411 * Large pages for identity mappings are not used at boot time
2412 * and hence no memory allocations during large page split.
2413 */
2414 if (enable)
2415 __set_pages_p(page, numpages);
2416 else
2417 __set_pages_np(page, numpages);
2418
2419 /*
2420 * We should perform an IPI and flush all tlbs,
2421 * but that can deadlock->flush only current cpu.
2422 * Preemption needs to be disabled around __flush_tlb_all() due to
2423 * CR3 reload in __native_flush_tlb().
2424 */
2425 preempt_disable();
2426 __flush_tlb_all();
2427 preempt_enable();
2428
2429 arch_flush_lazy_mmu_mode();
2430 }
2431 #endif /* CONFIG_DEBUG_PAGEALLOC */
2432
kernel_page_present(struct page * page)2433 bool kernel_page_present(struct page *page)
2434 {
2435 unsigned int level;
2436 pte_t *pte;
2437
2438 if (PageHighMem(page))
2439 return false;
2440
2441 pte = lookup_address((unsigned long)page_address(page), &level);
2442 return (pte_val(*pte) & _PAGE_PRESENT);
2443 }
2444
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2445 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2446 unsigned numpages, unsigned long page_flags)
2447 {
2448 int retval = -EINVAL;
2449
2450 struct cpa_data cpa = {
2451 .vaddr = &address,
2452 .pfn = pfn,
2453 .pgd = pgd,
2454 .numpages = numpages,
2455 .mask_set = __pgprot(0),
2456 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2457 .flags = CPA_NO_CHECK_ALIAS,
2458 };
2459
2460 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2461
2462 if (!(__supported_pte_mask & _PAGE_NX))
2463 goto out;
2464
2465 if (!(page_flags & _PAGE_ENC))
2466 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2467
2468 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2469
2470 retval = __change_page_attr_set_clr(&cpa, 1);
2471 __flush_tlb_all();
2472
2473 out:
2474 return retval;
2475 }
2476
2477 /*
2478 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2479 * function shouldn't be used in an SMP environment. Presently, it's used only
2480 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2481 */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2482 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2483 unsigned long numpages)
2484 {
2485 int retval;
2486
2487 /*
2488 * The typical sequence for unmapping is to find a pte through
2489 * lookup_address_in_pgd() (ideally, it should never return NULL because
2490 * the address is already mapped) and change it's protections. As pfn is
2491 * the *target* of a mapping, it's not useful while unmapping.
2492 */
2493 struct cpa_data cpa = {
2494 .vaddr = &address,
2495 .pfn = 0,
2496 .pgd = pgd,
2497 .numpages = numpages,
2498 .mask_set = __pgprot(0),
2499 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2500 .flags = CPA_NO_CHECK_ALIAS,
2501 };
2502
2503 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2504
2505 retval = __change_page_attr_set_clr(&cpa, 1);
2506 __flush_tlb_all();
2507
2508 return retval;
2509 }
2510
2511 /*
2512 * The testcases use internal knowledge of the implementation that shouldn't
2513 * be exposed to the rest of the kernel. Include these directly here.
2514 */
2515 #ifdef CONFIG_CPA_DEBUG
2516 #include "cpa-test.c"
2517 #endif
2518