1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * corsair-psu.c - Linux driver for Corsair power supplies with HID sensors interface
4 * Copyright (C) 2020 Wilken Gottwalt <wilken.gottwalt@posteo.net>
5 */
6
7 #include <linux/completion.h>
8 #include <linux/debugfs.h>
9 #include <linux/errno.h>
10 #include <linux/hid.h>
11 #include <linux/hwmon.h>
12 #include <linux/hwmon-sysfs.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19
20 /*
21 * Corsair protocol for PSUs
22 *
23 * message size = 64 bytes (request and response, little endian)
24 * request:
25 * [length][command][param0][param1][paramX]...
26 * reply:
27 * [echo of length][echo of command][data0][data1][dataX]...
28 *
29 * - commands are byte sized opcodes
30 * - length is the sum of all bytes of the commands/params
31 * - the micro-controller of most of these PSUs support concatenation in the request and reply,
32 * but it is better to not rely on this (it is also hard to parse)
33 * - the driver uses raw events to be accessible from userspace (though this is not really
34 * supported, it is just there for convenience, may be removed in the future)
35 * - a reply always starts with the length and command in the same order the request used it
36 * - length of the reply data is specific to the command used
37 * - some of the commands work on a rail and can be switched to a specific rail (0 = 12v,
38 * 1 = 5v, 2 = 3.3v)
39 * - the format of the init command 0xFE is swapped length/command bytes
40 * - parameter bytes amount and values are specific to the command (rail setting is the only
41 * one for now that uses non-zero values)
42 * - the driver supports debugfs for values not fitting into the hwmon class
43 * - not every device class (HXi or RMi) supports all commands
44 * - if configured wrong the PSU resets or shuts down, often before actually hitting the
45 * reported critical temperature
46 * - new models like HX1500i Series 2023 have changes in the reported vendor and product
47 * strings, both are slightly longer now, report vendor and product in one string and are
48 * the same now
49 */
50
51 #define DRIVER_NAME "corsair-psu"
52
53 #define REPLY_SIZE 24 /* max length of a reply to a single command */
54 #define CMD_BUFFER_SIZE 64
55 #define CMD_TIMEOUT_MS 250
56 #define SECONDS_PER_HOUR (60 * 60)
57 #define SECONDS_PER_DAY (SECONDS_PER_HOUR * 24)
58 #define RAIL_COUNT 3 /* 3v3 + 5v + 12v */
59 #define TEMP_COUNT 2
60 #define OCP_MULTI_RAIL 0x02
61
62 #define PSU_CMD_SELECT_RAIL 0x00 /* expects length 2 */
63 #define PSU_CMD_FAN_PWM 0x3B /* the rest of the commands expect length 3 */
64 #define PSU_CMD_RAIL_VOLTS_HCRIT 0x40
65 #define PSU_CMD_RAIL_VOLTS_LCRIT 0x44
66 #define PSU_CMD_RAIL_AMPS_HCRIT 0x46
67 #define PSU_CMD_TEMP_HCRIT 0x4F
68 #define PSU_CMD_IN_VOLTS 0x88
69 #define PSU_CMD_IN_AMPS 0x89
70 #define PSU_CMD_RAIL_VOLTS 0x8B
71 #define PSU_CMD_RAIL_AMPS 0x8C
72 #define PSU_CMD_TEMP0 0x8D
73 #define PSU_CMD_TEMP1 0x8E
74 #define PSU_CMD_FAN 0x90
75 #define PSU_CMD_RAIL_WATTS 0x96
76 #define PSU_CMD_VEND_STR 0x99
77 #define PSU_CMD_PROD_STR 0x9A
78 #define PSU_CMD_TOTAL_UPTIME 0xD1
79 #define PSU_CMD_UPTIME 0xD2
80 #define PSU_CMD_OCPMODE 0xD8
81 #define PSU_CMD_TOTAL_WATTS 0xEE
82 #define PSU_CMD_FAN_PWM_ENABLE 0xF0
83 #define PSU_CMD_INIT 0xFE
84
85 #define L_IN_VOLTS "v_in"
86 #define L_OUT_VOLTS_12V "v_out +12v"
87 #define L_OUT_VOLTS_5V "v_out +5v"
88 #define L_OUT_VOLTS_3_3V "v_out +3.3v"
89 #define L_IN_AMPS "curr in"
90 #define L_AMPS_12V "curr +12v"
91 #define L_AMPS_5V "curr +5v"
92 #define L_AMPS_3_3V "curr +3.3v"
93 #define L_FAN "psu fan"
94 #define L_TEMP0 "vrm temp"
95 #define L_TEMP1 "case temp"
96 #define L_WATTS "power total"
97 #define L_WATTS_12V "power +12v"
98 #define L_WATTS_5V "power +5v"
99 #define L_WATTS_3_3V "power +3.3v"
100
101 static const char *const label_watts[] = {
102 L_WATTS,
103 L_WATTS_12V,
104 L_WATTS_5V,
105 L_WATTS_3_3V
106 };
107
108 static const char *const label_volts[] = {
109 L_IN_VOLTS,
110 L_OUT_VOLTS_12V,
111 L_OUT_VOLTS_5V,
112 L_OUT_VOLTS_3_3V
113 };
114
115 static const char *const label_amps[] = {
116 L_IN_AMPS,
117 L_AMPS_12V,
118 L_AMPS_5V,
119 L_AMPS_3_3V
120 };
121
122 struct corsairpsu_data {
123 struct hid_device *hdev;
124 struct device *hwmon_dev;
125 struct dentry *debugfs;
126 struct completion wait_completion;
127 struct mutex lock; /* for locking access to cmd_buffer */
128 u8 *cmd_buffer;
129 char vendor[REPLY_SIZE];
130 char product[REPLY_SIZE];
131 long temp_crit[TEMP_COUNT];
132 long in_crit[RAIL_COUNT];
133 long in_lcrit[RAIL_COUNT];
134 long curr_crit[RAIL_COUNT];
135 u8 temp_crit_support;
136 u8 in_crit_support;
137 u8 in_lcrit_support;
138 u8 curr_crit_support;
139 bool in_curr_cmd_support; /* not all commands are supported on every PSU */
140 };
141
142 /* some values are SMBus LINEAR11 data which need a conversion */
corsairpsu_linear11_to_int(const u16 val,const int scale)143 static int corsairpsu_linear11_to_int(const u16 val, const int scale)
144 {
145 const int exp = ((s16)val) >> 11;
146 const int mant = (((s16)(val & 0x7ff)) << 5) >> 5;
147 const int result = mant * scale;
148
149 return (exp >= 0) ? (result << exp) : (result >> -exp);
150 }
151
152 /* the micro-controller uses percentage values to control pwm */
corsairpsu_dutycycle_to_pwm(const long dutycycle)153 static int corsairpsu_dutycycle_to_pwm(const long dutycycle)
154 {
155 const int result = (256 << 16) / 100;
156
157 return (result * dutycycle) >> 16;
158 }
159
corsairpsu_usb_cmd(struct corsairpsu_data * priv,u8 p0,u8 p1,u8 p2,void * data)160 static int corsairpsu_usb_cmd(struct corsairpsu_data *priv, u8 p0, u8 p1, u8 p2, void *data)
161 {
162 unsigned long time;
163 int ret;
164
165 memset(priv->cmd_buffer, 0, CMD_BUFFER_SIZE);
166 priv->cmd_buffer[0] = p0;
167 priv->cmd_buffer[1] = p1;
168 priv->cmd_buffer[2] = p2;
169
170 reinit_completion(&priv->wait_completion);
171
172 ret = hid_hw_output_report(priv->hdev, priv->cmd_buffer, CMD_BUFFER_SIZE);
173 if (ret < 0)
174 return ret;
175
176 time = wait_for_completion_timeout(&priv->wait_completion,
177 msecs_to_jiffies(CMD_TIMEOUT_MS));
178 if (!time)
179 return -ETIMEDOUT;
180
181 /*
182 * at the start of the reply is an echo of the send command/length in the same order it
183 * was send, not every command is supported on every device class, if a command is not
184 * supported, the length value in the reply is okay, but the command value is set to 0
185 */
186 if (p0 != priv->cmd_buffer[0] || p1 != priv->cmd_buffer[1])
187 return -EOPNOTSUPP;
188
189 if (data)
190 memcpy(data, priv->cmd_buffer + 2, REPLY_SIZE);
191
192 return 0;
193 }
194
corsairpsu_init(struct corsairpsu_data * priv)195 static int corsairpsu_init(struct corsairpsu_data *priv)
196 {
197 /*
198 * PSU_CMD_INIT uses swapped length/command and expects 2 parameter bytes, this command
199 * actually generates a reply, but we don't need it
200 */
201 return corsairpsu_usb_cmd(priv, PSU_CMD_INIT, 3, 0, NULL);
202 }
203
corsairpsu_fwinfo(struct corsairpsu_data * priv)204 static int corsairpsu_fwinfo(struct corsairpsu_data *priv)
205 {
206 int ret;
207
208 ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_VEND_STR, 0, priv->vendor);
209 if (ret < 0)
210 return ret;
211
212 ret = corsairpsu_usb_cmd(priv, 3, PSU_CMD_PROD_STR, 0, priv->product);
213 if (ret < 0)
214 return ret;
215
216 return 0;
217 }
218
corsairpsu_request(struct corsairpsu_data * priv,u8 cmd,u8 rail,void * data)219 static int corsairpsu_request(struct corsairpsu_data *priv, u8 cmd, u8 rail, void *data)
220 {
221 int ret;
222
223 mutex_lock(&priv->lock);
224 switch (cmd) {
225 case PSU_CMD_RAIL_VOLTS_HCRIT:
226 case PSU_CMD_RAIL_VOLTS_LCRIT:
227 case PSU_CMD_RAIL_AMPS_HCRIT:
228 case PSU_CMD_RAIL_VOLTS:
229 case PSU_CMD_RAIL_AMPS:
230 case PSU_CMD_RAIL_WATTS:
231 ret = corsairpsu_usb_cmd(priv, 2, PSU_CMD_SELECT_RAIL, rail, NULL);
232 if (ret < 0)
233 goto cmd_fail;
234 break;
235 default:
236 break;
237 }
238
239 ret = corsairpsu_usb_cmd(priv, 3, cmd, 0, data);
240
241 cmd_fail:
242 mutex_unlock(&priv->lock);
243 return ret;
244 }
245
corsairpsu_get_value(struct corsairpsu_data * priv,u8 cmd,u8 rail,long * val)246 static int corsairpsu_get_value(struct corsairpsu_data *priv, u8 cmd, u8 rail, long *val)
247 {
248 u8 data[REPLY_SIZE];
249 long tmp;
250 int ret;
251
252 ret = corsairpsu_request(priv, cmd, rail, data);
253 if (ret < 0)
254 return ret;
255
256 /*
257 * the biggest value here comes from the uptime command and to exceed MAXINT total uptime
258 * needs to be about 68 years, the rest are u16 values and the biggest value coming out of
259 * the LINEAR11 conversion are the watts values which are about 1500 for the strongest psu
260 * supported (HX1500i)
261 */
262 tmp = ((long)data[3] << 24) + (data[2] << 16) + (data[1] << 8) + data[0];
263 switch (cmd) {
264 case PSU_CMD_RAIL_VOLTS_HCRIT:
265 case PSU_CMD_RAIL_VOLTS_LCRIT:
266 case PSU_CMD_RAIL_AMPS_HCRIT:
267 case PSU_CMD_TEMP_HCRIT:
268 case PSU_CMD_IN_VOLTS:
269 case PSU_CMD_IN_AMPS:
270 case PSU_CMD_RAIL_VOLTS:
271 case PSU_CMD_RAIL_AMPS:
272 case PSU_CMD_TEMP0:
273 case PSU_CMD_TEMP1:
274 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000);
275 break;
276 case PSU_CMD_FAN:
277 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
278 break;
279 case PSU_CMD_FAN_PWM_ENABLE:
280 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
281 /*
282 * 0 = automatic mode, means the micro-controller controls the fan using a plan
283 * which can be modified, but changing this plan is not supported by this
284 * driver, the matching PWM mode is automatic fan speed control = PWM 2
285 * 1 = fixed mode, fan runs at a fixed speed represented by a percentage
286 * value 0-100, this matches the PWM manual fan speed control = PWM 1
287 * technically there is no PWM no fan speed control mode, it would be a combination
288 * of 1 at 100%
289 */
290 if (*val == 0)
291 *val = 2;
292 break;
293 case PSU_CMD_FAN_PWM:
294 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1);
295 *val = corsairpsu_dutycycle_to_pwm(*val);
296 break;
297 case PSU_CMD_RAIL_WATTS:
298 case PSU_CMD_TOTAL_WATTS:
299 *val = corsairpsu_linear11_to_int(tmp & 0xFFFF, 1000000);
300 break;
301 case PSU_CMD_TOTAL_UPTIME:
302 case PSU_CMD_UPTIME:
303 case PSU_CMD_OCPMODE:
304 *val = tmp;
305 break;
306 default:
307 ret = -EOPNOTSUPP;
308 break;
309 }
310
311 return ret;
312 }
313
corsairpsu_get_criticals(struct corsairpsu_data * priv)314 static void corsairpsu_get_criticals(struct corsairpsu_data *priv)
315 {
316 long tmp;
317 int rail;
318
319 for (rail = 0; rail < TEMP_COUNT; ++rail) {
320 if (!corsairpsu_get_value(priv, PSU_CMD_TEMP_HCRIT, rail, &tmp)) {
321 priv->temp_crit_support |= BIT(rail);
322 priv->temp_crit[rail] = tmp;
323 }
324 }
325
326 for (rail = 0; rail < RAIL_COUNT; ++rail) {
327 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_HCRIT, rail, &tmp)) {
328 priv->in_crit_support |= BIT(rail);
329 priv->in_crit[rail] = tmp;
330 }
331
332 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS_LCRIT, rail, &tmp)) {
333 priv->in_lcrit_support |= BIT(rail);
334 priv->in_lcrit[rail] = tmp;
335 }
336
337 if (!corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS_HCRIT, rail, &tmp)) {
338 priv->curr_crit_support |= BIT(rail);
339 priv->curr_crit[rail] = tmp;
340 }
341 }
342 }
343
corsairpsu_check_cmd_support(struct corsairpsu_data * priv)344 static void corsairpsu_check_cmd_support(struct corsairpsu_data *priv)
345 {
346 long tmp;
347
348 priv->in_curr_cmd_support = !corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, &tmp);
349 }
350
corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)351 static umode_t corsairpsu_hwmon_temp_is_visible(const struct corsairpsu_data *priv, u32 attr,
352 int channel)
353 {
354 umode_t res = 0444;
355
356 switch (attr) {
357 case hwmon_temp_input:
358 case hwmon_temp_label:
359 case hwmon_temp_crit:
360 if (channel > 0 && !(priv->temp_crit_support & BIT(channel - 1)))
361 res = 0;
362 break;
363 default:
364 break;
365 }
366
367 return res;
368 }
369
corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)370 static umode_t corsairpsu_hwmon_fan_is_visible(const struct corsairpsu_data *priv, u32 attr,
371 int channel)
372 {
373 switch (attr) {
374 case hwmon_fan_input:
375 case hwmon_fan_label:
376 return 0444;
377 default:
378 return 0;
379 }
380 }
381
corsairpsu_hwmon_pwm_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)382 static umode_t corsairpsu_hwmon_pwm_is_visible(const struct corsairpsu_data *priv, u32 attr,
383 int channel)
384 {
385 switch (attr) {
386 case hwmon_pwm_input:
387 case hwmon_pwm_enable:
388 return 0444;
389 default:
390 return 0;
391 }
392 }
393
corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)394 static umode_t corsairpsu_hwmon_power_is_visible(const struct corsairpsu_data *priv, u32 attr,
395 int channel)
396 {
397 switch (attr) {
398 case hwmon_power_input:
399 case hwmon_power_label:
400 return 0444;
401 default:
402 return 0;
403 }
404 }
405
corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)406 static umode_t corsairpsu_hwmon_in_is_visible(const struct corsairpsu_data *priv, u32 attr,
407 int channel)
408 {
409 umode_t res = 0444;
410
411 switch (attr) {
412 case hwmon_in_input:
413 case hwmon_in_label:
414 case hwmon_in_crit:
415 if (channel > 0 && !(priv->in_crit_support & BIT(channel - 1)))
416 res = 0;
417 break;
418 case hwmon_in_lcrit:
419 if (channel > 0 && !(priv->in_lcrit_support & BIT(channel - 1)))
420 res = 0;
421 break;
422 default:
423 break;
424 }
425
426 return res;
427 }
428
corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data * priv,u32 attr,int channel)429 static umode_t corsairpsu_hwmon_curr_is_visible(const struct corsairpsu_data *priv, u32 attr,
430 int channel)
431 {
432 umode_t res = 0444;
433
434 switch (attr) {
435 case hwmon_curr_input:
436 if (channel == 0 && !priv->in_curr_cmd_support)
437 res = 0;
438 break;
439 case hwmon_curr_label:
440 case hwmon_curr_crit:
441 if (channel > 0 && !(priv->curr_crit_support & BIT(channel - 1)))
442 res = 0;
443 break;
444 default:
445 break;
446 }
447
448 return res;
449 }
450
corsairpsu_hwmon_ops_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)451 static umode_t corsairpsu_hwmon_ops_is_visible(const void *data, enum hwmon_sensor_types type,
452 u32 attr, int channel)
453 {
454 const struct corsairpsu_data *priv = data;
455
456 switch (type) {
457 case hwmon_temp:
458 return corsairpsu_hwmon_temp_is_visible(priv, attr, channel);
459 case hwmon_fan:
460 return corsairpsu_hwmon_fan_is_visible(priv, attr, channel);
461 case hwmon_pwm:
462 return corsairpsu_hwmon_pwm_is_visible(priv, attr, channel);
463 case hwmon_power:
464 return corsairpsu_hwmon_power_is_visible(priv, attr, channel);
465 case hwmon_in:
466 return corsairpsu_hwmon_in_is_visible(priv, attr, channel);
467 case hwmon_curr:
468 return corsairpsu_hwmon_curr_is_visible(priv, attr, channel);
469 default:
470 return 0;
471 }
472 }
473
corsairpsu_hwmon_temp_read(struct corsairpsu_data * priv,u32 attr,int channel,long * val)474 static int corsairpsu_hwmon_temp_read(struct corsairpsu_data *priv, u32 attr, int channel,
475 long *val)
476 {
477 int err = -EOPNOTSUPP;
478
479 switch (attr) {
480 case hwmon_temp_input:
481 return corsairpsu_get_value(priv, channel ? PSU_CMD_TEMP1 : PSU_CMD_TEMP0,
482 channel, val);
483 case hwmon_temp_crit:
484 *val = priv->temp_crit[channel];
485 err = 0;
486 break;
487 default:
488 break;
489 }
490
491 return err;
492 }
493
corsairpsu_hwmon_pwm_read(struct corsairpsu_data * priv,u32 attr,int channel,long * val)494 static int corsairpsu_hwmon_pwm_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
495 {
496 switch (attr) {
497 case hwmon_pwm_input:
498 return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM, 0, val);
499 case hwmon_pwm_enable:
500 return corsairpsu_get_value(priv, PSU_CMD_FAN_PWM_ENABLE, 0, val);
501 default:
502 break;
503 }
504
505 return -EOPNOTSUPP;
506 }
507
corsairpsu_hwmon_power_read(struct corsairpsu_data * priv,u32 attr,int channel,long * val)508 static int corsairpsu_hwmon_power_read(struct corsairpsu_data *priv, u32 attr, int channel,
509 long *val)
510 {
511 if (attr == hwmon_power_input) {
512 switch (channel) {
513 case 0:
514 return corsairpsu_get_value(priv, PSU_CMD_TOTAL_WATTS, 0, val);
515 case 1 ... 3:
516 return corsairpsu_get_value(priv, PSU_CMD_RAIL_WATTS, channel - 1, val);
517 default:
518 break;
519 }
520 }
521
522 return -EOPNOTSUPP;
523 }
524
corsairpsu_hwmon_in_read(struct corsairpsu_data * priv,u32 attr,int channel,long * val)525 static int corsairpsu_hwmon_in_read(struct corsairpsu_data *priv, u32 attr, int channel, long *val)
526 {
527 int err = -EOPNOTSUPP;
528
529 switch (attr) {
530 case hwmon_in_input:
531 switch (channel) {
532 case 0:
533 return corsairpsu_get_value(priv, PSU_CMD_IN_VOLTS, 0, val);
534 case 1 ... 3:
535 return corsairpsu_get_value(priv, PSU_CMD_RAIL_VOLTS, channel - 1, val);
536 default:
537 break;
538 }
539 break;
540 case hwmon_in_crit:
541 *val = priv->in_crit[channel - 1];
542 err = 0;
543 break;
544 case hwmon_in_lcrit:
545 *val = priv->in_lcrit[channel - 1];
546 err = 0;
547 break;
548 }
549
550 return err;
551 }
552
corsairpsu_hwmon_curr_read(struct corsairpsu_data * priv,u32 attr,int channel,long * val)553 static int corsairpsu_hwmon_curr_read(struct corsairpsu_data *priv, u32 attr, int channel,
554 long *val)
555 {
556 int err = -EOPNOTSUPP;
557
558 switch (attr) {
559 case hwmon_curr_input:
560 switch (channel) {
561 case 0:
562 return corsairpsu_get_value(priv, PSU_CMD_IN_AMPS, 0, val);
563 case 1 ... 3:
564 return corsairpsu_get_value(priv, PSU_CMD_RAIL_AMPS, channel - 1, val);
565 default:
566 break;
567 }
568 break;
569 case hwmon_curr_crit:
570 *val = priv->curr_crit[channel - 1];
571 err = 0;
572 break;
573 default:
574 break;
575 }
576
577 return err;
578 }
579
corsairpsu_hwmon_ops_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)580 static int corsairpsu_hwmon_ops_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
581 int channel, long *val)
582 {
583 struct corsairpsu_data *priv = dev_get_drvdata(dev);
584
585 switch (type) {
586 case hwmon_temp:
587 return corsairpsu_hwmon_temp_read(priv, attr, channel, val);
588 case hwmon_fan:
589 if (attr == hwmon_fan_input)
590 return corsairpsu_get_value(priv, PSU_CMD_FAN, 0, val);
591 return -EOPNOTSUPP;
592 case hwmon_pwm:
593 return corsairpsu_hwmon_pwm_read(priv, attr, channel, val);
594 case hwmon_power:
595 return corsairpsu_hwmon_power_read(priv, attr, channel, val);
596 case hwmon_in:
597 return corsairpsu_hwmon_in_read(priv, attr, channel, val);
598 case hwmon_curr:
599 return corsairpsu_hwmon_curr_read(priv, attr, channel, val);
600 default:
601 return -EOPNOTSUPP;
602 }
603 }
604
corsairpsu_hwmon_ops_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)605 static int corsairpsu_hwmon_ops_read_string(struct device *dev, enum hwmon_sensor_types type,
606 u32 attr, int channel, const char **str)
607 {
608 if (type == hwmon_temp && attr == hwmon_temp_label) {
609 *str = channel ? L_TEMP1 : L_TEMP0;
610 return 0;
611 } else if (type == hwmon_fan && attr == hwmon_fan_label) {
612 *str = L_FAN;
613 return 0;
614 } else if (type == hwmon_power && attr == hwmon_power_label && channel < 4) {
615 *str = label_watts[channel];
616 return 0;
617 } else if (type == hwmon_in && attr == hwmon_in_label && channel < 4) {
618 *str = label_volts[channel];
619 return 0;
620 } else if (type == hwmon_curr && attr == hwmon_curr_label && channel < 4) {
621 *str = label_amps[channel];
622 return 0;
623 }
624
625 return -EOPNOTSUPP;
626 }
627
628 static const struct hwmon_ops corsairpsu_hwmon_ops = {
629 .is_visible = corsairpsu_hwmon_ops_is_visible,
630 .read = corsairpsu_hwmon_ops_read,
631 .read_string = corsairpsu_hwmon_ops_read_string,
632 };
633
634 static const struct hwmon_channel_info *const corsairpsu_info[] = {
635 HWMON_CHANNEL_INFO(chip,
636 HWMON_C_REGISTER_TZ),
637 HWMON_CHANNEL_INFO(temp,
638 HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
639 HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT),
640 HWMON_CHANNEL_INFO(fan,
641 HWMON_F_INPUT | HWMON_F_LABEL),
642 HWMON_CHANNEL_INFO(pwm,
643 HWMON_PWM_INPUT | HWMON_PWM_ENABLE),
644 HWMON_CHANNEL_INFO(power,
645 HWMON_P_INPUT | HWMON_P_LABEL,
646 HWMON_P_INPUT | HWMON_P_LABEL,
647 HWMON_P_INPUT | HWMON_P_LABEL,
648 HWMON_P_INPUT | HWMON_P_LABEL),
649 HWMON_CHANNEL_INFO(in,
650 HWMON_I_INPUT | HWMON_I_LABEL,
651 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
652 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT,
653 HWMON_I_INPUT | HWMON_I_LABEL | HWMON_I_LCRIT | HWMON_I_CRIT),
654 HWMON_CHANNEL_INFO(curr,
655 HWMON_C_INPUT | HWMON_C_LABEL,
656 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
657 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT,
658 HWMON_C_INPUT | HWMON_C_LABEL | HWMON_C_CRIT),
659 NULL
660 };
661
662 static const struct hwmon_chip_info corsairpsu_chip_info = {
663 .ops = &corsairpsu_hwmon_ops,
664 .info = corsairpsu_info,
665 };
666
667 #ifdef CONFIG_DEBUG_FS
668
print_uptime(struct seq_file * seqf,u8 cmd)669 static void print_uptime(struct seq_file *seqf, u8 cmd)
670 {
671 struct corsairpsu_data *priv = seqf->private;
672 long val;
673 int ret;
674
675 ret = corsairpsu_get_value(priv, cmd, 0, &val);
676 if (ret < 0) {
677 seq_puts(seqf, "N/A\n");
678 return;
679 }
680
681 if (val > SECONDS_PER_DAY) {
682 seq_printf(seqf, "%ld day(s), %02ld:%02ld:%02ld\n", val / SECONDS_PER_DAY,
683 val % SECONDS_PER_DAY / SECONDS_PER_HOUR, val % SECONDS_PER_HOUR / 60,
684 val % 60);
685 return;
686 }
687
688 seq_printf(seqf, "%02ld:%02ld:%02ld\n", val % SECONDS_PER_DAY / SECONDS_PER_HOUR,
689 val % SECONDS_PER_HOUR / 60, val % 60);
690 }
691
uptime_show(struct seq_file * seqf,void * unused)692 static int uptime_show(struct seq_file *seqf, void *unused)
693 {
694 print_uptime(seqf, PSU_CMD_UPTIME);
695
696 return 0;
697 }
698 DEFINE_SHOW_ATTRIBUTE(uptime);
699
uptime_total_show(struct seq_file * seqf,void * unused)700 static int uptime_total_show(struct seq_file *seqf, void *unused)
701 {
702 print_uptime(seqf, PSU_CMD_TOTAL_UPTIME);
703
704 return 0;
705 }
706 DEFINE_SHOW_ATTRIBUTE(uptime_total);
707
vendor_show(struct seq_file * seqf,void * unused)708 static int vendor_show(struct seq_file *seqf, void *unused)
709 {
710 struct corsairpsu_data *priv = seqf->private;
711
712 seq_printf(seqf, "%s\n", priv->vendor);
713
714 return 0;
715 }
716 DEFINE_SHOW_ATTRIBUTE(vendor);
717
product_show(struct seq_file * seqf,void * unused)718 static int product_show(struct seq_file *seqf, void *unused)
719 {
720 struct corsairpsu_data *priv = seqf->private;
721
722 seq_printf(seqf, "%s\n", priv->product);
723
724 return 0;
725 }
726 DEFINE_SHOW_ATTRIBUTE(product);
727
ocpmode_show(struct seq_file * seqf,void * unused)728 static int ocpmode_show(struct seq_file *seqf, void *unused)
729 {
730 struct corsairpsu_data *priv = seqf->private;
731 long val;
732 int ret;
733
734 /*
735 * The rail mode is switchable on the fly. The RAW interface can be used for this. But it
736 * will not be included here, because I consider it somewhat dangerous for the health of the
737 * PSU. The returned value can be a bogus one, if the PSU is in the process of switching and
738 * getting of the value itself can also fail during this. Because of this every other value
739 * than OCP_MULTI_RAIL can be considered as "single rail".
740 */
741 ret = corsairpsu_get_value(priv, PSU_CMD_OCPMODE, 0, &val);
742 if (ret < 0)
743 seq_puts(seqf, "N/A\n");
744 else
745 seq_printf(seqf, "%s\n", (val == OCP_MULTI_RAIL) ? "multi rail" : "single rail");
746
747 return 0;
748 }
749 DEFINE_SHOW_ATTRIBUTE(ocpmode);
750
corsairpsu_debugfs_init(struct corsairpsu_data * priv)751 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
752 {
753 char name[32];
754
755 scnprintf(name, sizeof(name), "%s-%s", DRIVER_NAME, dev_name(&priv->hdev->dev));
756
757 priv->debugfs = debugfs_create_dir(name, NULL);
758 debugfs_create_file("uptime", 0444, priv->debugfs, priv, &uptime_fops);
759 debugfs_create_file("uptime_total", 0444, priv->debugfs, priv, &uptime_total_fops);
760 debugfs_create_file("vendor", 0444, priv->debugfs, priv, &vendor_fops);
761 debugfs_create_file("product", 0444, priv->debugfs, priv, &product_fops);
762 debugfs_create_file("ocpmode", 0444, priv->debugfs, priv, &ocpmode_fops);
763 }
764
765 #else
766
corsairpsu_debugfs_init(struct corsairpsu_data * priv)767 static void corsairpsu_debugfs_init(struct corsairpsu_data *priv)
768 {
769 }
770
771 #endif
772
corsairpsu_probe(struct hid_device * hdev,const struct hid_device_id * id)773 static int corsairpsu_probe(struct hid_device *hdev, const struct hid_device_id *id)
774 {
775 struct corsairpsu_data *priv;
776 int ret;
777
778 priv = devm_kzalloc(&hdev->dev, sizeof(struct corsairpsu_data), GFP_KERNEL);
779 if (!priv)
780 return -ENOMEM;
781
782 priv->cmd_buffer = devm_kmalloc(&hdev->dev, CMD_BUFFER_SIZE, GFP_KERNEL);
783 if (!priv->cmd_buffer)
784 return -ENOMEM;
785
786 ret = hid_parse(hdev);
787 if (ret)
788 return ret;
789
790 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
791 if (ret)
792 return ret;
793
794 ret = hid_hw_open(hdev);
795 if (ret)
796 goto fail_and_stop;
797
798 priv->hdev = hdev;
799 hid_set_drvdata(hdev, priv);
800 mutex_init(&priv->lock);
801 init_completion(&priv->wait_completion);
802
803 hid_device_io_start(hdev);
804
805 ret = corsairpsu_init(priv);
806 if (ret < 0) {
807 dev_err(&hdev->dev, "unable to initialize device (%d)\n", ret);
808 goto fail_and_stop;
809 }
810
811 ret = corsairpsu_fwinfo(priv);
812 if (ret < 0) {
813 dev_err(&hdev->dev, "unable to query firmware (%d)\n", ret);
814 goto fail_and_stop;
815 }
816
817 corsairpsu_get_criticals(priv);
818 corsairpsu_check_cmd_support(priv);
819
820 priv->hwmon_dev = hwmon_device_register_with_info(&hdev->dev, "corsairpsu", priv,
821 &corsairpsu_chip_info, NULL);
822
823 if (IS_ERR(priv->hwmon_dev)) {
824 ret = PTR_ERR(priv->hwmon_dev);
825 goto fail_and_close;
826 }
827
828 corsairpsu_debugfs_init(priv);
829
830 return 0;
831
832 fail_and_close:
833 hid_hw_close(hdev);
834 fail_and_stop:
835 hid_hw_stop(hdev);
836 return ret;
837 }
838
corsairpsu_remove(struct hid_device * hdev)839 static void corsairpsu_remove(struct hid_device *hdev)
840 {
841 struct corsairpsu_data *priv = hid_get_drvdata(hdev);
842
843 debugfs_remove_recursive(priv->debugfs);
844 hwmon_device_unregister(priv->hwmon_dev);
845 hid_hw_close(hdev);
846 hid_hw_stop(hdev);
847 }
848
corsairpsu_raw_event(struct hid_device * hdev,struct hid_report * report,u8 * data,int size)849 static int corsairpsu_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data,
850 int size)
851 {
852 struct corsairpsu_data *priv = hid_get_drvdata(hdev);
853
854 if (completion_done(&priv->wait_completion))
855 return 0;
856
857 memcpy(priv->cmd_buffer, data, min(CMD_BUFFER_SIZE, size));
858 complete(&priv->wait_completion);
859
860 return 0;
861 }
862
863 #ifdef CONFIG_PM
corsairpsu_resume(struct hid_device * hdev)864 static int corsairpsu_resume(struct hid_device *hdev)
865 {
866 struct corsairpsu_data *priv = hid_get_drvdata(hdev);
867
868 /* some PSUs turn off the microcontroller during standby, so a reinit is required */
869 return corsairpsu_init(priv);
870 }
871 #endif
872
873 static const struct hid_device_id corsairpsu_idtable[] = {
874 { HID_USB_DEVICE(0x1b1c, 0x1c03) }, /* Corsair HX550i */
875 { HID_USB_DEVICE(0x1b1c, 0x1c04) }, /* Corsair HX650i */
876 { HID_USB_DEVICE(0x1b1c, 0x1c05) }, /* Corsair HX750i */
877 { HID_USB_DEVICE(0x1b1c, 0x1c06) }, /* Corsair HX850i */
878 { HID_USB_DEVICE(0x1b1c, 0x1c07) }, /* Corsair HX1000i Legacy */
879 { HID_USB_DEVICE(0x1b1c, 0x1c08) }, /* Corsair HX1200i Legacy */
880 { HID_USB_DEVICE(0x1b1c, 0x1c09) }, /* Corsair RM550i */
881 { HID_USB_DEVICE(0x1b1c, 0x1c0a) }, /* Corsair RM650i */
882 { HID_USB_DEVICE(0x1b1c, 0x1c0b) }, /* Corsair RM750i */
883 { HID_USB_DEVICE(0x1b1c, 0x1c0c) }, /* Corsair RM850i */
884 { HID_USB_DEVICE(0x1b1c, 0x1c0d) }, /* Corsair RM1000i */
885 { HID_USB_DEVICE(0x1b1c, 0x1c1e) }, /* Corsair HX1000i Series 2023 */
886 { HID_USB_DEVICE(0x1b1c, 0x1c1f) }, /* Corsair HX1500i Legacy and Series 2023 */
887 { HID_USB_DEVICE(0x1b1c, 0x1c23) }, /* Corsair HX1200i Series 2023 */
888 { },
889 };
890 MODULE_DEVICE_TABLE(hid, corsairpsu_idtable);
891
892 static struct hid_driver corsairpsu_driver = {
893 .name = DRIVER_NAME,
894 .id_table = corsairpsu_idtable,
895 .probe = corsairpsu_probe,
896 .remove = corsairpsu_remove,
897 .raw_event = corsairpsu_raw_event,
898 #ifdef CONFIG_PM
899 .resume = corsairpsu_resume,
900 .reset_resume = corsairpsu_resume,
901 #endif
902 };
903
corsair_init(void)904 static int __init corsair_init(void)
905 {
906 return hid_register_driver(&corsairpsu_driver);
907 }
908
corsair_exit(void)909 static void __exit corsair_exit(void)
910 {
911 hid_unregister_driver(&corsairpsu_driver);
912 }
913
914 /*
915 * With module_init() the driver would load before the HID bus when
916 * built-in, so use late_initcall() instead.
917 */
918 late_initcall(corsair_init);
919 module_exit(corsair_exit);
920
921 MODULE_LICENSE("GPL");
922 MODULE_AUTHOR("Wilken Gottwalt <wilken.gottwalt@posteo.net>");
923 MODULE_DESCRIPTION("Linux driver for Corsair power supplies with HID sensors interface");
924