1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * In-Memory Collection (IMC) Performance Monitor counter support.
4 *
5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6 * (C) 2017 Anju T Sudhakar, IBM Corporation.
7 * (C) 2017 Hemant K Shaw, IBM Corporation.
8 */
9 #include <linux/of.h>
10 #include <linux/perf_event.h>
11 #include <linux/slab.h>
12 #include <asm/opal.h>
13 #include <asm/imc-pmu.h>
14 #include <asm/cputhreads.h>
15 #include <asm/smp.h>
16 #include <linux/string.h>
17 #include <linux/spinlock.h>
18
19 /* Nest IMC data structures and variables */
20
21 /*
22 * Used to avoid races in counting the nest-pmu units during hotplug
23 * register and unregister
24 */
25 static DEFINE_MUTEX(nest_init_lock);
26 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
27 static struct imc_pmu **per_nest_pmu_arr;
28 static cpumask_t nest_imc_cpumask;
29 static struct imc_pmu_ref *nest_imc_refc;
30 static int nest_pmus;
31
32 /* Core IMC data structures and variables */
33
34 static cpumask_t core_imc_cpumask;
35 static struct imc_pmu_ref *core_imc_refc;
36 static struct imc_pmu *core_imc_pmu;
37
38 /* Thread IMC data structures and variables */
39
40 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
41 static struct imc_pmu *thread_imc_pmu;
42 static int thread_imc_mem_size;
43
44 /* Trace IMC data structures */
45 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
46 static struct imc_pmu_ref *trace_imc_refc;
47 static int trace_imc_mem_size;
48
49 /*
50 * Global data structure used to avoid races between thread,
51 * core and trace-imc
52 */
53 static struct imc_pmu_ref imc_global_refc = {
54 .lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock),
55 .id = 0,
56 .refc = 0,
57 };
58
imc_event_to_pmu(struct perf_event * event)59 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
60 {
61 return container_of(event->pmu, struct imc_pmu, pmu);
62 }
63
64 PMU_FORMAT_ATTR(event, "config:0-61");
65 PMU_FORMAT_ATTR(offset, "config:0-31");
66 PMU_FORMAT_ATTR(rvalue, "config:32");
67 PMU_FORMAT_ATTR(mode, "config:33-40");
68 static struct attribute *imc_format_attrs[] = {
69 &format_attr_event.attr,
70 &format_attr_offset.attr,
71 &format_attr_rvalue.attr,
72 &format_attr_mode.attr,
73 NULL,
74 };
75
76 static const struct attribute_group imc_format_group = {
77 .name = "format",
78 .attrs = imc_format_attrs,
79 };
80
81 /* Format attribute for imc trace-mode */
82 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
83 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
84 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
85 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
86 static struct attribute *trace_imc_format_attrs[] = {
87 &format_attr_event.attr,
88 &format_attr_cpmc_reserved.attr,
89 &format_attr_cpmc_event.attr,
90 &format_attr_cpmc_samplesel.attr,
91 &format_attr_cpmc_load.attr,
92 NULL,
93 };
94
95 static const struct attribute_group trace_imc_format_group = {
96 .name = "format",
97 .attrs = trace_imc_format_attrs,
98 };
99
100 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)101 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
102 struct device_attribute *attr,
103 char *buf)
104 {
105 struct pmu *pmu = dev_get_drvdata(dev);
106 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
107 cpumask_t *active_mask;
108
109 switch(imc_pmu->domain){
110 case IMC_DOMAIN_NEST:
111 active_mask = &nest_imc_cpumask;
112 break;
113 case IMC_DOMAIN_CORE:
114 active_mask = &core_imc_cpumask;
115 break;
116 default:
117 return 0;
118 }
119
120 return cpumap_print_to_pagebuf(true, buf, active_mask);
121 }
122
123 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
124
125 static struct attribute *imc_pmu_cpumask_attrs[] = {
126 &dev_attr_cpumask.attr,
127 NULL,
128 };
129
130 static const struct attribute_group imc_pmu_cpumask_attr_group = {
131 .attrs = imc_pmu_cpumask_attrs,
132 };
133
134 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)135 static struct attribute *device_str_attr_create(const char *name, const char *str)
136 {
137 struct perf_pmu_events_attr *attr;
138
139 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
140 if (!attr)
141 return NULL;
142 sysfs_attr_init(&attr->attr.attr);
143
144 attr->event_str = str;
145 attr->attr.attr.name = name;
146 attr->attr.attr.mode = 0444;
147 attr->attr.show = perf_event_sysfs_show;
148
149 return &attr->attr.attr;
150 }
151
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)152 static int imc_parse_event(struct device_node *np, const char *scale,
153 const char *unit, const char *prefix,
154 u32 base, struct imc_events *event)
155 {
156 const char *s;
157 u32 reg;
158
159 if (of_property_read_u32(np, "reg", ®))
160 goto error;
161 /* Add the base_reg value to the "reg" */
162 event->value = base + reg;
163
164 if (of_property_read_string(np, "event-name", &s))
165 goto error;
166
167 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
168 if (!event->name)
169 goto error;
170
171 if (of_property_read_string(np, "scale", &s))
172 s = scale;
173
174 if (s) {
175 event->scale = kstrdup(s, GFP_KERNEL);
176 if (!event->scale)
177 goto error;
178 }
179
180 if (of_property_read_string(np, "unit", &s))
181 s = unit;
182
183 if (s) {
184 event->unit = kstrdup(s, GFP_KERNEL);
185 if (!event->unit)
186 goto error;
187 }
188
189 return 0;
190 error:
191 kfree(event->unit);
192 kfree(event->scale);
193 kfree(event->name);
194 return -EINVAL;
195 }
196
197 /*
198 * imc_free_events: Function to cleanup the events list, having
199 * "nr_entries".
200 */
imc_free_events(struct imc_events * events,int nr_entries)201 static void imc_free_events(struct imc_events *events, int nr_entries)
202 {
203 int i;
204
205 /* Nothing to clean, return */
206 if (!events)
207 return;
208 for (i = 0; i < nr_entries; i++) {
209 kfree(events[i].unit);
210 kfree(events[i].scale);
211 kfree(events[i].name);
212 }
213
214 kfree(events);
215 }
216
217 /*
218 * update_events_in_group: Update the "events" information in an attr_group
219 * and assign the attr_group to the pmu "pmu".
220 */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)221 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
222 {
223 struct attribute_group *attr_group;
224 struct attribute **attrs, *dev_str;
225 struct device_node *np, *pmu_events;
226 u32 handle, base_reg;
227 int i = 0, j = 0, ct, ret;
228 const char *prefix, *g_scale, *g_unit;
229 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
230
231 if (!of_property_read_u32(node, "events", &handle))
232 pmu_events = of_find_node_by_phandle(handle);
233 else
234 return 0;
235
236 /* Did not find any node with a given phandle */
237 if (!pmu_events)
238 return 0;
239
240 /* Get a count of number of child nodes */
241 ct = of_get_child_count(pmu_events);
242
243 /* Get the event prefix */
244 if (of_property_read_string(node, "events-prefix", &prefix)) {
245 of_node_put(pmu_events);
246 return 0;
247 }
248
249 /* Get a global unit and scale data if available */
250 if (of_property_read_string(node, "scale", &g_scale))
251 g_scale = NULL;
252
253 if (of_property_read_string(node, "unit", &g_unit))
254 g_unit = NULL;
255
256 /* "reg" property gives out the base offset of the counters data */
257 of_property_read_u32(node, "reg", &base_reg);
258
259 /* Allocate memory for the events */
260 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
261 if (!pmu->events) {
262 of_node_put(pmu_events);
263 return -ENOMEM;
264 }
265
266 ct = 0;
267 /* Parse the events and update the struct */
268 for_each_child_of_node(pmu_events, np) {
269 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
270 if (!ret)
271 ct++;
272 }
273
274 of_node_put(pmu_events);
275
276 /* Allocate memory for attribute group */
277 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
278 if (!attr_group) {
279 imc_free_events(pmu->events, ct);
280 return -ENOMEM;
281 }
282
283 /*
284 * Allocate memory for attributes.
285 * Since we have count of events for this pmu, we also allocate
286 * memory for the scale and unit attribute for now.
287 * "ct" has the total event structs added from the events-parent node.
288 * So allocate three times the "ct" (this includes event, event_scale and
289 * event_unit).
290 */
291 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
292 if (!attrs) {
293 kfree(attr_group);
294 imc_free_events(pmu->events, ct);
295 return -ENOMEM;
296 }
297
298 attr_group->name = "events";
299 attr_group->attrs = attrs;
300 do {
301 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
302 if (!ev_val_str)
303 continue;
304 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
305 if (!dev_str)
306 continue;
307
308 attrs[j++] = dev_str;
309 if (pmu->events[i].scale) {
310 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
311 if (!ev_scale_str)
312 continue;
313 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
314 if (!dev_str)
315 continue;
316
317 attrs[j++] = dev_str;
318 }
319
320 if (pmu->events[i].unit) {
321 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
322 if (!ev_unit_str)
323 continue;
324 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
325 if (!dev_str)
326 continue;
327
328 attrs[j++] = dev_str;
329 }
330 } while (++i < ct);
331
332 /* Save the event attribute */
333 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
334
335 return 0;
336 }
337
338 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)339 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
340 {
341 return per_cpu(local_nest_imc_refc, cpu);
342 }
343
nest_change_cpu_context(int old_cpu,int new_cpu)344 static void nest_change_cpu_context(int old_cpu, int new_cpu)
345 {
346 struct imc_pmu **pn = per_nest_pmu_arr;
347
348 if (old_cpu < 0 || new_cpu < 0)
349 return;
350
351 while (*pn) {
352 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
353 pn++;
354 }
355 }
356
ppc_nest_imc_cpu_offline(unsigned int cpu)357 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
358 {
359 int nid, target = -1;
360 const struct cpumask *l_cpumask;
361 struct imc_pmu_ref *ref;
362
363 /*
364 * Check in the designated list for this cpu. Dont bother
365 * if not one of them.
366 */
367 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
368 return 0;
369
370 /*
371 * Check whether nest_imc is registered. We could end up here if the
372 * cpuhotplug callback registration fails. i.e, callback invokes the
373 * offline path for all successfully registered nodes. At this stage,
374 * nest_imc pmu will not be registered and we should return here.
375 *
376 * We return with a zero since this is not an offline failure. And
377 * cpuhp_setup_state() returns the actual failure reason to the caller,
378 * which in turn will call the cleanup routine.
379 */
380 if (!nest_pmus)
381 return 0;
382
383 /*
384 * Now that this cpu is one of the designated,
385 * find a next cpu a) which is online and b) in same chip.
386 */
387 nid = cpu_to_node(cpu);
388 l_cpumask = cpumask_of_node(nid);
389 target = cpumask_last(l_cpumask);
390
391 /*
392 * If this(target) is the last cpu in the cpumask for this chip,
393 * check for any possible online cpu in the chip.
394 */
395 if (unlikely(target == cpu))
396 target = cpumask_any_but(l_cpumask, cpu);
397
398 /*
399 * Update the cpumask with the target cpu and
400 * migrate the context if needed
401 */
402 if (target >= 0 && target < nr_cpu_ids) {
403 cpumask_set_cpu(target, &nest_imc_cpumask);
404 nest_change_cpu_context(cpu, target);
405 } else {
406 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
407 get_hard_smp_processor_id(cpu));
408 /*
409 * If this is the last cpu in this chip then, skip the reference
410 * count lock and make the reference count on this chip zero.
411 */
412 ref = get_nest_pmu_ref(cpu);
413 if (!ref)
414 return -EINVAL;
415
416 ref->refc = 0;
417 }
418 return 0;
419 }
420
ppc_nest_imc_cpu_online(unsigned int cpu)421 static int ppc_nest_imc_cpu_online(unsigned int cpu)
422 {
423 const struct cpumask *l_cpumask;
424 static struct cpumask tmp_mask;
425 int res;
426
427 /* Get the cpumask of this node */
428 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
429
430 /*
431 * If this is not the first online CPU on this node, then
432 * just return.
433 */
434 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
435 return 0;
436
437 /*
438 * If this is the first online cpu on this node
439 * disable the nest counters by making an OPAL call.
440 */
441 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
442 get_hard_smp_processor_id(cpu));
443 if (res)
444 return res;
445
446 /* Make this CPU the designated target for counter collection */
447 cpumask_set_cpu(cpu, &nest_imc_cpumask);
448 return 0;
449 }
450
nest_pmu_cpumask_init(void)451 static int nest_pmu_cpumask_init(void)
452 {
453 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
454 "perf/powerpc/imc:online",
455 ppc_nest_imc_cpu_online,
456 ppc_nest_imc_cpu_offline);
457 }
458
nest_imc_counters_release(struct perf_event * event)459 static void nest_imc_counters_release(struct perf_event *event)
460 {
461 int rc, node_id;
462 struct imc_pmu_ref *ref;
463
464 if (event->cpu < 0)
465 return;
466
467 node_id = cpu_to_node(event->cpu);
468
469 /*
470 * See if we need to disable the nest PMU.
471 * If no events are currently in use, then we have to take a
472 * lock to ensure that we don't race with another task doing
473 * enable or disable the nest counters.
474 */
475 ref = get_nest_pmu_ref(event->cpu);
476 if (!ref)
477 return;
478
479 /* Take the lock for this node and then decrement the reference count */
480 spin_lock(&ref->lock);
481 if (ref->refc == 0) {
482 /*
483 * The scenario where this is true is, when perf session is
484 * started, followed by offlining of all cpus in a given node.
485 *
486 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
487 * function set the ref->count to zero, if the cpu which is
488 * about to offline is the last cpu in a given node and make
489 * an OPAL call to disable the engine in that node.
490 *
491 */
492 spin_unlock(&ref->lock);
493 return;
494 }
495 ref->refc--;
496 if (ref->refc == 0) {
497 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
498 get_hard_smp_processor_id(event->cpu));
499 if (rc) {
500 spin_unlock(&ref->lock);
501 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
502 return;
503 }
504 } else if (ref->refc < 0) {
505 WARN(1, "nest-imc: Invalid event reference count\n");
506 ref->refc = 0;
507 }
508 spin_unlock(&ref->lock);
509 }
510
nest_imc_event_init(struct perf_event * event)511 static int nest_imc_event_init(struct perf_event *event)
512 {
513 int chip_id, rc, node_id;
514 u32 l_config, config = event->attr.config;
515 struct imc_mem_info *pcni;
516 struct imc_pmu *pmu;
517 struct imc_pmu_ref *ref;
518 bool flag = false;
519
520 if (event->attr.type != event->pmu->type)
521 return -ENOENT;
522
523 /* Sampling not supported */
524 if (event->hw.sample_period)
525 return -EINVAL;
526
527 if (event->cpu < 0)
528 return -EINVAL;
529
530 pmu = imc_event_to_pmu(event);
531
532 /* Sanity check for config (event offset) */
533 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
534 return -EINVAL;
535
536 /*
537 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
538 * Get the base memory address for this cpu.
539 */
540 chip_id = cpu_to_chip_id(event->cpu);
541
542 /* Return, if chip_id is not valid */
543 if (chip_id < 0)
544 return -ENODEV;
545
546 pcni = pmu->mem_info;
547 do {
548 if (pcni->id == chip_id) {
549 flag = true;
550 break;
551 }
552 pcni++;
553 } while (pcni->vbase != 0);
554
555 if (!flag)
556 return -ENODEV;
557
558 /*
559 * Add the event offset to the base address.
560 */
561 l_config = config & IMC_EVENT_OFFSET_MASK;
562 event->hw.event_base = (u64)pcni->vbase + l_config;
563 node_id = cpu_to_node(event->cpu);
564
565 /*
566 * Get the imc_pmu_ref struct for this node.
567 * Take the lock and then increment the count of nest pmu events inited.
568 */
569 ref = get_nest_pmu_ref(event->cpu);
570 if (!ref)
571 return -EINVAL;
572
573 spin_lock(&ref->lock);
574 if (ref->refc == 0) {
575 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
576 get_hard_smp_processor_id(event->cpu));
577 if (rc) {
578 spin_unlock(&ref->lock);
579 pr_err("nest-imc: Unable to start the counters for node %d\n",
580 node_id);
581 return rc;
582 }
583 }
584 ++ref->refc;
585 spin_unlock(&ref->lock);
586
587 event->destroy = nest_imc_counters_release;
588 return 0;
589 }
590
591 /*
592 * core_imc_mem_init : Initializes memory for the current core.
593 *
594 * Uses alloc_pages_node() and uses the returned address as an argument to
595 * an opal call to configure the pdbar. The address sent as an argument is
596 * converted to physical address before the opal call is made. This is the
597 * base address at which the core imc counters are populated.
598 */
core_imc_mem_init(int cpu,int size)599 static int core_imc_mem_init(int cpu, int size)
600 {
601 int nid, rc = 0, core_id = (cpu / threads_per_core);
602 struct imc_mem_info *mem_info;
603 struct page *page;
604
605 /*
606 * alloc_pages_node() will allocate memory for core in the
607 * local node only.
608 */
609 nid = cpu_to_node(cpu);
610 mem_info = &core_imc_pmu->mem_info[core_id];
611 mem_info->id = core_id;
612
613 /* We need only vbase for core counters */
614 page = alloc_pages_node(nid,
615 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
616 __GFP_NOWARN, get_order(size));
617 if (!page)
618 return -ENOMEM;
619 mem_info->vbase = page_address(page);
620
621 core_imc_refc[core_id].id = core_id;
622 spin_lock_init(&core_imc_refc[core_id].lock);
623
624 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
625 __pa((void *)mem_info->vbase),
626 get_hard_smp_processor_id(cpu));
627 if (rc) {
628 free_pages((u64)mem_info->vbase, get_order(size));
629 mem_info->vbase = NULL;
630 }
631
632 return rc;
633 }
634
is_core_imc_mem_inited(int cpu)635 static bool is_core_imc_mem_inited(int cpu)
636 {
637 struct imc_mem_info *mem_info;
638 int core_id = (cpu / threads_per_core);
639
640 mem_info = &core_imc_pmu->mem_info[core_id];
641 if (!mem_info->vbase)
642 return false;
643
644 return true;
645 }
646
ppc_core_imc_cpu_online(unsigned int cpu)647 static int ppc_core_imc_cpu_online(unsigned int cpu)
648 {
649 const struct cpumask *l_cpumask;
650 static struct cpumask tmp_mask;
651 int ret = 0;
652
653 /* Get the cpumask for this core */
654 l_cpumask = cpu_sibling_mask(cpu);
655
656 /* If a cpu for this core is already set, then, don't do anything */
657 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
658 return 0;
659
660 if (!is_core_imc_mem_inited(cpu)) {
661 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
662 if (ret) {
663 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
664 return ret;
665 }
666 }
667
668 /* set the cpu in the mask */
669 cpumask_set_cpu(cpu, &core_imc_cpumask);
670 return 0;
671 }
672
ppc_core_imc_cpu_offline(unsigned int cpu)673 static int ppc_core_imc_cpu_offline(unsigned int cpu)
674 {
675 unsigned int core_id;
676 int ncpu;
677 struct imc_pmu_ref *ref;
678
679 /*
680 * clear this cpu out of the mask, if not present in the mask,
681 * don't bother doing anything.
682 */
683 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
684 return 0;
685
686 /*
687 * Check whether core_imc is registered. We could end up here
688 * if the cpuhotplug callback registration fails. i.e, callback
689 * invokes the offline path for all successfully registered cpus.
690 * At this stage, core_imc pmu will not be registered and we
691 * should return here.
692 *
693 * We return with a zero since this is not an offline failure.
694 * And cpuhp_setup_state() returns the actual failure reason
695 * to the caller, which inturn will call the cleanup routine.
696 */
697 if (!core_imc_pmu->pmu.event_init)
698 return 0;
699
700 /* Find any online cpu in that core except the current "cpu" */
701 ncpu = cpumask_last(cpu_sibling_mask(cpu));
702
703 if (unlikely(ncpu == cpu))
704 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
705
706 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
707 cpumask_set_cpu(ncpu, &core_imc_cpumask);
708 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
709 } else {
710 /*
711 * If this is the last cpu in this core then skip taking reference
712 * count lock for this core and directly zero "refc" for this core.
713 */
714 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
715 get_hard_smp_processor_id(cpu));
716 core_id = cpu / threads_per_core;
717 ref = &core_imc_refc[core_id];
718 if (!ref)
719 return -EINVAL;
720
721 ref->refc = 0;
722 /*
723 * Reduce the global reference count, if this is the
724 * last cpu in this core and core-imc event running
725 * in this cpu.
726 */
727 spin_lock(&imc_global_refc.lock);
728 if (imc_global_refc.id == IMC_DOMAIN_CORE)
729 imc_global_refc.refc--;
730
731 spin_unlock(&imc_global_refc.lock);
732 }
733 return 0;
734 }
735
core_imc_pmu_cpumask_init(void)736 static int core_imc_pmu_cpumask_init(void)
737 {
738 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
739 "perf/powerpc/imc_core:online",
740 ppc_core_imc_cpu_online,
741 ppc_core_imc_cpu_offline);
742 }
743
reset_global_refc(struct perf_event * event)744 static void reset_global_refc(struct perf_event *event)
745 {
746 spin_lock(&imc_global_refc.lock);
747 imc_global_refc.refc--;
748
749 /*
750 * If no other thread is running any
751 * event for this domain(thread/core/trace),
752 * set the global id to zero.
753 */
754 if (imc_global_refc.refc <= 0) {
755 imc_global_refc.refc = 0;
756 imc_global_refc.id = 0;
757 }
758 spin_unlock(&imc_global_refc.lock);
759 }
760
core_imc_counters_release(struct perf_event * event)761 static void core_imc_counters_release(struct perf_event *event)
762 {
763 int rc, core_id;
764 struct imc_pmu_ref *ref;
765
766 if (event->cpu < 0)
767 return;
768 /*
769 * See if we need to disable the IMC PMU.
770 * If no events are currently in use, then we have to take a
771 * lock to ensure that we don't race with another task doing
772 * enable or disable the core counters.
773 */
774 core_id = event->cpu / threads_per_core;
775
776 /* Take the lock and decrement the refernce count for this core */
777 ref = &core_imc_refc[core_id];
778 if (!ref)
779 return;
780
781 spin_lock(&ref->lock);
782 if (ref->refc == 0) {
783 /*
784 * The scenario where this is true is, when perf session is
785 * started, followed by offlining of all cpus in a given core.
786 *
787 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
788 * function set the ref->count to zero, if the cpu which is
789 * about to offline is the last cpu in a given core and make
790 * an OPAL call to disable the engine in that core.
791 *
792 */
793 spin_unlock(&ref->lock);
794 return;
795 }
796 ref->refc--;
797 if (ref->refc == 0) {
798 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
799 get_hard_smp_processor_id(event->cpu));
800 if (rc) {
801 spin_unlock(&ref->lock);
802 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
803 return;
804 }
805 } else if (ref->refc < 0) {
806 WARN(1, "core-imc: Invalid event reference count\n");
807 ref->refc = 0;
808 }
809 spin_unlock(&ref->lock);
810
811 reset_global_refc(event);
812 }
813
core_imc_event_init(struct perf_event * event)814 static int core_imc_event_init(struct perf_event *event)
815 {
816 int core_id, rc;
817 u64 config = event->attr.config;
818 struct imc_mem_info *pcmi;
819 struct imc_pmu *pmu;
820 struct imc_pmu_ref *ref;
821
822 if (event->attr.type != event->pmu->type)
823 return -ENOENT;
824
825 /* Sampling not supported */
826 if (event->hw.sample_period)
827 return -EINVAL;
828
829 if (event->cpu < 0)
830 return -EINVAL;
831
832 event->hw.idx = -1;
833 pmu = imc_event_to_pmu(event);
834
835 /* Sanity check for config (event offset) */
836 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
837 return -EINVAL;
838
839 if (!is_core_imc_mem_inited(event->cpu))
840 return -ENODEV;
841
842 core_id = event->cpu / threads_per_core;
843 pcmi = &core_imc_pmu->mem_info[core_id];
844 if ((!pcmi->vbase))
845 return -ENODEV;
846
847 ref = &core_imc_refc[core_id];
848 if (!ref)
849 return -EINVAL;
850
851 /*
852 * Core pmu units are enabled only when it is used.
853 * See if this is triggered for the first time.
854 * If yes, take the lock and enable the core counters.
855 * If not, just increment the count in core_imc_refc struct.
856 */
857 spin_lock(&ref->lock);
858 if (ref->refc == 0) {
859 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
860 get_hard_smp_processor_id(event->cpu));
861 if (rc) {
862 spin_unlock(&ref->lock);
863 pr_err("core-imc: Unable to start the counters for core %d\n",
864 core_id);
865 return rc;
866 }
867 }
868 ++ref->refc;
869 spin_unlock(&ref->lock);
870
871 /*
872 * Since the system can run either in accumulation or trace-mode
873 * of IMC at a time, core-imc events are allowed only if no other
874 * trace/thread imc events are enabled/monitored.
875 *
876 * Take the global lock, and check the refc.id
877 * to know whether any other trace/thread imc
878 * events are running.
879 */
880 spin_lock(&imc_global_refc.lock);
881 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
882 /*
883 * No other trace/thread imc events are running in
884 * the system, so set the refc.id to core-imc.
885 */
886 imc_global_refc.id = IMC_DOMAIN_CORE;
887 imc_global_refc.refc++;
888 } else {
889 spin_unlock(&imc_global_refc.lock);
890 return -EBUSY;
891 }
892 spin_unlock(&imc_global_refc.lock);
893
894 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
895 event->destroy = core_imc_counters_release;
896 return 0;
897 }
898
899 /*
900 * Allocates a page of memory for each of the online cpus, and load
901 * LDBAR with 0.
902 * The physical base address of the page allocated for a cpu will be
903 * written to the LDBAR for that cpu, when the thread-imc event
904 * is added.
905 *
906 * LDBAR Register Layout:
907 *
908 * 0 4 8 12 16 20 24 28
909 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
910 * | | [ ] [ Counter Address [8:50]
911 * | * Mode |
912 * | * PB Scope
913 * * Enable/Disable
914 *
915 * 32 36 40 44 48 52 56 60
916 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
917 * Counter Address [8:50] ]
918 *
919 */
thread_imc_mem_alloc(int cpu_id,int size)920 static int thread_imc_mem_alloc(int cpu_id, int size)
921 {
922 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
923 int nid = cpu_to_node(cpu_id);
924
925 if (!local_mem) {
926 struct page *page;
927 /*
928 * This case could happen only once at start, since we dont
929 * free the memory in cpu offline path.
930 */
931 page = alloc_pages_node(nid,
932 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
933 __GFP_NOWARN, get_order(size));
934 if (!page)
935 return -ENOMEM;
936 local_mem = page_address(page);
937
938 per_cpu(thread_imc_mem, cpu_id) = local_mem;
939 }
940
941 mtspr(SPRN_LDBAR, 0);
942 return 0;
943 }
944
ppc_thread_imc_cpu_online(unsigned int cpu)945 static int ppc_thread_imc_cpu_online(unsigned int cpu)
946 {
947 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
948 }
949
ppc_thread_imc_cpu_offline(unsigned int cpu)950 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
951 {
952 /*
953 * Set the bit 0 of LDBAR to zero.
954 *
955 * If bit 0 of LDBAR is unset, it will stop posting
956 * the counter data to memory.
957 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
958 * event_add function. So reset this bit here, to stop the updates
959 * to memory in the cpu_offline path.
960 */
961 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
962
963 /* Reduce the refc if thread-imc event running on this cpu */
964 spin_lock(&imc_global_refc.lock);
965 if (imc_global_refc.id == IMC_DOMAIN_THREAD)
966 imc_global_refc.refc--;
967 spin_unlock(&imc_global_refc.lock);
968
969 return 0;
970 }
971
thread_imc_cpu_init(void)972 static int thread_imc_cpu_init(void)
973 {
974 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
975 "perf/powerpc/imc_thread:online",
976 ppc_thread_imc_cpu_online,
977 ppc_thread_imc_cpu_offline);
978 }
979
thread_imc_event_init(struct perf_event * event)980 static int thread_imc_event_init(struct perf_event *event)
981 {
982 u32 config = event->attr.config;
983 struct task_struct *target;
984 struct imc_pmu *pmu;
985
986 if (event->attr.type != event->pmu->type)
987 return -ENOENT;
988
989 if (!perfmon_capable())
990 return -EACCES;
991
992 /* Sampling not supported */
993 if (event->hw.sample_period)
994 return -EINVAL;
995
996 event->hw.idx = -1;
997 pmu = imc_event_to_pmu(event);
998
999 /* Sanity check for config offset */
1000 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
1001 return -EINVAL;
1002
1003 target = event->hw.target;
1004 if (!target)
1005 return -EINVAL;
1006
1007 spin_lock(&imc_global_refc.lock);
1008 /*
1009 * Check if any other trace/core imc events are running in the
1010 * system, if not set the global id to thread-imc.
1011 */
1012 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1013 imc_global_refc.id = IMC_DOMAIN_THREAD;
1014 imc_global_refc.refc++;
1015 } else {
1016 spin_unlock(&imc_global_refc.lock);
1017 return -EBUSY;
1018 }
1019 spin_unlock(&imc_global_refc.lock);
1020
1021 event->pmu->task_ctx_nr = perf_sw_context;
1022 event->destroy = reset_global_refc;
1023 return 0;
1024 }
1025
is_thread_imc_pmu(struct perf_event * event)1026 static bool is_thread_imc_pmu(struct perf_event *event)
1027 {
1028 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1029 return true;
1030
1031 return false;
1032 }
1033
get_event_base_addr(struct perf_event * event)1034 static u64 * get_event_base_addr(struct perf_event *event)
1035 {
1036 u64 addr;
1037
1038 if (is_thread_imc_pmu(event)) {
1039 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1040 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1041 }
1042
1043 return (u64 *)event->hw.event_base;
1044 }
1045
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1046 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1047 unsigned int txn_flags)
1048 {
1049 if (txn_flags & ~PERF_PMU_TXN_ADD)
1050 return;
1051 perf_pmu_disable(pmu);
1052 }
1053
thread_imc_pmu_cancel_txn(struct pmu * pmu)1054 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1055 {
1056 perf_pmu_enable(pmu);
1057 }
1058
thread_imc_pmu_commit_txn(struct pmu * pmu)1059 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1060 {
1061 perf_pmu_enable(pmu);
1062 return 0;
1063 }
1064
imc_read_counter(struct perf_event * event)1065 static u64 imc_read_counter(struct perf_event *event)
1066 {
1067 u64 *addr, data;
1068
1069 /*
1070 * In-Memory Collection (IMC) counters are free flowing counters.
1071 * So we take a snapshot of the counter value on enable and save it
1072 * to calculate the delta at later stage to present the event counter
1073 * value.
1074 */
1075 addr = get_event_base_addr(event);
1076 data = be64_to_cpu(READ_ONCE(*addr));
1077 local64_set(&event->hw.prev_count, data);
1078
1079 return data;
1080 }
1081
imc_event_update(struct perf_event * event)1082 static void imc_event_update(struct perf_event *event)
1083 {
1084 u64 counter_prev, counter_new, final_count;
1085
1086 counter_prev = local64_read(&event->hw.prev_count);
1087 counter_new = imc_read_counter(event);
1088 final_count = counter_new - counter_prev;
1089
1090 /* Update the delta to the event count */
1091 local64_add(final_count, &event->count);
1092 }
1093
imc_event_start(struct perf_event * event,int flags)1094 static void imc_event_start(struct perf_event *event, int flags)
1095 {
1096 /*
1097 * In Memory Counters are free flowing counters. HW or the microcode
1098 * keeps adding to the counter offset in memory. To get event
1099 * counter value, we snapshot the value here and we calculate
1100 * delta at later point.
1101 */
1102 imc_read_counter(event);
1103 }
1104
imc_event_stop(struct perf_event * event,int flags)1105 static void imc_event_stop(struct perf_event *event, int flags)
1106 {
1107 /*
1108 * Take a snapshot and calculate the delta and update
1109 * the event counter values.
1110 */
1111 imc_event_update(event);
1112 }
1113
imc_event_add(struct perf_event * event,int flags)1114 static int imc_event_add(struct perf_event *event, int flags)
1115 {
1116 if (flags & PERF_EF_START)
1117 imc_event_start(event, flags);
1118
1119 return 0;
1120 }
1121
thread_imc_event_add(struct perf_event * event,int flags)1122 static int thread_imc_event_add(struct perf_event *event, int flags)
1123 {
1124 int core_id;
1125 struct imc_pmu_ref *ref;
1126 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1127
1128 if (flags & PERF_EF_START)
1129 imc_event_start(event, flags);
1130
1131 if (!is_core_imc_mem_inited(smp_processor_id()))
1132 return -EINVAL;
1133
1134 core_id = smp_processor_id() / threads_per_core;
1135 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1136 mtspr(SPRN_LDBAR, ldbar_value);
1137
1138 /*
1139 * imc pmus are enabled only when it is used.
1140 * See if this is triggered for the first time.
1141 * If yes, take the lock and enable the counters.
1142 * If not, just increment the count in ref count struct.
1143 */
1144 ref = &core_imc_refc[core_id];
1145 if (!ref)
1146 return -EINVAL;
1147
1148 spin_lock(&ref->lock);
1149 if (ref->refc == 0) {
1150 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1151 get_hard_smp_processor_id(smp_processor_id()))) {
1152 spin_unlock(&ref->lock);
1153 pr_err("thread-imc: Unable to start the counter\
1154 for core %d\n", core_id);
1155 return -EINVAL;
1156 }
1157 }
1158 ++ref->refc;
1159 spin_unlock(&ref->lock);
1160 return 0;
1161 }
1162
thread_imc_event_del(struct perf_event * event,int flags)1163 static void thread_imc_event_del(struct perf_event *event, int flags)
1164 {
1165
1166 int core_id;
1167 struct imc_pmu_ref *ref;
1168
1169 core_id = smp_processor_id() / threads_per_core;
1170 ref = &core_imc_refc[core_id];
1171 if (!ref) {
1172 pr_debug("imc: Failed to get event reference count\n");
1173 return;
1174 }
1175
1176 spin_lock(&ref->lock);
1177 ref->refc--;
1178 if (ref->refc == 0) {
1179 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1180 get_hard_smp_processor_id(smp_processor_id()))) {
1181 spin_unlock(&ref->lock);
1182 pr_err("thread-imc: Unable to stop the counters\
1183 for core %d\n", core_id);
1184 return;
1185 }
1186 } else if (ref->refc < 0) {
1187 ref->refc = 0;
1188 }
1189 spin_unlock(&ref->lock);
1190
1191 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1192 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1193
1194 /*
1195 * Take a snapshot and calculate the delta and update
1196 * the event counter values.
1197 */
1198 imc_event_update(event);
1199 }
1200
1201 /*
1202 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1203 */
trace_imc_mem_alloc(int cpu_id,int size)1204 static int trace_imc_mem_alloc(int cpu_id, int size)
1205 {
1206 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1207 int phys_id = cpu_to_node(cpu_id), rc = 0;
1208 int core_id = (cpu_id / threads_per_core);
1209
1210 if (!local_mem) {
1211 struct page *page;
1212
1213 page = alloc_pages_node(phys_id,
1214 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1215 __GFP_NOWARN, get_order(size));
1216 if (!page)
1217 return -ENOMEM;
1218 local_mem = page_address(page);
1219 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1220
1221 /* Initialise the counters for trace mode */
1222 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1223 get_hard_smp_processor_id(cpu_id));
1224 if (rc) {
1225 pr_info("IMC:opal init failed for trace imc\n");
1226 return rc;
1227 }
1228 }
1229
1230 trace_imc_refc[core_id].id = core_id;
1231 spin_lock_init(&trace_imc_refc[core_id].lock);
1232
1233 mtspr(SPRN_LDBAR, 0);
1234 return 0;
1235 }
1236
ppc_trace_imc_cpu_online(unsigned int cpu)1237 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1238 {
1239 return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1240 }
1241
ppc_trace_imc_cpu_offline(unsigned int cpu)1242 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1243 {
1244 /*
1245 * No need to set bit 0 of LDBAR to zero, as
1246 * it is set to zero for imc trace-mode
1247 *
1248 * Reduce the refc if any trace-imc event running
1249 * on this cpu.
1250 */
1251 spin_lock(&imc_global_refc.lock);
1252 if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1253 imc_global_refc.refc--;
1254 spin_unlock(&imc_global_refc.lock);
1255
1256 return 0;
1257 }
1258
trace_imc_cpu_init(void)1259 static int trace_imc_cpu_init(void)
1260 {
1261 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1262 "perf/powerpc/imc_trace:online",
1263 ppc_trace_imc_cpu_online,
1264 ppc_trace_imc_cpu_offline);
1265 }
1266
get_trace_imc_event_base_addr(void)1267 static u64 get_trace_imc_event_base_addr(void)
1268 {
1269 return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1270 }
1271
1272 /*
1273 * Function to parse trace-imc data obtained
1274 * and to prepare the perf sample.
1275 */
trace_imc_prepare_sample(struct trace_imc_data * mem,struct perf_sample_data * data,u64 * prev_tb,struct perf_event_header * header,struct perf_event * event)1276 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1277 struct perf_sample_data *data,
1278 u64 *prev_tb,
1279 struct perf_event_header *header,
1280 struct perf_event *event)
1281 {
1282 /* Sanity checks for a valid record */
1283 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1284 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1285 else
1286 return -EINVAL;
1287
1288 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1289 be64_to_cpu(READ_ONCE(mem->tb2)))
1290 return -EINVAL;
1291
1292 /* Prepare perf sample */
1293 data->ip = be64_to_cpu(READ_ONCE(mem->ip));
1294 data->period = event->hw.last_period;
1295
1296 header->type = PERF_RECORD_SAMPLE;
1297 header->size = sizeof(*header) + event->header_size;
1298 header->misc = 0;
1299
1300 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1301 switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1302 case 0:/* when MSR HV and PR not set in the trace-record */
1303 header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1304 break;
1305 case 1: /* MSR HV is 0 and PR is 1 */
1306 header->misc |= PERF_RECORD_MISC_GUEST_USER;
1307 break;
1308 case 2: /* MSR HV is 1 and PR is 0 */
1309 header->misc |= PERF_RECORD_MISC_KERNEL;
1310 break;
1311 case 3: /* MSR HV is 1 and PR is 1 */
1312 header->misc |= PERF_RECORD_MISC_USER;
1313 break;
1314 default:
1315 pr_info("IMC: Unable to set the flag based on MSR bits\n");
1316 break;
1317 }
1318 } else {
1319 if (is_kernel_addr(data->ip))
1320 header->misc |= PERF_RECORD_MISC_KERNEL;
1321 else
1322 header->misc |= PERF_RECORD_MISC_USER;
1323 }
1324 perf_event_header__init_id(header, data, event);
1325
1326 return 0;
1327 }
1328
dump_trace_imc_data(struct perf_event * event)1329 static void dump_trace_imc_data(struct perf_event *event)
1330 {
1331 struct trace_imc_data *mem;
1332 int i, ret;
1333 u64 prev_tb = 0;
1334
1335 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1336 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1337 i++, mem++) {
1338 struct perf_sample_data data;
1339 struct perf_event_header header;
1340
1341 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1342 if (ret) /* Exit, if not a valid record */
1343 break;
1344 else {
1345 /* If this is a valid record, create the sample */
1346 struct perf_output_handle handle;
1347
1348 if (perf_output_begin(&handle, &data, event, header.size))
1349 return;
1350
1351 perf_output_sample(&handle, &header, &data, event);
1352 perf_output_end(&handle);
1353 }
1354 }
1355 }
1356
trace_imc_event_add(struct perf_event * event,int flags)1357 static int trace_imc_event_add(struct perf_event *event, int flags)
1358 {
1359 int core_id = smp_processor_id() / threads_per_core;
1360 struct imc_pmu_ref *ref = NULL;
1361 u64 local_mem, ldbar_value;
1362
1363 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1364 local_mem = get_trace_imc_event_base_addr();
1365 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1366
1367 /* trace-imc reference count */
1368 if (trace_imc_refc)
1369 ref = &trace_imc_refc[core_id];
1370 if (!ref) {
1371 pr_debug("imc: Failed to get the event reference count\n");
1372 return -EINVAL;
1373 }
1374
1375 mtspr(SPRN_LDBAR, ldbar_value);
1376 spin_lock(&ref->lock);
1377 if (ref->refc == 0) {
1378 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1379 get_hard_smp_processor_id(smp_processor_id()))) {
1380 spin_unlock(&ref->lock);
1381 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1382 return -EINVAL;
1383 }
1384 }
1385 ++ref->refc;
1386 spin_unlock(&ref->lock);
1387 return 0;
1388 }
1389
trace_imc_event_read(struct perf_event * event)1390 static void trace_imc_event_read(struct perf_event *event)
1391 {
1392 return;
1393 }
1394
trace_imc_event_stop(struct perf_event * event,int flags)1395 static void trace_imc_event_stop(struct perf_event *event, int flags)
1396 {
1397 u64 local_mem = get_trace_imc_event_base_addr();
1398 dump_trace_imc_data(event);
1399 memset((void *)local_mem, 0, sizeof(u64));
1400 }
1401
trace_imc_event_start(struct perf_event * event,int flags)1402 static void trace_imc_event_start(struct perf_event *event, int flags)
1403 {
1404 return;
1405 }
1406
trace_imc_event_del(struct perf_event * event,int flags)1407 static void trace_imc_event_del(struct perf_event *event, int flags)
1408 {
1409 int core_id = smp_processor_id() / threads_per_core;
1410 struct imc_pmu_ref *ref = NULL;
1411
1412 if (trace_imc_refc)
1413 ref = &trace_imc_refc[core_id];
1414 if (!ref) {
1415 pr_debug("imc: Failed to get event reference count\n");
1416 return;
1417 }
1418
1419 spin_lock(&ref->lock);
1420 ref->refc--;
1421 if (ref->refc == 0) {
1422 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1423 get_hard_smp_processor_id(smp_processor_id()))) {
1424 spin_unlock(&ref->lock);
1425 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1426 return;
1427 }
1428 } else if (ref->refc < 0) {
1429 ref->refc = 0;
1430 }
1431 spin_unlock(&ref->lock);
1432
1433 trace_imc_event_stop(event, flags);
1434 }
1435
trace_imc_event_init(struct perf_event * event)1436 static int trace_imc_event_init(struct perf_event *event)
1437 {
1438 if (event->attr.type != event->pmu->type)
1439 return -ENOENT;
1440
1441 if (!perfmon_capable())
1442 return -EACCES;
1443
1444 /* Return if this is a couting event */
1445 if (event->attr.sample_period == 0)
1446 return -ENOENT;
1447
1448 /*
1449 * Take the global lock, and make sure
1450 * no other thread is running any core/thread imc
1451 * events
1452 */
1453 spin_lock(&imc_global_refc.lock);
1454 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1455 /*
1456 * No core/thread imc events are running in the
1457 * system, so set the refc.id to trace-imc.
1458 */
1459 imc_global_refc.id = IMC_DOMAIN_TRACE;
1460 imc_global_refc.refc++;
1461 } else {
1462 spin_unlock(&imc_global_refc.lock);
1463 return -EBUSY;
1464 }
1465 spin_unlock(&imc_global_refc.lock);
1466
1467 event->hw.idx = -1;
1468
1469 /*
1470 * There can only be a single PMU for perf_hw_context events which is assigned to
1471 * core PMU. Hence use "perf_sw_context" for trace_imc.
1472 */
1473 event->pmu->task_ctx_nr = perf_sw_context;
1474 event->destroy = reset_global_refc;
1475 return 0;
1476 }
1477
1478 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1479 static int update_pmu_ops(struct imc_pmu *pmu)
1480 {
1481 pmu->pmu.task_ctx_nr = perf_invalid_context;
1482 pmu->pmu.add = imc_event_add;
1483 pmu->pmu.del = imc_event_stop;
1484 pmu->pmu.start = imc_event_start;
1485 pmu->pmu.stop = imc_event_stop;
1486 pmu->pmu.read = imc_event_update;
1487 pmu->pmu.attr_groups = pmu->attr_groups;
1488 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1489 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1490
1491 switch (pmu->domain) {
1492 case IMC_DOMAIN_NEST:
1493 pmu->pmu.event_init = nest_imc_event_init;
1494 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1495 break;
1496 case IMC_DOMAIN_CORE:
1497 pmu->pmu.event_init = core_imc_event_init;
1498 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1499 break;
1500 case IMC_DOMAIN_THREAD:
1501 pmu->pmu.event_init = thread_imc_event_init;
1502 pmu->pmu.add = thread_imc_event_add;
1503 pmu->pmu.del = thread_imc_event_del;
1504 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1505 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1506 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1507 break;
1508 case IMC_DOMAIN_TRACE:
1509 pmu->pmu.event_init = trace_imc_event_init;
1510 pmu->pmu.add = trace_imc_event_add;
1511 pmu->pmu.del = trace_imc_event_del;
1512 pmu->pmu.start = trace_imc_event_start;
1513 pmu->pmu.stop = trace_imc_event_stop;
1514 pmu->pmu.read = trace_imc_event_read;
1515 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1516 break;
1517 default:
1518 break;
1519 }
1520
1521 return 0;
1522 }
1523
1524 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1525 static int init_nest_pmu_ref(void)
1526 {
1527 int nid, i, cpu;
1528
1529 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1530 GFP_KERNEL);
1531
1532 if (!nest_imc_refc)
1533 return -ENOMEM;
1534
1535 i = 0;
1536 for_each_node(nid) {
1537 /*
1538 * Take the lock to avoid races while tracking the number of
1539 * sessions using the chip's nest pmu units.
1540 */
1541 spin_lock_init(&nest_imc_refc[i].lock);
1542
1543 /*
1544 * Loop to init the "id" with the node_id. Variable "i" initialized to
1545 * 0 and will be used as index to the array. "i" will not go off the
1546 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1547 * nodes only.
1548 */
1549 nest_imc_refc[i++].id = nid;
1550 }
1551
1552 /*
1553 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1554 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1555 */
1556 for_each_possible_cpu(cpu) {
1557 nid = cpu_to_node(cpu);
1558 for (i = 0; i < num_possible_nodes(); i++) {
1559 if (nest_imc_refc[i].id == nid) {
1560 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1561 break;
1562 }
1563 }
1564 }
1565 return 0;
1566 }
1567
cleanup_all_core_imc_memory(void)1568 static void cleanup_all_core_imc_memory(void)
1569 {
1570 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1571 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1572 int size = core_imc_pmu->counter_mem_size;
1573
1574 /* mem_info will never be NULL */
1575 for (i = 0; i < nr_cores; i++) {
1576 if (ptr[i].vbase)
1577 free_pages((u64)ptr[i].vbase, get_order(size));
1578 }
1579
1580 kfree(ptr);
1581 kfree(core_imc_refc);
1582 }
1583
thread_imc_ldbar_disable(void * dummy)1584 static void thread_imc_ldbar_disable(void *dummy)
1585 {
1586 /*
1587 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1588 * updates to memory.
1589 */
1590 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1591 }
1592
thread_imc_disable(void)1593 void thread_imc_disable(void)
1594 {
1595 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1596 }
1597
cleanup_all_thread_imc_memory(void)1598 static void cleanup_all_thread_imc_memory(void)
1599 {
1600 int i, order = get_order(thread_imc_mem_size);
1601
1602 for_each_online_cpu(i) {
1603 if (per_cpu(thread_imc_mem, i))
1604 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1605
1606 }
1607 }
1608
cleanup_all_trace_imc_memory(void)1609 static void cleanup_all_trace_imc_memory(void)
1610 {
1611 int i, order = get_order(trace_imc_mem_size);
1612
1613 for_each_online_cpu(i) {
1614 if (per_cpu(trace_imc_mem, i))
1615 free_pages((u64)per_cpu(trace_imc_mem, i), order);
1616
1617 }
1618 kfree(trace_imc_refc);
1619 }
1620
1621 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1622 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1623 {
1624 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1625 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1626 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1627 }
1628
1629 /*
1630 * Common function to unregister cpu hotplug callback and
1631 * free the memory.
1632 * TODO: Need to handle pmu unregistering, which will be
1633 * done in followup series.
1634 */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1635 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1636 {
1637 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1638 mutex_lock(&nest_init_lock);
1639 if (nest_pmus == 1) {
1640 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1641 kfree(nest_imc_refc);
1642 kfree(per_nest_pmu_arr);
1643 per_nest_pmu_arr = NULL;
1644 }
1645
1646 if (nest_pmus > 0)
1647 nest_pmus--;
1648 mutex_unlock(&nest_init_lock);
1649 }
1650
1651 /* Free core_imc memory */
1652 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1653 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1654 cleanup_all_core_imc_memory();
1655 }
1656
1657 /* Free thread_imc memory */
1658 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1659 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1660 cleanup_all_thread_imc_memory();
1661 }
1662
1663 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1664 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1665 cleanup_all_trace_imc_memory();
1666 }
1667 }
1668
1669 /*
1670 * Function to unregister thread-imc if core-imc
1671 * is not registered.
1672 */
unregister_thread_imc(void)1673 void unregister_thread_imc(void)
1674 {
1675 imc_common_cpuhp_mem_free(thread_imc_pmu);
1676 imc_common_mem_free(thread_imc_pmu);
1677 perf_pmu_unregister(&thread_imc_pmu->pmu);
1678 }
1679
1680 /*
1681 * imc_mem_init : Function to support memory allocation for core imc.
1682 */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1683 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1684 int pmu_index)
1685 {
1686 const char *s;
1687 int nr_cores, cpu, res = -ENOMEM;
1688
1689 if (of_property_read_string(parent, "name", &s))
1690 return -ENODEV;
1691
1692 switch (pmu_ptr->domain) {
1693 case IMC_DOMAIN_NEST:
1694 /* Update the pmu name */
1695 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1696 if (!pmu_ptr->pmu.name)
1697 goto err;
1698
1699 /* Needed for hotplug/migration */
1700 if (!per_nest_pmu_arr) {
1701 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1702 sizeof(struct imc_pmu *),
1703 GFP_KERNEL);
1704 if (!per_nest_pmu_arr)
1705 goto err;
1706 }
1707 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1708 break;
1709 case IMC_DOMAIN_CORE:
1710 /* Update the pmu name */
1711 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1712 if (!pmu_ptr->pmu.name)
1713 goto err;
1714
1715 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1716 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1717 GFP_KERNEL);
1718
1719 if (!pmu_ptr->mem_info)
1720 goto err;
1721
1722 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1723 GFP_KERNEL);
1724
1725 if (!core_imc_refc) {
1726 kfree(pmu_ptr->mem_info);
1727 goto err;
1728 }
1729
1730 core_imc_pmu = pmu_ptr;
1731 break;
1732 case IMC_DOMAIN_THREAD:
1733 /* Update the pmu name */
1734 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1735 if (!pmu_ptr->pmu.name)
1736 goto err;
1737
1738 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1739 for_each_online_cpu(cpu) {
1740 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1741 if (res) {
1742 cleanup_all_thread_imc_memory();
1743 goto err;
1744 }
1745 }
1746
1747 thread_imc_pmu = pmu_ptr;
1748 break;
1749 case IMC_DOMAIN_TRACE:
1750 /* Update the pmu name */
1751 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1752 if (!pmu_ptr->pmu.name)
1753 return -ENOMEM;
1754
1755 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1756 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1757 GFP_KERNEL);
1758 if (!trace_imc_refc)
1759 return -ENOMEM;
1760
1761 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1762 for_each_online_cpu(cpu) {
1763 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1764 if (res) {
1765 cleanup_all_trace_imc_memory();
1766 goto err;
1767 }
1768 }
1769 break;
1770 default:
1771 return -EINVAL;
1772 }
1773
1774 return 0;
1775 err:
1776 return res;
1777 }
1778
1779 /*
1780 * init_imc_pmu : Setup and register the IMC pmu device.
1781 *
1782 * @parent: Device tree unit node
1783 * @pmu_ptr: memory allocated for this pmu
1784 * @pmu_idx: Count of nest pmc registered
1785 *
1786 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1787 * Handles failure cases and accordingly frees memory.
1788 */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1789 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1790 {
1791 int ret;
1792
1793 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1794 if (ret)
1795 goto err_free_mem;
1796
1797 switch (pmu_ptr->domain) {
1798 case IMC_DOMAIN_NEST:
1799 /*
1800 * Nest imc pmu need only one cpu per chip, we initialize the
1801 * cpumask for the first nest imc pmu and use the same for the
1802 * rest. To handle the cpuhotplug callback unregister, we track
1803 * the number of nest pmus in "nest_pmus".
1804 */
1805 mutex_lock(&nest_init_lock);
1806 if (nest_pmus == 0) {
1807 ret = init_nest_pmu_ref();
1808 if (ret) {
1809 mutex_unlock(&nest_init_lock);
1810 kfree(per_nest_pmu_arr);
1811 per_nest_pmu_arr = NULL;
1812 goto err_free_mem;
1813 }
1814 /* Register for cpu hotplug notification. */
1815 ret = nest_pmu_cpumask_init();
1816 if (ret) {
1817 mutex_unlock(&nest_init_lock);
1818 kfree(nest_imc_refc);
1819 kfree(per_nest_pmu_arr);
1820 per_nest_pmu_arr = NULL;
1821 goto err_free_mem;
1822 }
1823 }
1824 nest_pmus++;
1825 mutex_unlock(&nest_init_lock);
1826 break;
1827 case IMC_DOMAIN_CORE:
1828 ret = core_imc_pmu_cpumask_init();
1829 if (ret) {
1830 cleanup_all_core_imc_memory();
1831 goto err_free_mem;
1832 }
1833
1834 break;
1835 case IMC_DOMAIN_THREAD:
1836 ret = thread_imc_cpu_init();
1837 if (ret) {
1838 cleanup_all_thread_imc_memory();
1839 goto err_free_mem;
1840 }
1841
1842 break;
1843 case IMC_DOMAIN_TRACE:
1844 ret = trace_imc_cpu_init();
1845 if (ret) {
1846 cleanup_all_trace_imc_memory();
1847 goto err_free_mem;
1848 }
1849
1850 break;
1851 default:
1852 return -EINVAL; /* Unknown domain */
1853 }
1854
1855 ret = update_events_in_group(parent, pmu_ptr);
1856 if (ret)
1857 goto err_free_cpuhp_mem;
1858
1859 ret = update_pmu_ops(pmu_ptr);
1860 if (ret)
1861 goto err_free_cpuhp_mem;
1862
1863 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1864 if (ret)
1865 goto err_free_cpuhp_mem;
1866
1867 pr_debug("%s performance monitor hardware support registered\n",
1868 pmu_ptr->pmu.name);
1869
1870 return 0;
1871
1872 err_free_cpuhp_mem:
1873 imc_common_cpuhp_mem_free(pmu_ptr);
1874 err_free_mem:
1875 imc_common_mem_free(pmu_ptr);
1876 return ret;
1877 }
1878