xref: /openbmc/linux/net/ipv4/syncookies.c (revision 1fa7bf6a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Syncookies implementation for the Linux kernel
4  *
5  *  Copyright (C) 1997 Andi Kleen
6  *  Based on ideas by D.J.Bernstein and Eric Schenk.
7  */
8 
9 #include <linux/tcp.h>
10 #include <linux/siphash.h>
11 #include <linux/kernel.h>
12 #include <linux/export.h>
13 #include <net/secure_seq.h>
14 #include <net/tcp.h>
15 #include <net/route.h>
16 
17 static siphash_aligned_key_t syncookie_secret[2];
18 
19 #define COOKIEBITS 24	/* Upper bits store count */
20 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
21 
22 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
23  * stores TCP options:
24  *
25  * MSB                               LSB
26  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
27  * |  Timestamp | ECN | SACK | WScale  |
28  *
29  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
30  * any) to figure out which TCP options we should use for the rebuilt
31  * connection.
32  *
33  * A WScale setting of '0xf' (which is an invalid scaling value)
34  * means that original syn did not include the TCP window scaling option.
35  */
36 #define TS_OPT_WSCALE_MASK	0xf
37 #define TS_OPT_SACK		BIT(4)
38 #define TS_OPT_ECN		BIT(5)
39 /* There is no TS_OPT_TIMESTAMP:
40  * if ACK contains timestamp option, we already know it was
41  * requested/supported by the syn/synack exchange.
42  */
43 #define TSBITS	6
44 
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)45 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
46 		       u32 count, int c)
47 {
48 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
49 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
50 			    (__force u32)sport << 16 | (__force u32)dport,
51 			    count, &syncookie_secret[c]);
52 }
53 
54 
55 /*
56  * when syncookies are in effect and tcp timestamps are enabled we encode
57  * tcp options in the lower bits of the timestamp value that will be
58  * sent in the syn-ack.
59  * Since subsequent timestamps use the normal tcp_time_stamp value, we
60  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
61  */
cookie_init_timestamp(struct request_sock * req,u64 now)62 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
63 {
64 	const struct inet_request_sock *ireq = inet_rsk(req);
65 	u64 ts, ts_now = tcp_ns_to_ts(now);
66 	u32 options = 0;
67 
68 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
69 	if (ireq->sack_ok)
70 		options |= TS_OPT_SACK;
71 	if (ireq->ecn_ok)
72 		options |= TS_OPT_ECN;
73 
74 	ts = (ts_now >> TSBITS) << TSBITS;
75 	ts |= options;
76 	if (ts > ts_now)
77 		ts -= (1UL << TSBITS);
78 
79 	return ts * (NSEC_PER_SEC / TCP_TS_HZ);
80 }
81 
82 
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)83 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
84 				   __be16 dport, __u32 sseq, __u32 data)
85 {
86 	/*
87 	 * Compute the secure sequence number.
88 	 * The output should be:
89 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
90 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
91 	 * Where sseq is their sequence number and count increases every
92 	 * minute by 1.
93 	 * As an extra hack, we add a small "data" value that encodes the
94 	 * MSS into the second hash value.
95 	 */
96 	u32 count = tcp_cookie_time();
97 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
98 		sseq + (count << COOKIEBITS) +
99 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
100 		 & COOKIEMASK));
101 }
102 
103 /*
104  * This retrieves the small "data" value from the syncookie.
105  * If the syncookie is bad, the data returned will be out of
106  * range.  This must be checked by the caller.
107  *
108  * The count value used to generate the cookie must be less than
109  * MAX_SYNCOOKIE_AGE minutes in the past.
110  * The return value (__u32)-1 if this test fails.
111  */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)112 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
113 				  __be16 sport, __be16 dport, __u32 sseq)
114 {
115 	u32 diff, count = tcp_cookie_time();
116 
117 	/* Strip away the layers from the cookie */
118 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
119 
120 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
121 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
122 	if (diff >= MAX_SYNCOOKIE_AGE)
123 		return (__u32)-1;
124 
125 	return (cookie -
126 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
127 		& COOKIEMASK;	/* Leaving the data behind */
128 }
129 
130 /*
131  * MSS Values are chosen based on the 2011 paper
132  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
133  * Values ..
134  *  .. lower than 536 are rare (< 0.2%)
135  *  .. between 537 and 1299 account for less than < 1.5% of observed values
136  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
137  *  .. exceeding 1460 are very rare (< 0.04%)
138  *
139  *  1460 is the single most frequently announced mss value (30 to 46% depending
140  *  on monitor location).  Table must be sorted.
141  */
142 static __u16 const msstab[] = {
143 	536,
144 	1300,
145 	1440,	/* 1440, 1452: PPPoE */
146 	1460,
147 };
148 
149 /*
150  * Generate a syncookie.  mssp points to the mss, which is returned
151  * rounded down to the value encoded in the cookie.
152  */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)153 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
154 			      u16 *mssp)
155 {
156 	int mssind;
157 	const __u16 mss = *mssp;
158 
159 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
160 		if (mss >= msstab[mssind])
161 			break;
162 	*mssp = msstab[mssind];
163 
164 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
165 				     th->source, th->dest, ntohl(th->seq),
166 				     mssind);
167 }
168 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
169 
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)170 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
171 {
172 	const struct iphdr *iph = ip_hdr(skb);
173 	const struct tcphdr *th = tcp_hdr(skb);
174 
175 	return __cookie_v4_init_sequence(iph, th, mssp);
176 }
177 
178 /*
179  * Check if a ack sequence number is a valid syncookie.
180  * Return the decoded mss if it is, or 0 if not.
181  */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)182 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
183 		      u32 cookie)
184 {
185 	__u32 seq = ntohl(th->seq) - 1;
186 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
187 					    th->source, th->dest, seq);
188 
189 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
190 }
191 EXPORT_SYMBOL_GPL(__cookie_v4_check);
192 
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst,u32 tsoff)193 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
194 				 struct request_sock *req,
195 				 struct dst_entry *dst, u32 tsoff)
196 {
197 	struct inet_connection_sock *icsk = inet_csk(sk);
198 	struct sock *child;
199 	bool own_req;
200 
201 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
202 						 NULL, &own_req);
203 	if (child) {
204 		refcount_set(&req->rsk_refcnt, 1);
205 		tcp_sk(child)->tsoffset = tsoff;
206 		sock_rps_save_rxhash(child, skb);
207 
208 		if (rsk_drop_req(req)) {
209 			reqsk_put(req);
210 			return child;
211 		}
212 
213 		if (inet_csk_reqsk_queue_add(sk, req, child))
214 			return child;
215 
216 		bh_unlock_sock(child);
217 		sock_put(child);
218 	}
219 	__reqsk_free(req);
220 
221 	return NULL;
222 }
223 EXPORT_SYMBOL(tcp_get_cookie_sock);
224 
225 /*
226  * when syncookies are in effect and tcp timestamps are enabled we stored
227  * additional tcp options in the timestamp.
228  * This extracts these options from the timestamp echo.
229  *
230  * return false if we decode a tcp option that is disabled
231  * on the host.
232  */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)233 bool cookie_timestamp_decode(const struct net *net,
234 			     struct tcp_options_received *tcp_opt)
235 {
236 	/* echoed timestamp, lowest bits contain options */
237 	u32 options = tcp_opt->rcv_tsecr;
238 
239 	if (!tcp_opt->saw_tstamp)  {
240 		tcp_clear_options(tcp_opt);
241 		return true;
242 	}
243 
244 	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
245 		return false;
246 
247 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
248 
249 	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
250 		return false;
251 
252 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
253 		return true; /* no window scaling */
254 
255 	tcp_opt->wscale_ok = 1;
256 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
257 
258 	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
259 }
260 EXPORT_SYMBOL(cookie_timestamp_decode);
261 
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)262 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
263 		   const struct net *net, const struct dst_entry *dst)
264 {
265 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
266 
267 	if (!ecn_ok)
268 		return false;
269 
270 	if (READ_ONCE(net->ipv4.sysctl_tcp_ecn))
271 		return true;
272 
273 	return dst_feature(dst, RTAX_FEATURE_ECN);
274 }
275 EXPORT_SYMBOL(cookie_ecn_ok);
276 
cookie_tcp_reqsk_alloc(const struct request_sock_ops * ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)277 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
278 					    const struct tcp_request_sock_ops *af_ops,
279 					    struct sock *sk,
280 					    struct sk_buff *skb)
281 {
282 	struct tcp_request_sock *treq;
283 	struct request_sock *req;
284 
285 	if (sk_is_mptcp(sk))
286 		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
287 	else
288 		req = inet_reqsk_alloc(ops, sk, false);
289 
290 	if (!req)
291 		return NULL;
292 
293 	treq = tcp_rsk(req);
294 
295 	/* treq->af_specific might be used to perform TCP_MD5 lookup */
296 	treq->af_specific = af_ops;
297 
298 	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
299 #if IS_ENABLED(CONFIG_MPTCP)
300 	treq->is_mptcp = sk_is_mptcp(sk);
301 	if (treq->is_mptcp) {
302 		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
303 
304 		if (err) {
305 			reqsk_free(req);
306 			return NULL;
307 		}
308 	}
309 #endif
310 
311 	return req;
312 }
313 EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
314 
315 /* On input, sk is a listener.
316  * Output is listener if incoming packet would not create a child
317  *           NULL if memory could not be allocated.
318  */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)319 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
320 {
321 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
322 	struct tcp_options_received tcp_opt;
323 	struct inet_request_sock *ireq;
324 	struct tcp_request_sock *treq;
325 	struct tcp_sock *tp = tcp_sk(sk);
326 	const struct tcphdr *th = tcp_hdr(skb);
327 	__u32 cookie = ntohl(th->ack_seq) - 1;
328 	struct sock *ret = sk;
329 	struct request_sock *req;
330 	int full_space, mss;
331 	struct rtable *rt;
332 	__u8 rcv_wscale;
333 	struct flowi4 fl4;
334 	u32 tsoff = 0;
335 
336 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
337 	    !th->ack || th->rst)
338 		goto out;
339 
340 	if (tcp_synq_no_recent_overflow(sk))
341 		goto out;
342 
343 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
344 	if (mss == 0) {
345 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
346 		goto out;
347 	}
348 
349 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
350 
351 	/* check for timestamp cookie support */
352 	memset(&tcp_opt, 0, sizeof(tcp_opt));
353 	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
354 
355 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
356 		tsoff = secure_tcp_ts_off(sock_net(sk),
357 					  ip_hdr(skb)->daddr,
358 					  ip_hdr(skb)->saddr);
359 		tcp_opt.rcv_tsecr -= tsoff;
360 	}
361 
362 	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
363 		goto out;
364 
365 	ret = NULL;
366 	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
367 				     &tcp_request_sock_ipv4_ops, sk, skb);
368 	if (!req)
369 		goto out;
370 
371 	ireq = inet_rsk(req);
372 	treq = tcp_rsk(req);
373 	treq->rcv_isn		= ntohl(th->seq) - 1;
374 	treq->snt_isn		= cookie;
375 	treq->ts_off		= 0;
376 	treq->txhash		= net_tx_rndhash();
377 	req->mss		= mss;
378 	ireq->ir_num		= ntohs(th->dest);
379 	ireq->ir_rmt_port	= th->source;
380 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
381 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
382 	ireq->ir_mark		= inet_request_mark(sk, skb);
383 	ireq->snd_wscale	= tcp_opt.snd_wscale;
384 	ireq->sack_ok		= tcp_opt.sack_ok;
385 	ireq->wscale_ok		= tcp_opt.wscale_ok;
386 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
387 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
388 	treq->snt_synack	= 0;
389 	treq->tfo_listener	= false;
390 
391 	if (IS_ENABLED(CONFIG_SMC))
392 		ireq->smc_ok = 0;
393 
394 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
395 
396 	/* We throwed the options of the initial SYN away, so we hope
397 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
398 	 */
399 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
400 
401 	if (security_inet_conn_request(sk, skb, req)) {
402 		reqsk_free(req);
403 		goto out;
404 	}
405 
406 	req->num_retrans = 0;
407 
408 	/*
409 	 * We need to lookup the route here to get at the correct
410 	 * window size. We should better make sure that the window size
411 	 * hasn't changed since we received the original syn, but I see
412 	 * no easy way to do this.
413 	 */
414 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
415 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
416 			   IPPROTO_TCP, inet_sk_flowi_flags(sk),
417 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
418 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
419 	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
420 	rt = ip_route_output_key(sock_net(sk), &fl4);
421 	if (IS_ERR(rt)) {
422 		reqsk_free(req);
423 		goto out;
424 	}
425 
426 	/* Try to redo what tcp_v4_send_synack did. */
427 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
428 	/* limit the window selection if the user enforce a smaller rx buffer */
429 	full_space = tcp_full_space(sk);
430 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
431 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
432 		req->rsk_window_clamp = full_space;
433 
434 	tcp_select_initial_window(sk, full_space, req->mss,
435 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
436 				  ireq->wscale_ok, &rcv_wscale,
437 				  dst_metric(&rt->dst, RTAX_INITRWND));
438 
439 	ireq->rcv_wscale  = rcv_wscale;
440 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
441 
442 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
443 	/* ip_queue_xmit() depends on our flow being setup
444 	 * Normal sockets get it right from inet_csk_route_child_sock()
445 	 */
446 	if (ret)
447 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
448 out:	return ret;
449 }
450