xref: /openbmc/linux/arch/um/kernel/trap.c (revision 7df45f35313c1ae083dac72c066b3aebfc7fc0cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched/signal.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
11 #include <linux/sched/debug.h>
12 #include <asm/current.h>
13 #include <asm/tlbflush.h>
14 #include <arch.h>
15 #include <as-layout.h>
16 #include <kern_util.h>
17 #include <os.h>
18 #include <skas.h>
19 
20 /*
21  * NOTE: UML does not have exception tables. As such, this is almost a copy
22  * of the code in mm/memory.c, only adjusting the logic to simply check whether
23  * we are coming from the kernel instead of doing an additional lookup in the
24  * exception table.
25  * We can do this simplification because we never get here if the exception was
26  * fixable.
27  */
get_mmap_lock_carefully(struct mm_struct * mm,bool is_user)28 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, bool is_user)
29 {
30 	if (likely(mmap_read_trylock(mm)))
31 		return true;
32 
33 	if (!is_user)
34 		return false;
35 
36 	return !mmap_read_lock_killable(mm);
37 }
38 
mmap_upgrade_trylock(struct mm_struct * mm)39 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
40 {
41 	/*
42 	 * We don't have this operation yet.
43 	 *
44 	 * It should be easy enough to do: it's basically a
45 	 *    atomic_long_try_cmpxchg_acquire()
46 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
47 	 * it also needs the proper lockdep magic etc.
48 	 */
49 	return false;
50 }
51 
upgrade_mmap_lock_carefully(struct mm_struct * mm,bool is_user)52 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, bool is_user)
53 {
54 	mmap_read_unlock(mm);
55 	if (!is_user)
56 		return false;
57 
58 	return !mmap_write_lock_killable(mm);
59 }
60 
61 /*
62  * Helper for page fault handling.
63  *
64  * This is kind of equivalend to "mmap_read_lock()" followed
65  * by "find_extend_vma()", except it's a lot more careful about
66  * the locking (and will drop the lock on failure).
67  *
68  * For example, if we have a kernel bug that causes a page
69  * fault, we don't want to just use mmap_read_lock() to get
70  * the mm lock, because that would deadlock if the bug were
71  * to happen while we're holding the mm lock for writing.
72  *
73  * So this checks the exception tables on kernel faults in
74  * order to only do this all for instructions that are actually
75  * expected to fault.
76  *
77  * We can also actually take the mm lock for writing if we
78  * need to extend the vma, which helps the VM layer a lot.
79  */
80 static struct vm_area_struct *
um_lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,bool is_user)81 um_lock_mm_and_find_vma(struct mm_struct *mm,
82 			unsigned long addr, bool is_user)
83 {
84 	struct vm_area_struct *vma;
85 
86 	if (!get_mmap_lock_carefully(mm, is_user))
87 		return NULL;
88 
89 	vma = find_vma(mm, addr);
90 	if (likely(vma && (vma->vm_start <= addr)))
91 		return vma;
92 
93 	/*
94 	 * Well, dang. We might still be successful, but only
95 	 * if we can extend a vma to do so.
96 	 */
97 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
98 		mmap_read_unlock(mm);
99 		return NULL;
100 	}
101 
102 	/*
103 	 * We can try to upgrade the mmap lock atomically,
104 	 * in which case we can continue to use the vma
105 	 * we already looked up.
106 	 *
107 	 * Otherwise we'll have to drop the mmap lock and
108 	 * re-take it, and also look up the vma again,
109 	 * re-checking it.
110 	 */
111 	if (!mmap_upgrade_trylock(mm)) {
112 		if (!upgrade_mmap_lock_carefully(mm, is_user))
113 			return NULL;
114 
115 		vma = find_vma(mm, addr);
116 		if (!vma)
117 			goto fail;
118 		if (vma->vm_start <= addr)
119 			goto success;
120 		if (!(vma->vm_flags & VM_GROWSDOWN))
121 			goto fail;
122 	}
123 
124 	if (expand_stack_locked(vma, addr))
125 		goto fail;
126 
127 success:
128 	mmap_write_downgrade(mm);
129 	return vma;
130 
131 fail:
132 	mmap_write_unlock(mm);
133 	return NULL;
134 }
135 
136 /*
137  * Note this is constrained to return 0, -EFAULT, -EACCES, -ENOMEM by
138  * segv().
139  */
handle_page_fault(unsigned long address,unsigned long ip,int is_write,int is_user,int * code_out)140 int handle_page_fault(unsigned long address, unsigned long ip,
141 		      int is_write, int is_user, int *code_out)
142 {
143 	struct mm_struct *mm = current->mm;
144 	struct vm_area_struct *vma;
145 	pmd_t *pmd;
146 	pte_t *pte;
147 	int err = -EFAULT;
148 	unsigned int flags = FAULT_FLAG_DEFAULT;
149 
150 	*code_out = SEGV_MAPERR;
151 
152 	/*
153 	 * If the fault was with pagefaults disabled, don't take the fault, just
154 	 * fail.
155 	 */
156 	if (faulthandler_disabled())
157 		goto out_nosemaphore;
158 
159 	if (is_user)
160 		flags |= FAULT_FLAG_USER;
161 retry:
162 	vma = um_lock_mm_and_find_vma(mm, address, is_user);
163 	if (!vma)
164 		goto out_nosemaphore;
165 
166 	*code_out = SEGV_ACCERR;
167 	if (is_write) {
168 		if (!(vma->vm_flags & VM_WRITE))
169 			goto out;
170 		flags |= FAULT_FLAG_WRITE;
171 	} else {
172 		/* Don't require VM_READ|VM_EXEC for write faults! */
173 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
174 			goto out;
175 	}
176 
177 	do {
178 		vm_fault_t fault;
179 
180 		fault = handle_mm_fault(vma, address, flags, NULL);
181 
182 		if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
183 			goto out_nosemaphore;
184 
185 		/* The fault is fully completed (including releasing mmap lock) */
186 		if (fault & VM_FAULT_COMPLETED)
187 			return 0;
188 
189 		if (unlikely(fault & VM_FAULT_ERROR)) {
190 			if (fault & VM_FAULT_OOM) {
191 				goto out_of_memory;
192 			} else if (fault & VM_FAULT_SIGSEGV) {
193 				goto out;
194 			} else if (fault & VM_FAULT_SIGBUS) {
195 				err = -EACCES;
196 				goto out;
197 			}
198 			BUG();
199 		}
200 		if (fault & VM_FAULT_RETRY) {
201 			flags |= FAULT_FLAG_TRIED;
202 
203 			goto retry;
204 		}
205 
206 		pmd = pmd_off(mm, address);
207 		pte = pte_offset_kernel(pmd, address);
208 	} while (!pte_present(*pte));
209 	err = 0;
210 	/*
211 	 * The below warning was added in place of
212 	 *	pte_mkyoung(); if (is_write) pte_mkdirty();
213 	 * If it's triggered, we'd see normally a hang here (a clean pte is
214 	 * marked read-only to emulate the dirty bit).
215 	 * However, the generic code can mark a PTE writable but clean on a
216 	 * concurrent read fault, triggering this harmlessly. So comment it out.
217 	 */
218 #if 0
219 	WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
220 #endif
221 	flush_tlb_page(vma, address);
222 out:
223 	mmap_read_unlock(mm);
224 out_nosemaphore:
225 	return err;
226 
227 out_of_memory:
228 	/*
229 	 * We ran out of memory, call the OOM killer, and return the userspace
230 	 * (which will retry the fault, or kill us if we got oom-killed).
231 	 */
232 	mmap_read_unlock(mm);
233 	if (!is_user)
234 		goto out_nosemaphore;
235 	pagefault_out_of_memory();
236 	return 0;
237 }
238 
show_segv_info(struct uml_pt_regs * regs)239 static void show_segv_info(struct uml_pt_regs *regs)
240 {
241 	struct task_struct *tsk = current;
242 	struct faultinfo *fi = UPT_FAULTINFO(regs);
243 
244 	if (!unhandled_signal(tsk, SIGSEGV))
245 		return;
246 
247 	if (!printk_ratelimit())
248 		return;
249 
250 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %x",
251 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
252 		tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
253 		(void *)UPT_IP(regs), (void *)UPT_SP(regs),
254 		fi->error_code);
255 
256 	print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
257 	printk(KERN_CONT "\n");
258 }
259 
bad_segv(struct faultinfo fi,unsigned long ip)260 static void bad_segv(struct faultinfo fi, unsigned long ip)
261 {
262 	current->thread.arch.faultinfo = fi;
263 	force_sig_fault(SIGSEGV, SEGV_ACCERR, (void __user *) FAULT_ADDRESS(fi));
264 }
265 
fatal_sigsegv(void)266 void fatal_sigsegv(void)
267 {
268 	force_fatal_sig(SIGSEGV);
269 	do_signal(&current->thread.regs);
270 	/*
271 	 * This is to tell gcc that we're not returning - do_signal
272 	 * can, in general, return, but in this case, it's not, since
273 	 * we just got a fatal SIGSEGV queued.
274 	 */
275 	os_dump_core();
276 }
277 
278 /**
279  * segv_handler() - the SIGSEGV handler
280  * @sig:	the signal number
281  * @unused_si:	the signal info struct; unused in this handler
282  * @regs:	the ptrace register information
283  *
284  * The handler first extracts the faultinfo from the UML ptrace regs struct.
285  * If the userfault did not happen in an UML userspace process, bad_segv is called.
286  * Otherwise the signal did happen in a cloned userspace process, handle it.
287  */
segv_handler(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)288 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
289 {
290 	struct faultinfo * fi = UPT_FAULTINFO(regs);
291 
292 	if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
293 		show_segv_info(regs);
294 		bad_segv(*fi, UPT_IP(regs));
295 		return;
296 	}
297 	segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
298 }
299 
300 /*
301  * We give a *copy* of the faultinfo in the regs to segv.
302  * This must be done, since nesting SEGVs could overwrite
303  * the info in the regs. A pointer to the info then would
304  * give us bad data!
305  */
segv(struct faultinfo fi,unsigned long ip,int is_user,struct uml_pt_regs * regs)306 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
307 		   struct uml_pt_regs *regs)
308 {
309 	jmp_buf *catcher;
310 	int si_code;
311 	int err;
312 	int is_write = FAULT_WRITE(fi);
313 	unsigned long address = FAULT_ADDRESS(fi);
314 
315 	if (!is_user && regs)
316 		current->thread.segv_regs = container_of(regs, struct pt_regs, regs);
317 
318 	if (!is_user && (address >= start_vm) && (address < end_vm)) {
319 		flush_tlb_kernel_vm();
320 		goto out;
321 	}
322 	else if (current->mm == NULL) {
323 		show_regs(container_of(regs, struct pt_regs, regs));
324 		panic("Segfault with no mm");
325 	}
326 	else if (!is_user && address > PAGE_SIZE && address < TASK_SIZE) {
327 		show_regs(container_of(regs, struct pt_regs, regs));
328 		panic("Kernel tried to access user memory at addr 0x%lx, ip 0x%lx",
329 		       address, ip);
330 	}
331 
332 	if (SEGV_IS_FIXABLE(&fi))
333 		err = handle_page_fault(address, ip, is_write, is_user,
334 					&si_code);
335 	else {
336 		err = -EFAULT;
337 		/*
338 		 * A thread accessed NULL, we get a fault, but CR2 is invalid.
339 		 * This code is used in __do_copy_from_user() of TT mode.
340 		 * XXX tt mode is gone, so maybe this isn't needed any more
341 		 */
342 		address = 0;
343 	}
344 
345 	catcher = current->thread.fault_catcher;
346 	if (!err)
347 		goto out;
348 	else if (catcher != NULL) {
349 		current->thread.fault_addr = (void *) address;
350 		UML_LONGJMP(catcher, 1);
351 	}
352 	else if (current->thread.fault_addr != NULL)
353 		panic("fault_addr set but no fault catcher");
354 	else if (!is_user && arch_fixup(ip, regs))
355 		goto out;
356 
357 	if (!is_user) {
358 		show_regs(container_of(regs, struct pt_regs, regs));
359 		panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
360 		      address, ip);
361 	}
362 
363 	show_segv_info(regs);
364 
365 	if (err == -EACCES) {
366 		current->thread.arch.faultinfo = fi;
367 		force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
368 	} else {
369 		BUG_ON(err != -EFAULT);
370 		current->thread.arch.faultinfo = fi;
371 		force_sig_fault(SIGSEGV, si_code, (void __user *) address);
372 	}
373 
374 out:
375 	if (regs)
376 		current->thread.segv_regs = NULL;
377 
378 	return 0;
379 }
380 
relay_signal(int sig,struct siginfo * si,struct uml_pt_regs * regs)381 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
382 {
383 	int code, err;
384 	if (!UPT_IS_USER(regs)) {
385 		if (sig == SIGBUS)
386 			printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
387 			       "mount likely just ran out of space\n");
388 		panic("Kernel mode signal %d", sig);
389 	}
390 
391 	arch_examine_signal(sig, regs);
392 
393 	/* Is the signal layout for the signal known?
394 	 * Signal data must be scrubbed to prevent information leaks.
395 	 */
396 	code = si->si_code;
397 	err = si->si_errno;
398 	if ((err == 0) && (siginfo_layout(sig, code) == SIL_FAULT)) {
399 		struct faultinfo *fi = UPT_FAULTINFO(regs);
400 		current->thread.arch.faultinfo = *fi;
401 		force_sig_fault(sig, code, (void __user *)FAULT_ADDRESS(*fi));
402 	} else {
403 		printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d) with errno %d\n",
404 		       sig, code, err);
405 		force_sig(sig);
406 	}
407 }
408 
bus_handler(int sig,struct siginfo * si,struct uml_pt_regs * regs)409 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
410 {
411 	if (current->thread.fault_catcher != NULL)
412 		UML_LONGJMP(current->thread.fault_catcher, 1);
413 	else
414 		relay_signal(sig, si, regs);
415 }
416 
winch(int sig,struct siginfo * unused_si,struct uml_pt_regs * regs)417 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
418 {
419 	do_IRQ(WINCH_IRQ, regs);
420 }
421