xref: /openbmc/qemu/hw/timer/sse-counter.c (revision 28ae3179fc52d2e4d870b635c4a412aab99759e7)
1  /*
2   * Arm SSE Subsystem System Counter
3   *
4   * Copyright (c) 2020 Linaro Limited
5   * Written by Peter Maydell
6   *
7   * This program is free software; you can redistribute it and/or modify
8   * it under the terms of the GNU General Public License version 2 or
9   * (at your option) any later version.
10   */
11  
12  /*
13   * This is a model of the "System counter" which is documented in
14   * the Arm SSE-123 Example Subsystem Technical Reference Manual:
15   * https://developer.arm.com/documentation/101370/latest/
16   *
17   * The system counter is a non-stop 64-bit up-counter. It provides
18   * this count value to other devices like the SSE system timer,
19   * which are driven by this system timestamp rather than directly
20   * from a clock. Internally to the counter the count is actually
21   * 88-bit precision (64.24 fixed point), with a programmable scale factor.
22   *
23   * The hardware has the optional feature that it supports dynamic
24   * clock switching, where two clock inputs are connected, and which
25   * one is used is selected via a CLKSEL input signal. Since the
26   * users of this device in QEMU don't use this feature, we only model
27   * the HWCLKSW=0 configuration.
28   */
29  #include "qemu/osdep.h"
30  #include "qemu/log.h"
31  #include "qemu/timer.h"
32  #include "qapi/error.h"
33  #include "trace.h"
34  #include "hw/timer/sse-counter.h"
35  #include "hw/sysbus.h"
36  #include "hw/registerfields.h"
37  #include "hw/clock.h"
38  #include "hw/qdev-clock.h"
39  #include "migration/vmstate.h"
40  
41  /* Registers in the control frame */
42  REG32(CNTCR, 0x0)
43      FIELD(CNTCR, EN, 0, 1)
44      FIELD(CNTCR, HDBG, 1, 1)
45      FIELD(CNTCR, SCEN, 2, 1)
46      FIELD(CNTCR, INTRMASK, 3, 1)
47      FIELD(CNTCR, PSLVERRDIS, 4, 1)
48      FIELD(CNTCR, INTRCLR, 5, 1)
49  /*
50   * Although CNTCR defines interrupt-related bits, the counter doesn't
51   * appear to actually have an interrupt output. So INTRCLR is
52   * effectively a RAZ/WI bit, as are the reserved bits [31:6].
53   */
54  #define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
55                            R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
56                            R_CNTCR_PSLVERRDIS_MASK)
57  REG32(CNTSR, 0x4)
58  REG32(CNTCV_LO, 0x8)
59  REG32(CNTCV_HI, 0xc)
60  REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
61  REG32(CNTID, 0x1c)
62      FIELD(CNTID, CNTSC, 0, 4)
63      FIELD(CNTID, CNTCS, 16, 1)
64      FIELD(CNTID, CNTSELCLK, 17, 2)
65      FIELD(CNTID, CNTSCR_OVR, 19, 1)
66  REG32(CNTSCR0, 0xd0)
67  REG32(CNTSCR1, 0xd4)
68  
69  /* Registers in the status frame */
70  REG32(STATUS_CNTCV_LO, 0x0)
71  REG32(STATUS_CNTCV_HI, 0x4)
72  
73  /* Standard ID registers, present in both frames */
74  REG32(PID4, 0xFD0)
75  REG32(PID5, 0xFD4)
76  REG32(PID6, 0xFD8)
77  REG32(PID7, 0xFDC)
78  REG32(PID0, 0xFE0)
79  REG32(PID1, 0xFE4)
80  REG32(PID2, 0xFE8)
81  REG32(PID3, 0xFEC)
82  REG32(CID0, 0xFF0)
83  REG32(CID1, 0xFF4)
84  REG32(CID2, 0xFF8)
85  REG32(CID3, 0xFFC)
86  
87  /* PID/CID values */
88  static const int control_id[] = {
89      0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
90      0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
91      0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
92  };
93  
94  static const int status_id[] = {
95      0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
96      0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
97      0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
98  };
99  
sse_counter_notify_users(SSECounter * s)100  static void sse_counter_notify_users(SSECounter *s)
101  {
102      /*
103       * Notify users of the count timestamp that they may
104       * need to recalculate.
105       */
106      notifier_list_notify(&s->notifier_list, NULL);
107  }
108  
sse_counter_enabled(SSECounter * s)109  static bool sse_counter_enabled(SSECounter *s)
110  {
111      return (s->cntcr & R_CNTCR_EN_MASK) != 0;
112  }
113  
sse_counter_tick_to_time(SSECounter * s,uint64_t tick)114  uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
115  {
116      if (!sse_counter_enabled(s)) {
117          return UINT64_MAX;
118      }
119  
120      tick -= s->ticks_then;
121  
122      if (s->cntcr & R_CNTCR_SCEN_MASK) {
123          /* Adjust the tick count to account for the scale factor */
124          tick = muldiv64(tick, 0x01000000, s->cntscr0);
125      }
126  
127      return s->ns_then + clock_ticks_to_ns(s->clk, tick);
128  }
129  
sse_counter_register_consumer(SSECounter * s,Notifier * notifier)130  void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
131  {
132      /*
133       * For the moment we assume that both we and the devices
134       * which consume us last for the life of the simulation,
135       * and so there is no mechanism for removing a notifier.
136       */
137      notifier_list_add(&s->notifier_list, notifier);
138  }
139  
sse_counter_for_timestamp(SSECounter * s,uint64_t now)140  uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
141  {
142      /* Return the CNTCV value for a particular timestamp (clock ns value). */
143      uint64_t ticks;
144  
145      if (!sse_counter_enabled(s)) {
146          /* Counter is disabled and does not increment */
147          return s->ticks_then;
148      }
149  
150      ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
151      if (s->cntcr & R_CNTCR_SCEN_MASK) {
152          /*
153           * Scaling is enabled. The CNTSCR value is the amount added to
154           * the underlying 88-bit counter for every tick of the
155           * underlying clock; CNTCV is the top 64 bits of that full
156           * 88-bit value. Multiplying the tick count by CNTSCR tells us
157           * how much the full 88-bit counter has moved on; we then
158           * divide that by 0x01000000 to find out how much the 64-bit
159           * visible portion has advanced. muldiv64() gives us the
160           * necessary at-least-88-bit precision for the intermediate
161           * result.
162           */
163          ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
164      }
165      return s->ticks_then + ticks;
166  }
167  
sse_cntcv(SSECounter * s)168  static uint64_t sse_cntcv(SSECounter *s)
169  {
170      /* Return the CNTCV value for the current time */
171      return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
172  }
173  
sse_write_cntcv(SSECounter * s,uint32_t value,unsigned startbit)174  static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
175  {
176      /*
177       * Write one 32-bit half of the counter value; startbit is the
178       * bit position of this half in the 64-bit word, either 0 or 32.
179       */
180      uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
181      uint64_t cntcv = sse_counter_for_timestamp(s, now);
182  
183      cntcv = deposit64(cntcv, startbit, 32, value);
184      s->ticks_then = cntcv;
185      s->ns_then = now;
186      sse_counter_notify_users(s);
187  }
188  
sse_counter_control_read(void * opaque,hwaddr offset,unsigned size)189  static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
190                                           unsigned size)
191  {
192      SSECounter *s = SSE_COUNTER(opaque);
193      uint64_t r;
194  
195      switch (offset) {
196      case A_CNTCR:
197          r = s->cntcr;
198          break;
199      case A_CNTSR:
200          /*
201           * The only bit here is DBGH, indicating that the counter has been
202           * halted via the Halt-on-Debug signal. We don't implement halting
203           * debug, so the whole register always reads as zero.
204           */
205          r = 0;
206          break;
207      case A_CNTCV_LO:
208          r = extract64(sse_cntcv(s), 0, 32);
209          break;
210      case A_CNTCV_HI:
211          r = extract64(sse_cntcv(s), 32, 32);
212          break;
213      case A_CNTID:
214          /*
215           * For our implementation:
216           *  - CNTSCR can only be written when CNTCR.EN == 0
217           *  - HWCLKSW=0, so selected clock is always CLK0
218           *  - counter scaling is implemented
219           */
220          r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
221          break;
222      case A_CNTSCR:
223      case A_CNTSCR0:
224          r = s->cntscr0;
225          break;
226      case A_CNTSCR1:
227          /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
228          r = 0;
229          break;
230      case A_PID4 ... A_CID3:
231          r = control_id[(offset - A_PID4) / 4];
232          break;
233      default:
234          qemu_log_mask(LOG_GUEST_ERROR,
235                        "SSE System Counter control frame read: bad offset 0x%x",
236                        (unsigned)offset);
237          r = 0;
238          break;
239      }
240  
241      trace_sse_counter_control_read(offset, r, size);
242      return r;
243  }
244  
sse_counter_control_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)245  static void sse_counter_control_write(void *opaque, hwaddr offset,
246                                        uint64_t value, unsigned size)
247  {
248      SSECounter *s = SSE_COUNTER(opaque);
249  
250      trace_sse_counter_control_write(offset, value, size);
251  
252      switch (offset) {
253      case A_CNTCR:
254          /*
255           * Although CNTCR defines interrupt-related bits, the counter doesn't
256           * appear to actually have an interrupt output. So INTRCLR is
257           * effectively a RAZ/WI bit, as are the reserved bits [31:6].
258           * The documentation does not explicitly say so, but we assume
259           * that changing the scale factor while the counter is enabled
260           * by toggling CNTCR.SCEN has the same behaviour (making the counter
261           * value UNKNOWN) as changing it by writing to CNTSCR, and so we
262           * don't need to try to recalculate for that case.
263           */
264          value &= CNTCR_VALID_MASK;
265          if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
266              /*
267               * Whether the counter is being enabled or disabled, the
268               * required action is the same: sync the (ns_then, ticks_then)
269               * tuple.
270               */
271              uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
272              s->ticks_then = sse_counter_for_timestamp(s, now);
273              s->ns_then = now;
274              sse_counter_notify_users(s);
275          }
276          s->cntcr = value;
277          break;
278      case A_CNTCV_LO:
279          sse_write_cntcv(s, value, 0);
280          break;
281      case A_CNTCV_HI:
282          sse_write_cntcv(s, value, 32);
283          break;
284      case A_CNTSCR:
285      case A_CNTSCR0:
286          /*
287           * If the scale registers are changed when the counter is enabled,
288           * the count value becomes UNKNOWN. So we don't try to recalculate
289           * anything here but only do it on a write to CNTCR.EN.
290           */
291          s->cntscr0 = value;
292          break;
293      case A_CNTSCR1:
294          /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
295          break;
296      case A_CNTSR:
297      case A_CNTID:
298      case A_PID4 ... A_CID3:
299          qemu_log_mask(LOG_GUEST_ERROR,
300                        "SSE System Counter control frame: write to RO offset 0x%x\n",
301                        (unsigned)offset);
302          break;
303      default:
304          qemu_log_mask(LOG_GUEST_ERROR,
305                        "SSE System Counter control frame: write to bad offset 0x%x\n",
306                        (unsigned)offset);
307          break;
308      }
309  }
310  
sse_counter_status_read(void * opaque,hwaddr offset,unsigned size)311  static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
312                                          unsigned size)
313  {
314      SSECounter *s = SSE_COUNTER(opaque);
315      uint64_t r;
316  
317      switch (offset) {
318      case A_STATUS_CNTCV_LO:
319          r = extract64(sse_cntcv(s), 0, 32);
320          break;
321      case A_STATUS_CNTCV_HI:
322          r = extract64(sse_cntcv(s), 32, 32);
323          break;
324      case A_PID4 ... A_CID3:
325          r = status_id[(offset - A_PID4) / 4];
326          break;
327      default:
328          qemu_log_mask(LOG_GUEST_ERROR,
329                        "SSE System Counter status frame read: bad offset 0x%x",
330                        (unsigned)offset);
331          r = 0;
332          break;
333      }
334  
335      trace_sse_counter_status_read(offset, r, size);
336      return r;
337  }
338  
sse_counter_status_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)339  static void sse_counter_status_write(void *opaque, hwaddr offset,
340                                       uint64_t value, unsigned size)
341  {
342      trace_sse_counter_status_write(offset, value, size);
343  
344      switch (offset) {
345      case A_STATUS_CNTCV_LO:
346      case A_STATUS_CNTCV_HI:
347      case A_PID4 ... A_CID3:
348          qemu_log_mask(LOG_GUEST_ERROR,
349                        "SSE System Counter status frame: write to RO offset 0x%x\n",
350                        (unsigned)offset);
351          break;
352      default:
353          qemu_log_mask(LOG_GUEST_ERROR,
354                        "SSE System Counter status frame: write to bad offset 0x%x\n",
355                        (unsigned)offset);
356          break;
357      }
358  }
359  
360  static const MemoryRegionOps sse_counter_control_ops = {
361      .read = sse_counter_control_read,
362      .write = sse_counter_control_write,
363      .endianness = DEVICE_LITTLE_ENDIAN,
364      .valid.min_access_size = 4,
365      .valid.max_access_size = 4,
366  };
367  
368  static const MemoryRegionOps sse_counter_status_ops = {
369      .read = sse_counter_status_read,
370      .write = sse_counter_status_write,
371      .endianness = DEVICE_LITTLE_ENDIAN,
372      .valid.min_access_size = 4,
373      .valid.max_access_size = 4,
374  };
375  
sse_counter_reset(DeviceState * dev)376  static void sse_counter_reset(DeviceState *dev)
377  {
378      SSECounter *s = SSE_COUNTER(dev);
379  
380      trace_sse_counter_reset();
381  
382      s->cntcr = 0;
383      s->cntscr0 = 0x01000000;
384      s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385      s->ticks_then = 0;
386  }
387  
sse_clk_callback(void * opaque,ClockEvent event)388  static void sse_clk_callback(void *opaque, ClockEvent event)
389  {
390      SSECounter *s = SSE_COUNTER(opaque);
391      uint64_t now;
392  
393      switch (event) {
394      case ClockPreUpdate:
395          /*
396           * Before the clock period updates, set (ticks_then, ns_then)
397           * to the current time and tick count (as calculated with
398           * the old clock period).
399           */
400          if (sse_counter_enabled(s)) {
401              now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
402              s->ticks_then = sse_counter_for_timestamp(s, now);
403              s->ns_then = now;
404          }
405          break;
406      case ClockUpdate:
407          sse_counter_notify_users(s);
408          break;
409      default:
410          break;
411      }
412  }
413  
sse_counter_init(Object * obj)414  static void sse_counter_init(Object *obj)
415  {
416      SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
417      SSECounter *s = SSE_COUNTER(obj);
418  
419      notifier_list_init(&s->notifier_list);
420  
421      s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
422                                  ClockPreUpdate | ClockUpdate);
423      memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
424                            s, "sse-counter-control", 0x1000);
425      memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
426                            s, "sse-counter-status", 0x1000);
427      sysbus_init_mmio(sbd, &s->control_mr);
428      sysbus_init_mmio(sbd, &s->status_mr);
429  }
430  
sse_counter_realize(DeviceState * dev,Error ** errp)431  static void sse_counter_realize(DeviceState *dev, Error **errp)
432  {
433      SSECounter *s = SSE_COUNTER(dev);
434  
435      if (!clock_has_source(s->clk)) {
436          error_setg(errp, "SSE system counter: CLK must be connected");
437          return;
438      }
439  }
440  
441  static const VMStateDescription sse_counter_vmstate = {
442      .name = "sse-counter",
443      .version_id = 1,
444      .minimum_version_id = 1,
445      .fields = (const VMStateField[]) {
446          VMSTATE_CLOCK(clk, SSECounter),
447          VMSTATE_END_OF_LIST()
448      }
449  };
450  
sse_counter_class_init(ObjectClass * klass,void * data)451  static void sse_counter_class_init(ObjectClass *klass, void *data)
452  {
453      DeviceClass *dc = DEVICE_CLASS(klass);
454  
455      dc->realize = sse_counter_realize;
456      dc->vmsd = &sse_counter_vmstate;
457      device_class_set_legacy_reset(dc, sse_counter_reset);
458  }
459  
460  static const TypeInfo sse_counter_info = {
461      .name = TYPE_SSE_COUNTER,
462      .parent = TYPE_SYS_BUS_DEVICE,
463      .instance_size = sizeof(SSECounter),
464      .instance_init = sse_counter_init,
465      .class_init = sse_counter_class_init,
466  };
467  
sse_counter_register_types(void)468  static void sse_counter_register_types(void)
469  {
470      type_register_static(&sse_counter_info);
471  }
472  
473  type_init(sse_counter_register_types);
474