xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 4ebdac060e5e24a89a7b3ec33ec46a41621e57fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
hpet_rtc_dropped_irq(void)154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 	return 0;
157 }
158 
hpet_rtc_timer_init(void)159 static inline int hpet_rtc_timer_init(void)
160 {
161 	return 0;
162 }
163 
164 extern irq_handler_t hpet_rtc_interrupt;
165 
hpet_register_irq_handler(irq_handler_t handler)166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
hpet_unregister_irq_handler(irq_handler_t handler)171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 	return 0;
174 }
175 
176 #endif
177 
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)179 static inline int use_hpet_alarm(void)
180 {
181 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183 
184 /*----------------------------------------------------------------*/
185 
186 #ifdef RTC_PORT
187 
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2	true
193 
cmos_read_bank2(unsigned char addr)194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 	outb(addr, RTC_PORT(2));
197 	return inb(RTC_PORT(3));
198 }
199 
cmos_write_bank2(unsigned char val,unsigned char addr)200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 	outb(addr, RTC_PORT(2));
203 	outb(val, RTC_PORT(3));
204 }
205 
206 #else
207 
208 #define can_bank2	false
209 
cmos_read_bank2(unsigned char addr)210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 	return 0;
213 }
214 
cmos_write_bank2(unsigned char val,unsigned char addr)215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218 
219 #endif
220 
221 /*----------------------------------------------------------------*/
222 
cmos_read_time(struct device * dev,struct rtc_time * t)223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 	int ret;
226 
227 	/*
228 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 	 * which tells the caller that this RTC value is unusable.
230 	 */
231 	if (!pm_trace_rtc_valid())
232 		return -EIO;
233 
234 	ret = mc146818_get_time(t, 1000);
235 	if (ret < 0) {
236 		dev_err_ratelimited(dev, "unable to read current time\n");
237 		return ret;
238 	}
239 
240 	return 0;
241 }
242 
cmos_set_time(struct device * dev,struct rtc_time * t)243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 	/* NOTE: this ignores the issue whereby updating the seconds
246 	 * takes effect exactly 500ms after we write the register.
247 	 * (Also queueing and other delays before we get this far.)
248 	 */
249 	return mc146818_set_time(t);
250 }
251 
252 struct cmos_read_alarm_callback_param {
253 	struct cmos_rtc *cmos;
254 	struct rtc_time *time;
255 	unsigned char	rtc_control;
256 };
257 
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 				     void *param_in)
260 {
261 	struct cmos_read_alarm_callback_param *p =
262 		(struct cmos_read_alarm_callback_param *)param_in;
263 	struct rtc_time *time = p->time;
264 
265 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268 
269 	if (p->cmos->day_alrm) {
270 		/* ignore upper bits on readback per ACPI spec */
271 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 		if (!time->tm_mday)
273 			time->tm_mday = -1;
274 
275 		if (p->cmos->mon_alrm) {
276 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 			if (!time->tm_mon)
278 				time->tm_mon = -1;
279 		}
280 	}
281 
282 	p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
288 	struct cmos_read_alarm_callback_param p = {
289 		.cmos = cmos,
290 		.time = &t->time,
291 	};
292 
293 	/* This not only a rtc_op, but also called directly */
294 	if (!is_valid_irq(cmos->irq))
295 		return -ETIMEDOUT;
296 
297 	/* Basic alarms only support hour, minute, and seconds fields.
298 	 * Some also support day and month, for alarms up to a year in
299 	 * the future.
300 	 */
301 
302 	/* Some Intel chipsets disconnect the alarm registers when the clock
303 	 * update is in progress - during this time reads return bogus values
304 	 * and writes may fail silently. See for example "7th Generation Intel®
305 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 	 * 27.7.1
307 	 *
308 	 * Use the mc146818_avoid_UIP() function to avoid this.
309 	 */
310 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
311 		return -EIO;
312 
313 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 		if (((unsigned)t->time.tm_sec) < 0x60)
315 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 		else
317 			t->time.tm_sec = -1;
318 		if (((unsigned)t->time.tm_min) < 0x60)
319 			t->time.tm_min = bcd2bin(t->time.tm_min);
320 		else
321 			t->time.tm_min = -1;
322 		if (((unsigned)t->time.tm_hour) < 0x24)
323 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 		else
325 			t->time.tm_hour = -1;
326 
327 		if (cmos->day_alrm) {
328 			if (((unsigned)t->time.tm_mday) <= 0x31)
329 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 			else
331 				t->time.tm_mday = -1;
332 
333 			if (cmos->mon_alrm) {
334 				if (((unsigned)t->time.tm_mon) <= 0x12)
335 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 				else
337 					t->time.tm_mon = -1;
338 			}
339 		}
340 	}
341 
342 	t->enabled = !!(p.rtc_control & RTC_AIE);
343 	t->pending = 0;
344 
345 	return 0;
346 }
347 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 	unsigned char	rtc_intr;
351 
352 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 	 * allegedly some older rtcs need that to handle irqs properly
354 	 */
355 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356 
357 	if (use_hpet_alarm())
358 		return;
359 
360 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 	if (is_intr(rtc_intr))
362 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 	unsigned char	rtc_control;
368 
369 	/* flush any pending IRQ status, notably for update irqs,
370 	 * before we enable new IRQs
371 	 */
372 	rtc_control = CMOS_READ(RTC_CONTROL);
373 	cmos_checkintr(cmos, rtc_control);
374 
375 	rtc_control |= mask;
376 	CMOS_WRITE(rtc_control, RTC_CONTROL);
377 	if (use_hpet_alarm())
378 		hpet_set_rtc_irq_bit(mask);
379 
380 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 		if (cmos->wake_on)
382 			cmos->wake_on(cmos->dev);
383 	}
384 
385 	cmos_checkintr(cmos, rtc_control);
386 }
387 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 	unsigned char	rtc_control;
391 
392 	rtc_control = CMOS_READ(RTC_CONTROL);
393 	rtc_control &= ~mask;
394 	CMOS_WRITE(rtc_control, RTC_CONTROL);
395 	if (use_hpet_alarm())
396 		hpet_mask_rtc_irq_bit(mask);
397 
398 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 		if (cmos->wake_off)
400 			cmos->wake_off(cmos->dev);
401 	}
402 
403 	cmos_checkintr(cmos, rtc_control);
404 }
405 
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 	struct rtc_time now;
410 
411 	cmos_read_time(dev, &now);
412 
413 	if (!cmos->day_alrm) {
414 		time64_t t_max_date;
415 		time64_t t_alrm;
416 
417 		t_max_date = rtc_tm_to_time64(&now);
418 		t_max_date += 24 * 60 * 60 - 1;
419 		t_alrm = rtc_tm_to_time64(&t->time);
420 		if (t_alrm > t_max_date) {
421 			dev_err(dev,
422 				"Alarms can be up to one day in the future\n");
423 			return -EINVAL;
424 		}
425 	} else if (!cmos->mon_alrm) {
426 		struct rtc_time max_date = now;
427 		time64_t t_max_date;
428 		time64_t t_alrm;
429 		int max_mday;
430 
431 		if (max_date.tm_mon == 11) {
432 			max_date.tm_mon = 0;
433 			max_date.tm_year += 1;
434 		} else {
435 			max_date.tm_mon += 1;
436 		}
437 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 		if (max_date.tm_mday > max_mday)
439 			max_date.tm_mday = max_mday;
440 
441 		t_max_date = rtc_tm_to_time64(&max_date);
442 		t_max_date -= 1;
443 		t_alrm = rtc_tm_to_time64(&t->time);
444 		if (t_alrm > t_max_date) {
445 			dev_err(dev,
446 				"Alarms can be up to one month in the future\n");
447 			return -EINVAL;
448 		}
449 	} else {
450 		struct rtc_time max_date = now;
451 		time64_t t_max_date;
452 		time64_t t_alrm;
453 		int max_mday;
454 
455 		max_date.tm_year += 1;
456 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 		if (max_date.tm_mday > max_mday)
458 			max_date.tm_mday = max_mday;
459 
460 		t_max_date = rtc_tm_to_time64(&max_date);
461 		t_max_date -= 1;
462 		t_alrm = rtc_tm_to_time64(&t->time);
463 		if (t_alrm > t_max_date) {
464 			dev_err(dev,
465 				"Alarms can be up to one year in the future\n");
466 			return -EINVAL;
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 struct cmos_set_alarm_callback_param {
474 	struct cmos_rtc *cmos;
475 	unsigned char mon, mday, hrs, min, sec;
476 	struct rtc_wkalrm *t;
477 };
478 
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480  *	 once
481  */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 				    void *param_in)
484 {
485 	struct cmos_set_alarm_callback_param *p =
486 		(struct cmos_set_alarm_callback_param *)param_in;
487 
488 	/* next rtc irq must not be from previous alarm setting */
489 	cmos_irq_disable(p->cmos, RTC_AIE);
490 
491 	/* update alarm */
492 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495 
496 	/* the system may support an "enhanced" alarm */
497 	if (p->cmos->day_alrm) {
498 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 		if (p->cmos->mon_alrm)
500 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 	}
502 
503 	if (use_hpet_alarm()) {
504 		/*
505 		 * FIXME the HPET alarm glue currently ignores day_alrm
506 		 * and mon_alrm ...
507 		 */
508 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 				    p->t->time.tm_sec);
510 	}
511 
512 	if (p->t->enabled)
513 		cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519 	struct cmos_set_alarm_callback_param p = {
520 		.cmos = cmos,
521 		.t = t
522 	};
523 	unsigned char rtc_control;
524 	int ret;
525 
526 	/* This not only a rtc_op, but also called directly */
527 	if (!is_valid_irq(cmos->irq))
528 		return -EIO;
529 
530 	ret = cmos_validate_alarm(dev, t);
531 	if (ret < 0)
532 		return ret;
533 
534 	p.mon = t->time.tm_mon + 1;
535 	p.mday = t->time.tm_mday;
536 	p.hrs = t->time.tm_hour;
537 	p.min = t->time.tm_min;
538 	p.sec = t->time.tm_sec;
539 
540 	spin_lock_irq(&rtc_lock);
541 	rtc_control = CMOS_READ(RTC_CONTROL);
542 	spin_unlock_irq(&rtc_lock);
543 
544 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 		/* Writing 0xff means "don't care" or "match all".  */
546 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 	}
552 
553 	/*
554 	 * Some Intel chipsets disconnect the alarm registers when the clock
555 	 * update is in progress - during this time writes fail silently.
556 	 *
557 	 * Use mc146818_avoid_UIP() to avoid this.
558 	 */
559 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
560 		return -ETIMEDOUT;
561 
562 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563 
564 	return 0;
565 }
566 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
570 	unsigned long	flags;
571 
572 	spin_lock_irqsave(&rtc_lock, flags);
573 
574 	if (enabled)
575 		cmos_irq_enable(cmos, RTC_AIE);
576 	else
577 		cmos_irq_disable(cmos, RTC_AIE);
578 
579 	spin_unlock_irqrestore(&rtc_lock, flags);
580 	return 0;
581 }
582 
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584 
cmos_procfs(struct device * dev,struct seq_file * seq)585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
588 	unsigned char	rtc_control, valid;
589 
590 	spin_lock_irq(&rtc_lock);
591 	rtc_control = CMOS_READ(RTC_CONTROL);
592 	valid = CMOS_READ(RTC_VALID);
593 	spin_unlock_irq(&rtc_lock);
594 
595 	/* NOTE:  at least ICH6 reports battery status using a different
596 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 	 */
598 	seq_printf(seq,
599 		   "periodic_IRQ\t: %s\n"
600 		   "update_IRQ\t: %s\n"
601 		   "HPET_emulated\t: %s\n"
602 		   // "square_wave\t: %s\n"
603 		   "BCD\t\t: %s\n"
604 		   "DST_enable\t: %s\n"
605 		   "periodic_freq\t: %d\n"
606 		   "batt_status\t: %s\n",
607 		   (rtc_control & RTC_PIE) ? "yes" : "no",
608 		   (rtc_control & RTC_UIE) ? "yes" : "no",
609 		   use_hpet_alarm() ? "yes" : "no",
610 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 		   cmos->rtc->irq_freq,
614 		   (valid & RTC_VRT) ? "okay" : "dead");
615 
616 	return 0;
617 }
618 
619 #else
620 #define	cmos_procfs	NULL
621 #endif
622 
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 	.read_time		= cmos_read_time,
625 	.set_time		= cmos_set_time,
626 	.read_alarm		= cmos_read_alarm,
627 	.set_alarm		= cmos_set_alarm,
628 	.proc			= cmos_procfs,
629 	.alarm_irq_enable	= cmos_alarm_irq_enable,
630 };
631 
632 /*----------------------------------------------------------------*/
633 
634 /*
635  * All these chips have at least 64 bytes of address space, shared by
636  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
637  * by boot firmware.  Modern chips have 128 or 256 bytes.
638  */
639 
640 #define NVRAM_OFFSET	(RTC_REG_D + 1)
641 
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 			   size_t count)
644 {
645 	unsigned char *buf = val;
646 
647 	off += NVRAM_OFFSET;
648 	for (; count; count--, off++, buf++) {
649 		guard(spinlock_irq)(&rtc_lock);
650 		if (off < 128)
651 			*buf = CMOS_READ(off);
652 		else if (can_bank2)
653 			*buf = cmos_read_bank2(off);
654 		else
655 			return -EIO;
656 	}
657 
658 	return 0;
659 }
660 
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)661 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
662 			    size_t count)
663 {
664 	struct cmos_rtc	*cmos = priv;
665 	unsigned char	*buf = val;
666 
667 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
668 	 * checksum on part of the NVRAM data.  That's currently ignored
669 	 * here.  If userspace is smart enough to know what fields of
670 	 * NVRAM to update, updating checksums is also part of its job.
671 	 */
672 	off += NVRAM_OFFSET;
673 	for (; count; count--, off++, buf++) {
674 		/* don't trash RTC registers */
675 		if (off == cmos->day_alrm
676 				|| off == cmos->mon_alrm
677 				|| off == cmos->century)
678 			continue;
679 
680 		guard(spinlock_irq)(&rtc_lock);
681 		if (off < 128)
682 			CMOS_WRITE(*buf, off);
683 		else if (can_bank2)
684 			cmos_write_bank2(*buf, off);
685 		else
686 			return -EIO;
687 	}
688 
689 	return 0;
690 }
691 
692 /*----------------------------------------------------------------*/
693 
694 static struct cmos_rtc	cmos_rtc;
695 
cmos_interrupt(int irq,void * p)696 static irqreturn_t cmos_interrupt(int irq, void *p)
697 {
698 	u8		irqstat;
699 	u8		rtc_control;
700 	unsigned long	flags;
701 
702 	/* We cannot use spin_lock() here, as cmos_interrupt() is also called
703 	 * in a non-irq context.
704 	 */
705 	spin_lock_irqsave(&rtc_lock, flags);
706 
707 	/* When the HPET interrupt handler calls us, the interrupt
708 	 * status is passed as arg1 instead of the irq number.  But
709 	 * always clear irq status, even when HPET is in the way.
710 	 *
711 	 * Note that HPET and RTC are almost certainly out of phase,
712 	 * giving different IRQ status ...
713 	 */
714 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
715 	rtc_control = CMOS_READ(RTC_CONTROL);
716 	if (use_hpet_alarm())
717 		irqstat = (unsigned long)irq & 0xF0;
718 
719 	/* If we were suspended, RTC_CONTROL may not be accurate since the
720 	 * bios may have cleared it.
721 	 */
722 	if (!cmos_rtc.suspend_ctrl)
723 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
724 	else
725 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
726 
727 	/* All Linux RTC alarms should be treated as if they were oneshot.
728 	 * Similar code may be needed in system wakeup paths, in case the
729 	 * alarm woke the system.
730 	 */
731 	if (irqstat & RTC_AIE) {
732 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
733 		rtc_control &= ~RTC_AIE;
734 		CMOS_WRITE(rtc_control, RTC_CONTROL);
735 		if (use_hpet_alarm())
736 			hpet_mask_rtc_irq_bit(RTC_AIE);
737 		CMOS_READ(RTC_INTR_FLAGS);
738 	}
739 	spin_unlock_irqrestore(&rtc_lock, flags);
740 
741 	if (is_intr(irqstat)) {
742 		rtc_update_irq(p, 1, irqstat);
743 		return IRQ_HANDLED;
744 	} else
745 		return IRQ_NONE;
746 }
747 
748 #ifdef	CONFIG_ACPI
749 
750 #include <linux/acpi.h>
751 
rtc_handler(void * context)752 static u32 rtc_handler(void *context)
753 {
754 	struct device *dev = context;
755 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
756 	unsigned char rtc_control = 0;
757 	unsigned char rtc_intr;
758 	unsigned long flags;
759 
760 
761 	/*
762 	 * Always update rtc irq when ACPI is used as RTC Alarm.
763 	 * Or else, ACPI SCI is enabled during suspend/resume only,
764 	 * update rtc irq in that case.
765 	 */
766 	if (cmos_use_acpi_alarm())
767 		cmos_interrupt(0, (void *)cmos->rtc);
768 	else {
769 		/* Fix me: can we use cmos_interrupt() here as well? */
770 		spin_lock_irqsave(&rtc_lock, flags);
771 		if (cmos_rtc.suspend_ctrl)
772 			rtc_control = CMOS_READ(RTC_CONTROL);
773 		if (rtc_control & RTC_AIE) {
774 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
775 			CMOS_WRITE(rtc_control, RTC_CONTROL);
776 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
777 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
778 		}
779 		spin_unlock_irqrestore(&rtc_lock, flags);
780 	}
781 
782 	pm_wakeup_hard_event(dev);
783 	acpi_clear_event(ACPI_EVENT_RTC);
784 	acpi_disable_event(ACPI_EVENT_RTC, 0);
785 	return ACPI_INTERRUPT_HANDLED;
786 }
787 
acpi_rtc_event_setup(struct device * dev)788 static void acpi_rtc_event_setup(struct device *dev)
789 {
790 	if (acpi_disabled)
791 		return;
792 
793 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
794 	/*
795 	 * After the RTC handler is installed, the Fixed_RTC event should
796 	 * be disabled. Only when the RTC alarm is set will it be enabled.
797 	 */
798 	acpi_clear_event(ACPI_EVENT_RTC);
799 	acpi_disable_event(ACPI_EVENT_RTC, 0);
800 }
801 
acpi_rtc_event_cleanup(void)802 static void acpi_rtc_event_cleanup(void)
803 {
804 	if (acpi_disabled)
805 		return;
806 
807 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
808 }
809 
rtc_wake_on(struct device * dev)810 static void rtc_wake_on(struct device *dev)
811 {
812 	acpi_clear_event(ACPI_EVENT_RTC);
813 	acpi_enable_event(ACPI_EVENT_RTC, 0);
814 }
815 
rtc_wake_off(struct device * dev)816 static void rtc_wake_off(struct device *dev)
817 {
818 	acpi_disable_event(ACPI_EVENT_RTC, 0);
819 }
820 
821 #ifdef CONFIG_X86
use_acpi_alarm_quirks(void)822 static void use_acpi_alarm_quirks(void)
823 {
824 	switch (boot_cpu_data.x86_vendor) {
825 	case X86_VENDOR_INTEL:
826 		if (dmi_get_bios_year() < 2015)
827 			return;
828 		break;
829 	case X86_VENDOR_AMD:
830 	case X86_VENDOR_HYGON:
831 		if (dmi_get_bios_year() < 2021)
832 			return;
833 		break;
834 	default:
835 		return;
836 	}
837 	if (!is_hpet_enabled())
838 		return;
839 
840 	use_acpi_alarm = true;
841 }
842 #else
use_acpi_alarm_quirks(void)843 static inline void use_acpi_alarm_quirks(void) { }
844 #endif
845 
acpi_cmos_wake_setup(struct device * dev)846 static void acpi_cmos_wake_setup(struct device *dev)
847 {
848 	if (acpi_disabled)
849 		return;
850 
851 	use_acpi_alarm_quirks();
852 
853 	cmos_rtc.wake_on = rtc_wake_on;
854 	cmos_rtc.wake_off = rtc_wake_off;
855 
856 	/* ACPI tables bug workaround. */
857 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
858 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
859 			acpi_gbl_FADT.month_alarm);
860 		acpi_gbl_FADT.month_alarm = 0;
861 	}
862 
863 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
864 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
865 	cmos_rtc.century = acpi_gbl_FADT.century;
866 
867 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
868 		dev_info(dev, "RTC can wake from S4\n");
869 
870 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
871 	device_init_wakeup(dev, 1);
872 }
873 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)874 static void cmos_check_acpi_rtc_status(struct device *dev,
875 					      unsigned char *rtc_control)
876 {
877 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
878 	acpi_event_status rtc_status;
879 	acpi_status status;
880 
881 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
882 		return;
883 
884 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
885 	if (ACPI_FAILURE(status)) {
886 		dev_err(dev, "Could not get RTC status\n");
887 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
888 		unsigned char mask;
889 		*rtc_control &= ~RTC_AIE;
890 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
891 		mask = CMOS_READ(RTC_INTR_FLAGS);
892 		rtc_update_irq(cmos->rtc, 1, mask);
893 	}
894 }
895 
896 #else /* !CONFIG_ACPI */
897 
acpi_rtc_event_setup(struct device * dev)898 static inline void acpi_rtc_event_setup(struct device *dev)
899 {
900 }
901 
acpi_rtc_event_cleanup(void)902 static inline void acpi_rtc_event_cleanup(void)
903 {
904 }
905 
acpi_cmos_wake_setup(struct device * dev)906 static inline void acpi_cmos_wake_setup(struct device *dev)
907 {
908 }
909 
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)910 static inline void cmos_check_acpi_rtc_status(struct device *dev,
911 					      unsigned char *rtc_control)
912 {
913 }
914 #endif /* CONFIG_ACPI */
915 
916 #ifdef	CONFIG_PNP
917 #define	INITSECTION
918 
919 #else
920 #define	INITSECTION	__init
921 #endif
922 
923 #define SECS_PER_DAY	(24 * 60 * 60)
924 #define SECS_PER_MONTH	(28 * SECS_PER_DAY)
925 #define SECS_PER_YEAR	(365 * SECS_PER_DAY)
926 
927 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)928 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
929 {
930 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
931 	int				retval = 0;
932 	unsigned char			rtc_control;
933 	unsigned			address_space;
934 	u32				flags = 0;
935 	struct nvmem_config nvmem_cfg = {
936 		.name = "cmos_nvram",
937 		.word_size = 1,
938 		.stride = 1,
939 		.reg_read = cmos_nvram_read,
940 		.reg_write = cmos_nvram_write,
941 		.priv = &cmos_rtc,
942 	};
943 
944 	/* there can be only one ... */
945 	if (cmos_rtc.dev)
946 		return -EBUSY;
947 
948 	if (!ports)
949 		return -ENODEV;
950 
951 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
952 	 *
953 	 * REVISIT non-x86 systems may instead use memory space resources
954 	 * (needing ioremap etc), not i/o space resources like this ...
955 	 */
956 	if (RTC_IOMAPPED)
957 		ports = request_region(ports->start, resource_size(ports),
958 				       driver_name);
959 	else
960 		ports = request_mem_region(ports->start, resource_size(ports),
961 					   driver_name);
962 	if (!ports) {
963 		dev_dbg(dev, "i/o registers already in use\n");
964 		return -EBUSY;
965 	}
966 
967 	cmos_rtc.irq = rtc_irq;
968 	cmos_rtc.iomem = ports;
969 
970 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
971 	 * driver did, but don't reject unknown configs.   Old hardware
972 	 * won't address 128 bytes.  Newer chips have multiple banks,
973 	 * though they may not be listed in one I/O resource.
974 	 */
975 #if	defined(CONFIG_ATARI)
976 	address_space = 64;
977 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
978 			|| defined(__sparc__) || defined(__mips__) \
979 			|| defined(__powerpc__)
980 	address_space = 128;
981 #else
982 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
983 	address_space = 128;
984 #endif
985 	if (can_bank2 && ports->end > (ports->start + 1))
986 		address_space = 256;
987 
988 	/* For ACPI systems extension info comes from the FADT.  On others,
989 	 * board specific setup provides it as appropriate.  Systems where
990 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
991 	 * some almost-clones) can provide hooks to make that behave.
992 	 *
993 	 * Note that ACPI doesn't preclude putting these registers into
994 	 * "extended" areas of the chip, including some that we won't yet
995 	 * expect CMOS_READ and friends to handle.
996 	 */
997 	if (info) {
998 		if (info->flags)
999 			flags = info->flags;
1000 		if (info->address_space)
1001 			address_space = info->address_space;
1002 
1003 		cmos_rtc.day_alrm = info->rtc_day_alarm;
1004 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1005 		cmos_rtc.century = info->rtc_century;
1006 
1007 		if (info->wake_on && info->wake_off) {
1008 			cmos_rtc.wake_on = info->wake_on;
1009 			cmos_rtc.wake_off = info->wake_off;
1010 		}
1011 	} else {
1012 		acpi_cmos_wake_setup(dev);
1013 	}
1014 
1015 	if (cmos_rtc.day_alrm >= 128)
1016 		cmos_rtc.day_alrm = 0;
1017 
1018 	if (cmos_rtc.mon_alrm >= 128)
1019 		cmos_rtc.mon_alrm = 0;
1020 
1021 	if (cmos_rtc.century >= 128)
1022 		cmos_rtc.century = 0;
1023 
1024 	cmos_rtc.dev = dev;
1025 	dev_set_drvdata(dev, &cmos_rtc);
1026 
1027 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1028 	if (IS_ERR(cmos_rtc.rtc)) {
1029 		retval = PTR_ERR(cmos_rtc.rtc);
1030 		goto cleanup0;
1031 	}
1032 
1033 	if (cmos_rtc.mon_alrm)
1034 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1035 	else if (cmos_rtc.day_alrm)
1036 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1037 	else
1038 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1039 
1040 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1041 
1042 	if (!mc146818_does_rtc_work()) {
1043 		dev_warn(dev, "broken or not accessible\n");
1044 		retval = -ENXIO;
1045 		goto cleanup1;
1046 	}
1047 
1048 	spin_lock_irq(&rtc_lock);
1049 
1050 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1051 		/* force periodic irq to CMOS reset default of 1024Hz;
1052 		 *
1053 		 * REVISIT it's been reported that at least one x86_64 ALI
1054 		 * mobo doesn't use 32KHz here ... for portability we might
1055 		 * need to do something about other clock frequencies.
1056 		 */
1057 		cmos_rtc.rtc->irq_freq = 1024;
1058 		if (use_hpet_alarm())
1059 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1060 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1061 	}
1062 
1063 	/* disable irqs */
1064 	if (is_valid_irq(rtc_irq))
1065 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1066 
1067 	rtc_control = CMOS_READ(RTC_CONTROL);
1068 
1069 	spin_unlock_irq(&rtc_lock);
1070 
1071 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1072 		dev_warn(dev, "only 24-hr supported\n");
1073 		retval = -ENXIO;
1074 		goto cleanup1;
1075 	}
1076 
1077 	if (use_hpet_alarm())
1078 		hpet_rtc_timer_init();
1079 
1080 	if (is_valid_irq(rtc_irq)) {
1081 		irq_handler_t rtc_cmos_int_handler;
1082 
1083 		if (use_hpet_alarm()) {
1084 			rtc_cmos_int_handler = hpet_rtc_interrupt;
1085 			retval = hpet_register_irq_handler(cmos_interrupt);
1086 			if (retval) {
1087 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1088 				dev_warn(dev, "hpet_register_irq_handler "
1089 						" failed in rtc_init().");
1090 				goto cleanup1;
1091 			}
1092 		} else
1093 			rtc_cmos_int_handler = cmos_interrupt;
1094 
1095 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1096 				0, dev_name(&cmos_rtc.rtc->dev),
1097 				cmos_rtc.rtc);
1098 		if (retval < 0) {
1099 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1100 			goto cleanup1;
1101 		}
1102 	} else {
1103 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1104 	}
1105 
1106 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1107 
1108 	retval = devm_rtc_register_device(cmos_rtc.rtc);
1109 	if (retval)
1110 		goto cleanup2;
1111 
1112 	/* Set the sync offset for the periodic 11min update correct */
1113 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1114 
1115 	/* export at least the first block of NVRAM */
1116 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1117 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1118 
1119 	/*
1120 	 * Everything has gone well so far, so by default register a handler for
1121 	 * the ACPI RTC fixed event.
1122 	 */
1123 	if (!info)
1124 		acpi_rtc_event_setup(dev);
1125 
1126 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1127 		 !is_valid_irq(rtc_irq) ? "no alarms" :
1128 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1129 		 cmos_rtc.day_alrm ? "alarms up to one month" :
1130 		 "alarms up to one day",
1131 		 cmos_rtc.century ? ", y3k" : "",
1132 		 nvmem_cfg.size,
1133 		 use_hpet_alarm() ? ", hpet irqs" : "");
1134 
1135 	return 0;
1136 
1137 cleanup2:
1138 	if (is_valid_irq(rtc_irq))
1139 		free_irq(rtc_irq, cmos_rtc.rtc);
1140 cleanup1:
1141 	cmos_rtc.dev = NULL;
1142 cleanup0:
1143 	if (RTC_IOMAPPED)
1144 		release_region(ports->start, resource_size(ports));
1145 	else
1146 		release_mem_region(ports->start, resource_size(ports));
1147 	return retval;
1148 }
1149 
cmos_do_shutdown(int rtc_irq)1150 static void cmos_do_shutdown(int rtc_irq)
1151 {
1152 	spin_lock_irq(&rtc_lock);
1153 	if (is_valid_irq(rtc_irq))
1154 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1155 	spin_unlock_irq(&rtc_lock);
1156 }
1157 
cmos_do_remove(struct device * dev)1158 static void cmos_do_remove(struct device *dev)
1159 {
1160 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1161 	struct resource *ports;
1162 
1163 	cmos_do_shutdown(cmos->irq);
1164 
1165 	if (is_valid_irq(cmos->irq)) {
1166 		free_irq(cmos->irq, cmos->rtc);
1167 		if (use_hpet_alarm())
1168 			hpet_unregister_irq_handler(cmos_interrupt);
1169 	}
1170 
1171 	if (!dev_get_platdata(dev))
1172 		acpi_rtc_event_cleanup();
1173 
1174 	cmos->rtc = NULL;
1175 
1176 	ports = cmos->iomem;
1177 	if (RTC_IOMAPPED)
1178 		release_region(ports->start, resource_size(ports));
1179 	else
1180 		release_mem_region(ports->start, resource_size(ports));
1181 	cmos->iomem = NULL;
1182 
1183 	cmos->dev = NULL;
1184 }
1185 
cmos_aie_poweroff(struct device * dev)1186 static int cmos_aie_poweroff(struct device *dev)
1187 {
1188 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1189 	struct rtc_time now;
1190 	time64_t t_now;
1191 	int retval = 0;
1192 	unsigned char rtc_control;
1193 
1194 	if (!cmos->alarm_expires)
1195 		return -EINVAL;
1196 
1197 	spin_lock_irq(&rtc_lock);
1198 	rtc_control = CMOS_READ(RTC_CONTROL);
1199 	spin_unlock_irq(&rtc_lock);
1200 
1201 	/* We only care about the situation where AIE is disabled. */
1202 	if (rtc_control & RTC_AIE)
1203 		return -EBUSY;
1204 
1205 	cmos_read_time(dev, &now);
1206 	t_now = rtc_tm_to_time64(&now);
1207 
1208 	/*
1209 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1210 	 * automatically right after shutdown on some buggy boxes.
1211 	 * This automatic rebooting issue won't happen when the alarm
1212 	 * time is larger than now+1 seconds.
1213 	 *
1214 	 * If the alarm time is equal to now+1 seconds, the issue can be
1215 	 * prevented by cancelling the alarm.
1216 	 */
1217 	if (cmos->alarm_expires == t_now + 1) {
1218 		struct rtc_wkalrm alarm;
1219 
1220 		/* Cancel the AIE timer by configuring the past time. */
1221 		rtc_time64_to_tm(t_now - 1, &alarm.time);
1222 		alarm.enabled = 0;
1223 		retval = cmos_set_alarm(dev, &alarm);
1224 	} else if (cmos->alarm_expires > t_now + 1) {
1225 		retval = -EBUSY;
1226 	}
1227 
1228 	return retval;
1229 }
1230 
cmos_suspend(struct device * dev)1231 static int cmos_suspend(struct device *dev)
1232 {
1233 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1234 	unsigned char	tmp;
1235 
1236 	/* only the alarm might be a wakeup event source */
1237 	spin_lock_irq(&rtc_lock);
1238 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1239 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1240 		unsigned char	mask;
1241 
1242 		if (device_may_wakeup(dev))
1243 			mask = RTC_IRQMASK & ~RTC_AIE;
1244 		else
1245 			mask = RTC_IRQMASK;
1246 		tmp &= ~mask;
1247 		CMOS_WRITE(tmp, RTC_CONTROL);
1248 		if (use_hpet_alarm())
1249 			hpet_mask_rtc_irq_bit(mask);
1250 		cmos_checkintr(cmos, tmp);
1251 	}
1252 	spin_unlock_irq(&rtc_lock);
1253 
1254 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1255 		cmos->enabled_wake = 1;
1256 		if (cmos->wake_on)
1257 			cmos->wake_on(dev);
1258 		else
1259 			enable_irq_wake(cmos->irq);
1260 	}
1261 
1262 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1263 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1264 
1265 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1266 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1267 			tmp);
1268 
1269 	return 0;
1270 }
1271 
1272 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1273  * after a detour through G3 "mechanical off", although the ACPI spec
1274  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1275  * distinctions between S4 and S5 are pointless.  So when the hardware
1276  * allows, don't draw that distinction.
1277  */
cmos_poweroff(struct device * dev)1278 static inline int cmos_poweroff(struct device *dev)
1279 {
1280 	if (!IS_ENABLED(CONFIG_PM))
1281 		return -ENOSYS;
1282 
1283 	return cmos_suspend(dev);
1284 }
1285 
cmos_check_wkalrm(struct device * dev)1286 static void cmos_check_wkalrm(struct device *dev)
1287 {
1288 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1289 	struct rtc_wkalrm current_alarm;
1290 	time64_t t_now;
1291 	time64_t t_current_expires;
1292 	time64_t t_saved_expires;
1293 	struct rtc_time now;
1294 
1295 	/* Check if we have RTC Alarm armed */
1296 	if (!(cmos->suspend_ctrl & RTC_AIE))
1297 		return;
1298 
1299 	cmos_read_time(dev, &now);
1300 	t_now = rtc_tm_to_time64(&now);
1301 
1302 	/*
1303 	 * ACPI RTC wake event is cleared after resume from STR,
1304 	 * ACK the rtc irq here
1305 	 */
1306 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1307 		cmos_interrupt(0, (void *)cmos->rtc);
1308 		return;
1309 	}
1310 
1311 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1312 	cmos_read_alarm(dev, &current_alarm);
1313 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1314 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1315 	if (t_current_expires != t_saved_expires ||
1316 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1317 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1318 	}
1319 }
1320 
cmos_resume(struct device * dev)1321 static int __maybe_unused cmos_resume(struct device *dev)
1322 {
1323 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1324 	unsigned char tmp;
1325 
1326 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1327 		if (cmos->wake_off)
1328 			cmos->wake_off(dev);
1329 		else
1330 			disable_irq_wake(cmos->irq);
1331 		cmos->enabled_wake = 0;
1332 	}
1333 
1334 	/* The BIOS might have changed the alarm, restore it */
1335 	cmos_check_wkalrm(dev);
1336 
1337 	spin_lock_irq(&rtc_lock);
1338 	tmp = cmos->suspend_ctrl;
1339 	cmos->suspend_ctrl = 0;
1340 	/* re-enable any irqs previously active */
1341 	if (tmp & RTC_IRQMASK) {
1342 		unsigned char	mask;
1343 
1344 		if (device_may_wakeup(dev) && use_hpet_alarm())
1345 			hpet_rtc_timer_init();
1346 
1347 		do {
1348 			CMOS_WRITE(tmp, RTC_CONTROL);
1349 			if (use_hpet_alarm())
1350 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1351 
1352 			mask = CMOS_READ(RTC_INTR_FLAGS);
1353 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1354 			if (!use_hpet_alarm() || !is_intr(mask))
1355 				break;
1356 
1357 			/* force one-shot behavior if HPET blocked
1358 			 * the wake alarm's irq
1359 			 */
1360 			rtc_update_irq(cmos->rtc, 1, mask);
1361 			tmp &= ~RTC_AIE;
1362 			hpet_mask_rtc_irq_bit(RTC_AIE);
1363 		} while (mask & RTC_AIE);
1364 
1365 		if (tmp & RTC_AIE)
1366 			cmos_check_acpi_rtc_status(dev, &tmp);
1367 	}
1368 	spin_unlock_irq(&rtc_lock);
1369 
1370 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1371 
1372 	return 0;
1373 }
1374 
1375 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1376 
1377 /*----------------------------------------------------------------*/
1378 
1379 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1380  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1381  * probably list them in similar PNPBIOS tables; so PNP is more common.
1382  *
1383  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1384  * predate even PNPBIOS should set up platform_bus devices.
1385  */
1386 
1387 #ifdef	CONFIG_PNP
1388 
1389 #include <linux/pnp.h>
1390 
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1391 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1392 {
1393 	int irq;
1394 
1395 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1396 		irq = 0;
1397 #ifdef CONFIG_X86
1398 		/* Some machines contain a PNP entry for the RTC, but
1399 		 * don't define the IRQ. It should always be safe to
1400 		 * hardcode it on systems with a legacy PIC.
1401 		 */
1402 		if (nr_legacy_irqs())
1403 			irq = RTC_IRQ;
1404 #endif
1405 	} else {
1406 		irq = pnp_irq(pnp, 0);
1407 	}
1408 
1409 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1410 }
1411 
cmos_pnp_remove(struct pnp_dev * pnp)1412 static void cmos_pnp_remove(struct pnp_dev *pnp)
1413 {
1414 	cmos_do_remove(&pnp->dev);
1415 }
1416 
cmos_pnp_shutdown(struct pnp_dev * pnp)1417 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1418 {
1419 	struct device *dev = &pnp->dev;
1420 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1421 
1422 	if (system_state == SYSTEM_POWER_OFF) {
1423 		int retval = cmos_poweroff(dev);
1424 
1425 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1426 			return;
1427 	}
1428 
1429 	cmos_do_shutdown(cmos->irq);
1430 }
1431 
1432 static const struct pnp_device_id rtc_ids[] = {
1433 	{ .id = "PNP0b00", },
1434 	{ .id = "PNP0b01", },
1435 	{ .id = "PNP0b02", },
1436 	{ },
1437 };
1438 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1439 
1440 static struct pnp_driver cmos_pnp_driver = {
1441 	.name		= driver_name,
1442 	.id_table	= rtc_ids,
1443 	.probe		= cmos_pnp_probe,
1444 	.remove		= cmos_pnp_remove,
1445 	.shutdown	= cmos_pnp_shutdown,
1446 
1447 	/* flag ensures resume() gets called, and stops syslog spam */
1448 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1449 	.driver		= {
1450 			.pm = &cmos_pm_ops,
1451 	},
1452 };
1453 
1454 #endif	/* CONFIG_PNP */
1455 
1456 #ifdef CONFIG_OF
1457 static const struct of_device_id of_cmos_match[] = {
1458 	{
1459 		.compatible = "motorola,mc146818",
1460 	},
1461 	{ },
1462 };
1463 MODULE_DEVICE_TABLE(of, of_cmos_match);
1464 
cmos_of_init(struct platform_device * pdev)1465 static __init void cmos_of_init(struct platform_device *pdev)
1466 {
1467 	struct device_node *node = pdev->dev.of_node;
1468 	const __be32 *val;
1469 
1470 	if (!node)
1471 		return;
1472 
1473 	val = of_get_property(node, "ctrl-reg", NULL);
1474 	if (val)
1475 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1476 
1477 	val = of_get_property(node, "freq-reg", NULL);
1478 	if (val)
1479 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1480 }
1481 #else
cmos_of_init(struct platform_device * pdev)1482 static inline void cmos_of_init(struct platform_device *pdev) {}
1483 #endif
1484 /*----------------------------------------------------------------*/
1485 
1486 /* Platform setup should have set up an RTC device, when PNP is
1487  * unavailable ... this could happen even on (older) PCs.
1488  */
1489 
cmos_platform_probe(struct platform_device * pdev)1490 static int __init cmos_platform_probe(struct platform_device *pdev)
1491 {
1492 	struct resource *resource;
1493 	int irq;
1494 
1495 	cmos_of_init(pdev);
1496 
1497 	if (RTC_IOMAPPED)
1498 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1499 	else
1500 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1501 	irq = platform_get_irq(pdev, 0);
1502 	if (irq < 0)
1503 		irq = -1;
1504 
1505 	return cmos_do_probe(&pdev->dev, resource, irq);
1506 }
1507 
cmos_platform_remove(struct platform_device * pdev)1508 static void cmos_platform_remove(struct platform_device *pdev)
1509 {
1510 	cmos_do_remove(&pdev->dev);
1511 }
1512 
cmos_platform_shutdown(struct platform_device * pdev)1513 static void cmos_platform_shutdown(struct platform_device *pdev)
1514 {
1515 	struct device *dev = &pdev->dev;
1516 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1517 
1518 	if (system_state == SYSTEM_POWER_OFF) {
1519 		int retval = cmos_poweroff(dev);
1520 
1521 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1522 			return;
1523 	}
1524 
1525 	cmos_do_shutdown(cmos->irq);
1526 }
1527 
1528 /* work with hotplug and coldplug */
1529 MODULE_ALIAS("platform:rtc_cmos");
1530 
1531 static struct platform_driver cmos_platform_driver = {
1532 	.remove_new	= cmos_platform_remove,
1533 	.shutdown	= cmos_platform_shutdown,
1534 	.driver = {
1535 		.name		= driver_name,
1536 		.pm		= &cmos_pm_ops,
1537 		.of_match_table = of_match_ptr(of_cmos_match),
1538 	}
1539 };
1540 
1541 #ifdef CONFIG_PNP
1542 static bool pnp_driver_registered;
1543 #endif
1544 static bool platform_driver_registered;
1545 
cmos_init(void)1546 static int __init cmos_init(void)
1547 {
1548 	int retval = 0;
1549 
1550 #ifdef	CONFIG_PNP
1551 	retval = pnp_register_driver(&cmos_pnp_driver);
1552 	if (retval == 0)
1553 		pnp_driver_registered = true;
1554 #endif
1555 
1556 	if (!cmos_rtc.dev) {
1557 		retval = platform_driver_probe(&cmos_platform_driver,
1558 					       cmos_platform_probe);
1559 		if (retval == 0)
1560 			platform_driver_registered = true;
1561 	}
1562 
1563 	if (retval == 0)
1564 		return 0;
1565 
1566 #ifdef	CONFIG_PNP
1567 	if (pnp_driver_registered)
1568 		pnp_unregister_driver(&cmos_pnp_driver);
1569 #endif
1570 	return retval;
1571 }
1572 module_init(cmos_init);
1573 
cmos_exit(void)1574 static void __exit cmos_exit(void)
1575 {
1576 #ifdef	CONFIG_PNP
1577 	if (pnp_driver_registered)
1578 		pnp_unregister_driver(&cmos_pnp_driver);
1579 #endif
1580 	if (platform_driver_registered)
1581 		platform_driver_unregister(&cmos_platform_driver);
1582 }
1583 module_exit(cmos_exit);
1584 
1585 
1586 MODULE_AUTHOR("David Brownell");
1587 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1588 MODULE_LICENSE("GPL");
1589