1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
hpet_rtc_dropped_irq(void)154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 return 0;
157 }
158
hpet_rtc_timer_init(void)159 static inline int hpet_rtc_timer_init(void)
160 {
161 return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
hpet_register_irq_handler(irq_handler_t handler)166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
hpet_unregister_irq_handler(irq_handler_t handler)171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)179 static inline int use_hpet_alarm(void)
180 {
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192 #define can_bank2 true
193
cmos_read_bank2(unsigned char addr)194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198 }
199
cmos_write_bank2(unsigned char val,unsigned char addr)200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2 false
209
cmos_read_bank2(unsigned char addr)210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 return 0;
213 }
214
cmos_write_bank2(unsigned char val,unsigned char addr)215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
cmos_read_time(struct device * dev,struct rtc_time * t)223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 int ret;
226
227 /*
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
230 */
231 if (!pm_trace_rtc_valid())
232 return -EIO;
233
234 ret = mc146818_get_time(t, 1000);
235 if (ret < 0) {
236 dev_err_ratelimited(dev, "unable to read current time\n");
237 return ret;
238 }
239
240 return 0;
241 }
242
cmos_set_time(struct device * dev,struct rtc_time * t)243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
248 */
249 return mc146818_set_time(t);
250 }
251
252 struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
256 };
257
cmos_read_alarm_callback(unsigned char __always_unused seconds,void * param_in)258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 void *param_in)
260 {
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
264
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 if (!time->tm_mday)
273 time->tm_mday = -1;
274
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 if (!time->tm_mon)
278 time->tm_mon = -1;
279 }
280 }
281
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
289 .cmos = cmos,
290 .time = &t->time,
291 };
292
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
295 return -ETIMEDOUT;
296
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
299 * the future.
300 */
301
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation Intel®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 * 27.7.1
307 *
308 * Use the mc146818_avoid_UIP() function to avoid this.
309 */
310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
311 return -EIO;
312
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 else
317 t->time.tm_sec = -1;
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
320 else
321 t->time.tm_min = -1;
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 else
325 t->time.tm_hour = -1;
326
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 else
331 t->time.tm_mday = -1;
332
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 else
337 t->time.tm_mon = -1;
338 }
339 }
340 }
341
342 t->enabled = !!(p.rtc_control & RTC_AIE);
343 t->pending = 0;
344
345 return 0;
346 }
347
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 unsigned char rtc_intr;
351
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
354 */
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357 if (use_hpet_alarm())
358 return;
359
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 unsigned char rtc_control;
368
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
371 */
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
374
375 rtc_control |= mask;
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(mask);
379
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 if (cmos->wake_on)
382 cmos->wake_on(cmos->dev);
383 }
384
385 cmos_checkintr(cmos, rtc_control);
386 }
387
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 unsigned char rtc_control;
391
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(mask);
397
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 if (cmos->wake_off)
400 cmos->wake_off(cmos->dev);
401 }
402
403 cmos_checkintr(cmos, rtc_control);
404 }
405
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 struct rtc_time now;
410
411 cmos_read_time(dev, &now);
412
413 if (!cmos->day_alrm) {
414 time64_t t_max_date;
415 time64_t t_alrm;
416
417 t_max_date = rtc_tm_to_time64(&now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(&t->time);
420 if (t_alrm > t_max_date) {
421 dev_err(dev,
422 "Alarms can be up to one day in the future\n");
423 return -EINVAL;
424 }
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
427 time64_t t_max_date;
428 time64_t t_alrm;
429 int max_mday;
430
431 if (max_date.tm_mon == 11) {
432 max_date.tm_mon = 0;
433 max_date.tm_year += 1;
434 } else {
435 max_date.tm_mon += 1;
436 }
437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
440
441 t_max_date = rtc_tm_to_time64(&max_date);
442 t_max_date -= 1;
443 t_alrm = rtc_tm_to_time64(&t->time);
444 if (t_alrm > t_max_date) {
445 dev_err(dev,
446 "Alarms can be up to one month in the future\n");
447 return -EINVAL;
448 }
449 } else {
450 struct rtc_time max_date = now;
451 time64_t t_max_date;
452 time64_t t_alrm;
453 int max_mday;
454
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
459
460 t_max_date = rtc_tm_to_time64(&max_date);
461 t_max_date -= 1;
462 t_alrm = rtc_tm_to_time64(&t->time);
463 if (t_alrm > t_max_date) {
464 dev_err(dev,
465 "Alarms can be up to one year in the future\n");
466 return -EINVAL;
467 }
468 }
469
470 return 0;
471 }
472
473 struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
477 };
478
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480 * once
481 */
cmos_set_alarm_callback(unsigned char __always_unused seconds,void * param_in)482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 void *param_in)
484 {
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
487
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(p->cmos, RTC_AIE);
490
491 /* update alarm */
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 }
502
503 if (use_hpet_alarm()) {
504 /*
505 * FIXME the HPET alarm glue currently ignores day_alrm
506 * and mon_alrm ...
507 */
508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 p->t->time.tm_sec);
510 }
511
512 if (p->t->enabled)
513 cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
520 .cmos = cmos,
521 .t = t
522 };
523 unsigned char rtc_control;
524 int ret;
525
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
528 return -EIO;
529
530 ret = cmos_validate_alarm(dev, t);
531 if (ret < 0)
532 return ret;
533
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
539
540 spin_lock_irq(&rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(&rtc_lock);
543
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 }
552
553 /*
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
556 *
557 * Use mc146818_avoid_UIP() to avoid this.
558 */
559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
560 return -ETIMEDOUT;
561
562 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563
564 return 0;
565 }
566
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
570 unsigned long flags;
571
572 spin_lock_irqsave(&rtc_lock, flags);
573
574 if (enabled)
575 cmos_irq_enable(cmos, RTC_AIE);
576 else
577 cmos_irq_disable(cmos, RTC_AIE);
578
579 spin_unlock_irqrestore(&rtc_lock, flags);
580 return 0;
581 }
582
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
cmos_procfs(struct device * dev,struct seq_file * seq)585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
589
590 spin_lock_irq(&rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(&rtc_lock);
594
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 */
598 seq_printf(seq,
599 "periodic_IRQ\t: %s\n"
600 "update_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
603 "BCD\t\t: %s\n"
604 "DST_enable\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 cmos->rtc->irq_freq,
614 (valid & RTC_VRT) ? "okay" : "dead");
615
616 return 0;
617 }
618
619 #else
620 #define cmos_procfs NULL
621 #endif
622
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
628 .proc = cmos_procfs,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
630 };
631
632 /*----------------------------------------------------------------*/
633
634 /*
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
637 * by boot firmware. Modern chips have 128 or 256 bytes.
638 */
639
640 #define NVRAM_OFFSET (RTC_REG_D + 1)
641
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 size_t count)
644 {
645 unsigned char *buf = val;
646
647 off += NVRAM_OFFSET;
648 for (; count; count--, off++, buf++) {
649 guard(spinlock_irq)(&rtc_lock);
650 if (off < 128)
651 *buf = CMOS_READ(off);
652 else if (can_bank2)
653 *buf = cmos_read_bank2(off);
654 else
655 return -EIO;
656 }
657
658 return 0;
659 }
660
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)661 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
662 size_t count)
663 {
664 struct cmos_rtc *cmos = priv;
665 unsigned char *buf = val;
666
667 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
668 * checksum on part of the NVRAM data. That's currently ignored
669 * here. If userspace is smart enough to know what fields of
670 * NVRAM to update, updating checksums is also part of its job.
671 */
672 off += NVRAM_OFFSET;
673 for (; count; count--, off++, buf++) {
674 /* don't trash RTC registers */
675 if (off == cmos->day_alrm
676 || off == cmos->mon_alrm
677 || off == cmos->century)
678 continue;
679
680 guard(spinlock_irq)(&rtc_lock);
681 if (off < 128)
682 CMOS_WRITE(*buf, off);
683 else if (can_bank2)
684 cmos_write_bank2(*buf, off);
685 else
686 return -EIO;
687 }
688
689 return 0;
690 }
691
692 /*----------------------------------------------------------------*/
693
694 static struct cmos_rtc cmos_rtc;
695
cmos_interrupt(int irq,void * p)696 static irqreturn_t cmos_interrupt(int irq, void *p)
697 {
698 u8 irqstat;
699 u8 rtc_control;
700 unsigned long flags;
701
702 /* We cannot use spin_lock() here, as cmos_interrupt() is also called
703 * in a non-irq context.
704 */
705 spin_lock_irqsave(&rtc_lock, flags);
706
707 /* When the HPET interrupt handler calls us, the interrupt
708 * status is passed as arg1 instead of the irq number. But
709 * always clear irq status, even when HPET is in the way.
710 *
711 * Note that HPET and RTC are almost certainly out of phase,
712 * giving different IRQ status ...
713 */
714 irqstat = CMOS_READ(RTC_INTR_FLAGS);
715 rtc_control = CMOS_READ(RTC_CONTROL);
716 if (use_hpet_alarm())
717 irqstat = (unsigned long)irq & 0xF0;
718
719 /* If we were suspended, RTC_CONTROL may not be accurate since the
720 * bios may have cleared it.
721 */
722 if (!cmos_rtc.suspend_ctrl)
723 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
724 else
725 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
726
727 /* All Linux RTC alarms should be treated as if they were oneshot.
728 * Similar code may be needed in system wakeup paths, in case the
729 * alarm woke the system.
730 */
731 if (irqstat & RTC_AIE) {
732 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
733 rtc_control &= ~RTC_AIE;
734 CMOS_WRITE(rtc_control, RTC_CONTROL);
735 if (use_hpet_alarm())
736 hpet_mask_rtc_irq_bit(RTC_AIE);
737 CMOS_READ(RTC_INTR_FLAGS);
738 }
739 spin_unlock_irqrestore(&rtc_lock, flags);
740
741 if (is_intr(irqstat)) {
742 rtc_update_irq(p, 1, irqstat);
743 return IRQ_HANDLED;
744 } else
745 return IRQ_NONE;
746 }
747
748 #ifdef CONFIG_ACPI
749
750 #include <linux/acpi.h>
751
rtc_handler(void * context)752 static u32 rtc_handler(void *context)
753 {
754 struct device *dev = context;
755 struct cmos_rtc *cmos = dev_get_drvdata(dev);
756 unsigned char rtc_control = 0;
757 unsigned char rtc_intr;
758 unsigned long flags;
759
760
761 /*
762 * Always update rtc irq when ACPI is used as RTC Alarm.
763 * Or else, ACPI SCI is enabled during suspend/resume only,
764 * update rtc irq in that case.
765 */
766 if (cmos_use_acpi_alarm())
767 cmos_interrupt(0, (void *)cmos->rtc);
768 else {
769 /* Fix me: can we use cmos_interrupt() here as well? */
770 spin_lock_irqsave(&rtc_lock, flags);
771 if (cmos_rtc.suspend_ctrl)
772 rtc_control = CMOS_READ(RTC_CONTROL);
773 if (rtc_control & RTC_AIE) {
774 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
775 CMOS_WRITE(rtc_control, RTC_CONTROL);
776 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
777 rtc_update_irq(cmos->rtc, 1, rtc_intr);
778 }
779 spin_unlock_irqrestore(&rtc_lock, flags);
780 }
781
782 pm_wakeup_hard_event(dev);
783 acpi_clear_event(ACPI_EVENT_RTC);
784 acpi_disable_event(ACPI_EVENT_RTC, 0);
785 return ACPI_INTERRUPT_HANDLED;
786 }
787
acpi_rtc_event_setup(struct device * dev)788 static void acpi_rtc_event_setup(struct device *dev)
789 {
790 if (acpi_disabled)
791 return;
792
793 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
794 /*
795 * After the RTC handler is installed, the Fixed_RTC event should
796 * be disabled. Only when the RTC alarm is set will it be enabled.
797 */
798 acpi_clear_event(ACPI_EVENT_RTC);
799 acpi_disable_event(ACPI_EVENT_RTC, 0);
800 }
801
acpi_rtc_event_cleanup(void)802 static void acpi_rtc_event_cleanup(void)
803 {
804 if (acpi_disabled)
805 return;
806
807 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
808 }
809
rtc_wake_on(struct device * dev)810 static void rtc_wake_on(struct device *dev)
811 {
812 acpi_clear_event(ACPI_EVENT_RTC);
813 acpi_enable_event(ACPI_EVENT_RTC, 0);
814 }
815
rtc_wake_off(struct device * dev)816 static void rtc_wake_off(struct device *dev)
817 {
818 acpi_disable_event(ACPI_EVENT_RTC, 0);
819 }
820
821 #ifdef CONFIG_X86
use_acpi_alarm_quirks(void)822 static void use_acpi_alarm_quirks(void)
823 {
824 switch (boot_cpu_data.x86_vendor) {
825 case X86_VENDOR_INTEL:
826 if (dmi_get_bios_year() < 2015)
827 return;
828 break;
829 case X86_VENDOR_AMD:
830 case X86_VENDOR_HYGON:
831 if (dmi_get_bios_year() < 2021)
832 return;
833 break;
834 default:
835 return;
836 }
837 if (!is_hpet_enabled())
838 return;
839
840 use_acpi_alarm = true;
841 }
842 #else
use_acpi_alarm_quirks(void)843 static inline void use_acpi_alarm_quirks(void) { }
844 #endif
845
acpi_cmos_wake_setup(struct device * dev)846 static void acpi_cmos_wake_setup(struct device *dev)
847 {
848 if (acpi_disabled)
849 return;
850
851 use_acpi_alarm_quirks();
852
853 cmos_rtc.wake_on = rtc_wake_on;
854 cmos_rtc.wake_off = rtc_wake_off;
855
856 /* ACPI tables bug workaround. */
857 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
858 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
859 acpi_gbl_FADT.month_alarm);
860 acpi_gbl_FADT.month_alarm = 0;
861 }
862
863 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
864 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
865 cmos_rtc.century = acpi_gbl_FADT.century;
866
867 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
868 dev_info(dev, "RTC can wake from S4\n");
869
870 /* RTC always wakes from S1/S2/S3, and often S4/STD */
871 device_init_wakeup(dev, 1);
872 }
873
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)874 static void cmos_check_acpi_rtc_status(struct device *dev,
875 unsigned char *rtc_control)
876 {
877 struct cmos_rtc *cmos = dev_get_drvdata(dev);
878 acpi_event_status rtc_status;
879 acpi_status status;
880
881 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
882 return;
883
884 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
885 if (ACPI_FAILURE(status)) {
886 dev_err(dev, "Could not get RTC status\n");
887 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
888 unsigned char mask;
889 *rtc_control &= ~RTC_AIE;
890 CMOS_WRITE(*rtc_control, RTC_CONTROL);
891 mask = CMOS_READ(RTC_INTR_FLAGS);
892 rtc_update_irq(cmos->rtc, 1, mask);
893 }
894 }
895
896 #else /* !CONFIG_ACPI */
897
acpi_rtc_event_setup(struct device * dev)898 static inline void acpi_rtc_event_setup(struct device *dev)
899 {
900 }
901
acpi_rtc_event_cleanup(void)902 static inline void acpi_rtc_event_cleanup(void)
903 {
904 }
905
acpi_cmos_wake_setup(struct device * dev)906 static inline void acpi_cmos_wake_setup(struct device *dev)
907 {
908 }
909
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)910 static inline void cmos_check_acpi_rtc_status(struct device *dev,
911 unsigned char *rtc_control)
912 {
913 }
914 #endif /* CONFIG_ACPI */
915
916 #ifdef CONFIG_PNP
917 #define INITSECTION
918
919 #else
920 #define INITSECTION __init
921 #endif
922
923 #define SECS_PER_DAY (24 * 60 * 60)
924 #define SECS_PER_MONTH (28 * SECS_PER_DAY)
925 #define SECS_PER_YEAR (365 * SECS_PER_DAY)
926
927 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)928 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
929 {
930 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
931 int retval = 0;
932 unsigned char rtc_control;
933 unsigned address_space;
934 u32 flags = 0;
935 struct nvmem_config nvmem_cfg = {
936 .name = "cmos_nvram",
937 .word_size = 1,
938 .stride = 1,
939 .reg_read = cmos_nvram_read,
940 .reg_write = cmos_nvram_write,
941 .priv = &cmos_rtc,
942 };
943
944 /* there can be only one ... */
945 if (cmos_rtc.dev)
946 return -EBUSY;
947
948 if (!ports)
949 return -ENODEV;
950
951 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
952 *
953 * REVISIT non-x86 systems may instead use memory space resources
954 * (needing ioremap etc), not i/o space resources like this ...
955 */
956 if (RTC_IOMAPPED)
957 ports = request_region(ports->start, resource_size(ports),
958 driver_name);
959 else
960 ports = request_mem_region(ports->start, resource_size(ports),
961 driver_name);
962 if (!ports) {
963 dev_dbg(dev, "i/o registers already in use\n");
964 return -EBUSY;
965 }
966
967 cmos_rtc.irq = rtc_irq;
968 cmos_rtc.iomem = ports;
969
970 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
971 * driver did, but don't reject unknown configs. Old hardware
972 * won't address 128 bytes. Newer chips have multiple banks,
973 * though they may not be listed in one I/O resource.
974 */
975 #if defined(CONFIG_ATARI)
976 address_space = 64;
977 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
978 || defined(__sparc__) || defined(__mips__) \
979 || defined(__powerpc__)
980 address_space = 128;
981 #else
982 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
983 address_space = 128;
984 #endif
985 if (can_bank2 && ports->end > (ports->start + 1))
986 address_space = 256;
987
988 /* For ACPI systems extension info comes from the FADT. On others,
989 * board specific setup provides it as appropriate. Systems where
990 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
991 * some almost-clones) can provide hooks to make that behave.
992 *
993 * Note that ACPI doesn't preclude putting these registers into
994 * "extended" areas of the chip, including some that we won't yet
995 * expect CMOS_READ and friends to handle.
996 */
997 if (info) {
998 if (info->flags)
999 flags = info->flags;
1000 if (info->address_space)
1001 address_space = info->address_space;
1002
1003 cmos_rtc.day_alrm = info->rtc_day_alarm;
1004 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1005 cmos_rtc.century = info->rtc_century;
1006
1007 if (info->wake_on && info->wake_off) {
1008 cmos_rtc.wake_on = info->wake_on;
1009 cmos_rtc.wake_off = info->wake_off;
1010 }
1011 } else {
1012 acpi_cmos_wake_setup(dev);
1013 }
1014
1015 if (cmos_rtc.day_alrm >= 128)
1016 cmos_rtc.day_alrm = 0;
1017
1018 if (cmos_rtc.mon_alrm >= 128)
1019 cmos_rtc.mon_alrm = 0;
1020
1021 if (cmos_rtc.century >= 128)
1022 cmos_rtc.century = 0;
1023
1024 cmos_rtc.dev = dev;
1025 dev_set_drvdata(dev, &cmos_rtc);
1026
1027 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1028 if (IS_ERR(cmos_rtc.rtc)) {
1029 retval = PTR_ERR(cmos_rtc.rtc);
1030 goto cleanup0;
1031 }
1032
1033 if (cmos_rtc.mon_alrm)
1034 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1035 else if (cmos_rtc.day_alrm)
1036 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1037 else
1038 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1039
1040 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1041
1042 if (!mc146818_does_rtc_work()) {
1043 dev_warn(dev, "broken or not accessible\n");
1044 retval = -ENXIO;
1045 goto cleanup1;
1046 }
1047
1048 spin_lock_irq(&rtc_lock);
1049
1050 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1051 /* force periodic irq to CMOS reset default of 1024Hz;
1052 *
1053 * REVISIT it's been reported that at least one x86_64 ALI
1054 * mobo doesn't use 32KHz here ... for portability we might
1055 * need to do something about other clock frequencies.
1056 */
1057 cmos_rtc.rtc->irq_freq = 1024;
1058 if (use_hpet_alarm())
1059 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1060 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1061 }
1062
1063 /* disable irqs */
1064 if (is_valid_irq(rtc_irq))
1065 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1066
1067 rtc_control = CMOS_READ(RTC_CONTROL);
1068
1069 spin_unlock_irq(&rtc_lock);
1070
1071 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1072 dev_warn(dev, "only 24-hr supported\n");
1073 retval = -ENXIO;
1074 goto cleanup1;
1075 }
1076
1077 if (use_hpet_alarm())
1078 hpet_rtc_timer_init();
1079
1080 if (is_valid_irq(rtc_irq)) {
1081 irq_handler_t rtc_cmos_int_handler;
1082
1083 if (use_hpet_alarm()) {
1084 rtc_cmos_int_handler = hpet_rtc_interrupt;
1085 retval = hpet_register_irq_handler(cmos_interrupt);
1086 if (retval) {
1087 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1088 dev_warn(dev, "hpet_register_irq_handler "
1089 " failed in rtc_init().");
1090 goto cleanup1;
1091 }
1092 } else
1093 rtc_cmos_int_handler = cmos_interrupt;
1094
1095 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1096 0, dev_name(&cmos_rtc.rtc->dev),
1097 cmos_rtc.rtc);
1098 if (retval < 0) {
1099 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1100 goto cleanup1;
1101 }
1102 } else {
1103 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1104 }
1105
1106 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1107
1108 retval = devm_rtc_register_device(cmos_rtc.rtc);
1109 if (retval)
1110 goto cleanup2;
1111
1112 /* Set the sync offset for the periodic 11min update correct */
1113 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1114
1115 /* export at least the first block of NVRAM */
1116 nvmem_cfg.size = address_space - NVRAM_OFFSET;
1117 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1118
1119 /*
1120 * Everything has gone well so far, so by default register a handler for
1121 * the ACPI RTC fixed event.
1122 */
1123 if (!info)
1124 acpi_rtc_event_setup(dev);
1125
1126 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1127 !is_valid_irq(rtc_irq) ? "no alarms" :
1128 cmos_rtc.mon_alrm ? "alarms up to one year" :
1129 cmos_rtc.day_alrm ? "alarms up to one month" :
1130 "alarms up to one day",
1131 cmos_rtc.century ? ", y3k" : "",
1132 nvmem_cfg.size,
1133 use_hpet_alarm() ? ", hpet irqs" : "");
1134
1135 return 0;
1136
1137 cleanup2:
1138 if (is_valid_irq(rtc_irq))
1139 free_irq(rtc_irq, cmos_rtc.rtc);
1140 cleanup1:
1141 cmos_rtc.dev = NULL;
1142 cleanup0:
1143 if (RTC_IOMAPPED)
1144 release_region(ports->start, resource_size(ports));
1145 else
1146 release_mem_region(ports->start, resource_size(ports));
1147 return retval;
1148 }
1149
cmos_do_shutdown(int rtc_irq)1150 static void cmos_do_shutdown(int rtc_irq)
1151 {
1152 spin_lock_irq(&rtc_lock);
1153 if (is_valid_irq(rtc_irq))
1154 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1155 spin_unlock_irq(&rtc_lock);
1156 }
1157
cmos_do_remove(struct device * dev)1158 static void cmos_do_remove(struct device *dev)
1159 {
1160 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1161 struct resource *ports;
1162
1163 cmos_do_shutdown(cmos->irq);
1164
1165 if (is_valid_irq(cmos->irq)) {
1166 free_irq(cmos->irq, cmos->rtc);
1167 if (use_hpet_alarm())
1168 hpet_unregister_irq_handler(cmos_interrupt);
1169 }
1170
1171 if (!dev_get_platdata(dev))
1172 acpi_rtc_event_cleanup();
1173
1174 cmos->rtc = NULL;
1175
1176 ports = cmos->iomem;
1177 if (RTC_IOMAPPED)
1178 release_region(ports->start, resource_size(ports));
1179 else
1180 release_mem_region(ports->start, resource_size(ports));
1181 cmos->iomem = NULL;
1182
1183 cmos->dev = NULL;
1184 }
1185
cmos_aie_poweroff(struct device * dev)1186 static int cmos_aie_poweroff(struct device *dev)
1187 {
1188 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1189 struct rtc_time now;
1190 time64_t t_now;
1191 int retval = 0;
1192 unsigned char rtc_control;
1193
1194 if (!cmos->alarm_expires)
1195 return -EINVAL;
1196
1197 spin_lock_irq(&rtc_lock);
1198 rtc_control = CMOS_READ(RTC_CONTROL);
1199 spin_unlock_irq(&rtc_lock);
1200
1201 /* We only care about the situation where AIE is disabled. */
1202 if (rtc_control & RTC_AIE)
1203 return -EBUSY;
1204
1205 cmos_read_time(dev, &now);
1206 t_now = rtc_tm_to_time64(&now);
1207
1208 /*
1209 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1210 * automatically right after shutdown on some buggy boxes.
1211 * This automatic rebooting issue won't happen when the alarm
1212 * time is larger than now+1 seconds.
1213 *
1214 * If the alarm time is equal to now+1 seconds, the issue can be
1215 * prevented by cancelling the alarm.
1216 */
1217 if (cmos->alarm_expires == t_now + 1) {
1218 struct rtc_wkalrm alarm;
1219
1220 /* Cancel the AIE timer by configuring the past time. */
1221 rtc_time64_to_tm(t_now - 1, &alarm.time);
1222 alarm.enabled = 0;
1223 retval = cmos_set_alarm(dev, &alarm);
1224 } else if (cmos->alarm_expires > t_now + 1) {
1225 retval = -EBUSY;
1226 }
1227
1228 return retval;
1229 }
1230
cmos_suspend(struct device * dev)1231 static int cmos_suspend(struct device *dev)
1232 {
1233 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1234 unsigned char tmp;
1235
1236 /* only the alarm might be a wakeup event source */
1237 spin_lock_irq(&rtc_lock);
1238 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1239 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1240 unsigned char mask;
1241
1242 if (device_may_wakeup(dev))
1243 mask = RTC_IRQMASK & ~RTC_AIE;
1244 else
1245 mask = RTC_IRQMASK;
1246 tmp &= ~mask;
1247 CMOS_WRITE(tmp, RTC_CONTROL);
1248 if (use_hpet_alarm())
1249 hpet_mask_rtc_irq_bit(mask);
1250 cmos_checkintr(cmos, tmp);
1251 }
1252 spin_unlock_irq(&rtc_lock);
1253
1254 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1255 cmos->enabled_wake = 1;
1256 if (cmos->wake_on)
1257 cmos->wake_on(dev);
1258 else
1259 enable_irq_wake(cmos->irq);
1260 }
1261
1262 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1263 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1264
1265 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1266 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1267 tmp);
1268
1269 return 0;
1270 }
1271
1272 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1273 * after a detour through G3 "mechanical off", although the ACPI spec
1274 * says wakeup should only work from G1/S4 "hibernate". To most users,
1275 * distinctions between S4 and S5 are pointless. So when the hardware
1276 * allows, don't draw that distinction.
1277 */
cmos_poweroff(struct device * dev)1278 static inline int cmos_poweroff(struct device *dev)
1279 {
1280 if (!IS_ENABLED(CONFIG_PM))
1281 return -ENOSYS;
1282
1283 return cmos_suspend(dev);
1284 }
1285
cmos_check_wkalrm(struct device * dev)1286 static void cmos_check_wkalrm(struct device *dev)
1287 {
1288 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1289 struct rtc_wkalrm current_alarm;
1290 time64_t t_now;
1291 time64_t t_current_expires;
1292 time64_t t_saved_expires;
1293 struct rtc_time now;
1294
1295 /* Check if we have RTC Alarm armed */
1296 if (!(cmos->suspend_ctrl & RTC_AIE))
1297 return;
1298
1299 cmos_read_time(dev, &now);
1300 t_now = rtc_tm_to_time64(&now);
1301
1302 /*
1303 * ACPI RTC wake event is cleared after resume from STR,
1304 * ACK the rtc irq here
1305 */
1306 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1307 cmos_interrupt(0, (void *)cmos->rtc);
1308 return;
1309 }
1310
1311 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1312 cmos_read_alarm(dev, ¤t_alarm);
1313 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1314 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1315 if (t_current_expires != t_saved_expires ||
1316 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1317 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1318 }
1319 }
1320
cmos_resume(struct device * dev)1321 static int __maybe_unused cmos_resume(struct device *dev)
1322 {
1323 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1324 unsigned char tmp;
1325
1326 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1327 if (cmos->wake_off)
1328 cmos->wake_off(dev);
1329 else
1330 disable_irq_wake(cmos->irq);
1331 cmos->enabled_wake = 0;
1332 }
1333
1334 /* The BIOS might have changed the alarm, restore it */
1335 cmos_check_wkalrm(dev);
1336
1337 spin_lock_irq(&rtc_lock);
1338 tmp = cmos->suspend_ctrl;
1339 cmos->suspend_ctrl = 0;
1340 /* re-enable any irqs previously active */
1341 if (tmp & RTC_IRQMASK) {
1342 unsigned char mask;
1343
1344 if (device_may_wakeup(dev) && use_hpet_alarm())
1345 hpet_rtc_timer_init();
1346
1347 do {
1348 CMOS_WRITE(tmp, RTC_CONTROL);
1349 if (use_hpet_alarm())
1350 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1351
1352 mask = CMOS_READ(RTC_INTR_FLAGS);
1353 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1354 if (!use_hpet_alarm() || !is_intr(mask))
1355 break;
1356
1357 /* force one-shot behavior if HPET blocked
1358 * the wake alarm's irq
1359 */
1360 rtc_update_irq(cmos->rtc, 1, mask);
1361 tmp &= ~RTC_AIE;
1362 hpet_mask_rtc_irq_bit(RTC_AIE);
1363 } while (mask & RTC_AIE);
1364
1365 if (tmp & RTC_AIE)
1366 cmos_check_acpi_rtc_status(dev, &tmp);
1367 }
1368 spin_unlock_irq(&rtc_lock);
1369
1370 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1371
1372 return 0;
1373 }
1374
1375 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1376
1377 /*----------------------------------------------------------------*/
1378
1379 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1380 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1381 * probably list them in similar PNPBIOS tables; so PNP is more common.
1382 *
1383 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1384 * predate even PNPBIOS should set up platform_bus devices.
1385 */
1386
1387 #ifdef CONFIG_PNP
1388
1389 #include <linux/pnp.h>
1390
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1391 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1392 {
1393 int irq;
1394
1395 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1396 irq = 0;
1397 #ifdef CONFIG_X86
1398 /* Some machines contain a PNP entry for the RTC, but
1399 * don't define the IRQ. It should always be safe to
1400 * hardcode it on systems with a legacy PIC.
1401 */
1402 if (nr_legacy_irqs())
1403 irq = RTC_IRQ;
1404 #endif
1405 } else {
1406 irq = pnp_irq(pnp, 0);
1407 }
1408
1409 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1410 }
1411
cmos_pnp_remove(struct pnp_dev * pnp)1412 static void cmos_pnp_remove(struct pnp_dev *pnp)
1413 {
1414 cmos_do_remove(&pnp->dev);
1415 }
1416
cmos_pnp_shutdown(struct pnp_dev * pnp)1417 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1418 {
1419 struct device *dev = &pnp->dev;
1420 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1421
1422 if (system_state == SYSTEM_POWER_OFF) {
1423 int retval = cmos_poweroff(dev);
1424
1425 if (cmos_aie_poweroff(dev) < 0 && !retval)
1426 return;
1427 }
1428
1429 cmos_do_shutdown(cmos->irq);
1430 }
1431
1432 static const struct pnp_device_id rtc_ids[] = {
1433 { .id = "PNP0b00", },
1434 { .id = "PNP0b01", },
1435 { .id = "PNP0b02", },
1436 { },
1437 };
1438 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1439
1440 static struct pnp_driver cmos_pnp_driver = {
1441 .name = driver_name,
1442 .id_table = rtc_ids,
1443 .probe = cmos_pnp_probe,
1444 .remove = cmos_pnp_remove,
1445 .shutdown = cmos_pnp_shutdown,
1446
1447 /* flag ensures resume() gets called, and stops syslog spam */
1448 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1449 .driver = {
1450 .pm = &cmos_pm_ops,
1451 },
1452 };
1453
1454 #endif /* CONFIG_PNP */
1455
1456 #ifdef CONFIG_OF
1457 static const struct of_device_id of_cmos_match[] = {
1458 {
1459 .compatible = "motorola,mc146818",
1460 },
1461 { },
1462 };
1463 MODULE_DEVICE_TABLE(of, of_cmos_match);
1464
cmos_of_init(struct platform_device * pdev)1465 static __init void cmos_of_init(struct platform_device *pdev)
1466 {
1467 struct device_node *node = pdev->dev.of_node;
1468 const __be32 *val;
1469
1470 if (!node)
1471 return;
1472
1473 val = of_get_property(node, "ctrl-reg", NULL);
1474 if (val)
1475 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1476
1477 val = of_get_property(node, "freq-reg", NULL);
1478 if (val)
1479 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1480 }
1481 #else
cmos_of_init(struct platform_device * pdev)1482 static inline void cmos_of_init(struct platform_device *pdev) {}
1483 #endif
1484 /*----------------------------------------------------------------*/
1485
1486 /* Platform setup should have set up an RTC device, when PNP is
1487 * unavailable ... this could happen even on (older) PCs.
1488 */
1489
cmos_platform_probe(struct platform_device * pdev)1490 static int __init cmos_platform_probe(struct platform_device *pdev)
1491 {
1492 struct resource *resource;
1493 int irq;
1494
1495 cmos_of_init(pdev);
1496
1497 if (RTC_IOMAPPED)
1498 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1499 else
1500 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1501 irq = platform_get_irq(pdev, 0);
1502 if (irq < 0)
1503 irq = -1;
1504
1505 return cmos_do_probe(&pdev->dev, resource, irq);
1506 }
1507
cmos_platform_remove(struct platform_device * pdev)1508 static void cmos_platform_remove(struct platform_device *pdev)
1509 {
1510 cmos_do_remove(&pdev->dev);
1511 }
1512
cmos_platform_shutdown(struct platform_device * pdev)1513 static void cmos_platform_shutdown(struct platform_device *pdev)
1514 {
1515 struct device *dev = &pdev->dev;
1516 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1517
1518 if (system_state == SYSTEM_POWER_OFF) {
1519 int retval = cmos_poweroff(dev);
1520
1521 if (cmos_aie_poweroff(dev) < 0 && !retval)
1522 return;
1523 }
1524
1525 cmos_do_shutdown(cmos->irq);
1526 }
1527
1528 /* work with hotplug and coldplug */
1529 MODULE_ALIAS("platform:rtc_cmos");
1530
1531 static struct platform_driver cmos_platform_driver = {
1532 .remove_new = cmos_platform_remove,
1533 .shutdown = cmos_platform_shutdown,
1534 .driver = {
1535 .name = driver_name,
1536 .pm = &cmos_pm_ops,
1537 .of_match_table = of_match_ptr(of_cmos_match),
1538 }
1539 };
1540
1541 #ifdef CONFIG_PNP
1542 static bool pnp_driver_registered;
1543 #endif
1544 static bool platform_driver_registered;
1545
cmos_init(void)1546 static int __init cmos_init(void)
1547 {
1548 int retval = 0;
1549
1550 #ifdef CONFIG_PNP
1551 retval = pnp_register_driver(&cmos_pnp_driver);
1552 if (retval == 0)
1553 pnp_driver_registered = true;
1554 #endif
1555
1556 if (!cmos_rtc.dev) {
1557 retval = platform_driver_probe(&cmos_platform_driver,
1558 cmos_platform_probe);
1559 if (retval == 0)
1560 platform_driver_registered = true;
1561 }
1562
1563 if (retval == 0)
1564 return 0;
1565
1566 #ifdef CONFIG_PNP
1567 if (pnp_driver_registered)
1568 pnp_unregister_driver(&cmos_pnp_driver);
1569 #endif
1570 return retval;
1571 }
1572 module_init(cmos_init);
1573
cmos_exit(void)1574 static void __exit cmos_exit(void)
1575 {
1576 #ifdef CONFIG_PNP
1577 if (pnp_driver_registered)
1578 pnp_unregister_driver(&cmos_pnp_driver);
1579 #endif
1580 if (platform_driver_registered)
1581 platform_driver_unregister(&cmos_platform_driver);
1582 }
1583 module_exit(cmos_exit);
1584
1585
1586 MODULE_AUTHOR("David Brownell");
1587 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1588 MODULE_LICENSE("GPL");
1589