1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/delay.h>
9
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_14nm.xml.h"
13
14 #define PHY_14NM_CKLN_IDX 4
15
16 /*
17 * DSI PLL 14nm - clock diagram (eg: DSI0):
18 *
19 * dsi0n1_postdiv_clk
20 * |
21 * |
22 * +----+ | +----+
23 * dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
24 * +----+ | +----+
25 * | dsi0n1_postdivby2_clk
26 * | +----+ |
27 * o---| /2 |--o--|\
28 * | +----+ | \ +----+
29 * | | |--| n2 |-- dsi0pll
30 * o--------------| / +----+
31 * |/
32 */
33
34 #define POLL_MAX_READS 15
35 #define POLL_TIMEOUT_US 1000
36
37 #define VCO_REF_CLK_RATE 19200000
38 #define VCO_MIN_RATE 1300000000UL
39 #define VCO_MAX_RATE 2600000000UL
40
41 struct dsi_pll_config {
42 u64 vco_current_rate;
43
44 u32 ssc_en; /* SSC enable/disable */
45
46 /* fixed params */
47 u32 plllock_cnt;
48 u32 ssc_center;
49 u32 ssc_adj_period;
50 u32 ssc_spread;
51 u32 ssc_freq;
52
53 /* calculated */
54 u32 dec_start;
55 u32 div_frac_start;
56 u32 ssc_period;
57 u32 ssc_step_size;
58 u32 plllock_cmp;
59 u32 pll_vco_div_ref;
60 u32 pll_vco_count;
61 u32 pll_kvco_div_ref;
62 u32 pll_kvco_count;
63 };
64
65 struct pll_14nm_cached_state {
66 unsigned long vco_rate;
67 u8 n2postdiv;
68 u8 n1postdiv;
69 };
70
71 struct dsi_pll_14nm {
72 struct clk_hw clk_hw;
73
74 struct msm_dsi_phy *phy;
75
76 /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
77 spinlock_t postdiv_lock;
78
79 struct pll_14nm_cached_state cached_state;
80
81 struct dsi_pll_14nm *slave;
82 };
83
84 #define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, clk_hw)
85
86 /*
87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
88 * the generic clk_divider class of clocks. The only difference is that it
89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
90 */
91 struct dsi_pll_14nm_postdiv {
92 struct clk_hw hw;
93
94 /* divider params */
95 u8 shift;
96 u8 width;
97 u8 flags; /* same flags as used by clk_divider struct */
98
99 struct dsi_pll_14nm *pll;
100 };
101
102 #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
103
104 /*
105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
106 * mode, where the master PLL's clk_ops needs access the slave's private data
107 */
108 static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
109
pll_14nm_poll_for_ready(struct dsi_pll_14nm * pll_14nm,u32 nb_tries,u32 timeout_us)110 static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
111 u32 nb_tries, u32 timeout_us)
112 {
113 bool pll_locked = false, pll_ready = false;
114 void __iomem *base = pll_14nm->phy->pll_base;
115 u32 tries, val;
116
117 tries = nb_tries;
118 while (tries--) {
119 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
120 pll_locked = !!(val & BIT(5));
121
122 if (pll_locked)
123 break;
124
125 udelay(timeout_us);
126 }
127
128 if (!pll_locked)
129 goto out;
130
131 tries = nb_tries;
132 while (tries--) {
133 val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
134 pll_ready = !!(val & BIT(0));
135
136 if (pll_ready)
137 break;
138
139 udelay(timeout_us);
140 }
141
142 out:
143 DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
144
145 return pll_locked && pll_ready;
146 }
147
dsi_pll_14nm_config_init(struct dsi_pll_config * pconf)148 static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
149 {
150 /* fixed input */
151 pconf->plllock_cnt = 1;
152
153 /*
154 * SSC is enabled by default. We might need DT props for configuring
155 * some SSC params like PPM and center/down spread etc.
156 */
157 pconf->ssc_en = 1;
158 pconf->ssc_center = 0; /* down spread by default */
159 pconf->ssc_spread = 5; /* PPM / 1000 */
160 pconf->ssc_freq = 31500; /* default recommended */
161 pconf->ssc_adj_period = 37;
162 }
163
164 #define CEIL(x, y) (((x) + ((y) - 1)) / (y))
165
pll_14nm_ssc_calc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)166 static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
167 {
168 u32 period, ssc_period;
169 u32 ref, rem;
170 u64 step_size;
171
172 DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
173
174 ssc_period = pconf->ssc_freq / 500;
175 period = (u32)VCO_REF_CLK_RATE / 1000;
176 ssc_period = CEIL(period, ssc_period);
177 ssc_period -= 1;
178 pconf->ssc_period = ssc_period;
179
180 DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
181 pconf->ssc_spread, pconf->ssc_period);
182
183 step_size = (u32)pconf->vco_current_rate;
184 ref = VCO_REF_CLK_RATE;
185 ref /= 1000;
186 step_size = div_u64(step_size, ref);
187 step_size <<= 20;
188 step_size = div_u64(step_size, 1000);
189 step_size *= pconf->ssc_spread;
190 step_size = div_u64(step_size, 1000);
191 step_size *= (pconf->ssc_adj_period + 1);
192
193 rem = 0;
194 step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
195 if (rem)
196 step_size++;
197
198 DBG("step_size=%lld", step_size);
199
200 step_size &= 0x0ffff; /* take lower 16 bits */
201
202 pconf->ssc_step_size = step_size;
203 }
204
pll_14nm_dec_frac_calc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)205 static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
206 {
207 u64 multiplier = BIT(20);
208 u64 dec_start_multiple, dec_start, pll_comp_val;
209 u32 duration, div_frac_start;
210 u64 vco_clk_rate = pconf->vco_current_rate;
211 u64 fref = VCO_REF_CLK_RATE;
212
213 DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
214
215 dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
216 dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
217
218 pconf->dec_start = (u32)dec_start;
219 pconf->div_frac_start = div_frac_start;
220
221 if (pconf->plllock_cnt == 0)
222 duration = 1024;
223 else if (pconf->plllock_cnt == 1)
224 duration = 256;
225 else if (pconf->plllock_cnt == 2)
226 duration = 128;
227 else
228 duration = 32;
229
230 pll_comp_val = duration * dec_start_multiple;
231 pll_comp_val = div_u64(pll_comp_val, multiplier);
232 do_div(pll_comp_val, 10);
233
234 pconf->plllock_cmp = (u32)pll_comp_val;
235 }
236
pll_14nm_kvco_slop(u32 vrate)237 static u32 pll_14nm_kvco_slop(u32 vrate)
238 {
239 u32 slop = 0;
240
241 if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
242 slop = 600;
243 else if (vrate > 1800000000UL && vrate < 2300000000UL)
244 slop = 400;
245 else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
246 slop = 280;
247
248 return slop;
249 }
250
pll_14nm_calc_vco_count(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)251 static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
252 {
253 u64 vco_clk_rate = pconf->vco_current_rate;
254 u64 fref = VCO_REF_CLK_RATE;
255 u32 vco_measure_time = 5;
256 u32 kvco_measure_time = 5;
257 u64 data;
258 u32 cnt;
259
260 data = fref * vco_measure_time;
261 do_div(data, 1000000);
262 data &= 0x03ff; /* 10 bits */
263 data -= 2;
264 pconf->pll_vco_div_ref = data;
265
266 data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */
267 data *= vco_measure_time;
268 do_div(data, 10);
269 pconf->pll_vco_count = data;
270
271 data = fref * kvco_measure_time;
272 do_div(data, 1000000);
273 data &= 0x03ff; /* 10 bits */
274 data -= 1;
275 pconf->pll_kvco_div_ref = data;
276
277 cnt = pll_14nm_kvco_slop(vco_clk_rate);
278 cnt *= 2;
279 cnt /= 100;
280 cnt *= kvco_measure_time;
281 pconf->pll_kvco_count = cnt;
282 }
283
pll_db_commit_ssc(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)284 static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
285 {
286 void __iomem *base = pll->phy->pll_base;
287 u8 data;
288
289 data = pconf->ssc_adj_period;
290 data &= 0x0ff;
291 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
292 data = (pconf->ssc_adj_period >> 8);
293 data &= 0x03;
294 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
295
296 data = pconf->ssc_period;
297 data &= 0x0ff;
298 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
299 data = (pconf->ssc_period >> 8);
300 data &= 0x0ff;
301 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
302
303 data = pconf->ssc_step_size;
304 data &= 0x0ff;
305 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
306 data = (pconf->ssc_step_size >> 8);
307 data &= 0x0ff;
308 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
309
310 data = (pconf->ssc_center & 0x01);
311 data <<= 1;
312 data |= 0x01; /* enable */
313 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
314
315 wmb(); /* make sure register committed */
316 }
317
pll_db_commit_common(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)318 static void pll_db_commit_common(struct dsi_pll_14nm *pll,
319 struct dsi_pll_config *pconf)
320 {
321 void __iomem *base = pll->phy->pll_base;
322 u8 data;
323
324 /* confgiure the non frequency dependent pll registers */
325 data = 0;
326 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
327
328 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
329
330 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
331 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
332 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
333
334 data = pconf->pll_vco_div_ref & 0xff;
335 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
336 data = (pconf->pll_vco_div_ref >> 8) & 0x3;
337 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
338
339 data = pconf->pll_kvco_div_ref & 0xff;
340 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
341 data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
342 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
343
344 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
345
346 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
347
348 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
349
350 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
351
352 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
353
354 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
355
356 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
357
358 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
359
360 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
361
362 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
363 }
364
pll_14nm_software_reset(struct dsi_pll_14nm * pll_14nm)365 static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
366 {
367 void __iomem *cmn_base = pll_14nm->phy->base;
368
369 /* de assert pll start and apply pll sw reset */
370
371 /* stop pll */
372 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
373
374 /* pll sw reset */
375 dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
376 wmb(); /* make sure register committed */
377
378 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
379 wmb(); /* make sure register committed */
380 }
381
pll_db_commit_14nm(struct dsi_pll_14nm * pll,struct dsi_pll_config * pconf)382 static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
383 struct dsi_pll_config *pconf)
384 {
385 void __iomem *base = pll->phy->pll_base;
386 void __iomem *cmn_base = pll->phy->base;
387 u8 data;
388
389 DBG("DSI%d PLL", pll->phy->id);
390
391 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
392
393 pll_db_commit_common(pll, pconf);
394
395 pll_14nm_software_reset(pll);
396
397 /* Use the /2 path in Mux */
398 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
399
400 data = 0xff; /* data, clk, pll normal operation */
401 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
402
403 /* configure the frequency dependent pll registers */
404 data = pconf->dec_start;
405 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
406
407 data = pconf->div_frac_start & 0xff;
408 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
409 data = (pconf->div_frac_start >> 8) & 0xff;
410 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
411 data = (pconf->div_frac_start >> 16) & 0xf;
412 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
413
414 data = pconf->plllock_cmp & 0xff;
415 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
416
417 data = (pconf->plllock_cmp >> 8) & 0xff;
418 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
419
420 data = (pconf->plllock_cmp >> 16) & 0x3;
421 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
422
423 data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
424 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
425
426 data = pconf->pll_vco_count & 0xff;
427 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
428 data = (pconf->pll_vco_count >> 8) & 0xff;
429 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
430
431 data = pconf->pll_kvco_count & 0xff;
432 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
433 data = (pconf->pll_kvco_count >> 8) & 0x3;
434 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
435
436 /*
437 * High nibble configures the post divider internal to the VCO. It's
438 * fixed to divide by 1 for now.
439 *
440 * 0: divided by 1
441 * 1: divided by 2
442 * 2: divided by 4
443 * 3: divided by 8
444 */
445 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
446
447 if (pconf->ssc_en)
448 pll_db_commit_ssc(pll, pconf);
449
450 wmb(); /* make sure register committed */
451 }
452
453 /*
454 * VCO clock Callbacks
455 */
dsi_pll_14nm_vco_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)456 static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
457 unsigned long parent_rate)
458 {
459 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
460 struct dsi_pll_config conf;
461
462 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
463 parent_rate);
464
465 dsi_pll_14nm_config_init(&conf);
466 conf.vco_current_rate = rate;
467
468 pll_14nm_dec_frac_calc(pll_14nm, &conf);
469
470 if (conf.ssc_en)
471 pll_14nm_ssc_calc(pll_14nm, &conf);
472
473 pll_14nm_calc_vco_count(pll_14nm, &conf);
474
475 /* commit the slave DSI PLL registers if we're master. Note that we
476 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
477 * of the master and slave are identical
478 */
479 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
480 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
481
482 pll_db_commit_14nm(pll_14nm_slave, &conf);
483 }
484
485 pll_db_commit_14nm(pll_14nm, &conf);
486
487 return 0;
488 }
489
dsi_pll_14nm_vco_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)490 static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
491 unsigned long parent_rate)
492 {
493 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
494 void __iomem *base = pll_14nm->phy->pll_base;
495 u64 vco_rate, multiplier = BIT(20);
496 u32 div_frac_start;
497 u32 dec_start;
498 u64 ref_clk = parent_rate;
499
500 dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
501 dec_start &= 0x0ff;
502
503 DBG("dec_start = %x", dec_start);
504
505 div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
506 & 0xf) << 16;
507 div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
508 & 0xff) << 8;
509 div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
510 & 0xff;
511
512 DBG("div_frac_start = %x", div_frac_start);
513
514 vco_rate = ref_clk * dec_start;
515
516 vco_rate += ((ref_clk * div_frac_start) / multiplier);
517
518 /*
519 * Recalculating the rate from dec_start and frac_start doesn't end up
520 * the rate we originally set. Convert the freq to KHz, round it up and
521 * convert it back to MHz.
522 */
523 vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
524
525 DBG("returning vco rate = %lu", (unsigned long)vco_rate);
526
527 return (unsigned long)vco_rate;
528 }
529
dsi_pll_14nm_vco_prepare(struct clk_hw * hw)530 static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
531 {
532 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
533 void __iomem *base = pll_14nm->phy->pll_base;
534 void __iomem *cmn_base = pll_14nm->phy->base;
535 bool locked;
536
537 DBG("");
538
539 if (unlikely(pll_14nm->phy->pll_on))
540 return 0;
541
542 if (dsi_pll_14nm_vco_recalc_rate(hw, VCO_REF_CLK_RATE) == 0)
543 dsi_pll_14nm_vco_set_rate(hw, pll_14nm->phy->cfg->min_pll_rate, VCO_REF_CLK_RATE);
544
545 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
546 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
547
548 locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
549 POLL_TIMEOUT_US);
550
551 if (unlikely(!locked)) {
552 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
553 return -EINVAL;
554 }
555
556 DBG("DSI PLL lock success");
557 pll_14nm->phy->pll_on = true;
558
559 return 0;
560 }
561
dsi_pll_14nm_vco_unprepare(struct clk_hw * hw)562 static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
563 {
564 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
565 void __iomem *cmn_base = pll_14nm->phy->base;
566
567 DBG("");
568
569 if (unlikely(!pll_14nm->phy->pll_on))
570 return;
571
572 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
573
574 pll_14nm->phy->pll_on = false;
575 }
576
dsi_pll_14nm_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)577 static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
578 unsigned long rate, unsigned long *parent_rate)
579 {
580 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
581
582 if (rate < pll_14nm->phy->cfg->min_pll_rate)
583 return pll_14nm->phy->cfg->min_pll_rate;
584 else if (rate > pll_14nm->phy->cfg->max_pll_rate)
585 return pll_14nm->phy->cfg->max_pll_rate;
586 else
587 return rate;
588 }
589
590 static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
591 .round_rate = dsi_pll_14nm_clk_round_rate,
592 .set_rate = dsi_pll_14nm_vco_set_rate,
593 .recalc_rate = dsi_pll_14nm_vco_recalc_rate,
594 .prepare = dsi_pll_14nm_vco_prepare,
595 .unprepare = dsi_pll_14nm_vco_unprepare,
596 };
597
598 /*
599 * N1 and N2 post-divider clock callbacks
600 */
601 #define div_mask(width) ((1 << (width)) - 1)
dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)602 static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
603 unsigned long parent_rate)
604 {
605 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
606 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
607 void __iomem *base = pll_14nm->phy->base;
608 u8 shift = postdiv->shift;
609 u8 width = postdiv->width;
610 u32 val;
611
612 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
613
614 val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
615 val &= div_mask(width);
616
617 return divider_recalc_rate(hw, parent_rate, val, NULL,
618 postdiv->flags, width);
619 }
620
dsi_pll_14nm_postdiv_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * prate)621 static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
622 unsigned long rate,
623 unsigned long *prate)
624 {
625 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
626 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
627
628 DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
629
630 return divider_round_rate(hw, rate, prate, NULL,
631 postdiv->width,
632 postdiv->flags);
633 }
634
dsi_pll_14nm_postdiv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)635 static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
636 unsigned long parent_rate)
637 {
638 struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
639 struct dsi_pll_14nm *pll_14nm = postdiv->pll;
640 void __iomem *base = pll_14nm->phy->base;
641 spinlock_t *lock = &pll_14nm->postdiv_lock;
642 u8 shift = postdiv->shift;
643 u8 width = postdiv->width;
644 unsigned int value;
645 unsigned long flags = 0;
646 u32 val;
647
648 DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
649 parent_rate);
650
651 value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
652 postdiv->flags);
653
654 spin_lock_irqsave(lock, flags);
655
656 val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
657 val &= ~(div_mask(width) << shift);
658
659 val |= value << shift;
660 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
661
662 /* If we're master in bonded DSI mode, then the slave PLL's post-dividers
663 * follow the master's post dividers
664 */
665 if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
666 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
667 void __iomem *slave_base = pll_14nm_slave->phy->base;
668
669 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
670 }
671
672 spin_unlock_irqrestore(lock, flags);
673
674 return 0;
675 }
676
677 static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
678 .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
679 .round_rate = dsi_pll_14nm_postdiv_round_rate,
680 .set_rate = dsi_pll_14nm_postdiv_set_rate,
681 };
682
683 /*
684 * PLL Callbacks
685 */
686
dsi_14nm_pll_save_state(struct msm_dsi_phy * phy)687 static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
688 {
689 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
690 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
691 void __iomem *cmn_base = pll_14nm->phy->base;
692 u32 data;
693
694 data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
695
696 cached_state->n1postdiv = data & 0xf;
697 cached_state->n2postdiv = (data >> 4) & 0xf;
698
699 DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
700 cached_state->n1postdiv, cached_state->n2postdiv);
701
702 cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
703 }
704
dsi_14nm_pll_restore_state(struct msm_dsi_phy * phy)705 static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
706 {
707 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
708 struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
709 void __iomem *cmn_base = pll_14nm->phy->base;
710 u32 data;
711 int ret;
712
713 ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
714 cached_state->vco_rate, 0);
715 if (ret) {
716 DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
717 "restore vco rate failed. ret=%d\n", ret);
718 return ret;
719 }
720
721 data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
722
723 DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
724 cached_state->n1postdiv, cached_state->n2postdiv);
725
726 dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
727
728 /* also restore post-dividers for slave DSI PLL */
729 if (phy->usecase == MSM_DSI_PHY_MASTER) {
730 struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
731 void __iomem *slave_base = pll_14nm_slave->phy->base;
732
733 dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
734 }
735
736 return 0;
737 }
738
dsi_14nm_set_usecase(struct msm_dsi_phy * phy)739 static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
740 {
741 struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
742 void __iomem *base = phy->pll_base;
743 u32 clkbuflr_en, bandgap = 0;
744
745 switch (phy->usecase) {
746 case MSM_DSI_PHY_STANDALONE:
747 clkbuflr_en = 0x1;
748 break;
749 case MSM_DSI_PHY_MASTER:
750 clkbuflr_en = 0x3;
751 pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
752 break;
753 case MSM_DSI_PHY_SLAVE:
754 clkbuflr_en = 0x0;
755 bandgap = 0x3;
756 break;
757 default:
758 return -EINVAL;
759 }
760
761 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
762 if (bandgap)
763 dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
764
765 return 0;
766 }
767
pll_14nm_postdiv_register(struct dsi_pll_14nm * pll_14nm,const char * name,const struct clk_hw * parent_hw,unsigned long flags,u8 shift)768 static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
769 const char *name,
770 const struct clk_hw *parent_hw,
771 unsigned long flags,
772 u8 shift)
773 {
774 struct dsi_pll_14nm_postdiv *pll_postdiv;
775 struct device *dev = &pll_14nm->phy->pdev->dev;
776 struct clk_init_data postdiv_init = {
777 .parent_hws = (const struct clk_hw *[]) { parent_hw },
778 .num_parents = 1,
779 .name = name,
780 .flags = flags,
781 .ops = &clk_ops_dsi_pll_14nm_postdiv,
782 };
783 int ret;
784
785 pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
786 if (!pll_postdiv)
787 return ERR_PTR(-ENOMEM);
788
789 pll_postdiv->pll = pll_14nm;
790 pll_postdiv->shift = shift;
791 /* both N1 and N2 postdividers are 4 bits wide */
792 pll_postdiv->width = 4;
793 /* range of each divider is from 1 to 15 */
794 pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
795 pll_postdiv->hw.init = &postdiv_init;
796
797 ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
798 if (ret)
799 return ERR_PTR(ret);
800
801 return &pll_postdiv->hw;
802 }
803
pll_14nm_register(struct dsi_pll_14nm * pll_14nm,struct clk_hw ** provided_clocks)804 static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
805 {
806 char clk_name[32];
807 struct clk_init_data vco_init = {
808 .parent_data = &(const struct clk_parent_data) {
809 .fw_name = "ref",
810 },
811 .num_parents = 1,
812 .name = clk_name,
813 .flags = CLK_IGNORE_UNUSED,
814 .ops = &clk_ops_dsi_pll_14nm_vco,
815 };
816 struct device *dev = &pll_14nm->phy->pdev->dev;
817 struct clk_hw *hw, *n1_postdiv, *n1_postdivby2;
818 int ret;
819
820 DBG("DSI%d", pll_14nm->phy->id);
821
822 snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_14nm->phy->id);
823 pll_14nm->clk_hw.init = &vco_init;
824
825 ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
826 if (ret)
827 return ret;
828
829 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
830
831 /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
832 n1_postdiv = pll_14nm_postdiv_register(pll_14nm, clk_name,
833 &pll_14nm->clk_hw, CLK_SET_RATE_PARENT, 0);
834 if (IS_ERR(n1_postdiv))
835 return PTR_ERR(n1_postdiv);
836
837 snprintf(clk_name, sizeof(clk_name), "dsi%dpllbyte", pll_14nm->phy->id);
838
839 /* DSI Byte clock = VCO_CLK / N1 / 8 */
840 hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
841 n1_postdiv, CLK_SET_RATE_PARENT, 1, 8);
842 if (IS_ERR(hw))
843 return PTR_ERR(hw);
844
845 provided_clocks[DSI_BYTE_PLL_CLK] = hw;
846
847 snprintf(clk_name, sizeof(clk_name), "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
848
849 /*
850 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
851 * on the way. Don't let it set parent.
852 */
853 n1_postdivby2 = devm_clk_hw_register_fixed_factor_parent_hw(dev,
854 clk_name, n1_postdiv, 0, 1, 2);
855 if (IS_ERR(n1_postdivby2))
856 return PTR_ERR(n1_postdivby2);
857
858 snprintf(clk_name, sizeof(clk_name), "dsi%dpll", pll_14nm->phy->id);
859
860 /* DSI pixel clock = VCO_CLK / N1 / 2 / N2
861 * This is the output of N2 post-divider, bits 4-7 in
862 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
863 */
864 hw = pll_14nm_postdiv_register(pll_14nm, clk_name, n1_postdivby2,
865 0, 4);
866 if (IS_ERR(hw))
867 return PTR_ERR(hw);
868
869 provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
870
871 return 0;
872 }
873
dsi_pll_14nm_init(struct msm_dsi_phy * phy)874 static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
875 {
876 struct platform_device *pdev = phy->pdev;
877 struct dsi_pll_14nm *pll_14nm;
878 int ret;
879
880 if (!pdev)
881 return -ENODEV;
882
883 pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
884 if (!pll_14nm)
885 return -ENOMEM;
886
887 DBG("PLL%d", phy->id);
888
889 pll_14nm_list[phy->id] = pll_14nm;
890
891 spin_lock_init(&pll_14nm->postdiv_lock);
892
893 pll_14nm->phy = phy;
894
895 ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
896 if (ret) {
897 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
898 return ret;
899 }
900
901 phy->vco_hw = &pll_14nm->clk_hw;
902
903 return 0;
904 }
905
dsi_14nm_dphy_set_timing(struct msm_dsi_phy * phy,struct msm_dsi_dphy_timing * timing,int lane_idx)906 static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
907 struct msm_dsi_dphy_timing *timing,
908 int lane_idx)
909 {
910 void __iomem *base = phy->lane_base;
911 bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
912 u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
913 u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
914 u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
915 u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
916 u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
917 u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
918 timing->hs_halfbyte_en;
919
920 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
921 DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
922 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
923 DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
924 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
925 DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
926 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
927 DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
928 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
929 DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
930 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
931 DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
932 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
933 halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
934 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
935 DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
936 DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
937 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
938 DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
939 dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
940 DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
941 }
942
dsi_14nm_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req)943 static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
944 struct msm_dsi_phy_clk_request *clk_req)
945 {
946 struct msm_dsi_dphy_timing *timing = &phy->timing;
947 u32 data;
948 int i;
949 int ret;
950 void __iomem *base = phy->base;
951 void __iomem *lane_base = phy->lane_base;
952 u32 glbl_test_ctrl;
953
954 if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
955 DRM_DEV_ERROR(&phy->pdev->dev,
956 "%s: D-PHY timing calculation failed\n",
957 __func__);
958 return -EINVAL;
959 }
960
961 data = 0x1c;
962 if (phy->usecase != MSM_DSI_PHY_STANDALONE)
963 data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
964 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
965
966 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
967
968 /* 4 data lanes + 1 clk lane configuration */
969 for (i = 0; i < 5; i++) {
970 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
971 0x1d);
972
973 dsi_phy_write(lane_base +
974 REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
975 dsi_phy_write(lane_base +
976 REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
977 (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
978
979 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
980 (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
981 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
982 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
983 0);
984 dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
985 0x88);
986
987 dsi_14nm_dphy_set_timing(phy, timing, i);
988 }
989
990 /* Make sure PLL is not start */
991 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
992
993 wmb(); /* make sure everything is written before reset and enable */
994
995 /* reset digital block */
996 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
997 wmb(); /* ensure reset is asserted */
998 udelay(100);
999 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
1000
1001 glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1002 if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1003 glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004 else
1005 glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1006 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1007 ret = dsi_14nm_set_usecase(phy);
1008 if (ret) {
1009 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1010 __func__, ret);
1011 return ret;
1012 }
1013
1014 /* Remove power down from PLL and all lanes */
1015 dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1016
1017 return 0;
1018 }
1019
dsi_14nm_phy_disable(struct msm_dsi_phy * phy)1020 static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1021 {
1022 dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1023 dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1024
1025 /* ensure that the phy is completely disabled */
1026 wmb();
1027 }
1028
1029 static const struct regulator_bulk_data dsi_phy_14nm_17mA_regulators[] = {
1030 { .supply = "vcca", .init_load_uA = 17000 },
1031 };
1032
1033 static const struct regulator_bulk_data dsi_phy_14nm_73p4mA_regulators[] = {
1034 { .supply = "vcca", .init_load_uA = 73400 },
1035 };
1036
1037 const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1038 .has_phy_lane = true,
1039 .regulator_data = dsi_phy_14nm_17mA_regulators,
1040 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1041 .ops = {
1042 .enable = dsi_14nm_phy_enable,
1043 .disable = dsi_14nm_phy_disable,
1044 .pll_init = dsi_pll_14nm_init,
1045 .save_pll_state = dsi_14nm_pll_save_state,
1046 .restore_pll_state = dsi_14nm_pll_restore_state,
1047 },
1048 .min_pll_rate = VCO_MIN_RATE,
1049 .max_pll_rate = VCO_MAX_RATE,
1050 .io_start = { 0x994400, 0x996400 },
1051 .num_dsi_phy = 2,
1052 };
1053
1054 const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1055 .has_phy_lane = true,
1056 .regulator_data = dsi_phy_14nm_73p4mA_regulators,
1057 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_73p4mA_regulators),
1058 .ops = {
1059 .enable = dsi_14nm_phy_enable,
1060 .disable = dsi_14nm_phy_disable,
1061 .pll_init = dsi_pll_14nm_init,
1062 .save_pll_state = dsi_14nm_pll_save_state,
1063 .restore_pll_state = dsi_14nm_pll_restore_state,
1064 },
1065 .min_pll_rate = VCO_MIN_RATE,
1066 .max_pll_rate = VCO_MAX_RATE,
1067 .io_start = { 0xc994400, 0xc996400 },
1068 .num_dsi_phy = 2,
1069 };
1070
1071 const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
1072 .has_phy_lane = true,
1073 .regulator_data = dsi_phy_14nm_17mA_regulators,
1074 .num_regulators = ARRAY_SIZE(dsi_phy_14nm_17mA_regulators),
1075 .ops = {
1076 .enable = dsi_14nm_phy_enable,
1077 .disable = dsi_14nm_phy_disable,
1078 .pll_init = dsi_pll_14nm_init,
1079 .save_pll_state = dsi_14nm_pll_save_state,
1080 .restore_pll_state = dsi_14nm_pll_restore_state,
1081 },
1082 .min_pll_rate = VCO_MIN_RATE,
1083 .max_pll_rate = VCO_MAX_RATE,
1084 .io_start = { 0x1a94400, 0x1a96400 },
1085 .num_dsi_phy = 2,
1086 };
1087
1088 const struct msm_dsi_phy_cfg dsi_phy_14nm_2290_cfgs = {
1089 .has_phy_lane = true,
1090 .ops = {
1091 .enable = dsi_14nm_phy_enable,
1092 .disable = dsi_14nm_phy_disable,
1093 .pll_init = dsi_pll_14nm_init,
1094 .save_pll_state = dsi_14nm_pll_save_state,
1095 .restore_pll_state = dsi_14nm_pll_restore_state,
1096 },
1097 .min_pll_rate = VCO_MIN_RATE,
1098 .max_pll_rate = VCO_MAX_RATE,
1099 .io_start = { 0x5e94400 },
1100 .num_dsi_phy = 1,
1101 };
1102