xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 816ffd28002651a469e86d1118a225862e392ecd)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Low level x86 E820 memory map handling functions.
4   *
5   * The firmware and bootloader passes us the "E820 table", which is the primary
6   * physical memory layout description available about x86 systems.
7   *
8   * The kernel takes the E820 memory layout and optionally modifies it with
9   * quirks and other tweaks, and feeds that into the generic Linux memory
10   * allocation code routines via a platform independent interface (memblock, etc.).
11   */
12  #include <linux/crash_dump.h>
13  #include <linux/memblock.h>
14  #include <linux/suspend.h>
15  #include <linux/acpi.h>
16  #include <linux/firmware-map.h>
17  #include <linux/sort.h>
18  #include <linux/memory_hotplug.h>
19  
20  #include <asm/e820/api.h>
21  #include <asm/setup.h>
22  
23  /*
24   * We organize the E820 table into three main data structures:
25   *
26   * - 'e820_table_firmware': the original firmware version passed to us by the
27   *   bootloader - not modified by the kernel. It is composed of two parts:
28   *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
29   *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
30   *
31   *       - inform the user about the firmware's notion of memory layout
32   *         via /sys/firmware/memmap
33   *
34   *       - the hibernation code uses it to generate a kernel-independent CRC32
35   *         checksum of the physical memory layout of a system.
36   *
37   * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
38   *   passed to us by the bootloader - the major difference between
39   *   e820_table_firmware[] and this one is that, the latter marks the setup_data
40   *   list created by the EFI boot stub as reserved, so that kexec can reuse the
41   *   setup_data information in the second kernel. Besides, e820_table_kexec[]
42   *   might also be modified by the kexec itself to fake a mptable.
43   *   We use this to:
44   *
45   *       - kexec, which is a bootloader in disguise, uses the original E820
46   *         layout to pass to the kexec-ed kernel. This way the original kernel
47   *         can have a restricted E820 map while the kexec()-ed kexec-kernel
48   *         can have access to full memory - etc.
49   *
50   * - 'e820_table': this is the main E820 table that is massaged by the
51   *   low level x86 platform code, or modified by boot parameters, before
52   *   passed on to higher level MM layers.
53   *
54   * Once the E820 map has been converted to the standard Linux memory layout
55   * information its role stops - modifying it has no effect and does not get
56   * re-propagated. So its main role is a temporary bootstrap storage of firmware
57   * specific memory layout data during early bootup.
58   */
59  static struct e820_table e820_table_init		__initdata;
60  static struct e820_table e820_table_kexec_init		__initdata;
61  static struct e820_table e820_table_firmware_init	__initdata;
62  
63  struct e820_table *e820_table __refdata			= &e820_table_init;
64  struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
65  struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
66  
67  /* For PCI or other memory-mapped resources */
68  unsigned long pci_mem_start = 0xaeedbabe;
69  #ifdef CONFIG_PCI
70  EXPORT_SYMBOL(pci_mem_start);
71  #endif
72  
73  /*
74   * This function checks if any part of the range <start,end> is mapped
75   * with type.
76   */
_e820__mapped_any(struct e820_table * table,u64 start,u64 end,enum e820_type type)77  static bool _e820__mapped_any(struct e820_table *table,
78  			      u64 start, u64 end, enum e820_type type)
79  {
80  	int i;
81  
82  	for (i = 0; i < table->nr_entries; i++) {
83  		struct e820_entry *entry = &table->entries[i];
84  
85  		if (type && entry->type != type)
86  			continue;
87  		if (entry->addr >= end || entry->addr + entry->size <= start)
88  			continue;
89  		return true;
90  	}
91  	return false;
92  }
93  
e820__mapped_raw_any(u64 start,u64 end,enum e820_type type)94  bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
95  {
96  	return _e820__mapped_any(e820_table_firmware, start, end, type);
97  }
98  EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
99  
e820__mapped_any(u64 start,u64 end,enum e820_type type)100  bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
101  {
102  	return _e820__mapped_any(e820_table, start, end, type);
103  }
104  EXPORT_SYMBOL_GPL(e820__mapped_any);
105  
106  /*
107   * This function checks if the entire <start,end> range is mapped with 'type'.
108   *
109   * Note: this function only works correctly once the E820 table is sorted and
110   * not-overlapping (at least for the range specified), which is the case normally.
111   */
__e820__mapped_all(u64 start,u64 end,enum e820_type type)112  static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
113  					     enum e820_type type)
114  {
115  	int i;
116  
117  	for (i = 0; i < e820_table->nr_entries; i++) {
118  		struct e820_entry *entry = &e820_table->entries[i];
119  
120  		if (type && entry->type != type)
121  			continue;
122  
123  		/* Is the region (part) in overlap with the current region? */
124  		if (entry->addr >= end || entry->addr + entry->size <= start)
125  			continue;
126  
127  		/*
128  		 * If the region is at the beginning of <start,end> we move
129  		 * 'start' to the end of the region since it's ok until there
130  		 */
131  		if (entry->addr <= start)
132  			start = entry->addr + entry->size;
133  
134  		/*
135  		 * If 'start' is now at or beyond 'end', we're done, full
136  		 * coverage of the desired range exists:
137  		 */
138  		if (start >= end)
139  			return entry;
140  	}
141  
142  	return NULL;
143  }
144  
145  /*
146   * This function checks if the entire range <start,end> is mapped with type.
147   */
e820__mapped_all(u64 start,u64 end,enum e820_type type)148  bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
149  {
150  	return __e820__mapped_all(start, end, type);
151  }
152  
153  /*
154   * This function returns the type associated with the range <start,end>.
155   */
e820__get_entry_type(u64 start,u64 end)156  int e820__get_entry_type(u64 start, u64 end)
157  {
158  	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
159  
160  	return entry ? entry->type : -EINVAL;
161  }
162  
163  /*
164   * Add a memory region to the kernel E820 map.
165   */
__e820__range_add(struct e820_table * table,u64 start,u64 size,enum e820_type type)166  static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
167  {
168  	int x = table->nr_entries;
169  
170  	if (x >= ARRAY_SIZE(table->entries)) {
171  		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
172  		       start, start + size - 1);
173  		return;
174  	}
175  
176  	table->entries[x].addr = start;
177  	table->entries[x].size = size;
178  	table->entries[x].type = type;
179  	table->nr_entries++;
180  }
181  
e820__range_add(u64 start,u64 size,enum e820_type type)182  void __init e820__range_add(u64 start, u64 size, enum e820_type type)
183  {
184  	__e820__range_add(e820_table, start, size, type);
185  }
186  
e820_print_type(enum e820_type type)187  static void __init e820_print_type(enum e820_type type)
188  {
189  	switch (type) {
190  	case E820_TYPE_RAM:		/* Fall through: */
191  	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
192  	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
193  	case E820_TYPE_SOFT_RESERVED:	pr_cont("soft reserved");		break;
194  	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
195  	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
196  	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
197  	case E820_TYPE_PMEM:		/* Fall through: */
198  	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
199  	default:			pr_cont("type %u", type);		break;
200  	}
201  }
202  
e820__print_table(char * who)203  void __init e820__print_table(char *who)
204  {
205  	int i;
206  
207  	for (i = 0; i < e820_table->nr_entries; i++) {
208  		pr_info("%s: [mem %#018Lx-%#018Lx] ",
209  			who,
210  			e820_table->entries[i].addr,
211  			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
212  
213  		e820_print_type(e820_table->entries[i].type);
214  		pr_cont("\n");
215  	}
216  }
217  
218  /*
219   * Sanitize an E820 map.
220   *
221   * Some E820 layouts include overlapping entries. The following
222   * replaces the original E820 map with a new one, removing overlaps,
223   * and resolving conflicting memory types in favor of highest
224   * numbered type.
225   *
226   * The input parameter 'entries' points to an array of 'struct
227   * e820_entry' which on entry has elements in the range [0, *nr_entries)
228   * valid, and which has space for up to max_nr_entries entries.
229   * On return, the resulting sanitized E820 map entries will be in
230   * overwritten in the same location, starting at 'entries'.
231   *
232   * The integer pointed to by nr_entries must be valid on entry (the
233   * current number of valid entries located at 'entries'). If the
234   * sanitizing succeeds the *nr_entries will be updated with the new
235   * number of valid entries (something no more than max_nr_entries).
236   *
237   * The return value from e820__update_table() is zero if it
238   * successfully 'sanitized' the map entries passed in, and is -1
239   * if it did nothing, which can happen if either of (1) it was
240   * only passed one map entry, or (2) any of the input map entries
241   * were invalid (start + size < start, meaning that the size was
242   * so big the described memory range wrapped around through zero.)
243   *
244   *	Visually we're performing the following
245   *	(1,2,3,4 = memory types)...
246   *
247   *	Sample memory map (w/overlaps):
248   *	   ____22__________________
249   *	   ______________________4_
250   *	   ____1111________________
251   *	   _44_____________________
252   *	   11111111________________
253   *	   ____________________33__
254   *	   ___________44___________
255   *	   __________33333_________
256   *	   ______________22________
257   *	   ___________________2222_
258   *	   _________111111111______
259   *	   _____________________11_
260   *	   _________________4______
261   *
262   *	Sanitized equivalent (no overlap):
263   *	   1_______________________
264   *	   _44_____________________
265   *	   ___1____________________
266   *	   ____22__________________
267   *	   ______11________________
268   *	   _________1______________
269   *	   __________3_____________
270   *	   ___________44___________
271   *	   _____________33_________
272   *	   _______________2________
273   *	   ________________1_______
274   *	   _________________4______
275   *	   ___________________2____
276   *	   ____________________33__
277   *	   ______________________4_
278   */
279  struct change_member {
280  	/* Pointer to the original entry: */
281  	struct e820_entry	*entry;
282  	/* Address for this change point: */
283  	unsigned long long	addr;
284  };
285  
286  static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
287  static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
288  static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
289  static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
290  
cpcompare(const void * a,const void * b)291  static int __init cpcompare(const void *a, const void *b)
292  {
293  	struct change_member * const *app = a, * const *bpp = b;
294  	const struct change_member *ap = *app, *bp = *bpp;
295  
296  	/*
297  	 * Inputs are pointers to two elements of change_point[].  If their
298  	 * addresses are not equal, their difference dominates.  If the addresses
299  	 * are equal, then consider one that represents the end of its region
300  	 * to be greater than one that does not.
301  	 */
302  	if (ap->addr != bp->addr)
303  		return ap->addr > bp->addr ? 1 : -1;
304  
305  	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
306  }
307  
e820_nomerge(enum e820_type type)308  static bool e820_nomerge(enum e820_type type)
309  {
310  	/*
311  	 * These types may indicate distinct platform ranges aligned to
312  	 * numa node, protection domain, performance domain, or other
313  	 * boundaries. Do not merge them.
314  	 */
315  	if (type == E820_TYPE_PRAM)
316  		return true;
317  	if (type == E820_TYPE_SOFT_RESERVED)
318  		return true;
319  	return false;
320  }
321  
e820__update_table(struct e820_table * table)322  int __init e820__update_table(struct e820_table *table)
323  {
324  	struct e820_entry *entries = table->entries;
325  	u32 max_nr_entries = ARRAY_SIZE(table->entries);
326  	enum e820_type current_type, last_type;
327  	unsigned long long last_addr;
328  	u32 new_nr_entries, overlap_entries;
329  	u32 i, chg_idx, chg_nr;
330  
331  	/* If there's only one memory region, don't bother: */
332  	if (table->nr_entries < 2)
333  		return -1;
334  
335  	BUG_ON(table->nr_entries > max_nr_entries);
336  
337  	/* Bail out if we find any unreasonable addresses in the map: */
338  	for (i = 0; i < table->nr_entries; i++) {
339  		if (entries[i].addr + entries[i].size < entries[i].addr)
340  			return -1;
341  	}
342  
343  	/* Create pointers for initial change-point information (for sorting): */
344  	for (i = 0; i < 2 * table->nr_entries; i++)
345  		change_point[i] = &change_point_list[i];
346  
347  	/*
348  	 * Record all known change-points (starting and ending addresses),
349  	 * omitting empty memory regions:
350  	 */
351  	chg_idx = 0;
352  	for (i = 0; i < table->nr_entries; i++)	{
353  		if (entries[i].size != 0) {
354  			change_point[chg_idx]->addr	= entries[i].addr;
355  			change_point[chg_idx++]->entry	= &entries[i];
356  			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
357  			change_point[chg_idx++]->entry	= &entries[i];
358  		}
359  	}
360  	chg_nr = chg_idx;
361  
362  	/* Sort change-point list by memory addresses (low -> high): */
363  	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
364  
365  	/* Create a new memory map, removing overlaps: */
366  	overlap_entries = 0;	 /* Number of entries in the overlap table */
367  	new_nr_entries = 0;	 /* Index for creating new map entries */
368  	last_type = 0;		 /* Start with undefined memory type */
369  	last_addr = 0;		 /* Start with 0 as last starting address */
370  
371  	/* Loop through change-points, determining effect on the new map: */
372  	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
373  		/* Keep track of all overlapping entries */
374  		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
375  			/* Add map entry to overlap list (> 1 entry implies an overlap) */
376  			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
377  		} else {
378  			/* Remove entry from list (order independent, so swap with last): */
379  			for (i = 0; i < overlap_entries; i++) {
380  				if (overlap_list[i] == change_point[chg_idx]->entry)
381  					overlap_list[i] = overlap_list[overlap_entries-1];
382  			}
383  			overlap_entries--;
384  		}
385  		/*
386  		 * If there are overlapping entries, decide which
387  		 * "type" to use (larger value takes precedence --
388  		 * 1=usable, 2,3,4,4+=unusable)
389  		 */
390  		current_type = 0;
391  		for (i = 0; i < overlap_entries; i++) {
392  			if (overlap_list[i]->type > current_type)
393  				current_type = overlap_list[i]->type;
394  		}
395  
396  		/* Continue building up new map based on this information: */
397  		if (current_type != last_type || e820_nomerge(current_type)) {
398  			if (last_type) {
399  				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
400  				/* Move forward only if the new size was non-zero: */
401  				if (new_entries[new_nr_entries].size != 0)
402  					/* No more space left for new entries? */
403  					if (++new_nr_entries >= max_nr_entries)
404  						break;
405  			}
406  			if (current_type) {
407  				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
408  				new_entries[new_nr_entries].type = current_type;
409  				last_addr = change_point[chg_idx]->addr;
410  			}
411  			last_type = current_type;
412  		}
413  	}
414  
415  	/* Copy the new entries into the original location: */
416  	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
417  	table->nr_entries = new_nr_entries;
418  
419  	return 0;
420  }
421  
__append_e820_table(struct boot_e820_entry * entries,u32 nr_entries)422  static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
423  {
424  	struct boot_e820_entry *entry = entries;
425  
426  	while (nr_entries) {
427  		u64 start = entry->addr;
428  		u64 size = entry->size;
429  		u64 end = start + size - 1;
430  		u32 type = entry->type;
431  
432  		/* Ignore the entry on 64-bit overflow: */
433  		if (start > end && likely(size))
434  			return -1;
435  
436  		e820__range_add(start, size, type);
437  
438  		entry++;
439  		nr_entries--;
440  	}
441  	return 0;
442  }
443  
444  /*
445   * Copy the BIOS E820 map into a safe place.
446   *
447   * Sanity-check it while we're at it..
448   *
449   * If we're lucky and live on a modern system, the setup code
450   * will have given us a memory map that we can use to properly
451   * set up memory.  If we aren't, we'll fake a memory map.
452   */
append_e820_table(struct boot_e820_entry * entries,u32 nr_entries)453  static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
454  {
455  	/* Only one memory region (or negative)? Ignore it */
456  	if (nr_entries < 2)
457  		return -1;
458  
459  	return __append_e820_table(entries, nr_entries);
460  }
461  
462  static u64 __init
__e820__range_update(struct e820_table * table,u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)463  __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
464  {
465  	u64 end;
466  	unsigned int i;
467  	u64 real_updated_size = 0;
468  
469  	BUG_ON(old_type == new_type);
470  
471  	if (size > (ULLONG_MAX - start))
472  		size = ULLONG_MAX - start;
473  
474  	end = start + size;
475  	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
476  	e820_print_type(old_type);
477  	pr_cont(" ==> ");
478  	e820_print_type(new_type);
479  	pr_cont("\n");
480  
481  	for (i = 0; i < table->nr_entries; i++) {
482  		struct e820_entry *entry = &table->entries[i];
483  		u64 final_start, final_end;
484  		u64 entry_end;
485  
486  		if (entry->type != old_type)
487  			continue;
488  
489  		entry_end = entry->addr + entry->size;
490  
491  		/* Completely covered by new range? */
492  		if (entry->addr >= start && entry_end <= end) {
493  			entry->type = new_type;
494  			real_updated_size += entry->size;
495  			continue;
496  		}
497  
498  		/* New range is completely covered? */
499  		if (entry->addr < start && entry_end > end) {
500  			__e820__range_add(table, start, size, new_type);
501  			__e820__range_add(table, end, entry_end - end, entry->type);
502  			entry->size = start - entry->addr;
503  			real_updated_size += size;
504  			continue;
505  		}
506  
507  		/* Partially covered: */
508  		final_start = max(start, entry->addr);
509  		final_end = min(end, entry_end);
510  		if (final_start >= final_end)
511  			continue;
512  
513  		__e820__range_add(table, final_start, final_end - final_start, new_type);
514  
515  		real_updated_size += final_end - final_start;
516  
517  		/*
518  		 * Left range could be head or tail, so need to update
519  		 * its size first:
520  		 */
521  		entry->size -= final_end - final_start;
522  		if (entry->addr < final_start)
523  			continue;
524  
525  		entry->addr = final_end;
526  	}
527  	return real_updated_size;
528  }
529  
e820__range_update(u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)530  u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
531  {
532  	return __e820__range_update(e820_table, start, size, old_type, new_type);
533  }
534  
e820__range_update_kexec(u64 start,u64 size,enum e820_type old_type,enum e820_type new_type)535  static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
536  {
537  	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
538  }
539  
540  /* Remove a range of memory from the E820 table: */
e820__range_remove(u64 start,u64 size,enum e820_type old_type,bool check_type)541  u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
542  {
543  	int i;
544  	u64 end;
545  	u64 real_removed_size = 0;
546  
547  	if (size > (ULLONG_MAX - start))
548  		size = ULLONG_MAX - start;
549  
550  	end = start + size;
551  	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
552  	if (check_type)
553  		e820_print_type(old_type);
554  	pr_cont("\n");
555  
556  	for (i = 0; i < e820_table->nr_entries; i++) {
557  		struct e820_entry *entry = &e820_table->entries[i];
558  		u64 final_start, final_end;
559  		u64 entry_end;
560  
561  		if (check_type && entry->type != old_type)
562  			continue;
563  
564  		entry_end = entry->addr + entry->size;
565  
566  		/* Completely covered? */
567  		if (entry->addr >= start && entry_end <= end) {
568  			real_removed_size += entry->size;
569  			memset(entry, 0, sizeof(*entry));
570  			continue;
571  		}
572  
573  		/* Is the new range completely covered? */
574  		if (entry->addr < start && entry_end > end) {
575  			e820__range_add(end, entry_end - end, entry->type);
576  			entry->size = start - entry->addr;
577  			real_removed_size += size;
578  			continue;
579  		}
580  
581  		/* Partially covered: */
582  		final_start = max(start, entry->addr);
583  		final_end = min(end, entry_end);
584  		if (final_start >= final_end)
585  			continue;
586  
587  		real_removed_size += final_end - final_start;
588  
589  		/*
590  		 * Left range could be head or tail, so need to update
591  		 * the size first:
592  		 */
593  		entry->size -= final_end - final_start;
594  		if (entry->addr < final_start)
595  			continue;
596  
597  		entry->addr = final_end;
598  	}
599  	return real_removed_size;
600  }
601  
e820__update_table_print(void)602  void __init e820__update_table_print(void)
603  {
604  	if (e820__update_table(e820_table))
605  		return;
606  
607  	pr_info("modified physical RAM map:\n");
608  	e820__print_table("modified");
609  }
610  
e820__update_table_kexec(void)611  static void __init e820__update_table_kexec(void)
612  {
613  	e820__update_table(e820_table_kexec);
614  }
615  
616  #define MAX_GAP_END 0x100000000ull
617  
618  /*
619   * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
620   */
e820_search_gap(unsigned long * gapstart,unsigned long * gapsize)621  static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
622  {
623  	unsigned long long last = MAX_GAP_END;
624  	int i = e820_table->nr_entries;
625  	int found = 0;
626  
627  	while (--i >= 0) {
628  		unsigned long long start = e820_table->entries[i].addr;
629  		unsigned long long end = start + e820_table->entries[i].size;
630  
631  		/*
632  		 * Since "last" is at most 4GB, we know we'll
633  		 * fit in 32 bits if this condition is true:
634  		 */
635  		if (last > end) {
636  			unsigned long gap = last - end;
637  
638  			if (gap >= *gapsize) {
639  				*gapsize = gap;
640  				*gapstart = end;
641  				found = 1;
642  			}
643  		}
644  		if (start < last)
645  			last = start;
646  	}
647  	return found;
648  }
649  
650  /*
651   * Search for the biggest gap in the low 32 bits of the E820
652   * memory space. We pass this space to the PCI subsystem, so
653   * that it can assign MMIO resources for hotplug or
654   * unconfigured devices in.
655   *
656   * Hopefully the BIOS let enough space left.
657   */
e820__setup_pci_gap(void)658  __init void e820__setup_pci_gap(void)
659  {
660  	unsigned long gapstart, gapsize;
661  	int found;
662  
663  	gapsize = 0x400000;
664  	found  = e820_search_gap(&gapstart, &gapsize);
665  
666  	if (!found) {
667  #ifdef CONFIG_X86_64
668  		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
669  		pr_err("Cannot find an available gap in the 32-bit address range\n");
670  		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
671  #else
672  		gapstart = 0x10000000;
673  #endif
674  	}
675  
676  	/*
677  	 * e820__reserve_resources_late() protects stolen RAM already:
678  	 */
679  	pci_mem_start = gapstart;
680  
681  	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
682  		gapstart, gapstart + gapsize - 1);
683  }
684  
685  /*
686   * Called late during init, in free_initmem().
687   *
688   * Initial e820_table and e820_table_kexec are largish __initdata arrays.
689   *
690   * Copy them to a (usually much smaller) dynamically allocated area that is
691   * sized precisely after the number of e820 entries.
692   *
693   * This is done after we've performed all the fixes and tweaks to the tables.
694   * All functions which modify them are __init functions, which won't exist
695   * after free_initmem().
696   */
e820__reallocate_tables(void)697  __init void e820__reallocate_tables(void)
698  {
699  	struct e820_table *n;
700  	int size;
701  
702  	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
703  	n = kmemdup(e820_table, size, GFP_KERNEL);
704  	BUG_ON(!n);
705  	e820_table = n;
706  
707  	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
708  	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
709  	BUG_ON(!n);
710  	e820_table_kexec = n;
711  
712  	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
713  	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
714  	BUG_ON(!n);
715  	e820_table_firmware = n;
716  }
717  
718  /*
719   * Because of the small fixed size of struct boot_params, only the first
720   * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
721   * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
722   * struct setup_data, which is parsed here.
723   */
e820__memory_setup_extended(u64 phys_addr,u32 data_len)724  void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
725  {
726  	int entries;
727  	struct boot_e820_entry *extmap;
728  	struct setup_data *sdata;
729  
730  	sdata = early_memremap(phys_addr, data_len);
731  	entries = sdata->len / sizeof(*extmap);
732  	extmap = (struct boot_e820_entry *)(sdata->data);
733  
734  	__append_e820_table(extmap, entries);
735  	e820__update_table(e820_table);
736  
737  	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
738  	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
739  
740  	early_memunmap(sdata, data_len);
741  	pr_info("extended physical RAM map:\n");
742  	e820__print_table("extended");
743  }
744  
745  /*
746   * Find the ranges of physical addresses that do not correspond to
747   * E820 RAM areas and register the corresponding pages as 'nosave' for
748   * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
749   *
750   * This function requires the E820 map to be sorted and without any
751   * overlapping entries.
752   */
e820__register_nosave_regions(unsigned long limit_pfn)753  void __init e820__register_nosave_regions(unsigned long limit_pfn)
754  {
755  	int i;
756  	unsigned long pfn = 0;
757  
758  	for (i = 0; i < e820_table->nr_entries; i++) {
759  		struct e820_entry *entry = &e820_table->entries[i];
760  
761  		if (pfn < PFN_UP(entry->addr))
762  			register_nosave_region(pfn, PFN_UP(entry->addr));
763  
764  		pfn = PFN_DOWN(entry->addr + entry->size);
765  
766  		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
767  			register_nosave_region(PFN_UP(entry->addr), pfn);
768  
769  		if (pfn >= limit_pfn)
770  			break;
771  	}
772  }
773  
774  #ifdef CONFIG_ACPI
775  /*
776   * Register ACPI NVS memory regions, so that we can save/restore them during
777   * hibernation and the subsequent resume:
778   */
e820__register_nvs_regions(void)779  static int __init e820__register_nvs_regions(void)
780  {
781  	int i;
782  
783  	for (i = 0; i < e820_table->nr_entries; i++) {
784  		struct e820_entry *entry = &e820_table->entries[i];
785  
786  		if (entry->type == E820_TYPE_NVS)
787  			acpi_nvs_register(entry->addr, entry->size);
788  	}
789  
790  	return 0;
791  }
792  core_initcall(e820__register_nvs_regions);
793  #endif
794  
795  /*
796   * Allocate the requested number of bytes with the requested alignment
797   * and return (the physical address) to the caller. Also register this
798   * range in the 'kexec' E820 table as a reserved range.
799   *
800   * This allows kexec to fake a new mptable, as if it came from the real
801   * system.
802   */
e820__memblock_alloc_reserved(u64 size,u64 align)803  u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
804  {
805  	u64 addr;
806  
807  	addr = memblock_phys_alloc(size, align);
808  	if (addr) {
809  		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
810  		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
811  		e820__update_table_kexec();
812  	}
813  
814  	return addr;
815  }
816  
817  #ifdef CONFIG_X86_32
818  # ifdef CONFIG_X86_PAE
819  #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
820  # else
821  #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
822  # endif
823  #else /* CONFIG_X86_32 */
824  # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
825  #endif
826  
827  /*
828   * Find the highest page frame number we have available
829   */
e820_end_pfn(unsigned long limit_pfn,enum e820_type type)830  static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
831  {
832  	int i;
833  	unsigned long last_pfn = 0;
834  	unsigned long max_arch_pfn = MAX_ARCH_PFN;
835  
836  	for (i = 0; i < e820_table->nr_entries; i++) {
837  		struct e820_entry *entry = &e820_table->entries[i];
838  		unsigned long start_pfn;
839  		unsigned long end_pfn;
840  
841  		if (entry->type != type)
842  			continue;
843  
844  		start_pfn = entry->addr >> PAGE_SHIFT;
845  		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
846  
847  		if (start_pfn >= limit_pfn)
848  			continue;
849  		if (end_pfn > limit_pfn) {
850  			last_pfn = limit_pfn;
851  			break;
852  		}
853  		if (end_pfn > last_pfn)
854  			last_pfn = end_pfn;
855  	}
856  
857  	if (last_pfn > max_arch_pfn)
858  		last_pfn = max_arch_pfn;
859  
860  	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
861  		last_pfn, max_arch_pfn);
862  	return last_pfn;
863  }
864  
e820__end_of_ram_pfn(void)865  unsigned long __init e820__end_of_ram_pfn(void)
866  {
867  	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
868  }
869  
e820__end_of_low_ram_pfn(void)870  unsigned long __init e820__end_of_low_ram_pfn(void)
871  {
872  	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
873  }
874  
early_panic(char * msg)875  static void __init early_panic(char *msg)
876  {
877  	early_printk(msg);
878  	panic(msg);
879  }
880  
881  static int userdef __initdata;
882  
883  /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
parse_memopt(char * p)884  static int __init parse_memopt(char *p)
885  {
886  	u64 mem_size;
887  
888  	if (!p)
889  		return -EINVAL;
890  
891  	if (!strcmp(p, "nopentium")) {
892  #ifdef CONFIG_X86_32
893  		setup_clear_cpu_cap(X86_FEATURE_PSE);
894  		return 0;
895  #else
896  		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
897  		return -EINVAL;
898  #endif
899  	}
900  
901  	userdef = 1;
902  	mem_size = memparse(p, &p);
903  
904  	/* Don't remove all memory when getting "mem={invalid}" parameter: */
905  	if (mem_size == 0)
906  		return -EINVAL;
907  
908  	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
909  
910  #ifdef CONFIG_MEMORY_HOTPLUG
911  	max_mem_size = mem_size;
912  #endif
913  
914  	return 0;
915  }
916  early_param("mem", parse_memopt);
917  
parse_memmap_one(char * p)918  static int __init parse_memmap_one(char *p)
919  {
920  	char *oldp;
921  	u64 start_at, mem_size;
922  
923  	if (!p)
924  		return -EINVAL;
925  
926  	if (!strncmp(p, "exactmap", 8)) {
927  		e820_table->nr_entries = 0;
928  		userdef = 1;
929  		return 0;
930  	}
931  
932  	oldp = p;
933  	mem_size = memparse(p, &p);
934  	if (p == oldp)
935  		return -EINVAL;
936  
937  	userdef = 1;
938  	if (*p == '@') {
939  		start_at = memparse(p+1, &p);
940  		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
941  	} else if (*p == '#') {
942  		start_at = memparse(p+1, &p);
943  		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
944  	} else if (*p == '$') {
945  		start_at = memparse(p+1, &p);
946  		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
947  	} else if (*p == '!') {
948  		start_at = memparse(p+1, &p);
949  		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
950  	} else if (*p == '%') {
951  		enum e820_type from = 0, to = 0;
952  
953  		start_at = memparse(p + 1, &p);
954  		if (*p == '-')
955  			from = simple_strtoull(p + 1, &p, 0);
956  		if (*p == '+')
957  			to = simple_strtoull(p + 1, &p, 0);
958  		if (*p != '\0')
959  			return -EINVAL;
960  		if (from && to)
961  			e820__range_update(start_at, mem_size, from, to);
962  		else if (to)
963  			e820__range_add(start_at, mem_size, to);
964  		else if (from)
965  			e820__range_remove(start_at, mem_size, from, 1);
966  		else
967  			e820__range_remove(start_at, mem_size, 0, 0);
968  	} else {
969  		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
970  	}
971  
972  	return *p == '\0' ? 0 : -EINVAL;
973  }
974  
parse_memmap_opt(char * str)975  static int __init parse_memmap_opt(char *str)
976  {
977  	while (str) {
978  		char *k = strchr(str, ',');
979  
980  		if (k)
981  			*k++ = 0;
982  
983  		parse_memmap_one(str);
984  		str = k;
985  	}
986  
987  	return 0;
988  }
989  early_param("memmap", parse_memmap_opt);
990  
991  /*
992   * Reserve all entries from the bootloader's extensible data nodes list,
993   * because if present we are going to use it later on to fetch e820
994   * entries from it:
995   */
e820__reserve_setup_data(void)996  void __init e820__reserve_setup_data(void)
997  {
998  	struct setup_indirect *indirect;
999  	struct setup_data *data;
1000  	u64 pa_data, pa_next;
1001  	u32 len;
1002  
1003  	pa_data = boot_params.hdr.setup_data;
1004  	if (!pa_data)
1005  		return;
1006  
1007  	while (pa_data) {
1008  		data = early_memremap(pa_data, sizeof(*data));
1009  		if (!data) {
1010  			pr_warn("e820: failed to memremap setup_data entry\n");
1011  			return;
1012  		}
1013  
1014  		len = sizeof(*data);
1015  		pa_next = data->next;
1016  
1017  		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1018  
1019  		/*
1020  		 * SETUP_EFI, SETUP_IMA and SETUP_RNG_SEED are supplied by
1021  		 * kexec and do not need to be reserved.
1022  		 */
1023  		if (data->type != SETUP_EFI &&
1024  		    data->type != SETUP_IMA &&
1025  		    data->type != SETUP_RNG_SEED)
1026  			e820__range_update_kexec(pa_data,
1027  						 sizeof(*data) + data->len,
1028  						 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1029  
1030  		if (data->type == SETUP_INDIRECT) {
1031  			len += data->len;
1032  			early_memunmap(data, sizeof(*data));
1033  			data = early_memremap(pa_data, len);
1034  			if (!data) {
1035  				pr_warn("e820: failed to memremap indirect setup_data\n");
1036  				return;
1037  			}
1038  
1039  			indirect = (struct setup_indirect *)data->data;
1040  
1041  			if (indirect->type != SETUP_INDIRECT) {
1042  				e820__range_update(indirect->addr, indirect->len,
1043  						   E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1044  				e820__range_update_kexec(indirect->addr, indirect->len,
1045  							 E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1046  			}
1047  		}
1048  
1049  		pa_data = pa_next;
1050  		early_memunmap(data, len);
1051  	}
1052  
1053  	e820__update_table(e820_table);
1054  	e820__update_table(e820_table_kexec);
1055  
1056  	pr_info("extended physical RAM map:\n");
1057  	e820__print_table("reserve setup_data");
1058  }
1059  
1060  /*
1061   * Called after parse_early_param(), after early parameters (such as mem=)
1062   * have been processed, in which case we already have an E820 table filled in
1063   * via the parameter callback function(s), but it's not sorted and printed yet:
1064   */
e820__finish_early_params(void)1065  void __init e820__finish_early_params(void)
1066  {
1067  	if (userdef) {
1068  		if (e820__update_table(e820_table) < 0)
1069  			early_panic("Invalid user supplied memory map");
1070  
1071  		pr_info("user-defined physical RAM map:\n");
1072  		e820__print_table("user");
1073  	}
1074  }
1075  
e820_type_to_string(struct e820_entry * entry)1076  static const char *__init e820_type_to_string(struct e820_entry *entry)
1077  {
1078  	switch (entry->type) {
1079  	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1080  	case E820_TYPE_RAM:		return "System RAM";
1081  	case E820_TYPE_ACPI:		return "ACPI Tables";
1082  	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1083  	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1084  	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1085  	case E820_TYPE_PMEM:		return "Persistent Memory";
1086  	case E820_TYPE_RESERVED:	return "Reserved";
1087  	case E820_TYPE_SOFT_RESERVED:	return "Soft Reserved";
1088  	default:			return "Unknown E820 type";
1089  	}
1090  }
1091  
e820_type_to_iomem_type(struct e820_entry * entry)1092  static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1093  {
1094  	switch (entry->type) {
1095  	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1096  	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1097  	case E820_TYPE_ACPI:		/* Fall-through: */
1098  	case E820_TYPE_NVS:		/* Fall-through: */
1099  	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1100  	case E820_TYPE_PRAM:		/* Fall-through: */
1101  	case E820_TYPE_PMEM:		/* Fall-through: */
1102  	case E820_TYPE_RESERVED:	/* Fall-through: */
1103  	case E820_TYPE_SOFT_RESERVED:	/* Fall-through: */
1104  	default:			return IORESOURCE_MEM;
1105  	}
1106  }
1107  
e820_type_to_iores_desc(struct e820_entry * entry)1108  static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1109  {
1110  	switch (entry->type) {
1111  	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1112  	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1113  	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1114  	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1115  	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1116  	case E820_TYPE_SOFT_RESERVED:	return IORES_DESC_SOFT_RESERVED;
1117  	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1118  	case E820_TYPE_RAM:		/* Fall-through: */
1119  	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1120  	default:			return IORES_DESC_NONE;
1121  	}
1122  }
1123  
do_mark_busy(enum e820_type type,struct resource * res)1124  static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1125  {
1126  	/* this is the legacy bios/dos rom-shadow + mmio region */
1127  	if (res->start < (1ULL<<20))
1128  		return true;
1129  
1130  	/*
1131  	 * Treat persistent memory and other special memory ranges like
1132  	 * device memory, i.e. reserve it for exclusive use of a driver
1133  	 */
1134  	switch (type) {
1135  	case E820_TYPE_RESERVED:
1136  	case E820_TYPE_SOFT_RESERVED:
1137  	case E820_TYPE_PRAM:
1138  	case E820_TYPE_PMEM:
1139  		return false;
1140  	case E820_TYPE_RESERVED_KERN:
1141  	case E820_TYPE_RAM:
1142  	case E820_TYPE_ACPI:
1143  	case E820_TYPE_NVS:
1144  	case E820_TYPE_UNUSABLE:
1145  	default:
1146  		return true;
1147  	}
1148  }
1149  
1150  /*
1151   * Mark E820 reserved areas as busy for the resource manager:
1152   */
1153  
1154  static struct resource __initdata *e820_res;
1155  
e820__reserve_resources(void)1156  void __init e820__reserve_resources(void)
1157  {
1158  	int i;
1159  	struct resource *res;
1160  	u64 end;
1161  
1162  	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1163  			     SMP_CACHE_BYTES);
1164  	if (!res)
1165  		panic("%s: Failed to allocate %zu bytes\n", __func__,
1166  		      sizeof(*res) * e820_table->nr_entries);
1167  	e820_res = res;
1168  
1169  	for (i = 0; i < e820_table->nr_entries; i++) {
1170  		struct e820_entry *entry = e820_table->entries + i;
1171  
1172  		end = entry->addr + entry->size - 1;
1173  		if (end != (resource_size_t)end) {
1174  			res++;
1175  			continue;
1176  		}
1177  		res->start = entry->addr;
1178  		res->end   = end;
1179  		res->name  = e820_type_to_string(entry);
1180  		res->flags = e820_type_to_iomem_type(entry);
1181  		res->desc  = e820_type_to_iores_desc(entry);
1182  
1183  		/*
1184  		 * Don't register the region that could be conflicted with
1185  		 * PCI device BAR resources and insert them later in
1186  		 * pcibios_resource_survey():
1187  		 */
1188  		if (do_mark_busy(entry->type, res)) {
1189  			res->flags |= IORESOURCE_BUSY;
1190  			insert_resource(&iomem_resource, res);
1191  		}
1192  		res++;
1193  	}
1194  
1195  	/* Expose the bootloader-provided memory layout to the sysfs. */
1196  	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1197  		struct e820_entry *entry = e820_table_firmware->entries + i;
1198  
1199  		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1200  	}
1201  }
1202  
1203  /*
1204   * How much should we pad the end of RAM, depending on where it is?
1205   */
ram_alignment(resource_size_t pos)1206  static unsigned long __init ram_alignment(resource_size_t pos)
1207  {
1208  	unsigned long mb = pos >> 20;
1209  
1210  	/* To 64kB in the first megabyte */
1211  	if (!mb)
1212  		return 64*1024;
1213  
1214  	/* To 1MB in the first 16MB */
1215  	if (mb < 16)
1216  		return 1024*1024;
1217  
1218  	/* To 64MB for anything above that */
1219  	return 64*1024*1024;
1220  }
1221  
1222  #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1223  
e820__reserve_resources_late(void)1224  void __init e820__reserve_resources_late(void)
1225  {
1226  	int i;
1227  	struct resource *res;
1228  
1229  	res = e820_res;
1230  	for (i = 0; i < e820_table->nr_entries; i++) {
1231  		if (!res->parent && res->end)
1232  			insert_resource_expand_to_fit(&iomem_resource, res);
1233  		res++;
1234  	}
1235  
1236  	/*
1237  	 * Try to bump up RAM regions to reasonable boundaries, to
1238  	 * avoid stolen RAM:
1239  	 */
1240  	for (i = 0; i < e820_table->nr_entries; i++) {
1241  		struct e820_entry *entry = &e820_table->entries[i];
1242  		u64 start, end;
1243  
1244  		if (entry->type != E820_TYPE_RAM)
1245  			continue;
1246  
1247  		start = entry->addr + entry->size;
1248  		end = round_up(start, ram_alignment(start)) - 1;
1249  		if (end > MAX_RESOURCE_SIZE)
1250  			end = MAX_RESOURCE_SIZE;
1251  		if (start >= end)
1252  			continue;
1253  
1254  		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1255  		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1256  	}
1257  }
1258  
1259  /*
1260   * Pass the firmware (bootloader) E820 map to the kernel and process it:
1261   */
e820__memory_setup_default(void)1262  char *__init e820__memory_setup_default(void)
1263  {
1264  	char *who = "BIOS-e820";
1265  
1266  	/*
1267  	 * Try to copy the BIOS-supplied E820-map.
1268  	 *
1269  	 * Otherwise fake a memory map; one section from 0k->640k,
1270  	 * the next section from 1mb->appropriate_mem_k
1271  	 */
1272  	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1273  		u64 mem_size;
1274  
1275  		/* Compare results from other methods and take the one that gives more RAM: */
1276  		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1277  			mem_size = boot_params.screen_info.ext_mem_k;
1278  			who = "BIOS-88";
1279  		} else {
1280  			mem_size = boot_params.alt_mem_k;
1281  			who = "BIOS-e801";
1282  		}
1283  
1284  		e820_table->nr_entries = 0;
1285  		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1286  		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1287  	}
1288  
1289  	/* We just appended a lot of ranges, sanitize the table: */
1290  	e820__update_table(e820_table);
1291  
1292  	return who;
1293  }
1294  
1295  /*
1296   * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1297   * E820 map - with an optional platform quirk available for virtual platforms
1298   * to override this method of boot environment processing:
1299   */
e820__memory_setup(void)1300  void __init e820__memory_setup(void)
1301  {
1302  	char *who;
1303  
1304  	/* This is a firmware interface ABI - make sure we don't break it: */
1305  	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1306  
1307  	who = x86_init.resources.memory_setup();
1308  
1309  	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1310  	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1311  
1312  	pr_info("BIOS-provided physical RAM map:\n");
1313  	e820__print_table(who);
1314  }
1315  
e820__memblock_setup(void)1316  void __init e820__memblock_setup(void)
1317  {
1318  	int i;
1319  	u64 end;
1320  
1321  	/*
1322  	 * The bootstrap memblock region count maximum is 128 entries
1323  	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1324  	 * than that - so allow memblock resizing.
1325  	 *
1326  	 * This is safe, because this call happens pretty late during x86 setup,
1327  	 * so we know about reserved memory regions already. (This is important
1328  	 * so that memblock resizing does no stomp over reserved areas.)
1329  	 */
1330  	memblock_allow_resize();
1331  
1332  	for (i = 0; i < e820_table->nr_entries; i++) {
1333  		struct e820_entry *entry = &e820_table->entries[i];
1334  
1335  		end = entry->addr + entry->size;
1336  		if (end != (resource_size_t)end)
1337  			continue;
1338  
1339  		if (entry->type == E820_TYPE_SOFT_RESERVED)
1340  			memblock_reserve(entry->addr, entry->size);
1341  
1342  		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1343  			continue;
1344  
1345  		memblock_add(entry->addr, entry->size);
1346  	}
1347  
1348  	/* Throw away partial pages: */
1349  	memblock_trim_memory(PAGE_SIZE);
1350  
1351  	memblock_dump_all();
1352  }
1353