1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47 *
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
59 *
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * copied to R1.
64 *
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
70 *
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
73 *
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
83 *
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
87 *
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
91 *
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
94 *
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
97 *
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
102 *
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
107 *
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
112 *
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115 * {
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
118 * void *value;
119 *
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
123 * }
124 *
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133 *
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
141 *
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
146 *
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
149 *
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
152 * the BPF program:
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154 *
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
161 *
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
167 */
168
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
174 */
175 struct bpf_verifier_state st;
176 int insn_idx;
177 int prev_insn_idx;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
180 u32 log_pos;
181 };
182
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
185
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
188
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
216 {
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 bool poisoned = bpf_map_key_poisoned(aux);
241
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245
bpf_helper_call(const struct bpf_insn * insn)246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == 0;
250 }
251
bpf_pseudo_call(const struct bpf_insn * insn)252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
256 }
257
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
266 bool raw_mode;
267 bool pkt_access;
268 u8 release_regno;
269 int regno;
270 int access_size;
271 int mem_size;
272 u64 msize_max_value;
273 int ref_obj_id;
274 int dynptr_id;
275 int map_uid;
276 int func_id;
277 struct btf *btf;
278 u32 btf_id;
279 struct btf *ret_btf;
280 u32 ret_btf_id;
281 u32 subprogno;
282 struct btf_field *kptr_field;
283 };
284
285 struct bpf_kfunc_call_arg_meta {
286 /* In parameters */
287 struct btf *btf;
288 u32 func_id;
289 u32 kfunc_flags;
290 const struct btf_type *func_proto;
291 const char *func_name;
292 /* Out parameters */
293 u32 ref_obj_id;
294 u8 release_regno;
295 bool r0_rdonly;
296 u32 ret_btf_id;
297 u64 r0_size;
298 u32 subprogno;
299 struct {
300 u64 value;
301 bool found;
302 } arg_constant;
303
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
306 * verification logic
307 * bpf_obj_drop
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
312 * fallible
313 */
314 struct btf *arg_btf;
315 u32 arg_btf_id;
316 bool arg_owning_ref;
317
318 struct {
319 struct btf_field *field;
320 } arg_list_head;
321 struct {
322 struct btf_field *field;
323 } arg_rbtree_root;
324 struct {
325 enum bpf_dynptr_type type;
326 u32 id;
327 u32 ref_obj_id;
328 } initialized_dynptr;
329 struct {
330 u8 spi;
331 u8 frameno;
332 } iter;
333 u64 mem_size;
334 };
335
336 struct btf *btf_vmlinux;
337
338 static DEFINE_MUTEX(bpf_verifier_lock);
339
340 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
345 u32 i, nr_linfo;
346
347 prog = env->prog;
348 nr_linfo = prog->aux->nr_linfo;
349
350 if (!nr_linfo || insn_off >= prog->len)
351 return NULL;
352
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
356 break;
357
358 return &linfo[i - 1];
359 }
360
verbose(void * private_data,const char * fmt,...)361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 struct bpf_verifier_env *env = private_data;
364 va_list args;
365
366 if (!bpf_verifier_log_needed(&env->log))
367 return;
368
369 va_start(args, fmt);
370 bpf_verifier_vlog(&env->log, fmt, args);
371 va_end(args);
372 }
373
ltrim(const char * s)374 static const char *ltrim(const char *s)
375 {
376 while (isspace(*s))
377 s++;
378
379 return s;
380 }
381
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 u32 insn_off,
384 const char *prefix_fmt, ...)
385 {
386 const struct bpf_line_info *linfo;
387
388 if (!bpf_verifier_log_needed(&env->log))
389 return;
390
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
393 return;
394
395 if (prefix_fmt) {
396 va_list args;
397
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 va_end(args);
401 }
402
403 verbose(env, "%s\n",
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
405 linfo->line_off)));
406
407 env->prev_linfo = linfo;
408 }
409
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
414 {
415 char tn_buf[48];
416
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
421 } else {
422 verbose(env, "has unknown scalar value");
423 }
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
426 }
427
type_is_pkt_pointer(enum bpf_reg_type type)428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
433 }
434
type_is_sk_pointer(enum bpf_reg_type type)435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
441 }
442
type_may_be_null(u32 type)443 static bool type_may_be_null(u32 type)
444 {
445 return type & PTR_MAYBE_NULL;
446 }
447
reg_not_null(const struct bpf_reg_state * reg)448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 enum bpf_reg_type type;
451
452 type = reg->type;
453 if (type_may_be_null(type))
454 return false;
455
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 type == PTR_TO_MEM;
464 }
465
type_is_ptr_alloc_obj(u32 type)466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470
type_is_non_owning_ref(u32 type)471 static bool type_is_non_owning_ref(u32 type)
472 {
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475
reg_btf_record(const struct bpf_reg_state * reg)476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
480
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 if (meta)
486 rec = meta->record;
487 }
488 return rec;
489 }
490
subprog_is_global(const struct bpf_verifier_env * env,int subprog)491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502
type_is_rdonly_mem(u32 type)503 static bool type_is_rdonly_mem(u32 type)
504 {
505 return type & MEM_RDONLY;
506 }
507
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
510 {
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
518 return true;
519
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
523 return true;
524
525 return false;
526 }
527
is_ptr_cast_function(enum bpf_func_id func_id)528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
is_dynptr_ref_function(enum bpf_func_id func_id)540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 return func_id == BPF_FUNC_dynptr_data;
543 }
544
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546
is_sync_callback_calling_function(enum bpf_func_id func_id)547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_find_vma ||
551 func_id == BPF_FUNC_loop ||
552 func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554
is_async_callback_calling_function(enum bpf_func_id func_id)555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 return func_id == BPF_FUNC_timer_set_callback;
558 }
559
is_callback_calling_function(enum bpf_func_id func_id)560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 return is_sync_callback_calling_function(func_id) ||
563 is_async_callback_calling_function(func_id);
564 }
565
is_sync_callback_calling_insn(struct bpf_insn * insn)566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571
is_storage_get_function(enum bpf_func_id func_id)572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 return func_id == BPF_FUNC_sk_storage_get ||
575 func_id == BPF_FUNC_inode_storage_get ||
576 func_id == BPF_FUNC_task_storage_get ||
577 func_id == BPF_FUNC_cgrp_storage_get;
578 }
579
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 const struct bpf_map *map)
582 {
583 int ref_obj_uses = 0;
584
585 if (is_ptr_cast_function(func_id))
586 ref_obj_uses++;
587 if (is_acquire_function(func_id, map))
588 ref_obj_uses++;
589 if (is_dynptr_ref_function(func_id))
590 ref_obj_uses++;
591
592 return ref_obj_uses > 1;
593 }
594
is_cmpxchg_insn(const struct bpf_insn * insn)595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 return BPF_CLASS(insn->code) == BPF_STX &&
598 BPF_MODE(insn->code) == BPF_ATOMIC &&
599 insn->imm == BPF_CMPXCHG;
600 }
601
602 /* string representation of 'enum bpf_reg_type'
603 *
604 * Note that reg_type_str() can not appear more than once in a single verbose()
605 * statement.
606 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 enum bpf_reg_type type)
609 {
610 char postfix[16] = {0}, prefix[64] = {0};
611 static const char * const str[] = {
612 [NOT_INIT] = "?",
613 [SCALAR_VALUE] = "scalar",
614 [PTR_TO_CTX] = "ctx",
615 [CONST_PTR_TO_MAP] = "map_ptr",
616 [PTR_TO_MAP_VALUE] = "map_value",
617 [PTR_TO_STACK] = "fp",
618 [PTR_TO_PACKET] = "pkt",
619 [PTR_TO_PACKET_META] = "pkt_meta",
620 [PTR_TO_PACKET_END] = "pkt_end",
621 [PTR_TO_FLOW_KEYS] = "flow_keys",
622 [PTR_TO_SOCKET] = "sock",
623 [PTR_TO_SOCK_COMMON] = "sock_common",
624 [PTR_TO_TCP_SOCK] = "tcp_sock",
625 [PTR_TO_TP_BUFFER] = "tp_buffer",
626 [PTR_TO_XDP_SOCK] = "xdp_sock",
627 [PTR_TO_BTF_ID] = "ptr_",
628 [PTR_TO_MEM] = "mem",
629 [PTR_TO_BUF] = "buf",
630 [PTR_TO_FUNC] = "func",
631 [PTR_TO_MAP_KEY] = "map_key",
632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
633 };
634
635 if (type & PTR_MAYBE_NULL) {
636 if (base_type(type) == PTR_TO_BTF_ID)
637 strncpy(postfix, "or_null_", 16);
638 else
639 strncpy(postfix, "_or_null", 16);
640 }
641
642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 type & MEM_RDONLY ? "rdonly_" : "",
644 type & MEM_RINGBUF ? "ringbuf_" : "",
645 type & MEM_USER ? "user_" : "",
646 type & MEM_PERCPU ? "percpu_" : "",
647 type & MEM_RCU ? "rcu_" : "",
648 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 type & PTR_TRUSTED ? "trusted_" : ""
650 );
651
652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 prefix, str[base_type(type)], postfix);
654 return env->tmp_str_buf;
655 }
656
657 static char slot_type_char[] = {
658 [STACK_INVALID] = '?',
659 [STACK_SPILL] = 'r',
660 [STACK_MISC] = 'm',
661 [STACK_ZERO] = '0',
662 [STACK_DYNPTR] = 'd',
663 [STACK_ITER] = 'i',
664 };
665
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)666 static void print_liveness(struct bpf_verifier_env *env,
667 enum bpf_reg_liveness live)
668 {
669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 verbose(env, "_");
671 if (live & REG_LIVE_READ)
672 verbose(env, "r");
673 if (live & REG_LIVE_WRITTEN)
674 verbose(env, "w");
675 if (live & REG_LIVE_DONE)
676 verbose(env, "D");
677 }
678
__get_spi(s32 off)679 static int __get_spi(s32 off)
680 {
681 return (-off - 1) / BPF_REG_SIZE;
682 }
683
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 const struct bpf_reg_state *reg)
686 {
687 struct bpf_verifier_state *cur = env->cur_state;
688
689 return cur->frame[reg->frameno];
690 }
691
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695
696 /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 * within [0, allocated_stack).
698 *
699 * Please note that the spi grows downwards. For example, a dynptr
700 * takes the size of two stack slots; the first slot will be at
701 * spi and the second slot will be at spi - 1.
702 */
703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 const char *obj_kind, int nr_slots)
708 {
709 int off, spi;
710
711 if (!tnum_is_const(reg->var_off)) {
712 verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 return -EINVAL;
714 }
715
716 off = reg->off + reg->var_off.value;
717 if (off % BPF_REG_SIZE) {
718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 return -EINVAL;
720 }
721
722 spi = __get_spi(off);
723 if (spi + 1 < nr_slots) {
724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 return -EINVAL;
726 }
727
728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 return -ERANGE;
730 return spi;
731 }
732
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742
btf_type_name(const struct btf * btf,u32 id)743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747
dynptr_type_str(enum bpf_dynptr_type type)748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 switch (type) {
751 case BPF_DYNPTR_TYPE_LOCAL:
752 return "local";
753 case BPF_DYNPTR_TYPE_RINGBUF:
754 return "ringbuf";
755 case BPF_DYNPTR_TYPE_SKB:
756 return "skb";
757 case BPF_DYNPTR_TYPE_XDP:
758 return "xdp";
759 case BPF_DYNPTR_TYPE_INVALID:
760 return "<invalid>";
761 default:
762 WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 return "<unknown>";
764 }
765 }
766
iter_type_str(const struct btf * btf,u32 btf_id)767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 if (!btf || btf_id == 0)
770 return "<invalid>";
771
772 /* we already validated that type is valid and has conforming name */
773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775
iter_state_str(enum bpf_iter_state state)776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 switch (state) {
779 case BPF_ITER_STATE_ACTIVE:
780 return "active";
781 case BPF_ITER_STATE_DRAINED:
782 return "drained";
783 case BPF_ITER_STATE_INVALID:
784 return "<invalid>";
785 default:
786 WARN_ONCE(1, "unknown iter state %d\n", state);
787 return "<unknown>";
788 }
789 }
790
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 env->scratched_regs |= 1U << regno;
794 }
795
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 env->scratched_stack_slots |= 1ULL << spi;
799 }
800
reg_scratched(const struct bpf_verifier_env * env,u32 regno)801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 return (env->scratched_regs >> regno) & 1;
804 }
805
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 return (env->scratched_stack_slots >> regno) & 1;
809 }
810
verifier_state_scratched(const struct bpf_verifier_env * env)811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 return env->scratched_regs || env->scratched_stack_slots;
814 }
815
mark_verifier_state_clean(struct bpf_verifier_env * env)816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 env->scratched_regs = 0U;
819 env->scratched_stack_slots = 0ULL;
820 }
821
822 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 env->scratched_regs = ~0U;
826 env->scratched_stack_slots = ~0ULL;
827 }
828
arg_to_dynptr_type(enum bpf_arg_type arg_type)829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 case DYNPTR_TYPE_LOCAL:
833 return BPF_DYNPTR_TYPE_LOCAL;
834 case DYNPTR_TYPE_RINGBUF:
835 return BPF_DYNPTR_TYPE_RINGBUF;
836 case DYNPTR_TYPE_SKB:
837 return BPF_DYNPTR_TYPE_SKB;
838 case DYNPTR_TYPE_XDP:
839 return BPF_DYNPTR_TYPE_XDP;
840 default:
841 return BPF_DYNPTR_TYPE_INVALID;
842 }
843 }
844
get_dynptr_type_flag(enum bpf_dynptr_type type)845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 switch (type) {
848 case BPF_DYNPTR_TYPE_LOCAL:
849 return DYNPTR_TYPE_LOCAL;
850 case BPF_DYNPTR_TYPE_RINGBUF:
851 return DYNPTR_TYPE_RINGBUF;
852 case BPF_DYNPTR_TYPE_SKB:
853 return DYNPTR_TYPE_SKB;
854 case BPF_DYNPTR_TYPE_XDP:
855 return DYNPTR_TYPE_XDP;
856 default:
857 return 0;
858 }
859 }
860
dynptr_type_refcounted(enum bpf_dynptr_type type)861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 enum bpf_dynptr_type type,
868 bool first_slot, int dynptr_id);
869
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 struct bpf_reg_state *reg);
872
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 struct bpf_reg_state *sreg1,
875 struct bpf_reg_state *sreg2,
876 enum bpf_dynptr_type type)
877 {
878 int id = ++env->id_gen;
879
880 __mark_dynptr_reg(sreg1, type, true, id);
881 __mark_dynptr_reg(sreg2, type, false, id);
882 }
883
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 struct bpf_reg_state *reg,
886 enum bpf_dynptr_type type)
887 {
888 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 struct bpf_func_state *state, int spi);
893
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 struct bpf_func_state *state = func(env, reg);
898 enum bpf_dynptr_type type;
899 int spi, i, err;
900
901 spi = dynptr_get_spi(env, reg);
902 if (spi < 0)
903 return spi;
904
905 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 * to ensure that for the following example:
908 * [d1][d1][d2][d2]
909 * spi 3 2 1 0
910 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 * case they do belong to same dynptr, second call won't see slot_type
912 * as STACK_DYNPTR and will simply skip destruction.
913 */
914 err = destroy_if_dynptr_stack_slot(env, state, spi);
915 if (err)
916 return err;
917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 if (err)
919 return err;
920
921 for (i = 0; i < BPF_REG_SIZE; i++) {
922 state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 }
925
926 type = arg_to_dynptr_type(arg_type);
927 if (type == BPF_DYNPTR_TYPE_INVALID)
928 return -EINVAL;
929
930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 &state->stack[spi - 1].spilled_ptr, type);
932
933 if (dynptr_type_refcounted(type)) {
934 /* The id is used to track proper releasing */
935 int id;
936
937 if (clone_ref_obj_id)
938 id = clone_ref_obj_id;
939 else
940 id = acquire_reference_state(env, insn_idx);
941
942 if (id < 0)
943 return id;
944
945 state->stack[spi].spilled_ptr.ref_obj_id = id;
946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 }
948
949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951
952 return 0;
953 }
954
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 int i;
958
959 for (i = 0; i < BPF_REG_SIZE; i++) {
960 state->stack[spi].slot_type[i] = STACK_INVALID;
961 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 }
963
964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966
967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 *
969 * While we don't allow reading STACK_INVALID, it is still possible to
970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 * helpers or insns can do partial read of that part without failing,
972 * but check_stack_range_initialized, check_stack_read_var_off, and
973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 * the slot conservatively. Hence we need to prevent those liveness
975 * marking walks.
976 *
977 * This was not a problem before because STACK_INVALID is only set by
978 * default (where the default reg state has its reg->parent as NULL), or
979 * in clean_live_states after REG_LIVE_DONE (at which point
980 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 * verifier state exploration (like we did above). Hence, for our case
982 * parentage chain will still be live (i.e. reg->parent may be
983 * non-NULL), while earlier reg->parent was NULL, so we need
984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 * done later on reads or by mark_dynptr_read as well to unnecessary
986 * mark registers in verifier state.
987 */
988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 struct bpf_func_state *state = func(env, reg);
995 int spi, ref_obj_id, i;
996
997 spi = dynptr_get_spi(env, reg);
998 if (spi < 0)
999 return spi;
1000
1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 invalidate_dynptr(env, state, spi);
1003 return 0;
1004 }
1005
1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007
1008 /* If the dynptr has a ref_obj_id, then we need to invalidate
1009 * two things:
1010 *
1011 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 * 2) Any slices derived from this dynptr.
1013 */
1014
1015 /* Invalidate any slices associated with this dynptr */
1016 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017
1018 /* Invalidate any dynptr clones */
1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 continue;
1022
1023 /* it should always be the case that if the ref obj id
1024 * matches then the stack slot also belongs to a
1025 * dynptr
1026 */
1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 return -EFAULT;
1030 }
1031 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 invalidate_dynptr(env, state, i);
1033 }
1034
1035 return 0;
1036 }
1037
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 struct bpf_reg_state *reg);
1040
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 if (!env->allow_ptr_leaks)
1044 __mark_reg_not_init(env, reg);
1045 else
1046 __mark_reg_unknown(env, reg);
1047 }
1048
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 struct bpf_func_state *state, int spi)
1051 {
1052 struct bpf_func_state *fstate;
1053 struct bpf_reg_state *dreg;
1054 int i, dynptr_id;
1055
1056 /* We always ensure that STACK_DYNPTR is never set partially,
1057 * hence just checking for slot_type[0] is enough. This is
1058 * different for STACK_SPILL, where it may be only set for
1059 * 1 byte, so code has to use is_spilled_reg.
1060 */
1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 return 0;
1063
1064 /* Reposition spi to first slot */
1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 spi = spi + 1;
1067
1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 verbose(env, "cannot overwrite referenced dynptr\n");
1070 return -EINVAL;
1071 }
1072
1073 mark_stack_slot_scratched(env, spi);
1074 mark_stack_slot_scratched(env, spi - 1);
1075
1076 /* Writing partially to one dynptr stack slot destroys both. */
1077 for (i = 0; i < BPF_REG_SIZE; i++) {
1078 state->stack[spi].slot_type[i] = STACK_INVALID;
1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 }
1081
1082 dynptr_id = state->stack[spi].spilled_ptr.id;
1083 /* Invalidate any slices associated with this dynptr */
1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 continue;
1088 if (dreg->dynptr_id == dynptr_id)
1089 mark_reg_invalid(env, dreg);
1090 }));
1091
1092 /* Do not release reference state, we are destroying dynptr on stack,
1093 * not using some helper to release it. Just reset register.
1094 */
1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097
1098 /* Same reason as unmark_stack_slots_dynptr above */
1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101
1102 return 0;
1103 }
1104
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 int spi;
1108
1109 if (reg->type == CONST_PTR_TO_DYNPTR)
1110 return false;
1111
1112 spi = dynptr_get_spi(env, reg);
1113
1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 * error because this just means the stack state hasn't been updated yet.
1116 * We will do check_mem_access to check and update stack bounds later.
1117 */
1118 if (spi < 0 && spi != -ERANGE)
1119 return false;
1120
1121 /* We don't need to check if the stack slots are marked by previous
1122 * dynptr initializations because we allow overwriting existing unreferenced
1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 * touching are completely destructed before we reinitialize them for a new
1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 * instead of delaying it until the end where the user will get "Unreleased
1128 * reference" error.
1129 */
1130 return true;
1131 }
1132
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 struct bpf_func_state *state = func(env, reg);
1136 int i, spi;
1137
1138 /* This already represents first slot of initialized bpf_dynptr.
1139 *
1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 * check_func_arg_reg_off's logic, so we don't need to check its
1142 * offset and alignment.
1143 */
1144 if (reg->type == CONST_PTR_TO_DYNPTR)
1145 return true;
1146
1147 spi = dynptr_get_spi(env, reg);
1148 if (spi < 0)
1149 return false;
1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 return false;
1152
1153 for (i = 0; i < BPF_REG_SIZE; i++) {
1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 return false;
1157 }
1158
1159 return true;
1160 }
1161
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 enum bpf_arg_type arg_type)
1164 {
1165 struct bpf_func_state *state = func(env, reg);
1166 enum bpf_dynptr_type dynptr_type;
1167 int spi;
1168
1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 if (arg_type == ARG_PTR_TO_DYNPTR)
1171 return true;
1172
1173 dynptr_type = arg_to_dynptr_type(arg_type);
1174 if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 return reg->dynptr.type == dynptr_type;
1176 } else {
1177 spi = dynptr_get_spi(env, reg);
1178 if (spi < 0)
1179 return false;
1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 }
1182 }
1183
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 struct bpf_reg_state *reg, int insn_idx,
1188 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 struct bpf_func_state *state = func(env, reg);
1191 int spi, i, j, id;
1192
1193 spi = iter_get_spi(env, reg, nr_slots);
1194 if (spi < 0)
1195 return spi;
1196
1197 id = acquire_reference_state(env, insn_idx);
1198 if (id < 0)
1199 return id;
1200
1201 for (i = 0; i < nr_slots; i++) {
1202 struct bpf_stack_state *slot = &state->stack[spi - i];
1203 struct bpf_reg_state *st = &slot->spilled_ptr;
1204
1205 __mark_reg_known_zero(st);
1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 st->live |= REG_LIVE_WRITTEN;
1208 st->ref_obj_id = i == 0 ? id : 0;
1209 st->iter.btf = btf;
1210 st->iter.btf_id = btf_id;
1211 st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 st->iter.depth = 0;
1213
1214 for (j = 0; j < BPF_REG_SIZE; j++)
1215 slot->slot_type[j] = STACK_ITER;
1216
1217 mark_stack_slot_scratched(env, spi - i);
1218 }
1219
1220 return 0;
1221 }
1222
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 struct bpf_func_state *state = func(env, reg);
1227 int spi, i, j;
1228
1229 spi = iter_get_spi(env, reg, nr_slots);
1230 if (spi < 0)
1231 return spi;
1232
1233 for (i = 0; i < nr_slots; i++) {
1234 struct bpf_stack_state *slot = &state->stack[spi - i];
1235 struct bpf_reg_state *st = &slot->spilled_ptr;
1236
1237 if (i == 0)
1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239
1240 __mark_reg_not_init(env, st);
1241
1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 st->live |= REG_LIVE_WRITTEN;
1244
1245 for (j = 0; j < BPF_REG_SIZE; j++)
1246 slot->slot_type[j] = STACK_INVALID;
1247
1248 mark_stack_slot_scratched(env, spi - i);
1249 }
1250
1251 return 0;
1252 }
1253
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 struct bpf_func_state *state = func(env, reg);
1258 int spi, i, j;
1259
1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 * will do check_mem_access to check and update stack bounds later, so
1262 * return true for that case.
1263 */
1264 spi = iter_get_spi(env, reg, nr_slots);
1265 if (spi == -ERANGE)
1266 return true;
1267 if (spi < 0)
1268 return false;
1269
1270 for (i = 0; i < nr_slots; i++) {
1271 struct bpf_stack_state *slot = &state->stack[spi - i];
1272
1273 for (j = 0; j < BPF_REG_SIZE; j++)
1274 if (slot->slot_type[j] == STACK_ITER)
1275 return false;
1276 }
1277
1278 return true;
1279 }
1280
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 struct bpf_func_state *state = func(env, reg);
1285 int spi, i, j;
1286
1287 spi = iter_get_spi(env, reg, nr_slots);
1288 if (spi < 0)
1289 return false;
1290
1291 for (i = 0; i < nr_slots; i++) {
1292 struct bpf_stack_state *slot = &state->stack[spi - i];
1293 struct bpf_reg_state *st = &slot->spilled_ptr;
1294
1295 /* only main (first) slot has ref_obj_id set */
1296 if (i == 0 && !st->ref_obj_id)
1297 return false;
1298 if (i != 0 && st->ref_obj_id)
1299 return false;
1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 return false;
1302
1303 for (j = 0; j < BPF_REG_SIZE; j++)
1304 if (slot->slot_type[j] != STACK_ITER)
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
1311 /* Check if given stack slot is "special":
1312 * - spilled register state (STACK_SPILL);
1313 * - dynptr state (STACK_DYNPTR);
1314 * - iter state (STACK_ITER).
1315 */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319
1320 switch (type) {
1321 case STACK_SPILL:
1322 case STACK_DYNPTR:
1323 case STACK_ITER:
1324 return true;
1325 case STACK_INVALID:
1326 case STACK_MISC:
1327 case STACK_ZERO:
1328 return false;
1329 default:
1330 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 return true;
1332 }
1333 }
1334
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336 * it was spilled to the stack.
1337 */
is_spilled_reg(const struct bpf_stack_state * stack)1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348
scrub_spilled_slot(u8 * stype)1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 if (*stype != STACK_INVALID)
1352 *stype = STACK_MISC;
1353 }
1354
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 const struct bpf_func_state *state,
1357 bool print_all)
1358 {
1359 const struct bpf_reg_state *reg;
1360 enum bpf_reg_type t;
1361 int i;
1362
1363 if (state->frameno)
1364 verbose(env, " frame%d:", state->frameno);
1365 for (i = 0; i < MAX_BPF_REG; i++) {
1366 reg = &state->regs[i];
1367 t = reg->type;
1368 if (t == NOT_INIT)
1369 continue;
1370 if (!print_all && !reg_scratched(env, i))
1371 continue;
1372 verbose(env, " R%d", i);
1373 print_liveness(env, reg->live);
1374 verbose(env, "=");
1375 if (t == SCALAR_VALUE && reg->precise)
1376 verbose(env, "P");
1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 tnum_is_const(reg->var_off)) {
1379 /* reg->off should be 0 for SCALAR_VALUE */
1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 verbose(env, "%lld", reg->var_off.value + reg->off);
1382 } else {
1383 const char *sep = "";
1384
1385 verbose(env, "%s", reg_type_str(env, t));
1386 if (base_type(t) == PTR_TO_BTF_ID)
1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 verbose(env, "(");
1389 /*
1390 * _a stands for append, was shortened to avoid multiline statements below.
1391 * This macro is used to output a comma separated list of attributes.
1392 */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394
1395 if (reg->id)
1396 verbose_a("id=%d", reg->id);
1397 if (reg->ref_obj_id)
1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 if (type_is_non_owning_ref(reg->type))
1400 verbose_a("%s", "non_own_ref");
1401 if (t != SCALAR_VALUE)
1402 verbose_a("off=%d", reg->off);
1403 if (type_is_pkt_pointer(t))
1404 verbose_a("r=%d", reg->range);
1405 else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 base_type(t) == PTR_TO_MAP_KEY ||
1407 base_type(t) == PTR_TO_MAP_VALUE)
1408 verbose_a("ks=%d,vs=%d",
1409 reg->map_ptr->key_size,
1410 reg->map_ptr->value_size);
1411 if (tnum_is_const(reg->var_off)) {
1412 /* Typically an immediate SCALAR_VALUE, but
1413 * could be a pointer whose offset is too big
1414 * for reg->off
1415 */
1416 verbose_a("imm=%llx", reg->var_off.value);
1417 } else {
1418 if (reg->smin_value != reg->umin_value &&
1419 reg->smin_value != S64_MIN)
1420 verbose_a("smin=%lld", (long long)reg->smin_value);
1421 if (reg->smax_value != reg->umax_value &&
1422 reg->smax_value != S64_MAX)
1423 verbose_a("smax=%lld", (long long)reg->smax_value);
1424 if (reg->umin_value != 0)
1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 if (reg->umax_value != U64_MAX)
1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 if (!tnum_is_unknown(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose_a("var_off=%s", tn_buf);
1433 }
1434 if (reg->s32_min_value != reg->smin_value &&
1435 reg->s32_min_value != S32_MIN)
1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 if (reg->s32_max_value != reg->smax_value &&
1438 reg->s32_max_value != S32_MAX)
1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 if (reg->u32_min_value != reg->umin_value &&
1441 reg->u32_min_value != U32_MIN)
1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 if (reg->u32_max_value != reg->umax_value &&
1444 reg->u32_max_value != U32_MAX)
1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 }
1447 #undef verbose_a
1448
1449 verbose(env, ")");
1450 }
1451 }
1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 char types_buf[BPF_REG_SIZE + 1];
1454 bool valid = false;
1455 int j;
1456
1457 for (j = 0; j < BPF_REG_SIZE; j++) {
1458 if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 valid = true;
1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 }
1462 types_buf[BPF_REG_SIZE] = 0;
1463 if (!valid)
1464 continue;
1465 if (!print_all && !stack_slot_scratched(env, i))
1466 continue;
1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 case STACK_SPILL:
1469 reg = &state->stack[i].spilled_ptr;
1470 t = reg->type;
1471
1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 print_liveness(env, reg->live);
1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 if (t == SCALAR_VALUE && reg->precise)
1476 verbose(env, "P");
1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 verbose(env, "%lld", reg->var_off.value + reg->off);
1479 break;
1480 case STACK_DYNPTR:
1481 i += BPF_DYNPTR_NR_SLOTS - 1;
1482 reg = &state->stack[i].spilled_ptr;
1483
1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 print_liveness(env, reg->live);
1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 if (reg->ref_obj_id)
1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 break;
1490 case STACK_ITER:
1491 /* only main slot has ref_obj_id set; skip others */
1492 reg = &state->stack[i].spilled_ptr;
1493 if (!reg->ref_obj_id)
1494 continue;
1495
1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 print_liveness(env, reg->live);
1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 reg->iter.depth);
1502 break;
1503 case STACK_MISC:
1504 case STACK_ZERO:
1505 default:
1506 reg = &state->stack[i].spilled_ptr;
1507
1508 for (j = 0; j < BPF_REG_SIZE; j++)
1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 types_buf[BPF_REG_SIZE] = 0;
1511
1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 print_liveness(env, reg->live);
1514 verbose(env, "=%s", types_buf);
1515 break;
1516 }
1517 }
1518 if (state->acquired_refs && state->refs[0].id) {
1519 verbose(env, " refs=%d", state->refs[0].id);
1520 for (i = 1; i < state->acquired_refs; i++)
1521 if (state->refs[i].id)
1522 verbose(env, ",%d", state->refs[i].id);
1523 }
1524 if (state->in_callback_fn)
1525 verbose(env, " cb");
1526 if (state->in_async_callback_fn)
1527 verbose(env, " async_cb");
1528 verbose(env, "\n");
1529 if (!print_all)
1530 mark_verifier_state_clean(env);
1531 }
1532
vlog_alignment(u32 pos)1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 const struct bpf_func_state *state)
1541 {
1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 /* remove new line character */
1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 } else {
1547 verbose(env, "%d:", env->insn_idx);
1548 }
1549 print_verifier_state(env, state, false);
1550 }
1551
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553 * small to hold src. This is different from krealloc since we don't want to preserve
1554 * the contents of dst.
1555 *
1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557 * not be allocated.
1558 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 size_t alloc_bytes;
1562 void *orig = dst;
1563 size_t bytes;
1564
1565 if (ZERO_OR_NULL_PTR(src))
1566 goto out;
1567
1568 if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 return NULL;
1570
1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 dst = krealloc(orig, alloc_bytes, flags);
1573 if (!dst) {
1574 kfree(orig);
1575 return NULL;
1576 }
1577
1578 memcpy(dst, src, bytes);
1579 out:
1580 return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584 * small to hold new_n items. new items are zeroed out if the array grows.
1585 *
1586 * Contrary to krealloc_array, does not free arr if new_n is zero.
1587 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 size_t alloc_size;
1591 void *new_arr;
1592
1593 if (!new_n || old_n == new_n)
1594 goto out;
1595
1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 if (!new_arr) {
1599 kfree(arr);
1600 return NULL;
1601 }
1602 arr = new_arr;
1603
1604 if (new_n > old_n)
1605 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606
1607 out:
1608 return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 if (!dst->refs)
1616 return -ENOMEM;
1617
1618 dst->acquired_refs = src->acquired_refs;
1619 return 0;
1620 }
1621
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 size_t n = src->allocated_stack / BPF_REG_SIZE;
1625
1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 GFP_KERNEL);
1628 if (!dst->stack)
1629 return -ENOMEM;
1630
1631 dst->allocated_stack = src->allocated_stack;
1632 return 0;
1633 }
1634
resize_reference_state(struct bpf_func_state * state,size_t n)1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 sizeof(struct bpf_reference_state));
1639 if (!state->refs)
1640 return -ENOMEM;
1641
1642 state->acquired_refs = n;
1643 return 0;
1644 }
1645
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647 * possibly update the function's high-water mark in its bpf_subprog_info.
1648 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652
1653 if (old_n >= n)
1654 return 0;
1655
1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 if (!state->stack)
1658 return -ENOMEM;
1659
1660 state->allocated_stack = size;
1661
1662 /* update known max for given subprogram */
1663 if (env->subprog_info[state->subprogno].stack_depth < size)
1664 env->subprog_info[state->subprogno].stack_depth = size;
1665
1666 return 0;
1667 }
1668
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670 * this new pointer reference.
1671 * On success, returns a valid pointer id to associate with the register
1672 * On failure, returns a negative errno.
1673 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 struct bpf_func_state *state = cur_func(env);
1677 int new_ofs = state->acquired_refs;
1678 int id, err;
1679
1680 err = resize_reference_state(state, state->acquired_refs + 1);
1681 if (err)
1682 return err;
1683 id = ++env->id_gen;
1684 state->refs[new_ofs].id = id;
1685 state->refs[new_ofs].insn_idx = insn_idx;
1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687
1688 return id;
1689 }
1690
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 int i, last_idx;
1695
1696 last_idx = state->acquired_refs - 1;
1697 for (i = 0; i < state->acquired_refs; i++) {
1698 if (state->refs[i].id == ptr_id) {
1699 /* Cannot release caller references in callbacks */
1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 return -EINVAL;
1702 if (last_idx && i != last_idx)
1703 memcpy(&state->refs[i], &state->refs[last_idx],
1704 sizeof(*state->refs));
1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 state->acquired_refs--;
1707 return 0;
1708 }
1709 }
1710 return -EINVAL;
1711 }
1712
free_func_state(struct bpf_func_state * state)1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 if (!state)
1716 return;
1717 kfree(state->refs);
1718 kfree(state->stack);
1719 kfree(state);
1720 }
1721
clear_jmp_history(struct bpf_verifier_state * state)1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 kfree(state->jmp_history);
1725 state->jmp_history = NULL;
1726 state->jmp_history_cnt = 0;
1727 }
1728
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 bool free_self)
1731 {
1732 int i;
1733
1734 for (i = 0; i <= state->curframe; i++) {
1735 free_func_state(state->frame[i]);
1736 state->frame[i] = NULL;
1737 }
1738 clear_jmp_history(state);
1739 if (free_self)
1740 kfree(state);
1741 }
1742
1743 /* copy verifier state from src to dst growing dst stack space
1744 * when necessary to accommodate larger src stack
1745 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1746 static int copy_func_state(struct bpf_func_state *dst,
1747 const struct bpf_func_state *src)
1748 {
1749 int err;
1750
1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 err = copy_reference_state(dst, src);
1753 if (err)
1754 return err;
1755 return copy_stack_state(dst, src);
1756 }
1757
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 const struct bpf_verifier_state *src)
1760 {
1761 struct bpf_func_state *dst;
1762 int i, err;
1763
1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1766 GFP_USER);
1767 if (!dst_state->jmp_history)
1768 return -ENOMEM;
1769 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770
1771 /* if dst has more stack frames then src frame, free them */
1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 free_func_state(dst_state->frame[i]);
1774 dst_state->frame[i] = NULL;
1775 }
1776 dst_state->speculative = src->speculative;
1777 dst_state->active_rcu_lock = src->active_rcu_lock;
1778 dst_state->curframe = src->curframe;
1779 dst_state->active_lock.ptr = src->active_lock.ptr;
1780 dst_state->active_lock.id = src->active_lock.id;
1781 dst_state->branches = src->branches;
1782 dst_state->parent = src->parent;
1783 dst_state->first_insn_idx = src->first_insn_idx;
1784 dst_state->last_insn_idx = src->last_insn_idx;
1785 dst_state->dfs_depth = src->dfs_depth;
1786 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 for (i = 0; i <= src->curframe; i++) {
1789 dst = dst_state->frame[i];
1790 if (!dst) {
1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 if (!dst)
1793 return -ENOMEM;
1794 dst_state->frame[i] = dst;
1795 }
1796 err = copy_func_state(dst, src->frame[i]);
1797 if (err)
1798 return err;
1799 }
1800 return 0;
1801 }
1802
state_htab_size(struct bpf_verifier_env * env)1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 return env->prog->len;
1806 }
1807
explored_state(struct bpf_verifier_env * env,int idx)1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 struct bpf_verifier_state *cur = env->cur_state;
1811 struct bpf_func_state *state = cur->frame[cur->curframe];
1812
1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 int fr;
1819
1820 if (a->curframe != b->curframe)
1821 return false;
1822
1823 for (fr = a->curframe; fr >= 0; fr--)
1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 return false;
1826
1827 return true;
1828 }
1829
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831 * check unbounded loops that iterators.
1832 *
1833 * In is_state_visited() it is necessary to know if explored states are
1834 * part of some loops in order to decide whether non-exact states
1835 * comparison could be used:
1836 * - non-exact states comparison establishes sub-state relation and uses
1837 * read and precision marks to do so, these marks are propagated from
1838 * children states and thus are not guaranteed to be final in a loop;
1839 * - exact states comparison just checks if current and explored states
1840 * are identical (and thus form a back-edge).
1841 *
1842 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844 * algorithm for loop structure detection and gives an overview of
1845 * relevant terminology. It also has helpful illustrations.
1846 *
1847 * [1] https://api.semanticscholar.org/CorpusID:15784067
1848 *
1849 * We use a similar algorithm but because loop nested structure is
1850 * irrelevant for verifier ours is significantly simpler and resembles
1851 * strongly connected components algorithm from Sedgewick's textbook.
1852 *
1853 * Define topmost loop entry as a first node of the loop traversed in a
1854 * depth first search starting from initial state. The goal of the loop
1855 * tracking algorithm is to associate topmost loop entries with states
1856 * derived from these entries.
1857 *
1858 * For each step in the DFS states traversal algorithm needs to identify
1859 * the following situations:
1860 *
1861 * initial initial initial
1862 * | | |
1863 * V V V
1864 * ... ... .---------> hdr
1865 * | | | |
1866 * V V | V
1867 * cur .-> succ | .------...
1868 * | | | | | |
1869 * V | V | V V
1870 * succ '-- cur | ... ...
1871 * | | |
1872 * | V V
1873 * | succ <- cur
1874 * | |
1875 * | V
1876 * | ...
1877 * | |
1878 * '----'
1879 *
1880 * (A) successor state of cur (B) successor state of cur or it's entry
1881 * not yet traversed are in current DFS path, thus cur and succ
1882 * are members of the same outermost loop
1883 *
1884 * initial initial
1885 * | |
1886 * V V
1887 * ... ...
1888 * | |
1889 * V V
1890 * .------... .------...
1891 * | | | |
1892 * V V V V
1893 * .-> hdr ... ... ...
1894 * | | | | |
1895 * | V V V V
1896 * | succ <- cur succ <- cur
1897 * | | |
1898 * | V V
1899 * | ... ...
1900 * | | |
1901 * '----' exit
1902 *
1903 * (C) successor state of cur is a part of some loop but this loop
1904 * does not include cur or successor state is not in a loop at all.
1905 *
1906 * Algorithm could be described as the following python code:
1907 *
1908 * traversed = set() # Set of traversed nodes
1909 * entries = {} # Mapping from node to loop entry
1910 * depths = {} # Depth level assigned to graph node
1911 * path = set() # Current DFS path
1912 *
1913 * # Find outermost loop entry known for n
1914 * def get_loop_entry(n):
1915 * h = entries.get(n, None)
1916 * while h in entries and entries[h] != h:
1917 * h = entries[h]
1918 * return h
1919 *
1920 * # Update n's loop entry if h's outermost entry comes
1921 * # before n's outermost entry in current DFS path.
1922 * def update_loop_entry(n, h):
1923 * n1 = get_loop_entry(n) or n
1924 * h1 = get_loop_entry(h) or h
1925 * if h1 in path and depths[h1] <= depths[n1]:
1926 * entries[n] = h1
1927 *
1928 * def dfs(n, depth):
1929 * traversed.add(n)
1930 * path.add(n)
1931 * depths[n] = depth
1932 * for succ in G.successors(n):
1933 * if succ not in traversed:
1934 * # Case A: explore succ and update cur's loop entry
1935 * # only if succ's entry is in current DFS path.
1936 * dfs(succ, depth + 1)
1937 * h = get_loop_entry(succ)
1938 * update_loop_entry(n, h)
1939 * else:
1940 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1941 * update_loop_entry(n, succ)
1942 * path.remove(n)
1943 *
1944 * To adapt this algorithm for use with verifier:
1945 * - use st->branch == 0 as a signal that DFS of succ had been finished
1946 * and cur's loop entry has to be updated (case A), handle this in
1947 * update_branch_counts();
1948 * - use st->branch > 0 as a signal that st is in the current DFS path;
1949 * - handle cases B and C in is_state_visited();
1950 * - update topmost loop entry for intermediate states in get_loop_entry().
1951 */
get_loop_entry(struct bpf_verifier_state * st)1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955
1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 topmost = topmost->loop_entry;
1958 /* Update loop entries for intermediate states to avoid this
1959 * traversal in future get_loop_entry() calls.
1960 */
1961 while (st && st->loop_entry != topmost) {
1962 old = st->loop_entry;
1963 st->loop_entry = topmost;
1964 st = old;
1965 }
1966 return topmost;
1967 }
1968
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 struct bpf_verifier_state *cur1, *hdr1;
1972
1973 cur1 = get_loop_entry(cur) ?: cur;
1974 hdr1 = get_loop_entry(hdr) ?: hdr;
1975 /* The head1->branches check decides between cases B and C in
1976 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 * head's topmost loop entry is not in current DFS path,
1978 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 * no need to update cur->loop_entry.
1980 */
1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 cur->loop_entry = hdr;
1983 hdr->used_as_loop_entry = true;
1984 }
1985 }
1986
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 while (st) {
1990 u32 br = --st->branches;
1991
1992 /* br == 0 signals that DFS exploration for 'st' is finished,
1993 * thus it is necessary to update parent's loop entry if it
1994 * turned out that st is a part of some loop.
1995 * This is a part of 'case A' in get_loop_entry() comment.
1996 */
1997 if (br == 0 && st->parent && st->loop_entry)
1998 update_loop_entry(st->parent, st->loop_entry);
1999
2000 /* WARN_ON(br > 1) technically makes sense here,
2001 * but see comment in push_stack(), hence:
2002 */
2003 WARN_ONCE((int)br < 0,
2004 "BUG update_branch_counts:branches_to_explore=%d\n",
2005 br);
2006 if (br)
2007 break;
2008 st = st->parent;
2009 }
2010 }
2011
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 int *insn_idx, bool pop_log)
2014 {
2015 struct bpf_verifier_state *cur = env->cur_state;
2016 struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 int err;
2018
2019 if (env->head == NULL)
2020 return -ENOENT;
2021
2022 if (cur) {
2023 err = copy_verifier_state(cur, &head->st);
2024 if (err)
2025 return err;
2026 }
2027 if (pop_log)
2028 bpf_vlog_reset(&env->log, head->log_pos);
2029 if (insn_idx)
2030 *insn_idx = head->insn_idx;
2031 if (prev_insn_idx)
2032 *prev_insn_idx = head->prev_insn_idx;
2033 elem = head->next;
2034 free_verifier_state(&head->st, false);
2035 kfree(head);
2036 env->head = elem;
2037 env->stack_size--;
2038 return 0;
2039 }
2040
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 int insn_idx, int prev_insn_idx,
2043 bool speculative)
2044 {
2045 struct bpf_verifier_state *cur = env->cur_state;
2046 struct bpf_verifier_stack_elem *elem;
2047 int err;
2048
2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 if (!elem)
2051 goto err;
2052
2053 elem->insn_idx = insn_idx;
2054 elem->prev_insn_idx = prev_insn_idx;
2055 elem->next = env->head;
2056 elem->log_pos = env->log.end_pos;
2057 env->head = elem;
2058 env->stack_size++;
2059 err = copy_verifier_state(&elem->st, cur);
2060 if (err)
2061 goto err;
2062 elem->st.speculative |= speculative;
2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 verbose(env, "The sequence of %d jumps is too complex.\n",
2065 env->stack_size);
2066 goto err;
2067 }
2068 if (elem->st.parent) {
2069 ++elem->st.parent->branches;
2070 /* WARN_ON(branches > 2) technically makes sense here,
2071 * but
2072 * 1. speculative states will bump 'branches' for non-branch
2073 * instructions
2074 * 2. is_state_visited() heuristics may decide not to create
2075 * a new state for a sequence of branches and all such current
2076 * and cloned states will be pointing to a single parent state
2077 * which might have large 'branches' count.
2078 */
2079 }
2080 return &elem->st;
2081 err:
2082 free_verifier_state(env->cur_state, true);
2083 env->cur_state = NULL;
2084 /* pop all elements and return */
2085 while (!pop_stack(env, NULL, NULL, false));
2086 return NULL;
2087 }
2088
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093
2094 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 reg->var_off = tnum_const(imm);
2098 reg->smin_value = (s64)imm;
2099 reg->smax_value = (s64)imm;
2100 reg->umin_value = imm;
2101 reg->umax_value = imm;
2102
2103 reg->s32_min_value = (s32)imm;
2104 reg->s32_max_value = (s32)imm;
2105 reg->u32_min_value = (u32)imm;
2106 reg->u32_max_value = (u32)imm;
2107 }
2108
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110 * known to have the value @imm.
2111 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 /* Clear off and union(map_ptr, range) */
2115 memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 reg->id = 0;
2118 reg->ref_obj_id = 0;
2119 ___mark_reg_known(reg, imm);
2120 }
2121
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 reg->s32_min_value = (s32)imm;
2126 reg->s32_max_value = (s32)imm;
2127 reg->u32_min_value = (u32)imm;
2128 reg->u32_max_value = (u32)imm;
2129 }
2130
2131 /* Mark the 'variable offset' part of a register as zero. This should be
2132 * used only on registers holding a pointer type.
2133 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 __mark_reg_known(reg, 0);
2137 }
2138
__mark_reg_const_zero(struct bpf_reg_state * reg)2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 __mark_reg_known(reg, 0);
2142 reg->type = SCALAR_VALUE;
2143 }
2144
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 struct bpf_reg_state *regs, u32 regno)
2147 {
2148 if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 /* Something bad happened, let's kill all regs */
2151 for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 __mark_reg_not_init(env, regs + regno);
2153 return;
2154 }
2155 __mark_reg_known_zero(regs + regno);
2156 }
2157
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 bool first_slot, int dynptr_id)
2160 {
2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 */
2165 __mark_reg_known_zero(reg);
2166 reg->type = CONST_PTR_TO_DYNPTR;
2167 /* Give each dynptr a unique id to uniquely associate slices to it. */
2168 reg->id = dynptr_id;
2169 reg->dynptr.type = type;
2170 reg->dynptr.first_slot = first_slot;
2171 }
2172
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 const struct bpf_map *map = reg->map_ptr;
2177
2178 if (map->inner_map_meta) {
2179 reg->type = CONST_PTR_TO_MAP;
2180 reg->map_ptr = map->inner_map_meta;
2181 /* transfer reg's id which is unique for every map_lookup_elem
2182 * as UID of the inner map.
2183 */
2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 reg->map_uid = reg->id;
2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 reg->type = PTR_TO_XDP_SOCK;
2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 reg->type = PTR_TO_SOCKET;
2191 } else {
2192 reg->type = PTR_TO_MAP_VALUE;
2193 }
2194 return;
2195 }
2196
2197 reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 struct btf_field_graph_root *ds_head)
2202 {
2203 __mark_reg_known_zero(®s[regno]);
2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 regs[regno].btf = ds_head->btf;
2206 regs[regno].btf_id = ds_head->value_btf_id;
2207 regs[regno].off = ds_head->node_offset;
2208 }
2209
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 return type_is_pkt_pointer(reg->type);
2213 }
2214
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 return reg_is_pkt_pointer(reg) ||
2218 reg->type == PTR_TO_PACKET_END;
2219 }
2220
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 return base_type(reg->type) == PTR_TO_MEM &&
2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 enum bpf_reg_type which)
2230 {
2231 /* The register can already have a range from prior markings.
2232 * This is fine as long as it hasn't been advanced from its
2233 * origin.
2234 */
2235 return reg->type == which &&
2236 reg->id == 0 &&
2237 reg->off == 0 &&
2238 tnum_equals_const(reg->var_off, 0);
2239 }
2240
2241 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 reg->smin_value = S64_MIN;
2245 reg->smax_value = S64_MAX;
2246 reg->umin_value = 0;
2247 reg->umax_value = U64_MAX;
2248
2249 reg->s32_min_value = S32_MIN;
2250 reg->s32_max_value = S32_MAX;
2251 reg->u32_min_value = 0;
2252 reg->u32_max_value = U32_MAX;
2253 }
2254
__mark_reg64_unbounded(struct bpf_reg_state * reg)2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 reg->smin_value = S64_MIN;
2258 reg->smax_value = S64_MAX;
2259 reg->umin_value = 0;
2260 reg->umax_value = U64_MAX;
2261 }
2262
__mark_reg32_unbounded(struct bpf_reg_state * reg)2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 reg->s32_min_value = S32_MIN;
2266 reg->s32_max_value = S32_MAX;
2267 reg->u32_min_value = 0;
2268 reg->u32_max_value = U32_MAX;
2269 }
2270
__update_reg32_bounds(struct bpf_reg_state * reg)2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 struct tnum var32_off = tnum_subreg(reg->var_off);
2274
2275 /* min signed is max(sign bit) | min(other bits) */
2276 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 var32_off.value | (var32_off.mask & S32_MIN));
2278 /* max signed is min(sign bit) | max(other bits) */
2279 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 var32_off.value | (var32_off.mask & S32_MAX));
2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 reg->u32_max_value = min(reg->u32_max_value,
2283 (u32)(var32_off.value | var32_off.mask));
2284 }
2285
__update_reg64_bounds(struct bpf_reg_state * reg)2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 /* min signed is max(sign bit) | min(other bits) */
2289 reg->smin_value = max_t(s64, reg->smin_value,
2290 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 /* max signed is min(sign bit) | max(other bits) */
2292 reg->smax_value = min_t(s64, reg->smax_value,
2293 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 reg->umax_value = min(reg->umax_value,
2296 reg->var_off.value | reg->var_off.mask);
2297 }
2298
__update_reg_bounds(struct bpf_reg_state * reg)2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 __update_reg32_bounds(reg);
2302 __update_reg64_bounds(reg);
2303 }
2304
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 /* Learn sign from signed bounds.
2309 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 * are the same, so combine. This works even in the negative case, e.g.
2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 */
2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 reg->s32_min_value = reg->u32_min_value =
2315 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 reg->s32_max_value = reg->u32_max_value =
2317 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 return;
2319 }
2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2321 * boundary, so we must be careful.
2322 */
2323 if ((s32)reg->u32_max_value >= 0) {
2324 /* Positive. We can't learn anything from the smin, but smax
2325 * is positive, hence safe.
2326 */
2327 reg->s32_min_value = reg->u32_min_value;
2328 reg->s32_max_value = reg->u32_max_value =
2329 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 } else if ((s32)reg->u32_min_value < 0) {
2331 /* Negative. We can't learn anything from the smax, but smin
2332 * is negative, hence safe.
2333 */
2334 reg->s32_min_value = reg->u32_min_value =
2335 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 reg->s32_max_value = reg->u32_max_value;
2337 }
2338 }
2339
__reg64_deduce_bounds(struct bpf_reg_state * reg)2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 /* Learn sign from signed bounds.
2343 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 * are the same, so combine. This works even in the negative case, e.g.
2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 */
2347 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 reg->umin_value);
2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 reg->umax_value);
2352 return;
2353 }
2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2355 * boundary, so we must be careful.
2356 */
2357 if ((s64)reg->umax_value >= 0) {
2358 /* Positive. We can't learn anything from the smin, but smax
2359 * is positive, hence safe.
2360 */
2361 reg->smin_value = reg->umin_value;
2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 reg->umax_value);
2364 } else if ((s64)reg->umin_value < 0) {
2365 /* Negative. We can't learn anything from the smax, but smin
2366 * is negative, hence safe.
2367 */
2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 reg->umin_value);
2370 reg->smax_value = reg->umax_value;
2371 }
2372 }
2373
__reg_deduce_bounds(struct bpf_reg_state * reg)2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 __reg32_deduce_bounds(reg);
2377 __reg64_deduce_bounds(reg);
2378 }
2379
2380 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 struct tnum var64_off = tnum_intersect(reg->var_off,
2384 tnum_range(reg->umin_value,
2385 reg->umax_value));
2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 tnum_range(reg->u32_min_value,
2388 reg->u32_max_value));
2389
2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392
reg_bounds_sync(struct bpf_reg_state * reg)2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 /* We might have learned new bounds from the var_off. */
2396 __update_reg_bounds(reg);
2397 /* We might have learned something about the sign bit. */
2398 __reg_deduce_bounds(reg);
2399 /* We might have learned some bits from the bounds. */
2400 __reg_bound_offset(reg);
2401 /* Intersecting with the old var_off might have improved our bounds
2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 */
2405 __update_reg_bounds(reg);
2406 }
2407
__reg32_bound_s64(s32 a)2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 return a >= 0 && a <= S32_MAX;
2411 }
2412
__reg_assign_32_into_64(struct bpf_reg_state * reg)2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 reg->umin_value = reg->u32_min_value;
2416 reg->umax_value = reg->u32_max_value;
2417
2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 * be positive otherwise set to worse case bounds and refine later
2420 * from tnum.
2421 */
2422 if (__reg32_bound_s64(reg->s32_min_value) &&
2423 __reg32_bound_s64(reg->s32_max_value)) {
2424 reg->smin_value = reg->s32_min_value;
2425 reg->smax_value = reg->s32_max_value;
2426 } else {
2427 reg->smin_value = 0;
2428 reg->smax_value = U32_MAX;
2429 }
2430 }
2431
__reg_combine_32_into_64(struct bpf_reg_state * reg)2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 /* special case when 64-bit register has upper 32-bit register
2435 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 * allowing us to use 32-bit bounds directly,
2437 */
2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 __reg_assign_32_into_64(reg);
2440 } else {
2441 /* Otherwise the best we can do is push lower 32bit known and
2442 * unknown bits into register (var_off set from jmp logic)
2443 * then learn as much as possible from the 64-bit tnum
2444 * known and unknown bits. The previous smin/smax bounds are
2445 * invalid here because of jmp32 compare so mark them unknown
2446 * so they do not impact tnum bounds calculation.
2447 */
2448 __mark_reg64_unbounded(reg);
2449 }
2450 reg_bounds_sync(reg);
2451 }
2452
__reg64_bound_s32(s64 a)2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 return a >= S32_MIN && a <= S32_MAX;
2456 }
2457
__reg64_bound_u32(u64 a)2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 return a >= U32_MIN && a <= U32_MAX;
2461 }
2462
__reg_combine_64_into_32(struct bpf_reg_state * reg)2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 __mark_reg32_unbounded(reg);
2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 reg->s32_min_value = (s32)reg->smin_value;
2468 reg->s32_max_value = (s32)reg->smax_value;
2469 }
2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 reg->u32_min_value = (u32)reg->umin_value;
2472 reg->u32_max_value = (u32)reg->umax_value;
2473 }
2474 reg_bounds_sync(reg);
2475 }
2476
2477 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 struct bpf_reg_state *reg)
2480 {
2481 /*
2482 * Clear type, off, and union(map_ptr, range) and
2483 * padding between 'type' and union
2484 */
2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 reg->type = SCALAR_VALUE;
2487 reg->id = 0;
2488 reg->ref_obj_id = 0;
2489 reg->var_off = tnum_unknown;
2490 reg->frameno = 0;
2491 reg->precise = !env->bpf_capable;
2492 __mark_reg_unbounded(reg);
2493 }
2494
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 struct bpf_reg_state *regs, u32 regno)
2497 {
2498 if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 /* Something bad happened, let's kill all regs except FP */
2501 for (regno = 0; regno < BPF_REG_FP; regno++)
2502 __mark_reg_not_init(env, regs + regno);
2503 return;
2504 }
2505 __mark_reg_unknown(env, regs + regno);
2506 }
2507
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 struct bpf_reg_state *reg)
2510 {
2511 __mark_reg_unknown(env, reg);
2512 reg->type = NOT_INIT;
2513 }
2514
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 struct bpf_reg_state *regs, u32 regno)
2517 {
2518 if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 /* Something bad happened, let's kill all regs except FP */
2521 for (regno = 0; regno < BPF_REG_FP; regno++)
2522 __mark_reg_not_init(env, regs + regno);
2523 return;
2524 }
2525 __mark_reg_not_init(env, regs + regno);
2526 }
2527
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 struct bpf_reg_state *regs, u32 regno,
2530 enum bpf_reg_type reg_type,
2531 struct btf *btf, u32 btf_id,
2532 enum bpf_type_flag flag)
2533 {
2534 if (reg_type == SCALAR_VALUE) {
2535 mark_reg_unknown(env, regs, regno);
2536 return;
2537 }
2538 mark_reg_known_zero(env, regs, regno);
2539 regs[regno].type = PTR_TO_BTF_ID | flag;
2540 regs[regno].btf = btf;
2541 regs[regno].btf_id = btf_id;
2542 if (type_may_be_null(flag))
2543 regs[regno].id = ++env->id_gen;
2544 }
2545
2546 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 struct bpf_func_state *state)
2549 {
2550 struct bpf_reg_state *regs = state->regs;
2551 int i;
2552
2553 for (i = 0; i < MAX_BPF_REG; i++) {
2554 mark_reg_not_init(env, regs, i);
2555 regs[i].live = REG_LIVE_NONE;
2556 regs[i].parent = NULL;
2557 regs[i].subreg_def = DEF_NOT_SUBREG;
2558 }
2559
2560 /* frame pointer */
2561 regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565
2566 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2567 static void init_func_state(struct bpf_verifier_env *env,
2568 struct bpf_func_state *state,
2569 int callsite, int frameno, int subprogno)
2570 {
2571 state->callsite = callsite;
2572 state->frameno = frameno;
2573 state->subprogno = subprogno;
2574 state->callback_ret_range = tnum_range(0, 0);
2575 init_reg_state(env, state);
2576 mark_verifier_state_scratched(env);
2577 }
2578
2579 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 int insn_idx, int prev_insn_idx,
2582 int subprog)
2583 {
2584 struct bpf_verifier_stack_elem *elem;
2585 struct bpf_func_state *frame;
2586
2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 if (!elem)
2589 goto err;
2590
2591 elem->insn_idx = insn_idx;
2592 elem->prev_insn_idx = prev_insn_idx;
2593 elem->next = env->head;
2594 elem->log_pos = env->log.end_pos;
2595 env->head = elem;
2596 env->stack_size++;
2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 verbose(env,
2599 "The sequence of %d jumps is too complex for async cb.\n",
2600 env->stack_size);
2601 goto err;
2602 }
2603 /* Unlike push_stack() do not copy_verifier_state().
2604 * The caller state doesn't matter.
2605 * This is async callback. It starts in a fresh stack.
2606 * Initialize it similar to do_check_common().
2607 */
2608 elem->st.branches = 1;
2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 if (!frame)
2611 goto err;
2612 init_func_state(env, frame,
2613 BPF_MAIN_FUNC /* callsite */,
2614 0 /* frameno within this callchain */,
2615 subprog /* subprog number within this prog */);
2616 elem->st.frame[0] = frame;
2617 return &elem->st;
2618 err:
2619 free_verifier_state(env->cur_state, true);
2620 env->cur_state = NULL;
2621 /* pop all elements and return */
2622 while (!pop_stack(env, NULL, NULL, false));
2623 return NULL;
2624 }
2625
2626
2627 enum reg_arg_type {
2628 SRC_OP, /* register is used as source operand */
2629 DST_OP, /* register is used as destination operand */
2630 DST_OP_NO_MARK /* same as above, check only, don't mark */
2631 };
2632
cmp_subprogs(const void * a,const void * b)2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 return ((struct bpf_subprog_info *)a)->start -
2636 ((struct bpf_subprog_info *)b)->start;
2637 }
2638
2639 /* Find subprogram that contains instruction at 'off' */
find_containing_subprog(struct bpf_verifier_env * env,int off)2640 static struct bpf_subprog_info *find_containing_subprog(struct bpf_verifier_env *env, int off)
2641 {
2642 struct bpf_subprog_info *vals = env->subprog_info;
2643 int l, r, m;
2644
2645 if (off >= env->prog->len || off < 0 || env->subprog_cnt == 0)
2646 return NULL;
2647
2648 l = 0;
2649 r = env->subprog_cnt - 1;
2650 while (l < r) {
2651 m = l + (r - l + 1) / 2;
2652 if (vals[m].start <= off)
2653 l = m;
2654 else
2655 r = m - 1;
2656 }
2657 return &vals[l];
2658 }
2659
2660 /* Find subprogram that starts exactly at 'off' */
find_subprog(struct bpf_verifier_env * env,int off)2661 static int find_subprog(struct bpf_verifier_env *env, int off)
2662 {
2663 struct bpf_subprog_info *p;
2664
2665 p = find_containing_subprog(env, off);
2666 if (!p || p->start != off)
2667 return -ENOENT;
2668 return p - env->subprog_info;
2669 }
2670
add_subprog(struct bpf_verifier_env * env,int off)2671 static int add_subprog(struct bpf_verifier_env *env, int off)
2672 {
2673 int insn_cnt = env->prog->len;
2674 int ret;
2675
2676 if (off >= insn_cnt || off < 0) {
2677 verbose(env, "call to invalid destination\n");
2678 return -EINVAL;
2679 }
2680 ret = find_subprog(env, off);
2681 if (ret >= 0)
2682 return ret;
2683 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2684 verbose(env, "too many subprograms\n");
2685 return -E2BIG;
2686 }
2687 /* determine subprog starts. The end is one before the next starts */
2688 env->subprog_info[env->subprog_cnt++].start = off;
2689 sort(env->subprog_info, env->subprog_cnt,
2690 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2691 return env->subprog_cnt - 1;
2692 }
2693
2694 #define MAX_KFUNC_DESCS 256
2695 #define MAX_KFUNC_BTFS 256
2696
2697 struct bpf_kfunc_desc {
2698 struct btf_func_model func_model;
2699 u32 func_id;
2700 s32 imm;
2701 u16 offset;
2702 unsigned long addr;
2703 };
2704
2705 struct bpf_kfunc_btf {
2706 struct btf *btf;
2707 struct module *module;
2708 u16 offset;
2709 };
2710
2711 struct bpf_kfunc_desc_tab {
2712 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2713 * verification. JITs do lookups by bpf_insn, where func_id may not be
2714 * available, therefore at the end of verification do_misc_fixups()
2715 * sorts this by imm and offset.
2716 */
2717 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2718 u32 nr_descs;
2719 };
2720
2721 struct bpf_kfunc_btf_tab {
2722 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2723 u32 nr_descs;
2724 };
2725
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2726 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2727 {
2728 const struct bpf_kfunc_desc *d0 = a;
2729 const struct bpf_kfunc_desc *d1 = b;
2730
2731 /* func_id is not greater than BTF_MAX_TYPE */
2732 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2733 }
2734
kfunc_btf_cmp_by_off(const void * a,const void * b)2735 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2736 {
2737 const struct bpf_kfunc_btf *d0 = a;
2738 const struct bpf_kfunc_btf *d1 = b;
2739
2740 return d0->offset - d1->offset;
2741 }
2742
2743 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2744 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2745 {
2746 struct bpf_kfunc_desc desc = {
2747 .func_id = func_id,
2748 .offset = offset,
2749 };
2750 struct bpf_kfunc_desc_tab *tab;
2751
2752 tab = prog->aux->kfunc_tab;
2753 return bsearch(&desc, tab->descs, tab->nr_descs,
2754 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2755 }
2756
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2757 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2758 u16 btf_fd_idx, u8 **func_addr)
2759 {
2760 const struct bpf_kfunc_desc *desc;
2761
2762 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2763 if (!desc)
2764 return -EFAULT;
2765
2766 *func_addr = (u8 *)desc->addr;
2767 return 0;
2768 }
2769
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2770 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2771 s16 offset)
2772 {
2773 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2774 struct bpf_kfunc_btf_tab *tab;
2775 struct bpf_kfunc_btf *b;
2776 struct module *mod;
2777 struct btf *btf;
2778 int btf_fd;
2779
2780 tab = env->prog->aux->kfunc_btf_tab;
2781 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2782 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2783 if (!b) {
2784 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2785 verbose(env, "too many different module BTFs\n");
2786 return ERR_PTR(-E2BIG);
2787 }
2788
2789 if (bpfptr_is_null(env->fd_array)) {
2790 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2791 return ERR_PTR(-EPROTO);
2792 }
2793
2794 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2795 offset * sizeof(btf_fd),
2796 sizeof(btf_fd)))
2797 return ERR_PTR(-EFAULT);
2798
2799 btf = btf_get_by_fd(btf_fd);
2800 if (IS_ERR(btf)) {
2801 verbose(env, "invalid module BTF fd specified\n");
2802 return btf;
2803 }
2804
2805 if (!btf_is_module(btf)) {
2806 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2807 btf_put(btf);
2808 return ERR_PTR(-EINVAL);
2809 }
2810
2811 mod = btf_try_get_module(btf);
2812 if (!mod) {
2813 btf_put(btf);
2814 return ERR_PTR(-ENXIO);
2815 }
2816
2817 b = &tab->descs[tab->nr_descs++];
2818 b->btf = btf;
2819 b->module = mod;
2820 b->offset = offset;
2821
2822 /* sort() reorders entries by value, so b may no longer point
2823 * to the right entry after this
2824 */
2825 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2826 kfunc_btf_cmp_by_off, NULL);
2827 } else {
2828 btf = b->btf;
2829 }
2830
2831 return btf;
2832 }
2833
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2834 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2835 {
2836 if (!tab)
2837 return;
2838
2839 while (tab->nr_descs--) {
2840 module_put(tab->descs[tab->nr_descs].module);
2841 btf_put(tab->descs[tab->nr_descs].btf);
2842 }
2843 kfree(tab);
2844 }
2845
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2846 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2847 {
2848 if (offset) {
2849 if (offset < 0) {
2850 /* In the future, this can be allowed to increase limit
2851 * of fd index into fd_array, interpreted as u16.
2852 */
2853 verbose(env, "negative offset disallowed for kernel module function call\n");
2854 return ERR_PTR(-EINVAL);
2855 }
2856
2857 return __find_kfunc_desc_btf(env, offset);
2858 }
2859 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2860 }
2861
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2862 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2863 {
2864 const struct btf_type *func, *func_proto;
2865 struct bpf_kfunc_btf_tab *btf_tab;
2866 struct bpf_kfunc_desc_tab *tab;
2867 struct bpf_prog_aux *prog_aux;
2868 struct bpf_kfunc_desc *desc;
2869 const char *func_name;
2870 struct btf *desc_btf;
2871 unsigned long call_imm;
2872 unsigned long addr;
2873 int err;
2874
2875 prog_aux = env->prog->aux;
2876 tab = prog_aux->kfunc_tab;
2877 btf_tab = prog_aux->kfunc_btf_tab;
2878 if (!tab) {
2879 if (!btf_vmlinux) {
2880 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2881 return -ENOTSUPP;
2882 }
2883
2884 if (!env->prog->jit_requested) {
2885 verbose(env, "JIT is required for calling kernel function\n");
2886 return -ENOTSUPP;
2887 }
2888
2889 if (!bpf_jit_supports_kfunc_call()) {
2890 verbose(env, "JIT does not support calling kernel function\n");
2891 return -ENOTSUPP;
2892 }
2893
2894 if (!env->prog->gpl_compatible) {
2895 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2896 return -EINVAL;
2897 }
2898
2899 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2900 if (!tab)
2901 return -ENOMEM;
2902 prog_aux->kfunc_tab = tab;
2903 }
2904
2905 /* func_id == 0 is always invalid, but instead of returning an error, be
2906 * conservative and wait until the code elimination pass before returning
2907 * error, so that invalid calls that get pruned out can be in BPF programs
2908 * loaded from userspace. It is also required that offset be untouched
2909 * for such calls.
2910 */
2911 if (!func_id && !offset)
2912 return 0;
2913
2914 if (!btf_tab && offset) {
2915 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2916 if (!btf_tab)
2917 return -ENOMEM;
2918 prog_aux->kfunc_btf_tab = btf_tab;
2919 }
2920
2921 desc_btf = find_kfunc_desc_btf(env, offset);
2922 if (IS_ERR(desc_btf)) {
2923 verbose(env, "failed to find BTF for kernel function\n");
2924 return PTR_ERR(desc_btf);
2925 }
2926
2927 if (find_kfunc_desc(env->prog, func_id, offset))
2928 return 0;
2929
2930 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2931 verbose(env, "too many different kernel function calls\n");
2932 return -E2BIG;
2933 }
2934
2935 func = btf_type_by_id(desc_btf, func_id);
2936 if (!func || !btf_type_is_func(func)) {
2937 verbose(env, "kernel btf_id %u is not a function\n",
2938 func_id);
2939 return -EINVAL;
2940 }
2941 func_proto = btf_type_by_id(desc_btf, func->type);
2942 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2943 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2944 func_id);
2945 return -EINVAL;
2946 }
2947
2948 func_name = btf_name_by_offset(desc_btf, func->name_off);
2949 addr = kallsyms_lookup_name(func_name);
2950 if (!addr) {
2951 verbose(env, "cannot find address for kernel function %s\n",
2952 func_name);
2953 return -EINVAL;
2954 }
2955 specialize_kfunc(env, func_id, offset, &addr);
2956
2957 if (bpf_jit_supports_far_kfunc_call()) {
2958 call_imm = func_id;
2959 } else {
2960 call_imm = BPF_CALL_IMM(addr);
2961 /* Check whether the relative offset overflows desc->imm */
2962 if ((unsigned long)(s32)call_imm != call_imm) {
2963 verbose(env, "address of kernel function %s is out of range\n",
2964 func_name);
2965 return -EINVAL;
2966 }
2967 }
2968
2969 if (bpf_dev_bound_kfunc_id(func_id)) {
2970 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2971 if (err)
2972 return err;
2973 }
2974
2975 desc = &tab->descs[tab->nr_descs++];
2976 desc->func_id = func_id;
2977 desc->imm = call_imm;
2978 desc->offset = offset;
2979 desc->addr = addr;
2980 err = btf_distill_func_proto(&env->log, desc_btf,
2981 func_proto, func_name,
2982 &desc->func_model);
2983 if (!err)
2984 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2985 kfunc_desc_cmp_by_id_off, NULL);
2986 return err;
2987 }
2988
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2989 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2990 {
2991 const struct bpf_kfunc_desc *d0 = a;
2992 const struct bpf_kfunc_desc *d1 = b;
2993
2994 if (d0->imm != d1->imm)
2995 return d0->imm < d1->imm ? -1 : 1;
2996 if (d0->offset != d1->offset)
2997 return d0->offset < d1->offset ? -1 : 1;
2998 return 0;
2999 }
3000
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)3001 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
3002 {
3003 struct bpf_kfunc_desc_tab *tab;
3004
3005 tab = prog->aux->kfunc_tab;
3006 if (!tab)
3007 return;
3008
3009 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
3010 kfunc_desc_cmp_by_imm_off, NULL);
3011 }
3012
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3013 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3014 {
3015 return !!prog->aux->kfunc_tab;
3016 }
3017
3018 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3019 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3020 const struct bpf_insn *insn)
3021 {
3022 const struct bpf_kfunc_desc desc = {
3023 .imm = insn->imm,
3024 .offset = insn->off,
3025 };
3026 const struct bpf_kfunc_desc *res;
3027 struct bpf_kfunc_desc_tab *tab;
3028
3029 tab = prog->aux->kfunc_tab;
3030 res = bsearch(&desc, tab->descs, tab->nr_descs,
3031 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3032
3033 return res ? &res->func_model : NULL;
3034 }
3035
add_subprog_and_kfunc(struct bpf_verifier_env * env)3036 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3037 {
3038 struct bpf_subprog_info *subprog = env->subprog_info;
3039 struct bpf_insn *insn = env->prog->insnsi;
3040 int i, ret, insn_cnt = env->prog->len;
3041
3042 /* Add entry function. */
3043 ret = add_subprog(env, 0);
3044 if (ret)
3045 return ret;
3046
3047 for (i = 0; i < insn_cnt; i++, insn++) {
3048 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3049 !bpf_pseudo_kfunc_call(insn))
3050 continue;
3051
3052 if (!env->bpf_capable) {
3053 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3054 return -EPERM;
3055 }
3056
3057 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3058 ret = add_subprog(env, i + insn->imm + 1);
3059 else
3060 ret = add_kfunc_call(env, insn->imm, insn->off);
3061
3062 if (ret < 0)
3063 return ret;
3064 }
3065
3066 /* Add a fake 'exit' subprog which could simplify subprog iteration
3067 * logic. 'subprog_cnt' should not be increased.
3068 */
3069 subprog[env->subprog_cnt].start = insn_cnt;
3070
3071 if (env->log.level & BPF_LOG_LEVEL2)
3072 for (i = 0; i < env->subprog_cnt; i++)
3073 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3074
3075 return 0;
3076 }
3077
check_subprogs(struct bpf_verifier_env * env)3078 static int check_subprogs(struct bpf_verifier_env *env)
3079 {
3080 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3081 struct bpf_subprog_info *subprog = env->subprog_info;
3082 struct bpf_insn *insn = env->prog->insnsi;
3083 int insn_cnt = env->prog->len;
3084
3085 /* now check that all jumps are within the same subprog */
3086 subprog_start = subprog[cur_subprog].start;
3087 subprog_end = subprog[cur_subprog + 1].start;
3088 for (i = 0; i < insn_cnt; i++) {
3089 u8 code = insn[i].code;
3090
3091 if (code == (BPF_JMP | BPF_CALL) &&
3092 insn[i].src_reg == 0 &&
3093 insn[i].imm == BPF_FUNC_tail_call) {
3094 subprog[cur_subprog].has_tail_call = true;
3095 subprog[cur_subprog].tail_call_reachable = true;
3096 }
3097 if (BPF_CLASS(code) == BPF_LD &&
3098 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3099 subprog[cur_subprog].has_ld_abs = true;
3100 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3101 goto next;
3102 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3103 goto next;
3104 if (code == (BPF_JMP32 | BPF_JA))
3105 off = i + insn[i].imm + 1;
3106 else
3107 off = i + insn[i].off + 1;
3108 if (off < subprog_start || off >= subprog_end) {
3109 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3110 return -EINVAL;
3111 }
3112 next:
3113 if (i == subprog_end - 1) {
3114 /* to avoid fall-through from one subprog into another
3115 * the last insn of the subprog should be either exit
3116 * or unconditional jump back
3117 */
3118 if (code != (BPF_JMP | BPF_EXIT) &&
3119 code != (BPF_JMP32 | BPF_JA) &&
3120 code != (BPF_JMP | BPF_JA)) {
3121 verbose(env, "last insn is not an exit or jmp\n");
3122 return -EINVAL;
3123 }
3124 subprog_start = subprog_end;
3125 cur_subprog++;
3126 if (cur_subprog < env->subprog_cnt)
3127 subprog_end = subprog[cur_subprog + 1].start;
3128 }
3129 }
3130 return 0;
3131 }
3132
3133 /* Parentage chain of this register (or stack slot) should take care of all
3134 * issues like callee-saved registers, stack slot allocation time, etc.
3135 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3136 static int mark_reg_read(struct bpf_verifier_env *env,
3137 const struct bpf_reg_state *state,
3138 struct bpf_reg_state *parent, u8 flag)
3139 {
3140 bool writes = parent == state->parent; /* Observe write marks */
3141 int cnt = 0;
3142
3143 while (parent) {
3144 /* if read wasn't screened by an earlier write ... */
3145 if (writes && state->live & REG_LIVE_WRITTEN)
3146 break;
3147 if (parent->live & REG_LIVE_DONE) {
3148 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3149 reg_type_str(env, parent->type),
3150 parent->var_off.value, parent->off);
3151 return -EFAULT;
3152 }
3153 /* The first condition is more likely to be true than the
3154 * second, checked it first.
3155 */
3156 if ((parent->live & REG_LIVE_READ) == flag ||
3157 parent->live & REG_LIVE_READ64)
3158 /* The parentage chain never changes and
3159 * this parent was already marked as LIVE_READ.
3160 * There is no need to keep walking the chain again and
3161 * keep re-marking all parents as LIVE_READ.
3162 * This case happens when the same register is read
3163 * multiple times without writes into it in-between.
3164 * Also, if parent has the stronger REG_LIVE_READ64 set,
3165 * then no need to set the weak REG_LIVE_READ32.
3166 */
3167 break;
3168 /* ... then we depend on parent's value */
3169 parent->live |= flag;
3170 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3171 if (flag == REG_LIVE_READ64)
3172 parent->live &= ~REG_LIVE_READ32;
3173 state = parent;
3174 parent = state->parent;
3175 writes = true;
3176 cnt++;
3177 }
3178
3179 if (env->longest_mark_read_walk < cnt)
3180 env->longest_mark_read_walk = cnt;
3181 return 0;
3182 }
3183
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3184 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3185 {
3186 struct bpf_func_state *state = func(env, reg);
3187 int spi, ret;
3188
3189 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3190 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3191 * check_kfunc_call.
3192 */
3193 if (reg->type == CONST_PTR_TO_DYNPTR)
3194 return 0;
3195 spi = dynptr_get_spi(env, reg);
3196 if (spi < 0)
3197 return spi;
3198 /* Caller ensures dynptr is valid and initialized, which means spi is in
3199 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3200 * read.
3201 */
3202 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3203 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3204 if (ret)
3205 return ret;
3206 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3207 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3208 }
3209
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3210 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3211 int spi, int nr_slots)
3212 {
3213 struct bpf_func_state *state = func(env, reg);
3214 int err, i;
3215
3216 for (i = 0; i < nr_slots; i++) {
3217 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3218
3219 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3220 if (err)
3221 return err;
3222
3223 mark_stack_slot_scratched(env, spi - i);
3224 }
3225
3226 return 0;
3227 }
3228
3229 /* This function is supposed to be used by the following 32-bit optimization
3230 * code only. It returns TRUE if the source or destination register operates
3231 * on 64-bit, otherwise return FALSE.
3232 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3233 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3234 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3235 {
3236 u8 code, class, op;
3237
3238 code = insn->code;
3239 class = BPF_CLASS(code);
3240 op = BPF_OP(code);
3241 if (class == BPF_JMP) {
3242 /* BPF_EXIT for "main" will reach here. Return TRUE
3243 * conservatively.
3244 */
3245 if (op == BPF_EXIT)
3246 return true;
3247 if (op == BPF_CALL) {
3248 /* BPF to BPF call will reach here because of marking
3249 * caller saved clobber with DST_OP_NO_MARK for which we
3250 * don't care the register def because they are anyway
3251 * marked as NOT_INIT already.
3252 */
3253 if (insn->src_reg == BPF_PSEUDO_CALL)
3254 return false;
3255 /* Helper call will reach here because of arg type
3256 * check, conservatively return TRUE.
3257 */
3258 if (t == SRC_OP)
3259 return true;
3260
3261 return false;
3262 }
3263 }
3264
3265 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3266 return false;
3267
3268 if (class == BPF_ALU64 || class == BPF_JMP ||
3269 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3270 return true;
3271
3272 if (class == BPF_ALU || class == BPF_JMP32)
3273 return false;
3274
3275 if (class == BPF_LDX) {
3276 if (t != SRC_OP)
3277 return BPF_SIZE(code) == BPF_DW;
3278 /* LDX source must be ptr. */
3279 return true;
3280 }
3281
3282 if (class == BPF_STX) {
3283 /* BPF_STX (including atomic variants) has multiple source
3284 * operands, one of which is a ptr. Check whether the caller is
3285 * asking about it.
3286 */
3287 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3288 return true;
3289 return BPF_SIZE(code) == BPF_DW;
3290 }
3291
3292 if (class == BPF_LD) {
3293 u8 mode = BPF_MODE(code);
3294
3295 /* LD_IMM64 */
3296 if (mode == BPF_IMM)
3297 return true;
3298
3299 /* Both LD_IND and LD_ABS return 32-bit data. */
3300 if (t != SRC_OP)
3301 return false;
3302
3303 /* Implicit ctx ptr. */
3304 if (regno == BPF_REG_6)
3305 return true;
3306
3307 /* Explicit source could be any width. */
3308 return true;
3309 }
3310
3311 if (class == BPF_ST)
3312 /* The only source register for BPF_ST is a ptr. */
3313 return true;
3314
3315 /* Conservatively return true at default. */
3316 return true;
3317 }
3318
3319 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3320 static int insn_def_regno(const struct bpf_insn *insn)
3321 {
3322 switch (BPF_CLASS(insn->code)) {
3323 case BPF_JMP:
3324 case BPF_JMP32:
3325 case BPF_ST:
3326 return -1;
3327 case BPF_STX:
3328 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3329 (insn->imm & BPF_FETCH)) {
3330 if (insn->imm == BPF_CMPXCHG)
3331 return BPF_REG_0;
3332 else
3333 return insn->src_reg;
3334 } else {
3335 return -1;
3336 }
3337 default:
3338 return insn->dst_reg;
3339 }
3340 }
3341
3342 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3343 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3344 {
3345 int dst_reg = insn_def_regno(insn);
3346
3347 if (dst_reg == -1)
3348 return false;
3349
3350 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3351 }
3352
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3353 static void mark_insn_zext(struct bpf_verifier_env *env,
3354 struct bpf_reg_state *reg)
3355 {
3356 s32 def_idx = reg->subreg_def;
3357
3358 if (def_idx == DEF_NOT_SUBREG)
3359 return;
3360
3361 env->insn_aux_data[def_idx - 1].zext_dst = true;
3362 /* The dst will be zero extended, so won't be sub-register anymore. */
3363 reg->subreg_def = DEF_NOT_SUBREG;
3364 }
3365
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3366 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3367 enum reg_arg_type t)
3368 {
3369 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3370 struct bpf_reg_state *reg;
3371 bool rw64;
3372
3373 if (regno >= MAX_BPF_REG) {
3374 verbose(env, "R%d is invalid\n", regno);
3375 return -EINVAL;
3376 }
3377
3378 mark_reg_scratched(env, regno);
3379
3380 reg = ®s[regno];
3381 rw64 = is_reg64(env, insn, regno, reg, t);
3382 if (t == SRC_OP) {
3383 /* check whether register used as source operand can be read */
3384 if (reg->type == NOT_INIT) {
3385 verbose(env, "R%d !read_ok\n", regno);
3386 return -EACCES;
3387 }
3388 /* We don't need to worry about FP liveness because it's read-only */
3389 if (regno == BPF_REG_FP)
3390 return 0;
3391
3392 if (rw64)
3393 mark_insn_zext(env, reg);
3394
3395 return mark_reg_read(env, reg, reg->parent,
3396 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3397 } else {
3398 /* check whether register used as dest operand can be written to */
3399 if (regno == BPF_REG_FP) {
3400 verbose(env, "frame pointer is read only\n");
3401 return -EACCES;
3402 }
3403 reg->live |= REG_LIVE_WRITTEN;
3404 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3405 if (t == DST_OP)
3406 mark_reg_unknown(env, regs, regno);
3407 }
3408 return 0;
3409 }
3410
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3411 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3412 enum reg_arg_type t)
3413 {
3414 struct bpf_verifier_state *vstate = env->cur_state;
3415 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3416
3417 return __check_reg_arg(env, state->regs, regno, t);
3418 }
3419
mark_jmp_point(struct bpf_verifier_env * env,int idx)3420 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3421 {
3422 env->insn_aux_data[idx].jmp_point = true;
3423 }
3424
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3425 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3426 {
3427 return env->insn_aux_data[insn_idx].jmp_point;
3428 }
3429
3430 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)3431 static int push_jmp_history(struct bpf_verifier_env *env,
3432 struct bpf_verifier_state *cur)
3433 {
3434 u32 cnt = cur->jmp_history_cnt;
3435 struct bpf_idx_pair *p;
3436 size_t alloc_size;
3437
3438 if (!is_jmp_point(env, env->insn_idx))
3439 return 0;
3440
3441 cnt++;
3442 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3443 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3444 if (!p)
3445 return -ENOMEM;
3446 p[cnt - 1].idx = env->insn_idx;
3447 p[cnt - 1].prev_idx = env->prev_insn_idx;
3448 cur->jmp_history = p;
3449 cur->jmp_history_cnt = cnt;
3450 return 0;
3451 }
3452
3453 /* Backtrack one insn at a time. If idx is not at the top of recorded
3454 * history then previous instruction came from straight line execution.
3455 * Return -ENOENT if we exhausted all instructions within given state.
3456 *
3457 * It's legal to have a bit of a looping with the same starting and ending
3458 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3459 * instruction index is the same as state's first_idx doesn't mean we are
3460 * done. If there is still some jump history left, we should keep going. We
3461 * need to take into account that we might have a jump history between given
3462 * state's parent and itself, due to checkpointing. In this case, we'll have
3463 * history entry recording a jump from last instruction of parent state and
3464 * first instruction of given state.
3465 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3466 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3467 u32 *history)
3468 {
3469 u32 cnt = *history;
3470
3471 if (i == st->first_insn_idx) {
3472 if (cnt == 0)
3473 return -ENOENT;
3474 if (cnt == 1 && st->jmp_history[0].idx == i)
3475 return -ENOENT;
3476 }
3477
3478 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3479 i = st->jmp_history[cnt - 1].prev_idx;
3480 (*history)--;
3481 } else {
3482 i--;
3483 }
3484 return i;
3485 }
3486
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3487 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3488 {
3489 const struct btf_type *func;
3490 struct btf *desc_btf;
3491
3492 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3493 return NULL;
3494
3495 desc_btf = find_kfunc_desc_btf(data, insn->off);
3496 if (IS_ERR(desc_btf))
3497 return "<error>";
3498
3499 func = btf_type_by_id(desc_btf, insn->imm);
3500 return btf_name_by_offset(desc_btf, func->name_off);
3501 }
3502
bt_init(struct backtrack_state * bt,u32 frame)3503 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3504 {
3505 bt->frame = frame;
3506 }
3507
bt_reset(struct backtrack_state * bt)3508 static inline void bt_reset(struct backtrack_state *bt)
3509 {
3510 struct bpf_verifier_env *env = bt->env;
3511
3512 memset(bt, 0, sizeof(*bt));
3513 bt->env = env;
3514 }
3515
bt_empty(struct backtrack_state * bt)3516 static inline u32 bt_empty(struct backtrack_state *bt)
3517 {
3518 u64 mask = 0;
3519 int i;
3520
3521 for (i = 0; i <= bt->frame; i++)
3522 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3523
3524 return mask == 0;
3525 }
3526
bt_subprog_enter(struct backtrack_state * bt)3527 static inline int bt_subprog_enter(struct backtrack_state *bt)
3528 {
3529 if (bt->frame == MAX_CALL_FRAMES - 1) {
3530 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3531 WARN_ONCE(1, "verifier backtracking bug");
3532 return -EFAULT;
3533 }
3534 bt->frame++;
3535 return 0;
3536 }
3537
bt_subprog_exit(struct backtrack_state * bt)3538 static inline int bt_subprog_exit(struct backtrack_state *bt)
3539 {
3540 if (bt->frame == 0) {
3541 verbose(bt->env, "BUG subprog exit from frame 0\n");
3542 WARN_ONCE(1, "verifier backtracking bug");
3543 return -EFAULT;
3544 }
3545 bt->frame--;
3546 return 0;
3547 }
3548
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3549 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3550 {
3551 bt->reg_masks[frame] |= 1 << reg;
3552 }
3553
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3554 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3555 {
3556 bt->reg_masks[frame] &= ~(1 << reg);
3557 }
3558
bt_set_reg(struct backtrack_state * bt,u32 reg)3559 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3560 {
3561 bt_set_frame_reg(bt, bt->frame, reg);
3562 }
3563
bt_clear_reg(struct backtrack_state * bt,u32 reg)3564 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3565 {
3566 bt_clear_frame_reg(bt, bt->frame, reg);
3567 }
3568
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3569 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3570 {
3571 bt->stack_masks[frame] |= 1ull << slot;
3572 }
3573
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3574 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3575 {
3576 bt->stack_masks[frame] &= ~(1ull << slot);
3577 }
3578
bt_set_slot(struct backtrack_state * bt,u32 slot)3579 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3580 {
3581 bt_set_frame_slot(bt, bt->frame, slot);
3582 }
3583
bt_clear_slot(struct backtrack_state * bt,u32 slot)3584 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3585 {
3586 bt_clear_frame_slot(bt, bt->frame, slot);
3587 }
3588
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3589 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3590 {
3591 return bt->reg_masks[frame];
3592 }
3593
bt_reg_mask(struct backtrack_state * bt)3594 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3595 {
3596 return bt->reg_masks[bt->frame];
3597 }
3598
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3599 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3600 {
3601 return bt->stack_masks[frame];
3602 }
3603
bt_stack_mask(struct backtrack_state * bt)3604 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3605 {
3606 return bt->stack_masks[bt->frame];
3607 }
3608
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3609 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3610 {
3611 return bt->reg_masks[bt->frame] & (1 << reg);
3612 }
3613
bt_is_slot_set(struct backtrack_state * bt,u32 slot)3614 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3615 {
3616 return bt->stack_masks[bt->frame] & (1ull << slot);
3617 }
3618
3619 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3620 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3621 {
3622 DECLARE_BITMAP(mask, 64);
3623 bool first = true;
3624 int i, n;
3625
3626 buf[0] = '\0';
3627
3628 bitmap_from_u64(mask, reg_mask);
3629 for_each_set_bit(i, mask, 32) {
3630 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3631 first = false;
3632 buf += n;
3633 buf_sz -= n;
3634 if (buf_sz < 0)
3635 break;
3636 }
3637 }
3638 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3639 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3640 {
3641 DECLARE_BITMAP(mask, 64);
3642 bool first = true;
3643 int i, n;
3644
3645 buf[0] = '\0';
3646
3647 bitmap_from_u64(mask, stack_mask);
3648 for_each_set_bit(i, mask, 64) {
3649 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3650 first = false;
3651 buf += n;
3652 buf_sz -= n;
3653 if (buf_sz < 0)
3654 break;
3655 }
3656 }
3657
3658 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3659
3660 /* For given verifier state backtrack_insn() is called from the last insn to
3661 * the first insn. Its purpose is to compute a bitmask of registers and
3662 * stack slots that needs precision in the parent verifier state.
3663 *
3664 * @idx is an index of the instruction we are currently processing;
3665 * @subseq_idx is an index of the subsequent instruction that:
3666 * - *would be* executed next, if jump history is viewed in forward order;
3667 * - *was* processed previously during backtracking.
3668 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct backtrack_state * bt)3669 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3670 struct backtrack_state *bt)
3671 {
3672 const struct bpf_insn_cbs cbs = {
3673 .cb_call = disasm_kfunc_name,
3674 .cb_print = verbose,
3675 .private_data = env,
3676 };
3677 struct bpf_insn *insn = env->prog->insnsi + idx;
3678 u8 class = BPF_CLASS(insn->code);
3679 u8 opcode = BPF_OP(insn->code);
3680 u8 mode = BPF_MODE(insn->code);
3681 u32 dreg = insn->dst_reg;
3682 u32 sreg = insn->src_reg;
3683 u32 spi, i;
3684
3685 if (insn->code == 0)
3686 return 0;
3687 if (env->log.level & BPF_LOG_LEVEL2) {
3688 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3689 verbose(env, "mark_precise: frame%d: regs=%s ",
3690 bt->frame, env->tmp_str_buf);
3691 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3692 verbose(env, "stack=%s before ", env->tmp_str_buf);
3693 verbose(env, "%d: ", idx);
3694 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3695 }
3696
3697 if (class == BPF_ALU || class == BPF_ALU64) {
3698 if (!bt_is_reg_set(bt, dreg))
3699 return 0;
3700 if (opcode == BPF_END || opcode == BPF_NEG) {
3701 /* sreg is reserved and unused
3702 * dreg still need precision before this insn
3703 */
3704 return 0;
3705 } else if (opcode == BPF_MOV) {
3706 if (BPF_SRC(insn->code) == BPF_X) {
3707 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3708 * dreg needs precision after this insn
3709 * sreg needs precision before this insn
3710 */
3711 bt_clear_reg(bt, dreg);
3712 if (sreg != BPF_REG_FP)
3713 bt_set_reg(bt, sreg);
3714 } else {
3715 /* dreg = K
3716 * dreg needs precision after this insn.
3717 * Corresponding register is already marked
3718 * as precise=true in this verifier state.
3719 * No further markings in parent are necessary
3720 */
3721 bt_clear_reg(bt, dreg);
3722 }
3723 } else {
3724 if (BPF_SRC(insn->code) == BPF_X) {
3725 /* dreg += sreg
3726 * both dreg and sreg need precision
3727 * before this insn
3728 */
3729 if (sreg != BPF_REG_FP)
3730 bt_set_reg(bt, sreg);
3731 } /* else dreg += K
3732 * dreg still needs precision before this insn
3733 */
3734 }
3735 } else if (class == BPF_LDX) {
3736 if (!bt_is_reg_set(bt, dreg))
3737 return 0;
3738 bt_clear_reg(bt, dreg);
3739
3740 /* scalars can only be spilled into stack w/o losing precision.
3741 * Load from any other memory can be zero extended.
3742 * The desire to keep that precision is already indicated
3743 * by 'precise' mark in corresponding register of this state.
3744 * No further tracking necessary.
3745 */
3746 if (insn->src_reg != BPF_REG_FP)
3747 return 0;
3748
3749 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3750 * that [fp - off] slot contains scalar that needs to be
3751 * tracked with precision
3752 */
3753 spi = (-insn->off - 1) / BPF_REG_SIZE;
3754 if (spi >= 64) {
3755 verbose(env, "BUG spi %d\n", spi);
3756 WARN_ONCE(1, "verifier backtracking bug");
3757 return -EFAULT;
3758 }
3759 bt_set_slot(bt, spi);
3760 } else if (class == BPF_STX || class == BPF_ST) {
3761 if (bt_is_reg_set(bt, dreg))
3762 /* stx & st shouldn't be using _scalar_ dst_reg
3763 * to access memory. It means backtracking
3764 * encountered a case of pointer subtraction.
3765 */
3766 return -ENOTSUPP;
3767 /* scalars can only be spilled into stack */
3768 if (insn->dst_reg != BPF_REG_FP)
3769 return 0;
3770 spi = (-insn->off - 1) / BPF_REG_SIZE;
3771 if (spi >= 64) {
3772 verbose(env, "BUG spi %d\n", spi);
3773 WARN_ONCE(1, "verifier backtracking bug");
3774 return -EFAULT;
3775 }
3776 if (!bt_is_slot_set(bt, spi))
3777 return 0;
3778 bt_clear_slot(bt, spi);
3779 if (class == BPF_STX)
3780 bt_set_reg(bt, sreg);
3781 } else if (class == BPF_JMP || class == BPF_JMP32) {
3782 if (bpf_pseudo_call(insn)) {
3783 int subprog_insn_idx, subprog;
3784
3785 subprog_insn_idx = idx + insn->imm + 1;
3786 subprog = find_subprog(env, subprog_insn_idx);
3787 if (subprog < 0)
3788 return -EFAULT;
3789
3790 if (subprog_is_global(env, subprog)) {
3791 /* check that jump history doesn't have any
3792 * extra instructions from subprog; the next
3793 * instruction after call to global subprog
3794 * should be literally next instruction in
3795 * caller program
3796 */
3797 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3798 /* r1-r5 are invalidated after subprog call,
3799 * so for global func call it shouldn't be set
3800 * anymore
3801 */
3802 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3803 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3804 WARN_ONCE(1, "verifier backtracking bug");
3805 return -EFAULT;
3806 }
3807 /* global subprog always sets R0 */
3808 bt_clear_reg(bt, BPF_REG_0);
3809 return 0;
3810 } else {
3811 /* static subprog call instruction, which
3812 * means that we are exiting current subprog,
3813 * so only r1-r5 could be still requested as
3814 * precise, r0 and r6-r10 or any stack slot in
3815 * the current frame should be zero by now
3816 */
3817 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3818 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3819 WARN_ONCE(1, "verifier backtracking bug");
3820 return -EFAULT;
3821 }
3822 /* we don't track register spills perfectly,
3823 * so fallback to force-precise instead of failing */
3824 if (bt_stack_mask(bt) != 0)
3825 return -ENOTSUPP;
3826 /* propagate r1-r5 to the caller */
3827 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3828 if (bt_is_reg_set(bt, i)) {
3829 bt_clear_reg(bt, i);
3830 bt_set_frame_reg(bt, bt->frame - 1, i);
3831 }
3832 }
3833 if (bt_subprog_exit(bt))
3834 return -EFAULT;
3835 return 0;
3836 }
3837 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3838 /* exit from callback subprog to callback-calling helper or
3839 * kfunc call. Use idx/subseq_idx check to discern it from
3840 * straight line code backtracking.
3841 * Unlike the subprog call handling above, we shouldn't
3842 * propagate precision of r1-r5 (if any requested), as they are
3843 * not actually arguments passed directly to callback subprogs
3844 */
3845 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3846 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3847 WARN_ONCE(1, "verifier backtracking bug");
3848 return -EFAULT;
3849 }
3850 if (bt_stack_mask(bt) != 0)
3851 return -ENOTSUPP;
3852 /* clear r1-r5 in callback subprog's mask */
3853 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3854 bt_clear_reg(bt, i);
3855 if (bt_subprog_exit(bt))
3856 return -EFAULT;
3857 return 0;
3858 } else if (opcode == BPF_CALL) {
3859 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3860 * catch this error later. Make backtracking conservative
3861 * with ENOTSUPP.
3862 */
3863 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3864 return -ENOTSUPP;
3865 /* regular helper call sets R0 */
3866 bt_clear_reg(bt, BPF_REG_0);
3867 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3868 /* if backtracing was looking for registers R1-R5
3869 * they should have been found already.
3870 */
3871 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3872 WARN_ONCE(1, "verifier backtracking bug");
3873 return -EFAULT;
3874 }
3875 } else if (opcode == BPF_EXIT) {
3876 bool r0_precise;
3877
3878 /* Backtracking to a nested function call, 'idx' is a part of
3879 * the inner frame 'subseq_idx' is a part of the outer frame.
3880 * In case of a regular function call, instructions giving
3881 * precision to registers R1-R5 should have been found already.
3882 * In case of a callback, it is ok to have R1-R5 marked for
3883 * backtracking, as these registers are set by the function
3884 * invoking callback.
3885 */
3886 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3887 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3888 bt_clear_reg(bt, i);
3889 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3890 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3891 WARN_ONCE(1, "verifier backtracking bug");
3892 return -EFAULT;
3893 }
3894
3895 /* BPF_EXIT in subprog or callback always returns
3896 * right after the call instruction, so by checking
3897 * whether the instruction at subseq_idx-1 is subprog
3898 * call or not we can distinguish actual exit from
3899 * *subprog* from exit from *callback*. In the former
3900 * case, we need to propagate r0 precision, if
3901 * necessary. In the former we never do that.
3902 */
3903 r0_precise = subseq_idx - 1 >= 0 &&
3904 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3905 bt_is_reg_set(bt, BPF_REG_0);
3906
3907 bt_clear_reg(bt, BPF_REG_0);
3908 if (bt_subprog_enter(bt))
3909 return -EFAULT;
3910
3911 if (r0_precise)
3912 bt_set_reg(bt, BPF_REG_0);
3913 /* r6-r9 and stack slots will stay set in caller frame
3914 * bitmasks until we return back from callee(s)
3915 */
3916 return 0;
3917 } else if (BPF_SRC(insn->code) == BPF_X) {
3918 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3919 return 0;
3920 /* dreg <cond> sreg
3921 * Both dreg and sreg need precision before
3922 * this insn. If only sreg was marked precise
3923 * before it would be equally necessary to
3924 * propagate it to dreg.
3925 */
3926 bt_set_reg(bt, dreg);
3927 bt_set_reg(bt, sreg);
3928 /* else dreg <cond> K
3929 * Only dreg still needs precision before
3930 * this insn, so for the K-based conditional
3931 * there is nothing new to be marked.
3932 */
3933 }
3934 } else if (class == BPF_LD) {
3935 if (!bt_is_reg_set(bt, dreg))
3936 return 0;
3937 bt_clear_reg(bt, dreg);
3938 /* It's ld_imm64 or ld_abs or ld_ind.
3939 * For ld_imm64 no further tracking of precision
3940 * into parent is necessary
3941 */
3942 if (mode == BPF_IND || mode == BPF_ABS)
3943 /* to be analyzed */
3944 return -ENOTSUPP;
3945 }
3946 return 0;
3947 }
3948
3949 /* the scalar precision tracking algorithm:
3950 * . at the start all registers have precise=false.
3951 * . scalar ranges are tracked as normal through alu and jmp insns.
3952 * . once precise value of the scalar register is used in:
3953 * . ptr + scalar alu
3954 * . if (scalar cond K|scalar)
3955 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3956 * backtrack through the verifier states and mark all registers and
3957 * stack slots with spilled constants that these scalar regisers
3958 * should be precise.
3959 * . during state pruning two registers (or spilled stack slots)
3960 * are equivalent if both are not precise.
3961 *
3962 * Note the verifier cannot simply walk register parentage chain,
3963 * since many different registers and stack slots could have been
3964 * used to compute single precise scalar.
3965 *
3966 * The approach of starting with precise=true for all registers and then
3967 * backtrack to mark a register as not precise when the verifier detects
3968 * that program doesn't care about specific value (e.g., when helper
3969 * takes register as ARG_ANYTHING parameter) is not safe.
3970 *
3971 * It's ok to walk single parentage chain of the verifier states.
3972 * It's possible that this backtracking will go all the way till 1st insn.
3973 * All other branches will be explored for needing precision later.
3974 *
3975 * The backtracking needs to deal with cases like:
3976 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3977 * r9 -= r8
3978 * r5 = r9
3979 * if r5 > 0x79f goto pc+7
3980 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3981 * r5 += 1
3982 * ...
3983 * call bpf_perf_event_output#25
3984 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3985 *
3986 * and this case:
3987 * r6 = 1
3988 * call foo // uses callee's r6 inside to compute r0
3989 * r0 += r6
3990 * if r0 == 0 goto
3991 *
3992 * to track above reg_mask/stack_mask needs to be independent for each frame.
3993 *
3994 * Also if parent's curframe > frame where backtracking started,
3995 * the verifier need to mark registers in both frames, otherwise callees
3996 * may incorrectly prune callers. This is similar to
3997 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3998 *
3999 * For now backtracking falls back into conservative marking.
4000 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4001 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4002 struct bpf_verifier_state *st)
4003 {
4004 struct bpf_func_state *func;
4005 struct bpf_reg_state *reg;
4006 int i, j;
4007
4008 if (env->log.level & BPF_LOG_LEVEL2) {
4009 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4010 st->curframe);
4011 }
4012
4013 /* big hammer: mark all scalars precise in this path.
4014 * pop_stack may still get !precise scalars.
4015 * We also skip current state and go straight to first parent state,
4016 * because precision markings in current non-checkpointed state are
4017 * not needed. See why in the comment in __mark_chain_precision below.
4018 */
4019 for (st = st->parent; st; st = st->parent) {
4020 for (i = 0; i <= st->curframe; i++) {
4021 func = st->frame[i];
4022 for (j = 0; j < BPF_REG_FP; j++) {
4023 reg = &func->regs[j];
4024 if (reg->type != SCALAR_VALUE || reg->precise)
4025 continue;
4026 reg->precise = true;
4027 if (env->log.level & BPF_LOG_LEVEL2) {
4028 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4029 i, j);
4030 }
4031 }
4032 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4033 if (!is_spilled_reg(&func->stack[j]))
4034 continue;
4035 reg = &func->stack[j].spilled_ptr;
4036 if (reg->type != SCALAR_VALUE || reg->precise)
4037 continue;
4038 reg->precise = true;
4039 if (env->log.level & BPF_LOG_LEVEL2) {
4040 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4041 i, -(j + 1) * 8);
4042 }
4043 }
4044 }
4045 }
4046 }
4047
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4048 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4049 {
4050 struct bpf_func_state *func;
4051 struct bpf_reg_state *reg;
4052 int i, j;
4053
4054 for (i = 0; i <= st->curframe; i++) {
4055 func = st->frame[i];
4056 for (j = 0; j < BPF_REG_FP; j++) {
4057 reg = &func->regs[j];
4058 if (reg->type != SCALAR_VALUE)
4059 continue;
4060 reg->precise = false;
4061 }
4062 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4063 if (!is_spilled_reg(&func->stack[j]))
4064 continue;
4065 reg = &func->stack[j].spilled_ptr;
4066 if (reg->type != SCALAR_VALUE)
4067 continue;
4068 reg->precise = false;
4069 }
4070 }
4071 }
4072
idset_contains(struct bpf_idset * s,u32 id)4073 static bool idset_contains(struct bpf_idset *s, u32 id)
4074 {
4075 u32 i;
4076
4077 for (i = 0; i < s->count; ++i)
4078 if (s->ids[i] == id)
4079 return true;
4080
4081 return false;
4082 }
4083
idset_push(struct bpf_idset * s,u32 id)4084 static int idset_push(struct bpf_idset *s, u32 id)
4085 {
4086 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4087 return -EFAULT;
4088 s->ids[s->count++] = id;
4089 return 0;
4090 }
4091
idset_reset(struct bpf_idset * s)4092 static void idset_reset(struct bpf_idset *s)
4093 {
4094 s->count = 0;
4095 }
4096
4097 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4098 * Mark all registers with these IDs as precise.
4099 */
mark_precise_scalar_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4100 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4101 {
4102 struct bpf_idset *precise_ids = &env->idset_scratch;
4103 struct backtrack_state *bt = &env->bt;
4104 struct bpf_func_state *func;
4105 struct bpf_reg_state *reg;
4106 DECLARE_BITMAP(mask, 64);
4107 int i, fr;
4108
4109 idset_reset(precise_ids);
4110
4111 for (fr = bt->frame; fr >= 0; fr--) {
4112 func = st->frame[fr];
4113
4114 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4115 for_each_set_bit(i, mask, 32) {
4116 reg = &func->regs[i];
4117 if (!reg->id || reg->type != SCALAR_VALUE)
4118 continue;
4119 if (idset_push(precise_ids, reg->id))
4120 return -EFAULT;
4121 }
4122
4123 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4124 for_each_set_bit(i, mask, 64) {
4125 if (i >= func->allocated_stack / BPF_REG_SIZE)
4126 break;
4127 if (!is_spilled_scalar_reg(&func->stack[i]))
4128 continue;
4129 reg = &func->stack[i].spilled_ptr;
4130 if (!reg->id)
4131 continue;
4132 if (idset_push(precise_ids, reg->id))
4133 return -EFAULT;
4134 }
4135 }
4136
4137 for (fr = 0; fr <= st->curframe; ++fr) {
4138 func = st->frame[fr];
4139
4140 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4141 reg = &func->regs[i];
4142 if (!reg->id)
4143 continue;
4144 if (!idset_contains(precise_ids, reg->id))
4145 continue;
4146 bt_set_frame_reg(bt, fr, i);
4147 }
4148 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4149 if (!is_spilled_scalar_reg(&func->stack[i]))
4150 continue;
4151 reg = &func->stack[i].spilled_ptr;
4152 if (!reg->id)
4153 continue;
4154 if (!idset_contains(precise_ids, reg->id))
4155 continue;
4156 bt_set_frame_slot(bt, fr, i);
4157 }
4158 }
4159
4160 return 0;
4161 }
4162
4163 /*
4164 * __mark_chain_precision() backtracks BPF program instruction sequence and
4165 * chain of verifier states making sure that register *regno* (if regno >= 0)
4166 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4167 * SCALARS, as well as any other registers and slots that contribute to
4168 * a tracked state of given registers/stack slots, depending on specific BPF
4169 * assembly instructions (see backtrack_insns() for exact instruction handling
4170 * logic). This backtracking relies on recorded jmp_history and is able to
4171 * traverse entire chain of parent states. This process ends only when all the
4172 * necessary registers/slots and their transitive dependencies are marked as
4173 * precise.
4174 *
4175 * One important and subtle aspect is that precise marks *do not matter* in
4176 * the currently verified state (current state). It is important to understand
4177 * why this is the case.
4178 *
4179 * First, note that current state is the state that is not yet "checkpointed",
4180 * i.e., it is not yet put into env->explored_states, and it has no children
4181 * states as well. It's ephemeral, and can end up either a) being discarded if
4182 * compatible explored state is found at some point or BPF_EXIT instruction is
4183 * reached or b) checkpointed and put into env->explored_states, branching out
4184 * into one or more children states.
4185 *
4186 * In the former case, precise markings in current state are completely
4187 * ignored by state comparison code (see regsafe() for details). Only
4188 * checkpointed ("old") state precise markings are important, and if old
4189 * state's register/slot is precise, regsafe() assumes current state's
4190 * register/slot as precise and checks value ranges exactly and precisely. If
4191 * states turn out to be compatible, current state's necessary precise
4192 * markings and any required parent states' precise markings are enforced
4193 * after the fact with propagate_precision() logic, after the fact. But it's
4194 * important to realize that in this case, even after marking current state
4195 * registers/slots as precise, we immediately discard current state. So what
4196 * actually matters is any of the precise markings propagated into current
4197 * state's parent states, which are always checkpointed (due to b) case above).
4198 * As such, for scenario a) it doesn't matter if current state has precise
4199 * markings set or not.
4200 *
4201 * Now, for the scenario b), checkpointing and forking into child(ren)
4202 * state(s). Note that before current state gets to checkpointing step, any
4203 * processed instruction always assumes precise SCALAR register/slot
4204 * knowledge: if precise value or range is useful to prune jump branch, BPF
4205 * verifier takes this opportunity enthusiastically. Similarly, when
4206 * register's value is used to calculate offset or memory address, exact
4207 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4208 * what we mentioned above about state comparison ignoring precise markings
4209 * during state comparison, BPF verifier ignores and also assumes precise
4210 * markings *at will* during instruction verification process. But as verifier
4211 * assumes precision, it also propagates any precision dependencies across
4212 * parent states, which are not yet finalized, so can be further restricted
4213 * based on new knowledge gained from restrictions enforced by their children
4214 * states. This is so that once those parent states are finalized, i.e., when
4215 * they have no more active children state, state comparison logic in
4216 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4217 * required for correctness.
4218 *
4219 * To build a bit more intuition, note also that once a state is checkpointed,
4220 * the path we took to get to that state is not important. This is crucial
4221 * property for state pruning. When state is checkpointed and finalized at
4222 * some instruction index, it can be correctly and safely used to "short
4223 * circuit" any *compatible* state that reaches exactly the same instruction
4224 * index. I.e., if we jumped to that instruction from a completely different
4225 * code path than original finalized state was derived from, it doesn't
4226 * matter, current state can be discarded because from that instruction
4227 * forward having a compatible state will ensure we will safely reach the
4228 * exit. States describe preconditions for further exploration, but completely
4229 * forget the history of how we got here.
4230 *
4231 * This also means that even if we needed precise SCALAR range to get to
4232 * finalized state, but from that point forward *that same* SCALAR register is
4233 * never used in a precise context (i.e., it's precise value is not needed for
4234 * correctness), it's correct and safe to mark such register as "imprecise"
4235 * (i.e., precise marking set to false). This is what we rely on when we do
4236 * not set precise marking in current state. If no child state requires
4237 * precision for any given SCALAR register, it's safe to dictate that it can
4238 * be imprecise. If any child state does require this register to be precise,
4239 * we'll mark it precise later retroactively during precise markings
4240 * propagation from child state to parent states.
4241 *
4242 * Skipping precise marking setting in current state is a mild version of
4243 * relying on the above observation. But we can utilize this property even
4244 * more aggressively by proactively forgetting any precise marking in the
4245 * current state (which we inherited from the parent state), right before we
4246 * checkpoint it and branch off into new child state. This is done by
4247 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4248 * finalized states which help in short circuiting more future states.
4249 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4250 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4251 {
4252 struct backtrack_state *bt = &env->bt;
4253 struct bpf_verifier_state *st = env->cur_state;
4254 int first_idx = st->first_insn_idx;
4255 int last_idx = env->insn_idx;
4256 int subseq_idx = -1;
4257 struct bpf_func_state *func;
4258 struct bpf_reg_state *reg;
4259 bool skip_first = true;
4260 int i, fr, err;
4261
4262 if (!env->bpf_capable)
4263 return 0;
4264
4265 /* set frame number from which we are starting to backtrack */
4266 bt_init(bt, env->cur_state->curframe);
4267
4268 /* Do sanity checks against current state of register and/or stack
4269 * slot, but don't set precise flag in current state, as precision
4270 * tracking in the current state is unnecessary.
4271 */
4272 func = st->frame[bt->frame];
4273 if (regno >= 0) {
4274 reg = &func->regs[regno];
4275 if (reg->type != SCALAR_VALUE) {
4276 WARN_ONCE(1, "backtracing misuse");
4277 return -EFAULT;
4278 }
4279 bt_set_reg(bt, regno);
4280 }
4281
4282 if (bt_empty(bt))
4283 return 0;
4284
4285 for (;;) {
4286 DECLARE_BITMAP(mask, 64);
4287 u32 history = st->jmp_history_cnt;
4288
4289 if (env->log.level & BPF_LOG_LEVEL2) {
4290 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4291 bt->frame, last_idx, first_idx, subseq_idx);
4292 }
4293
4294 /* If some register with scalar ID is marked as precise,
4295 * make sure that all registers sharing this ID are also precise.
4296 * This is needed to estimate effect of find_equal_scalars().
4297 * Do this at the last instruction of each state,
4298 * bpf_reg_state::id fields are valid for these instructions.
4299 *
4300 * Allows to track precision in situation like below:
4301 *
4302 * r2 = unknown value
4303 * ...
4304 * --- state #0 ---
4305 * ...
4306 * r1 = r2 // r1 and r2 now share the same ID
4307 * ...
4308 * --- state #1 {r1.id = A, r2.id = A} ---
4309 * ...
4310 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4311 * ...
4312 * --- state #2 {r1.id = A, r2.id = A} ---
4313 * r3 = r10
4314 * r3 += r1 // need to mark both r1 and r2
4315 */
4316 if (mark_precise_scalar_ids(env, st))
4317 return -EFAULT;
4318
4319 if (last_idx < 0) {
4320 /* we are at the entry into subprog, which
4321 * is expected for global funcs, but only if
4322 * requested precise registers are R1-R5
4323 * (which are global func's input arguments)
4324 */
4325 if (st->curframe == 0 &&
4326 st->frame[0]->subprogno > 0 &&
4327 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4328 bt_stack_mask(bt) == 0 &&
4329 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4330 bitmap_from_u64(mask, bt_reg_mask(bt));
4331 for_each_set_bit(i, mask, 32) {
4332 reg = &st->frame[0]->regs[i];
4333 bt_clear_reg(bt, i);
4334 if (reg->type == SCALAR_VALUE)
4335 reg->precise = true;
4336 }
4337 return 0;
4338 }
4339
4340 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4341 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4342 WARN_ONCE(1, "verifier backtracking bug");
4343 return -EFAULT;
4344 }
4345
4346 for (i = last_idx;;) {
4347 if (skip_first) {
4348 err = 0;
4349 skip_first = false;
4350 } else {
4351 err = backtrack_insn(env, i, subseq_idx, bt);
4352 }
4353 if (err == -ENOTSUPP) {
4354 mark_all_scalars_precise(env, env->cur_state);
4355 bt_reset(bt);
4356 return 0;
4357 } else if (err) {
4358 return err;
4359 }
4360 if (bt_empty(bt))
4361 /* Found assignment(s) into tracked register in this state.
4362 * Since this state is already marked, just return.
4363 * Nothing to be tracked further in the parent state.
4364 */
4365 return 0;
4366 subseq_idx = i;
4367 i = get_prev_insn_idx(st, i, &history);
4368 if (i == -ENOENT)
4369 break;
4370 if (i >= env->prog->len) {
4371 /* This can happen if backtracking reached insn 0
4372 * and there are still reg_mask or stack_mask
4373 * to backtrack.
4374 * It means the backtracking missed the spot where
4375 * particular register was initialized with a constant.
4376 */
4377 verbose(env, "BUG backtracking idx %d\n", i);
4378 WARN_ONCE(1, "verifier backtracking bug");
4379 return -EFAULT;
4380 }
4381 }
4382 st = st->parent;
4383 if (!st)
4384 break;
4385
4386 for (fr = bt->frame; fr >= 0; fr--) {
4387 func = st->frame[fr];
4388 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4389 for_each_set_bit(i, mask, 32) {
4390 reg = &func->regs[i];
4391 if (reg->type != SCALAR_VALUE) {
4392 bt_clear_frame_reg(bt, fr, i);
4393 continue;
4394 }
4395 if (reg->precise)
4396 bt_clear_frame_reg(bt, fr, i);
4397 else
4398 reg->precise = true;
4399 }
4400
4401 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4402 for_each_set_bit(i, mask, 64) {
4403 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4404 /* the sequence of instructions:
4405 * 2: (bf) r3 = r10
4406 * 3: (7b) *(u64 *)(r3 -8) = r0
4407 * 4: (79) r4 = *(u64 *)(r10 -8)
4408 * doesn't contain jmps. It's backtracked
4409 * as a single block.
4410 * During backtracking insn 3 is not recognized as
4411 * stack access, so at the end of backtracking
4412 * stack slot fp-8 is still marked in stack_mask.
4413 * However the parent state may not have accessed
4414 * fp-8 and it's "unallocated" stack space.
4415 * In such case fallback to conservative.
4416 */
4417 mark_all_scalars_precise(env, env->cur_state);
4418 bt_reset(bt);
4419 return 0;
4420 }
4421
4422 if (!is_spilled_scalar_reg(&func->stack[i])) {
4423 bt_clear_frame_slot(bt, fr, i);
4424 continue;
4425 }
4426 reg = &func->stack[i].spilled_ptr;
4427 if (reg->precise)
4428 bt_clear_frame_slot(bt, fr, i);
4429 else
4430 reg->precise = true;
4431 }
4432 if (env->log.level & BPF_LOG_LEVEL2) {
4433 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4434 bt_frame_reg_mask(bt, fr));
4435 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4436 fr, env->tmp_str_buf);
4437 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4438 bt_frame_stack_mask(bt, fr));
4439 verbose(env, "stack=%s: ", env->tmp_str_buf);
4440 print_verifier_state(env, func, true);
4441 }
4442 }
4443
4444 if (bt_empty(bt))
4445 return 0;
4446
4447 subseq_idx = first_idx;
4448 last_idx = st->last_insn_idx;
4449 first_idx = st->first_insn_idx;
4450 }
4451
4452 /* if we still have requested precise regs or slots, we missed
4453 * something (e.g., stack access through non-r10 register), so
4454 * fallback to marking all precise
4455 */
4456 if (!bt_empty(bt)) {
4457 mark_all_scalars_precise(env, env->cur_state);
4458 bt_reset(bt);
4459 }
4460
4461 return 0;
4462 }
4463
mark_chain_precision(struct bpf_verifier_env * env,int regno)4464 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4465 {
4466 return __mark_chain_precision(env, regno);
4467 }
4468
4469 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4470 * desired reg and stack masks across all relevant frames
4471 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4472 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4473 {
4474 return __mark_chain_precision(env, -1);
4475 }
4476
is_spillable_regtype(enum bpf_reg_type type)4477 static bool is_spillable_regtype(enum bpf_reg_type type)
4478 {
4479 switch (base_type(type)) {
4480 case PTR_TO_MAP_VALUE:
4481 case PTR_TO_STACK:
4482 case PTR_TO_CTX:
4483 case PTR_TO_PACKET:
4484 case PTR_TO_PACKET_META:
4485 case PTR_TO_PACKET_END:
4486 case PTR_TO_FLOW_KEYS:
4487 case CONST_PTR_TO_MAP:
4488 case PTR_TO_SOCKET:
4489 case PTR_TO_SOCK_COMMON:
4490 case PTR_TO_TCP_SOCK:
4491 case PTR_TO_XDP_SOCK:
4492 case PTR_TO_BTF_ID:
4493 case PTR_TO_BUF:
4494 case PTR_TO_MEM:
4495 case PTR_TO_FUNC:
4496 case PTR_TO_MAP_KEY:
4497 return true;
4498 default:
4499 return false;
4500 }
4501 }
4502
4503 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4504 static bool register_is_null(struct bpf_reg_state *reg)
4505 {
4506 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4507 }
4508
register_is_const(struct bpf_reg_state * reg)4509 static bool register_is_const(struct bpf_reg_state *reg)
4510 {
4511 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4512 }
4513
__is_scalar_unbounded(struct bpf_reg_state * reg)4514 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4515 {
4516 return tnum_is_unknown(reg->var_off) &&
4517 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4518 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4519 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4520 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4521 }
4522
register_is_bounded(struct bpf_reg_state * reg)4523 static bool register_is_bounded(struct bpf_reg_state *reg)
4524 {
4525 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4526 }
4527
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4528 static bool __is_pointer_value(bool allow_ptr_leaks,
4529 const struct bpf_reg_state *reg)
4530 {
4531 if (allow_ptr_leaks)
4532 return false;
4533
4534 return reg->type != SCALAR_VALUE;
4535 }
4536
4537 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4538 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4539 {
4540 struct bpf_reg_state *parent = dst->parent;
4541 enum bpf_reg_liveness live = dst->live;
4542
4543 *dst = *src;
4544 dst->parent = parent;
4545 dst->live = live;
4546 }
4547
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4548 static void save_register_state(struct bpf_func_state *state,
4549 int spi, struct bpf_reg_state *reg,
4550 int size)
4551 {
4552 int i;
4553
4554 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4555 if (size == BPF_REG_SIZE)
4556 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4557
4558 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4559 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4560
4561 /* size < 8 bytes spill */
4562 for (; i; i--)
4563 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4564 }
4565
is_bpf_st_mem(struct bpf_insn * insn)4566 static bool is_bpf_st_mem(struct bpf_insn *insn)
4567 {
4568 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4569 }
4570
4571 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4572 * stack boundary and alignment are checked in check_mem_access()
4573 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4574 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4575 /* stack frame we're writing to */
4576 struct bpf_func_state *state,
4577 int off, int size, int value_regno,
4578 int insn_idx)
4579 {
4580 struct bpf_func_state *cur; /* state of the current function */
4581 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4582 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4583 struct bpf_reg_state *reg = NULL;
4584 u32 dst_reg = insn->dst_reg;
4585
4586 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4587 * so it's aligned access and [off, off + size) are within stack limits
4588 */
4589 if (!env->allow_ptr_leaks &&
4590 is_spilled_reg(&state->stack[spi]) &&
4591 !is_spilled_scalar_reg(&state->stack[spi]) &&
4592 size != BPF_REG_SIZE) {
4593 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4594 return -EACCES;
4595 }
4596
4597 cur = env->cur_state->frame[env->cur_state->curframe];
4598 if (value_regno >= 0)
4599 reg = &cur->regs[value_regno];
4600 if (!env->bypass_spec_v4) {
4601 bool sanitize = reg && is_spillable_regtype(reg->type);
4602
4603 for (i = 0; i < size; i++) {
4604 u8 type = state->stack[spi].slot_type[i];
4605
4606 if (type != STACK_MISC && type != STACK_ZERO) {
4607 sanitize = true;
4608 break;
4609 }
4610 }
4611
4612 if (sanitize)
4613 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4614 }
4615
4616 err = destroy_if_dynptr_stack_slot(env, state, spi);
4617 if (err)
4618 return err;
4619
4620 mark_stack_slot_scratched(env, spi);
4621 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4622 !register_is_null(reg) && env->bpf_capable) {
4623 if (dst_reg != BPF_REG_FP) {
4624 /* The backtracking logic can only recognize explicit
4625 * stack slot address like [fp - 8]. Other spill of
4626 * scalar via different register has to be conservative.
4627 * Backtrack from here and mark all registers as precise
4628 * that contributed into 'reg' being a constant.
4629 */
4630 err = mark_chain_precision(env, value_regno);
4631 if (err)
4632 return err;
4633 }
4634 save_register_state(state, spi, reg, size);
4635 /* Break the relation on a narrowing spill. */
4636 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4637 state->stack[spi].spilled_ptr.id = 0;
4638 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4639 insn->imm != 0 && env->bpf_capable) {
4640 struct bpf_reg_state fake_reg = {};
4641
4642 __mark_reg_known(&fake_reg, insn->imm);
4643 fake_reg.type = SCALAR_VALUE;
4644 save_register_state(state, spi, &fake_reg, size);
4645 } else if (reg && is_spillable_regtype(reg->type)) {
4646 /* register containing pointer is being spilled into stack */
4647 if (size != BPF_REG_SIZE) {
4648 verbose_linfo(env, insn_idx, "; ");
4649 verbose(env, "invalid size of register spill\n");
4650 return -EACCES;
4651 }
4652 if (state != cur && reg->type == PTR_TO_STACK) {
4653 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4654 return -EINVAL;
4655 }
4656 save_register_state(state, spi, reg, size);
4657 } else {
4658 u8 type = STACK_MISC;
4659
4660 /* regular write of data into stack destroys any spilled ptr */
4661 state->stack[spi].spilled_ptr.type = NOT_INIT;
4662 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4663 if (is_stack_slot_special(&state->stack[spi]))
4664 for (i = 0; i < BPF_REG_SIZE; i++)
4665 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4666
4667 /* only mark the slot as written if all 8 bytes were written
4668 * otherwise read propagation may incorrectly stop too soon
4669 * when stack slots are partially written.
4670 * This heuristic means that read propagation will be
4671 * conservative, since it will add reg_live_read marks
4672 * to stack slots all the way to first state when programs
4673 * writes+reads less than 8 bytes
4674 */
4675 if (size == BPF_REG_SIZE)
4676 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4677
4678 /* when we zero initialize stack slots mark them as such */
4679 if ((reg && register_is_null(reg)) ||
4680 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4681 /* backtracking doesn't work for STACK_ZERO yet. */
4682 err = mark_chain_precision(env, value_regno);
4683 if (err)
4684 return err;
4685 type = STACK_ZERO;
4686 }
4687
4688 /* Mark slots affected by this stack write. */
4689 for (i = 0; i < size; i++)
4690 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4691 type;
4692 }
4693 return 0;
4694 }
4695
4696 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4697 * known to contain a variable offset.
4698 * This function checks whether the write is permitted and conservatively
4699 * tracks the effects of the write, considering that each stack slot in the
4700 * dynamic range is potentially written to.
4701 *
4702 * 'off' includes 'regno->off'.
4703 * 'value_regno' can be -1, meaning that an unknown value is being written to
4704 * the stack.
4705 *
4706 * Spilled pointers in range are not marked as written because we don't know
4707 * what's going to be actually written. This means that read propagation for
4708 * future reads cannot be terminated by this write.
4709 *
4710 * For privileged programs, uninitialized stack slots are considered
4711 * initialized by this write (even though we don't know exactly what offsets
4712 * are going to be written to). The idea is that we don't want the verifier to
4713 * reject future reads that access slots written to through variable offsets.
4714 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4715 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4716 /* func where register points to */
4717 struct bpf_func_state *state,
4718 int ptr_regno, int off, int size,
4719 int value_regno, int insn_idx)
4720 {
4721 struct bpf_func_state *cur; /* state of the current function */
4722 int min_off, max_off;
4723 int i, err;
4724 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4725 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4726 bool writing_zero = false;
4727 /* set if the fact that we're writing a zero is used to let any
4728 * stack slots remain STACK_ZERO
4729 */
4730 bool zero_used = false;
4731
4732 cur = env->cur_state->frame[env->cur_state->curframe];
4733 ptr_reg = &cur->regs[ptr_regno];
4734 min_off = ptr_reg->smin_value + off;
4735 max_off = ptr_reg->smax_value + off + size;
4736 if (value_regno >= 0)
4737 value_reg = &cur->regs[value_regno];
4738 if ((value_reg && register_is_null(value_reg)) ||
4739 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4740 writing_zero = true;
4741
4742 for (i = min_off; i < max_off; i++) {
4743 int spi;
4744
4745 spi = __get_spi(i);
4746 err = destroy_if_dynptr_stack_slot(env, state, spi);
4747 if (err)
4748 return err;
4749 }
4750
4751 /* Variable offset writes destroy any spilled pointers in range. */
4752 for (i = min_off; i < max_off; i++) {
4753 u8 new_type, *stype;
4754 int slot, spi;
4755
4756 slot = -i - 1;
4757 spi = slot / BPF_REG_SIZE;
4758 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4759 mark_stack_slot_scratched(env, spi);
4760
4761 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4762 /* Reject the write if range we may write to has not
4763 * been initialized beforehand. If we didn't reject
4764 * here, the ptr status would be erased below (even
4765 * though not all slots are actually overwritten),
4766 * possibly opening the door to leaks.
4767 *
4768 * We do however catch STACK_INVALID case below, and
4769 * only allow reading possibly uninitialized memory
4770 * later for CAP_PERFMON, as the write may not happen to
4771 * that slot.
4772 */
4773 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4774 insn_idx, i);
4775 return -EINVAL;
4776 }
4777
4778 /* Erase all spilled pointers. */
4779 state->stack[spi].spilled_ptr.type = NOT_INIT;
4780
4781 /* Update the slot type. */
4782 new_type = STACK_MISC;
4783 if (writing_zero && *stype == STACK_ZERO) {
4784 new_type = STACK_ZERO;
4785 zero_used = true;
4786 }
4787 /* If the slot is STACK_INVALID, we check whether it's OK to
4788 * pretend that it will be initialized by this write. The slot
4789 * might not actually be written to, and so if we mark it as
4790 * initialized future reads might leak uninitialized memory.
4791 * For privileged programs, we will accept such reads to slots
4792 * that may or may not be written because, if we're reject
4793 * them, the error would be too confusing.
4794 */
4795 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4796 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4797 insn_idx, i);
4798 return -EINVAL;
4799 }
4800 *stype = new_type;
4801 }
4802 if (zero_used) {
4803 /* backtracking doesn't work for STACK_ZERO yet. */
4804 err = mark_chain_precision(env, value_regno);
4805 if (err)
4806 return err;
4807 }
4808 return 0;
4809 }
4810
4811 /* When register 'dst_regno' is assigned some values from stack[min_off,
4812 * max_off), we set the register's type according to the types of the
4813 * respective stack slots. If all the stack values are known to be zeros, then
4814 * so is the destination reg. Otherwise, the register is considered to be
4815 * SCALAR. This function does not deal with register filling; the caller must
4816 * ensure that all spilled registers in the stack range have been marked as
4817 * read.
4818 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4819 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4820 /* func where src register points to */
4821 struct bpf_func_state *ptr_state,
4822 int min_off, int max_off, int dst_regno)
4823 {
4824 struct bpf_verifier_state *vstate = env->cur_state;
4825 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4826 int i, slot, spi;
4827 u8 *stype;
4828 int zeros = 0;
4829
4830 for (i = min_off; i < max_off; i++) {
4831 slot = -i - 1;
4832 spi = slot / BPF_REG_SIZE;
4833 mark_stack_slot_scratched(env, spi);
4834 stype = ptr_state->stack[spi].slot_type;
4835 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4836 break;
4837 zeros++;
4838 }
4839 if (zeros == max_off - min_off) {
4840 /* any access_size read into register is zero extended,
4841 * so the whole register == const_zero
4842 */
4843 __mark_reg_const_zero(&state->regs[dst_regno]);
4844 /* backtracking doesn't support STACK_ZERO yet,
4845 * so mark it precise here, so that later
4846 * backtracking can stop here.
4847 * Backtracking may not need this if this register
4848 * doesn't participate in pointer adjustment.
4849 * Forward propagation of precise flag is not
4850 * necessary either. This mark is only to stop
4851 * backtracking. Any register that contributed
4852 * to const 0 was marked precise before spill.
4853 */
4854 state->regs[dst_regno].precise = true;
4855 } else {
4856 /* have read misc data from the stack */
4857 mark_reg_unknown(env, state->regs, dst_regno);
4858 }
4859 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4860 }
4861
4862 /* Read the stack at 'off' and put the results into the register indicated by
4863 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4864 * spilled reg.
4865 *
4866 * 'dst_regno' can be -1, meaning that the read value is not going to a
4867 * register.
4868 *
4869 * The access is assumed to be within the current stack bounds.
4870 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4871 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4872 /* func where src register points to */
4873 struct bpf_func_state *reg_state,
4874 int off, int size, int dst_regno)
4875 {
4876 struct bpf_verifier_state *vstate = env->cur_state;
4877 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4878 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4879 struct bpf_reg_state *reg;
4880 u8 *stype, type;
4881
4882 stype = reg_state->stack[spi].slot_type;
4883 reg = ®_state->stack[spi].spilled_ptr;
4884
4885 mark_stack_slot_scratched(env, spi);
4886
4887 if (is_spilled_reg(®_state->stack[spi])) {
4888 u8 spill_size = 1;
4889
4890 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4891 spill_size++;
4892
4893 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4894 if (reg->type != SCALAR_VALUE) {
4895 verbose_linfo(env, env->insn_idx, "; ");
4896 verbose(env, "invalid size of register fill\n");
4897 return -EACCES;
4898 }
4899
4900 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4901 if (dst_regno < 0)
4902 return 0;
4903
4904 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4905 /* The earlier check_reg_arg() has decided the
4906 * subreg_def for this insn. Save it first.
4907 */
4908 s32 subreg_def = state->regs[dst_regno].subreg_def;
4909
4910 copy_register_state(&state->regs[dst_regno], reg);
4911 state->regs[dst_regno].subreg_def = subreg_def;
4912 } else {
4913 for (i = 0; i < size; i++) {
4914 type = stype[(slot - i) % BPF_REG_SIZE];
4915 if (type == STACK_SPILL)
4916 continue;
4917 if (type == STACK_MISC)
4918 continue;
4919 if (type == STACK_INVALID && env->allow_uninit_stack)
4920 continue;
4921 verbose(env, "invalid read from stack off %d+%d size %d\n",
4922 off, i, size);
4923 return -EACCES;
4924 }
4925 mark_reg_unknown(env, state->regs, dst_regno);
4926 }
4927 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4928 return 0;
4929 }
4930
4931 if (dst_regno >= 0) {
4932 /* restore register state from stack */
4933 copy_register_state(&state->regs[dst_regno], reg);
4934 /* mark reg as written since spilled pointer state likely
4935 * has its liveness marks cleared by is_state_visited()
4936 * which resets stack/reg liveness for state transitions
4937 */
4938 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4939 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4940 /* If dst_regno==-1, the caller is asking us whether
4941 * it is acceptable to use this value as a SCALAR_VALUE
4942 * (e.g. for XADD).
4943 * We must not allow unprivileged callers to do that
4944 * with spilled pointers.
4945 */
4946 verbose(env, "leaking pointer from stack off %d\n",
4947 off);
4948 return -EACCES;
4949 }
4950 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4951 } else {
4952 for (i = 0; i < size; i++) {
4953 type = stype[(slot - i) % BPF_REG_SIZE];
4954 if (type == STACK_MISC)
4955 continue;
4956 if (type == STACK_ZERO)
4957 continue;
4958 if (type == STACK_INVALID && env->allow_uninit_stack)
4959 continue;
4960 verbose(env, "invalid read from stack off %d+%d size %d\n",
4961 off, i, size);
4962 return -EACCES;
4963 }
4964 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4965 if (dst_regno >= 0)
4966 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4967 }
4968 return 0;
4969 }
4970
4971 enum bpf_access_src {
4972 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4973 ACCESS_HELPER = 2, /* the access is performed by a helper */
4974 };
4975
4976 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4977 int regno, int off, int access_size,
4978 bool zero_size_allowed,
4979 enum bpf_access_src type,
4980 struct bpf_call_arg_meta *meta);
4981
reg_state(struct bpf_verifier_env * env,int regno)4982 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4983 {
4984 return cur_regs(env) + regno;
4985 }
4986
4987 /* Read the stack at 'ptr_regno + off' and put the result into the register
4988 * 'dst_regno'.
4989 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4990 * but not its variable offset.
4991 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4992 *
4993 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4994 * filling registers (i.e. reads of spilled register cannot be detected when
4995 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4996 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4997 * offset; for a fixed offset check_stack_read_fixed_off should be used
4998 * instead.
4999 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5000 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5001 int ptr_regno, int off, int size, int dst_regno)
5002 {
5003 /* The state of the source register. */
5004 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5005 struct bpf_func_state *ptr_state = func(env, reg);
5006 int err;
5007 int min_off, max_off;
5008
5009 /* Note that we pass a NULL meta, so raw access will not be permitted.
5010 */
5011 err = check_stack_range_initialized(env, ptr_regno, off, size,
5012 false, ACCESS_DIRECT, NULL);
5013 if (err)
5014 return err;
5015
5016 min_off = reg->smin_value + off;
5017 max_off = reg->smax_value + off;
5018 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5019 return 0;
5020 }
5021
5022 /* check_stack_read dispatches to check_stack_read_fixed_off or
5023 * check_stack_read_var_off.
5024 *
5025 * The caller must ensure that the offset falls within the allocated stack
5026 * bounds.
5027 *
5028 * 'dst_regno' is a register which will receive the value from the stack. It
5029 * can be -1, meaning that the read value is not going to a register.
5030 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)5031 static int check_stack_read(struct bpf_verifier_env *env,
5032 int ptr_regno, int off, int size,
5033 int dst_regno)
5034 {
5035 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5036 struct bpf_func_state *state = func(env, reg);
5037 int err;
5038 /* Some accesses are only permitted with a static offset. */
5039 bool var_off = !tnum_is_const(reg->var_off);
5040
5041 /* The offset is required to be static when reads don't go to a
5042 * register, in order to not leak pointers (see
5043 * check_stack_read_fixed_off).
5044 */
5045 if (dst_regno < 0 && var_off) {
5046 char tn_buf[48];
5047
5048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5049 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5050 tn_buf, off, size);
5051 return -EACCES;
5052 }
5053 /* Variable offset is prohibited for unprivileged mode for simplicity
5054 * since it requires corresponding support in Spectre masking for stack
5055 * ALU. See also retrieve_ptr_limit(). The check in
5056 * check_stack_access_for_ptr_arithmetic() called by
5057 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5058 * with variable offsets, therefore no check is required here. Further,
5059 * just checking it here would be insufficient as speculative stack
5060 * writes could still lead to unsafe speculative behaviour.
5061 */
5062 if (!var_off) {
5063 off += reg->var_off.value;
5064 err = check_stack_read_fixed_off(env, state, off, size,
5065 dst_regno);
5066 } else {
5067 /* Variable offset stack reads need more conservative handling
5068 * than fixed offset ones. Note that dst_regno >= 0 on this
5069 * branch.
5070 */
5071 err = check_stack_read_var_off(env, ptr_regno, off, size,
5072 dst_regno);
5073 }
5074 return err;
5075 }
5076
5077
5078 /* check_stack_write dispatches to check_stack_write_fixed_off or
5079 * check_stack_write_var_off.
5080 *
5081 * 'ptr_regno' is the register used as a pointer into the stack.
5082 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5083 * 'value_regno' is the register whose value we're writing to the stack. It can
5084 * be -1, meaning that we're not writing from a register.
5085 *
5086 * The caller must ensure that the offset falls within the maximum stack size.
5087 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5088 static int check_stack_write(struct bpf_verifier_env *env,
5089 int ptr_regno, int off, int size,
5090 int value_regno, int insn_idx)
5091 {
5092 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5093 struct bpf_func_state *state = func(env, reg);
5094 int err;
5095
5096 if (tnum_is_const(reg->var_off)) {
5097 off += reg->var_off.value;
5098 err = check_stack_write_fixed_off(env, state, off, size,
5099 value_regno, insn_idx);
5100 } else {
5101 /* Variable offset stack reads need more conservative handling
5102 * than fixed offset ones.
5103 */
5104 err = check_stack_write_var_off(env, state,
5105 ptr_regno, off, size,
5106 value_regno, insn_idx);
5107 }
5108 return err;
5109 }
5110
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5111 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5112 int off, int size, enum bpf_access_type type)
5113 {
5114 struct bpf_reg_state *regs = cur_regs(env);
5115 struct bpf_map *map = regs[regno].map_ptr;
5116 u32 cap = bpf_map_flags_to_cap(map);
5117
5118 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5119 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5120 map->value_size, off, size);
5121 return -EACCES;
5122 }
5123
5124 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5125 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5126 map->value_size, off, size);
5127 return -EACCES;
5128 }
5129
5130 return 0;
5131 }
5132
5133 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5134 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5135 int off, int size, u32 mem_size,
5136 bool zero_size_allowed)
5137 {
5138 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5139 struct bpf_reg_state *reg;
5140
5141 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5142 return 0;
5143
5144 reg = &cur_regs(env)[regno];
5145 switch (reg->type) {
5146 case PTR_TO_MAP_KEY:
5147 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5148 mem_size, off, size);
5149 break;
5150 case PTR_TO_MAP_VALUE:
5151 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5152 mem_size, off, size);
5153 break;
5154 case PTR_TO_PACKET:
5155 case PTR_TO_PACKET_META:
5156 case PTR_TO_PACKET_END:
5157 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5158 off, size, regno, reg->id, off, mem_size);
5159 break;
5160 case PTR_TO_MEM:
5161 default:
5162 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5163 mem_size, off, size);
5164 }
5165
5166 return -EACCES;
5167 }
5168
5169 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5170 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5171 int off, int size, u32 mem_size,
5172 bool zero_size_allowed)
5173 {
5174 struct bpf_verifier_state *vstate = env->cur_state;
5175 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5176 struct bpf_reg_state *reg = &state->regs[regno];
5177 int err;
5178
5179 /* We may have adjusted the register pointing to memory region, so we
5180 * need to try adding each of min_value and max_value to off
5181 * to make sure our theoretical access will be safe.
5182 *
5183 * The minimum value is only important with signed
5184 * comparisons where we can't assume the floor of a
5185 * value is 0. If we are using signed variables for our
5186 * index'es we need to make sure that whatever we use
5187 * will have a set floor within our range.
5188 */
5189 if (reg->smin_value < 0 &&
5190 (reg->smin_value == S64_MIN ||
5191 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5192 reg->smin_value + off < 0)) {
5193 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5194 regno);
5195 return -EACCES;
5196 }
5197 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5198 mem_size, zero_size_allowed);
5199 if (err) {
5200 verbose(env, "R%d min value is outside of the allowed memory range\n",
5201 regno);
5202 return err;
5203 }
5204
5205 /* If we haven't set a max value then we need to bail since we can't be
5206 * sure we won't do bad things.
5207 * If reg->umax_value + off could overflow, treat that as unbounded too.
5208 */
5209 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5210 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5211 regno);
5212 return -EACCES;
5213 }
5214 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5215 mem_size, zero_size_allowed);
5216 if (err) {
5217 verbose(env, "R%d max value is outside of the allowed memory range\n",
5218 regno);
5219 return err;
5220 }
5221
5222 return 0;
5223 }
5224
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5225 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5226 const struct bpf_reg_state *reg, int regno,
5227 bool fixed_off_ok)
5228 {
5229 /* Access to this pointer-typed register or passing it to a helper
5230 * is only allowed in its original, unmodified form.
5231 */
5232
5233 if (reg->off < 0) {
5234 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5235 reg_type_str(env, reg->type), regno, reg->off);
5236 return -EACCES;
5237 }
5238
5239 if (!fixed_off_ok && reg->off) {
5240 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5241 reg_type_str(env, reg->type), regno, reg->off);
5242 return -EACCES;
5243 }
5244
5245 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5246 char tn_buf[48];
5247
5248 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5249 verbose(env, "variable %s access var_off=%s disallowed\n",
5250 reg_type_str(env, reg->type), tn_buf);
5251 return -EACCES;
5252 }
5253
5254 return 0;
5255 }
5256
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5257 int check_ptr_off_reg(struct bpf_verifier_env *env,
5258 const struct bpf_reg_state *reg, int regno)
5259 {
5260 return __check_ptr_off_reg(env, reg, regno, false);
5261 }
5262
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5263 static int map_kptr_match_type(struct bpf_verifier_env *env,
5264 struct btf_field *kptr_field,
5265 struct bpf_reg_state *reg, u32 regno)
5266 {
5267 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5268 int perm_flags;
5269 const char *reg_name = "";
5270
5271 if (btf_is_kernel(reg->btf)) {
5272 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5273
5274 /* Only unreferenced case accepts untrusted pointers */
5275 if (kptr_field->type == BPF_KPTR_UNREF)
5276 perm_flags |= PTR_UNTRUSTED;
5277 } else {
5278 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5279 }
5280
5281 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5282 goto bad_type;
5283
5284 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5285 reg_name = btf_type_name(reg->btf, reg->btf_id);
5286
5287 /* For ref_ptr case, release function check should ensure we get one
5288 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5289 * normal store of unreferenced kptr, we must ensure var_off is zero.
5290 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5291 * reg->off and reg->ref_obj_id are not needed here.
5292 */
5293 if (__check_ptr_off_reg(env, reg, regno, true))
5294 return -EACCES;
5295
5296 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5297 * we also need to take into account the reg->off.
5298 *
5299 * We want to support cases like:
5300 *
5301 * struct foo {
5302 * struct bar br;
5303 * struct baz bz;
5304 * };
5305 *
5306 * struct foo *v;
5307 * v = func(); // PTR_TO_BTF_ID
5308 * val->foo = v; // reg->off is zero, btf and btf_id match type
5309 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5310 * // first member type of struct after comparison fails
5311 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5312 * // to match type
5313 *
5314 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5315 * is zero. We must also ensure that btf_struct_ids_match does not walk
5316 * the struct to match type against first member of struct, i.e. reject
5317 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5318 * strict mode to true for type match.
5319 */
5320 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5321 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5322 kptr_field->type == BPF_KPTR_REF))
5323 goto bad_type;
5324 return 0;
5325 bad_type:
5326 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5327 reg_type_str(env, reg->type), reg_name);
5328 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5329 if (kptr_field->type == BPF_KPTR_UNREF)
5330 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5331 targ_name);
5332 else
5333 verbose(env, "\n");
5334 return -EINVAL;
5335 }
5336
5337 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5338 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5339 */
in_rcu_cs(struct bpf_verifier_env * env)5340 static bool in_rcu_cs(struct bpf_verifier_env *env)
5341 {
5342 return env->cur_state->active_rcu_lock ||
5343 env->cur_state->active_lock.ptr ||
5344 !env->prog->aux->sleepable;
5345 }
5346
5347 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5348 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5349 BTF_ID(struct, prog_test_ref_kfunc)
5350 BTF_ID(struct, cgroup)
5351 BTF_ID(struct, bpf_cpumask)
5352 BTF_ID(struct, task_struct)
5353 BTF_SET_END(rcu_protected_types)
5354
5355 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5356 {
5357 if (!btf_is_kernel(btf))
5358 return false;
5359 return btf_id_set_contains(&rcu_protected_types, btf_id);
5360 }
5361
rcu_safe_kptr(const struct btf_field * field)5362 static bool rcu_safe_kptr(const struct btf_field *field)
5363 {
5364 const struct btf_field_kptr *kptr = &field->kptr;
5365
5366 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5367 }
5368
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5369 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5370 int value_regno, int insn_idx,
5371 struct btf_field *kptr_field)
5372 {
5373 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5374 int class = BPF_CLASS(insn->code);
5375 struct bpf_reg_state *val_reg;
5376
5377 /* Things we already checked for in check_map_access and caller:
5378 * - Reject cases where variable offset may touch kptr
5379 * - size of access (must be BPF_DW)
5380 * - tnum_is_const(reg->var_off)
5381 * - kptr_field->offset == off + reg->var_off.value
5382 */
5383 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5384 if (BPF_MODE(insn->code) != BPF_MEM) {
5385 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5386 return -EACCES;
5387 }
5388
5389 /* We only allow loading referenced kptr, since it will be marked as
5390 * untrusted, similar to unreferenced kptr.
5391 */
5392 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5393 verbose(env, "store to referenced kptr disallowed\n");
5394 return -EACCES;
5395 }
5396
5397 if (class == BPF_LDX) {
5398 val_reg = reg_state(env, value_regno);
5399 /* We can simply mark the value_regno receiving the pointer
5400 * value from map as PTR_TO_BTF_ID, with the correct type.
5401 */
5402 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5403 kptr_field->kptr.btf_id,
5404 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5405 PTR_MAYBE_NULL | MEM_RCU :
5406 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5407 } else if (class == BPF_STX) {
5408 val_reg = reg_state(env, value_regno);
5409 if (!register_is_null(val_reg) &&
5410 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5411 return -EACCES;
5412 } else if (class == BPF_ST) {
5413 if (insn->imm) {
5414 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5415 kptr_field->offset);
5416 return -EACCES;
5417 }
5418 } else {
5419 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5420 return -EACCES;
5421 }
5422 return 0;
5423 }
5424
5425 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5426 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5427 int off, int size, bool zero_size_allowed,
5428 enum bpf_access_src src)
5429 {
5430 struct bpf_verifier_state *vstate = env->cur_state;
5431 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5432 struct bpf_reg_state *reg = &state->regs[regno];
5433 struct bpf_map *map = reg->map_ptr;
5434 struct btf_record *rec;
5435 int err, i;
5436
5437 err = check_mem_region_access(env, regno, off, size, map->value_size,
5438 zero_size_allowed);
5439 if (err)
5440 return err;
5441
5442 if (IS_ERR_OR_NULL(map->record))
5443 return 0;
5444 rec = map->record;
5445 for (i = 0; i < rec->cnt; i++) {
5446 struct btf_field *field = &rec->fields[i];
5447 u32 p = field->offset;
5448
5449 /* If any part of a field can be touched by load/store, reject
5450 * this program. To check that [x1, x2) overlaps with [y1, y2),
5451 * it is sufficient to check x1 < y2 && y1 < x2.
5452 */
5453 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5454 p < reg->umax_value + off + size) {
5455 switch (field->type) {
5456 case BPF_KPTR_UNREF:
5457 case BPF_KPTR_REF:
5458 if (src != ACCESS_DIRECT) {
5459 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5460 return -EACCES;
5461 }
5462 if (!tnum_is_const(reg->var_off)) {
5463 verbose(env, "kptr access cannot have variable offset\n");
5464 return -EACCES;
5465 }
5466 if (p != off + reg->var_off.value) {
5467 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5468 p, off + reg->var_off.value);
5469 return -EACCES;
5470 }
5471 if (size != bpf_size_to_bytes(BPF_DW)) {
5472 verbose(env, "kptr access size must be BPF_DW\n");
5473 return -EACCES;
5474 }
5475 break;
5476 default:
5477 verbose(env, "%s cannot be accessed directly by load/store\n",
5478 btf_field_type_name(field->type));
5479 return -EACCES;
5480 }
5481 }
5482 }
5483 return 0;
5484 }
5485
5486 #define MAX_PACKET_OFF 0xffff
5487
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5488 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5489 const struct bpf_call_arg_meta *meta,
5490 enum bpf_access_type t)
5491 {
5492 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5493
5494 switch (prog_type) {
5495 /* Program types only with direct read access go here! */
5496 case BPF_PROG_TYPE_LWT_IN:
5497 case BPF_PROG_TYPE_LWT_OUT:
5498 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5499 case BPF_PROG_TYPE_SK_REUSEPORT:
5500 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5501 case BPF_PROG_TYPE_CGROUP_SKB:
5502 if (t == BPF_WRITE)
5503 return false;
5504 fallthrough;
5505
5506 /* Program types with direct read + write access go here! */
5507 case BPF_PROG_TYPE_SCHED_CLS:
5508 case BPF_PROG_TYPE_SCHED_ACT:
5509 case BPF_PROG_TYPE_XDP:
5510 case BPF_PROG_TYPE_LWT_XMIT:
5511 case BPF_PROG_TYPE_SK_SKB:
5512 case BPF_PROG_TYPE_SK_MSG:
5513 if (meta)
5514 return meta->pkt_access;
5515
5516 env->seen_direct_write = true;
5517 return true;
5518
5519 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5520 if (t == BPF_WRITE)
5521 env->seen_direct_write = true;
5522
5523 return true;
5524
5525 default:
5526 return false;
5527 }
5528 }
5529
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5530 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5531 int size, bool zero_size_allowed)
5532 {
5533 struct bpf_reg_state *regs = cur_regs(env);
5534 struct bpf_reg_state *reg = ®s[regno];
5535 int err;
5536
5537 /* We may have added a variable offset to the packet pointer; but any
5538 * reg->range we have comes after that. We are only checking the fixed
5539 * offset.
5540 */
5541
5542 /* We don't allow negative numbers, because we aren't tracking enough
5543 * detail to prove they're safe.
5544 */
5545 if (reg->smin_value < 0) {
5546 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5547 regno);
5548 return -EACCES;
5549 }
5550
5551 err = reg->range < 0 ? -EINVAL :
5552 __check_mem_access(env, regno, off, size, reg->range,
5553 zero_size_allowed);
5554 if (err) {
5555 verbose(env, "R%d offset is outside of the packet\n", regno);
5556 return err;
5557 }
5558
5559 /* __check_mem_access has made sure "off + size - 1" is within u16.
5560 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5561 * otherwise find_good_pkt_pointers would have refused to set range info
5562 * that __check_mem_access would have rejected this pkt access.
5563 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5564 */
5565 env->prog->aux->max_pkt_offset =
5566 max_t(u32, env->prog->aux->max_pkt_offset,
5567 off + reg->umax_value + size - 1);
5568
5569 return err;
5570 }
5571
5572 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)5573 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5574 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5575 struct btf **btf, u32 *btf_id)
5576 {
5577 struct bpf_insn_access_aux info = {
5578 .reg_type = *reg_type,
5579 .log = &env->log,
5580 };
5581
5582 if (env->ops->is_valid_access &&
5583 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5584 /* A non zero info.ctx_field_size indicates that this field is a
5585 * candidate for later verifier transformation to load the whole
5586 * field and then apply a mask when accessed with a narrower
5587 * access than actual ctx access size. A zero info.ctx_field_size
5588 * will only allow for whole field access and rejects any other
5589 * type of narrower access.
5590 */
5591 *reg_type = info.reg_type;
5592
5593 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5594 *btf = info.btf;
5595 *btf_id = info.btf_id;
5596 } else {
5597 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5598 }
5599 /* remember the offset of last byte accessed in ctx */
5600 if (env->prog->aux->max_ctx_offset < off + size)
5601 env->prog->aux->max_ctx_offset = off + size;
5602 return 0;
5603 }
5604
5605 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5606 return -EACCES;
5607 }
5608
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5609 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5610 int size)
5611 {
5612 if (size < 0 || off < 0 ||
5613 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5614 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5615 off, size);
5616 return -EACCES;
5617 }
5618 return 0;
5619 }
5620
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5621 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5622 u32 regno, int off, int size,
5623 enum bpf_access_type t)
5624 {
5625 struct bpf_reg_state *regs = cur_regs(env);
5626 struct bpf_reg_state *reg = ®s[regno];
5627 struct bpf_insn_access_aux info = {};
5628 bool valid;
5629
5630 if (reg->smin_value < 0) {
5631 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5632 regno);
5633 return -EACCES;
5634 }
5635
5636 switch (reg->type) {
5637 case PTR_TO_SOCK_COMMON:
5638 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5639 break;
5640 case PTR_TO_SOCKET:
5641 valid = bpf_sock_is_valid_access(off, size, t, &info);
5642 break;
5643 case PTR_TO_TCP_SOCK:
5644 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5645 break;
5646 case PTR_TO_XDP_SOCK:
5647 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5648 break;
5649 default:
5650 valid = false;
5651 }
5652
5653
5654 if (valid) {
5655 env->insn_aux_data[insn_idx].ctx_field_size =
5656 info.ctx_field_size;
5657 return 0;
5658 }
5659
5660 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5661 regno, reg_type_str(env, reg->type), off, size);
5662
5663 return -EACCES;
5664 }
5665
is_pointer_value(struct bpf_verifier_env * env,int regno)5666 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5667 {
5668 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5669 }
5670
is_ctx_reg(struct bpf_verifier_env * env,int regno)5671 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5672 {
5673 const struct bpf_reg_state *reg = reg_state(env, regno);
5674
5675 return reg->type == PTR_TO_CTX;
5676 }
5677
is_sk_reg(struct bpf_verifier_env * env,int regno)5678 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5679 {
5680 const struct bpf_reg_state *reg = reg_state(env, regno);
5681
5682 return type_is_sk_pointer(reg->type);
5683 }
5684
is_pkt_reg(struct bpf_verifier_env * env,int regno)5685 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5686 {
5687 const struct bpf_reg_state *reg = reg_state(env, regno);
5688
5689 return type_is_pkt_pointer(reg->type);
5690 }
5691
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5692 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5693 {
5694 const struct bpf_reg_state *reg = reg_state(env, regno);
5695
5696 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5697 return reg->type == PTR_TO_FLOW_KEYS;
5698 }
5699
5700 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5701 #ifdef CONFIG_NET
5702 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5703 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5704 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5705 #endif
5706 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5707 };
5708
is_trusted_reg(const struct bpf_reg_state * reg)5709 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5710 {
5711 /* A referenced register is always trusted. */
5712 if (reg->ref_obj_id)
5713 return true;
5714
5715 /* Types listed in the reg2btf_ids are always trusted */
5716 if (reg2btf_ids[base_type(reg->type)] &&
5717 !bpf_type_has_unsafe_modifiers(reg->type))
5718 return true;
5719
5720 /* If a register is not referenced, it is trusted if it has the
5721 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5722 * other type modifiers may be safe, but we elect to take an opt-in
5723 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5724 * not.
5725 *
5726 * Eventually, we should make PTR_TRUSTED the single source of truth
5727 * for whether a register is trusted.
5728 */
5729 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5730 !bpf_type_has_unsafe_modifiers(reg->type);
5731 }
5732
is_rcu_reg(const struct bpf_reg_state * reg)5733 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5734 {
5735 return reg->type & MEM_RCU;
5736 }
5737
clear_trusted_flags(enum bpf_type_flag * flag)5738 static void clear_trusted_flags(enum bpf_type_flag *flag)
5739 {
5740 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5741 }
5742
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5743 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5744 const struct bpf_reg_state *reg,
5745 int off, int size, bool strict)
5746 {
5747 struct tnum reg_off;
5748 int ip_align;
5749
5750 /* Byte size accesses are always allowed. */
5751 if (!strict || size == 1)
5752 return 0;
5753
5754 /* For platforms that do not have a Kconfig enabling
5755 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5756 * NET_IP_ALIGN is universally set to '2'. And on platforms
5757 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5758 * to this code only in strict mode where we want to emulate
5759 * the NET_IP_ALIGN==2 checking. Therefore use an
5760 * unconditional IP align value of '2'.
5761 */
5762 ip_align = 2;
5763
5764 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5765 if (!tnum_is_aligned(reg_off, size)) {
5766 char tn_buf[48];
5767
5768 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5769 verbose(env,
5770 "misaligned packet access off %d+%s+%d+%d size %d\n",
5771 ip_align, tn_buf, reg->off, off, size);
5772 return -EACCES;
5773 }
5774
5775 return 0;
5776 }
5777
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5778 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5779 const struct bpf_reg_state *reg,
5780 const char *pointer_desc,
5781 int off, int size, bool strict)
5782 {
5783 struct tnum reg_off;
5784
5785 /* Byte size accesses are always allowed. */
5786 if (!strict || size == 1)
5787 return 0;
5788
5789 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5790 if (!tnum_is_aligned(reg_off, size)) {
5791 char tn_buf[48];
5792
5793 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5794 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5795 pointer_desc, tn_buf, reg->off, off, size);
5796 return -EACCES;
5797 }
5798
5799 return 0;
5800 }
5801
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5802 static int check_ptr_alignment(struct bpf_verifier_env *env,
5803 const struct bpf_reg_state *reg, int off,
5804 int size, bool strict_alignment_once)
5805 {
5806 bool strict = env->strict_alignment || strict_alignment_once;
5807 const char *pointer_desc = "";
5808
5809 switch (reg->type) {
5810 case PTR_TO_PACKET:
5811 case PTR_TO_PACKET_META:
5812 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5813 * right in front, treat it the very same way.
5814 */
5815 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5816 case PTR_TO_FLOW_KEYS:
5817 pointer_desc = "flow keys ";
5818 break;
5819 case PTR_TO_MAP_KEY:
5820 pointer_desc = "key ";
5821 break;
5822 case PTR_TO_MAP_VALUE:
5823 pointer_desc = "value ";
5824 break;
5825 case PTR_TO_CTX:
5826 pointer_desc = "context ";
5827 break;
5828 case PTR_TO_STACK:
5829 pointer_desc = "stack ";
5830 /* The stack spill tracking logic in check_stack_write_fixed_off()
5831 * and check_stack_read_fixed_off() relies on stack accesses being
5832 * aligned.
5833 */
5834 strict = true;
5835 break;
5836 case PTR_TO_SOCKET:
5837 pointer_desc = "sock ";
5838 break;
5839 case PTR_TO_SOCK_COMMON:
5840 pointer_desc = "sock_common ";
5841 break;
5842 case PTR_TO_TCP_SOCK:
5843 pointer_desc = "tcp_sock ";
5844 break;
5845 case PTR_TO_XDP_SOCK:
5846 pointer_desc = "xdp_sock ";
5847 break;
5848 default:
5849 break;
5850 }
5851 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5852 strict);
5853 }
5854
5855 /* starting from main bpf function walk all instructions of the function
5856 * and recursively walk all callees that given function can call.
5857 * Ignore jump and exit insns.
5858 * Since recursion is prevented by check_cfg() this algorithm
5859 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5860 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)5861 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5862 {
5863 struct bpf_subprog_info *subprog = env->subprog_info;
5864 struct bpf_insn *insn = env->prog->insnsi;
5865 int depth = 0, frame = 0, i, subprog_end;
5866 bool tail_call_reachable = false;
5867 int ret_insn[MAX_CALL_FRAMES];
5868 int ret_prog[MAX_CALL_FRAMES];
5869 int j;
5870
5871 i = subprog[idx].start;
5872 process_func:
5873 /* protect against potential stack overflow that might happen when
5874 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5875 * depth for such case down to 256 so that the worst case scenario
5876 * would result in 8k stack size (32 which is tailcall limit * 256 =
5877 * 8k).
5878 *
5879 * To get the idea what might happen, see an example:
5880 * func1 -> sub rsp, 128
5881 * subfunc1 -> sub rsp, 256
5882 * tailcall1 -> add rsp, 256
5883 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5884 * subfunc2 -> sub rsp, 64
5885 * subfunc22 -> sub rsp, 128
5886 * tailcall2 -> add rsp, 128
5887 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5888 *
5889 * tailcall will unwind the current stack frame but it will not get rid
5890 * of caller's stack as shown on the example above.
5891 */
5892 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5893 verbose(env,
5894 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5895 depth);
5896 return -EACCES;
5897 }
5898 /* round up to 32-bytes, since this is granularity
5899 * of interpreter stack size
5900 */
5901 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5902 if (depth > MAX_BPF_STACK) {
5903 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5904 frame + 1, depth);
5905 return -EACCES;
5906 }
5907 continue_func:
5908 subprog_end = subprog[idx + 1].start;
5909 for (; i < subprog_end; i++) {
5910 int next_insn, sidx;
5911
5912 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5913 continue;
5914 /* remember insn and function to return to */
5915 ret_insn[frame] = i + 1;
5916 ret_prog[frame] = idx;
5917
5918 /* find the callee */
5919 next_insn = i + insn[i].imm + 1;
5920 sidx = find_subprog(env, next_insn);
5921 if (sidx < 0) {
5922 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5923 next_insn);
5924 return -EFAULT;
5925 }
5926 if (subprog[sidx].is_async_cb) {
5927 if (subprog[sidx].has_tail_call) {
5928 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5929 return -EFAULT;
5930 }
5931 /* async callbacks don't increase bpf prog stack size unless called directly */
5932 if (!bpf_pseudo_call(insn + i))
5933 continue;
5934 }
5935 i = next_insn;
5936 idx = sidx;
5937
5938 if (subprog[idx].has_tail_call)
5939 tail_call_reachable = true;
5940
5941 frame++;
5942 if (frame >= MAX_CALL_FRAMES) {
5943 verbose(env, "the call stack of %d frames is too deep !\n",
5944 frame);
5945 return -E2BIG;
5946 }
5947 goto process_func;
5948 }
5949 /* if tail call got detected across bpf2bpf calls then mark each of the
5950 * currently present subprog frames as tail call reachable subprogs;
5951 * this info will be utilized by JIT so that we will be preserving the
5952 * tail call counter throughout bpf2bpf calls combined with tailcalls
5953 */
5954 if (tail_call_reachable)
5955 for (j = 0; j < frame; j++)
5956 subprog[ret_prog[j]].tail_call_reachable = true;
5957 if (subprog[0].tail_call_reachable)
5958 env->prog->aux->tail_call_reachable = true;
5959
5960 /* end of for() loop means the last insn of the 'subprog'
5961 * was reached. Doesn't matter whether it was JA or EXIT
5962 */
5963 if (frame == 0)
5964 return 0;
5965 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5966 frame--;
5967 i = ret_insn[frame];
5968 idx = ret_prog[frame];
5969 goto continue_func;
5970 }
5971
check_max_stack_depth(struct bpf_verifier_env * env)5972 static int check_max_stack_depth(struct bpf_verifier_env *env)
5973 {
5974 struct bpf_subprog_info *si = env->subprog_info;
5975 int ret;
5976
5977 for (int i = 0; i < env->subprog_cnt; i++) {
5978 if (!i || si[i].is_async_cb) {
5979 ret = check_max_stack_depth_subprog(env, i);
5980 if (ret < 0)
5981 return ret;
5982 }
5983 continue;
5984 }
5985 return 0;
5986 }
5987
5988 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)5989 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5990 const struct bpf_insn *insn, int idx)
5991 {
5992 int start = idx + insn->imm + 1, subprog;
5993
5994 subprog = find_subprog(env, start);
5995 if (subprog < 0) {
5996 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5997 start);
5998 return -EFAULT;
5999 }
6000 return env->subprog_info[subprog].stack_depth;
6001 }
6002 #endif
6003
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)6004 static int __check_buffer_access(struct bpf_verifier_env *env,
6005 const char *buf_info,
6006 const struct bpf_reg_state *reg,
6007 int regno, int off, int size)
6008 {
6009 if (off < 0) {
6010 verbose(env,
6011 "R%d invalid %s buffer access: off=%d, size=%d\n",
6012 regno, buf_info, off, size);
6013 return -EACCES;
6014 }
6015 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6016 char tn_buf[48];
6017
6018 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6019 verbose(env,
6020 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6021 regno, off, tn_buf);
6022 return -EACCES;
6023 }
6024
6025 return 0;
6026 }
6027
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)6028 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6029 const struct bpf_reg_state *reg,
6030 int regno, int off, int size)
6031 {
6032 int err;
6033
6034 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6035 if (err)
6036 return err;
6037
6038 if (off + size > env->prog->aux->max_tp_access)
6039 env->prog->aux->max_tp_access = off + size;
6040
6041 return 0;
6042 }
6043
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6044 static int check_buffer_access(struct bpf_verifier_env *env,
6045 const struct bpf_reg_state *reg,
6046 int regno, int off, int size,
6047 bool zero_size_allowed,
6048 u32 *max_access)
6049 {
6050 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6051 int err;
6052
6053 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6054 if (err)
6055 return err;
6056
6057 if (off + size > *max_access)
6058 *max_access = off + size;
6059
6060 return 0;
6061 }
6062
6063 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6064 static void zext_32_to_64(struct bpf_reg_state *reg)
6065 {
6066 reg->var_off = tnum_subreg(reg->var_off);
6067 __reg_assign_32_into_64(reg);
6068 }
6069
6070 /* truncate register to smaller size (in bytes)
6071 * must be called with size < BPF_REG_SIZE
6072 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6073 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6074 {
6075 u64 mask;
6076
6077 /* clear high bits in bit representation */
6078 reg->var_off = tnum_cast(reg->var_off, size);
6079
6080 /* fix arithmetic bounds */
6081 mask = ((u64)1 << (size * 8)) - 1;
6082 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6083 reg->umin_value &= mask;
6084 reg->umax_value &= mask;
6085 } else {
6086 reg->umin_value = 0;
6087 reg->umax_value = mask;
6088 }
6089 reg->smin_value = reg->umin_value;
6090 reg->smax_value = reg->umax_value;
6091
6092 /* If size is smaller than 32bit register the 32bit register
6093 * values are also truncated so we push 64-bit bounds into
6094 * 32-bit bounds. Above were truncated < 32-bits already.
6095 */
6096 if (size >= 4)
6097 return;
6098 __reg_combine_64_into_32(reg);
6099 }
6100
set_sext64_default_val(struct bpf_reg_state * reg,int size)6101 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6102 {
6103 if (size == 1) {
6104 reg->smin_value = reg->s32_min_value = S8_MIN;
6105 reg->smax_value = reg->s32_max_value = S8_MAX;
6106 } else if (size == 2) {
6107 reg->smin_value = reg->s32_min_value = S16_MIN;
6108 reg->smax_value = reg->s32_max_value = S16_MAX;
6109 } else {
6110 /* size == 4 */
6111 reg->smin_value = reg->s32_min_value = S32_MIN;
6112 reg->smax_value = reg->s32_max_value = S32_MAX;
6113 }
6114 reg->umin_value = reg->u32_min_value = 0;
6115 reg->umax_value = U64_MAX;
6116 reg->u32_max_value = U32_MAX;
6117 reg->var_off = tnum_unknown;
6118 }
6119
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6120 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6121 {
6122 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6123 u64 top_smax_value, top_smin_value;
6124 u64 num_bits = size * 8;
6125
6126 if (tnum_is_const(reg->var_off)) {
6127 u64_cval = reg->var_off.value;
6128 if (size == 1)
6129 reg->var_off = tnum_const((s8)u64_cval);
6130 else if (size == 2)
6131 reg->var_off = tnum_const((s16)u64_cval);
6132 else
6133 /* size == 4 */
6134 reg->var_off = tnum_const((s32)u64_cval);
6135
6136 u64_cval = reg->var_off.value;
6137 reg->smax_value = reg->smin_value = u64_cval;
6138 reg->umax_value = reg->umin_value = u64_cval;
6139 reg->s32_max_value = reg->s32_min_value = u64_cval;
6140 reg->u32_max_value = reg->u32_min_value = u64_cval;
6141 return;
6142 }
6143
6144 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6145 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6146
6147 if (top_smax_value != top_smin_value)
6148 goto out;
6149
6150 /* find the s64_min and s64_min after sign extension */
6151 if (size == 1) {
6152 init_s64_max = (s8)reg->smax_value;
6153 init_s64_min = (s8)reg->smin_value;
6154 } else if (size == 2) {
6155 init_s64_max = (s16)reg->smax_value;
6156 init_s64_min = (s16)reg->smin_value;
6157 } else {
6158 init_s64_max = (s32)reg->smax_value;
6159 init_s64_min = (s32)reg->smin_value;
6160 }
6161
6162 s64_max = max(init_s64_max, init_s64_min);
6163 s64_min = min(init_s64_max, init_s64_min);
6164
6165 /* both of s64_max/s64_min positive or negative */
6166 if ((s64_max >= 0) == (s64_min >= 0)) {
6167 reg->s32_min_value = reg->smin_value = s64_min;
6168 reg->s32_max_value = reg->smax_value = s64_max;
6169 reg->u32_min_value = reg->umin_value = s64_min;
6170 reg->u32_max_value = reg->umax_value = s64_max;
6171 reg->var_off = tnum_range(s64_min, s64_max);
6172 return;
6173 }
6174
6175 out:
6176 set_sext64_default_val(reg, size);
6177 }
6178
set_sext32_default_val(struct bpf_reg_state * reg,int size)6179 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6180 {
6181 if (size == 1) {
6182 reg->s32_min_value = S8_MIN;
6183 reg->s32_max_value = S8_MAX;
6184 } else {
6185 /* size == 2 */
6186 reg->s32_min_value = S16_MIN;
6187 reg->s32_max_value = S16_MAX;
6188 }
6189 reg->u32_min_value = 0;
6190 reg->u32_max_value = U32_MAX;
6191 reg->var_off = tnum_subreg(tnum_unknown);
6192 }
6193
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6194 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6195 {
6196 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6197 u32 top_smax_value, top_smin_value;
6198 u32 num_bits = size * 8;
6199
6200 if (tnum_is_const(reg->var_off)) {
6201 u32_val = reg->var_off.value;
6202 if (size == 1)
6203 reg->var_off = tnum_const((s8)u32_val);
6204 else
6205 reg->var_off = tnum_const((s16)u32_val);
6206
6207 u32_val = reg->var_off.value;
6208 reg->s32_min_value = reg->s32_max_value = u32_val;
6209 reg->u32_min_value = reg->u32_max_value = u32_val;
6210 return;
6211 }
6212
6213 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6214 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6215
6216 if (top_smax_value != top_smin_value)
6217 goto out;
6218
6219 /* find the s32_min and s32_min after sign extension */
6220 if (size == 1) {
6221 init_s32_max = (s8)reg->s32_max_value;
6222 init_s32_min = (s8)reg->s32_min_value;
6223 } else {
6224 /* size == 2 */
6225 init_s32_max = (s16)reg->s32_max_value;
6226 init_s32_min = (s16)reg->s32_min_value;
6227 }
6228 s32_max = max(init_s32_max, init_s32_min);
6229 s32_min = min(init_s32_max, init_s32_min);
6230
6231 if ((s32_min >= 0) == (s32_max >= 0)) {
6232 reg->s32_min_value = s32_min;
6233 reg->s32_max_value = s32_max;
6234 reg->u32_min_value = (u32)s32_min;
6235 reg->u32_max_value = (u32)s32_max;
6236 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6237 return;
6238 }
6239
6240 out:
6241 set_sext32_default_val(reg, size);
6242 }
6243
bpf_map_is_rdonly(const struct bpf_map * map)6244 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6245 {
6246 /* A map is considered read-only if the following condition are true:
6247 *
6248 * 1) BPF program side cannot change any of the map content. The
6249 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6250 * and was set at map creation time.
6251 * 2) The map value(s) have been initialized from user space by a
6252 * loader and then "frozen", such that no new map update/delete
6253 * operations from syscall side are possible for the rest of
6254 * the map's lifetime from that point onwards.
6255 * 3) Any parallel/pending map update/delete operations from syscall
6256 * side have been completed. Only after that point, it's safe to
6257 * assume that map value(s) are immutable.
6258 */
6259 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6260 READ_ONCE(map->frozen) &&
6261 !bpf_map_write_active(map);
6262 }
6263
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6264 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6265 bool is_ldsx)
6266 {
6267 void *ptr;
6268 u64 addr;
6269 int err;
6270
6271 err = map->ops->map_direct_value_addr(map, &addr, off);
6272 if (err)
6273 return err;
6274 ptr = (void *)(long)addr + off;
6275
6276 switch (size) {
6277 case sizeof(u8):
6278 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6279 break;
6280 case sizeof(u16):
6281 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6282 break;
6283 case sizeof(u32):
6284 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6285 break;
6286 case sizeof(u64):
6287 *val = *(u64 *)ptr;
6288 break;
6289 default:
6290 return -EINVAL;
6291 }
6292 return 0;
6293 }
6294
6295 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6296 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6297 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6298 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null)
6299
6300 /*
6301 * Allow list few fields as RCU trusted or full trusted.
6302 * This logic doesn't allow mix tagging and will be removed once GCC supports
6303 * btf_type_tag.
6304 */
6305
6306 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6307 BTF_TYPE_SAFE_RCU(struct task_struct) {
6308 const cpumask_t *cpus_ptr;
6309 struct css_set __rcu *cgroups;
6310 struct task_struct __rcu *real_parent;
6311 struct task_struct *group_leader;
6312 };
6313
BTF_TYPE_SAFE_RCU(struct cgroup)6314 BTF_TYPE_SAFE_RCU(struct cgroup) {
6315 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6316 struct kernfs_node *kn;
6317 };
6318
BTF_TYPE_SAFE_RCU(struct css_set)6319 BTF_TYPE_SAFE_RCU(struct css_set) {
6320 struct cgroup *dfl_cgrp;
6321 };
6322
6323 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6324 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6325 struct file __rcu *exe_file;
6326 };
6327
6328 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6329 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6330 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6331 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6332 struct sock *sk;
6333 };
6334
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6335 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6336 struct sock *sk;
6337 };
6338
6339 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6340 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6341 struct seq_file *seq;
6342 };
6343
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6344 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6345 struct bpf_iter_meta *meta;
6346 struct task_struct *task;
6347 };
6348
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6349 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6350 struct file *file;
6351 };
6352
BTF_TYPE_SAFE_TRUSTED(struct file)6353 BTF_TYPE_SAFE_TRUSTED(struct file) {
6354 struct inode *f_inode;
6355 };
6356
BTF_TYPE_SAFE_TRUSTED(struct dentry)6357 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6358 /* no negative dentry-s in places where bpf can see it */
6359 struct inode *d_inode;
6360 };
6361
BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)6362 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6363 struct sock *sk;
6364 };
6365
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6366 static bool type_is_rcu(struct bpf_verifier_env *env,
6367 struct bpf_reg_state *reg,
6368 const char *field_name, u32 btf_id)
6369 {
6370 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6371 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6372 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6373
6374 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6375 }
6376
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6377 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6378 struct bpf_reg_state *reg,
6379 const char *field_name, u32 btf_id)
6380 {
6381 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6382 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6383 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6384
6385 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6386 }
6387
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6388 static bool type_is_trusted(struct bpf_verifier_env *env,
6389 struct bpf_reg_state *reg,
6390 const char *field_name, u32 btf_id)
6391 {
6392 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6393 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6394 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6395 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6396 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6397
6398 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6399 }
6400
type_is_trusted_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6401 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6402 struct bpf_reg_state *reg,
6403 const char *field_name, u32 btf_id)
6404 {
6405 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6406
6407 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6408 "__safe_trusted_or_null");
6409 }
6410
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6411 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6412 struct bpf_reg_state *regs,
6413 int regno, int off, int size,
6414 enum bpf_access_type atype,
6415 int value_regno)
6416 {
6417 struct bpf_reg_state *reg = regs + regno;
6418 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6419 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6420 const char *field_name = NULL;
6421 enum bpf_type_flag flag = 0;
6422 u32 btf_id = 0;
6423 int ret;
6424
6425 if (!env->allow_ptr_leaks) {
6426 verbose(env,
6427 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6428 tname);
6429 return -EPERM;
6430 }
6431 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6432 verbose(env,
6433 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6434 tname);
6435 return -EINVAL;
6436 }
6437 if (off < 0) {
6438 verbose(env,
6439 "R%d is ptr_%s invalid negative access: off=%d\n",
6440 regno, tname, off);
6441 return -EACCES;
6442 }
6443 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6444 char tn_buf[48];
6445
6446 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6447 verbose(env,
6448 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6449 regno, tname, off, tn_buf);
6450 return -EACCES;
6451 }
6452
6453 if (reg->type & MEM_USER) {
6454 verbose(env,
6455 "R%d is ptr_%s access user memory: off=%d\n",
6456 regno, tname, off);
6457 return -EACCES;
6458 }
6459
6460 if (reg->type & MEM_PERCPU) {
6461 verbose(env,
6462 "R%d is ptr_%s access percpu memory: off=%d\n",
6463 regno, tname, off);
6464 return -EACCES;
6465 }
6466
6467 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6468 if (!btf_is_kernel(reg->btf)) {
6469 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6470 return -EFAULT;
6471 }
6472 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6473 } else {
6474 /* Writes are permitted with default btf_struct_access for
6475 * program allocated objects (which always have ref_obj_id > 0),
6476 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6477 */
6478 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6479 verbose(env, "only read is supported\n");
6480 return -EACCES;
6481 }
6482
6483 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6484 !reg->ref_obj_id) {
6485 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6486 return -EFAULT;
6487 }
6488
6489 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6490 }
6491
6492 if (ret < 0)
6493 return ret;
6494
6495 if (ret != PTR_TO_BTF_ID) {
6496 /* just mark; */
6497
6498 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6499 /* If this is an untrusted pointer, all pointers formed by walking it
6500 * also inherit the untrusted flag.
6501 */
6502 flag = PTR_UNTRUSTED;
6503
6504 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6505 /* By default any pointer obtained from walking a trusted pointer is no
6506 * longer trusted, unless the field being accessed has explicitly been
6507 * marked as inheriting its parent's state of trust (either full or RCU).
6508 * For example:
6509 * 'cgroups' pointer is untrusted if task->cgroups dereference
6510 * happened in a sleepable program outside of bpf_rcu_read_lock()
6511 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6512 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6513 *
6514 * A regular RCU-protected pointer with __rcu tag can also be deemed
6515 * trusted if we are in an RCU CS. Such pointer can be NULL.
6516 */
6517 if (type_is_trusted(env, reg, field_name, btf_id)) {
6518 flag |= PTR_TRUSTED;
6519 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6520 flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6521 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6522 if (type_is_rcu(env, reg, field_name, btf_id)) {
6523 /* ignore __rcu tag and mark it MEM_RCU */
6524 flag |= MEM_RCU;
6525 } else if (flag & MEM_RCU ||
6526 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6527 /* __rcu tagged pointers can be NULL */
6528 flag |= MEM_RCU | PTR_MAYBE_NULL;
6529
6530 /* We always trust them */
6531 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6532 flag & PTR_UNTRUSTED)
6533 flag &= ~PTR_UNTRUSTED;
6534 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6535 /* keep as-is */
6536 } else {
6537 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6538 clear_trusted_flags(&flag);
6539 }
6540 } else {
6541 /*
6542 * If not in RCU CS or MEM_RCU pointer can be NULL then
6543 * aggressively mark as untrusted otherwise such
6544 * pointers will be plain PTR_TO_BTF_ID without flags
6545 * and will be allowed to be passed into helpers for
6546 * compat reasons.
6547 */
6548 flag = PTR_UNTRUSTED;
6549 }
6550 } else {
6551 /* Old compat. Deprecated */
6552 clear_trusted_flags(&flag);
6553 }
6554
6555 if (atype == BPF_READ && value_regno >= 0)
6556 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6557
6558 return 0;
6559 }
6560
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6561 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6562 struct bpf_reg_state *regs,
6563 int regno, int off, int size,
6564 enum bpf_access_type atype,
6565 int value_regno)
6566 {
6567 struct bpf_reg_state *reg = regs + regno;
6568 struct bpf_map *map = reg->map_ptr;
6569 struct bpf_reg_state map_reg;
6570 enum bpf_type_flag flag = 0;
6571 const struct btf_type *t;
6572 const char *tname;
6573 u32 btf_id;
6574 int ret;
6575
6576 if (!btf_vmlinux) {
6577 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6578 return -ENOTSUPP;
6579 }
6580
6581 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6582 verbose(env, "map_ptr access not supported for map type %d\n",
6583 map->map_type);
6584 return -ENOTSUPP;
6585 }
6586
6587 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6588 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6589
6590 if (!env->allow_ptr_leaks) {
6591 verbose(env,
6592 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6593 tname);
6594 return -EPERM;
6595 }
6596
6597 if (off < 0) {
6598 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6599 regno, tname, off);
6600 return -EACCES;
6601 }
6602
6603 if (atype != BPF_READ) {
6604 verbose(env, "only read from %s is supported\n", tname);
6605 return -EACCES;
6606 }
6607
6608 /* Simulate access to a PTR_TO_BTF_ID */
6609 memset(&map_reg, 0, sizeof(map_reg));
6610 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6611 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6612 if (ret < 0)
6613 return ret;
6614
6615 if (value_regno >= 0)
6616 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6617
6618 return 0;
6619 }
6620
6621 /* Check that the stack access at the given offset is within bounds. The
6622 * maximum valid offset is -1.
6623 *
6624 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6625 * -state->allocated_stack for reads.
6626 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6627 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6628 s64 off,
6629 struct bpf_func_state *state,
6630 enum bpf_access_type t)
6631 {
6632 int min_valid_off;
6633
6634 if (t == BPF_WRITE || env->allow_uninit_stack)
6635 min_valid_off = -MAX_BPF_STACK;
6636 else
6637 min_valid_off = -state->allocated_stack;
6638
6639 if (off < min_valid_off || off > -1)
6640 return -EACCES;
6641 return 0;
6642 }
6643
6644 /* Check that the stack access at 'regno + off' falls within the maximum stack
6645 * bounds.
6646 *
6647 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6648 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6649 static int check_stack_access_within_bounds(
6650 struct bpf_verifier_env *env,
6651 int regno, int off, int access_size,
6652 enum bpf_access_src src, enum bpf_access_type type)
6653 {
6654 struct bpf_reg_state *regs = cur_regs(env);
6655 struct bpf_reg_state *reg = regs + regno;
6656 struct bpf_func_state *state = func(env, reg);
6657 s64 min_off, max_off;
6658 int err;
6659 char *err_extra;
6660
6661 if (src == ACCESS_HELPER)
6662 /* We don't know if helpers are reading or writing (or both). */
6663 err_extra = " indirect access to";
6664 else if (type == BPF_READ)
6665 err_extra = " read from";
6666 else
6667 err_extra = " write to";
6668
6669 if (tnum_is_const(reg->var_off)) {
6670 min_off = (s64)reg->var_off.value + off;
6671 max_off = min_off + access_size;
6672 } else {
6673 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6674 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6675 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6676 err_extra, regno);
6677 return -EACCES;
6678 }
6679 min_off = reg->smin_value + off;
6680 max_off = reg->smax_value + off + access_size;
6681 }
6682
6683 err = check_stack_slot_within_bounds(env, min_off, state, type);
6684 if (!err && max_off > 0)
6685 err = -EINVAL; /* out of stack access into non-negative offsets */
6686 if (!err && access_size < 0)
6687 /* access_size should not be negative (or overflow an int); others checks
6688 * along the way should have prevented such an access.
6689 */
6690 err = -EFAULT; /* invalid negative access size; integer overflow? */
6691
6692 if (err) {
6693 if (tnum_is_const(reg->var_off)) {
6694 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6695 err_extra, regno, off, access_size);
6696 } else {
6697 char tn_buf[48];
6698
6699 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6700 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6701 err_extra, regno, tn_buf, access_size);
6702 }
6703 return err;
6704 }
6705
6706 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6707 }
6708
6709 /* check whether memory at (regno + off) is accessible for t = (read | write)
6710 * if t==write, value_regno is a register which value is stored into memory
6711 * if t==read, value_regno is a register which will receive the value from memory
6712 * if t==write && value_regno==-1, some unknown value is stored into memory
6713 * if t==read && value_regno==-1, don't care what we read from memory
6714 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6715 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6716 int off, int bpf_size, enum bpf_access_type t,
6717 int value_regno, bool strict_alignment_once, bool is_ldsx)
6718 {
6719 struct bpf_reg_state *regs = cur_regs(env);
6720 struct bpf_reg_state *reg = regs + regno;
6721 int size, err = 0;
6722
6723 size = bpf_size_to_bytes(bpf_size);
6724 if (size < 0)
6725 return size;
6726
6727 /* alignment checks will add in reg->off themselves */
6728 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6729 if (err)
6730 return err;
6731
6732 /* for access checks, reg->off is just part of off */
6733 off += reg->off;
6734
6735 if (reg->type == PTR_TO_MAP_KEY) {
6736 if (t == BPF_WRITE) {
6737 verbose(env, "write to change key R%d not allowed\n", regno);
6738 return -EACCES;
6739 }
6740
6741 err = check_mem_region_access(env, regno, off, size,
6742 reg->map_ptr->key_size, false);
6743 if (err)
6744 return err;
6745 if (value_regno >= 0)
6746 mark_reg_unknown(env, regs, value_regno);
6747 } else if (reg->type == PTR_TO_MAP_VALUE) {
6748 struct btf_field *kptr_field = NULL;
6749
6750 if (t == BPF_WRITE && value_regno >= 0 &&
6751 is_pointer_value(env, value_regno)) {
6752 verbose(env, "R%d leaks addr into map\n", value_regno);
6753 return -EACCES;
6754 }
6755 err = check_map_access_type(env, regno, off, size, t);
6756 if (err)
6757 return err;
6758 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6759 if (err)
6760 return err;
6761 if (tnum_is_const(reg->var_off))
6762 kptr_field = btf_record_find(reg->map_ptr->record,
6763 off + reg->var_off.value, BPF_KPTR);
6764 if (kptr_field) {
6765 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6766 } else if (t == BPF_READ && value_regno >= 0) {
6767 struct bpf_map *map = reg->map_ptr;
6768
6769 /* if map is read-only, track its contents as scalars */
6770 if (tnum_is_const(reg->var_off) &&
6771 bpf_map_is_rdonly(map) &&
6772 map->ops->map_direct_value_addr) {
6773 int map_off = off + reg->var_off.value;
6774 u64 val = 0;
6775
6776 err = bpf_map_direct_read(map, map_off, size,
6777 &val, is_ldsx);
6778 if (err)
6779 return err;
6780
6781 regs[value_regno].type = SCALAR_VALUE;
6782 __mark_reg_known(®s[value_regno], val);
6783 } else {
6784 mark_reg_unknown(env, regs, value_regno);
6785 }
6786 }
6787 } else if (base_type(reg->type) == PTR_TO_MEM) {
6788 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6789
6790 if (type_may_be_null(reg->type)) {
6791 verbose(env, "R%d invalid mem access '%s'\n", regno,
6792 reg_type_str(env, reg->type));
6793 return -EACCES;
6794 }
6795
6796 if (t == BPF_WRITE && rdonly_mem) {
6797 verbose(env, "R%d cannot write into %s\n",
6798 regno, reg_type_str(env, reg->type));
6799 return -EACCES;
6800 }
6801
6802 if (t == BPF_WRITE && value_regno >= 0 &&
6803 is_pointer_value(env, value_regno)) {
6804 verbose(env, "R%d leaks addr into mem\n", value_regno);
6805 return -EACCES;
6806 }
6807
6808 err = check_mem_region_access(env, regno, off, size,
6809 reg->mem_size, false);
6810 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6811 mark_reg_unknown(env, regs, value_regno);
6812 } else if (reg->type == PTR_TO_CTX) {
6813 enum bpf_reg_type reg_type = SCALAR_VALUE;
6814 struct btf *btf = NULL;
6815 u32 btf_id = 0;
6816
6817 if (t == BPF_WRITE && value_regno >= 0 &&
6818 is_pointer_value(env, value_regno)) {
6819 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6820 return -EACCES;
6821 }
6822
6823 err = check_ptr_off_reg(env, reg, regno);
6824 if (err < 0)
6825 return err;
6826
6827 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6828 &btf_id);
6829 if (err)
6830 verbose_linfo(env, insn_idx, "; ");
6831 if (!err && t == BPF_READ && value_regno >= 0) {
6832 /* ctx access returns either a scalar, or a
6833 * PTR_TO_PACKET[_META,_END]. In the latter
6834 * case, we know the offset is zero.
6835 */
6836 if (reg_type == SCALAR_VALUE) {
6837 mark_reg_unknown(env, regs, value_regno);
6838 } else {
6839 mark_reg_known_zero(env, regs,
6840 value_regno);
6841 if (type_may_be_null(reg_type))
6842 regs[value_regno].id = ++env->id_gen;
6843 /* A load of ctx field could have different
6844 * actual load size with the one encoded in the
6845 * insn. When the dst is PTR, it is for sure not
6846 * a sub-register.
6847 */
6848 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6849 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6850 regs[value_regno].btf = btf;
6851 regs[value_regno].btf_id = btf_id;
6852 }
6853 }
6854 regs[value_regno].type = reg_type;
6855 }
6856
6857 } else if (reg->type == PTR_TO_STACK) {
6858 /* Basic bounds checks. */
6859 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6860 if (err)
6861 return err;
6862
6863 if (t == BPF_READ)
6864 err = check_stack_read(env, regno, off, size,
6865 value_regno);
6866 else
6867 err = check_stack_write(env, regno, off, size,
6868 value_regno, insn_idx);
6869 } else if (reg_is_pkt_pointer(reg)) {
6870 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6871 verbose(env, "cannot write into packet\n");
6872 return -EACCES;
6873 }
6874 if (t == BPF_WRITE && value_regno >= 0 &&
6875 is_pointer_value(env, value_regno)) {
6876 verbose(env, "R%d leaks addr into packet\n",
6877 value_regno);
6878 return -EACCES;
6879 }
6880 err = check_packet_access(env, regno, off, size, false);
6881 if (!err && t == BPF_READ && value_regno >= 0)
6882 mark_reg_unknown(env, regs, value_regno);
6883 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6884 if (t == BPF_WRITE && value_regno >= 0 &&
6885 is_pointer_value(env, value_regno)) {
6886 verbose(env, "R%d leaks addr into flow keys\n",
6887 value_regno);
6888 return -EACCES;
6889 }
6890
6891 err = check_flow_keys_access(env, off, size);
6892 if (!err && t == BPF_READ && value_regno >= 0)
6893 mark_reg_unknown(env, regs, value_regno);
6894 } else if (type_is_sk_pointer(reg->type)) {
6895 if (t == BPF_WRITE) {
6896 verbose(env, "R%d cannot write into %s\n",
6897 regno, reg_type_str(env, reg->type));
6898 return -EACCES;
6899 }
6900 err = check_sock_access(env, insn_idx, regno, off, size, t);
6901 if (!err && value_regno >= 0)
6902 mark_reg_unknown(env, regs, value_regno);
6903 } else if (reg->type == PTR_TO_TP_BUFFER) {
6904 err = check_tp_buffer_access(env, reg, regno, off, size);
6905 if (!err && t == BPF_READ && value_regno >= 0)
6906 mark_reg_unknown(env, regs, value_regno);
6907 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6908 !type_may_be_null(reg->type)) {
6909 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6910 value_regno);
6911 } else if (reg->type == CONST_PTR_TO_MAP) {
6912 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6913 value_regno);
6914 } else if (base_type(reg->type) == PTR_TO_BUF) {
6915 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6916 u32 *max_access;
6917
6918 if (rdonly_mem) {
6919 if (t == BPF_WRITE) {
6920 verbose(env, "R%d cannot write into %s\n",
6921 regno, reg_type_str(env, reg->type));
6922 return -EACCES;
6923 }
6924 max_access = &env->prog->aux->max_rdonly_access;
6925 } else {
6926 max_access = &env->prog->aux->max_rdwr_access;
6927 }
6928
6929 err = check_buffer_access(env, reg, regno, off, size, false,
6930 max_access);
6931
6932 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6933 mark_reg_unknown(env, regs, value_regno);
6934 } else {
6935 verbose(env, "R%d invalid mem access '%s'\n", regno,
6936 reg_type_str(env, reg->type));
6937 return -EACCES;
6938 }
6939
6940 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6941 regs[value_regno].type == SCALAR_VALUE) {
6942 if (!is_ldsx)
6943 /* b/h/w load zero-extends, mark upper bits as known 0 */
6944 coerce_reg_to_size(®s[value_regno], size);
6945 else
6946 coerce_reg_to_size_sx(®s[value_regno], size);
6947 }
6948 return err;
6949 }
6950
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)6951 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6952 {
6953 int load_reg;
6954 int err;
6955
6956 switch (insn->imm) {
6957 case BPF_ADD:
6958 case BPF_ADD | BPF_FETCH:
6959 case BPF_AND:
6960 case BPF_AND | BPF_FETCH:
6961 case BPF_OR:
6962 case BPF_OR | BPF_FETCH:
6963 case BPF_XOR:
6964 case BPF_XOR | BPF_FETCH:
6965 case BPF_XCHG:
6966 case BPF_CMPXCHG:
6967 break;
6968 default:
6969 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6970 return -EINVAL;
6971 }
6972
6973 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6974 verbose(env, "invalid atomic operand size\n");
6975 return -EINVAL;
6976 }
6977
6978 /* check src1 operand */
6979 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6980 if (err)
6981 return err;
6982
6983 /* check src2 operand */
6984 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6985 if (err)
6986 return err;
6987
6988 if (insn->imm == BPF_CMPXCHG) {
6989 /* Check comparison of R0 with memory location */
6990 const u32 aux_reg = BPF_REG_0;
6991
6992 err = check_reg_arg(env, aux_reg, SRC_OP);
6993 if (err)
6994 return err;
6995
6996 if (is_pointer_value(env, aux_reg)) {
6997 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6998 return -EACCES;
6999 }
7000 }
7001
7002 if (is_pointer_value(env, insn->src_reg)) {
7003 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7004 return -EACCES;
7005 }
7006
7007 if (is_ctx_reg(env, insn->dst_reg) ||
7008 is_pkt_reg(env, insn->dst_reg) ||
7009 is_flow_key_reg(env, insn->dst_reg) ||
7010 is_sk_reg(env, insn->dst_reg)) {
7011 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7012 insn->dst_reg,
7013 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7014 return -EACCES;
7015 }
7016
7017 if (insn->imm & BPF_FETCH) {
7018 if (insn->imm == BPF_CMPXCHG)
7019 load_reg = BPF_REG_0;
7020 else
7021 load_reg = insn->src_reg;
7022
7023 /* check and record load of old value */
7024 err = check_reg_arg(env, load_reg, DST_OP);
7025 if (err)
7026 return err;
7027 } else {
7028 /* This instruction accesses a memory location but doesn't
7029 * actually load it into a register.
7030 */
7031 load_reg = -1;
7032 }
7033
7034 /* Check whether we can read the memory, with second call for fetch
7035 * case to simulate the register fill.
7036 */
7037 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7038 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7039 if (!err && load_reg >= 0)
7040 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7041 BPF_SIZE(insn->code), BPF_READ, load_reg,
7042 true, false);
7043 if (err)
7044 return err;
7045
7046 /* Check whether we can write into the same memory. */
7047 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7048 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7049 if (err)
7050 return err;
7051
7052 return 0;
7053 }
7054
7055 /* When register 'regno' is used to read the stack (either directly or through
7056 * a helper function) make sure that it's within stack boundary and, depending
7057 * on the access type and privileges, that all elements of the stack are
7058 * initialized.
7059 *
7060 * 'off' includes 'regno->off', but not its dynamic part (if any).
7061 *
7062 * All registers that have been spilled on the stack in the slots within the
7063 * read offsets are marked as read.
7064 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7065 static int check_stack_range_initialized(
7066 struct bpf_verifier_env *env, int regno, int off,
7067 int access_size, bool zero_size_allowed,
7068 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7069 {
7070 struct bpf_reg_state *reg = reg_state(env, regno);
7071 struct bpf_func_state *state = func(env, reg);
7072 int err, min_off, max_off, i, j, slot, spi;
7073 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7074 enum bpf_access_type bounds_check_type;
7075 /* Some accesses can write anything into the stack, others are
7076 * read-only.
7077 */
7078 bool clobber = false;
7079
7080 if (access_size == 0 && !zero_size_allowed) {
7081 verbose(env, "invalid zero-sized read\n");
7082 return -EACCES;
7083 }
7084
7085 if (type == ACCESS_HELPER) {
7086 /* The bounds checks for writes are more permissive than for
7087 * reads. However, if raw_mode is not set, we'll do extra
7088 * checks below.
7089 */
7090 bounds_check_type = BPF_WRITE;
7091 clobber = true;
7092 } else {
7093 bounds_check_type = BPF_READ;
7094 }
7095 err = check_stack_access_within_bounds(env, regno, off, access_size,
7096 type, bounds_check_type);
7097 if (err)
7098 return err;
7099
7100
7101 if (tnum_is_const(reg->var_off)) {
7102 min_off = max_off = reg->var_off.value + off;
7103 } else {
7104 /* Variable offset is prohibited for unprivileged mode for
7105 * simplicity since it requires corresponding support in
7106 * Spectre masking for stack ALU.
7107 * See also retrieve_ptr_limit().
7108 */
7109 if (!env->bypass_spec_v1) {
7110 char tn_buf[48];
7111
7112 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7113 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7114 regno, err_extra, tn_buf);
7115 return -EACCES;
7116 }
7117 /* Only initialized buffer on stack is allowed to be accessed
7118 * with variable offset. With uninitialized buffer it's hard to
7119 * guarantee that whole memory is marked as initialized on
7120 * helper return since specific bounds are unknown what may
7121 * cause uninitialized stack leaking.
7122 */
7123 if (meta && meta->raw_mode)
7124 meta = NULL;
7125
7126 min_off = reg->smin_value + off;
7127 max_off = reg->smax_value + off;
7128 }
7129
7130 if (meta && meta->raw_mode) {
7131 /* Ensure we won't be overwriting dynptrs when simulating byte
7132 * by byte access in check_helper_call using meta.access_size.
7133 * This would be a problem if we have a helper in the future
7134 * which takes:
7135 *
7136 * helper(uninit_mem, len, dynptr)
7137 *
7138 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7139 * may end up writing to dynptr itself when touching memory from
7140 * arg 1. This can be relaxed on a case by case basis for known
7141 * safe cases, but reject due to the possibilitiy of aliasing by
7142 * default.
7143 */
7144 for (i = min_off; i < max_off + access_size; i++) {
7145 int stack_off = -i - 1;
7146
7147 spi = __get_spi(i);
7148 /* raw_mode may write past allocated_stack */
7149 if (state->allocated_stack <= stack_off)
7150 continue;
7151 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7152 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7153 return -EACCES;
7154 }
7155 }
7156 meta->access_size = access_size;
7157 meta->regno = regno;
7158 return 0;
7159 }
7160
7161 for (i = min_off; i < max_off + access_size; i++) {
7162 u8 *stype;
7163
7164 slot = -i - 1;
7165 spi = slot / BPF_REG_SIZE;
7166 if (state->allocated_stack <= slot) {
7167 verbose(env, "verifier bug: allocated_stack too small");
7168 return -EFAULT;
7169 }
7170
7171 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7172 if (*stype == STACK_MISC)
7173 goto mark;
7174 if ((*stype == STACK_ZERO) ||
7175 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7176 if (clobber) {
7177 /* helper can write anything into the stack */
7178 *stype = STACK_MISC;
7179 }
7180 goto mark;
7181 }
7182
7183 if (is_spilled_reg(&state->stack[spi]) &&
7184 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7185 env->allow_ptr_leaks)) {
7186 if (clobber) {
7187 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7188 for (j = 0; j < BPF_REG_SIZE; j++)
7189 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7190 }
7191 goto mark;
7192 }
7193
7194 if (tnum_is_const(reg->var_off)) {
7195 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7196 err_extra, regno, min_off, i - min_off, access_size);
7197 } else {
7198 char tn_buf[48];
7199
7200 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7201 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7202 err_extra, regno, tn_buf, i - min_off, access_size);
7203 }
7204 return -EACCES;
7205 mark:
7206 /* reading any byte out of 8-byte 'spill_slot' will cause
7207 * the whole slot to be marked as 'read'
7208 */
7209 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7210 state->stack[spi].spilled_ptr.parent,
7211 REG_LIVE_READ64);
7212 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7213 * be sure that whether stack slot is written to or not. Hence,
7214 * we must still conservatively propagate reads upwards even if
7215 * helper may write to the entire memory range.
7216 */
7217 }
7218 return 0;
7219 }
7220
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7221 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7222 int access_size, enum bpf_access_type access_type,
7223 bool zero_size_allowed,
7224 struct bpf_call_arg_meta *meta)
7225 {
7226 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7227 u32 *max_access;
7228
7229 switch (base_type(reg->type)) {
7230 case PTR_TO_PACKET:
7231 case PTR_TO_PACKET_META:
7232 return check_packet_access(env, regno, reg->off, access_size,
7233 zero_size_allowed);
7234 case PTR_TO_MAP_KEY:
7235 if (access_type == BPF_WRITE) {
7236 verbose(env, "R%d cannot write into %s\n", regno,
7237 reg_type_str(env, reg->type));
7238 return -EACCES;
7239 }
7240 return check_mem_region_access(env, regno, reg->off, access_size,
7241 reg->map_ptr->key_size, false);
7242 case PTR_TO_MAP_VALUE:
7243 if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7244 return -EACCES;
7245 return check_map_access(env, regno, reg->off, access_size,
7246 zero_size_allowed, ACCESS_HELPER);
7247 case PTR_TO_MEM:
7248 if (type_is_rdonly_mem(reg->type)) {
7249 if (access_type == BPF_WRITE) {
7250 verbose(env, "R%d cannot write into %s\n", regno,
7251 reg_type_str(env, reg->type));
7252 return -EACCES;
7253 }
7254 }
7255 return check_mem_region_access(env, regno, reg->off,
7256 access_size, reg->mem_size,
7257 zero_size_allowed);
7258 case PTR_TO_BUF:
7259 if (type_is_rdonly_mem(reg->type)) {
7260 if (access_type == BPF_WRITE) {
7261 verbose(env, "R%d cannot write into %s\n", regno,
7262 reg_type_str(env, reg->type));
7263 return -EACCES;
7264 }
7265
7266 max_access = &env->prog->aux->max_rdonly_access;
7267 } else {
7268 max_access = &env->prog->aux->max_rdwr_access;
7269 }
7270 return check_buffer_access(env, reg, regno, reg->off,
7271 access_size, zero_size_allowed,
7272 max_access);
7273 case PTR_TO_STACK:
7274 return check_stack_range_initialized(
7275 env,
7276 regno, reg->off, access_size,
7277 zero_size_allowed, ACCESS_HELPER, meta);
7278 case PTR_TO_BTF_ID:
7279 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7280 access_size, BPF_READ, -1);
7281 case PTR_TO_CTX:
7282 /* in case the function doesn't know how to access the context,
7283 * (because we are in a program of type SYSCALL for example), we
7284 * can not statically check its size.
7285 * Dynamically check it now.
7286 */
7287 if (!env->ops->convert_ctx_access) {
7288 int offset = access_size - 1;
7289
7290 /* Allow zero-byte read from PTR_TO_CTX */
7291 if (access_size == 0)
7292 return zero_size_allowed ? 0 : -EACCES;
7293
7294 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7295 access_type, -1, false, false);
7296 }
7297
7298 fallthrough;
7299 default: /* scalar_value or invalid ptr */
7300 /* Allow zero-byte read from NULL, regardless of pointer type */
7301 if (zero_size_allowed && access_size == 0 &&
7302 register_is_null(reg))
7303 return 0;
7304
7305 verbose(env, "R%d type=%s ", regno,
7306 reg_type_str(env, reg->type));
7307 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7308 return -EACCES;
7309 }
7310 }
7311
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,enum bpf_access_type access_type,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7312 static int check_mem_size_reg(struct bpf_verifier_env *env,
7313 struct bpf_reg_state *reg, u32 regno,
7314 enum bpf_access_type access_type,
7315 bool zero_size_allowed,
7316 struct bpf_call_arg_meta *meta)
7317 {
7318 int err;
7319
7320 /* This is used to refine r0 return value bounds for helpers
7321 * that enforce this value as an upper bound on return values.
7322 * See do_refine_retval_range() for helpers that can refine
7323 * the return value. C type of helper is u32 so we pull register
7324 * bound from umax_value however, if negative verifier errors
7325 * out. Only upper bounds can be learned because retval is an
7326 * int type and negative retvals are allowed.
7327 */
7328 meta->msize_max_value = reg->umax_value;
7329
7330 /* The register is SCALAR_VALUE; the access check happens using
7331 * its boundaries. For unprivileged variable accesses, disable
7332 * raw mode so that the program is required to initialize all
7333 * the memory that the helper could just partially fill up.
7334 */
7335 if (!tnum_is_const(reg->var_off))
7336 meta = NULL;
7337
7338 if (reg->smin_value < 0) {
7339 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7340 regno);
7341 return -EACCES;
7342 }
7343
7344 if (reg->umin_value == 0 && !zero_size_allowed) {
7345 verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7346 regno, reg->umin_value, reg->umax_value);
7347 return -EACCES;
7348 }
7349
7350 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7351 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7352 regno);
7353 return -EACCES;
7354 }
7355 err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7356 access_type, zero_size_allowed, meta);
7357 if (!err)
7358 err = mark_chain_precision(env, regno);
7359 return err;
7360 }
7361
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7362 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7363 u32 regno, u32 mem_size)
7364 {
7365 bool may_be_null = type_may_be_null(reg->type);
7366 struct bpf_reg_state saved_reg;
7367 int err;
7368
7369 if (register_is_null(reg))
7370 return 0;
7371
7372 /* Assuming that the register contains a value check if the memory
7373 * access is safe. Temporarily save and restore the register's state as
7374 * the conversion shouldn't be visible to a caller.
7375 */
7376 if (may_be_null) {
7377 saved_reg = *reg;
7378 mark_ptr_not_null_reg(reg);
7379 }
7380
7381 err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7382 err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7383
7384 if (may_be_null)
7385 *reg = saved_reg;
7386
7387 return err;
7388 }
7389
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7390 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7391 u32 regno)
7392 {
7393 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7394 bool may_be_null = type_may_be_null(mem_reg->type);
7395 struct bpf_reg_state saved_reg;
7396 struct bpf_call_arg_meta meta;
7397 int err;
7398
7399 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7400
7401 memset(&meta, 0, sizeof(meta));
7402
7403 if (may_be_null) {
7404 saved_reg = *mem_reg;
7405 mark_ptr_not_null_reg(mem_reg);
7406 }
7407
7408 err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7409 err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7410
7411 if (may_be_null)
7412 *mem_reg = saved_reg;
7413
7414 return err;
7415 }
7416
7417 /* Implementation details:
7418 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7419 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7420 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7421 * Two separate bpf_obj_new will also have different reg->id.
7422 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7423 * clears reg->id after value_or_null->value transition, since the verifier only
7424 * cares about the range of access to valid map value pointer and doesn't care
7425 * about actual address of the map element.
7426 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7427 * reg->id > 0 after value_or_null->value transition. By doing so
7428 * two bpf_map_lookups will be considered two different pointers that
7429 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7430 * returned from bpf_obj_new.
7431 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7432 * dead-locks.
7433 * Since only one bpf_spin_lock is allowed the checks are simpler than
7434 * reg_is_refcounted() logic. The verifier needs to remember only
7435 * one spin_lock instead of array of acquired_refs.
7436 * cur_state->active_lock remembers which map value element or allocated
7437 * object got locked and clears it after bpf_spin_unlock.
7438 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7439 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7440 bool is_lock)
7441 {
7442 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7443 struct bpf_verifier_state *cur = env->cur_state;
7444 bool is_const = tnum_is_const(reg->var_off);
7445 u64 val = reg->var_off.value;
7446 struct bpf_map *map = NULL;
7447 struct btf *btf = NULL;
7448 struct btf_record *rec;
7449
7450 if (!is_const) {
7451 verbose(env,
7452 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7453 regno);
7454 return -EINVAL;
7455 }
7456 if (reg->type == PTR_TO_MAP_VALUE) {
7457 map = reg->map_ptr;
7458 if (!map->btf) {
7459 verbose(env,
7460 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7461 map->name);
7462 return -EINVAL;
7463 }
7464 } else {
7465 btf = reg->btf;
7466 }
7467
7468 rec = reg_btf_record(reg);
7469 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7470 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7471 map ? map->name : "kptr");
7472 return -EINVAL;
7473 }
7474 if (rec->spin_lock_off != val + reg->off) {
7475 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7476 val + reg->off, rec->spin_lock_off);
7477 return -EINVAL;
7478 }
7479 if (is_lock) {
7480 if (cur->active_lock.ptr) {
7481 verbose(env,
7482 "Locking two bpf_spin_locks are not allowed\n");
7483 return -EINVAL;
7484 }
7485 if (map)
7486 cur->active_lock.ptr = map;
7487 else
7488 cur->active_lock.ptr = btf;
7489 cur->active_lock.id = reg->id;
7490 } else {
7491 void *ptr;
7492
7493 if (map)
7494 ptr = map;
7495 else
7496 ptr = btf;
7497
7498 if (!cur->active_lock.ptr) {
7499 verbose(env, "bpf_spin_unlock without taking a lock\n");
7500 return -EINVAL;
7501 }
7502 if (cur->active_lock.ptr != ptr ||
7503 cur->active_lock.id != reg->id) {
7504 verbose(env, "bpf_spin_unlock of different lock\n");
7505 return -EINVAL;
7506 }
7507
7508 invalidate_non_owning_refs(env);
7509
7510 cur->active_lock.ptr = NULL;
7511 cur->active_lock.id = 0;
7512 }
7513 return 0;
7514 }
7515
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7516 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7517 struct bpf_call_arg_meta *meta)
7518 {
7519 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7520 bool is_const = tnum_is_const(reg->var_off);
7521 struct bpf_map *map = reg->map_ptr;
7522 u64 val = reg->var_off.value;
7523
7524 if (!is_const) {
7525 verbose(env,
7526 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7527 regno);
7528 return -EINVAL;
7529 }
7530 if (!map->btf) {
7531 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7532 map->name);
7533 return -EINVAL;
7534 }
7535 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7536 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7537 return -EINVAL;
7538 }
7539 if (map->record->timer_off != val + reg->off) {
7540 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7541 val + reg->off, map->record->timer_off);
7542 return -EINVAL;
7543 }
7544 if (meta->map_ptr) {
7545 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7546 return -EFAULT;
7547 }
7548 meta->map_uid = reg->map_uid;
7549 meta->map_ptr = map;
7550 return 0;
7551 }
7552
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7553 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7554 struct bpf_call_arg_meta *meta)
7555 {
7556 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7557 struct bpf_map *map_ptr = reg->map_ptr;
7558 struct btf_field *kptr_field;
7559 u32 kptr_off;
7560
7561 if (!tnum_is_const(reg->var_off)) {
7562 verbose(env,
7563 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7564 regno);
7565 return -EINVAL;
7566 }
7567 if (!map_ptr->btf) {
7568 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7569 map_ptr->name);
7570 return -EINVAL;
7571 }
7572 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7573 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7574 return -EINVAL;
7575 }
7576
7577 meta->map_ptr = map_ptr;
7578 kptr_off = reg->off + reg->var_off.value;
7579 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7580 if (!kptr_field) {
7581 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7582 return -EACCES;
7583 }
7584 if (kptr_field->type != BPF_KPTR_REF) {
7585 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7586 return -EACCES;
7587 }
7588 meta->kptr_field = kptr_field;
7589 return 0;
7590 }
7591
7592 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7593 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7594 *
7595 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7596 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7597 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7598 *
7599 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7600 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7601 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7602 * mutate the view of the dynptr and also possibly destroy it. In the latter
7603 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7604 * memory that dynptr points to.
7605 *
7606 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7607 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7608 * readonly dynptr view yet, hence only the first case is tracked and checked.
7609 *
7610 * This is consistent with how C applies the const modifier to a struct object,
7611 * where the pointer itself inside bpf_dynptr becomes const but not what it
7612 * points to.
7613 *
7614 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7615 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7616 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7617 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7618 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7619 {
7620 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7621 int err;
7622
7623 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7624 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7625 */
7626 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7627 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7628 return -EFAULT;
7629 }
7630
7631 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7632 * constructing a mutable bpf_dynptr object.
7633 *
7634 * Currently, this is only possible with PTR_TO_STACK
7635 * pointing to a region of at least 16 bytes which doesn't
7636 * contain an existing bpf_dynptr.
7637 *
7638 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7639 * mutated or destroyed. However, the memory it points to
7640 * may be mutated.
7641 *
7642 * None - Points to a initialized dynptr that can be mutated and
7643 * destroyed, including mutation of the memory it points
7644 * to.
7645 */
7646 if (arg_type & MEM_UNINIT) {
7647 int i;
7648
7649 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7650 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7651 return -EINVAL;
7652 }
7653
7654 /* we write BPF_DW bits (8 bytes) at a time */
7655 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7656 err = check_mem_access(env, insn_idx, regno,
7657 i, BPF_DW, BPF_WRITE, -1, false, false);
7658 if (err)
7659 return err;
7660 }
7661
7662 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7663 } else /* MEM_RDONLY and None case from above */ {
7664 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7665 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7666 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7667 return -EINVAL;
7668 }
7669
7670 if (!is_dynptr_reg_valid_init(env, reg)) {
7671 verbose(env,
7672 "Expected an initialized dynptr as arg #%d\n",
7673 regno);
7674 return -EINVAL;
7675 }
7676
7677 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7678 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7679 verbose(env,
7680 "Expected a dynptr of type %s as arg #%d\n",
7681 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7682 return -EINVAL;
7683 }
7684
7685 err = mark_dynptr_read(env, reg);
7686 }
7687 return err;
7688 }
7689
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7690 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7691 {
7692 struct bpf_func_state *state = func(env, reg);
7693
7694 return state->stack[spi].spilled_ptr.ref_obj_id;
7695 }
7696
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7697 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7698 {
7699 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7700 }
7701
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7702 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7703 {
7704 return meta->kfunc_flags & KF_ITER_NEW;
7705 }
7706
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7707 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7708 {
7709 return meta->kfunc_flags & KF_ITER_NEXT;
7710 }
7711
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7712 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7713 {
7714 return meta->kfunc_flags & KF_ITER_DESTROY;
7715 }
7716
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg)7717 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7718 {
7719 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7720 * kfunc is iter state pointer
7721 */
7722 return arg == 0 && is_iter_kfunc(meta);
7723 }
7724
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7725 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7726 struct bpf_kfunc_call_arg_meta *meta)
7727 {
7728 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7729 const struct btf_type *t;
7730 const struct btf_param *arg;
7731 int spi, err, i, nr_slots;
7732 u32 btf_id;
7733
7734 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7735 arg = &btf_params(meta->func_proto)[0];
7736 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7737 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7738 nr_slots = t->size / BPF_REG_SIZE;
7739
7740 if (is_iter_new_kfunc(meta)) {
7741 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7742 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7743 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7744 iter_type_str(meta->btf, btf_id), regno);
7745 return -EINVAL;
7746 }
7747
7748 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7749 err = check_mem_access(env, insn_idx, regno,
7750 i, BPF_DW, BPF_WRITE, -1, false, false);
7751 if (err)
7752 return err;
7753 }
7754
7755 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7756 if (err)
7757 return err;
7758 } else {
7759 /* iter_next() or iter_destroy() expect initialized iter state*/
7760 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7761 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7762 iter_type_str(meta->btf, btf_id), regno);
7763 return -EINVAL;
7764 }
7765
7766 spi = iter_get_spi(env, reg, nr_slots);
7767 if (spi < 0)
7768 return spi;
7769
7770 err = mark_iter_read(env, reg, spi, nr_slots);
7771 if (err)
7772 return err;
7773
7774 /* remember meta->iter info for process_iter_next_call() */
7775 meta->iter.spi = spi;
7776 meta->iter.frameno = reg->frameno;
7777 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7778
7779 if (is_iter_destroy_kfunc(meta)) {
7780 err = unmark_stack_slots_iter(env, reg, nr_slots);
7781 if (err)
7782 return err;
7783 }
7784 }
7785
7786 return 0;
7787 }
7788
7789 /* Look for a previous loop entry at insn_idx: nearest parent state
7790 * stopped at insn_idx with callsites matching those in cur->frame.
7791 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)7792 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7793 struct bpf_verifier_state *cur,
7794 int insn_idx)
7795 {
7796 struct bpf_verifier_state_list *sl;
7797 struct bpf_verifier_state *st;
7798
7799 /* Explored states are pushed in stack order, most recent states come first */
7800 sl = *explored_state(env, insn_idx);
7801 for (; sl; sl = sl->next) {
7802 /* If st->branches != 0 state is a part of current DFS verification path,
7803 * hence cur & st for a loop.
7804 */
7805 st = &sl->state;
7806 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7807 st->dfs_depth < cur->dfs_depth)
7808 return st;
7809 }
7810
7811 return NULL;
7812 }
7813
7814 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7815 static bool regs_exact(const struct bpf_reg_state *rold,
7816 const struct bpf_reg_state *rcur,
7817 struct bpf_idmap *idmap);
7818
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)7819 static void maybe_widen_reg(struct bpf_verifier_env *env,
7820 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7821 struct bpf_idmap *idmap)
7822 {
7823 if (rold->type != SCALAR_VALUE)
7824 return;
7825 if (rold->type != rcur->type)
7826 return;
7827 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7828 return;
7829 __mark_reg_unknown(env, rcur);
7830 }
7831
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7832 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7833 struct bpf_verifier_state *old,
7834 struct bpf_verifier_state *cur)
7835 {
7836 struct bpf_func_state *fold, *fcur;
7837 int i, fr;
7838
7839 reset_idmap_scratch(env);
7840 for (fr = old->curframe; fr >= 0; fr--) {
7841 fold = old->frame[fr];
7842 fcur = cur->frame[fr];
7843
7844 for (i = 0; i < MAX_BPF_REG; i++)
7845 maybe_widen_reg(env,
7846 &fold->regs[i],
7847 &fcur->regs[i],
7848 &env->idmap_scratch);
7849
7850 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7851 if (!is_spilled_reg(&fold->stack[i]) ||
7852 !is_spilled_reg(&fcur->stack[i]))
7853 continue;
7854
7855 maybe_widen_reg(env,
7856 &fold->stack[i].spilled_ptr,
7857 &fcur->stack[i].spilled_ptr,
7858 &env->idmap_scratch);
7859 }
7860 }
7861 return 0;
7862 }
7863
get_iter_from_state(struct bpf_verifier_state * cur_st,struct bpf_kfunc_call_arg_meta * meta)7864 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7865 struct bpf_kfunc_call_arg_meta *meta)
7866 {
7867 int iter_frameno = meta->iter.frameno;
7868 int iter_spi = meta->iter.spi;
7869
7870 return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7871 }
7872
7873 /* process_iter_next_call() is called when verifier gets to iterator's next
7874 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7875 * to it as just "iter_next()" in comments below.
7876 *
7877 * BPF verifier relies on a crucial contract for any iter_next()
7878 * implementation: it should *eventually* return NULL, and once that happens
7879 * it should keep returning NULL. That is, once iterator exhausts elements to
7880 * iterate, it should never reset or spuriously return new elements.
7881 *
7882 * With the assumption of such contract, process_iter_next_call() simulates
7883 * a fork in the verifier state to validate loop logic correctness and safety
7884 * without having to simulate infinite amount of iterations.
7885 *
7886 * In current state, we first assume that iter_next() returned NULL and
7887 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7888 * conditions we should not form an infinite loop and should eventually reach
7889 * exit.
7890 *
7891 * Besides that, we also fork current state and enqueue it for later
7892 * verification. In a forked state we keep iterator state as ACTIVE
7893 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7894 * also bump iteration depth to prevent erroneous infinite loop detection
7895 * later on (see iter_active_depths_differ() comment for details). In this
7896 * state we assume that we'll eventually loop back to another iter_next()
7897 * calls (it could be in exactly same location or in some other instruction,
7898 * it doesn't matter, we don't make any unnecessary assumptions about this,
7899 * everything revolves around iterator state in a stack slot, not which
7900 * instruction is calling iter_next()). When that happens, we either will come
7901 * to iter_next() with equivalent state and can conclude that next iteration
7902 * will proceed in exactly the same way as we just verified, so it's safe to
7903 * assume that loop converges. If not, we'll go on another iteration
7904 * simulation with a different input state, until all possible starting states
7905 * are validated or we reach maximum number of instructions limit.
7906 *
7907 * This way, we will either exhaustively discover all possible input states
7908 * that iterator loop can start with and eventually will converge, or we'll
7909 * effectively regress into bounded loop simulation logic and either reach
7910 * maximum number of instructions if loop is not provably convergent, or there
7911 * is some statically known limit on number of iterations (e.g., if there is
7912 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7913 *
7914 * Iteration convergence logic in is_state_visited() relies on exact
7915 * states comparison, which ignores read and precision marks.
7916 * This is necessary because read and precision marks are not finalized
7917 * while in the loop. Exact comparison might preclude convergence for
7918 * simple programs like below:
7919 *
7920 * i = 0;
7921 * while(iter_next(&it))
7922 * i++;
7923 *
7924 * At each iteration step i++ would produce a new distinct state and
7925 * eventually instruction processing limit would be reached.
7926 *
7927 * To avoid such behavior speculatively forget (widen) range for
7928 * imprecise scalar registers, if those registers were not precise at the
7929 * end of the previous iteration and do not match exactly.
7930 *
7931 * This is a conservative heuristic that allows to verify wide range of programs,
7932 * however it precludes verification of programs that conjure an
7933 * imprecise value on the first loop iteration and use it as precise on a second.
7934 * For example, the following safe program would fail to verify:
7935 *
7936 * struct bpf_num_iter it;
7937 * int arr[10];
7938 * int i = 0, a = 0;
7939 * bpf_iter_num_new(&it, 0, 10);
7940 * while (bpf_iter_num_next(&it)) {
7941 * if (a == 0) {
7942 * a = 1;
7943 * i = 7; // Because i changed verifier would forget
7944 * // it's range on second loop entry.
7945 * } else {
7946 * arr[i] = 42; // This would fail to verify.
7947 * }
7948 * }
7949 * bpf_iter_num_destroy(&it);
7950 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7951 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7952 struct bpf_kfunc_call_arg_meta *meta)
7953 {
7954 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7955 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7956 struct bpf_reg_state *cur_iter, *queued_iter;
7957
7958 BTF_TYPE_EMIT(struct bpf_iter);
7959
7960 cur_iter = get_iter_from_state(cur_st, meta);
7961
7962 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7963 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7964 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7965 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7966 return -EFAULT;
7967 }
7968
7969 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7970 /* Because iter_next() call is a checkpoint is_state_visitied()
7971 * should guarantee parent state with same call sites and insn_idx.
7972 */
7973 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7974 !same_callsites(cur_st->parent, cur_st)) {
7975 verbose(env, "bug: bad parent state for iter next call");
7976 return -EFAULT;
7977 }
7978 /* Note cur_st->parent in the call below, it is necessary to skip
7979 * checkpoint created for cur_st by is_state_visited()
7980 * right at this instruction.
7981 */
7982 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7983 /* branch out active iter state */
7984 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7985 if (!queued_st)
7986 return -ENOMEM;
7987
7988 queued_iter = get_iter_from_state(queued_st, meta);
7989 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7990 queued_iter->iter.depth++;
7991 if (prev_st)
7992 widen_imprecise_scalars(env, prev_st, queued_st);
7993
7994 queued_fr = queued_st->frame[queued_st->curframe];
7995 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7996 }
7997
7998 /* switch to DRAINED state, but keep the depth unchanged */
7999 /* mark current iter state as drained and assume returned NULL */
8000 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8001 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8002
8003 return 0;
8004 }
8005
arg_type_is_mem_size(enum bpf_arg_type type)8006 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8007 {
8008 return type == ARG_CONST_SIZE ||
8009 type == ARG_CONST_SIZE_OR_ZERO;
8010 }
8011
arg_type_is_raw_mem(enum bpf_arg_type type)8012 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8013 {
8014 return base_type(type) == ARG_PTR_TO_MEM &&
8015 type & MEM_UNINIT;
8016 }
8017
arg_type_is_release(enum bpf_arg_type type)8018 static bool arg_type_is_release(enum bpf_arg_type type)
8019 {
8020 return type & OBJ_RELEASE;
8021 }
8022
arg_type_is_dynptr(enum bpf_arg_type type)8023 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8024 {
8025 return base_type(type) == ARG_PTR_TO_DYNPTR;
8026 }
8027
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)8028 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8029 const struct bpf_call_arg_meta *meta,
8030 enum bpf_arg_type *arg_type)
8031 {
8032 if (!meta->map_ptr) {
8033 /* kernel subsystem misconfigured verifier */
8034 verbose(env, "invalid map_ptr to access map->type\n");
8035 return -EACCES;
8036 }
8037
8038 switch (meta->map_ptr->map_type) {
8039 case BPF_MAP_TYPE_SOCKMAP:
8040 case BPF_MAP_TYPE_SOCKHASH:
8041 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8042 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8043 } else {
8044 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8045 return -EINVAL;
8046 }
8047 break;
8048 case BPF_MAP_TYPE_BLOOM_FILTER:
8049 if (meta->func_id == BPF_FUNC_map_peek_elem)
8050 *arg_type = ARG_PTR_TO_MAP_VALUE;
8051 break;
8052 default:
8053 break;
8054 }
8055 return 0;
8056 }
8057
8058 struct bpf_reg_types {
8059 const enum bpf_reg_type types[10];
8060 u32 *btf_id;
8061 };
8062
8063 static const struct bpf_reg_types sock_types = {
8064 .types = {
8065 PTR_TO_SOCK_COMMON,
8066 PTR_TO_SOCKET,
8067 PTR_TO_TCP_SOCK,
8068 PTR_TO_XDP_SOCK,
8069 },
8070 };
8071
8072 #ifdef CONFIG_NET
8073 static const struct bpf_reg_types btf_id_sock_common_types = {
8074 .types = {
8075 PTR_TO_SOCK_COMMON,
8076 PTR_TO_SOCKET,
8077 PTR_TO_TCP_SOCK,
8078 PTR_TO_XDP_SOCK,
8079 PTR_TO_BTF_ID,
8080 PTR_TO_BTF_ID | PTR_TRUSTED,
8081 },
8082 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8083 };
8084 #endif
8085
8086 static const struct bpf_reg_types mem_types = {
8087 .types = {
8088 PTR_TO_STACK,
8089 PTR_TO_PACKET,
8090 PTR_TO_PACKET_META,
8091 PTR_TO_MAP_KEY,
8092 PTR_TO_MAP_VALUE,
8093 PTR_TO_MEM,
8094 PTR_TO_MEM | MEM_RINGBUF,
8095 PTR_TO_BUF,
8096 PTR_TO_BTF_ID | PTR_TRUSTED,
8097 },
8098 };
8099
8100 static const struct bpf_reg_types spin_lock_types = {
8101 .types = {
8102 PTR_TO_MAP_VALUE,
8103 PTR_TO_BTF_ID | MEM_ALLOC,
8104 }
8105 };
8106
8107 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8108 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8109 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8110 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8111 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8112 static const struct bpf_reg_types btf_ptr_types = {
8113 .types = {
8114 PTR_TO_BTF_ID,
8115 PTR_TO_BTF_ID | PTR_TRUSTED,
8116 PTR_TO_BTF_ID | MEM_RCU,
8117 },
8118 };
8119 static const struct bpf_reg_types percpu_btf_ptr_types = {
8120 .types = {
8121 PTR_TO_BTF_ID | MEM_PERCPU,
8122 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8123 }
8124 };
8125 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8126 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8127 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8128 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8129 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8130 static const struct bpf_reg_types dynptr_types = {
8131 .types = {
8132 PTR_TO_STACK,
8133 CONST_PTR_TO_DYNPTR,
8134 }
8135 };
8136
8137 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8138 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8139 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8140 [ARG_CONST_SIZE] = &scalar_types,
8141 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8142 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8143 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8144 [ARG_PTR_TO_CTX] = &context_types,
8145 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8146 #ifdef CONFIG_NET
8147 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8148 #endif
8149 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8150 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8151 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8152 [ARG_PTR_TO_MEM] = &mem_types,
8153 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8154 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8155 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8156 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8157 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8158 [ARG_PTR_TO_TIMER] = &timer_types,
8159 [ARG_PTR_TO_KPTR] = &kptr_types,
8160 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8161 };
8162
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8163 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8164 enum bpf_arg_type arg_type,
8165 const u32 *arg_btf_id,
8166 struct bpf_call_arg_meta *meta)
8167 {
8168 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8169 enum bpf_reg_type expected, type = reg->type;
8170 const struct bpf_reg_types *compatible;
8171 int i, j;
8172
8173 compatible = compatible_reg_types[base_type(arg_type)];
8174 if (!compatible) {
8175 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8176 return -EFAULT;
8177 }
8178
8179 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8180 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8181 *
8182 * Same for MAYBE_NULL:
8183 *
8184 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8185 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8186 *
8187 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8188 *
8189 * Therefore we fold these flags depending on the arg_type before comparison.
8190 */
8191 if (arg_type & MEM_RDONLY)
8192 type &= ~MEM_RDONLY;
8193 if (arg_type & PTR_MAYBE_NULL)
8194 type &= ~PTR_MAYBE_NULL;
8195 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8196 type &= ~DYNPTR_TYPE_FLAG_MASK;
8197
8198 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8199 type &= ~MEM_ALLOC;
8200
8201 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8202 expected = compatible->types[i];
8203 if (expected == NOT_INIT)
8204 break;
8205
8206 if (type == expected)
8207 goto found;
8208 }
8209
8210 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8211 for (j = 0; j + 1 < i; j++)
8212 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8213 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8214 return -EACCES;
8215
8216 found:
8217 if (base_type(reg->type) != PTR_TO_BTF_ID)
8218 return 0;
8219
8220 if (compatible == &mem_types) {
8221 if (!(arg_type & MEM_RDONLY)) {
8222 verbose(env,
8223 "%s() may write into memory pointed by R%d type=%s\n",
8224 func_id_name(meta->func_id),
8225 regno, reg_type_str(env, reg->type));
8226 return -EACCES;
8227 }
8228 return 0;
8229 }
8230
8231 switch ((int)reg->type) {
8232 case PTR_TO_BTF_ID:
8233 case PTR_TO_BTF_ID | PTR_TRUSTED:
8234 case PTR_TO_BTF_ID | MEM_RCU:
8235 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8236 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8237 {
8238 /* For bpf_sk_release, it needs to match against first member
8239 * 'struct sock_common', hence make an exception for it. This
8240 * allows bpf_sk_release to work for multiple socket types.
8241 */
8242 bool strict_type_match = arg_type_is_release(arg_type) &&
8243 meta->func_id != BPF_FUNC_sk_release;
8244
8245 if (type_may_be_null(reg->type) &&
8246 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8247 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8248 return -EACCES;
8249 }
8250
8251 if (!arg_btf_id) {
8252 if (!compatible->btf_id) {
8253 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8254 return -EFAULT;
8255 }
8256 arg_btf_id = compatible->btf_id;
8257 }
8258
8259 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8260 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8261 return -EACCES;
8262 } else {
8263 if (arg_btf_id == BPF_PTR_POISON) {
8264 verbose(env, "verifier internal error:");
8265 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8266 regno);
8267 return -EACCES;
8268 }
8269
8270 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8271 btf_vmlinux, *arg_btf_id,
8272 strict_type_match)) {
8273 verbose(env, "R%d is of type %s but %s is expected\n",
8274 regno, btf_type_name(reg->btf, reg->btf_id),
8275 btf_type_name(btf_vmlinux, *arg_btf_id));
8276 return -EACCES;
8277 }
8278 }
8279 break;
8280 }
8281 case PTR_TO_BTF_ID | MEM_ALLOC:
8282 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8283 meta->func_id != BPF_FUNC_kptr_xchg) {
8284 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8285 return -EFAULT;
8286 }
8287 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8288 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8289 return -EACCES;
8290 }
8291 break;
8292 case PTR_TO_BTF_ID | MEM_PERCPU:
8293 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8294 /* Handled by helper specific checks */
8295 break;
8296 default:
8297 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8298 return -EFAULT;
8299 }
8300 return 0;
8301 }
8302
8303 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8304 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8305 {
8306 struct btf_field *field;
8307 struct btf_record *rec;
8308
8309 rec = reg_btf_record(reg);
8310 if (!rec)
8311 return NULL;
8312
8313 field = btf_record_find(rec, off, fields);
8314 if (!field)
8315 return NULL;
8316
8317 return field;
8318 }
8319
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8320 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8321 const struct bpf_reg_state *reg, int regno,
8322 enum bpf_arg_type arg_type)
8323 {
8324 u32 type = reg->type;
8325
8326 /* When referenced register is passed to release function, its fixed
8327 * offset must be 0.
8328 *
8329 * We will check arg_type_is_release reg has ref_obj_id when storing
8330 * meta->release_regno.
8331 */
8332 if (arg_type_is_release(arg_type)) {
8333 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8334 * may not directly point to the object being released, but to
8335 * dynptr pointing to such object, which might be at some offset
8336 * on the stack. In that case, we simply to fallback to the
8337 * default handling.
8338 */
8339 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8340 return 0;
8341
8342 /* Doing check_ptr_off_reg check for the offset will catch this
8343 * because fixed_off_ok is false, but checking here allows us
8344 * to give the user a better error message.
8345 */
8346 if (reg->off) {
8347 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8348 regno);
8349 return -EINVAL;
8350 }
8351 return __check_ptr_off_reg(env, reg, regno, false);
8352 }
8353
8354 switch (type) {
8355 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8356 case PTR_TO_STACK:
8357 case PTR_TO_PACKET:
8358 case PTR_TO_PACKET_META:
8359 case PTR_TO_MAP_KEY:
8360 case PTR_TO_MAP_VALUE:
8361 case PTR_TO_MEM:
8362 case PTR_TO_MEM | MEM_RDONLY:
8363 case PTR_TO_MEM | MEM_RINGBUF:
8364 case PTR_TO_BUF:
8365 case PTR_TO_BUF | MEM_RDONLY:
8366 case SCALAR_VALUE:
8367 return 0;
8368 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8369 * fixed offset.
8370 */
8371 case PTR_TO_BTF_ID:
8372 case PTR_TO_BTF_ID | MEM_ALLOC:
8373 case PTR_TO_BTF_ID | PTR_TRUSTED:
8374 case PTR_TO_BTF_ID | MEM_RCU:
8375 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8376 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8377 /* When referenced PTR_TO_BTF_ID is passed to release function,
8378 * its fixed offset must be 0. In the other cases, fixed offset
8379 * can be non-zero. This was already checked above. So pass
8380 * fixed_off_ok as true to allow fixed offset for all other
8381 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8382 * still need to do checks instead of returning.
8383 */
8384 return __check_ptr_off_reg(env, reg, regno, true);
8385 default:
8386 return __check_ptr_off_reg(env, reg, regno, false);
8387 }
8388 }
8389
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8390 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8391 const struct bpf_func_proto *fn,
8392 struct bpf_reg_state *regs)
8393 {
8394 struct bpf_reg_state *state = NULL;
8395 int i;
8396
8397 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8398 if (arg_type_is_dynptr(fn->arg_type[i])) {
8399 if (state) {
8400 verbose(env, "verifier internal error: multiple dynptr args\n");
8401 return NULL;
8402 }
8403 state = ®s[BPF_REG_1 + i];
8404 }
8405
8406 if (!state)
8407 verbose(env, "verifier internal error: no dynptr arg found\n");
8408
8409 return state;
8410 }
8411
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8412 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8413 {
8414 struct bpf_func_state *state = func(env, reg);
8415 int spi;
8416
8417 if (reg->type == CONST_PTR_TO_DYNPTR)
8418 return reg->id;
8419 spi = dynptr_get_spi(env, reg);
8420 if (spi < 0)
8421 return spi;
8422 return state->stack[spi].spilled_ptr.id;
8423 }
8424
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8425 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8426 {
8427 struct bpf_func_state *state = func(env, reg);
8428 int spi;
8429
8430 if (reg->type == CONST_PTR_TO_DYNPTR)
8431 return reg->ref_obj_id;
8432 spi = dynptr_get_spi(env, reg);
8433 if (spi < 0)
8434 return spi;
8435 return state->stack[spi].spilled_ptr.ref_obj_id;
8436 }
8437
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8438 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8439 struct bpf_reg_state *reg)
8440 {
8441 struct bpf_func_state *state = func(env, reg);
8442 int spi;
8443
8444 if (reg->type == CONST_PTR_TO_DYNPTR)
8445 return reg->dynptr.type;
8446
8447 spi = __get_spi(reg->off);
8448 if (spi < 0) {
8449 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8450 return BPF_DYNPTR_TYPE_INVALID;
8451 }
8452
8453 return state->stack[spi].spilled_ptr.dynptr.type;
8454 }
8455
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8456 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8457 struct bpf_call_arg_meta *meta,
8458 const struct bpf_func_proto *fn,
8459 int insn_idx)
8460 {
8461 u32 regno = BPF_REG_1 + arg;
8462 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8463 enum bpf_arg_type arg_type = fn->arg_type[arg];
8464 enum bpf_reg_type type = reg->type;
8465 u32 *arg_btf_id = NULL;
8466 int err = 0;
8467
8468 if (arg_type == ARG_DONTCARE)
8469 return 0;
8470
8471 err = check_reg_arg(env, regno, SRC_OP);
8472 if (err)
8473 return err;
8474
8475 if (arg_type == ARG_ANYTHING) {
8476 if (is_pointer_value(env, regno)) {
8477 verbose(env, "R%d leaks addr into helper function\n",
8478 regno);
8479 return -EACCES;
8480 }
8481 return 0;
8482 }
8483
8484 if (type_is_pkt_pointer(type) &&
8485 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8486 verbose(env, "helper access to the packet is not allowed\n");
8487 return -EACCES;
8488 }
8489
8490 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8491 err = resolve_map_arg_type(env, meta, &arg_type);
8492 if (err)
8493 return err;
8494 }
8495
8496 if (register_is_null(reg) && type_may_be_null(arg_type))
8497 /* A NULL register has a SCALAR_VALUE type, so skip
8498 * type checking.
8499 */
8500 goto skip_type_check;
8501
8502 /* arg_btf_id and arg_size are in a union. */
8503 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8504 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8505 arg_btf_id = fn->arg_btf_id[arg];
8506
8507 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8508 if (err)
8509 return err;
8510
8511 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8512 if (err)
8513 return err;
8514
8515 skip_type_check:
8516 if (arg_type_is_release(arg_type)) {
8517 if (arg_type_is_dynptr(arg_type)) {
8518 struct bpf_func_state *state = func(env, reg);
8519 int spi;
8520
8521 /* Only dynptr created on stack can be released, thus
8522 * the get_spi and stack state checks for spilled_ptr
8523 * should only be done before process_dynptr_func for
8524 * PTR_TO_STACK.
8525 */
8526 if (reg->type == PTR_TO_STACK) {
8527 spi = dynptr_get_spi(env, reg);
8528 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8529 verbose(env, "arg %d is an unacquired reference\n", regno);
8530 return -EINVAL;
8531 }
8532 } else {
8533 verbose(env, "cannot release unowned const bpf_dynptr\n");
8534 return -EINVAL;
8535 }
8536 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8537 verbose(env, "R%d must be referenced when passed to release function\n",
8538 regno);
8539 return -EINVAL;
8540 }
8541 if (meta->release_regno) {
8542 verbose(env, "verifier internal error: more than one release argument\n");
8543 return -EFAULT;
8544 }
8545 meta->release_regno = regno;
8546 }
8547
8548 if (reg->ref_obj_id) {
8549 if (meta->ref_obj_id) {
8550 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8551 regno, reg->ref_obj_id,
8552 meta->ref_obj_id);
8553 return -EFAULT;
8554 }
8555 meta->ref_obj_id = reg->ref_obj_id;
8556 }
8557
8558 switch (base_type(arg_type)) {
8559 case ARG_CONST_MAP_PTR:
8560 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8561 if (meta->map_ptr) {
8562 /* Use map_uid (which is unique id of inner map) to reject:
8563 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8564 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8565 * if (inner_map1 && inner_map2) {
8566 * timer = bpf_map_lookup_elem(inner_map1);
8567 * if (timer)
8568 * // mismatch would have been allowed
8569 * bpf_timer_init(timer, inner_map2);
8570 * }
8571 *
8572 * Comparing map_ptr is enough to distinguish normal and outer maps.
8573 */
8574 if (meta->map_ptr != reg->map_ptr ||
8575 meta->map_uid != reg->map_uid) {
8576 verbose(env,
8577 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8578 meta->map_uid, reg->map_uid);
8579 return -EINVAL;
8580 }
8581 }
8582 meta->map_ptr = reg->map_ptr;
8583 meta->map_uid = reg->map_uid;
8584 break;
8585 case ARG_PTR_TO_MAP_KEY:
8586 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8587 * check that [key, key + map->key_size) are within
8588 * stack limits and initialized
8589 */
8590 if (!meta->map_ptr) {
8591 /* in function declaration map_ptr must come before
8592 * map_key, so that it's verified and known before
8593 * we have to check map_key here. Otherwise it means
8594 * that kernel subsystem misconfigured verifier
8595 */
8596 verbose(env, "invalid map_ptr to access map->key\n");
8597 return -EACCES;
8598 }
8599 err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8600 BPF_READ, false, NULL);
8601 break;
8602 case ARG_PTR_TO_MAP_VALUE:
8603 if (type_may_be_null(arg_type) && register_is_null(reg))
8604 return 0;
8605
8606 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8607 * check [value, value + map->value_size) validity
8608 */
8609 if (!meta->map_ptr) {
8610 /* kernel subsystem misconfigured verifier */
8611 verbose(env, "invalid map_ptr to access map->value\n");
8612 return -EACCES;
8613 }
8614 meta->raw_mode = arg_type & MEM_UNINIT;
8615 err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8616 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8617 false, meta);
8618 break;
8619 case ARG_PTR_TO_PERCPU_BTF_ID:
8620 if (!reg->btf_id) {
8621 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8622 return -EACCES;
8623 }
8624 meta->ret_btf = reg->btf;
8625 meta->ret_btf_id = reg->btf_id;
8626 break;
8627 case ARG_PTR_TO_SPIN_LOCK:
8628 if (in_rbtree_lock_required_cb(env)) {
8629 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8630 return -EACCES;
8631 }
8632 if (meta->func_id == BPF_FUNC_spin_lock) {
8633 err = process_spin_lock(env, regno, true);
8634 if (err)
8635 return err;
8636 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8637 err = process_spin_lock(env, regno, false);
8638 if (err)
8639 return err;
8640 } else {
8641 verbose(env, "verifier internal error\n");
8642 return -EFAULT;
8643 }
8644 break;
8645 case ARG_PTR_TO_TIMER:
8646 err = process_timer_func(env, regno, meta);
8647 if (err)
8648 return err;
8649 break;
8650 case ARG_PTR_TO_FUNC:
8651 meta->subprogno = reg->subprogno;
8652 break;
8653 case ARG_PTR_TO_MEM:
8654 /* The access to this pointer is only checked when we hit the
8655 * next is_mem_size argument below.
8656 */
8657 meta->raw_mode = arg_type & MEM_UNINIT;
8658 if (arg_type & MEM_FIXED_SIZE) {
8659 err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8660 arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8661 false, meta);
8662 if (err)
8663 return err;
8664 if (arg_type & MEM_ALIGNED)
8665 err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8666 }
8667 break;
8668 case ARG_CONST_SIZE:
8669 err = check_mem_size_reg(env, reg, regno,
8670 fn->arg_type[arg - 1] & MEM_WRITE ?
8671 BPF_WRITE : BPF_READ,
8672 false, meta);
8673 break;
8674 case ARG_CONST_SIZE_OR_ZERO:
8675 err = check_mem_size_reg(env, reg, regno,
8676 fn->arg_type[arg - 1] & MEM_WRITE ?
8677 BPF_WRITE : BPF_READ,
8678 true, meta);
8679 break;
8680 case ARG_PTR_TO_DYNPTR:
8681 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8682 if (err)
8683 return err;
8684 break;
8685 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8686 if (!tnum_is_const(reg->var_off)) {
8687 verbose(env, "R%d is not a known constant'\n",
8688 regno);
8689 return -EACCES;
8690 }
8691 meta->mem_size = reg->var_off.value;
8692 err = mark_chain_precision(env, regno);
8693 if (err)
8694 return err;
8695 break;
8696 case ARG_PTR_TO_CONST_STR:
8697 {
8698 struct bpf_map *map = reg->map_ptr;
8699 int map_off;
8700 u64 map_addr;
8701 char *str_ptr;
8702
8703 if (!bpf_map_is_rdonly(map)) {
8704 verbose(env, "R%d does not point to a readonly map'\n", regno);
8705 return -EACCES;
8706 }
8707
8708 if (!tnum_is_const(reg->var_off)) {
8709 verbose(env, "R%d is not a constant address'\n", regno);
8710 return -EACCES;
8711 }
8712
8713 if (!map->ops->map_direct_value_addr) {
8714 verbose(env, "no direct value access support for this map type\n");
8715 return -EACCES;
8716 }
8717
8718 err = check_map_access(env, regno, reg->off,
8719 map->value_size - reg->off, false,
8720 ACCESS_HELPER);
8721 if (err)
8722 return err;
8723
8724 map_off = reg->off + reg->var_off.value;
8725 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8726 if (err) {
8727 verbose(env, "direct value access on string failed\n");
8728 return err;
8729 }
8730
8731 str_ptr = (char *)(long)(map_addr);
8732 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8733 verbose(env, "string is not zero-terminated\n");
8734 return -EINVAL;
8735 }
8736 break;
8737 }
8738 case ARG_PTR_TO_KPTR:
8739 err = process_kptr_func(env, regno, meta);
8740 if (err)
8741 return err;
8742 break;
8743 }
8744
8745 return err;
8746 }
8747
may_update_sockmap(struct bpf_verifier_env * env,int func_id)8748 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8749 {
8750 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8751 enum bpf_prog_type type = resolve_prog_type(env->prog);
8752
8753 if (func_id != BPF_FUNC_map_update_elem &&
8754 func_id != BPF_FUNC_map_delete_elem)
8755 return false;
8756
8757 /* It's not possible to get access to a locked struct sock in these
8758 * contexts, so updating is safe.
8759 */
8760 switch (type) {
8761 case BPF_PROG_TYPE_TRACING:
8762 if (eatype == BPF_TRACE_ITER)
8763 return true;
8764 break;
8765 case BPF_PROG_TYPE_SOCK_OPS:
8766 /* map_update allowed only via dedicated helpers with event type checks */
8767 if (func_id == BPF_FUNC_map_delete_elem)
8768 return true;
8769 break;
8770 case BPF_PROG_TYPE_SOCKET_FILTER:
8771 case BPF_PROG_TYPE_SCHED_CLS:
8772 case BPF_PROG_TYPE_SCHED_ACT:
8773 case BPF_PROG_TYPE_XDP:
8774 case BPF_PROG_TYPE_SK_REUSEPORT:
8775 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8776 case BPF_PROG_TYPE_SK_LOOKUP:
8777 return true;
8778 default:
8779 break;
8780 }
8781
8782 verbose(env, "cannot update sockmap in this context\n");
8783 return false;
8784 }
8785
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)8786 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8787 {
8788 return env->prog->jit_requested &&
8789 bpf_jit_supports_subprog_tailcalls();
8790 }
8791
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)8792 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8793 struct bpf_map *map, int func_id)
8794 {
8795 if (!map)
8796 return 0;
8797
8798 /* We need a two way check, first is from map perspective ... */
8799 switch (map->map_type) {
8800 case BPF_MAP_TYPE_PROG_ARRAY:
8801 if (func_id != BPF_FUNC_tail_call)
8802 goto error;
8803 break;
8804 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8805 if (func_id != BPF_FUNC_perf_event_read &&
8806 func_id != BPF_FUNC_perf_event_output &&
8807 func_id != BPF_FUNC_skb_output &&
8808 func_id != BPF_FUNC_perf_event_read_value &&
8809 func_id != BPF_FUNC_xdp_output)
8810 goto error;
8811 break;
8812 case BPF_MAP_TYPE_RINGBUF:
8813 if (func_id != BPF_FUNC_ringbuf_output &&
8814 func_id != BPF_FUNC_ringbuf_reserve &&
8815 func_id != BPF_FUNC_ringbuf_query &&
8816 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8817 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8818 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8819 goto error;
8820 break;
8821 case BPF_MAP_TYPE_USER_RINGBUF:
8822 if (func_id != BPF_FUNC_user_ringbuf_drain)
8823 goto error;
8824 break;
8825 case BPF_MAP_TYPE_STACK_TRACE:
8826 if (func_id != BPF_FUNC_get_stackid)
8827 goto error;
8828 break;
8829 case BPF_MAP_TYPE_CGROUP_ARRAY:
8830 if (func_id != BPF_FUNC_skb_under_cgroup &&
8831 func_id != BPF_FUNC_current_task_under_cgroup)
8832 goto error;
8833 break;
8834 case BPF_MAP_TYPE_CGROUP_STORAGE:
8835 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8836 if (func_id != BPF_FUNC_get_local_storage)
8837 goto error;
8838 break;
8839 case BPF_MAP_TYPE_DEVMAP:
8840 case BPF_MAP_TYPE_DEVMAP_HASH:
8841 if (func_id != BPF_FUNC_redirect_map &&
8842 func_id != BPF_FUNC_map_lookup_elem)
8843 goto error;
8844 break;
8845 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8846 * appear.
8847 */
8848 case BPF_MAP_TYPE_CPUMAP:
8849 if (func_id != BPF_FUNC_redirect_map)
8850 goto error;
8851 break;
8852 case BPF_MAP_TYPE_XSKMAP:
8853 if (func_id != BPF_FUNC_redirect_map &&
8854 func_id != BPF_FUNC_map_lookup_elem)
8855 goto error;
8856 break;
8857 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8858 case BPF_MAP_TYPE_HASH_OF_MAPS:
8859 if (func_id != BPF_FUNC_map_lookup_elem)
8860 goto error;
8861 break;
8862 case BPF_MAP_TYPE_SOCKMAP:
8863 if (func_id != BPF_FUNC_sk_redirect_map &&
8864 func_id != BPF_FUNC_sock_map_update &&
8865 func_id != BPF_FUNC_msg_redirect_map &&
8866 func_id != BPF_FUNC_sk_select_reuseport &&
8867 func_id != BPF_FUNC_map_lookup_elem &&
8868 !may_update_sockmap(env, func_id))
8869 goto error;
8870 break;
8871 case BPF_MAP_TYPE_SOCKHASH:
8872 if (func_id != BPF_FUNC_sk_redirect_hash &&
8873 func_id != BPF_FUNC_sock_hash_update &&
8874 func_id != BPF_FUNC_msg_redirect_hash &&
8875 func_id != BPF_FUNC_sk_select_reuseport &&
8876 func_id != BPF_FUNC_map_lookup_elem &&
8877 !may_update_sockmap(env, func_id))
8878 goto error;
8879 break;
8880 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8881 if (func_id != BPF_FUNC_sk_select_reuseport)
8882 goto error;
8883 break;
8884 case BPF_MAP_TYPE_QUEUE:
8885 case BPF_MAP_TYPE_STACK:
8886 if (func_id != BPF_FUNC_map_peek_elem &&
8887 func_id != BPF_FUNC_map_pop_elem &&
8888 func_id != BPF_FUNC_map_push_elem)
8889 goto error;
8890 break;
8891 case BPF_MAP_TYPE_SK_STORAGE:
8892 if (func_id != BPF_FUNC_sk_storage_get &&
8893 func_id != BPF_FUNC_sk_storage_delete &&
8894 func_id != BPF_FUNC_kptr_xchg)
8895 goto error;
8896 break;
8897 case BPF_MAP_TYPE_INODE_STORAGE:
8898 if (func_id != BPF_FUNC_inode_storage_get &&
8899 func_id != BPF_FUNC_inode_storage_delete &&
8900 func_id != BPF_FUNC_kptr_xchg)
8901 goto error;
8902 break;
8903 case BPF_MAP_TYPE_TASK_STORAGE:
8904 if (func_id != BPF_FUNC_task_storage_get &&
8905 func_id != BPF_FUNC_task_storage_delete &&
8906 func_id != BPF_FUNC_kptr_xchg)
8907 goto error;
8908 break;
8909 case BPF_MAP_TYPE_CGRP_STORAGE:
8910 if (func_id != BPF_FUNC_cgrp_storage_get &&
8911 func_id != BPF_FUNC_cgrp_storage_delete &&
8912 func_id != BPF_FUNC_kptr_xchg)
8913 goto error;
8914 break;
8915 case BPF_MAP_TYPE_BLOOM_FILTER:
8916 if (func_id != BPF_FUNC_map_peek_elem &&
8917 func_id != BPF_FUNC_map_push_elem)
8918 goto error;
8919 break;
8920 default:
8921 break;
8922 }
8923
8924 /* ... and second from the function itself. */
8925 switch (func_id) {
8926 case BPF_FUNC_tail_call:
8927 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8928 goto error;
8929 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8930 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8931 return -EINVAL;
8932 }
8933 break;
8934 case BPF_FUNC_perf_event_read:
8935 case BPF_FUNC_perf_event_output:
8936 case BPF_FUNC_perf_event_read_value:
8937 case BPF_FUNC_skb_output:
8938 case BPF_FUNC_xdp_output:
8939 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8940 goto error;
8941 break;
8942 case BPF_FUNC_ringbuf_output:
8943 case BPF_FUNC_ringbuf_reserve:
8944 case BPF_FUNC_ringbuf_query:
8945 case BPF_FUNC_ringbuf_reserve_dynptr:
8946 case BPF_FUNC_ringbuf_submit_dynptr:
8947 case BPF_FUNC_ringbuf_discard_dynptr:
8948 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8949 goto error;
8950 break;
8951 case BPF_FUNC_user_ringbuf_drain:
8952 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8953 goto error;
8954 break;
8955 case BPF_FUNC_get_stackid:
8956 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8957 goto error;
8958 break;
8959 case BPF_FUNC_current_task_under_cgroup:
8960 case BPF_FUNC_skb_under_cgroup:
8961 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8962 goto error;
8963 break;
8964 case BPF_FUNC_redirect_map:
8965 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8966 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8967 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8968 map->map_type != BPF_MAP_TYPE_XSKMAP)
8969 goto error;
8970 break;
8971 case BPF_FUNC_sk_redirect_map:
8972 case BPF_FUNC_msg_redirect_map:
8973 case BPF_FUNC_sock_map_update:
8974 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8975 goto error;
8976 break;
8977 case BPF_FUNC_sk_redirect_hash:
8978 case BPF_FUNC_msg_redirect_hash:
8979 case BPF_FUNC_sock_hash_update:
8980 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8981 goto error;
8982 break;
8983 case BPF_FUNC_get_local_storage:
8984 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8985 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8986 goto error;
8987 break;
8988 case BPF_FUNC_sk_select_reuseport:
8989 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8990 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8991 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8992 goto error;
8993 break;
8994 case BPF_FUNC_map_pop_elem:
8995 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8996 map->map_type != BPF_MAP_TYPE_STACK)
8997 goto error;
8998 break;
8999 case BPF_FUNC_map_peek_elem:
9000 case BPF_FUNC_map_push_elem:
9001 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9002 map->map_type != BPF_MAP_TYPE_STACK &&
9003 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9004 goto error;
9005 break;
9006 case BPF_FUNC_map_lookup_percpu_elem:
9007 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9008 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9009 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9010 goto error;
9011 break;
9012 case BPF_FUNC_sk_storage_get:
9013 case BPF_FUNC_sk_storage_delete:
9014 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9015 goto error;
9016 break;
9017 case BPF_FUNC_inode_storage_get:
9018 case BPF_FUNC_inode_storage_delete:
9019 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9020 goto error;
9021 break;
9022 case BPF_FUNC_task_storage_get:
9023 case BPF_FUNC_task_storage_delete:
9024 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9025 goto error;
9026 break;
9027 case BPF_FUNC_cgrp_storage_get:
9028 case BPF_FUNC_cgrp_storage_delete:
9029 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9030 goto error;
9031 break;
9032 default:
9033 break;
9034 }
9035
9036 return 0;
9037 error:
9038 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9039 map->map_type, func_id_name(func_id), func_id);
9040 return -EINVAL;
9041 }
9042
check_raw_mode_ok(const struct bpf_func_proto * fn)9043 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9044 {
9045 int count = 0;
9046
9047 if (arg_type_is_raw_mem(fn->arg1_type))
9048 count++;
9049 if (arg_type_is_raw_mem(fn->arg2_type))
9050 count++;
9051 if (arg_type_is_raw_mem(fn->arg3_type))
9052 count++;
9053 if (arg_type_is_raw_mem(fn->arg4_type))
9054 count++;
9055 if (arg_type_is_raw_mem(fn->arg5_type))
9056 count++;
9057
9058 /* We only support one arg being in raw mode at the moment,
9059 * which is sufficient for the helper functions we have
9060 * right now.
9061 */
9062 return count <= 1;
9063 }
9064
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9065 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9066 {
9067 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9068 bool has_size = fn->arg_size[arg] != 0;
9069 bool is_next_size = false;
9070
9071 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9072 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9073
9074 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9075 return is_next_size;
9076
9077 return has_size == is_next_size || is_next_size == is_fixed;
9078 }
9079
check_arg_pair_ok(const struct bpf_func_proto * fn)9080 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9081 {
9082 /* bpf_xxx(..., buf, len) call will access 'len'
9083 * bytes from memory 'buf'. Both arg types need
9084 * to be paired, so make sure there's no buggy
9085 * helper function specification.
9086 */
9087 if (arg_type_is_mem_size(fn->arg1_type) ||
9088 check_args_pair_invalid(fn, 0) ||
9089 check_args_pair_invalid(fn, 1) ||
9090 check_args_pair_invalid(fn, 2) ||
9091 check_args_pair_invalid(fn, 3) ||
9092 check_args_pair_invalid(fn, 4))
9093 return false;
9094
9095 return true;
9096 }
9097
check_btf_id_ok(const struct bpf_func_proto * fn)9098 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9099 {
9100 int i;
9101
9102 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9103 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9104 return !!fn->arg_btf_id[i];
9105 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9106 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9107 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9108 /* arg_btf_id and arg_size are in a union. */
9109 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9110 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9111 return false;
9112 }
9113
9114 return true;
9115 }
9116
check_func_proto(const struct bpf_func_proto * fn,int func_id)9117 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9118 {
9119 return check_raw_mode_ok(fn) &&
9120 check_arg_pair_ok(fn) &&
9121 check_btf_id_ok(fn) ? 0 : -EINVAL;
9122 }
9123
9124 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9125 * are now invalid, so turn them into unknown SCALAR_VALUE.
9126 *
9127 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9128 * since these slices point to packet data.
9129 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9130 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9131 {
9132 struct bpf_func_state *state;
9133 struct bpf_reg_state *reg;
9134
9135 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9136 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9137 mark_reg_invalid(env, reg);
9138 }));
9139 }
9140
9141 enum {
9142 AT_PKT_END = -1,
9143 BEYOND_PKT_END = -2,
9144 };
9145
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9146 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9147 {
9148 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9149 struct bpf_reg_state *reg = &state->regs[regn];
9150
9151 if (reg->type != PTR_TO_PACKET)
9152 /* PTR_TO_PACKET_META is not supported yet */
9153 return;
9154
9155 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9156 * How far beyond pkt_end it goes is unknown.
9157 * if (!range_open) it's the case of pkt >= pkt_end
9158 * if (range_open) it's the case of pkt > pkt_end
9159 * hence this pointer is at least 1 byte bigger than pkt_end
9160 */
9161 if (range_open)
9162 reg->range = BEYOND_PKT_END;
9163 else
9164 reg->range = AT_PKT_END;
9165 }
9166
9167 /* The pointer with the specified id has released its reference to kernel
9168 * resources. Identify all copies of the same pointer and clear the reference.
9169 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9170 static int release_reference(struct bpf_verifier_env *env,
9171 int ref_obj_id)
9172 {
9173 struct bpf_func_state *state;
9174 struct bpf_reg_state *reg;
9175 int err;
9176
9177 err = release_reference_state(cur_func(env), ref_obj_id);
9178 if (err)
9179 return err;
9180
9181 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9182 if (reg->ref_obj_id == ref_obj_id)
9183 mark_reg_invalid(env, reg);
9184 }));
9185
9186 return 0;
9187 }
9188
invalidate_non_owning_refs(struct bpf_verifier_env * env)9189 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9190 {
9191 struct bpf_func_state *unused;
9192 struct bpf_reg_state *reg;
9193
9194 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9195 if (type_is_non_owning_ref(reg->type))
9196 mark_reg_invalid(env, reg);
9197 }));
9198 }
9199
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9200 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9201 struct bpf_reg_state *regs)
9202 {
9203 int i;
9204
9205 /* after the call registers r0 - r5 were scratched */
9206 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9207 mark_reg_not_init(env, regs, caller_saved[i]);
9208 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9209 }
9210 }
9211
9212 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9213 struct bpf_func_state *caller,
9214 struct bpf_func_state *callee,
9215 int insn_idx);
9216
9217 static int set_callee_state(struct bpf_verifier_env *env,
9218 struct bpf_func_state *caller,
9219 struct bpf_func_state *callee, int insn_idx);
9220
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9221 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9222 set_callee_state_fn set_callee_state_cb,
9223 struct bpf_verifier_state *state)
9224 {
9225 struct bpf_func_state *caller, *callee;
9226 int err;
9227
9228 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9229 verbose(env, "the call stack of %d frames is too deep\n",
9230 state->curframe + 2);
9231 return -E2BIG;
9232 }
9233
9234 if (state->frame[state->curframe + 1]) {
9235 verbose(env, "verifier bug. Frame %d already allocated\n",
9236 state->curframe + 1);
9237 return -EFAULT;
9238 }
9239
9240 caller = state->frame[state->curframe];
9241 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9242 if (!callee)
9243 return -ENOMEM;
9244 state->frame[state->curframe + 1] = callee;
9245
9246 /* callee cannot access r0, r6 - r9 for reading and has to write
9247 * into its own stack before reading from it.
9248 * callee can read/write into caller's stack
9249 */
9250 init_func_state(env, callee,
9251 /* remember the callsite, it will be used by bpf_exit */
9252 callsite,
9253 state->curframe + 1 /* frameno within this callchain */,
9254 subprog /* subprog number within this prog */);
9255 /* Transfer references to the callee */
9256 err = copy_reference_state(callee, caller);
9257 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9258 if (err)
9259 goto err_out;
9260
9261 /* only increment it after check_reg_arg() finished */
9262 state->curframe++;
9263
9264 return 0;
9265
9266 err_out:
9267 free_func_state(callee);
9268 state->frame[state->curframe + 1] = NULL;
9269 return err;
9270 }
9271
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9272 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9273 int insn_idx, int subprog,
9274 set_callee_state_fn set_callee_state_cb)
9275 {
9276 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9277 struct bpf_func_state *caller, *callee;
9278 int err;
9279
9280 caller = state->frame[state->curframe];
9281 err = btf_check_subprog_call(env, subprog, caller->regs);
9282 if (err == -EFAULT)
9283 return err;
9284
9285 /* set_callee_state is used for direct subprog calls, but we are
9286 * interested in validating only BPF helpers that can call subprogs as
9287 * callbacks
9288 */
9289 if (bpf_pseudo_kfunc_call(insn) &&
9290 !is_sync_callback_calling_kfunc(insn->imm)) {
9291 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9292 func_id_name(insn->imm), insn->imm);
9293 return -EFAULT;
9294 } else if (!bpf_pseudo_kfunc_call(insn) &&
9295 !is_callback_calling_function(insn->imm)) { /* helper */
9296 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9297 func_id_name(insn->imm), insn->imm);
9298 return -EFAULT;
9299 }
9300
9301 if (insn->code == (BPF_JMP | BPF_CALL) &&
9302 insn->src_reg == 0 &&
9303 insn->imm == BPF_FUNC_timer_set_callback) {
9304 struct bpf_verifier_state *async_cb;
9305
9306 /* there is no real recursion here. timer callbacks are async */
9307 env->subprog_info[subprog].is_async_cb = true;
9308 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9309 insn_idx, subprog);
9310 if (!async_cb)
9311 return -EFAULT;
9312 callee = async_cb->frame[0];
9313 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9314
9315 /* Convert bpf_timer_set_callback() args into timer callback args */
9316 err = set_callee_state_cb(env, caller, callee, insn_idx);
9317 if (err)
9318 return err;
9319
9320 return 0;
9321 }
9322
9323 /* for callback functions enqueue entry to callback and
9324 * proceed with next instruction within current frame.
9325 */
9326 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9327 if (!callback_state)
9328 return -ENOMEM;
9329
9330 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9331 callback_state);
9332 if (err)
9333 return err;
9334
9335 callback_state->callback_unroll_depth++;
9336 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9337 caller->callback_depth = 0;
9338 return 0;
9339 }
9340
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9341 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9342 int *insn_idx)
9343 {
9344 struct bpf_verifier_state *state = env->cur_state;
9345 struct bpf_func_state *caller;
9346 int err, subprog, target_insn;
9347
9348 target_insn = *insn_idx + insn->imm + 1;
9349 subprog = find_subprog(env, target_insn);
9350 if (subprog < 0) {
9351 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9352 return -EFAULT;
9353 }
9354
9355 caller = state->frame[state->curframe];
9356 err = btf_check_subprog_call(env, subprog, caller->regs);
9357 if (err == -EFAULT)
9358 return err;
9359 if (subprog_is_global(env, subprog)) {
9360 if (err) {
9361 verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9362 return err;
9363 }
9364
9365 if (env->log.level & BPF_LOG_LEVEL)
9366 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9367 if (env->subprog_info[subprog].changes_pkt_data)
9368 clear_all_pkt_pointers(env);
9369 clear_caller_saved_regs(env, caller->regs);
9370
9371 /* All global functions return a 64-bit SCALAR_VALUE */
9372 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9373 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9374
9375 /* continue with next insn after call */
9376 return 0;
9377 }
9378
9379 /* for regular function entry setup new frame and continue
9380 * from that frame.
9381 */
9382 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9383 if (err)
9384 return err;
9385
9386 clear_caller_saved_regs(env, caller->regs);
9387
9388 /* and go analyze first insn of the callee */
9389 *insn_idx = env->subprog_info[subprog].start - 1;
9390
9391 if (env->log.level & BPF_LOG_LEVEL) {
9392 verbose(env, "caller:\n");
9393 print_verifier_state(env, caller, true);
9394 verbose(env, "callee:\n");
9395 print_verifier_state(env, state->frame[state->curframe], true);
9396 }
9397
9398 return 0;
9399 }
9400
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9401 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9402 struct bpf_func_state *caller,
9403 struct bpf_func_state *callee)
9404 {
9405 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9406 * void *callback_ctx, u64 flags);
9407 * callback_fn(struct bpf_map *map, void *key, void *value,
9408 * void *callback_ctx);
9409 */
9410 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9411
9412 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9413 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9414 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9415
9416 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9417 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9418 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9419
9420 /* pointer to stack or null */
9421 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9422
9423 /* unused */
9424 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9425 return 0;
9426 }
9427
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9428 static int set_callee_state(struct bpf_verifier_env *env,
9429 struct bpf_func_state *caller,
9430 struct bpf_func_state *callee, int insn_idx)
9431 {
9432 int i;
9433
9434 /* copy r1 - r5 args that callee can access. The copy includes parent
9435 * pointers, which connects us up to the liveness chain
9436 */
9437 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9438 callee->regs[i] = caller->regs[i];
9439 return 0;
9440 }
9441
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9442 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9443 struct bpf_func_state *caller,
9444 struct bpf_func_state *callee,
9445 int insn_idx)
9446 {
9447 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9448 struct bpf_map *map;
9449 int err;
9450
9451 if (bpf_map_ptr_poisoned(insn_aux)) {
9452 verbose(env, "tail_call abusing map_ptr\n");
9453 return -EINVAL;
9454 }
9455
9456 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9457 if (!map->ops->map_set_for_each_callback_args ||
9458 !map->ops->map_for_each_callback) {
9459 verbose(env, "callback function not allowed for map\n");
9460 return -ENOTSUPP;
9461 }
9462
9463 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9464 if (err)
9465 return err;
9466
9467 callee->in_callback_fn = true;
9468 callee->callback_ret_range = tnum_range(0, 1);
9469 return 0;
9470 }
9471
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9472 static int set_loop_callback_state(struct bpf_verifier_env *env,
9473 struct bpf_func_state *caller,
9474 struct bpf_func_state *callee,
9475 int insn_idx)
9476 {
9477 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9478 * u64 flags);
9479 * callback_fn(u32 index, void *callback_ctx);
9480 */
9481 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9482 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9483
9484 /* unused */
9485 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9486 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9487 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9488
9489 callee->in_callback_fn = true;
9490 callee->callback_ret_range = tnum_range(0, 1);
9491 return 0;
9492 }
9493
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9494 static int set_timer_callback_state(struct bpf_verifier_env *env,
9495 struct bpf_func_state *caller,
9496 struct bpf_func_state *callee,
9497 int insn_idx)
9498 {
9499 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9500
9501 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9502 * callback_fn(struct bpf_map *map, void *key, void *value);
9503 */
9504 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9505 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9506 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9507
9508 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9509 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9510 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9511
9512 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9513 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9514 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9515
9516 /* unused */
9517 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9518 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9519 callee->in_async_callback_fn = true;
9520 callee->callback_ret_range = tnum_range(0, 1);
9521 return 0;
9522 }
9523
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9524 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9525 struct bpf_func_state *caller,
9526 struct bpf_func_state *callee,
9527 int insn_idx)
9528 {
9529 /* bpf_find_vma(struct task_struct *task, u64 addr,
9530 * void *callback_fn, void *callback_ctx, u64 flags)
9531 * (callback_fn)(struct task_struct *task,
9532 * struct vm_area_struct *vma, void *callback_ctx);
9533 */
9534 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9535
9536 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9537 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9538 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9539 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9540
9541 /* pointer to stack or null */
9542 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9543
9544 /* unused */
9545 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9546 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9547 callee->in_callback_fn = true;
9548 callee->callback_ret_range = tnum_range(0, 1);
9549 return 0;
9550 }
9551
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9552 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9553 struct bpf_func_state *caller,
9554 struct bpf_func_state *callee,
9555 int insn_idx)
9556 {
9557 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9558 * callback_ctx, u64 flags);
9559 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9560 */
9561 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9562 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9563 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9564
9565 /* unused */
9566 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9567 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9568 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9569
9570 callee->in_callback_fn = true;
9571 callee->callback_ret_range = tnum_range(0, 1);
9572 return 0;
9573 }
9574
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9575 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9576 struct bpf_func_state *caller,
9577 struct bpf_func_state *callee,
9578 int insn_idx)
9579 {
9580 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9581 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9582 *
9583 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9584 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9585 * by this point, so look at 'root'
9586 */
9587 struct btf_field *field;
9588
9589 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9590 BPF_RB_ROOT);
9591 if (!field || !field->graph_root.value_btf_id)
9592 return -EFAULT;
9593
9594 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9595 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9596 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9597 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9598
9599 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9600 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9601 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9602 callee->in_callback_fn = true;
9603 callee->callback_ret_range = tnum_range(0, 1);
9604 return 0;
9605 }
9606
9607 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9608
9609 /* Are we currently verifying the callback for a rbtree helper that must
9610 * be called with lock held? If so, no need to complain about unreleased
9611 * lock
9612 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)9613 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9614 {
9615 struct bpf_verifier_state *state = env->cur_state;
9616 struct bpf_insn *insn = env->prog->insnsi;
9617 struct bpf_func_state *callee;
9618 int kfunc_btf_id;
9619
9620 if (!state->curframe)
9621 return false;
9622
9623 callee = state->frame[state->curframe];
9624
9625 if (!callee->in_callback_fn)
9626 return false;
9627
9628 kfunc_btf_id = insn[callee->callsite].imm;
9629 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9630 }
9631
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)9632 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9633 {
9634 struct bpf_verifier_state *state = env->cur_state, *prev_st;
9635 struct bpf_func_state *caller, *callee;
9636 struct bpf_reg_state *r0;
9637 bool in_callback_fn;
9638 int err;
9639
9640 callee = state->frame[state->curframe];
9641 r0 = &callee->regs[BPF_REG_0];
9642 if (r0->type == PTR_TO_STACK) {
9643 /* technically it's ok to return caller's stack pointer
9644 * (or caller's caller's pointer) back to the caller,
9645 * since these pointers are valid. Only current stack
9646 * pointer will be invalid as soon as function exits,
9647 * but let's be conservative
9648 */
9649 verbose(env, "cannot return stack pointer to the caller\n");
9650 return -EINVAL;
9651 }
9652
9653 caller = state->frame[state->curframe - 1];
9654 if (callee->in_callback_fn) {
9655 /* enforce R0 return value range [0, 1]. */
9656 struct tnum range = callee->callback_ret_range;
9657
9658 if (r0->type != SCALAR_VALUE) {
9659 verbose(env, "R0 not a scalar value\n");
9660 return -EACCES;
9661 }
9662
9663 /* we are going to rely on register's precise value */
9664 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9665 err = err ?: mark_chain_precision(env, BPF_REG_0);
9666 if (err)
9667 return err;
9668
9669 if (!tnum_in(range, r0->var_off)) {
9670 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9671 return -EINVAL;
9672 }
9673 if (!calls_callback(env, callee->callsite)) {
9674 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9675 *insn_idx, callee->callsite);
9676 return -EFAULT;
9677 }
9678 } else {
9679 /* return to the caller whatever r0 had in the callee */
9680 caller->regs[BPF_REG_0] = *r0;
9681 }
9682
9683 /* callback_fn frame should have released its own additions to parent's
9684 * reference state at this point, or check_reference_leak would
9685 * complain, hence it must be the same as the caller. There is no need
9686 * to copy it back.
9687 */
9688 if (!callee->in_callback_fn) {
9689 /* Transfer references to the caller */
9690 err = copy_reference_state(caller, callee);
9691 if (err)
9692 return err;
9693 }
9694
9695 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9696 * there function call logic would reschedule callback visit. If iteration
9697 * converges is_state_visited() would prune that visit eventually.
9698 */
9699 in_callback_fn = callee->in_callback_fn;
9700 if (in_callback_fn)
9701 *insn_idx = callee->callsite;
9702 else
9703 *insn_idx = callee->callsite + 1;
9704
9705 if (env->log.level & BPF_LOG_LEVEL) {
9706 verbose(env, "returning from callee:\n");
9707 print_verifier_state(env, callee, true);
9708 verbose(env, "to caller at %d:\n", *insn_idx);
9709 print_verifier_state(env, caller, true);
9710 }
9711 /* clear everything in the callee */
9712 free_func_state(callee);
9713 state->frame[state->curframe--] = NULL;
9714
9715 /* for callbacks widen imprecise scalars to make programs like below verify:
9716 *
9717 * struct ctx { int i; }
9718 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9719 * ...
9720 * struct ctx = { .i = 0; }
9721 * bpf_loop(100, cb, &ctx, 0);
9722 *
9723 * This is similar to what is done in process_iter_next_call() for open
9724 * coded iterators.
9725 */
9726 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9727 if (prev_st) {
9728 err = widen_imprecise_scalars(env, prev_st, state);
9729 if (err)
9730 return err;
9731 }
9732 return 0;
9733 }
9734
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)9735 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9736 int func_id,
9737 struct bpf_call_arg_meta *meta)
9738 {
9739 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9740
9741 if (ret_type != RET_INTEGER)
9742 return;
9743
9744 switch (func_id) {
9745 case BPF_FUNC_get_stack:
9746 case BPF_FUNC_get_task_stack:
9747 case BPF_FUNC_probe_read_str:
9748 case BPF_FUNC_probe_read_kernel_str:
9749 case BPF_FUNC_probe_read_user_str:
9750 ret_reg->smax_value = meta->msize_max_value;
9751 ret_reg->s32_max_value = meta->msize_max_value;
9752 ret_reg->smin_value = -MAX_ERRNO;
9753 ret_reg->s32_min_value = -MAX_ERRNO;
9754 reg_bounds_sync(ret_reg);
9755 break;
9756 case BPF_FUNC_get_smp_processor_id:
9757 ret_reg->umax_value = nr_cpu_ids - 1;
9758 ret_reg->u32_max_value = nr_cpu_ids - 1;
9759 ret_reg->smax_value = nr_cpu_ids - 1;
9760 ret_reg->s32_max_value = nr_cpu_ids - 1;
9761 ret_reg->umin_value = 0;
9762 ret_reg->u32_min_value = 0;
9763 ret_reg->smin_value = 0;
9764 ret_reg->s32_min_value = 0;
9765 reg_bounds_sync(ret_reg);
9766 break;
9767 }
9768 }
9769
9770 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9771 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9772 int func_id, int insn_idx)
9773 {
9774 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9775 struct bpf_map *map = meta->map_ptr;
9776
9777 if (func_id != BPF_FUNC_tail_call &&
9778 func_id != BPF_FUNC_map_lookup_elem &&
9779 func_id != BPF_FUNC_map_update_elem &&
9780 func_id != BPF_FUNC_map_delete_elem &&
9781 func_id != BPF_FUNC_map_push_elem &&
9782 func_id != BPF_FUNC_map_pop_elem &&
9783 func_id != BPF_FUNC_map_peek_elem &&
9784 func_id != BPF_FUNC_for_each_map_elem &&
9785 func_id != BPF_FUNC_redirect_map &&
9786 func_id != BPF_FUNC_map_lookup_percpu_elem)
9787 return 0;
9788
9789 if (map == NULL) {
9790 verbose(env, "kernel subsystem misconfigured verifier\n");
9791 return -EINVAL;
9792 }
9793
9794 /* In case of read-only, some additional restrictions
9795 * need to be applied in order to prevent altering the
9796 * state of the map from program side.
9797 */
9798 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9799 (func_id == BPF_FUNC_map_delete_elem ||
9800 func_id == BPF_FUNC_map_update_elem ||
9801 func_id == BPF_FUNC_map_push_elem ||
9802 func_id == BPF_FUNC_map_pop_elem)) {
9803 verbose(env, "write into map forbidden\n");
9804 return -EACCES;
9805 }
9806
9807 if (!BPF_MAP_PTR(aux->map_ptr_state))
9808 bpf_map_ptr_store(aux, meta->map_ptr,
9809 !meta->map_ptr->bypass_spec_v1);
9810 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9811 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9812 !meta->map_ptr->bypass_spec_v1);
9813 return 0;
9814 }
9815
9816 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9817 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9818 int func_id, int insn_idx)
9819 {
9820 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9821 struct bpf_reg_state *regs = cur_regs(env), *reg;
9822 struct bpf_map *map = meta->map_ptr;
9823 u64 val, max;
9824 int err;
9825
9826 if (func_id != BPF_FUNC_tail_call)
9827 return 0;
9828 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9829 verbose(env, "kernel subsystem misconfigured verifier\n");
9830 return -EINVAL;
9831 }
9832
9833 reg = ®s[BPF_REG_3];
9834 val = reg->var_off.value;
9835 max = map->max_entries;
9836
9837 if (!(register_is_const(reg) && val < max)) {
9838 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9839 return 0;
9840 }
9841
9842 err = mark_chain_precision(env, BPF_REG_3);
9843 if (err)
9844 return err;
9845 if (bpf_map_key_unseen(aux))
9846 bpf_map_key_store(aux, val);
9847 else if (!bpf_map_key_poisoned(aux) &&
9848 bpf_map_key_immediate(aux) != val)
9849 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9850 return 0;
9851 }
9852
check_reference_leak(struct bpf_verifier_env * env)9853 static int check_reference_leak(struct bpf_verifier_env *env)
9854 {
9855 struct bpf_func_state *state = cur_func(env);
9856 bool refs_lingering = false;
9857 int i;
9858
9859 if (state->frameno && !state->in_callback_fn)
9860 return 0;
9861
9862 for (i = 0; i < state->acquired_refs; i++) {
9863 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9864 continue;
9865 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9866 state->refs[i].id, state->refs[i].insn_idx);
9867 refs_lingering = true;
9868 }
9869 return refs_lingering ? -EINVAL : 0;
9870 }
9871
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9872 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9873 struct bpf_reg_state *regs)
9874 {
9875 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9876 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9877 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9878 struct bpf_bprintf_data data = {};
9879 int err, fmt_map_off, num_args;
9880 u64 fmt_addr;
9881 char *fmt;
9882
9883 /* data must be an array of u64 */
9884 if (data_len_reg->var_off.value % 8)
9885 return -EINVAL;
9886 num_args = data_len_reg->var_off.value / 8;
9887
9888 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9889 * and map_direct_value_addr is set.
9890 */
9891 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9892 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9893 fmt_map_off);
9894 if (err) {
9895 verbose(env, "verifier bug\n");
9896 return -EFAULT;
9897 }
9898 fmt = (char *)(long)fmt_addr + fmt_map_off;
9899
9900 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9901 * can focus on validating the format specifiers.
9902 */
9903 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9904 if (err < 0)
9905 verbose(env, "Invalid format string\n");
9906
9907 return err;
9908 }
9909
check_get_func_ip(struct bpf_verifier_env * env)9910 static int check_get_func_ip(struct bpf_verifier_env *env)
9911 {
9912 enum bpf_prog_type type = resolve_prog_type(env->prog);
9913 int func_id = BPF_FUNC_get_func_ip;
9914
9915 if (type == BPF_PROG_TYPE_TRACING) {
9916 if (!bpf_prog_has_trampoline(env->prog)) {
9917 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9918 func_id_name(func_id), func_id);
9919 return -ENOTSUPP;
9920 }
9921 return 0;
9922 } else if (type == BPF_PROG_TYPE_KPROBE) {
9923 return 0;
9924 }
9925
9926 verbose(env, "func %s#%d not supported for program type %d\n",
9927 func_id_name(func_id), func_id, type);
9928 return -ENOTSUPP;
9929 }
9930
cur_aux(struct bpf_verifier_env * env)9931 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9932 {
9933 return &env->insn_aux_data[env->insn_idx];
9934 }
9935
loop_flag_is_zero(struct bpf_verifier_env * env)9936 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9937 {
9938 struct bpf_reg_state *regs = cur_regs(env);
9939 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9940 bool reg_is_null = register_is_null(reg);
9941
9942 if (reg_is_null)
9943 mark_chain_precision(env, BPF_REG_4);
9944
9945 return reg_is_null;
9946 }
9947
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)9948 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9949 {
9950 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9951
9952 if (!state->initialized) {
9953 state->initialized = 1;
9954 state->fit_for_inline = loop_flag_is_zero(env);
9955 state->callback_subprogno = subprogno;
9956 return;
9957 }
9958
9959 if (!state->fit_for_inline)
9960 return;
9961
9962 state->fit_for_inline = (loop_flag_is_zero(env) &&
9963 state->callback_subprogno == subprogno);
9964 }
9965
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)9966 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9967 int *insn_idx_p)
9968 {
9969 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9970 const struct bpf_func_proto *fn = NULL;
9971 enum bpf_return_type ret_type;
9972 enum bpf_type_flag ret_flag;
9973 struct bpf_reg_state *regs;
9974 struct bpf_call_arg_meta meta;
9975 int insn_idx = *insn_idx_p;
9976 bool changes_data;
9977 int i, err, func_id;
9978
9979 /* find function prototype */
9980 func_id = insn->imm;
9981 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9982 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9983 func_id);
9984 return -EINVAL;
9985 }
9986
9987 if (env->ops->get_func_proto)
9988 fn = env->ops->get_func_proto(func_id, env->prog);
9989 if (!fn) {
9990 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9991 func_id);
9992 return -EINVAL;
9993 }
9994
9995 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9996 if (!env->prog->gpl_compatible && fn->gpl_only) {
9997 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9998 return -EINVAL;
9999 }
10000
10001 if (fn->allowed && !fn->allowed(env->prog)) {
10002 verbose(env, "helper call is not allowed in probe\n");
10003 return -EINVAL;
10004 }
10005
10006 if (!env->prog->aux->sleepable && fn->might_sleep) {
10007 verbose(env, "helper call might sleep in a non-sleepable prog\n");
10008 return -EINVAL;
10009 }
10010
10011 /* With LD_ABS/IND some JITs save/restore skb from r1. */
10012 changes_data = bpf_helper_changes_pkt_data(func_id);
10013 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10014 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10015 func_id_name(func_id), func_id);
10016 return -EINVAL;
10017 }
10018
10019 memset(&meta, 0, sizeof(meta));
10020 meta.pkt_access = fn->pkt_access;
10021
10022 err = check_func_proto(fn, func_id);
10023 if (err) {
10024 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10025 func_id_name(func_id), func_id);
10026 return err;
10027 }
10028
10029 if (env->cur_state->active_rcu_lock) {
10030 if (fn->might_sleep) {
10031 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10032 func_id_name(func_id), func_id);
10033 return -EINVAL;
10034 }
10035
10036 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10037 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10038 }
10039
10040 meta.func_id = func_id;
10041 /* check args */
10042 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10043 err = check_func_arg(env, i, &meta, fn, insn_idx);
10044 if (err)
10045 return err;
10046 }
10047
10048 err = record_func_map(env, &meta, func_id, insn_idx);
10049 if (err)
10050 return err;
10051
10052 err = record_func_key(env, &meta, func_id, insn_idx);
10053 if (err)
10054 return err;
10055
10056 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10057 * is inferred from register state.
10058 */
10059 for (i = 0; i < meta.access_size; i++) {
10060 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10061 BPF_WRITE, -1, false, false);
10062 if (err)
10063 return err;
10064 }
10065
10066 regs = cur_regs(env);
10067
10068 if (meta.release_regno) {
10069 err = -EINVAL;
10070 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10071 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10072 * is safe to do directly.
10073 */
10074 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10075 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10076 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10077 return -EFAULT;
10078 }
10079 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10080 } else if (meta.ref_obj_id) {
10081 err = release_reference(env, meta.ref_obj_id);
10082 } else if (register_is_null(®s[meta.release_regno])) {
10083 /* meta.ref_obj_id can only be 0 if register that is meant to be
10084 * released is NULL, which must be > R0.
10085 */
10086 err = 0;
10087 }
10088 if (err) {
10089 verbose(env, "func %s#%d reference has not been acquired before\n",
10090 func_id_name(func_id), func_id);
10091 return err;
10092 }
10093 }
10094
10095 switch (func_id) {
10096 case BPF_FUNC_tail_call:
10097 err = check_reference_leak(env);
10098 if (err) {
10099 verbose(env, "tail_call would lead to reference leak\n");
10100 return err;
10101 }
10102 break;
10103 case BPF_FUNC_get_local_storage:
10104 /* check that flags argument in get_local_storage(map, flags) is 0,
10105 * this is required because get_local_storage() can't return an error.
10106 */
10107 if (!register_is_null(®s[BPF_REG_2])) {
10108 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10109 return -EINVAL;
10110 }
10111 break;
10112 case BPF_FUNC_for_each_map_elem:
10113 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10114 set_map_elem_callback_state);
10115 break;
10116 case BPF_FUNC_timer_set_callback:
10117 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10118 set_timer_callback_state);
10119 break;
10120 case BPF_FUNC_find_vma:
10121 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10122 set_find_vma_callback_state);
10123 break;
10124 case BPF_FUNC_snprintf:
10125 err = check_bpf_snprintf_call(env, regs);
10126 break;
10127 case BPF_FUNC_loop:
10128 update_loop_inline_state(env, meta.subprogno);
10129 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10130 * is finished, thus mark it precise.
10131 */
10132 err = mark_chain_precision(env, BPF_REG_1);
10133 if (err)
10134 return err;
10135 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10136 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10137 set_loop_callback_state);
10138 } else {
10139 cur_func(env)->callback_depth = 0;
10140 if (env->log.level & BPF_LOG_LEVEL2)
10141 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10142 env->cur_state->curframe);
10143 }
10144 break;
10145 case BPF_FUNC_dynptr_from_mem:
10146 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10147 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10148 reg_type_str(env, regs[BPF_REG_1].type));
10149 return -EACCES;
10150 }
10151 break;
10152 case BPF_FUNC_set_retval:
10153 if (prog_type == BPF_PROG_TYPE_LSM &&
10154 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10155 if (!env->prog->aux->attach_func_proto->type) {
10156 /* Make sure programs that attach to void
10157 * hooks don't try to modify return value.
10158 */
10159 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10160 return -EINVAL;
10161 }
10162 }
10163 break;
10164 case BPF_FUNC_dynptr_data:
10165 {
10166 struct bpf_reg_state *reg;
10167 int id, ref_obj_id;
10168
10169 reg = get_dynptr_arg_reg(env, fn, regs);
10170 if (!reg)
10171 return -EFAULT;
10172
10173
10174 if (meta.dynptr_id) {
10175 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10176 return -EFAULT;
10177 }
10178 if (meta.ref_obj_id) {
10179 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10180 return -EFAULT;
10181 }
10182
10183 id = dynptr_id(env, reg);
10184 if (id < 0) {
10185 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10186 return id;
10187 }
10188
10189 ref_obj_id = dynptr_ref_obj_id(env, reg);
10190 if (ref_obj_id < 0) {
10191 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10192 return ref_obj_id;
10193 }
10194
10195 meta.dynptr_id = id;
10196 meta.ref_obj_id = ref_obj_id;
10197
10198 break;
10199 }
10200 case BPF_FUNC_dynptr_write:
10201 {
10202 enum bpf_dynptr_type dynptr_type;
10203 struct bpf_reg_state *reg;
10204
10205 reg = get_dynptr_arg_reg(env, fn, regs);
10206 if (!reg)
10207 return -EFAULT;
10208
10209 dynptr_type = dynptr_get_type(env, reg);
10210 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10211 return -EFAULT;
10212
10213 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10214 /* this will trigger clear_all_pkt_pointers(), which will
10215 * invalidate all dynptr slices associated with the skb
10216 */
10217 changes_data = true;
10218
10219 break;
10220 }
10221 case BPF_FUNC_user_ringbuf_drain:
10222 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10223 set_user_ringbuf_callback_state);
10224 break;
10225 }
10226
10227 if (err)
10228 return err;
10229
10230 /* reset caller saved regs */
10231 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10232 mark_reg_not_init(env, regs, caller_saved[i]);
10233 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10234 }
10235
10236 /* helper call returns 64-bit value. */
10237 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10238
10239 /* update return register (already marked as written above) */
10240 ret_type = fn->ret_type;
10241 ret_flag = type_flag(ret_type);
10242
10243 switch (base_type(ret_type)) {
10244 case RET_INTEGER:
10245 /* sets type to SCALAR_VALUE */
10246 mark_reg_unknown(env, regs, BPF_REG_0);
10247 break;
10248 case RET_VOID:
10249 regs[BPF_REG_0].type = NOT_INIT;
10250 break;
10251 case RET_PTR_TO_MAP_VALUE:
10252 /* There is no offset yet applied, variable or fixed */
10253 mark_reg_known_zero(env, regs, BPF_REG_0);
10254 /* remember map_ptr, so that check_map_access()
10255 * can check 'value_size' boundary of memory access
10256 * to map element returned from bpf_map_lookup_elem()
10257 */
10258 if (meta.map_ptr == NULL) {
10259 verbose(env,
10260 "kernel subsystem misconfigured verifier\n");
10261 return -EINVAL;
10262 }
10263 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10264 regs[BPF_REG_0].map_uid = meta.map_uid;
10265 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10266 if (!type_may_be_null(ret_type) &&
10267 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10268 regs[BPF_REG_0].id = ++env->id_gen;
10269 }
10270 break;
10271 case RET_PTR_TO_SOCKET:
10272 mark_reg_known_zero(env, regs, BPF_REG_0);
10273 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10274 break;
10275 case RET_PTR_TO_SOCK_COMMON:
10276 mark_reg_known_zero(env, regs, BPF_REG_0);
10277 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10278 break;
10279 case RET_PTR_TO_TCP_SOCK:
10280 mark_reg_known_zero(env, regs, BPF_REG_0);
10281 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10282 break;
10283 case RET_PTR_TO_MEM:
10284 mark_reg_known_zero(env, regs, BPF_REG_0);
10285 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10286 regs[BPF_REG_0].mem_size = meta.mem_size;
10287 break;
10288 case RET_PTR_TO_MEM_OR_BTF_ID:
10289 {
10290 const struct btf_type *t;
10291
10292 mark_reg_known_zero(env, regs, BPF_REG_0);
10293 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10294 if (!btf_type_is_struct(t)) {
10295 u32 tsize;
10296 const struct btf_type *ret;
10297 const char *tname;
10298
10299 /* resolve the type size of ksym. */
10300 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10301 if (IS_ERR(ret)) {
10302 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10303 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10304 tname, PTR_ERR(ret));
10305 return -EINVAL;
10306 }
10307 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10308 regs[BPF_REG_0].mem_size = tsize;
10309 } else {
10310 /* MEM_RDONLY may be carried from ret_flag, but it
10311 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10312 * it will confuse the check of PTR_TO_BTF_ID in
10313 * check_mem_access().
10314 */
10315 ret_flag &= ~MEM_RDONLY;
10316
10317 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10318 regs[BPF_REG_0].btf = meta.ret_btf;
10319 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10320 }
10321 break;
10322 }
10323 case RET_PTR_TO_BTF_ID:
10324 {
10325 struct btf *ret_btf;
10326 int ret_btf_id;
10327
10328 mark_reg_known_zero(env, regs, BPF_REG_0);
10329 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10330 if (func_id == BPF_FUNC_kptr_xchg) {
10331 ret_btf = meta.kptr_field->kptr.btf;
10332 ret_btf_id = meta.kptr_field->kptr.btf_id;
10333 if (!btf_is_kernel(ret_btf))
10334 regs[BPF_REG_0].type |= MEM_ALLOC;
10335 } else {
10336 if (fn->ret_btf_id == BPF_PTR_POISON) {
10337 verbose(env, "verifier internal error:");
10338 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10339 func_id_name(func_id));
10340 return -EINVAL;
10341 }
10342 ret_btf = btf_vmlinux;
10343 ret_btf_id = *fn->ret_btf_id;
10344 }
10345 if (ret_btf_id == 0) {
10346 verbose(env, "invalid return type %u of func %s#%d\n",
10347 base_type(ret_type), func_id_name(func_id),
10348 func_id);
10349 return -EINVAL;
10350 }
10351 regs[BPF_REG_0].btf = ret_btf;
10352 regs[BPF_REG_0].btf_id = ret_btf_id;
10353 break;
10354 }
10355 default:
10356 verbose(env, "unknown return type %u of func %s#%d\n",
10357 base_type(ret_type), func_id_name(func_id), func_id);
10358 return -EINVAL;
10359 }
10360
10361 if (type_may_be_null(regs[BPF_REG_0].type))
10362 regs[BPF_REG_0].id = ++env->id_gen;
10363
10364 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10365 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10366 func_id_name(func_id), func_id);
10367 return -EFAULT;
10368 }
10369
10370 if (is_dynptr_ref_function(func_id))
10371 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10372
10373 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10374 /* For release_reference() */
10375 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10376 } else if (is_acquire_function(func_id, meta.map_ptr)) {
10377 int id = acquire_reference_state(env, insn_idx);
10378
10379 if (id < 0)
10380 return id;
10381 /* For mark_ptr_or_null_reg() */
10382 regs[BPF_REG_0].id = id;
10383 /* For release_reference() */
10384 regs[BPF_REG_0].ref_obj_id = id;
10385 }
10386
10387 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10388
10389 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10390 if (err)
10391 return err;
10392
10393 if ((func_id == BPF_FUNC_get_stack ||
10394 func_id == BPF_FUNC_get_task_stack) &&
10395 !env->prog->has_callchain_buf) {
10396 const char *err_str;
10397
10398 #ifdef CONFIG_PERF_EVENTS
10399 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10400 err_str = "cannot get callchain buffer for func %s#%d\n";
10401 #else
10402 err = -ENOTSUPP;
10403 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10404 #endif
10405 if (err) {
10406 verbose(env, err_str, func_id_name(func_id), func_id);
10407 return err;
10408 }
10409
10410 env->prog->has_callchain_buf = true;
10411 }
10412
10413 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10414 env->prog->call_get_stack = true;
10415
10416 if (func_id == BPF_FUNC_get_func_ip) {
10417 if (check_get_func_ip(env))
10418 return -ENOTSUPP;
10419 env->prog->call_get_func_ip = true;
10420 }
10421
10422 if (changes_data)
10423 clear_all_pkt_pointers(env);
10424 return 0;
10425 }
10426
10427 /* mark_btf_func_reg_size() is used when the reg size is determined by
10428 * the BTF func_proto's return value size and argument.
10429 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10430 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10431 size_t reg_size)
10432 {
10433 struct bpf_reg_state *reg = &cur_regs(env)[regno];
10434
10435 if (regno == BPF_REG_0) {
10436 /* Function return value */
10437 reg->live |= REG_LIVE_WRITTEN;
10438 reg->subreg_def = reg_size == sizeof(u64) ?
10439 DEF_NOT_SUBREG : env->insn_idx + 1;
10440 } else {
10441 /* Function argument */
10442 if (reg_size == sizeof(u64)) {
10443 mark_insn_zext(env, reg);
10444 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10445 } else {
10446 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10447 }
10448 }
10449 }
10450
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10451 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10452 {
10453 return meta->kfunc_flags & KF_ACQUIRE;
10454 }
10455
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10456 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10457 {
10458 return meta->kfunc_flags & KF_RELEASE;
10459 }
10460
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10461 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10462 {
10463 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10464 }
10465
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10466 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10467 {
10468 return meta->kfunc_flags & KF_SLEEPABLE;
10469 }
10470
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10471 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10472 {
10473 return meta->kfunc_flags & KF_DESTRUCTIVE;
10474 }
10475
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10476 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10477 {
10478 return meta->kfunc_flags & KF_RCU;
10479 }
10480
__kfunc_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)10481 static bool __kfunc_param_match_suffix(const struct btf *btf,
10482 const struct btf_param *arg,
10483 const char *suffix)
10484 {
10485 int suffix_len = strlen(suffix), len;
10486 const char *param_name;
10487
10488 /* In the future, this can be ported to use BTF tagging */
10489 param_name = btf_name_by_offset(btf, arg->name_off);
10490 if (str_is_empty(param_name))
10491 return false;
10492 len = strlen(param_name);
10493 if (len < suffix_len)
10494 return false;
10495 param_name += len - suffix_len;
10496 return !strncmp(param_name, suffix, suffix_len);
10497 }
10498
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10499 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10500 const struct btf_param *arg,
10501 const struct bpf_reg_state *reg)
10502 {
10503 const struct btf_type *t;
10504
10505 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10506 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10507 return false;
10508
10509 return __kfunc_param_match_suffix(btf, arg, "__sz");
10510 }
10511
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10512 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10513 const struct btf_param *arg,
10514 const struct bpf_reg_state *reg)
10515 {
10516 const struct btf_type *t;
10517
10518 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10519 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10520 return false;
10521
10522 return __kfunc_param_match_suffix(btf, arg, "__szk");
10523 }
10524
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)10525 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10526 {
10527 return __kfunc_param_match_suffix(btf, arg, "__opt");
10528 }
10529
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)10530 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10531 {
10532 return __kfunc_param_match_suffix(btf, arg, "__k");
10533 }
10534
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)10535 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10536 {
10537 return __kfunc_param_match_suffix(btf, arg, "__ign");
10538 }
10539
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)10540 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10541 {
10542 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10543 }
10544
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)10545 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10546 {
10547 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10548 }
10549
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)10550 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10551 {
10552 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10553 }
10554
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)10555 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10556 const struct btf_param *arg,
10557 const char *name)
10558 {
10559 int len, target_len = strlen(name);
10560 const char *param_name;
10561
10562 param_name = btf_name_by_offset(btf, arg->name_off);
10563 if (str_is_empty(param_name))
10564 return false;
10565 len = strlen(param_name);
10566 if (len != target_len)
10567 return false;
10568 if (strcmp(param_name, name))
10569 return false;
10570
10571 return true;
10572 }
10573
10574 enum {
10575 KF_ARG_DYNPTR_ID,
10576 KF_ARG_LIST_HEAD_ID,
10577 KF_ARG_LIST_NODE_ID,
10578 KF_ARG_RB_ROOT_ID,
10579 KF_ARG_RB_NODE_ID,
10580 };
10581
10582 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr_kern)10583 BTF_ID(struct, bpf_dynptr_kern)
10584 BTF_ID(struct, bpf_list_head)
10585 BTF_ID(struct, bpf_list_node)
10586 BTF_ID(struct, bpf_rb_root)
10587 BTF_ID(struct, bpf_rb_node)
10588
10589 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10590 const struct btf_param *arg, int type)
10591 {
10592 const struct btf_type *t;
10593 u32 res_id;
10594
10595 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10596 if (!t)
10597 return false;
10598 if (!btf_type_is_ptr(t))
10599 return false;
10600 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10601 if (!t)
10602 return false;
10603 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10604 }
10605
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)10606 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10607 {
10608 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10609 }
10610
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)10611 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10612 {
10613 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10614 }
10615
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)10616 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10617 {
10618 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10619 }
10620
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)10621 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10622 {
10623 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10624 }
10625
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)10626 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10627 {
10628 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10629 }
10630
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)10631 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10632 const struct btf_param *arg)
10633 {
10634 const struct btf_type *t;
10635
10636 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10637 if (!t)
10638 return false;
10639
10640 return true;
10641 }
10642
10643 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)10644 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10645 const struct btf *btf,
10646 const struct btf_type *t, int rec)
10647 {
10648 const struct btf_type *member_type;
10649 const struct btf_member *member;
10650 u32 i;
10651
10652 if (!btf_type_is_struct(t))
10653 return false;
10654
10655 for_each_member(i, t, member) {
10656 const struct btf_array *array;
10657
10658 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10659 if (btf_type_is_struct(member_type)) {
10660 if (rec >= 3) {
10661 verbose(env, "max struct nesting depth exceeded\n");
10662 return false;
10663 }
10664 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10665 return false;
10666 continue;
10667 }
10668 if (btf_type_is_array(member_type)) {
10669 array = btf_array(member_type);
10670 if (!array->nelems)
10671 return false;
10672 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10673 if (!btf_type_is_scalar(member_type))
10674 return false;
10675 continue;
10676 }
10677 if (!btf_type_is_scalar(member_type))
10678 return false;
10679 }
10680 return true;
10681 }
10682
10683 enum kfunc_ptr_arg_type {
10684 KF_ARG_PTR_TO_CTX,
10685 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10686 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10687 KF_ARG_PTR_TO_DYNPTR,
10688 KF_ARG_PTR_TO_ITER,
10689 KF_ARG_PTR_TO_LIST_HEAD,
10690 KF_ARG_PTR_TO_LIST_NODE,
10691 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10692 KF_ARG_PTR_TO_MEM,
10693 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10694 KF_ARG_PTR_TO_CALLBACK,
10695 KF_ARG_PTR_TO_RB_ROOT,
10696 KF_ARG_PTR_TO_RB_NODE,
10697 };
10698
10699 enum special_kfunc_type {
10700 KF_bpf_obj_new_impl,
10701 KF_bpf_obj_drop_impl,
10702 KF_bpf_refcount_acquire_impl,
10703 KF_bpf_list_push_front_impl,
10704 KF_bpf_list_push_back_impl,
10705 KF_bpf_list_pop_front,
10706 KF_bpf_list_pop_back,
10707 KF_bpf_cast_to_kern_ctx,
10708 KF_bpf_rdonly_cast,
10709 KF_bpf_rcu_read_lock,
10710 KF_bpf_rcu_read_unlock,
10711 KF_bpf_rbtree_remove,
10712 KF_bpf_rbtree_add_impl,
10713 KF_bpf_rbtree_first,
10714 KF_bpf_dynptr_from_skb,
10715 KF_bpf_dynptr_from_xdp,
10716 KF_bpf_dynptr_slice,
10717 KF_bpf_dynptr_slice_rdwr,
10718 KF_bpf_dynptr_clone,
10719 };
10720
10721 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)10722 BTF_ID(func, bpf_obj_new_impl)
10723 BTF_ID(func, bpf_obj_drop_impl)
10724 BTF_ID(func, bpf_refcount_acquire_impl)
10725 BTF_ID(func, bpf_list_push_front_impl)
10726 BTF_ID(func, bpf_list_push_back_impl)
10727 BTF_ID(func, bpf_list_pop_front)
10728 BTF_ID(func, bpf_list_pop_back)
10729 BTF_ID(func, bpf_cast_to_kern_ctx)
10730 BTF_ID(func, bpf_rdonly_cast)
10731 BTF_ID(func, bpf_rbtree_remove)
10732 BTF_ID(func, bpf_rbtree_add_impl)
10733 BTF_ID(func, bpf_rbtree_first)
10734 BTF_ID(func, bpf_dynptr_from_skb)
10735 BTF_ID(func, bpf_dynptr_from_xdp)
10736 BTF_ID(func, bpf_dynptr_slice)
10737 BTF_ID(func, bpf_dynptr_slice_rdwr)
10738 BTF_ID(func, bpf_dynptr_clone)
10739 BTF_SET_END(special_kfunc_set)
10740
10741 BTF_ID_LIST(special_kfunc_list)
10742 BTF_ID(func, bpf_obj_new_impl)
10743 BTF_ID(func, bpf_obj_drop_impl)
10744 BTF_ID(func, bpf_refcount_acquire_impl)
10745 BTF_ID(func, bpf_list_push_front_impl)
10746 BTF_ID(func, bpf_list_push_back_impl)
10747 BTF_ID(func, bpf_list_pop_front)
10748 BTF_ID(func, bpf_list_pop_back)
10749 BTF_ID(func, bpf_cast_to_kern_ctx)
10750 BTF_ID(func, bpf_rdonly_cast)
10751 BTF_ID(func, bpf_rcu_read_lock)
10752 BTF_ID(func, bpf_rcu_read_unlock)
10753 BTF_ID(func, bpf_rbtree_remove)
10754 BTF_ID(func, bpf_rbtree_add_impl)
10755 BTF_ID(func, bpf_rbtree_first)
10756 BTF_ID(func, bpf_dynptr_from_skb)
10757 BTF_ID(func, bpf_dynptr_from_xdp)
10758 BTF_ID(func, bpf_dynptr_slice)
10759 BTF_ID(func, bpf_dynptr_slice_rdwr)
10760 BTF_ID(func, bpf_dynptr_clone)
10761
10762 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10763 {
10764 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10765 meta->arg_owning_ref) {
10766 return false;
10767 }
10768
10769 return meta->kfunc_flags & KF_RET_NULL;
10770 }
10771
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)10772 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10773 {
10774 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10775 }
10776
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)10777 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10778 {
10779 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10780 }
10781
10782 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)10783 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10784 struct bpf_kfunc_call_arg_meta *meta,
10785 const struct btf_type *t, const struct btf_type *ref_t,
10786 const char *ref_tname, const struct btf_param *args,
10787 int argno, int nargs)
10788 {
10789 u32 regno = argno + 1;
10790 struct bpf_reg_state *regs = cur_regs(env);
10791 struct bpf_reg_state *reg = ®s[regno];
10792 bool arg_mem_size = false;
10793
10794 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10795 return KF_ARG_PTR_TO_CTX;
10796
10797 /* In this function, we verify the kfunc's BTF as per the argument type,
10798 * leaving the rest of the verification with respect to the register
10799 * type to our caller. When a set of conditions hold in the BTF type of
10800 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10801 */
10802 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10803 return KF_ARG_PTR_TO_CTX;
10804
10805 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10806 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10807
10808 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10809 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10810
10811 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10812 return KF_ARG_PTR_TO_DYNPTR;
10813
10814 if (is_kfunc_arg_iter(meta, argno))
10815 return KF_ARG_PTR_TO_ITER;
10816
10817 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10818 return KF_ARG_PTR_TO_LIST_HEAD;
10819
10820 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10821 return KF_ARG_PTR_TO_LIST_NODE;
10822
10823 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10824 return KF_ARG_PTR_TO_RB_ROOT;
10825
10826 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10827 return KF_ARG_PTR_TO_RB_NODE;
10828
10829 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10830 if (!btf_type_is_struct(ref_t)) {
10831 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10832 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10833 return -EINVAL;
10834 }
10835 return KF_ARG_PTR_TO_BTF_ID;
10836 }
10837
10838 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10839 return KF_ARG_PTR_TO_CALLBACK;
10840
10841
10842 if (argno + 1 < nargs &&
10843 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10844 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10845 arg_mem_size = true;
10846
10847 /* This is the catch all argument type of register types supported by
10848 * check_helper_mem_access. However, we only allow when argument type is
10849 * pointer to scalar, or struct composed (recursively) of scalars. When
10850 * arg_mem_size is true, the pointer can be void *.
10851 */
10852 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10853 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10854 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10855 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10856 return -EINVAL;
10857 }
10858 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10859 }
10860
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)10861 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10862 struct bpf_reg_state *reg,
10863 const struct btf_type *ref_t,
10864 const char *ref_tname, u32 ref_id,
10865 struct bpf_kfunc_call_arg_meta *meta,
10866 int argno)
10867 {
10868 const struct btf_type *reg_ref_t;
10869 bool strict_type_match = false;
10870 const struct btf *reg_btf;
10871 const char *reg_ref_tname;
10872 u32 reg_ref_id;
10873
10874 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10875 reg_btf = reg->btf;
10876 reg_ref_id = reg->btf_id;
10877 } else {
10878 reg_btf = btf_vmlinux;
10879 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10880 }
10881
10882 /* Enforce strict type matching for calls to kfuncs that are acquiring
10883 * or releasing a reference, or are no-cast aliases. We do _not_
10884 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10885 * as we want to enable BPF programs to pass types that are bitwise
10886 * equivalent without forcing them to explicitly cast with something
10887 * like bpf_cast_to_kern_ctx().
10888 *
10889 * For example, say we had a type like the following:
10890 *
10891 * struct bpf_cpumask {
10892 * cpumask_t cpumask;
10893 * refcount_t usage;
10894 * };
10895 *
10896 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10897 * to a struct cpumask, so it would be safe to pass a struct
10898 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10899 *
10900 * The philosophy here is similar to how we allow scalars of different
10901 * types to be passed to kfuncs as long as the size is the same. The
10902 * only difference here is that we're simply allowing
10903 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10904 * resolve types.
10905 */
10906 if (is_kfunc_acquire(meta) ||
10907 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10908 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10909 strict_type_match = true;
10910
10911 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10912
10913 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10914 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10915 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10916 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10917 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10918 btf_type_str(reg_ref_t), reg_ref_tname);
10919 return -EINVAL;
10920 }
10921 return 0;
10922 }
10923
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10924 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10925 {
10926 struct bpf_verifier_state *state = env->cur_state;
10927 struct btf_record *rec = reg_btf_record(reg);
10928
10929 if (!state->active_lock.ptr) {
10930 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10931 return -EFAULT;
10932 }
10933
10934 if (type_flag(reg->type) & NON_OWN_REF) {
10935 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10936 return -EFAULT;
10937 }
10938
10939 reg->type |= NON_OWN_REF;
10940 if (rec->refcount_off >= 0)
10941 reg->type |= MEM_RCU;
10942
10943 return 0;
10944 }
10945
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)10946 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10947 {
10948 struct bpf_func_state *state, *unused;
10949 struct bpf_reg_state *reg;
10950 int i;
10951
10952 state = cur_func(env);
10953
10954 if (!ref_obj_id) {
10955 verbose(env, "verifier internal error: ref_obj_id is zero for "
10956 "owning -> non-owning conversion\n");
10957 return -EFAULT;
10958 }
10959
10960 for (i = 0; i < state->acquired_refs; i++) {
10961 if (state->refs[i].id != ref_obj_id)
10962 continue;
10963
10964 /* Clear ref_obj_id here so release_reference doesn't clobber
10965 * the whole reg
10966 */
10967 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10968 if (reg->ref_obj_id == ref_obj_id) {
10969 reg->ref_obj_id = 0;
10970 ref_set_non_owning(env, reg);
10971 }
10972 }));
10973 return 0;
10974 }
10975
10976 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10977 return -EFAULT;
10978 }
10979
10980 /* Implementation details:
10981 *
10982 * Each register points to some region of memory, which we define as an
10983 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10984 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10985 * allocation. The lock and the data it protects are colocated in the same
10986 * memory region.
10987 *
10988 * Hence, everytime a register holds a pointer value pointing to such
10989 * allocation, the verifier preserves a unique reg->id for it.
10990 *
10991 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10992 * bpf_spin_lock is called.
10993 *
10994 * To enable this, lock state in the verifier captures two values:
10995 * active_lock.ptr = Register's type specific pointer
10996 * active_lock.id = A unique ID for each register pointer value
10997 *
10998 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10999 * supported register types.
11000 *
11001 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11002 * allocated objects is the reg->btf pointer.
11003 *
11004 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11005 * can establish the provenance of the map value statically for each distinct
11006 * lookup into such maps. They always contain a single map value hence unique
11007 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11008 *
11009 * So, in case of global variables, they use array maps with max_entries = 1,
11010 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11011 * into the same map value as max_entries is 1, as described above).
11012 *
11013 * In case of inner map lookups, the inner map pointer has same map_ptr as the
11014 * outer map pointer (in verifier context), but each lookup into an inner map
11015 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11016 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11017 * will get different reg->id assigned to each lookup, hence different
11018 * active_lock.id.
11019 *
11020 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11021 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11022 * returned from bpf_obj_new. Each allocation receives a new reg->id.
11023 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)11024 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11025 {
11026 void *ptr;
11027 u32 id;
11028
11029 switch ((int)reg->type) {
11030 case PTR_TO_MAP_VALUE:
11031 ptr = reg->map_ptr;
11032 break;
11033 case PTR_TO_BTF_ID | MEM_ALLOC:
11034 ptr = reg->btf;
11035 break;
11036 default:
11037 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11038 return -EFAULT;
11039 }
11040 id = reg->id;
11041
11042 if (!env->cur_state->active_lock.ptr)
11043 return -EINVAL;
11044 if (env->cur_state->active_lock.ptr != ptr ||
11045 env->cur_state->active_lock.id != id) {
11046 verbose(env, "held lock and object are not in the same allocation\n");
11047 return -EINVAL;
11048 }
11049 return 0;
11050 }
11051
is_bpf_list_api_kfunc(u32 btf_id)11052 static bool is_bpf_list_api_kfunc(u32 btf_id)
11053 {
11054 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11055 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11056 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11057 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11058 }
11059
is_bpf_rbtree_api_kfunc(u32 btf_id)11060 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11061 {
11062 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11063 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11064 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11065 }
11066
is_bpf_graph_api_kfunc(u32 btf_id)11067 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11068 {
11069 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11070 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11071 }
11072
is_sync_callback_calling_kfunc(u32 btf_id)11073 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11074 {
11075 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11076 }
11077
is_rbtree_lock_required_kfunc(u32 btf_id)11078 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11079 {
11080 return is_bpf_rbtree_api_kfunc(btf_id);
11081 }
11082
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11083 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11084 enum btf_field_type head_field_type,
11085 u32 kfunc_btf_id)
11086 {
11087 bool ret;
11088
11089 switch (head_field_type) {
11090 case BPF_LIST_HEAD:
11091 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11092 break;
11093 case BPF_RB_ROOT:
11094 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11095 break;
11096 default:
11097 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11098 btf_field_type_name(head_field_type));
11099 return false;
11100 }
11101
11102 if (!ret)
11103 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11104 btf_field_type_name(head_field_type));
11105 return ret;
11106 }
11107
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11108 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11109 enum btf_field_type node_field_type,
11110 u32 kfunc_btf_id)
11111 {
11112 bool ret;
11113
11114 switch (node_field_type) {
11115 case BPF_LIST_NODE:
11116 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11117 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11118 break;
11119 case BPF_RB_NODE:
11120 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11121 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11122 break;
11123 default:
11124 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11125 btf_field_type_name(node_field_type));
11126 return false;
11127 }
11128
11129 if (!ret)
11130 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11131 btf_field_type_name(node_field_type));
11132 return ret;
11133 }
11134
11135 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11136 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11137 struct bpf_reg_state *reg, u32 regno,
11138 struct bpf_kfunc_call_arg_meta *meta,
11139 enum btf_field_type head_field_type,
11140 struct btf_field **head_field)
11141 {
11142 const char *head_type_name;
11143 struct btf_field *field;
11144 struct btf_record *rec;
11145 u32 head_off;
11146
11147 if (meta->btf != btf_vmlinux) {
11148 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11149 return -EFAULT;
11150 }
11151
11152 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11153 return -EFAULT;
11154
11155 head_type_name = btf_field_type_name(head_field_type);
11156 if (!tnum_is_const(reg->var_off)) {
11157 verbose(env,
11158 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11159 regno, head_type_name);
11160 return -EINVAL;
11161 }
11162
11163 rec = reg_btf_record(reg);
11164 head_off = reg->off + reg->var_off.value;
11165 field = btf_record_find(rec, head_off, head_field_type);
11166 if (!field) {
11167 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11168 return -EINVAL;
11169 }
11170
11171 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11172 if (check_reg_allocation_locked(env, reg)) {
11173 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11174 rec->spin_lock_off, head_type_name);
11175 return -EINVAL;
11176 }
11177
11178 if (*head_field) {
11179 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11180 return -EFAULT;
11181 }
11182 *head_field = field;
11183 return 0;
11184 }
11185
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11186 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11187 struct bpf_reg_state *reg, u32 regno,
11188 struct bpf_kfunc_call_arg_meta *meta)
11189 {
11190 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11191 &meta->arg_list_head.field);
11192 }
11193
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11194 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11195 struct bpf_reg_state *reg, u32 regno,
11196 struct bpf_kfunc_call_arg_meta *meta)
11197 {
11198 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11199 &meta->arg_rbtree_root.field);
11200 }
11201
11202 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11203 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11204 struct bpf_reg_state *reg, u32 regno,
11205 struct bpf_kfunc_call_arg_meta *meta,
11206 enum btf_field_type head_field_type,
11207 enum btf_field_type node_field_type,
11208 struct btf_field **node_field)
11209 {
11210 const char *node_type_name;
11211 const struct btf_type *et, *t;
11212 struct btf_field *field;
11213 u32 node_off;
11214
11215 if (meta->btf != btf_vmlinux) {
11216 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11217 return -EFAULT;
11218 }
11219
11220 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11221 return -EFAULT;
11222
11223 node_type_name = btf_field_type_name(node_field_type);
11224 if (!tnum_is_const(reg->var_off)) {
11225 verbose(env,
11226 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11227 regno, node_type_name);
11228 return -EINVAL;
11229 }
11230
11231 node_off = reg->off + reg->var_off.value;
11232 field = reg_find_field_offset(reg, node_off, node_field_type);
11233 if (!field || field->offset != node_off) {
11234 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11235 return -EINVAL;
11236 }
11237
11238 field = *node_field;
11239
11240 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11241 t = btf_type_by_id(reg->btf, reg->btf_id);
11242 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11243 field->graph_root.value_btf_id, true)) {
11244 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11245 "in struct %s, but arg is at offset=%d in struct %s\n",
11246 btf_field_type_name(head_field_type),
11247 btf_field_type_name(node_field_type),
11248 field->graph_root.node_offset,
11249 btf_name_by_offset(field->graph_root.btf, et->name_off),
11250 node_off, btf_name_by_offset(reg->btf, t->name_off));
11251 return -EINVAL;
11252 }
11253 meta->arg_btf = reg->btf;
11254 meta->arg_btf_id = reg->btf_id;
11255
11256 if (node_off != field->graph_root.node_offset) {
11257 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11258 node_off, btf_field_type_name(node_field_type),
11259 field->graph_root.node_offset,
11260 btf_name_by_offset(field->graph_root.btf, et->name_off));
11261 return -EINVAL;
11262 }
11263
11264 return 0;
11265 }
11266
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11267 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11268 struct bpf_reg_state *reg, u32 regno,
11269 struct bpf_kfunc_call_arg_meta *meta)
11270 {
11271 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11272 BPF_LIST_HEAD, BPF_LIST_NODE,
11273 &meta->arg_list_head.field);
11274 }
11275
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11276 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11277 struct bpf_reg_state *reg, u32 regno,
11278 struct bpf_kfunc_call_arg_meta *meta)
11279 {
11280 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11281 BPF_RB_ROOT, BPF_RB_NODE,
11282 &meta->arg_rbtree_root.field);
11283 }
11284
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11285 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11286 int insn_idx)
11287 {
11288 const char *func_name = meta->func_name, *ref_tname;
11289 const struct btf *btf = meta->btf;
11290 const struct btf_param *args;
11291 struct btf_record *rec;
11292 u32 i, nargs;
11293 int ret;
11294
11295 args = (const struct btf_param *)(meta->func_proto + 1);
11296 nargs = btf_type_vlen(meta->func_proto);
11297 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11298 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11299 MAX_BPF_FUNC_REG_ARGS);
11300 return -EINVAL;
11301 }
11302
11303 /* Check that BTF function arguments match actual types that the
11304 * verifier sees.
11305 */
11306 for (i = 0; i < nargs; i++) {
11307 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
11308 const struct btf_type *t, *ref_t, *resolve_ret;
11309 enum bpf_arg_type arg_type = ARG_DONTCARE;
11310 u32 regno = i + 1, ref_id, type_size;
11311 bool is_ret_buf_sz = false;
11312 int kf_arg_type;
11313
11314 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11315
11316 if (is_kfunc_arg_ignore(btf, &args[i]))
11317 continue;
11318
11319 if (btf_type_is_scalar(t)) {
11320 if (reg->type != SCALAR_VALUE) {
11321 verbose(env, "R%d is not a scalar\n", regno);
11322 return -EINVAL;
11323 }
11324
11325 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11326 if (meta->arg_constant.found) {
11327 verbose(env, "verifier internal error: only one constant argument permitted\n");
11328 return -EFAULT;
11329 }
11330 if (!tnum_is_const(reg->var_off)) {
11331 verbose(env, "R%d must be a known constant\n", regno);
11332 return -EINVAL;
11333 }
11334 ret = mark_chain_precision(env, regno);
11335 if (ret < 0)
11336 return ret;
11337 meta->arg_constant.found = true;
11338 meta->arg_constant.value = reg->var_off.value;
11339 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11340 meta->r0_rdonly = true;
11341 is_ret_buf_sz = true;
11342 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11343 is_ret_buf_sz = true;
11344 }
11345
11346 if (is_ret_buf_sz) {
11347 if (meta->r0_size) {
11348 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11349 return -EINVAL;
11350 }
11351
11352 if (!tnum_is_const(reg->var_off)) {
11353 verbose(env, "R%d is not a const\n", regno);
11354 return -EINVAL;
11355 }
11356
11357 meta->r0_size = reg->var_off.value;
11358 ret = mark_chain_precision(env, regno);
11359 if (ret)
11360 return ret;
11361 }
11362 continue;
11363 }
11364
11365 if (!btf_type_is_ptr(t)) {
11366 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11367 return -EINVAL;
11368 }
11369
11370 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11371 (register_is_null(reg) || type_may_be_null(reg->type))) {
11372 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11373 return -EACCES;
11374 }
11375
11376 if (reg->ref_obj_id) {
11377 if (is_kfunc_release(meta) && meta->ref_obj_id) {
11378 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11379 regno, reg->ref_obj_id,
11380 meta->ref_obj_id);
11381 return -EFAULT;
11382 }
11383 meta->ref_obj_id = reg->ref_obj_id;
11384 if (is_kfunc_release(meta))
11385 meta->release_regno = regno;
11386 }
11387
11388 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11389 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11390
11391 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11392 if (kf_arg_type < 0)
11393 return kf_arg_type;
11394
11395 switch (kf_arg_type) {
11396 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11397 case KF_ARG_PTR_TO_BTF_ID:
11398 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11399 break;
11400
11401 if (!is_trusted_reg(reg)) {
11402 if (!is_kfunc_rcu(meta)) {
11403 verbose(env, "R%d must be referenced or trusted\n", regno);
11404 return -EINVAL;
11405 }
11406 if (!is_rcu_reg(reg)) {
11407 verbose(env, "R%d must be a rcu pointer\n", regno);
11408 return -EINVAL;
11409 }
11410 }
11411
11412 fallthrough;
11413 case KF_ARG_PTR_TO_CTX:
11414 /* Trusted arguments have the same offset checks as release arguments */
11415 arg_type |= OBJ_RELEASE;
11416 break;
11417 case KF_ARG_PTR_TO_DYNPTR:
11418 case KF_ARG_PTR_TO_ITER:
11419 case KF_ARG_PTR_TO_LIST_HEAD:
11420 case KF_ARG_PTR_TO_LIST_NODE:
11421 case KF_ARG_PTR_TO_RB_ROOT:
11422 case KF_ARG_PTR_TO_RB_NODE:
11423 case KF_ARG_PTR_TO_MEM:
11424 case KF_ARG_PTR_TO_MEM_SIZE:
11425 case KF_ARG_PTR_TO_CALLBACK:
11426 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11427 /* Trusted by default */
11428 break;
11429 default:
11430 WARN_ON_ONCE(1);
11431 return -EFAULT;
11432 }
11433
11434 if (is_kfunc_release(meta) && reg->ref_obj_id)
11435 arg_type |= OBJ_RELEASE;
11436 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11437 if (ret < 0)
11438 return ret;
11439
11440 switch (kf_arg_type) {
11441 case KF_ARG_PTR_TO_CTX:
11442 if (reg->type != PTR_TO_CTX) {
11443 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11444 return -EINVAL;
11445 }
11446
11447 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11448 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11449 if (ret < 0)
11450 return -EINVAL;
11451 meta->ret_btf_id = ret;
11452 }
11453 break;
11454 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11455 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11456 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11457 return -EINVAL;
11458 }
11459 if (!reg->ref_obj_id) {
11460 verbose(env, "allocated object must be referenced\n");
11461 return -EINVAL;
11462 }
11463 if (meta->btf == btf_vmlinux &&
11464 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11465 meta->arg_btf = reg->btf;
11466 meta->arg_btf_id = reg->btf_id;
11467 }
11468 break;
11469 case KF_ARG_PTR_TO_DYNPTR:
11470 {
11471 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11472 int clone_ref_obj_id = 0;
11473
11474 if (reg->type != PTR_TO_STACK &&
11475 reg->type != CONST_PTR_TO_DYNPTR) {
11476 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11477 return -EINVAL;
11478 }
11479
11480 if (reg->type == CONST_PTR_TO_DYNPTR)
11481 dynptr_arg_type |= MEM_RDONLY;
11482
11483 if (is_kfunc_arg_uninit(btf, &args[i]))
11484 dynptr_arg_type |= MEM_UNINIT;
11485
11486 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11487 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11488 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11489 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11490 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11491 (dynptr_arg_type & MEM_UNINIT)) {
11492 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11493
11494 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11495 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11496 return -EFAULT;
11497 }
11498
11499 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11500 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11501 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11502 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11503 return -EFAULT;
11504 }
11505 }
11506
11507 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11508 if (ret < 0)
11509 return ret;
11510
11511 if (!(dynptr_arg_type & MEM_UNINIT)) {
11512 int id = dynptr_id(env, reg);
11513
11514 if (id < 0) {
11515 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11516 return id;
11517 }
11518 meta->initialized_dynptr.id = id;
11519 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11520 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11521 }
11522
11523 break;
11524 }
11525 case KF_ARG_PTR_TO_ITER:
11526 ret = process_iter_arg(env, regno, insn_idx, meta);
11527 if (ret < 0)
11528 return ret;
11529 break;
11530 case KF_ARG_PTR_TO_LIST_HEAD:
11531 if (reg->type != PTR_TO_MAP_VALUE &&
11532 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11533 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11534 return -EINVAL;
11535 }
11536 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11537 verbose(env, "allocated object must be referenced\n");
11538 return -EINVAL;
11539 }
11540 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11541 if (ret < 0)
11542 return ret;
11543 break;
11544 case KF_ARG_PTR_TO_RB_ROOT:
11545 if (reg->type != PTR_TO_MAP_VALUE &&
11546 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11547 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11548 return -EINVAL;
11549 }
11550 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11551 verbose(env, "allocated object must be referenced\n");
11552 return -EINVAL;
11553 }
11554 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11555 if (ret < 0)
11556 return ret;
11557 break;
11558 case KF_ARG_PTR_TO_LIST_NODE:
11559 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11560 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11561 return -EINVAL;
11562 }
11563 if (!reg->ref_obj_id) {
11564 verbose(env, "allocated object must be referenced\n");
11565 return -EINVAL;
11566 }
11567 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11568 if (ret < 0)
11569 return ret;
11570 break;
11571 case KF_ARG_PTR_TO_RB_NODE:
11572 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11573 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11574 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11575 return -EINVAL;
11576 }
11577 if (in_rbtree_lock_required_cb(env)) {
11578 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11579 return -EINVAL;
11580 }
11581 } else {
11582 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11583 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11584 return -EINVAL;
11585 }
11586 if (!reg->ref_obj_id) {
11587 verbose(env, "allocated object must be referenced\n");
11588 return -EINVAL;
11589 }
11590 }
11591
11592 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11593 if (ret < 0)
11594 return ret;
11595 break;
11596 case KF_ARG_PTR_TO_BTF_ID:
11597 /* Only base_type is checked, further checks are done here */
11598 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11599 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11600 !reg2btf_ids[base_type(reg->type)]) {
11601 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11602 verbose(env, "expected %s or socket\n",
11603 reg_type_str(env, base_type(reg->type) |
11604 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11605 return -EINVAL;
11606 }
11607 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11608 if (ret < 0)
11609 return ret;
11610 break;
11611 case KF_ARG_PTR_TO_MEM:
11612 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11613 if (IS_ERR(resolve_ret)) {
11614 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11615 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11616 return -EINVAL;
11617 }
11618 ret = check_mem_reg(env, reg, regno, type_size);
11619 if (ret < 0)
11620 return ret;
11621 break;
11622 case KF_ARG_PTR_TO_MEM_SIZE:
11623 {
11624 struct bpf_reg_state *buff_reg = ®s[regno];
11625 const struct btf_param *buff_arg = &args[i];
11626 struct bpf_reg_state *size_reg = ®s[regno + 1];
11627 const struct btf_param *size_arg = &args[i + 1];
11628
11629 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11630 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11631 if (ret < 0) {
11632 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11633 return ret;
11634 }
11635 }
11636
11637 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11638 if (meta->arg_constant.found) {
11639 verbose(env, "verifier internal error: only one constant argument permitted\n");
11640 return -EFAULT;
11641 }
11642 if (!tnum_is_const(size_reg->var_off)) {
11643 verbose(env, "R%d must be a known constant\n", regno + 1);
11644 return -EINVAL;
11645 }
11646 meta->arg_constant.found = true;
11647 meta->arg_constant.value = size_reg->var_off.value;
11648 }
11649
11650 /* Skip next '__sz' or '__szk' argument */
11651 i++;
11652 break;
11653 }
11654 case KF_ARG_PTR_TO_CALLBACK:
11655 if (reg->type != PTR_TO_FUNC) {
11656 verbose(env, "arg%d expected pointer to func\n", i);
11657 return -EINVAL;
11658 }
11659 meta->subprogno = reg->subprogno;
11660 break;
11661 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11662 if (!type_is_ptr_alloc_obj(reg->type)) {
11663 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11664 return -EINVAL;
11665 }
11666 if (!type_is_non_owning_ref(reg->type))
11667 meta->arg_owning_ref = true;
11668
11669 rec = reg_btf_record(reg);
11670 if (!rec) {
11671 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11672 return -EFAULT;
11673 }
11674
11675 if (rec->refcount_off < 0) {
11676 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11677 return -EINVAL;
11678 }
11679
11680 meta->arg_btf = reg->btf;
11681 meta->arg_btf_id = reg->btf_id;
11682 break;
11683 }
11684 }
11685
11686 if (is_kfunc_release(meta) && !meta->release_regno) {
11687 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11688 func_name);
11689 return -EINVAL;
11690 }
11691
11692 return 0;
11693 }
11694
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)11695 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11696 struct bpf_insn *insn,
11697 struct bpf_kfunc_call_arg_meta *meta,
11698 const char **kfunc_name)
11699 {
11700 const struct btf_type *func, *func_proto;
11701 u32 func_id, *kfunc_flags;
11702 const char *func_name;
11703 struct btf *desc_btf;
11704
11705 if (kfunc_name)
11706 *kfunc_name = NULL;
11707
11708 if (!insn->imm)
11709 return -EINVAL;
11710
11711 desc_btf = find_kfunc_desc_btf(env, insn->off);
11712 if (IS_ERR(desc_btf))
11713 return PTR_ERR(desc_btf);
11714
11715 func_id = insn->imm;
11716 func = btf_type_by_id(desc_btf, func_id);
11717 func_name = btf_name_by_offset(desc_btf, func->name_off);
11718 if (kfunc_name)
11719 *kfunc_name = func_name;
11720 func_proto = btf_type_by_id(desc_btf, func->type);
11721
11722 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11723 if (!kfunc_flags) {
11724 return -EACCES;
11725 }
11726
11727 memset(meta, 0, sizeof(*meta));
11728 meta->btf = desc_btf;
11729 meta->func_id = func_id;
11730 meta->kfunc_flags = *kfunc_flags;
11731 meta->func_proto = func_proto;
11732 meta->func_name = func_name;
11733
11734 return 0;
11735 }
11736
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11737 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11738 int *insn_idx_p)
11739 {
11740 const struct btf_type *t, *ptr_type;
11741 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11742 struct bpf_reg_state *regs = cur_regs(env);
11743 const char *func_name, *ptr_type_name;
11744 bool sleepable, rcu_lock, rcu_unlock;
11745 struct bpf_kfunc_call_arg_meta meta;
11746 struct bpf_insn_aux_data *insn_aux;
11747 int err, insn_idx = *insn_idx_p;
11748 const struct btf_param *args;
11749 const struct btf_type *ret_t;
11750 struct btf *desc_btf;
11751
11752 /* skip for now, but return error when we find this in fixup_kfunc_call */
11753 if (!insn->imm)
11754 return 0;
11755
11756 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11757 if (err == -EACCES && func_name)
11758 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11759 if (err)
11760 return err;
11761 desc_btf = meta.btf;
11762 insn_aux = &env->insn_aux_data[insn_idx];
11763
11764 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11765
11766 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11767 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11768 return -EACCES;
11769 }
11770
11771 sleepable = is_kfunc_sleepable(&meta);
11772 if (sleepable && !env->prog->aux->sleepable) {
11773 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11774 return -EACCES;
11775 }
11776
11777 /* Check the arguments */
11778 err = check_kfunc_args(env, &meta, insn_idx);
11779 if (err < 0)
11780 return err;
11781
11782 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11783 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11784 set_rbtree_add_callback_state);
11785 if (err) {
11786 verbose(env, "kfunc %s#%d failed callback verification\n",
11787 func_name, meta.func_id);
11788 return err;
11789 }
11790 }
11791
11792 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11793 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11794
11795 if (env->cur_state->active_rcu_lock) {
11796 struct bpf_func_state *state;
11797 struct bpf_reg_state *reg;
11798
11799 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11800 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11801 return -EACCES;
11802 }
11803
11804 if (rcu_lock) {
11805 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11806 return -EINVAL;
11807 } else if (rcu_unlock) {
11808 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11809 if (reg->type & MEM_RCU) {
11810 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11811 reg->type |= PTR_UNTRUSTED;
11812 }
11813 }));
11814 env->cur_state->active_rcu_lock = false;
11815 } else if (sleepable) {
11816 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11817 return -EACCES;
11818 }
11819 } else if (rcu_lock) {
11820 env->cur_state->active_rcu_lock = true;
11821 } else if (rcu_unlock) {
11822 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11823 return -EINVAL;
11824 }
11825
11826 /* In case of release function, we get register number of refcounted
11827 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11828 */
11829 if (meta.release_regno) {
11830 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11831 if (err) {
11832 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11833 func_name, meta.func_id);
11834 return err;
11835 }
11836 }
11837
11838 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11839 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11840 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11841 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11842 insn_aux->insert_off = regs[BPF_REG_2].off;
11843 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11844 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11845 if (err) {
11846 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11847 func_name, meta.func_id);
11848 return err;
11849 }
11850
11851 err = release_reference(env, release_ref_obj_id);
11852 if (err) {
11853 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11854 func_name, meta.func_id);
11855 return err;
11856 }
11857 }
11858
11859 for (i = 0; i < CALLER_SAVED_REGS; i++)
11860 mark_reg_not_init(env, regs, caller_saved[i]);
11861
11862 /* Check return type */
11863 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11864
11865 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11866 /* Only exception is bpf_obj_new_impl */
11867 if (meta.btf != btf_vmlinux ||
11868 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11869 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11870 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11871 return -EINVAL;
11872 }
11873 }
11874
11875 if (btf_type_is_scalar(t)) {
11876 mark_reg_unknown(env, regs, BPF_REG_0);
11877 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11878 } else if (btf_type_is_ptr(t)) {
11879 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11880
11881 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11882 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11883 struct btf *ret_btf;
11884 u32 ret_btf_id;
11885
11886 if (unlikely(!bpf_global_ma_set))
11887 return -ENOMEM;
11888
11889 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11890 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11891 return -EINVAL;
11892 }
11893
11894 ret_btf = env->prog->aux->btf;
11895 ret_btf_id = meta.arg_constant.value;
11896
11897 /* This may be NULL due to user not supplying a BTF */
11898 if (!ret_btf) {
11899 verbose(env, "bpf_obj_new requires prog BTF\n");
11900 return -EINVAL;
11901 }
11902
11903 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11904 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11905 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11906 return -EINVAL;
11907 }
11908
11909 mark_reg_known_zero(env, regs, BPF_REG_0);
11910 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11911 regs[BPF_REG_0].btf = ret_btf;
11912 regs[BPF_REG_0].btf_id = ret_btf_id;
11913
11914 insn_aux->obj_new_size = ret_t->size;
11915 insn_aux->kptr_struct_meta =
11916 btf_find_struct_meta(ret_btf, ret_btf_id);
11917 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11918 mark_reg_known_zero(env, regs, BPF_REG_0);
11919 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11920 regs[BPF_REG_0].btf = meta.arg_btf;
11921 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11922
11923 insn_aux->kptr_struct_meta =
11924 btf_find_struct_meta(meta.arg_btf,
11925 meta.arg_btf_id);
11926 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11927 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11928 struct btf_field *field = meta.arg_list_head.field;
11929
11930 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11931 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11932 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11933 struct btf_field *field = meta.arg_rbtree_root.field;
11934
11935 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11936 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11937 mark_reg_known_zero(env, regs, BPF_REG_0);
11938 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11939 regs[BPF_REG_0].btf = desc_btf;
11940 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11941 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11942 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11943 if (!ret_t || !btf_type_is_struct(ret_t)) {
11944 verbose(env,
11945 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11946 return -EINVAL;
11947 }
11948
11949 mark_reg_known_zero(env, regs, BPF_REG_0);
11950 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11951 regs[BPF_REG_0].btf = desc_btf;
11952 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11953 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11954 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11955 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11956
11957 mark_reg_known_zero(env, regs, BPF_REG_0);
11958
11959 if (!meta.arg_constant.found) {
11960 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11961 return -EFAULT;
11962 }
11963
11964 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11965
11966 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11967 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11968
11969 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11970 regs[BPF_REG_0].type |= MEM_RDONLY;
11971 } else {
11972 /* this will set env->seen_direct_write to true */
11973 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11974 verbose(env, "the prog does not allow writes to packet data\n");
11975 return -EINVAL;
11976 }
11977 }
11978
11979 if (!meta.initialized_dynptr.id) {
11980 verbose(env, "verifier internal error: no dynptr id\n");
11981 return -EFAULT;
11982 }
11983 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11984
11985 /* we don't need to set BPF_REG_0's ref obj id
11986 * because packet slices are not refcounted (see
11987 * dynptr_type_refcounted)
11988 */
11989 } else {
11990 verbose(env, "kernel function %s unhandled dynamic return type\n",
11991 meta.func_name);
11992 return -EFAULT;
11993 }
11994 } else if (!__btf_type_is_struct(ptr_type)) {
11995 if (!meta.r0_size) {
11996 __u32 sz;
11997
11998 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11999 meta.r0_size = sz;
12000 meta.r0_rdonly = true;
12001 }
12002 }
12003 if (!meta.r0_size) {
12004 ptr_type_name = btf_name_by_offset(desc_btf,
12005 ptr_type->name_off);
12006 verbose(env,
12007 "kernel function %s returns pointer type %s %s is not supported\n",
12008 func_name,
12009 btf_type_str(ptr_type),
12010 ptr_type_name);
12011 return -EINVAL;
12012 }
12013
12014 mark_reg_known_zero(env, regs, BPF_REG_0);
12015 regs[BPF_REG_0].type = PTR_TO_MEM;
12016 regs[BPF_REG_0].mem_size = meta.r0_size;
12017
12018 if (meta.r0_rdonly)
12019 regs[BPF_REG_0].type |= MEM_RDONLY;
12020
12021 /* Ensures we don't access the memory after a release_reference() */
12022 if (meta.ref_obj_id)
12023 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12024 } else {
12025 mark_reg_known_zero(env, regs, BPF_REG_0);
12026 regs[BPF_REG_0].btf = desc_btf;
12027 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12028 regs[BPF_REG_0].btf_id = ptr_type_id;
12029
12030 if (is_iter_next_kfunc(&meta)) {
12031 struct bpf_reg_state *cur_iter;
12032
12033 cur_iter = get_iter_from_state(env->cur_state, &meta);
12034
12035 if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12036 regs[BPF_REG_0].type |= MEM_RCU;
12037 else
12038 regs[BPF_REG_0].type |= PTR_TRUSTED;
12039 }
12040 }
12041
12042 if (is_kfunc_ret_null(&meta)) {
12043 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12044 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12045 regs[BPF_REG_0].id = ++env->id_gen;
12046 }
12047 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12048 if (is_kfunc_acquire(&meta)) {
12049 int id = acquire_reference_state(env, insn_idx);
12050
12051 if (id < 0)
12052 return id;
12053 if (is_kfunc_ret_null(&meta))
12054 regs[BPF_REG_0].id = id;
12055 regs[BPF_REG_0].ref_obj_id = id;
12056 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12057 ref_set_non_owning(env, ®s[BPF_REG_0]);
12058 }
12059
12060 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
12061 regs[BPF_REG_0].id = ++env->id_gen;
12062 } else if (btf_type_is_void(t)) {
12063 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12064 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12065 insn_aux->kptr_struct_meta =
12066 btf_find_struct_meta(meta.arg_btf,
12067 meta.arg_btf_id);
12068 }
12069 }
12070 }
12071
12072 nargs = btf_type_vlen(meta.func_proto);
12073 args = (const struct btf_param *)(meta.func_proto + 1);
12074 for (i = 0; i < nargs; i++) {
12075 u32 regno = i + 1;
12076
12077 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12078 if (btf_type_is_ptr(t))
12079 mark_btf_func_reg_size(env, regno, sizeof(void *));
12080 else
12081 /* scalar. ensured by btf_check_kfunc_arg_match() */
12082 mark_btf_func_reg_size(env, regno, t->size);
12083 }
12084
12085 if (is_iter_next_kfunc(&meta)) {
12086 err = process_iter_next_call(env, insn_idx, &meta);
12087 if (err)
12088 return err;
12089 }
12090
12091 return 0;
12092 }
12093
signed_add_overflows(s64 a,s64 b)12094 static bool signed_add_overflows(s64 a, s64 b)
12095 {
12096 /* Do the add in u64, where overflow is well-defined */
12097 s64 res = (s64)((u64)a + (u64)b);
12098
12099 if (b < 0)
12100 return res > a;
12101 return res < a;
12102 }
12103
signed_add32_overflows(s32 a,s32 b)12104 static bool signed_add32_overflows(s32 a, s32 b)
12105 {
12106 /* Do the add in u32, where overflow is well-defined */
12107 s32 res = (s32)((u32)a + (u32)b);
12108
12109 if (b < 0)
12110 return res > a;
12111 return res < a;
12112 }
12113
signed_sub_overflows(s64 a,s64 b)12114 static bool signed_sub_overflows(s64 a, s64 b)
12115 {
12116 /* Do the sub in u64, where overflow is well-defined */
12117 s64 res = (s64)((u64)a - (u64)b);
12118
12119 if (b < 0)
12120 return res < a;
12121 return res > a;
12122 }
12123
signed_sub32_overflows(s32 a,s32 b)12124 static bool signed_sub32_overflows(s32 a, s32 b)
12125 {
12126 /* Do the sub in u32, where overflow is well-defined */
12127 s32 res = (s32)((u32)a - (u32)b);
12128
12129 if (b < 0)
12130 return res < a;
12131 return res > a;
12132 }
12133
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12134 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12135 const struct bpf_reg_state *reg,
12136 enum bpf_reg_type type)
12137 {
12138 bool known = tnum_is_const(reg->var_off);
12139 s64 val = reg->var_off.value;
12140 s64 smin = reg->smin_value;
12141
12142 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12143 verbose(env, "math between %s pointer and %lld is not allowed\n",
12144 reg_type_str(env, type), val);
12145 return false;
12146 }
12147
12148 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12149 verbose(env, "%s pointer offset %d is not allowed\n",
12150 reg_type_str(env, type), reg->off);
12151 return false;
12152 }
12153
12154 if (smin == S64_MIN) {
12155 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12156 reg_type_str(env, type));
12157 return false;
12158 }
12159
12160 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12161 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12162 smin, reg_type_str(env, type));
12163 return false;
12164 }
12165
12166 return true;
12167 }
12168
12169 enum {
12170 REASON_BOUNDS = -1,
12171 REASON_TYPE = -2,
12172 REASON_PATHS = -3,
12173 REASON_LIMIT = -4,
12174 REASON_STACK = -5,
12175 };
12176
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12177 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12178 u32 *alu_limit, bool mask_to_left)
12179 {
12180 u32 max = 0, ptr_limit = 0;
12181
12182 switch (ptr_reg->type) {
12183 case PTR_TO_STACK:
12184 /* Offset 0 is out-of-bounds, but acceptable start for the
12185 * left direction, see BPF_REG_FP. Also, unknown scalar
12186 * offset where we would need to deal with min/max bounds is
12187 * currently prohibited for unprivileged.
12188 */
12189 max = MAX_BPF_STACK + mask_to_left;
12190 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12191 break;
12192 case PTR_TO_MAP_VALUE:
12193 max = ptr_reg->map_ptr->value_size;
12194 ptr_limit = (mask_to_left ?
12195 ptr_reg->smin_value :
12196 ptr_reg->umax_value) + ptr_reg->off;
12197 break;
12198 default:
12199 return REASON_TYPE;
12200 }
12201
12202 if (ptr_limit >= max)
12203 return REASON_LIMIT;
12204 *alu_limit = ptr_limit;
12205 return 0;
12206 }
12207
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12208 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12209 const struct bpf_insn *insn)
12210 {
12211 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12212 }
12213
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12214 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12215 u32 alu_state, u32 alu_limit)
12216 {
12217 /* If we arrived here from different branches with different
12218 * state or limits to sanitize, then this won't work.
12219 */
12220 if (aux->alu_state &&
12221 (aux->alu_state != alu_state ||
12222 aux->alu_limit != alu_limit))
12223 return REASON_PATHS;
12224
12225 /* Corresponding fixup done in do_misc_fixups(). */
12226 aux->alu_state = alu_state;
12227 aux->alu_limit = alu_limit;
12228 return 0;
12229 }
12230
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12231 static int sanitize_val_alu(struct bpf_verifier_env *env,
12232 struct bpf_insn *insn)
12233 {
12234 struct bpf_insn_aux_data *aux = cur_aux(env);
12235
12236 if (can_skip_alu_sanitation(env, insn))
12237 return 0;
12238
12239 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12240 }
12241
sanitize_needed(u8 opcode)12242 static bool sanitize_needed(u8 opcode)
12243 {
12244 return opcode == BPF_ADD || opcode == BPF_SUB;
12245 }
12246
12247 struct bpf_sanitize_info {
12248 struct bpf_insn_aux_data aux;
12249 bool mask_to_left;
12250 };
12251
12252 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)12253 sanitize_speculative_path(struct bpf_verifier_env *env,
12254 const struct bpf_insn *insn,
12255 u32 next_idx, u32 curr_idx)
12256 {
12257 struct bpf_verifier_state *branch;
12258 struct bpf_reg_state *regs;
12259
12260 branch = push_stack(env, next_idx, curr_idx, true);
12261 if (branch && insn) {
12262 regs = branch->frame[branch->curframe]->regs;
12263 if (BPF_SRC(insn->code) == BPF_K) {
12264 mark_reg_unknown(env, regs, insn->dst_reg);
12265 } else if (BPF_SRC(insn->code) == BPF_X) {
12266 mark_reg_unknown(env, regs, insn->dst_reg);
12267 mark_reg_unknown(env, regs, insn->src_reg);
12268 }
12269 }
12270 return branch;
12271 }
12272
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)12273 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12274 struct bpf_insn *insn,
12275 const struct bpf_reg_state *ptr_reg,
12276 const struct bpf_reg_state *off_reg,
12277 struct bpf_reg_state *dst_reg,
12278 struct bpf_sanitize_info *info,
12279 const bool commit_window)
12280 {
12281 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12282 struct bpf_verifier_state *vstate = env->cur_state;
12283 bool off_is_imm = tnum_is_const(off_reg->var_off);
12284 bool off_is_neg = off_reg->smin_value < 0;
12285 bool ptr_is_dst_reg = ptr_reg == dst_reg;
12286 u8 opcode = BPF_OP(insn->code);
12287 u32 alu_state, alu_limit;
12288 struct bpf_reg_state tmp;
12289 bool ret;
12290 int err;
12291
12292 if (can_skip_alu_sanitation(env, insn))
12293 return 0;
12294
12295 /* We already marked aux for masking from non-speculative
12296 * paths, thus we got here in the first place. We only care
12297 * to explore bad access from here.
12298 */
12299 if (vstate->speculative)
12300 goto do_sim;
12301
12302 if (!commit_window) {
12303 if (!tnum_is_const(off_reg->var_off) &&
12304 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12305 return REASON_BOUNDS;
12306
12307 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
12308 (opcode == BPF_SUB && !off_is_neg);
12309 }
12310
12311 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12312 if (err < 0)
12313 return err;
12314
12315 if (commit_window) {
12316 /* In commit phase we narrow the masking window based on
12317 * the observed pointer move after the simulated operation.
12318 */
12319 alu_state = info->aux.alu_state;
12320 alu_limit = abs(info->aux.alu_limit - alu_limit);
12321 } else {
12322 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12323 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12324 alu_state |= ptr_is_dst_reg ?
12325 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12326
12327 /* Limit pruning on unknown scalars to enable deep search for
12328 * potential masking differences from other program paths.
12329 */
12330 if (!off_is_imm)
12331 env->explore_alu_limits = true;
12332 }
12333
12334 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12335 if (err < 0)
12336 return err;
12337 do_sim:
12338 /* If we're in commit phase, we're done here given we already
12339 * pushed the truncated dst_reg into the speculative verification
12340 * stack.
12341 *
12342 * Also, when register is a known constant, we rewrite register-based
12343 * operation to immediate-based, and thus do not need masking (and as
12344 * a consequence, do not need to simulate the zero-truncation either).
12345 */
12346 if (commit_window || off_is_imm)
12347 return 0;
12348
12349 /* Simulate and find potential out-of-bounds access under
12350 * speculative execution from truncation as a result of
12351 * masking when off was not within expected range. If off
12352 * sits in dst, then we temporarily need to move ptr there
12353 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12354 * for cases where we use K-based arithmetic in one direction
12355 * and truncated reg-based in the other in order to explore
12356 * bad access.
12357 */
12358 if (!ptr_is_dst_reg) {
12359 tmp = *dst_reg;
12360 copy_register_state(dst_reg, ptr_reg);
12361 }
12362 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12363 env->insn_idx);
12364 if (!ptr_is_dst_reg && ret)
12365 *dst_reg = tmp;
12366 return !ret ? REASON_STACK : 0;
12367 }
12368
sanitize_mark_insn_seen(struct bpf_verifier_env * env)12369 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12370 {
12371 struct bpf_verifier_state *vstate = env->cur_state;
12372
12373 /* If we simulate paths under speculation, we don't update the
12374 * insn as 'seen' such that when we verify unreachable paths in
12375 * the non-speculative domain, sanitize_dead_code() can still
12376 * rewrite/sanitize them.
12377 */
12378 if (!vstate->speculative)
12379 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12380 }
12381
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)12382 static int sanitize_err(struct bpf_verifier_env *env,
12383 const struct bpf_insn *insn, int reason,
12384 const struct bpf_reg_state *off_reg,
12385 const struct bpf_reg_state *dst_reg)
12386 {
12387 static const char *err = "pointer arithmetic with it prohibited for !root";
12388 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12389 u32 dst = insn->dst_reg, src = insn->src_reg;
12390
12391 switch (reason) {
12392 case REASON_BOUNDS:
12393 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12394 off_reg == dst_reg ? dst : src, err);
12395 break;
12396 case REASON_TYPE:
12397 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12398 off_reg == dst_reg ? src : dst, err);
12399 break;
12400 case REASON_PATHS:
12401 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12402 dst, op, err);
12403 break;
12404 case REASON_LIMIT:
12405 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12406 dst, op, err);
12407 break;
12408 case REASON_STACK:
12409 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12410 dst, err);
12411 break;
12412 default:
12413 verbose(env, "verifier internal error: unknown reason (%d)\n",
12414 reason);
12415 break;
12416 }
12417
12418 return -EACCES;
12419 }
12420
12421 /* check that stack access falls within stack limits and that 'reg' doesn't
12422 * have a variable offset.
12423 *
12424 * Variable offset is prohibited for unprivileged mode for simplicity since it
12425 * requires corresponding support in Spectre masking for stack ALU. See also
12426 * retrieve_ptr_limit().
12427 *
12428 *
12429 * 'off' includes 'reg->off'.
12430 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)12431 static int check_stack_access_for_ptr_arithmetic(
12432 struct bpf_verifier_env *env,
12433 int regno,
12434 const struct bpf_reg_state *reg,
12435 int off)
12436 {
12437 if (!tnum_is_const(reg->var_off)) {
12438 char tn_buf[48];
12439
12440 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12441 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12442 regno, tn_buf, off);
12443 return -EACCES;
12444 }
12445
12446 if (off >= 0 || off < -MAX_BPF_STACK) {
12447 verbose(env, "R%d stack pointer arithmetic goes out of range, "
12448 "prohibited for !root; off=%d\n", regno, off);
12449 return -EACCES;
12450 }
12451
12452 return 0;
12453 }
12454
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)12455 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12456 const struct bpf_insn *insn,
12457 const struct bpf_reg_state *dst_reg)
12458 {
12459 u32 dst = insn->dst_reg;
12460
12461 /* For unprivileged we require that resulting offset must be in bounds
12462 * in order to be able to sanitize access later on.
12463 */
12464 if (env->bypass_spec_v1)
12465 return 0;
12466
12467 switch (dst_reg->type) {
12468 case PTR_TO_STACK:
12469 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12470 dst_reg->off + dst_reg->var_off.value))
12471 return -EACCES;
12472 break;
12473 case PTR_TO_MAP_VALUE:
12474 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12475 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12476 "prohibited for !root\n", dst);
12477 return -EACCES;
12478 }
12479 break;
12480 default:
12481 break;
12482 }
12483
12484 return 0;
12485 }
12486
12487 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12488 * Caller should also handle BPF_MOV case separately.
12489 * If we return -EACCES, caller may want to try again treating pointer as a
12490 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12491 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)12492 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12493 struct bpf_insn *insn,
12494 const struct bpf_reg_state *ptr_reg,
12495 const struct bpf_reg_state *off_reg)
12496 {
12497 struct bpf_verifier_state *vstate = env->cur_state;
12498 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12499 struct bpf_reg_state *regs = state->regs, *dst_reg;
12500 bool known = tnum_is_const(off_reg->var_off);
12501 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12502 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12503 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12504 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12505 struct bpf_sanitize_info info = {};
12506 u8 opcode = BPF_OP(insn->code);
12507 u32 dst = insn->dst_reg;
12508 int ret;
12509
12510 dst_reg = ®s[dst];
12511
12512 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12513 smin_val > smax_val || umin_val > umax_val) {
12514 /* Taint dst register if offset had invalid bounds derived from
12515 * e.g. dead branches.
12516 */
12517 __mark_reg_unknown(env, dst_reg);
12518 return 0;
12519 }
12520
12521 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12522 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12523 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12524 __mark_reg_unknown(env, dst_reg);
12525 return 0;
12526 }
12527
12528 verbose(env,
12529 "R%d 32-bit pointer arithmetic prohibited\n",
12530 dst);
12531 return -EACCES;
12532 }
12533
12534 if (ptr_reg->type & PTR_MAYBE_NULL) {
12535 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12536 dst, reg_type_str(env, ptr_reg->type));
12537 return -EACCES;
12538 }
12539
12540 switch (base_type(ptr_reg->type)) {
12541 case PTR_TO_FLOW_KEYS:
12542 if (known)
12543 break;
12544 fallthrough;
12545 case CONST_PTR_TO_MAP:
12546 /* smin_val represents the known value */
12547 if (known && smin_val == 0 && opcode == BPF_ADD)
12548 break;
12549 fallthrough;
12550 case PTR_TO_PACKET_END:
12551 case PTR_TO_SOCKET:
12552 case PTR_TO_SOCK_COMMON:
12553 case PTR_TO_TCP_SOCK:
12554 case PTR_TO_XDP_SOCK:
12555 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12556 dst, reg_type_str(env, ptr_reg->type));
12557 return -EACCES;
12558 default:
12559 break;
12560 }
12561
12562 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12563 * The id may be overwritten later if we create a new variable offset.
12564 */
12565 dst_reg->type = ptr_reg->type;
12566 dst_reg->id = ptr_reg->id;
12567
12568 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12569 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12570 return -EINVAL;
12571
12572 /* pointer types do not carry 32-bit bounds at the moment. */
12573 __mark_reg32_unbounded(dst_reg);
12574
12575 if (sanitize_needed(opcode)) {
12576 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12577 &info, false);
12578 if (ret < 0)
12579 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12580 }
12581
12582 switch (opcode) {
12583 case BPF_ADD:
12584 /* We can take a fixed offset as long as it doesn't overflow
12585 * the s32 'off' field
12586 */
12587 if (known && (ptr_reg->off + smin_val ==
12588 (s64)(s32)(ptr_reg->off + smin_val))) {
12589 /* pointer += K. Accumulate it into fixed offset */
12590 dst_reg->smin_value = smin_ptr;
12591 dst_reg->smax_value = smax_ptr;
12592 dst_reg->umin_value = umin_ptr;
12593 dst_reg->umax_value = umax_ptr;
12594 dst_reg->var_off = ptr_reg->var_off;
12595 dst_reg->off = ptr_reg->off + smin_val;
12596 dst_reg->raw = ptr_reg->raw;
12597 break;
12598 }
12599 /* A new variable offset is created. Note that off_reg->off
12600 * == 0, since it's a scalar.
12601 * dst_reg gets the pointer type and since some positive
12602 * integer value was added to the pointer, give it a new 'id'
12603 * if it's a PTR_TO_PACKET.
12604 * this creates a new 'base' pointer, off_reg (variable) gets
12605 * added into the variable offset, and we copy the fixed offset
12606 * from ptr_reg.
12607 */
12608 if (signed_add_overflows(smin_ptr, smin_val) ||
12609 signed_add_overflows(smax_ptr, smax_val)) {
12610 dst_reg->smin_value = S64_MIN;
12611 dst_reg->smax_value = S64_MAX;
12612 } else {
12613 dst_reg->smin_value = smin_ptr + smin_val;
12614 dst_reg->smax_value = smax_ptr + smax_val;
12615 }
12616 if (umin_ptr + umin_val < umin_ptr ||
12617 umax_ptr + umax_val < umax_ptr) {
12618 dst_reg->umin_value = 0;
12619 dst_reg->umax_value = U64_MAX;
12620 } else {
12621 dst_reg->umin_value = umin_ptr + umin_val;
12622 dst_reg->umax_value = umax_ptr + umax_val;
12623 }
12624 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12625 dst_reg->off = ptr_reg->off;
12626 dst_reg->raw = ptr_reg->raw;
12627 if (reg_is_pkt_pointer(ptr_reg)) {
12628 dst_reg->id = ++env->id_gen;
12629 /* something was added to pkt_ptr, set range to zero */
12630 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12631 }
12632 break;
12633 case BPF_SUB:
12634 if (dst_reg == off_reg) {
12635 /* scalar -= pointer. Creates an unknown scalar */
12636 verbose(env, "R%d tried to subtract pointer from scalar\n",
12637 dst);
12638 return -EACCES;
12639 }
12640 /* We don't allow subtraction from FP, because (according to
12641 * test_verifier.c test "invalid fp arithmetic", JITs might not
12642 * be able to deal with it.
12643 */
12644 if (ptr_reg->type == PTR_TO_STACK) {
12645 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12646 dst);
12647 return -EACCES;
12648 }
12649 if (known && (ptr_reg->off - smin_val ==
12650 (s64)(s32)(ptr_reg->off - smin_val))) {
12651 /* pointer -= K. Subtract it from fixed offset */
12652 dst_reg->smin_value = smin_ptr;
12653 dst_reg->smax_value = smax_ptr;
12654 dst_reg->umin_value = umin_ptr;
12655 dst_reg->umax_value = umax_ptr;
12656 dst_reg->var_off = ptr_reg->var_off;
12657 dst_reg->id = ptr_reg->id;
12658 dst_reg->off = ptr_reg->off - smin_val;
12659 dst_reg->raw = ptr_reg->raw;
12660 break;
12661 }
12662 /* A new variable offset is created. If the subtrahend is known
12663 * nonnegative, then any reg->range we had before is still good.
12664 */
12665 if (signed_sub_overflows(smin_ptr, smax_val) ||
12666 signed_sub_overflows(smax_ptr, smin_val)) {
12667 /* Overflow possible, we know nothing */
12668 dst_reg->smin_value = S64_MIN;
12669 dst_reg->smax_value = S64_MAX;
12670 } else {
12671 dst_reg->smin_value = smin_ptr - smax_val;
12672 dst_reg->smax_value = smax_ptr - smin_val;
12673 }
12674 if (umin_ptr < umax_val) {
12675 /* Overflow possible, we know nothing */
12676 dst_reg->umin_value = 0;
12677 dst_reg->umax_value = U64_MAX;
12678 } else {
12679 /* Cannot overflow (as long as bounds are consistent) */
12680 dst_reg->umin_value = umin_ptr - umax_val;
12681 dst_reg->umax_value = umax_ptr - umin_val;
12682 }
12683 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12684 dst_reg->off = ptr_reg->off;
12685 dst_reg->raw = ptr_reg->raw;
12686 if (reg_is_pkt_pointer(ptr_reg)) {
12687 dst_reg->id = ++env->id_gen;
12688 /* something was added to pkt_ptr, set range to zero */
12689 if (smin_val < 0)
12690 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12691 }
12692 break;
12693 case BPF_AND:
12694 case BPF_OR:
12695 case BPF_XOR:
12696 /* bitwise ops on pointers are troublesome, prohibit. */
12697 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12698 dst, bpf_alu_string[opcode >> 4]);
12699 return -EACCES;
12700 default:
12701 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12702 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12703 dst, bpf_alu_string[opcode >> 4]);
12704 return -EACCES;
12705 }
12706
12707 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12708 return -EINVAL;
12709 reg_bounds_sync(dst_reg);
12710 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12711 return -EACCES;
12712 if (sanitize_needed(opcode)) {
12713 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12714 &info, true);
12715 if (ret < 0)
12716 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12717 }
12718
12719 return 0;
12720 }
12721
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12722 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12723 struct bpf_reg_state *src_reg)
12724 {
12725 s32 smin_val = src_reg->s32_min_value;
12726 s32 smax_val = src_reg->s32_max_value;
12727 u32 umin_val = src_reg->u32_min_value;
12728 u32 umax_val = src_reg->u32_max_value;
12729
12730 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12731 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12732 dst_reg->s32_min_value = S32_MIN;
12733 dst_reg->s32_max_value = S32_MAX;
12734 } else {
12735 dst_reg->s32_min_value += smin_val;
12736 dst_reg->s32_max_value += smax_val;
12737 }
12738 if (dst_reg->u32_min_value + umin_val < umin_val ||
12739 dst_reg->u32_max_value + umax_val < umax_val) {
12740 dst_reg->u32_min_value = 0;
12741 dst_reg->u32_max_value = U32_MAX;
12742 } else {
12743 dst_reg->u32_min_value += umin_val;
12744 dst_reg->u32_max_value += umax_val;
12745 }
12746 }
12747
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12748 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12749 struct bpf_reg_state *src_reg)
12750 {
12751 s64 smin_val = src_reg->smin_value;
12752 s64 smax_val = src_reg->smax_value;
12753 u64 umin_val = src_reg->umin_value;
12754 u64 umax_val = src_reg->umax_value;
12755
12756 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12757 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12758 dst_reg->smin_value = S64_MIN;
12759 dst_reg->smax_value = S64_MAX;
12760 } else {
12761 dst_reg->smin_value += smin_val;
12762 dst_reg->smax_value += smax_val;
12763 }
12764 if (dst_reg->umin_value + umin_val < umin_val ||
12765 dst_reg->umax_value + umax_val < umax_val) {
12766 dst_reg->umin_value = 0;
12767 dst_reg->umax_value = U64_MAX;
12768 } else {
12769 dst_reg->umin_value += umin_val;
12770 dst_reg->umax_value += umax_val;
12771 }
12772 }
12773
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12774 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12775 struct bpf_reg_state *src_reg)
12776 {
12777 s32 smin_val = src_reg->s32_min_value;
12778 s32 smax_val = src_reg->s32_max_value;
12779 u32 umin_val = src_reg->u32_min_value;
12780 u32 umax_val = src_reg->u32_max_value;
12781
12782 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12783 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12784 /* Overflow possible, we know nothing */
12785 dst_reg->s32_min_value = S32_MIN;
12786 dst_reg->s32_max_value = S32_MAX;
12787 } else {
12788 dst_reg->s32_min_value -= smax_val;
12789 dst_reg->s32_max_value -= smin_val;
12790 }
12791 if (dst_reg->u32_min_value < umax_val) {
12792 /* Overflow possible, we know nothing */
12793 dst_reg->u32_min_value = 0;
12794 dst_reg->u32_max_value = U32_MAX;
12795 } else {
12796 /* Cannot overflow (as long as bounds are consistent) */
12797 dst_reg->u32_min_value -= umax_val;
12798 dst_reg->u32_max_value -= umin_val;
12799 }
12800 }
12801
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12802 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12803 struct bpf_reg_state *src_reg)
12804 {
12805 s64 smin_val = src_reg->smin_value;
12806 s64 smax_val = src_reg->smax_value;
12807 u64 umin_val = src_reg->umin_value;
12808 u64 umax_val = src_reg->umax_value;
12809
12810 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12811 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12812 /* Overflow possible, we know nothing */
12813 dst_reg->smin_value = S64_MIN;
12814 dst_reg->smax_value = S64_MAX;
12815 } else {
12816 dst_reg->smin_value -= smax_val;
12817 dst_reg->smax_value -= smin_val;
12818 }
12819 if (dst_reg->umin_value < umax_val) {
12820 /* Overflow possible, we know nothing */
12821 dst_reg->umin_value = 0;
12822 dst_reg->umax_value = U64_MAX;
12823 } else {
12824 /* Cannot overflow (as long as bounds are consistent) */
12825 dst_reg->umin_value -= umax_val;
12826 dst_reg->umax_value -= umin_val;
12827 }
12828 }
12829
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12830 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12831 struct bpf_reg_state *src_reg)
12832 {
12833 s32 smin_val = src_reg->s32_min_value;
12834 u32 umin_val = src_reg->u32_min_value;
12835 u32 umax_val = src_reg->u32_max_value;
12836
12837 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12838 /* Ain't nobody got time to multiply that sign */
12839 __mark_reg32_unbounded(dst_reg);
12840 return;
12841 }
12842 /* Both values are positive, so we can work with unsigned and
12843 * copy the result to signed (unless it exceeds S32_MAX).
12844 */
12845 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12846 /* Potential overflow, we know nothing */
12847 __mark_reg32_unbounded(dst_reg);
12848 return;
12849 }
12850 dst_reg->u32_min_value *= umin_val;
12851 dst_reg->u32_max_value *= umax_val;
12852 if (dst_reg->u32_max_value > S32_MAX) {
12853 /* Overflow possible, we know nothing */
12854 dst_reg->s32_min_value = S32_MIN;
12855 dst_reg->s32_max_value = S32_MAX;
12856 } else {
12857 dst_reg->s32_min_value = dst_reg->u32_min_value;
12858 dst_reg->s32_max_value = dst_reg->u32_max_value;
12859 }
12860 }
12861
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12862 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12863 struct bpf_reg_state *src_reg)
12864 {
12865 s64 smin_val = src_reg->smin_value;
12866 u64 umin_val = src_reg->umin_value;
12867 u64 umax_val = src_reg->umax_value;
12868
12869 if (smin_val < 0 || dst_reg->smin_value < 0) {
12870 /* Ain't nobody got time to multiply that sign */
12871 __mark_reg64_unbounded(dst_reg);
12872 return;
12873 }
12874 /* Both values are positive, so we can work with unsigned and
12875 * copy the result to signed (unless it exceeds S64_MAX).
12876 */
12877 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12878 /* Potential overflow, we know nothing */
12879 __mark_reg64_unbounded(dst_reg);
12880 return;
12881 }
12882 dst_reg->umin_value *= umin_val;
12883 dst_reg->umax_value *= umax_val;
12884 if (dst_reg->umax_value > S64_MAX) {
12885 /* Overflow possible, we know nothing */
12886 dst_reg->smin_value = S64_MIN;
12887 dst_reg->smax_value = S64_MAX;
12888 } else {
12889 dst_reg->smin_value = dst_reg->umin_value;
12890 dst_reg->smax_value = dst_reg->umax_value;
12891 }
12892 }
12893
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12894 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12895 struct bpf_reg_state *src_reg)
12896 {
12897 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12898 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12899 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12900 s32 smin_val = src_reg->s32_min_value;
12901 u32 umax_val = src_reg->u32_max_value;
12902
12903 if (src_known && dst_known) {
12904 __mark_reg32_known(dst_reg, var32_off.value);
12905 return;
12906 }
12907
12908 /* We get our minimum from the var_off, since that's inherently
12909 * bitwise. Our maximum is the minimum of the operands' maxima.
12910 */
12911 dst_reg->u32_min_value = var32_off.value;
12912 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12913 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12914 /* Lose signed bounds when ANDing negative numbers,
12915 * ain't nobody got time for that.
12916 */
12917 dst_reg->s32_min_value = S32_MIN;
12918 dst_reg->s32_max_value = S32_MAX;
12919 } else {
12920 /* ANDing two positives gives a positive, so safe to
12921 * cast result into s64.
12922 */
12923 dst_reg->s32_min_value = dst_reg->u32_min_value;
12924 dst_reg->s32_max_value = dst_reg->u32_max_value;
12925 }
12926 }
12927
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12928 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12929 struct bpf_reg_state *src_reg)
12930 {
12931 bool src_known = tnum_is_const(src_reg->var_off);
12932 bool dst_known = tnum_is_const(dst_reg->var_off);
12933 s64 smin_val = src_reg->smin_value;
12934 u64 umax_val = src_reg->umax_value;
12935
12936 if (src_known && dst_known) {
12937 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12938 return;
12939 }
12940
12941 /* We get our minimum from the var_off, since that's inherently
12942 * bitwise. Our maximum is the minimum of the operands' maxima.
12943 */
12944 dst_reg->umin_value = dst_reg->var_off.value;
12945 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12946 if (dst_reg->smin_value < 0 || smin_val < 0) {
12947 /* Lose signed bounds when ANDing negative numbers,
12948 * ain't nobody got time for that.
12949 */
12950 dst_reg->smin_value = S64_MIN;
12951 dst_reg->smax_value = S64_MAX;
12952 } else {
12953 /* ANDing two positives gives a positive, so safe to
12954 * cast result into s64.
12955 */
12956 dst_reg->smin_value = dst_reg->umin_value;
12957 dst_reg->smax_value = dst_reg->umax_value;
12958 }
12959 /* We may learn something more from the var_off */
12960 __update_reg_bounds(dst_reg);
12961 }
12962
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12963 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12964 struct bpf_reg_state *src_reg)
12965 {
12966 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12967 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12968 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12969 s32 smin_val = src_reg->s32_min_value;
12970 u32 umin_val = src_reg->u32_min_value;
12971
12972 if (src_known && dst_known) {
12973 __mark_reg32_known(dst_reg, var32_off.value);
12974 return;
12975 }
12976
12977 /* We get our maximum from the var_off, and our minimum is the
12978 * maximum of the operands' minima
12979 */
12980 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12981 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12982 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12983 /* Lose signed bounds when ORing negative numbers,
12984 * ain't nobody got time for that.
12985 */
12986 dst_reg->s32_min_value = S32_MIN;
12987 dst_reg->s32_max_value = S32_MAX;
12988 } else {
12989 /* ORing two positives gives a positive, so safe to
12990 * cast result into s64.
12991 */
12992 dst_reg->s32_min_value = dst_reg->u32_min_value;
12993 dst_reg->s32_max_value = dst_reg->u32_max_value;
12994 }
12995 }
12996
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12997 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12998 struct bpf_reg_state *src_reg)
12999 {
13000 bool src_known = tnum_is_const(src_reg->var_off);
13001 bool dst_known = tnum_is_const(dst_reg->var_off);
13002 s64 smin_val = src_reg->smin_value;
13003 u64 umin_val = src_reg->umin_value;
13004
13005 if (src_known && dst_known) {
13006 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13007 return;
13008 }
13009
13010 /* We get our maximum from the var_off, and our minimum is the
13011 * maximum of the operands' minima
13012 */
13013 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13014 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13015 if (dst_reg->smin_value < 0 || smin_val < 0) {
13016 /* Lose signed bounds when ORing negative numbers,
13017 * ain't nobody got time for that.
13018 */
13019 dst_reg->smin_value = S64_MIN;
13020 dst_reg->smax_value = S64_MAX;
13021 } else {
13022 /* ORing two positives gives a positive, so safe to
13023 * cast result into s64.
13024 */
13025 dst_reg->smin_value = dst_reg->umin_value;
13026 dst_reg->smax_value = dst_reg->umax_value;
13027 }
13028 /* We may learn something more from the var_off */
13029 __update_reg_bounds(dst_reg);
13030 }
13031
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13032 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13033 struct bpf_reg_state *src_reg)
13034 {
13035 bool src_known = tnum_subreg_is_const(src_reg->var_off);
13036 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13037 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13038 s32 smin_val = src_reg->s32_min_value;
13039
13040 if (src_known && dst_known) {
13041 __mark_reg32_known(dst_reg, var32_off.value);
13042 return;
13043 }
13044
13045 /* We get both minimum and maximum from the var32_off. */
13046 dst_reg->u32_min_value = var32_off.value;
13047 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13048
13049 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13050 /* XORing two positive sign numbers gives a positive,
13051 * so safe to cast u32 result into s32.
13052 */
13053 dst_reg->s32_min_value = dst_reg->u32_min_value;
13054 dst_reg->s32_max_value = dst_reg->u32_max_value;
13055 } else {
13056 dst_reg->s32_min_value = S32_MIN;
13057 dst_reg->s32_max_value = S32_MAX;
13058 }
13059 }
13060
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13061 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13062 struct bpf_reg_state *src_reg)
13063 {
13064 bool src_known = tnum_is_const(src_reg->var_off);
13065 bool dst_known = tnum_is_const(dst_reg->var_off);
13066 s64 smin_val = src_reg->smin_value;
13067
13068 if (src_known && dst_known) {
13069 /* dst_reg->var_off.value has been updated earlier */
13070 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13071 return;
13072 }
13073
13074 /* We get both minimum and maximum from the var_off. */
13075 dst_reg->umin_value = dst_reg->var_off.value;
13076 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13077
13078 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13079 /* XORing two positive sign numbers gives a positive,
13080 * so safe to cast u64 result into s64.
13081 */
13082 dst_reg->smin_value = dst_reg->umin_value;
13083 dst_reg->smax_value = dst_reg->umax_value;
13084 } else {
13085 dst_reg->smin_value = S64_MIN;
13086 dst_reg->smax_value = S64_MAX;
13087 }
13088
13089 __update_reg_bounds(dst_reg);
13090 }
13091
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13092 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13093 u64 umin_val, u64 umax_val)
13094 {
13095 /* We lose all sign bit information (except what we can pick
13096 * up from var_off)
13097 */
13098 dst_reg->s32_min_value = S32_MIN;
13099 dst_reg->s32_max_value = S32_MAX;
13100 /* If we might shift our top bit out, then we know nothing */
13101 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13102 dst_reg->u32_min_value = 0;
13103 dst_reg->u32_max_value = U32_MAX;
13104 } else {
13105 dst_reg->u32_min_value <<= umin_val;
13106 dst_reg->u32_max_value <<= umax_val;
13107 }
13108 }
13109
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13110 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13111 struct bpf_reg_state *src_reg)
13112 {
13113 u32 umax_val = src_reg->u32_max_value;
13114 u32 umin_val = src_reg->u32_min_value;
13115 /* u32 alu operation will zext upper bits */
13116 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13117
13118 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13119 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13120 /* Not required but being careful mark reg64 bounds as unknown so
13121 * that we are forced to pick them up from tnum and zext later and
13122 * if some path skips this step we are still safe.
13123 */
13124 __mark_reg64_unbounded(dst_reg);
13125 __update_reg32_bounds(dst_reg);
13126 }
13127
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13128 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13129 u64 umin_val, u64 umax_val)
13130 {
13131 /* Special case <<32 because it is a common compiler pattern to sign
13132 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13133 * positive we know this shift will also be positive so we can track
13134 * bounds correctly. Otherwise we lose all sign bit information except
13135 * what we can pick up from var_off. Perhaps we can generalize this
13136 * later to shifts of any length.
13137 */
13138 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13139 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13140 else
13141 dst_reg->smax_value = S64_MAX;
13142
13143 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13144 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13145 else
13146 dst_reg->smin_value = S64_MIN;
13147
13148 /* If we might shift our top bit out, then we know nothing */
13149 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13150 dst_reg->umin_value = 0;
13151 dst_reg->umax_value = U64_MAX;
13152 } else {
13153 dst_reg->umin_value <<= umin_val;
13154 dst_reg->umax_value <<= umax_val;
13155 }
13156 }
13157
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13158 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13159 struct bpf_reg_state *src_reg)
13160 {
13161 u64 umax_val = src_reg->umax_value;
13162 u64 umin_val = src_reg->umin_value;
13163
13164 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13165 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13166 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13167
13168 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13169 /* We may learn something more from the var_off */
13170 __update_reg_bounds(dst_reg);
13171 }
13172
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13173 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13174 struct bpf_reg_state *src_reg)
13175 {
13176 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13177 u32 umax_val = src_reg->u32_max_value;
13178 u32 umin_val = src_reg->u32_min_value;
13179
13180 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13181 * be negative, then either:
13182 * 1) src_reg might be zero, so the sign bit of the result is
13183 * unknown, so we lose our signed bounds
13184 * 2) it's known negative, thus the unsigned bounds capture the
13185 * signed bounds
13186 * 3) the signed bounds cross zero, so they tell us nothing
13187 * about the result
13188 * If the value in dst_reg is known nonnegative, then again the
13189 * unsigned bounds capture the signed bounds.
13190 * Thus, in all cases it suffices to blow away our signed bounds
13191 * and rely on inferring new ones from the unsigned bounds and
13192 * var_off of the result.
13193 */
13194 dst_reg->s32_min_value = S32_MIN;
13195 dst_reg->s32_max_value = S32_MAX;
13196
13197 dst_reg->var_off = tnum_rshift(subreg, umin_val);
13198 dst_reg->u32_min_value >>= umax_val;
13199 dst_reg->u32_max_value >>= umin_val;
13200
13201 __mark_reg64_unbounded(dst_reg);
13202 __update_reg32_bounds(dst_reg);
13203 }
13204
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13205 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13206 struct bpf_reg_state *src_reg)
13207 {
13208 u64 umax_val = src_reg->umax_value;
13209 u64 umin_val = src_reg->umin_value;
13210
13211 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13212 * be negative, then either:
13213 * 1) src_reg might be zero, so the sign bit of the result is
13214 * unknown, so we lose our signed bounds
13215 * 2) it's known negative, thus the unsigned bounds capture the
13216 * signed bounds
13217 * 3) the signed bounds cross zero, so they tell us nothing
13218 * about the result
13219 * If the value in dst_reg is known nonnegative, then again the
13220 * unsigned bounds capture the signed bounds.
13221 * Thus, in all cases it suffices to blow away our signed bounds
13222 * and rely on inferring new ones from the unsigned bounds and
13223 * var_off of the result.
13224 */
13225 dst_reg->smin_value = S64_MIN;
13226 dst_reg->smax_value = S64_MAX;
13227 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13228 dst_reg->umin_value >>= umax_val;
13229 dst_reg->umax_value >>= umin_val;
13230
13231 /* Its not easy to operate on alu32 bounds here because it depends
13232 * on bits being shifted in. Take easy way out and mark unbounded
13233 * so we can recalculate later from tnum.
13234 */
13235 __mark_reg32_unbounded(dst_reg);
13236 __update_reg_bounds(dst_reg);
13237 }
13238
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13239 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13240 struct bpf_reg_state *src_reg)
13241 {
13242 u64 umin_val = src_reg->u32_min_value;
13243
13244 /* Upon reaching here, src_known is true and
13245 * umax_val is equal to umin_val.
13246 */
13247 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13248 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13249
13250 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13251
13252 /* blow away the dst_reg umin_value/umax_value and rely on
13253 * dst_reg var_off to refine the result.
13254 */
13255 dst_reg->u32_min_value = 0;
13256 dst_reg->u32_max_value = U32_MAX;
13257
13258 __mark_reg64_unbounded(dst_reg);
13259 __update_reg32_bounds(dst_reg);
13260 }
13261
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13262 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13263 struct bpf_reg_state *src_reg)
13264 {
13265 u64 umin_val = src_reg->umin_value;
13266
13267 /* Upon reaching here, src_known is true and umax_val is equal
13268 * to umin_val.
13269 */
13270 dst_reg->smin_value >>= umin_val;
13271 dst_reg->smax_value >>= umin_val;
13272
13273 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13274
13275 /* blow away the dst_reg umin_value/umax_value and rely on
13276 * dst_reg var_off to refine the result.
13277 */
13278 dst_reg->umin_value = 0;
13279 dst_reg->umax_value = U64_MAX;
13280
13281 /* Its not easy to operate on alu32 bounds here because it depends
13282 * on bits being shifted in from upper 32-bits. Take easy way out
13283 * and mark unbounded so we can recalculate later from tnum.
13284 */
13285 __mark_reg32_unbounded(dst_reg);
13286 __update_reg_bounds(dst_reg);
13287 }
13288
13289 /* WARNING: This function does calculations on 64-bit values, but the actual
13290 * execution may occur on 32-bit values. Therefore, things like bitshifts
13291 * need extra checks in the 32-bit case.
13292 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)13293 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13294 struct bpf_insn *insn,
13295 struct bpf_reg_state *dst_reg,
13296 struct bpf_reg_state src_reg)
13297 {
13298 struct bpf_reg_state *regs = cur_regs(env);
13299 u8 opcode = BPF_OP(insn->code);
13300 bool src_known;
13301 s64 smin_val, smax_val;
13302 u64 umin_val, umax_val;
13303 s32 s32_min_val, s32_max_val;
13304 u32 u32_min_val, u32_max_val;
13305 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13306 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13307 int ret;
13308
13309 smin_val = src_reg.smin_value;
13310 smax_val = src_reg.smax_value;
13311 umin_val = src_reg.umin_value;
13312 umax_val = src_reg.umax_value;
13313
13314 s32_min_val = src_reg.s32_min_value;
13315 s32_max_val = src_reg.s32_max_value;
13316 u32_min_val = src_reg.u32_min_value;
13317 u32_max_val = src_reg.u32_max_value;
13318
13319 if (alu32) {
13320 src_known = tnum_subreg_is_const(src_reg.var_off);
13321 if ((src_known &&
13322 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13323 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13324 /* Taint dst register if offset had invalid bounds
13325 * derived from e.g. dead branches.
13326 */
13327 __mark_reg_unknown(env, dst_reg);
13328 return 0;
13329 }
13330 } else {
13331 src_known = tnum_is_const(src_reg.var_off);
13332 if ((src_known &&
13333 (smin_val != smax_val || umin_val != umax_val)) ||
13334 smin_val > smax_val || umin_val > umax_val) {
13335 /* Taint dst register if offset had invalid bounds
13336 * derived from e.g. dead branches.
13337 */
13338 __mark_reg_unknown(env, dst_reg);
13339 return 0;
13340 }
13341 }
13342
13343 if (!src_known &&
13344 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13345 __mark_reg_unknown(env, dst_reg);
13346 return 0;
13347 }
13348
13349 if (sanitize_needed(opcode)) {
13350 ret = sanitize_val_alu(env, insn);
13351 if (ret < 0)
13352 return sanitize_err(env, insn, ret, NULL, NULL);
13353 }
13354
13355 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13356 * There are two classes of instructions: The first class we track both
13357 * alu32 and alu64 sign/unsigned bounds independently this provides the
13358 * greatest amount of precision when alu operations are mixed with jmp32
13359 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13360 * and BPF_OR. This is possible because these ops have fairly easy to
13361 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13362 * See alu32 verifier tests for examples. The second class of
13363 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13364 * with regards to tracking sign/unsigned bounds because the bits may
13365 * cross subreg boundaries in the alu64 case. When this happens we mark
13366 * the reg unbounded in the subreg bound space and use the resulting
13367 * tnum to calculate an approximation of the sign/unsigned bounds.
13368 */
13369 switch (opcode) {
13370 case BPF_ADD:
13371 scalar32_min_max_add(dst_reg, &src_reg);
13372 scalar_min_max_add(dst_reg, &src_reg);
13373 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13374 break;
13375 case BPF_SUB:
13376 scalar32_min_max_sub(dst_reg, &src_reg);
13377 scalar_min_max_sub(dst_reg, &src_reg);
13378 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13379 break;
13380 case BPF_MUL:
13381 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13382 scalar32_min_max_mul(dst_reg, &src_reg);
13383 scalar_min_max_mul(dst_reg, &src_reg);
13384 break;
13385 case BPF_AND:
13386 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13387 scalar32_min_max_and(dst_reg, &src_reg);
13388 scalar_min_max_and(dst_reg, &src_reg);
13389 break;
13390 case BPF_OR:
13391 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13392 scalar32_min_max_or(dst_reg, &src_reg);
13393 scalar_min_max_or(dst_reg, &src_reg);
13394 break;
13395 case BPF_XOR:
13396 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13397 scalar32_min_max_xor(dst_reg, &src_reg);
13398 scalar_min_max_xor(dst_reg, &src_reg);
13399 break;
13400 case BPF_LSH:
13401 if (umax_val >= insn_bitness) {
13402 /* Shifts greater than 31 or 63 are undefined.
13403 * This includes shifts by a negative number.
13404 */
13405 mark_reg_unknown(env, regs, insn->dst_reg);
13406 break;
13407 }
13408 if (alu32)
13409 scalar32_min_max_lsh(dst_reg, &src_reg);
13410 else
13411 scalar_min_max_lsh(dst_reg, &src_reg);
13412 break;
13413 case BPF_RSH:
13414 if (umax_val >= insn_bitness) {
13415 /* Shifts greater than 31 or 63 are undefined.
13416 * This includes shifts by a negative number.
13417 */
13418 mark_reg_unknown(env, regs, insn->dst_reg);
13419 break;
13420 }
13421 if (alu32)
13422 scalar32_min_max_rsh(dst_reg, &src_reg);
13423 else
13424 scalar_min_max_rsh(dst_reg, &src_reg);
13425 break;
13426 case BPF_ARSH:
13427 if (umax_val >= insn_bitness) {
13428 /* Shifts greater than 31 or 63 are undefined.
13429 * This includes shifts by a negative number.
13430 */
13431 mark_reg_unknown(env, regs, insn->dst_reg);
13432 break;
13433 }
13434 if (alu32)
13435 scalar32_min_max_arsh(dst_reg, &src_reg);
13436 else
13437 scalar_min_max_arsh(dst_reg, &src_reg);
13438 break;
13439 default:
13440 mark_reg_unknown(env, regs, insn->dst_reg);
13441 break;
13442 }
13443
13444 /* ALU32 ops are zero extended into 64bit register */
13445 if (alu32)
13446 zext_32_to_64(dst_reg);
13447 reg_bounds_sync(dst_reg);
13448 return 0;
13449 }
13450
13451 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13452 * and var_off.
13453 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)13454 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13455 struct bpf_insn *insn)
13456 {
13457 struct bpf_verifier_state *vstate = env->cur_state;
13458 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13459 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13460 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13461 u8 opcode = BPF_OP(insn->code);
13462 int err;
13463
13464 dst_reg = ®s[insn->dst_reg];
13465 src_reg = NULL;
13466 if (dst_reg->type != SCALAR_VALUE)
13467 ptr_reg = dst_reg;
13468 else
13469 /* Make sure ID is cleared otherwise dst_reg min/max could be
13470 * incorrectly propagated into other registers by find_equal_scalars()
13471 */
13472 dst_reg->id = 0;
13473 if (BPF_SRC(insn->code) == BPF_X) {
13474 src_reg = ®s[insn->src_reg];
13475 if (src_reg->type != SCALAR_VALUE) {
13476 if (dst_reg->type != SCALAR_VALUE) {
13477 /* Combining two pointers by any ALU op yields
13478 * an arbitrary scalar. Disallow all math except
13479 * pointer subtraction
13480 */
13481 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13482 mark_reg_unknown(env, regs, insn->dst_reg);
13483 return 0;
13484 }
13485 verbose(env, "R%d pointer %s pointer prohibited\n",
13486 insn->dst_reg,
13487 bpf_alu_string[opcode >> 4]);
13488 return -EACCES;
13489 } else {
13490 /* scalar += pointer
13491 * This is legal, but we have to reverse our
13492 * src/dest handling in computing the range
13493 */
13494 err = mark_chain_precision(env, insn->dst_reg);
13495 if (err)
13496 return err;
13497 return adjust_ptr_min_max_vals(env, insn,
13498 src_reg, dst_reg);
13499 }
13500 } else if (ptr_reg) {
13501 /* pointer += scalar */
13502 err = mark_chain_precision(env, insn->src_reg);
13503 if (err)
13504 return err;
13505 return adjust_ptr_min_max_vals(env, insn,
13506 dst_reg, src_reg);
13507 } else if (dst_reg->precise) {
13508 /* if dst_reg is precise, src_reg should be precise as well */
13509 err = mark_chain_precision(env, insn->src_reg);
13510 if (err)
13511 return err;
13512 }
13513 } else {
13514 /* Pretend the src is a reg with a known value, since we only
13515 * need to be able to read from this state.
13516 */
13517 off_reg.type = SCALAR_VALUE;
13518 __mark_reg_known(&off_reg, insn->imm);
13519 src_reg = &off_reg;
13520 if (ptr_reg) /* pointer += K */
13521 return adjust_ptr_min_max_vals(env, insn,
13522 ptr_reg, src_reg);
13523 }
13524
13525 /* Got here implies adding two SCALAR_VALUEs */
13526 if (WARN_ON_ONCE(ptr_reg)) {
13527 print_verifier_state(env, state, true);
13528 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13529 return -EINVAL;
13530 }
13531 if (WARN_ON(!src_reg)) {
13532 print_verifier_state(env, state, true);
13533 verbose(env, "verifier internal error: no src_reg\n");
13534 return -EINVAL;
13535 }
13536 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13537 }
13538
13539 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)13540 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13541 {
13542 struct bpf_reg_state *regs = cur_regs(env);
13543 u8 opcode = BPF_OP(insn->code);
13544 int err;
13545
13546 if (opcode == BPF_END || opcode == BPF_NEG) {
13547 if (opcode == BPF_NEG) {
13548 if (BPF_SRC(insn->code) != BPF_K ||
13549 insn->src_reg != BPF_REG_0 ||
13550 insn->off != 0 || insn->imm != 0) {
13551 verbose(env, "BPF_NEG uses reserved fields\n");
13552 return -EINVAL;
13553 }
13554 } else {
13555 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13556 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13557 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13558 BPF_SRC(insn->code) != BPF_TO_LE)) {
13559 verbose(env, "BPF_END uses reserved fields\n");
13560 return -EINVAL;
13561 }
13562 }
13563
13564 /* check src operand */
13565 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13566 if (err)
13567 return err;
13568
13569 if (is_pointer_value(env, insn->dst_reg)) {
13570 verbose(env, "R%d pointer arithmetic prohibited\n",
13571 insn->dst_reg);
13572 return -EACCES;
13573 }
13574
13575 /* check dest operand */
13576 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13577 if (err)
13578 return err;
13579
13580 } else if (opcode == BPF_MOV) {
13581
13582 if (BPF_SRC(insn->code) == BPF_X) {
13583 if (insn->imm != 0) {
13584 verbose(env, "BPF_MOV uses reserved fields\n");
13585 return -EINVAL;
13586 }
13587
13588 if (BPF_CLASS(insn->code) == BPF_ALU) {
13589 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13590 verbose(env, "BPF_MOV uses reserved fields\n");
13591 return -EINVAL;
13592 }
13593 } else {
13594 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13595 insn->off != 32) {
13596 verbose(env, "BPF_MOV uses reserved fields\n");
13597 return -EINVAL;
13598 }
13599 }
13600
13601 /* check src operand */
13602 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13603 if (err)
13604 return err;
13605 } else {
13606 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13607 verbose(env, "BPF_MOV uses reserved fields\n");
13608 return -EINVAL;
13609 }
13610 }
13611
13612 /* check dest operand, mark as required later */
13613 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13614 if (err)
13615 return err;
13616
13617 if (BPF_SRC(insn->code) == BPF_X) {
13618 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13619 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13620 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13621 !tnum_is_const(src_reg->var_off);
13622
13623 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13624 if (insn->off == 0) {
13625 /* case: R1 = R2
13626 * copy register state to dest reg
13627 */
13628 if (need_id)
13629 /* Assign src and dst registers the same ID
13630 * that will be used by find_equal_scalars()
13631 * to propagate min/max range.
13632 */
13633 src_reg->id = ++env->id_gen;
13634 copy_register_state(dst_reg, src_reg);
13635 dst_reg->live |= REG_LIVE_WRITTEN;
13636 dst_reg->subreg_def = DEF_NOT_SUBREG;
13637 } else {
13638 /* case: R1 = (s8, s16 s32)R2 */
13639 if (is_pointer_value(env, insn->src_reg)) {
13640 verbose(env,
13641 "R%d sign-extension part of pointer\n",
13642 insn->src_reg);
13643 return -EACCES;
13644 } else if (src_reg->type == SCALAR_VALUE) {
13645 bool no_sext;
13646
13647 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13648 if (no_sext && need_id)
13649 src_reg->id = ++env->id_gen;
13650 copy_register_state(dst_reg, src_reg);
13651 if (!no_sext)
13652 dst_reg->id = 0;
13653 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13654 dst_reg->live |= REG_LIVE_WRITTEN;
13655 dst_reg->subreg_def = DEF_NOT_SUBREG;
13656 } else {
13657 mark_reg_unknown(env, regs, insn->dst_reg);
13658 }
13659 }
13660 } else {
13661 /* R1 = (u32) R2 */
13662 if (is_pointer_value(env, insn->src_reg)) {
13663 verbose(env,
13664 "R%d partial copy of pointer\n",
13665 insn->src_reg);
13666 return -EACCES;
13667 } else if (src_reg->type == SCALAR_VALUE) {
13668 if (insn->off == 0) {
13669 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13670
13671 if (is_src_reg_u32 && need_id)
13672 src_reg->id = ++env->id_gen;
13673 copy_register_state(dst_reg, src_reg);
13674 /* Make sure ID is cleared if src_reg is not in u32
13675 * range otherwise dst_reg min/max could be incorrectly
13676 * propagated into src_reg by find_equal_scalars()
13677 */
13678 if (!is_src_reg_u32)
13679 dst_reg->id = 0;
13680 dst_reg->live |= REG_LIVE_WRITTEN;
13681 dst_reg->subreg_def = env->insn_idx + 1;
13682 } else {
13683 /* case: W1 = (s8, s16)W2 */
13684 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13685
13686 if (no_sext && need_id)
13687 src_reg->id = ++env->id_gen;
13688 copy_register_state(dst_reg, src_reg);
13689 if (!no_sext)
13690 dst_reg->id = 0;
13691 dst_reg->live |= REG_LIVE_WRITTEN;
13692 dst_reg->subreg_def = env->insn_idx + 1;
13693 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13694 }
13695 } else {
13696 mark_reg_unknown(env, regs,
13697 insn->dst_reg);
13698 }
13699 zext_32_to_64(dst_reg);
13700 reg_bounds_sync(dst_reg);
13701 }
13702 } else {
13703 /* case: R = imm
13704 * remember the value we stored into this reg
13705 */
13706 /* clear any state __mark_reg_known doesn't set */
13707 mark_reg_unknown(env, regs, insn->dst_reg);
13708 regs[insn->dst_reg].type = SCALAR_VALUE;
13709 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13710 __mark_reg_known(regs + insn->dst_reg,
13711 insn->imm);
13712 } else {
13713 __mark_reg_known(regs + insn->dst_reg,
13714 (u32)insn->imm);
13715 }
13716 }
13717
13718 } else if (opcode > BPF_END) {
13719 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13720 return -EINVAL;
13721
13722 } else { /* all other ALU ops: and, sub, xor, add, ... */
13723
13724 if (BPF_SRC(insn->code) == BPF_X) {
13725 if (insn->imm != 0 || insn->off > 1 ||
13726 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13727 verbose(env, "BPF_ALU uses reserved fields\n");
13728 return -EINVAL;
13729 }
13730 /* check src1 operand */
13731 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13732 if (err)
13733 return err;
13734 } else {
13735 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13736 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13737 verbose(env, "BPF_ALU uses reserved fields\n");
13738 return -EINVAL;
13739 }
13740 }
13741
13742 /* check src2 operand */
13743 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13744 if (err)
13745 return err;
13746
13747 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13748 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13749 verbose(env, "div by zero\n");
13750 return -EINVAL;
13751 }
13752
13753 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13754 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13755 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13756
13757 if (insn->imm < 0 || insn->imm >= size) {
13758 verbose(env, "invalid shift %d\n", insn->imm);
13759 return -EINVAL;
13760 }
13761 }
13762
13763 /* check dest operand */
13764 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13765 if (err)
13766 return err;
13767
13768 return adjust_reg_min_max_vals(env, insn);
13769 }
13770
13771 return 0;
13772 }
13773
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)13774 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13775 struct bpf_reg_state *dst_reg,
13776 enum bpf_reg_type type,
13777 bool range_right_open)
13778 {
13779 struct bpf_func_state *state;
13780 struct bpf_reg_state *reg;
13781 int new_range;
13782
13783 if (dst_reg->off < 0 ||
13784 (dst_reg->off == 0 && range_right_open))
13785 /* This doesn't give us any range */
13786 return;
13787
13788 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13789 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13790 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13791 * than pkt_end, but that's because it's also less than pkt.
13792 */
13793 return;
13794
13795 new_range = dst_reg->off;
13796 if (range_right_open)
13797 new_range++;
13798
13799 /* Examples for register markings:
13800 *
13801 * pkt_data in dst register:
13802 *
13803 * r2 = r3;
13804 * r2 += 8;
13805 * if (r2 > pkt_end) goto <handle exception>
13806 * <access okay>
13807 *
13808 * r2 = r3;
13809 * r2 += 8;
13810 * if (r2 < pkt_end) goto <access okay>
13811 * <handle exception>
13812 *
13813 * Where:
13814 * r2 == dst_reg, pkt_end == src_reg
13815 * r2=pkt(id=n,off=8,r=0)
13816 * r3=pkt(id=n,off=0,r=0)
13817 *
13818 * pkt_data in src register:
13819 *
13820 * r2 = r3;
13821 * r2 += 8;
13822 * if (pkt_end >= r2) goto <access okay>
13823 * <handle exception>
13824 *
13825 * r2 = r3;
13826 * r2 += 8;
13827 * if (pkt_end <= r2) goto <handle exception>
13828 * <access okay>
13829 *
13830 * Where:
13831 * pkt_end == dst_reg, r2 == src_reg
13832 * r2=pkt(id=n,off=8,r=0)
13833 * r3=pkt(id=n,off=0,r=0)
13834 *
13835 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13836 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13837 * and [r3, r3 + 8-1) respectively is safe to access depending on
13838 * the check.
13839 */
13840
13841 /* If our ids match, then we must have the same max_value. And we
13842 * don't care about the other reg's fixed offset, since if it's too big
13843 * the range won't allow anything.
13844 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13845 */
13846 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13847 if (reg->type == type && reg->id == dst_reg->id)
13848 /* keep the maximum range already checked */
13849 reg->range = max(reg->range, new_range);
13850 }));
13851 }
13852
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)13853 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13854 {
13855 struct tnum subreg = tnum_subreg(reg->var_off);
13856 s32 sval = (s32)val;
13857
13858 switch (opcode) {
13859 case BPF_JEQ:
13860 if (tnum_is_const(subreg))
13861 return !!tnum_equals_const(subreg, val);
13862 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13863 return 0;
13864 break;
13865 case BPF_JNE:
13866 if (tnum_is_const(subreg))
13867 return !tnum_equals_const(subreg, val);
13868 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13869 return 1;
13870 break;
13871 case BPF_JSET:
13872 if ((~subreg.mask & subreg.value) & val)
13873 return 1;
13874 if (!((subreg.mask | subreg.value) & val))
13875 return 0;
13876 break;
13877 case BPF_JGT:
13878 if (reg->u32_min_value > val)
13879 return 1;
13880 else if (reg->u32_max_value <= val)
13881 return 0;
13882 break;
13883 case BPF_JSGT:
13884 if (reg->s32_min_value > sval)
13885 return 1;
13886 else if (reg->s32_max_value <= sval)
13887 return 0;
13888 break;
13889 case BPF_JLT:
13890 if (reg->u32_max_value < val)
13891 return 1;
13892 else if (reg->u32_min_value >= val)
13893 return 0;
13894 break;
13895 case BPF_JSLT:
13896 if (reg->s32_max_value < sval)
13897 return 1;
13898 else if (reg->s32_min_value >= sval)
13899 return 0;
13900 break;
13901 case BPF_JGE:
13902 if (reg->u32_min_value >= val)
13903 return 1;
13904 else if (reg->u32_max_value < val)
13905 return 0;
13906 break;
13907 case BPF_JSGE:
13908 if (reg->s32_min_value >= sval)
13909 return 1;
13910 else if (reg->s32_max_value < sval)
13911 return 0;
13912 break;
13913 case BPF_JLE:
13914 if (reg->u32_max_value <= val)
13915 return 1;
13916 else if (reg->u32_min_value > val)
13917 return 0;
13918 break;
13919 case BPF_JSLE:
13920 if (reg->s32_max_value <= sval)
13921 return 1;
13922 else if (reg->s32_min_value > sval)
13923 return 0;
13924 break;
13925 }
13926
13927 return -1;
13928 }
13929
13930
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)13931 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13932 {
13933 s64 sval = (s64)val;
13934
13935 switch (opcode) {
13936 case BPF_JEQ:
13937 if (tnum_is_const(reg->var_off))
13938 return !!tnum_equals_const(reg->var_off, val);
13939 else if (val < reg->umin_value || val > reg->umax_value)
13940 return 0;
13941 break;
13942 case BPF_JNE:
13943 if (tnum_is_const(reg->var_off))
13944 return !tnum_equals_const(reg->var_off, val);
13945 else if (val < reg->umin_value || val > reg->umax_value)
13946 return 1;
13947 break;
13948 case BPF_JSET:
13949 if ((~reg->var_off.mask & reg->var_off.value) & val)
13950 return 1;
13951 if (!((reg->var_off.mask | reg->var_off.value) & val))
13952 return 0;
13953 break;
13954 case BPF_JGT:
13955 if (reg->umin_value > val)
13956 return 1;
13957 else if (reg->umax_value <= val)
13958 return 0;
13959 break;
13960 case BPF_JSGT:
13961 if (reg->smin_value > sval)
13962 return 1;
13963 else if (reg->smax_value <= sval)
13964 return 0;
13965 break;
13966 case BPF_JLT:
13967 if (reg->umax_value < val)
13968 return 1;
13969 else if (reg->umin_value >= val)
13970 return 0;
13971 break;
13972 case BPF_JSLT:
13973 if (reg->smax_value < sval)
13974 return 1;
13975 else if (reg->smin_value >= sval)
13976 return 0;
13977 break;
13978 case BPF_JGE:
13979 if (reg->umin_value >= val)
13980 return 1;
13981 else if (reg->umax_value < val)
13982 return 0;
13983 break;
13984 case BPF_JSGE:
13985 if (reg->smin_value >= sval)
13986 return 1;
13987 else if (reg->smax_value < sval)
13988 return 0;
13989 break;
13990 case BPF_JLE:
13991 if (reg->umax_value <= val)
13992 return 1;
13993 else if (reg->umin_value > val)
13994 return 0;
13995 break;
13996 case BPF_JSLE:
13997 if (reg->smax_value <= sval)
13998 return 1;
13999 else if (reg->smin_value > sval)
14000 return 0;
14001 break;
14002 }
14003
14004 return -1;
14005 }
14006
14007 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14008 * and return:
14009 * 1 - branch will be taken and "goto target" will be executed
14010 * 0 - branch will not be taken and fall-through to next insn
14011 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14012 * range [0,10]
14013 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)14014 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14015 bool is_jmp32)
14016 {
14017 if (__is_pointer_value(false, reg)) {
14018 if (!reg_not_null(reg))
14019 return -1;
14020
14021 /* If pointer is valid tests against zero will fail so we can
14022 * use this to direct branch taken.
14023 */
14024 if (val != 0)
14025 return -1;
14026
14027 switch (opcode) {
14028 case BPF_JEQ:
14029 return 0;
14030 case BPF_JNE:
14031 return 1;
14032 default:
14033 return -1;
14034 }
14035 }
14036
14037 if (is_jmp32)
14038 return is_branch32_taken(reg, val, opcode);
14039 return is_branch64_taken(reg, val, opcode);
14040 }
14041
flip_opcode(u32 opcode)14042 static int flip_opcode(u32 opcode)
14043 {
14044 /* How can we transform "a <op> b" into "b <op> a"? */
14045 static const u8 opcode_flip[16] = {
14046 /* these stay the same */
14047 [BPF_JEQ >> 4] = BPF_JEQ,
14048 [BPF_JNE >> 4] = BPF_JNE,
14049 [BPF_JSET >> 4] = BPF_JSET,
14050 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14051 [BPF_JGE >> 4] = BPF_JLE,
14052 [BPF_JGT >> 4] = BPF_JLT,
14053 [BPF_JLE >> 4] = BPF_JGE,
14054 [BPF_JLT >> 4] = BPF_JGT,
14055 [BPF_JSGE >> 4] = BPF_JSLE,
14056 [BPF_JSGT >> 4] = BPF_JSLT,
14057 [BPF_JSLE >> 4] = BPF_JSGE,
14058 [BPF_JSLT >> 4] = BPF_JSGT
14059 };
14060 return opcode_flip[opcode >> 4];
14061 }
14062
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14063 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14064 struct bpf_reg_state *src_reg,
14065 u8 opcode)
14066 {
14067 struct bpf_reg_state *pkt;
14068
14069 if (src_reg->type == PTR_TO_PACKET_END) {
14070 pkt = dst_reg;
14071 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14072 pkt = src_reg;
14073 opcode = flip_opcode(opcode);
14074 } else {
14075 return -1;
14076 }
14077
14078 if (pkt->range >= 0)
14079 return -1;
14080
14081 switch (opcode) {
14082 case BPF_JLE:
14083 /* pkt <= pkt_end */
14084 fallthrough;
14085 case BPF_JGT:
14086 /* pkt > pkt_end */
14087 if (pkt->range == BEYOND_PKT_END)
14088 /* pkt has at last one extra byte beyond pkt_end */
14089 return opcode == BPF_JGT;
14090 break;
14091 case BPF_JLT:
14092 /* pkt < pkt_end */
14093 fallthrough;
14094 case BPF_JGE:
14095 /* pkt >= pkt_end */
14096 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14097 return opcode == BPF_JGE;
14098 break;
14099 }
14100 return -1;
14101 }
14102
14103 /* Adjusts the register min/max values in the case that the dst_reg is the
14104 * variable register that we are working on, and src_reg is a constant or we're
14105 * simply doing a BPF_K check.
14106 * In JEQ/JNE cases we also adjust the var_off values.
14107 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14108 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14109 struct bpf_reg_state *false_reg,
14110 u64 val, u32 val32,
14111 u8 opcode, bool is_jmp32)
14112 {
14113 struct tnum false_32off = tnum_subreg(false_reg->var_off);
14114 struct tnum false_64off = false_reg->var_off;
14115 struct tnum true_32off = tnum_subreg(true_reg->var_off);
14116 struct tnum true_64off = true_reg->var_off;
14117 s64 sval = (s64)val;
14118 s32 sval32 = (s32)val32;
14119
14120 /* If the dst_reg is a pointer, we can't learn anything about its
14121 * variable offset from the compare (unless src_reg were a pointer into
14122 * the same object, but we don't bother with that.
14123 * Since false_reg and true_reg have the same type by construction, we
14124 * only need to check one of them for pointerness.
14125 */
14126 if (__is_pointer_value(false, false_reg))
14127 return;
14128
14129 switch (opcode) {
14130 /* JEQ/JNE comparison doesn't change the register equivalence.
14131 *
14132 * r1 = r2;
14133 * if (r1 == 42) goto label;
14134 * ...
14135 * label: // here both r1 and r2 are known to be 42.
14136 *
14137 * Hence when marking register as known preserve it's ID.
14138 */
14139 case BPF_JEQ:
14140 if (is_jmp32) {
14141 __mark_reg32_known(true_reg, val32);
14142 true_32off = tnum_subreg(true_reg->var_off);
14143 } else {
14144 ___mark_reg_known(true_reg, val);
14145 true_64off = true_reg->var_off;
14146 }
14147 break;
14148 case BPF_JNE:
14149 if (is_jmp32) {
14150 __mark_reg32_known(false_reg, val32);
14151 false_32off = tnum_subreg(false_reg->var_off);
14152 } else {
14153 ___mark_reg_known(false_reg, val);
14154 false_64off = false_reg->var_off;
14155 }
14156 break;
14157 case BPF_JSET:
14158 if (is_jmp32) {
14159 false_32off = tnum_and(false_32off, tnum_const(~val32));
14160 if (is_power_of_2(val32))
14161 true_32off = tnum_or(true_32off,
14162 tnum_const(val32));
14163 } else {
14164 false_64off = tnum_and(false_64off, tnum_const(~val));
14165 if (is_power_of_2(val))
14166 true_64off = tnum_or(true_64off,
14167 tnum_const(val));
14168 }
14169 break;
14170 case BPF_JGE:
14171 case BPF_JGT:
14172 {
14173 if (is_jmp32) {
14174 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
14175 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14176
14177 false_reg->u32_max_value = min(false_reg->u32_max_value,
14178 false_umax);
14179 true_reg->u32_min_value = max(true_reg->u32_min_value,
14180 true_umin);
14181 } else {
14182 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
14183 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14184
14185 false_reg->umax_value = min(false_reg->umax_value, false_umax);
14186 true_reg->umin_value = max(true_reg->umin_value, true_umin);
14187 }
14188 break;
14189 }
14190 case BPF_JSGE:
14191 case BPF_JSGT:
14192 {
14193 if (is_jmp32) {
14194 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
14195 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14196
14197 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14198 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14199 } else {
14200 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
14201 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14202
14203 false_reg->smax_value = min(false_reg->smax_value, false_smax);
14204 true_reg->smin_value = max(true_reg->smin_value, true_smin);
14205 }
14206 break;
14207 }
14208 case BPF_JLE:
14209 case BPF_JLT:
14210 {
14211 if (is_jmp32) {
14212 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
14213 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14214
14215 false_reg->u32_min_value = max(false_reg->u32_min_value,
14216 false_umin);
14217 true_reg->u32_max_value = min(true_reg->u32_max_value,
14218 true_umax);
14219 } else {
14220 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
14221 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14222
14223 false_reg->umin_value = max(false_reg->umin_value, false_umin);
14224 true_reg->umax_value = min(true_reg->umax_value, true_umax);
14225 }
14226 break;
14227 }
14228 case BPF_JSLE:
14229 case BPF_JSLT:
14230 {
14231 if (is_jmp32) {
14232 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
14233 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14234
14235 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14236 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14237 } else {
14238 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
14239 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14240
14241 false_reg->smin_value = max(false_reg->smin_value, false_smin);
14242 true_reg->smax_value = min(true_reg->smax_value, true_smax);
14243 }
14244 break;
14245 }
14246 default:
14247 return;
14248 }
14249
14250 if (is_jmp32) {
14251 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14252 tnum_subreg(false_32off));
14253 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14254 tnum_subreg(true_32off));
14255 __reg_combine_32_into_64(false_reg);
14256 __reg_combine_32_into_64(true_reg);
14257 } else {
14258 false_reg->var_off = false_64off;
14259 true_reg->var_off = true_64off;
14260 __reg_combine_64_into_32(false_reg);
14261 __reg_combine_64_into_32(true_reg);
14262 }
14263 }
14264
14265 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14266 * the variable reg.
14267 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14268 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14269 struct bpf_reg_state *false_reg,
14270 u64 val, u32 val32,
14271 u8 opcode, bool is_jmp32)
14272 {
14273 opcode = flip_opcode(opcode);
14274 /* This uses zero as "not present in table"; luckily the zero opcode,
14275 * BPF_JA, can't get here.
14276 */
14277 if (opcode)
14278 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14279 }
14280
14281 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)14282 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14283 struct bpf_reg_state *dst_reg)
14284 {
14285 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14286 dst_reg->umin_value);
14287 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14288 dst_reg->umax_value);
14289 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14290 dst_reg->smin_value);
14291 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14292 dst_reg->smax_value);
14293 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14294 dst_reg->var_off);
14295 reg_bounds_sync(src_reg);
14296 reg_bounds_sync(dst_reg);
14297 }
14298
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)14299 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14300 struct bpf_reg_state *true_dst,
14301 struct bpf_reg_state *false_src,
14302 struct bpf_reg_state *false_dst,
14303 u8 opcode)
14304 {
14305 switch (opcode) {
14306 case BPF_JEQ:
14307 __reg_combine_min_max(true_src, true_dst);
14308 break;
14309 case BPF_JNE:
14310 __reg_combine_min_max(false_src, false_dst);
14311 break;
14312 }
14313 }
14314
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)14315 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14316 struct bpf_reg_state *reg, u32 id,
14317 bool is_null)
14318 {
14319 if (type_may_be_null(reg->type) && reg->id == id &&
14320 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14321 /* Old offset (both fixed and variable parts) should have been
14322 * known-zero, because we don't allow pointer arithmetic on
14323 * pointers that might be NULL. If we see this happening, don't
14324 * convert the register.
14325 *
14326 * But in some cases, some helpers that return local kptrs
14327 * advance offset for the returned pointer. In those cases, it
14328 * is fine to expect to see reg->off.
14329 */
14330 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14331 return;
14332 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14333 WARN_ON_ONCE(reg->off))
14334 return;
14335
14336 if (is_null) {
14337 reg->type = SCALAR_VALUE;
14338 /* We don't need id and ref_obj_id from this point
14339 * onwards anymore, thus we should better reset it,
14340 * so that state pruning has chances to take effect.
14341 */
14342 reg->id = 0;
14343 reg->ref_obj_id = 0;
14344
14345 return;
14346 }
14347
14348 mark_ptr_not_null_reg(reg);
14349
14350 if (!reg_may_point_to_spin_lock(reg)) {
14351 /* For not-NULL ptr, reg->ref_obj_id will be reset
14352 * in release_reference().
14353 *
14354 * reg->id is still used by spin_lock ptr. Other
14355 * than spin_lock ptr type, reg->id can be reset.
14356 */
14357 reg->id = 0;
14358 }
14359 }
14360 }
14361
14362 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14363 * be folded together at some point.
14364 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)14365 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14366 bool is_null)
14367 {
14368 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14369 struct bpf_reg_state *regs = state->regs, *reg;
14370 u32 ref_obj_id = regs[regno].ref_obj_id;
14371 u32 id = regs[regno].id;
14372
14373 if (ref_obj_id && ref_obj_id == id && is_null)
14374 /* regs[regno] is in the " == NULL" branch.
14375 * No one could have freed the reference state before
14376 * doing the NULL check.
14377 */
14378 WARN_ON_ONCE(release_reference_state(state, id));
14379
14380 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14381 mark_ptr_or_null_reg(state, reg, id, is_null);
14382 }));
14383 }
14384
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)14385 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14386 struct bpf_reg_state *dst_reg,
14387 struct bpf_reg_state *src_reg,
14388 struct bpf_verifier_state *this_branch,
14389 struct bpf_verifier_state *other_branch)
14390 {
14391 if (BPF_SRC(insn->code) != BPF_X)
14392 return false;
14393
14394 /* Pointers are always 64-bit. */
14395 if (BPF_CLASS(insn->code) == BPF_JMP32)
14396 return false;
14397
14398 switch (BPF_OP(insn->code)) {
14399 case BPF_JGT:
14400 if ((dst_reg->type == PTR_TO_PACKET &&
14401 src_reg->type == PTR_TO_PACKET_END) ||
14402 (dst_reg->type == PTR_TO_PACKET_META &&
14403 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14404 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14405 find_good_pkt_pointers(this_branch, dst_reg,
14406 dst_reg->type, false);
14407 mark_pkt_end(other_branch, insn->dst_reg, true);
14408 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14409 src_reg->type == PTR_TO_PACKET) ||
14410 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14411 src_reg->type == PTR_TO_PACKET_META)) {
14412 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
14413 find_good_pkt_pointers(other_branch, src_reg,
14414 src_reg->type, true);
14415 mark_pkt_end(this_branch, insn->src_reg, false);
14416 } else {
14417 return false;
14418 }
14419 break;
14420 case BPF_JLT:
14421 if ((dst_reg->type == PTR_TO_PACKET &&
14422 src_reg->type == PTR_TO_PACKET_END) ||
14423 (dst_reg->type == PTR_TO_PACKET_META &&
14424 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14425 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14426 find_good_pkt_pointers(other_branch, dst_reg,
14427 dst_reg->type, true);
14428 mark_pkt_end(this_branch, insn->dst_reg, false);
14429 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14430 src_reg->type == PTR_TO_PACKET) ||
14431 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14432 src_reg->type == PTR_TO_PACKET_META)) {
14433 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
14434 find_good_pkt_pointers(this_branch, src_reg,
14435 src_reg->type, false);
14436 mark_pkt_end(other_branch, insn->src_reg, true);
14437 } else {
14438 return false;
14439 }
14440 break;
14441 case BPF_JGE:
14442 if ((dst_reg->type == PTR_TO_PACKET &&
14443 src_reg->type == PTR_TO_PACKET_END) ||
14444 (dst_reg->type == PTR_TO_PACKET_META &&
14445 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14446 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14447 find_good_pkt_pointers(this_branch, dst_reg,
14448 dst_reg->type, true);
14449 mark_pkt_end(other_branch, insn->dst_reg, false);
14450 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14451 src_reg->type == PTR_TO_PACKET) ||
14452 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14453 src_reg->type == PTR_TO_PACKET_META)) {
14454 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14455 find_good_pkt_pointers(other_branch, src_reg,
14456 src_reg->type, false);
14457 mark_pkt_end(this_branch, insn->src_reg, true);
14458 } else {
14459 return false;
14460 }
14461 break;
14462 case BPF_JLE:
14463 if ((dst_reg->type == PTR_TO_PACKET &&
14464 src_reg->type == PTR_TO_PACKET_END) ||
14465 (dst_reg->type == PTR_TO_PACKET_META &&
14466 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14467 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14468 find_good_pkt_pointers(other_branch, dst_reg,
14469 dst_reg->type, false);
14470 mark_pkt_end(this_branch, insn->dst_reg, true);
14471 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14472 src_reg->type == PTR_TO_PACKET) ||
14473 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14474 src_reg->type == PTR_TO_PACKET_META)) {
14475 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14476 find_good_pkt_pointers(this_branch, src_reg,
14477 src_reg->type, true);
14478 mark_pkt_end(other_branch, insn->src_reg, false);
14479 } else {
14480 return false;
14481 }
14482 break;
14483 default:
14484 return false;
14485 }
14486
14487 return true;
14488 }
14489
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)14490 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14491 struct bpf_reg_state *known_reg)
14492 {
14493 struct bpf_func_state *state;
14494 struct bpf_reg_state *reg;
14495
14496 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14497 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) {
14498 s32 saved_subreg_def = reg->subreg_def;
14499 copy_register_state(reg, known_reg);
14500 reg->subreg_def = saved_subreg_def;
14501 }
14502 }));
14503 }
14504
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)14505 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14506 struct bpf_insn *insn, int *insn_idx)
14507 {
14508 struct bpf_verifier_state *this_branch = env->cur_state;
14509 struct bpf_verifier_state *other_branch;
14510 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14511 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14512 struct bpf_reg_state *eq_branch_regs;
14513 u8 opcode = BPF_OP(insn->code);
14514 bool is_jmp32;
14515 int pred = -1;
14516 int err;
14517
14518 /* Only conditional jumps are expected to reach here. */
14519 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14520 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14521 return -EINVAL;
14522 }
14523
14524 /* check src2 operand */
14525 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14526 if (err)
14527 return err;
14528
14529 dst_reg = ®s[insn->dst_reg];
14530 if (BPF_SRC(insn->code) == BPF_X) {
14531 if (insn->imm != 0) {
14532 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14533 return -EINVAL;
14534 }
14535
14536 /* check src1 operand */
14537 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14538 if (err)
14539 return err;
14540
14541 src_reg = ®s[insn->src_reg];
14542 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14543 is_pointer_value(env, insn->src_reg)) {
14544 verbose(env, "R%d pointer comparison prohibited\n",
14545 insn->src_reg);
14546 return -EACCES;
14547 }
14548 } else {
14549 if (insn->src_reg != BPF_REG_0) {
14550 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14551 return -EINVAL;
14552 }
14553 }
14554
14555 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14556
14557 if (BPF_SRC(insn->code) == BPF_K) {
14558 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14559 } else if (src_reg->type == SCALAR_VALUE &&
14560 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14561 pred = is_branch_taken(dst_reg,
14562 tnum_subreg(src_reg->var_off).value,
14563 opcode,
14564 is_jmp32);
14565 } else if (src_reg->type == SCALAR_VALUE &&
14566 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14567 pred = is_branch_taken(dst_reg,
14568 src_reg->var_off.value,
14569 opcode,
14570 is_jmp32);
14571 } else if (dst_reg->type == SCALAR_VALUE &&
14572 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14573 pred = is_branch_taken(src_reg,
14574 tnum_subreg(dst_reg->var_off).value,
14575 flip_opcode(opcode),
14576 is_jmp32);
14577 } else if (dst_reg->type == SCALAR_VALUE &&
14578 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14579 pred = is_branch_taken(src_reg,
14580 dst_reg->var_off.value,
14581 flip_opcode(opcode),
14582 is_jmp32);
14583 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14584 reg_is_pkt_pointer_any(src_reg) &&
14585 !is_jmp32) {
14586 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14587 }
14588
14589 if (pred >= 0) {
14590 /* If we get here with a dst_reg pointer type it is because
14591 * above is_branch_taken() special cased the 0 comparison.
14592 */
14593 if (!__is_pointer_value(false, dst_reg))
14594 err = mark_chain_precision(env, insn->dst_reg);
14595 if (BPF_SRC(insn->code) == BPF_X && !err &&
14596 !__is_pointer_value(false, src_reg))
14597 err = mark_chain_precision(env, insn->src_reg);
14598 if (err)
14599 return err;
14600 }
14601
14602 if (pred == 1) {
14603 /* Only follow the goto, ignore fall-through. If needed, push
14604 * the fall-through branch for simulation under speculative
14605 * execution.
14606 */
14607 if (!env->bypass_spec_v1 &&
14608 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14609 *insn_idx))
14610 return -EFAULT;
14611 if (env->log.level & BPF_LOG_LEVEL)
14612 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14613 *insn_idx += insn->off;
14614 return 0;
14615 } else if (pred == 0) {
14616 /* Only follow the fall-through branch, since that's where the
14617 * program will go. If needed, push the goto branch for
14618 * simulation under speculative execution.
14619 */
14620 if (!env->bypass_spec_v1 &&
14621 !sanitize_speculative_path(env, insn,
14622 *insn_idx + insn->off + 1,
14623 *insn_idx))
14624 return -EFAULT;
14625 if (env->log.level & BPF_LOG_LEVEL)
14626 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14627 return 0;
14628 }
14629
14630 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14631 false);
14632 if (!other_branch)
14633 return -EFAULT;
14634 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14635
14636 /* detect if we are comparing against a constant value so we can adjust
14637 * our min/max values for our dst register.
14638 * this is only legit if both are scalars (or pointers to the same
14639 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14640 * because otherwise the different base pointers mean the offsets aren't
14641 * comparable.
14642 */
14643 if (BPF_SRC(insn->code) == BPF_X) {
14644 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14645
14646 if (dst_reg->type == SCALAR_VALUE &&
14647 src_reg->type == SCALAR_VALUE) {
14648 if (tnum_is_const(src_reg->var_off) ||
14649 (is_jmp32 &&
14650 tnum_is_const(tnum_subreg(src_reg->var_off))))
14651 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14652 dst_reg,
14653 src_reg->var_off.value,
14654 tnum_subreg(src_reg->var_off).value,
14655 opcode, is_jmp32);
14656 else if (tnum_is_const(dst_reg->var_off) ||
14657 (is_jmp32 &&
14658 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14659 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14660 src_reg,
14661 dst_reg->var_off.value,
14662 tnum_subreg(dst_reg->var_off).value,
14663 opcode, is_jmp32);
14664 else if (!is_jmp32 &&
14665 (opcode == BPF_JEQ || opcode == BPF_JNE))
14666 /* Comparing for equality, we can combine knowledge */
14667 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14668 &other_branch_regs[insn->dst_reg],
14669 src_reg, dst_reg, opcode);
14670 if (src_reg->id &&
14671 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14672 find_equal_scalars(this_branch, src_reg);
14673 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14674 }
14675
14676 }
14677 } else if (dst_reg->type == SCALAR_VALUE) {
14678 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14679 dst_reg, insn->imm, (u32)insn->imm,
14680 opcode, is_jmp32);
14681 }
14682
14683 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14684 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14685 find_equal_scalars(this_branch, dst_reg);
14686 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14687 }
14688
14689 /* if one pointer register is compared to another pointer
14690 * register check if PTR_MAYBE_NULL could be lifted.
14691 * E.g. register A - maybe null
14692 * register B - not null
14693 * for JNE A, B, ... - A is not null in the false branch;
14694 * for JEQ A, B, ... - A is not null in the true branch.
14695 *
14696 * Since PTR_TO_BTF_ID points to a kernel struct that does
14697 * not need to be null checked by the BPF program, i.e.,
14698 * could be null even without PTR_MAYBE_NULL marking, so
14699 * only propagate nullness when neither reg is that type.
14700 */
14701 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14702 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14703 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14704 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14705 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14706 eq_branch_regs = NULL;
14707 switch (opcode) {
14708 case BPF_JEQ:
14709 eq_branch_regs = other_branch_regs;
14710 break;
14711 case BPF_JNE:
14712 eq_branch_regs = regs;
14713 break;
14714 default:
14715 /* do nothing */
14716 break;
14717 }
14718 if (eq_branch_regs) {
14719 if (type_may_be_null(src_reg->type))
14720 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14721 else
14722 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14723 }
14724 }
14725
14726 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14727 * NOTE: these optimizations below are related with pointer comparison
14728 * which will never be JMP32.
14729 */
14730 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14731 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14732 type_may_be_null(dst_reg->type)) {
14733 /* Mark all identical registers in each branch as either
14734 * safe or unknown depending R == 0 or R != 0 conditional.
14735 */
14736 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14737 opcode == BPF_JNE);
14738 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14739 opcode == BPF_JEQ);
14740 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14741 this_branch, other_branch) &&
14742 is_pointer_value(env, insn->dst_reg)) {
14743 verbose(env, "R%d pointer comparison prohibited\n",
14744 insn->dst_reg);
14745 return -EACCES;
14746 }
14747 if (env->log.level & BPF_LOG_LEVEL)
14748 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14749 return 0;
14750 }
14751
14752 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)14753 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14754 {
14755 struct bpf_insn_aux_data *aux = cur_aux(env);
14756 struct bpf_reg_state *regs = cur_regs(env);
14757 struct bpf_reg_state *dst_reg;
14758 struct bpf_map *map;
14759 int err;
14760
14761 if (BPF_SIZE(insn->code) != BPF_DW) {
14762 verbose(env, "invalid BPF_LD_IMM insn\n");
14763 return -EINVAL;
14764 }
14765 if (insn->off != 0) {
14766 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14767 return -EINVAL;
14768 }
14769
14770 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14771 if (err)
14772 return err;
14773
14774 dst_reg = ®s[insn->dst_reg];
14775 if (insn->src_reg == 0) {
14776 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14777
14778 dst_reg->type = SCALAR_VALUE;
14779 __mark_reg_known(®s[insn->dst_reg], imm);
14780 return 0;
14781 }
14782
14783 /* All special src_reg cases are listed below. From this point onwards
14784 * we either succeed and assign a corresponding dst_reg->type after
14785 * zeroing the offset, or fail and reject the program.
14786 */
14787 mark_reg_known_zero(env, regs, insn->dst_reg);
14788
14789 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14790 dst_reg->type = aux->btf_var.reg_type;
14791 switch (base_type(dst_reg->type)) {
14792 case PTR_TO_MEM:
14793 dst_reg->mem_size = aux->btf_var.mem_size;
14794 break;
14795 case PTR_TO_BTF_ID:
14796 dst_reg->btf = aux->btf_var.btf;
14797 dst_reg->btf_id = aux->btf_var.btf_id;
14798 break;
14799 default:
14800 verbose(env, "bpf verifier is misconfigured\n");
14801 return -EFAULT;
14802 }
14803 return 0;
14804 }
14805
14806 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14807 struct bpf_prog_aux *aux = env->prog->aux;
14808 u32 subprogno = find_subprog(env,
14809 env->insn_idx + insn->imm + 1);
14810
14811 if (!aux->func_info) {
14812 verbose(env, "missing btf func_info\n");
14813 return -EINVAL;
14814 }
14815 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14816 verbose(env, "callback function not static\n");
14817 return -EINVAL;
14818 }
14819
14820 dst_reg->type = PTR_TO_FUNC;
14821 dst_reg->subprogno = subprogno;
14822 return 0;
14823 }
14824
14825 map = env->used_maps[aux->map_index];
14826 dst_reg->map_ptr = map;
14827
14828 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14829 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14830 dst_reg->type = PTR_TO_MAP_VALUE;
14831 dst_reg->off = aux->map_off;
14832 WARN_ON_ONCE(map->max_entries != 1);
14833 /* We want reg->id to be same (0) as map_value is not distinct */
14834 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14835 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14836 dst_reg->type = CONST_PTR_TO_MAP;
14837 } else {
14838 verbose(env, "bpf verifier is misconfigured\n");
14839 return -EINVAL;
14840 }
14841
14842 return 0;
14843 }
14844
may_access_skb(enum bpf_prog_type type)14845 static bool may_access_skb(enum bpf_prog_type type)
14846 {
14847 switch (type) {
14848 case BPF_PROG_TYPE_SOCKET_FILTER:
14849 case BPF_PROG_TYPE_SCHED_CLS:
14850 case BPF_PROG_TYPE_SCHED_ACT:
14851 return true;
14852 default:
14853 return false;
14854 }
14855 }
14856
14857 /* verify safety of LD_ABS|LD_IND instructions:
14858 * - they can only appear in the programs where ctx == skb
14859 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14860 * preserve R6-R9, and store return value into R0
14861 *
14862 * Implicit input:
14863 * ctx == skb == R6 == CTX
14864 *
14865 * Explicit input:
14866 * SRC == any register
14867 * IMM == 32-bit immediate
14868 *
14869 * Output:
14870 * R0 - 8/16/32-bit skb data converted to cpu endianness
14871 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)14872 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14873 {
14874 struct bpf_reg_state *regs = cur_regs(env);
14875 static const int ctx_reg = BPF_REG_6;
14876 u8 mode = BPF_MODE(insn->code);
14877 int i, err;
14878
14879 if (!may_access_skb(resolve_prog_type(env->prog))) {
14880 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14881 return -EINVAL;
14882 }
14883
14884 if (!env->ops->gen_ld_abs) {
14885 verbose(env, "bpf verifier is misconfigured\n");
14886 return -EINVAL;
14887 }
14888
14889 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14890 BPF_SIZE(insn->code) == BPF_DW ||
14891 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14892 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14893 return -EINVAL;
14894 }
14895
14896 /* check whether implicit source operand (register R6) is readable */
14897 err = check_reg_arg(env, ctx_reg, SRC_OP);
14898 if (err)
14899 return err;
14900
14901 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14902 * gen_ld_abs() may terminate the program at runtime, leading to
14903 * reference leak.
14904 */
14905 err = check_reference_leak(env);
14906 if (err) {
14907 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14908 return err;
14909 }
14910
14911 if (env->cur_state->active_lock.ptr) {
14912 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14913 return -EINVAL;
14914 }
14915
14916 if (env->cur_state->active_rcu_lock) {
14917 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14918 return -EINVAL;
14919 }
14920
14921 if (regs[ctx_reg].type != PTR_TO_CTX) {
14922 verbose(env,
14923 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14924 return -EINVAL;
14925 }
14926
14927 if (mode == BPF_IND) {
14928 /* check explicit source operand */
14929 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14930 if (err)
14931 return err;
14932 }
14933
14934 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14935 if (err < 0)
14936 return err;
14937
14938 /* reset caller saved regs to unreadable */
14939 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14940 mark_reg_not_init(env, regs, caller_saved[i]);
14941 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14942 }
14943
14944 /* mark destination R0 register as readable, since it contains
14945 * the value fetched from the packet.
14946 * Already marked as written above.
14947 */
14948 mark_reg_unknown(env, regs, BPF_REG_0);
14949 /* ld_abs load up to 32-bit skb data. */
14950 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14951 return 0;
14952 }
14953
check_return_code(struct bpf_verifier_env * env)14954 static int check_return_code(struct bpf_verifier_env *env)
14955 {
14956 struct tnum enforce_attach_type_range = tnum_unknown;
14957 const struct bpf_prog *prog = env->prog;
14958 struct bpf_reg_state *reg;
14959 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14960 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14961 int err;
14962 struct bpf_func_state *frame = env->cur_state->frame[0];
14963 const bool is_subprog = frame->subprogno;
14964
14965 /* LSM and struct_ops func-ptr's return type could be "void" */
14966 if (!is_subprog) {
14967 switch (prog_type) {
14968 case BPF_PROG_TYPE_LSM:
14969 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14970 /* See below, can be 0 or 0-1 depending on hook. */
14971 break;
14972 fallthrough;
14973 case BPF_PROG_TYPE_STRUCT_OPS:
14974 if (!prog->aux->attach_func_proto->type)
14975 return 0;
14976 break;
14977 default:
14978 break;
14979 }
14980 }
14981
14982 /* eBPF calling convention is such that R0 is used
14983 * to return the value from eBPF program.
14984 * Make sure that it's readable at this time
14985 * of bpf_exit, which means that program wrote
14986 * something into it earlier
14987 */
14988 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14989 if (err)
14990 return err;
14991
14992 if (is_pointer_value(env, BPF_REG_0)) {
14993 verbose(env, "R0 leaks addr as return value\n");
14994 return -EACCES;
14995 }
14996
14997 reg = cur_regs(env) + BPF_REG_0;
14998
14999 if (frame->in_async_callback_fn) {
15000 /* enforce return zero from async callbacks like timer */
15001 if (reg->type != SCALAR_VALUE) {
15002 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
15003 reg_type_str(env, reg->type));
15004 return -EINVAL;
15005 }
15006
15007 if (!tnum_in(const_0, reg->var_off)) {
15008 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15009 return -EINVAL;
15010 }
15011 return 0;
15012 }
15013
15014 if (is_subprog) {
15015 if (reg->type != SCALAR_VALUE) {
15016 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
15017 reg_type_str(env, reg->type));
15018 return -EINVAL;
15019 }
15020 return 0;
15021 }
15022
15023 switch (prog_type) {
15024 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15025 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15026 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15027 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15028 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15029 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15030 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15031 range = tnum_range(1, 1);
15032 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15033 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15034 range = tnum_range(0, 3);
15035 break;
15036 case BPF_PROG_TYPE_CGROUP_SKB:
15037 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15038 range = tnum_range(0, 3);
15039 enforce_attach_type_range = tnum_range(2, 3);
15040 }
15041 break;
15042 case BPF_PROG_TYPE_CGROUP_SOCK:
15043 case BPF_PROG_TYPE_SOCK_OPS:
15044 case BPF_PROG_TYPE_CGROUP_DEVICE:
15045 case BPF_PROG_TYPE_CGROUP_SYSCTL:
15046 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15047 break;
15048 case BPF_PROG_TYPE_RAW_TRACEPOINT:
15049 if (!env->prog->aux->attach_btf_id)
15050 return 0;
15051 range = tnum_const(0);
15052 break;
15053 case BPF_PROG_TYPE_TRACING:
15054 switch (env->prog->expected_attach_type) {
15055 case BPF_TRACE_FENTRY:
15056 case BPF_TRACE_FEXIT:
15057 range = tnum_const(0);
15058 break;
15059 case BPF_TRACE_RAW_TP:
15060 case BPF_MODIFY_RETURN:
15061 return 0;
15062 case BPF_TRACE_ITER:
15063 break;
15064 default:
15065 return -ENOTSUPP;
15066 }
15067 break;
15068 case BPF_PROG_TYPE_SK_LOOKUP:
15069 range = tnum_range(SK_DROP, SK_PASS);
15070 break;
15071
15072 case BPF_PROG_TYPE_LSM:
15073 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15074 /* Regular BPF_PROG_TYPE_LSM programs can return
15075 * any value.
15076 */
15077 return 0;
15078 }
15079 if (!env->prog->aux->attach_func_proto->type) {
15080 /* Make sure programs that attach to void
15081 * hooks don't try to modify return value.
15082 */
15083 range = tnum_range(1, 1);
15084 }
15085 break;
15086
15087 case BPF_PROG_TYPE_NETFILTER:
15088 range = tnum_range(NF_DROP, NF_ACCEPT);
15089 break;
15090 case BPF_PROG_TYPE_EXT:
15091 /* freplace program can return anything as its return value
15092 * depends on the to-be-replaced kernel func or bpf program.
15093 */
15094 default:
15095 return 0;
15096 }
15097
15098 if (reg->type != SCALAR_VALUE) {
15099 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15100 reg_type_str(env, reg->type));
15101 return -EINVAL;
15102 }
15103
15104 if (!tnum_in(range, reg->var_off)) {
15105 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15106 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15107 prog_type == BPF_PROG_TYPE_LSM &&
15108 !prog->aux->attach_func_proto->type)
15109 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15110 return -EINVAL;
15111 }
15112
15113 if (!tnum_is_unknown(enforce_attach_type_range) &&
15114 tnum_in(enforce_attach_type_range, reg->var_off))
15115 env->prog->enforce_expected_attach_type = 1;
15116 return 0;
15117 }
15118
mark_subprog_changes_pkt_data(struct bpf_verifier_env * env,int off)15119 static void mark_subprog_changes_pkt_data(struct bpf_verifier_env *env, int off)
15120 {
15121 struct bpf_subprog_info *subprog;
15122
15123 subprog = find_containing_subprog(env, off);
15124 subprog->changes_pkt_data = true;
15125 }
15126
15127 /* 't' is an index of a call-site.
15128 * 'w' is a callee entry point.
15129 * Eventually this function would be called when env->cfg.insn_state[w] == EXPLORED.
15130 * Rely on DFS traversal order and absence of recursive calls to guarantee that
15131 * callee's change_pkt_data marks would be correct at that moment.
15132 */
merge_callee_effects(struct bpf_verifier_env * env,int t,int w)15133 static void merge_callee_effects(struct bpf_verifier_env *env, int t, int w)
15134 {
15135 struct bpf_subprog_info *caller, *callee;
15136
15137 caller = find_containing_subprog(env, t);
15138 callee = find_containing_subprog(env, w);
15139 caller->changes_pkt_data |= callee->changes_pkt_data;
15140 }
15141
15142 /* non-recursive DFS pseudo code
15143 * 1 procedure DFS-iterative(G,v):
15144 * 2 label v as discovered
15145 * 3 let S be a stack
15146 * 4 S.push(v)
15147 * 5 while S is not empty
15148 * 6 t <- S.peek()
15149 * 7 if t is what we're looking for:
15150 * 8 return t
15151 * 9 for all edges e in G.adjacentEdges(t) do
15152 * 10 if edge e is already labelled
15153 * 11 continue with the next edge
15154 * 12 w <- G.adjacentVertex(t,e)
15155 * 13 if vertex w is not discovered and not explored
15156 * 14 label e as tree-edge
15157 * 15 label w as discovered
15158 * 16 S.push(w)
15159 * 17 continue at 5
15160 * 18 else if vertex w is discovered
15161 * 19 label e as back-edge
15162 * 20 else
15163 * 21 // vertex w is explored
15164 * 22 label e as forward- or cross-edge
15165 * 23 label t as explored
15166 * 24 S.pop()
15167 *
15168 * convention:
15169 * 0x10 - discovered
15170 * 0x11 - discovered and fall-through edge labelled
15171 * 0x12 - discovered and fall-through and branch edges labelled
15172 * 0x20 - explored
15173 */
15174
15175 enum {
15176 DISCOVERED = 0x10,
15177 EXPLORED = 0x20,
15178 FALLTHROUGH = 1,
15179 BRANCH = 2,
15180 };
15181
mark_prune_point(struct bpf_verifier_env * env,int idx)15182 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15183 {
15184 env->insn_aux_data[idx].prune_point = true;
15185 }
15186
is_prune_point(struct bpf_verifier_env * env,int insn_idx)15187 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15188 {
15189 return env->insn_aux_data[insn_idx].prune_point;
15190 }
15191
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)15192 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15193 {
15194 env->insn_aux_data[idx].force_checkpoint = true;
15195 }
15196
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)15197 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15198 {
15199 return env->insn_aux_data[insn_idx].force_checkpoint;
15200 }
15201
mark_calls_callback(struct bpf_verifier_env * env,int idx)15202 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15203 {
15204 env->insn_aux_data[idx].calls_callback = true;
15205 }
15206
calls_callback(struct bpf_verifier_env * env,int insn_idx)15207 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15208 {
15209 return env->insn_aux_data[insn_idx].calls_callback;
15210 }
15211
15212 enum {
15213 DONE_EXPLORING = 0,
15214 KEEP_EXPLORING = 1,
15215 };
15216
15217 /* t, w, e - match pseudo-code above:
15218 * t - index of current instruction
15219 * w - next instruction
15220 * e - edge
15221 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)15222 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15223 {
15224 int *insn_stack = env->cfg.insn_stack;
15225 int *insn_state = env->cfg.insn_state;
15226
15227 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15228 return DONE_EXPLORING;
15229
15230 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15231 return DONE_EXPLORING;
15232
15233 if (w < 0 || w >= env->prog->len) {
15234 verbose_linfo(env, t, "%d: ", t);
15235 verbose(env, "jump out of range from insn %d to %d\n", t, w);
15236 return -EINVAL;
15237 }
15238
15239 if (e == BRANCH) {
15240 /* mark branch target for state pruning */
15241 mark_prune_point(env, w);
15242 mark_jmp_point(env, w);
15243 }
15244
15245 if (insn_state[w] == 0) {
15246 /* tree-edge */
15247 insn_state[t] = DISCOVERED | e;
15248 insn_state[w] = DISCOVERED;
15249 if (env->cfg.cur_stack >= env->prog->len)
15250 return -E2BIG;
15251 insn_stack[env->cfg.cur_stack++] = w;
15252 return KEEP_EXPLORING;
15253 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15254 if (env->bpf_capable)
15255 return DONE_EXPLORING;
15256 verbose_linfo(env, t, "%d: ", t);
15257 verbose_linfo(env, w, "%d: ", w);
15258 verbose(env, "back-edge from insn %d to %d\n", t, w);
15259 return -EINVAL;
15260 } else if (insn_state[w] == EXPLORED) {
15261 /* forward- or cross-edge */
15262 insn_state[t] = DISCOVERED | e;
15263 } else {
15264 verbose(env, "insn state internal bug\n");
15265 return -EFAULT;
15266 }
15267 return DONE_EXPLORING;
15268 }
15269
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)15270 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15271 struct bpf_verifier_env *env,
15272 bool visit_callee)
15273 {
15274 int ret, insn_sz;
15275 int w;
15276
15277 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15278 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15279 if (ret)
15280 return ret;
15281
15282 mark_prune_point(env, t + insn_sz);
15283 /* when we exit from subprog, we need to record non-linear history */
15284 mark_jmp_point(env, t + insn_sz);
15285
15286 if (visit_callee) {
15287 w = t + insns[t].imm + 1;
15288 mark_prune_point(env, t);
15289 merge_callee_effects(env, t, w);
15290 ret = push_insn(t, w, BRANCH, env);
15291 }
15292 return ret;
15293 }
15294
15295 /* Visits the instruction at index t and returns one of the following:
15296 * < 0 - an error occurred
15297 * DONE_EXPLORING - the instruction was fully explored
15298 * KEEP_EXPLORING - there is still work to be done before it is fully explored
15299 */
visit_insn(int t,struct bpf_verifier_env * env)15300 static int visit_insn(int t, struct bpf_verifier_env *env)
15301 {
15302 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15303 int ret, off, insn_sz;
15304
15305 if (bpf_pseudo_func(insn))
15306 return visit_func_call_insn(t, insns, env, true);
15307
15308 /* All non-branch instructions have a single fall-through edge. */
15309 if (BPF_CLASS(insn->code) != BPF_JMP &&
15310 BPF_CLASS(insn->code) != BPF_JMP32) {
15311 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15312 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15313 }
15314
15315 switch (BPF_OP(insn->code)) {
15316 case BPF_EXIT:
15317 return DONE_EXPLORING;
15318
15319 case BPF_CALL:
15320 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15321 /* Mark this call insn as a prune point to trigger
15322 * is_state_visited() check before call itself is
15323 * processed by __check_func_call(). Otherwise new
15324 * async state will be pushed for further exploration.
15325 */
15326 mark_prune_point(env, t);
15327 /* For functions that invoke callbacks it is not known how many times
15328 * callback would be called. Verifier models callback calling functions
15329 * by repeatedly visiting callback bodies and returning to origin call
15330 * instruction.
15331 * In order to stop such iteration verifier needs to identify when a
15332 * state identical some state from a previous iteration is reached.
15333 * Check below forces creation of checkpoint before callback calling
15334 * instruction to allow search for such identical states.
15335 */
15336 if (is_sync_callback_calling_insn(insn)) {
15337 mark_calls_callback(env, t);
15338 mark_force_checkpoint(env, t);
15339 mark_prune_point(env, t);
15340 mark_jmp_point(env, t);
15341 }
15342 if (bpf_helper_call(insn) && bpf_helper_changes_pkt_data(insn->imm))
15343 mark_subprog_changes_pkt_data(env, t);
15344 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15345 struct bpf_kfunc_call_arg_meta meta;
15346
15347 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15348 if (ret == 0 && is_iter_next_kfunc(&meta)) {
15349 mark_prune_point(env, t);
15350 /* Checking and saving state checkpoints at iter_next() call
15351 * is crucial for fast convergence of open-coded iterator loop
15352 * logic, so we need to force it. If we don't do that,
15353 * is_state_visited() might skip saving a checkpoint, causing
15354 * unnecessarily long sequence of not checkpointed
15355 * instructions and jumps, leading to exhaustion of jump
15356 * history buffer, and potentially other undesired outcomes.
15357 * It is expected that with correct open-coded iterators
15358 * convergence will happen quickly, so we don't run a risk of
15359 * exhausting memory.
15360 */
15361 mark_force_checkpoint(env, t);
15362 }
15363 }
15364 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15365
15366 case BPF_JA:
15367 if (BPF_SRC(insn->code) != BPF_K)
15368 return -EINVAL;
15369
15370 if (BPF_CLASS(insn->code) == BPF_JMP)
15371 off = insn->off;
15372 else
15373 off = insn->imm;
15374
15375 /* unconditional jump with single edge */
15376 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15377 if (ret)
15378 return ret;
15379
15380 mark_prune_point(env, t + off + 1);
15381 mark_jmp_point(env, t + off + 1);
15382
15383 return ret;
15384
15385 default:
15386 /* conditional jump with two edges */
15387 mark_prune_point(env, t);
15388
15389 ret = push_insn(t, t + 1, FALLTHROUGH, env);
15390 if (ret)
15391 return ret;
15392
15393 return push_insn(t, t + insn->off + 1, BRANCH, env);
15394 }
15395 }
15396
15397 /* non-recursive depth-first-search to detect loops in BPF program
15398 * loop == back-edge in directed graph
15399 */
check_cfg(struct bpf_verifier_env * env)15400 static int check_cfg(struct bpf_verifier_env *env)
15401 {
15402 int insn_cnt = env->prog->len;
15403 int *insn_stack, *insn_state;
15404 int ret = 0;
15405 int i;
15406
15407 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15408 if (!insn_state)
15409 return -ENOMEM;
15410
15411 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15412 if (!insn_stack) {
15413 kvfree(insn_state);
15414 return -ENOMEM;
15415 }
15416
15417 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15418 insn_stack[0] = 0; /* 0 is the first instruction */
15419 env->cfg.cur_stack = 1;
15420
15421 while (env->cfg.cur_stack > 0) {
15422 int t = insn_stack[env->cfg.cur_stack - 1];
15423
15424 ret = visit_insn(t, env);
15425 switch (ret) {
15426 case DONE_EXPLORING:
15427 insn_state[t] = EXPLORED;
15428 env->cfg.cur_stack--;
15429 break;
15430 case KEEP_EXPLORING:
15431 break;
15432 default:
15433 if (ret > 0) {
15434 verbose(env, "visit_insn internal bug\n");
15435 ret = -EFAULT;
15436 }
15437 goto err_free;
15438 }
15439 }
15440
15441 if (env->cfg.cur_stack < 0) {
15442 verbose(env, "pop stack internal bug\n");
15443 ret = -EFAULT;
15444 goto err_free;
15445 }
15446
15447 for (i = 0; i < insn_cnt; i++) {
15448 struct bpf_insn *insn = &env->prog->insnsi[i];
15449
15450 if (insn_state[i] != EXPLORED) {
15451 verbose(env, "unreachable insn %d\n", i);
15452 ret = -EINVAL;
15453 goto err_free;
15454 }
15455 if (bpf_is_ldimm64(insn)) {
15456 if (insn_state[i + 1] != 0) {
15457 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15458 ret = -EINVAL;
15459 goto err_free;
15460 }
15461 i++; /* skip second half of ldimm64 */
15462 }
15463 }
15464 ret = 0; /* cfg looks good */
15465 env->prog->aux->changes_pkt_data = env->subprog_info[0].changes_pkt_data;
15466
15467 err_free:
15468 kvfree(insn_state);
15469 kvfree(insn_stack);
15470 env->cfg.insn_state = env->cfg.insn_stack = NULL;
15471 return ret;
15472 }
15473
check_abnormal_return(struct bpf_verifier_env * env)15474 static int check_abnormal_return(struct bpf_verifier_env *env)
15475 {
15476 int i;
15477
15478 for (i = 1; i < env->subprog_cnt; i++) {
15479 if (env->subprog_info[i].has_ld_abs) {
15480 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15481 return -EINVAL;
15482 }
15483 if (env->subprog_info[i].has_tail_call) {
15484 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15485 return -EINVAL;
15486 }
15487 }
15488 return 0;
15489 }
15490
15491 /* The minimum supported BTF func info size */
15492 #define MIN_BPF_FUNCINFO_SIZE 8
15493 #define MAX_FUNCINFO_REC_SIZE 252
15494
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15495 static int check_btf_func(struct bpf_verifier_env *env,
15496 const union bpf_attr *attr,
15497 bpfptr_t uattr)
15498 {
15499 const struct btf_type *type, *func_proto, *ret_type;
15500 u32 i, nfuncs, urec_size, min_size;
15501 u32 krec_size = sizeof(struct bpf_func_info);
15502 struct bpf_func_info *krecord;
15503 struct bpf_func_info_aux *info_aux = NULL;
15504 struct bpf_prog *prog;
15505 const struct btf *btf;
15506 bpfptr_t urecord;
15507 u32 prev_offset = 0;
15508 bool scalar_return;
15509 int ret = -ENOMEM;
15510
15511 nfuncs = attr->func_info_cnt;
15512 if (!nfuncs) {
15513 if (check_abnormal_return(env))
15514 return -EINVAL;
15515 return 0;
15516 }
15517
15518 if (nfuncs != env->subprog_cnt) {
15519 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15520 return -EINVAL;
15521 }
15522
15523 urec_size = attr->func_info_rec_size;
15524 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15525 urec_size > MAX_FUNCINFO_REC_SIZE ||
15526 urec_size % sizeof(u32)) {
15527 verbose(env, "invalid func info rec size %u\n", urec_size);
15528 return -EINVAL;
15529 }
15530
15531 prog = env->prog;
15532 btf = prog->aux->btf;
15533
15534 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15535 min_size = min_t(u32, krec_size, urec_size);
15536
15537 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15538 if (!krecord)
15539 return -ENOMEM;
15540 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15541 if (!info_aux)
15542 goto err_free;
15543
15544 for (i = 0; i < nfuncs; i++) {
15545 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15546 if (ret) {
15547 if (ret == -E2BIG) {
15548 verbose(env, "nonzero tailing record in func info");
15549 /* set the size kernel expects so loader can zero
15550 * out the rest of the record.
15551 */
15552 if (copy_to_bpfptr_offset(uattr,
15553 offsetof(union bpf_attr, func_info_rec_size),
15554 &min_size, sizeof(min_size)))
15555 ret = -EFAULT;
15556 }
15557 goto err_free;
15558 }
15559
15560 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15561 ret = -EFAULT;
15562 goto err_free;
15563 }
15564
15565 /* check insn_off */
15566 ret = -EINVAL;
15567 if (i == 0) {
15568 if (krecord[i].insn_off) {
15569 verbose(env,
15570 "nonzero insn_off %u for the first func info record",
15571 krecord[i].insn_off);
15572 goto err_free;
15573 }
15574 } else if (krecord[i].insn_off <= prev_offset) {
15575 verbose(env,
15576 "same or smaller insn offset (%u) than previous func info record (%u)",
15577 krecord[i].insn_off, prev_offset);
15578 goto err_free;
15579 }
15580
15581 if (env->subprog_info[i].start != krecord[i].insn_off) {
15582 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15583 goto err_free;
15584 }
15585
15586 /* check type_id */
15587 type = btf_type_by_id(btf, krecord[i].type_id);
15588 if (!type || !btf_type_is_func(type)) {
15589 verbose(env, "invalid type id %d in func info",
15590 krecord[i].type_id);
15591 goto err_free;
15592 }
15593 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15594
15595 func_proto = btf_type_by_id(btf, type->type);
15596 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15597 /* btf_func_check() already verified it during BTF load */
15598 goto err_free;
15599 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15600 scalar_return =
15601 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15602 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15603 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15604 goto err_free;
15605 }
15606 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15607 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15608 goto err_free;
15609 }
15610
15611 prev_offset = krecord[i].insn_off;
15612 bpfptr_add(&urecord, urec_size);
15613 }
15614
15615 prog->aux->func_info = krecord;
15616 prog->aux->func_info_cnt = nfuncs;
15617 prog->aux->func_info_aux = info_aux;
15618 return 0;
15619
15620 err_free:
15621 kvfree(krecord);
15622 kfree(info_aux);
15623 return ret;
15624 }
15625
adjust_btf_func(struct bpf_verifier_env * env)15626 static void adjust_btf_func(struct bpf_verifier_env *env)
15627 {
15628 struct bpf_prog_aux *aux = env->prog->aux;
15629 int i;
15630
15631 if (!aux->func_info)
15632 return;
15633
15634 for (i = 0; i < env->subprog_cnt; i++)
15635 aux->func_info[i].insn_off = env->subprog_info[i].start;
15636 }
15637
15638 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15639 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15640
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15641 static int check_btf_line(struct bpf_verifier_env *env,
15642 const union bpf_attr *attr,
15643 bpfptr_t uattr)
15644 {
15645 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15646 struct bpf_subprog_info *sub;
15647 struct bpf_line_info *linfo;
15648 struct bpf_prog *prog;
15649 const struct btf *btf;
15650 bpfptr_t ulinfo;
15651 int err;
15652
15653 nr_linfo = attr->line_info_cnt;
15654 if (!nr_linfo)
15655 return 0;
15656 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15657 return -EINVAL;
15658
15659 rec_size = attr->line_info_rec_size;
15660 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15661 rec_size > MAX_LINEINFO_REC_SIZE ||
15662 rec_size & (sizeof(u32) - 1))
15663 return -EINVAL;
15664
15665 /* Need to zero it in case the userspace may
15666 * pass in a smaller bpf_line_info object.
15667 */
15668 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15669 GFP_KERNEL | __GFP_NOWARN);
15670 if (!linfo)
15671 return -ENOMEM;
15672
15673 prog = env->prog;
15674 btf = prog->aux->btf;
15675
15676 s = 0;
15677 sub = env->subprog_info;
15678 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15679 expected_size = sizeof(struct bpf_line_info);
15680 ncopy = min_t(u32, expected_size, rec_size);
15681 for (i = 0; i < nr_linfo; i++) {
15682 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15683 if (err) {
15684 if (err == -E2BIG) {
15685 verbose(env, "nonzero tailing record in line_info");
15686 if (copy_to_bpfptr_offset(uattr,
15687 offsetof(union bpf_attr, line_info_rec_size),
15688 &expected_size, sizeof(expected_size)))
15689 err = -EFAULT;
15690 }
15691 goto err_free;
15692 }
15693
15694 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15695 err = -EFAULT;
15696 goto err_free;
15697 }
15698
15699 /*
15700 * Check insn_off to ensure
15701 * 1) strictly increasing AND
15702 * 2) bounded by prog->len
15703 *
15704 * The linfo[0].insn_off == 0 check logically falls into
15705 * the later "missing bpf_line_info for func..." case
15706 * because the first linfo[0].insn_off must be the
15707 * first sub also and the first sub must have
15708 * subprog_info[0].start == 0.
15709 */
15710 if ((i && linfo[i].insn_off <= prev_offset) ||
15711 linfo[i].insn_off >= prog->len) {
15712 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15713 i, linfo[i].insn_off, prev_offset,
15714 prog->len);
15715 err = -EINVAL;
15716 goto err_free;
15717 }
15718
15719 if (!prog->insnsi[linfo[i].insn_off].code) {
15720 verbose(env,
15721 "Invalid insn code at line_info[%u].insn_off\n",
15722 i);
15723 err = -EINVAL;
15724 goto err_free;
15725 }
15726
15727 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15728 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15729 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15730 err = -EINVAL;
15731 goto err_free;
15732 }
15733
15734 if (s != env->subprog_cnt) {
15735 if (linfo[i].insn_off == sub[s].start) {
15736 sub[s].linfo_idx = i;
15737 s++;
15738 } else if (sub[s].start < linfo[i].insn_off) {
15739 verbose(env, "missing bpf_line_info for func#%u\n", s);
15740 err = -EINVAL;
15741 goto err_free;
15742 }
15743 }
15744
15745 prev_offset = linfo[i].insn_off;
15746 bpfptr_add(&ulinfo, rec_size);
15747 }
15748
15749 if (s != env->subprog_cnt) {
15750 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15751 env->subprog_cnt - s, s);
15752 err = -EINVAL;
15753 goto err_free;
15754 }
15755
15756 prog->aux->linfo = linfo;
15757 prog->aux->nr_linfo = nr_linfo;
15758
15759 return 0;
15760
15761 err_free:
15762 kvfree(linfo);
15763 return err;
15764 }
15765
15766 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15767 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15768
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15769 static int check_core_relo(struct bpf_verifier_env *env,
15770 const union bpf_attr *attr,
15771 bpfptr_t uattr)
15772 {
15773 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15774 struct bpf_core_relo core_relo = {};
15775 struct bpf_prog *prog = env->prog;
15776 const struct btf *btf = prog->aux->btf;
15777 struct bpf_core_ctx ctx = {
15778 .log = &env->log,
15779 .btf = btf,
15780 };
15781 bpfptr_t u_core_relo;
15782 int err;
15783
15784 nr_core_relo = attr->core_relo_cnt;
15785 if (!nr_core_relo)
15786 return 0;
15787 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15788 return -EINVAL;
15789
15790 rec_size = attr->core_relo_rec_size;
15791 if (rec_size < MIN_CORE_RELO_SIZE ||
15792 rec_size > MAX_CORE_RELO_SIZE ||
15793 rec_size % sizeof(u32))
15794 return -EINVAL;
15795
15796 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15797 expected_size = sizeof(struct bpf_core_relo);
15798 ncopy = min_t(u32, expected_size, rec_size);
15799
15800 /* Unlike func_info and line_info, copy and apply each CO-RE
15801 * relocation record one at a time.
15802 */
15803 for (i = 0; i < nr_core_relo; i++) {
15804 /* future proofing when sizeof(bpf_core_relo) changes */
15805 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15806 if (err) {
15807 if (err == -E2BIG) {
15808 verbose(env, "nonzero tailing record in core_relo");
15809 if (copy_to_bpfptr_offset(uattr,
15810 offsetof(union bpf_attr, core_relo_rec_size),
15811 &expected_size, sizeof(expected_size)))
15812 err = -EFAULT;
15813 }
15814 break;
15815 }
15816
15817 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15818 err = -EFAULT;
15819 break;
15820 }
15821
15822 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15823 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15824 i, core_relo.insn_off, prog->len);
15825 err = -EINVAL;
15826 break;
15827 }
15828
15829 err = bpf_core_apply(&ctx, &core_relo, i,
15830 &prog->insnsi[core_relo.insn_off / 8]);
15831 if (err)
15832 break;
15833 bpfptr_add(&u_core_relo, rec_size);
15834 }
15835 return err;
15836 }
15837
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15838 static int check_btf_info(struct bpf_verifier_env *env,
15839 const union bpf_attr *attr,
15840 bpfptr_t uattr)
15841 {
15842 struct btf *btf;
15843 int err;
15844
15845 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15846 if (check_abnormal_return(env))
15847 return -EINVAL;
15848 return 0;
15849 }
15850
15851 btf = btf_get_by_fd(attr->prog_btf_fd);
15852 if (IS_ERR(btf))
15853 return PTR_ERR(btf);
15854 if (btf_is_kernel(btf)) {
15855 btf_put(btf);
15856 return -EACCES;
15857 }
15858 env->prog->aux->btf = btf;
15859
15860 err = check_btf_func(env, attr, uattr);
15861 if (err)
15862 return err;
15863
15864 err = check_btf_line(env, attr, uattr);
15865 if (err)
15866 return err;
15867
15868 err = check_core_relo(env, attr, uattr);
15869 if (err)
15870 return err;
15871
15872 return 0;
15873 }
15874
15875 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)15876 static bool range_within(struct bpf_reg_state *old,
15877 struct bpf_reg_state *cur)
15878 {
15879 return old->umin_value <= cur->umin_value &&
15880 old->umax_value >= cur->umax_value &&
15881 old->smin_value <= cur->smin_value &&
15882 old->smax_value >= cur->smax_value &&
15883 old->u32_min_value <= cur->u32_min_value &&
15884 old->u32_max_value >= cur->u32_max_value &&
15885 old->s32_min_value <= cur->s32_min_value &&
15886 old->s32_max_value >= cur->s32_max_value;
15887 }
15888
15889 /* If in the old state two registers had the same id, then they need to have
15890 * the same id in the new state as well. But that id could be different from
15891 * the old state, so we need to track the mapping from old to new ids.
15892 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15893 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15894 * regs with a different old id could still have new id 9, we don't care about
15895 * that.
15896 * So we look through our idmap to see if this old id has been seen before. If
15897 * so, we require the new id to match; otherwise, we add the id pair to the map.
15898 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15899 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15900 {
15901 struct bpf_id_pair *map = idmap->map;
15902 unsigned int i;
15903
15904 /* either both IDs should be set or both should be zero */
15905 if (!!old_id != !!cur_id)
15906 return false;
15907
15908 if (old_id == 0) /* cur_id == 0 as well */
15909 return true;
15910
15911 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15912 if (!map[i].old) {
15913 /* Reached an empty slot; haven't seen this id before */
15914 map[i].old = old_id;
15915 map[i].cur = cur_id;
15916 return true;
15917 }
15918 if (map[i].old == old_id)
15919 return map[i].cur == cur_id;
15920 if (map[i].cur == cur_id)
15921 return false;
15922 }
15923 /* We ran out of idmap slots, which should be impossible */
15924 WARN_ON_ONCE(1);
15925 return false;
15926 }
15927
15928 /* Similar to check_ids(), but allocate a unique temporary ID
15929 * for 'old_id' or 'cur_id' of zero.
15930 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15931 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15932 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15933 {
15934 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15935 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15936
15937 return check_ids(old_id, cur_id, idmap);
15938 }
15939
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)15940 static void clean_func_state(struct bpf_verifier_env *env,
15941 struct bpf_func_state *st)
15942 {
15943 enum bpf_reg_liveness live;
15944 int i, j;
15945
15946 for (i = 0; i < BPF_REG_FP; i++) {
15947 live = st->regs[i].live;
15948 /* liveness must not touch this register anymore */
15949 st->regs[i].live |= REG_LIVE_DONE;
15950 if (!(live & REG_LIVE_READ))
15951 /* since the register is unused, clear its state
15952 * to make further comparison simpler
15953 */
15954 __mark_reg_not_init(env, &st->regs[i]);
15955 }
15956
15957 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15958 live = st->stack[i].spilled_ptr.live;
15959 /* liveness must not touch this stack slot anymore */
15960 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15961 if (!(live & REG_LIVE_READ)) {
15962 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15963 for (j = 0; j < BPF_REG_SIZE; j++)
15964 st->stack[i].slot_type[j] = STACK_INVALID;
15965 }
15966 }
15967 }
15968
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)15969 static void clean_verifier_state(struct bpf_verifier_env *env,
15970 struct bpf_verifier_state *st)
15971 {
15972 int i;
15973
15974 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15975 /* all regs in this state in all frames were already marked */
15976 return;
15977
15978 for (i = 0; i <= st->curframe; i++)
15979 clean_func_state(env, st->frame[i]);
15980 }
15981
15982 /* the parentage chains form a tree.
15983 * the verifier states are added to state lists at given insn and
15984 * pushed into state stack for future exploration.
15985 * when the verifier reaches bpf_exit insn some of the verifer states
15986 * stored in the state lists have their final liveness state already,
15987 * but a lot of states will get revised from liveness point of view when
15988 * the verifier explores other branches.
15989 * Example:
15990 * 1: r0 = 1
15991 * 2: if r1 == 100 goto pc+1
15992 * 3: r0 = 2
15993 * 4: exit
15994 * when the verifier reaches exit insn the register r0 in the state list of
15995 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15996 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15997 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15998 *
15999 * Since the verifier pushes the branch states as it sees them while exploring
16000 * the program the condition of walking the branch instruction for the second
16001 * time means that all states below this branch were already explored and
16002 * their final liveness marks are already propagated.
16003 * Hence when the verifier completes the search of state list in is_state_visited()
16004 * we can call this clean_live_states() function to mark all liveness states
16005 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
16006 * will not be used.
16007 * This function also clears the registers and stack for states that !READ
16008 * to simplify state merging.
16009 *
16010 * Important note here that walking the same branch instruction in the callee
16011 * doesn't meant that the states are DONE. The verifier has to compare
16012 * the callsites
16013 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)16014 static void clean_live_states(struct bpf_verifier_env *env, int insn,
16015 struct bpf_verifier_state *cur)
16016 {
16017 struct bpf_verifier_state *loop_entry;
16018 struct bpf_verifier_state_list *sl;
16019
16020 sl = *explored_state(env, insn);
16021 while (sl) {
16022 if (sl->state.branches)
16023 goto next;
16024 loop_entry = get_loop_entry(&sl->state);
16025 if (loop_entry && loop_entry->branches)
16026 goto next;
16027 if (sl->state.insn_idx != insn ||
16028 !same_callsites(&sl->state, cur))
16029 goto next;
16030 clean_verifier_state(env, &sl->state);
16031 next:
16032 sl = sl->next;
16033 }
16034 }
16035
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)16036 static bool regs_exact(const struct bpf_reg_state *rold,
16037 const struct bpf_reg_state *rcur,
16038 struct bpf_idmap *idmap)
16039 {
16040 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16041 check_ids(rold->id, rcur->id, idmap) &&
16042 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16043 }
16044
16045 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,bool exact)16046 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16047 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16048 {
16049 if (exact)
16050 return regs_exact(rold, rcur, idmap);
16051
16052 if (!(rold->live & REG_LIVE_READ))
16053 /* explored state didn't use this */
16054 return true;
16055 if (rold->type == NOT_INIT)
16056 /* explored state can't have used this */
16057 return true;
16058 if (rcur->type == NOT_INIT)
16059 return false;
16060
16061 /* Enforce that register types have to match exactly, including their
16062 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16063 * rule.
16064 *
16065 * One can make a point that using a pointer register as unbounded
16066 * SCALAR would be technically acceptable, but this could lead to
16067 * pointer leaks because scalars are allowed to leak while pointers
16068 * are not. We could make this safe in special cases if root is
16069 * calling us, but it's probably not worth the hassle.
16070 *
16071 * Also, register types that are *not* MAYBE_NULL could technically be
16072 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16073 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16074 * to the same map).
16075 * However, if the old MAYBE_NULL register then got NULL checked,
16076 * doing so could have affected others with the same id, and we can't
16077 * check for that because we lost the id when we converted to
16078 * a non-MAYBE_NULL variant.
16079 * So, as a general rule we don't allow mixing MAYBE_NULL and
16080 * non-MAYBE_NULL registers as well.
16081 */
16082 if (rold->type != rcur->type)
16083 return false;
16084
16085 switch (base_type(rold->type)) {
16086 case SCALAR_VALUE:
16087 if (env->explore_alu_limits) {
16088 /* explore_alu_limits disables tnum_in() and range_within()
16089 * logic and requires everything to be strict
16090 */
16091 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16092 check_scalar_ids(rold->id, rcur->id, idmap);
16093 }
16094 if (!rold->precise)
16095 return true;
16096 /* Why check_ids() for scalar registers?
16097 *
16098 * Consider the following BPF code:
16099 * 1: r6 = ... unbound scalar, ID=a ...
16100 * 2: r7 = ... unbound scalar, ID=b ...
16101 * 3: if (r6 > r7) goto +1
16102 * 4: r6 = r7
16103 * 5: if (r6 > X) goto ...
16104 * 6: ... memory operation using r7 ...
16105 *
16106 * First verification path is [1-6]:
16107 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16108 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16109 * r7 <= X, because r6 and r7 share same id.
16110 * Next verification path is [1-4, 6].
16111 *
16112 * Instruction (6) would be reached in two states:
16113 * I. r6{.id=b}, r7{.id=b} via path 1-6;
16114 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16115 *
16116 * Use check_ids() to distinguish these states.
16117 * ---
16118 * Also verify that new value satisfies old value range knowledge.
16119 */
16120 return range_within(rold, rcur) &&
16121 tnum_in(rold->var_off, rcur->var_off) &&
16122 check_scalar_ids(rold->id, rcur->id, idmap);
16123 case PTR_TO_MAP_KEY:
16124 case PTR_TO_MAP_VALUE:
16125 case PTR_TO_MEM:
16126 case PTR_TO_BUF:
16127 case PTR_TO_TP_BUFFER:
16128 /* If the new min/max/var_off satisfy the old ones and
16129 * everything else matches, we are OK.
16130 */
16131 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16132 range_within(rold, rcur) &&
16133 tnum_in(rold->var_off, rcur->var_off) &&
16134 check_ids(rold->id, rcur->id, idmap) &&
16135 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16136 case PTR_TO_PACKET_META:
16137 case PTR_TO_PACKET:
16138 /* We must have at least as much range as the old ptr
16139 * did, so that any accesses which were safe before are
16140 * still safe. This is true even if old range < old off,
16141 * since someone could have accessed through (ptr - k), or
16142 * even done ptr -= k in a register, to get a safe access.
16143 */
16144 if (rold->range > rcur->range)
16145 return false;
16146 /* If the offsets don't match, we can't trust our alignment;
16147 * nor can we be sure that we won't fall out of range.
16148 */
16149 if (rold->off != rcur->off)
16150 return false;
16151 /* id relations must be preserved */
16152 if (!check_ids(rold->id, rcur->id, idmap))
16153 return false;
16154 /* new val must satisfy old val knowledge */
16155 return range_within(rold, rcur) &&
16156 tnum_in(rold->var_off, rcur->var_off);
16157 case PTR_TO_STACK:
16158 /* two stack pointers are equal only if they're pointing to
16159 * the same stack frame, since fp-8 in foo != fp-8 in bar
16160 */
16161 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16162 default:
16163 return regs_exact(rold, rcur, idmap);
16164 }
16165 }
16166
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,bool exact)16167 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16168 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16169 {
16170 int i, spi;
16171
16172 /* walk slots of the explored stack and ignore any additional
16173 * slots in the current stack, since explored(safe) state
16174 * didn't use them
16175 */
16176 for (i = 0; i < old->allocated_stack; i++) {
16177 struct bpf_reg_state *old_reg, *cur_reg;
16178
16179 spi = i / BPF_REG_SIZE;
16180
16181 if (exact &&
16182 (i >= cur->allocated_stack ||
16183 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16184 cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16185 return false;
16186
16187 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16188 i += BPF_REG_SIZE - 1;
16189 /* explored state didn't use this */
16190 continue;
16191 }
16192
16193 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16194 continue;
16195
16196 if (env->allow_uninit_stack &&
16197 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16198 continue;
16199
16200 /* explored stack has more populated slots than current stack
16201 * and these slots were used
16202 */
16203 if (i >= cur->allocated_stack)
16204 return false;
16205
16206 /* if old state was safe with misc data in the stack
16207 * it will be safe with zero-initialized stack.
16208 * The opposite is not true
16209 */
16210 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16211 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16212 continue;
16213 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16214 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16215 /* Ex: old explored (safe) state has STACK_SPILL in
16216 * this stack slot, but current has STACK_MISC ->
16217 * this verifier states are not equivalent,
16218 * return false to continue verification of this path
16219 */
16220 return false;
16221 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16222 continue;
16223 /* Both old and cur are having same slot_type */
16224 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16225 case STACK_SPILL:
16226 /* when explored and current stack slot are both storing
16227 * spilled registers, check that stored pointers types
16228 * are the same as well.
16229 * Ex: explored safe path could have stored
16230 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16231 * but current path has stored:
16232 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16233 * such verifier states are not equivalent.
16234 * return false to continue verification of this path
16235 */
16236 if (!regsafe(env, &old->stack[spi].spilled_ptr,
16237 &cur->stack[spi].spilled_ptr, idmap, exact))
16238 return false;
16239 break;
16240 case STACK_DYNPTR:
16241 old_reg = &old->stack[spi].spilled_ptr;
16242 cur_reg = &cur->stack[spi].spilled_ptr;
16243 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16244 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16245 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16246 return false;
16247 break;
16248 case STACK_ITER:
16249 old_reg = &old->stack[spi].spilled_ptr;
16250 cur_reg = &cur->stack[spi].spilled_ptr;
16251 /* iter.depth is not compared between states as it
16252 * doesn't matter for correctness and would otherwise
16253 * prevent convergence; we maintain it only to prevent
16254 * infinite loop check triggering, see
16255 * iter_active_depths_differ()
16256 */
16257 if (old_reg->iter.btf != cur_reg->iter.btf ||
16258 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16259 old_reg->iter.state != cur_reg->iter.state ||
16260 /* ignore {old_reg,cur_reg}->iter.depth, see above */
16261 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16262 return false;
16263 break;
16264 case STACK_MISC:
16265 case STACK_ZERO:
16266 case STACK_INVALID:
16267 continue;
16268 /* Ensure that new unhandled slot types return false by default */
16269 default:
16270 return false;
16271 }
16272 }
16273 return true;
16274 }
16275
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)16276 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16277 struct bpf_idmap *idmap)
16278 {
16279 int i;
16280
16281 if (old->acquired_refs != cur->acquired_refs)
16282 return false;
16283
16284 for (i = 0; i < old->acquired_refs; i++) {
16285 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16286 return false;
16287 }
16288
16289 return true;
16290 }
16291
16292 /* compare two verifier states
16293 *
16294 * all states stored in state_list are known to be valid, since
16295 * verifier reached 'bpf_exit' instruction through them
16296 *
16297 * this function is called when verifier exploring different branches of
16298 * execution popped from the state stack. If it sees an old state that has
16299 * more strict register state and more strict stack state then this execution
16300 * branch doesn't need to be explored further, since verifier already
16301 * concluded that more strict state leads to valid finish.
16302 *
16303 * Therefore two states are equivalent if register state is more conservative
16304 * and explored stack state is more conservative than the current one.
16305 * Example:
16306 * explored current
16307 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16308 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16309 *
16310 * In other words if current stack state (one being explored) has more
16311 * valid slots than old one that already passed validation, it means
16312 * the verifier can stop exploring and conclude that current state is valid too
16313 *
16314 * Similarly with registers. If explored state has register type as invalid
16315 * whereas register type in current state is meaningful, it means that
16316 * the current state will reach 'bpf_exit' instruction safely
16317 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,bool exact)16318 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16319 struct bpf_func_state *cur, bool exact)
16320 {
16321 int i;
16322
16323 if (old->callback_depth > cur->callback_depth)
16324 return false;
16325
16326 for (i = 0; i < MAX_BPF_REG; i++)
16327 if (!regsafe(env, &old->regs[i], &cur->regs[i],
16328 &env->idmap_scratch, exact))
16329 return false;
16330
16331 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16332 return false;
16333
16334 if (!refsafe(old, cur, &env->idmap_scratch))
16335 return false;
16336
16337 return true;
16338 }
16339
reset_idmap_scratch(struct bpf_verifier_env * env)16340 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16341 {
16342 env->idmap_scratch.tmp_id_gen = env->id_gen;
16343 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16344 }
16345
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool exact)16346 static bool states_equal(struct bpf_verifier_env *env,
16347 struct bpf_verifier_state *old,
16348 struct bpf_verifier_state *cur,
16349 bool exact)
16350 {
16351 int i;
16352
16353 if (old->curframe != cur->curframe)
16354 return false;
16355
16356 reset_idmap_scratch(env);
16357
16358 /* Verification state from speculative execution simulation
16359 * must never prune a non-speculative execution one.
16360 */
16361 if (old->speculative && !cur->speculative)
16362 return false;
16363
16364 if (old->active_lock.ptr != cur->active_lock.ptr)
16365 return false;
16366
16367 /* Old and cur active_lock's have to be either both present
16368 * or both absent.
16369 */
16370 if (!!old->active_lock.id != !!cur->active_lock.id)
16371 return false;
16372
16373 if (old->active_lock.id &&
16374 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16375 return false;
16376
16377 if (old->active_rcu_lock != cur->active_rcu_lock)
16378 return false;
16379
16380 /* for states to be equal callsites have to be the same
16381 * and all frame states need to be equivalent
16382 */
16383 for (i = 0; i <= old->curframe; i++) {
16384 if (old->frame[i]->callsite != cur->frame[i]->callsite)
16385 return false;
16386 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16387 return false;
16388 }
16389 return true;
16390 }
16391
16392 /* Return 0 if no propagation happened. Return negative error code if error
16393 * happened. Otherwise, return the propagated bit.
16394 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)16395 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16396 struct bpf_reg_state *reg,
16397 struct bpf_reg_state *parent_reg)
16398 {
16399 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16400 u8 flag = reg->live & REG_LIVE_READ;
16401 int err;
16402
16403 /* When comes here, read flags of PARENT_REG or REG could be any of
16404 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16405 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16406 */
16407 if (parent_flag == REG_LIVE_READ64 ||
16408 /* Or if there is no read flag from REG. */
16409 !flag ||
16410 /* Or if the read flag from REG is the same as PARENT_REG. */
16411 parent_flag == flag)
16412 return 0;
16413
16414 err = mark_reg_read(env, reg, parent_reg, flag);
16415 if (err)
16416 return err;
16417
16418 return flag;
16419 }
16420
16421 /* A write screens off any subsequent reads; but write marks come from the
16422 * straight-line code between a state and its parent. When we arrive at an
16423 * equivalent state (jump target or such) we didn't arrive by the straight-line
16424 * code, so read marks in the state must propagate to the parent regardless
16425 * of the state's write marks. That's what 'parent == state->parent' comparison
16426 * in mark_reg_read() is for.
16427 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)16428 static int propagate_liveness(struct bpf_verifier_env *env,
16429 const struct bpf_verifier_state *vstate,
16430 struct bpf_verifier_state *vparent)
16431 {
16432 struct bpf_reg_state *state_reg, *parent_reg;
16433 struct bpf_func_state *state, *parent;
16434 int i, frame, err = 0;
16435
16436 if (vparent->curframe != vstate->curframe) {
16437 WARN(1, "propagate_live: parent frame %d current frame %d\n",
16438 vparent->curframe, vstate->curframe);
16439 return -EFAULT;
16440 }
16441 /* Propagate read liveness of registers... */
16442 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16443 for (frame = 0; frame <= vstate->curframe; frame++) {
16444 parent = vparent->frame[frame];
16445 state = vstate->frame[frame];
16446 parent_reg = parent->regs;
16447 state_reg = state->regs;
16448 /* We don't need to worry about FP liveness, it's read-only */
16449 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16450 err = propagate_liveness_reg(env, &state_reg[i],
16451 &parent_reg[i]);
16452 if (err < 0)
16453 return err;
16454 if (err == REG_LIVE_READ64)
16455 mark_insn_zext(env, &parent_reg[i]);
16456 }
16457
16458 /* Propagate stack slots. */
16459 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16460 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16461 parent_reg = &parent->stack[i].spilled_ptr;
16462 state_reg = &state->stack[i].spilled_ptr;
16463 err = propagate_liveness_reg(env, state_reg,
16464 parent_reg);
16465 if (err < 0)
16466 return err;
16467 }
16468 }
16469 return 0;
16470 }
16471
16472 /* find precise scalars in the previous equivalent state and
16473 * propagate them into the current state
16474 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)16475 static int propagate_precision(struct bpf_verifier_env *env,
16476 const struct bpf_verifier_state *old)
16477 {
16478 struct bpf_reg_state *state_reg;
16479 struct bpf_func_state *state;
16480 int i, err = 0, fr;
16481 bool first;
16482
16483 for (fr = old->curframe; fr >= 0; fr--) {
16484 state = old->frame[fr];
16485 state_reg = state->regs;
16486 first = true;
16487 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16488 if (state_reg->type != SCALAR_VALUE ||
16489 !state_reg->precise ||
16490 !(state_reg->live & REG_LIVE_READ))
16491 continue;
16492 if (env->log.level & BPF_LOG_LEVEL2) {
16493 if (first)
16494 verbose(env, "frame %d: propagating r%d", fr, i);
16495 else
16496 verbose(env, ",r%d", i);
16497 }
16498 bt_set_frame_reg(&env->bt, fr, i);
16499 first = false;
16500 }
16501
16502 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16503 if (!is_spilled_reg(&state->stack[i]))
16504 continue;
16505 state_reg = &state->stack[i].spilled_ptr;
16506 if (state_reg->type != SCALAR_VALUE ||
16507 !state_reg->precise ||
16508 !(state_reg->live & REG_LIVE_READ))
16509 continue;
16510 if (env->log.level & BPF_LOG_LEVEL2) {
16511 if (first)
16512 verbose(env, "frame %d: propagating fp%d",
16513 fr, (-i - 1) * BPF_REG_SIZE);
16514 else
16515 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16516 }
16517 bt_set_frame_slot(&env->bt, fr, i);
16518 first = false;
16519 }
16520 if (!first)
16521 verbose(env, "\n");
16522 }
16523
16524 err = mark_chain_precision_batch(env);
16525 if (err < 0)
16526 return err;
16527
16528 return 0;
16529 }
16530
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16531 static bool states_maybe_looping(struct bpf_verifier_state *old,
16532 struct bpf_verifier_state *cur)
16533 {
16534 struct bpf_func_state *fold, *fcur;
16535 int i, fr = cur->curframe;
16536
16537 if (old->curframe != fr)
16538 return false;
16539
16540 fold = old->frame[fr];
16541 fcur = cur->frame[fr];
16542 for (i = 0; i < MAX_BPF_REG; i++)
16543 if (memcmp(&fold->regs[i], &fcur->regs[i],
16544 offsetof(struct bpf_reg_state, parent)))
16545 return false;
16546 return true;
16547 }
16548
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)16549 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16550 {
16551 return env->insn_aux_data[insn_idx].is_iter_next;
16552 }
16553
16554 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16555 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16556 * states to match, which otherwise would look like an infinite loop. So while
16557 * iter_next() calls are taken care of, we still need to be careful and
16558 * prevent erroneous and too eager declaration of "ininite loop", when
16559 * iterators are involved.
16560 *
16561 * Here's a situation in pseudo-BPF assembly form:
16562 *
16563 * 0: again: ; set up iter_next() call args
16564 * 1: r1 = &it ; <CHECKPOINT HERE>
16565 * 2: call bpf_iter_num_next ; this is iter_next() call
16566 * 3: if r0 == 0 goto done
16567 * 4: ... something useful here ...
16568 * 5: goto again ; another iteration
16569 * 6: done:
16570 * 7: r1 = &it
16571 * 8: call bpf_iter_num_destroy ; clean up iter state
16572 * 9: exit
16573 *
16574 * This is a typical loop. Let's assume that we have a prune point at 1:,
16575 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16576 * again`, assuming other heuristics don't get in a way).
16577 *
16578 * When we first time come to 1:, let's say we have some state X. We proceed
16579 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16580 * Now we come back to validate that forked ACTIVE state. We proceed through
16581 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16582 * are converging. But the problem is that we don't know that yet, as this
16583 * convergence has to happen at iter_next() call site only. So if nothing is
16584 * done, at 1: verifier will use bounded loop logic and declare infinite
16585 * looping (and would be *technically* correct, if not for iterator's
16586 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16587 * don't want that. So what we do in process_iter_next_call() when we go on
16588 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16589 * a different iteration. So when we suspect an infinite loop, we additionally
16590 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16591 * pretend we are not looping and wait for next iter_next() call.
16592 *
16593 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16594 * loop, because that would actually mean infinite loop, as DRAINED state is
16595 * "sticky", and so we'll keep returning into the same instruction with the
16596 * same state (at least in one of possible code paths).
16597 *
16598 * This approach allows to keep infinite loop heuristic even in the face of
16599 * active iterator. E.g., C snippet below is and will be detected as
16600 * inifintely looping:
16601 *
16602 * struct bpf_iter_num it;
16603 * int *p, x;
16604 *
16605 * bpf_iter_num_new(&it, 0, 10);
16606 * while ((p = bpf_iter_num_next(&t))) {
16607 * x = p;
16608 * while (x--) {} // <<-- infinite loop here
16609 * }
16610 *
16611 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16612 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16613 {
16614 struct bpf_reg_state *slot, *cur_slot;
16615 struct bpf_func_state *state;
16616 int i, fr;
16617
16618 for (fr = old->curframe; fr >= 0; fr--) {
16619 state = old->frame[fr];
16620 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16621 if (state->stack[i].slot_type[0] != STACK_ITER)
16622 continue;
16623
16624 slot = &state->stack[i].spilled_ptr;
16625 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16626 continue;
16627
16628 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16629 if (cur_slot->iter.depth != slot->iter.depth)
16630 return true;
16631 }
16632 }
16633 return false;
16634 }
16635
is_state_visited(struct bpf_verifier_env * env,int insn_idx)16636 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16637 {
16638 struct bpf_verifier_state_list *new_sl;
16639 struct bpf_verifier_state_list *sl, **pprev;
16640 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16641 int i, j, n, err, states_cnt = 0;
16642 bool force_new_state, add_new_state, force_exact;
16643
16644 force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16645 /* Avoid accumulating infinitely long jmp history */
16646 cur->jmp_history_cnt > 40;
16647
16648 /* bpf progs typically have pruning point every 4 instructions
16649 * http://vger.kernel.org/bpfconf2019.html#session-1
16650 * Do not add new state for future pruning if the verifier hasn't seen
16651 * at least 2 jumps and at least 8 instructions.
16652 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16653 * In tests that amounts to up to 50% reduction into total verifier
16654 * memory consumption and 20% verifier time speedup.
16655 */
16656 add_new_state = force_new_state;
16657 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16658 env->insn_processed - env->prev_insn_processed >= 8)
16659 add_new_state = true;
16660
16661 pprev = explored_state(env, insn_idx);
16662 sl = *pprev;
16663
16664 clean_live_states(env, insn_idx, cur);
16665
16666 while (sl) {
16667 states_cnt++;
16668 if (sl->state.insn_idx != insn_idx)
16669 goto next;
16670
16671 if (sl->state.branches) {
16672 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16673
16674 if (frame->in_async_callback_fn &&
16675 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16676 /* Different async_entry_cnt means that the verifier is
16677 * processing another entry into async callback.
16678 * Seeing the same state is not an indication of infinite
16679 * loop or infinite recursion.
16680 * But finding the same state doesn't mean that it's safe
16681 * to stop processing the current state. The previous state
16682 * hasn't yet reached bpf_exit, since state.branches > 0.
16683 * Checking in_async_callback_fn alone is not enough either.
16684 * Since the verifier still needs to catch infinite loops
16685 * inside async callbacks.
16686 */
16687 goto skip_inf_loop_check;
16688 }
16689 /* BPF open-coded iterators loop detection is special.
16690 * states_maybe_looping() logic is too simplistic in detecting
16691 * states that *might* be equivalent, because it doesn't know
16692 * about ID remapping, so don't even perform it.
16693 * See process_iter_next_call() and iter_active_depths_differ()
16694 * for overview of the logic. When current and one of parent
16695 * states are detected as equivalent, it's a good thing: we prove
16696 * convergence and can stop simulating further iterations.
16697 * It's safe to assume that iterator loop will finish, taking into
16698 * account iter_next() contract of eventually returning
16699 * sticky NULL result.
16700 *
16701 * Note, that states have to be compared exactly in this case because
16702 * read and precision marks might not be finalized inside the loop.
16703 * E.g. as in the program below:
16704 *
16705 * 1. r7 = -16
16706 * 2. r6 = bpf_get_prandom_u32()
16707 * 3. while (bpf_iter_num_next(&fp[-8])) {
16708 * 4. if (r6 != 42) {
16709 * 5. r7 = -32
16710 * 6. r6 = bpf_get_prandom_u32()
16711 * 7. continue
16712 * 8. }
16713 * 9. r0 = r10
16714 * 10. r0 += r7
16715 * 11. r8 = *(u64 *)(r0 + 0)
16716 * 12. r6 = bpf_get_prandom_u32()
16717 * 13. }
16718 *
16719 * Here verifier would first visit path 1-3, create a checkpoint at 3
16720 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16721 * not have read or precision mark for r7 yet, thus inexact states
16722 * comparison would discard current state with r7=-32
16723 * => unsafe memory access at 11 would not be caught.
16724 */
16725 if (is_iter_next_insn(env, insn_idx)) {
16726 if (states_equal(env, &sl->state, cur, true)) {
16727 struct bpf_func_state *cur_frame;
16728 struct bpf_reg_state *iter_state, *iter_reg;
16729 int spi;
16730
16731 cur_frame = cur->frame[cur->curframe];
16732 /* btf_check_iter_kfuncs() enforces that
16733 * iter state pointer is always the first arg
16734 */
16735 iter_reg = &cur_frame->regs[BPF_REG_1];
16736 /* current state is valid due to states_equal(),
16737 * so we can assume valid iter and reg state,
16738 * no need for extra (re-)validations
16739 */
16740 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16741 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16742 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16743 update_loop_entry(cur, &sl->state);
16744 goto hit;
16745 }
16746 }
16747 goto skip_inf_loop_check;
16748 }
16749 if (calls_callback(env, insn_idx)) {
16750 if (states_equal(env, &sl->state, cur, true))
16751 goto hit;
16752 goto skip_inf_loop_check;
16753 }
16754 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16755 if (states_maybe_looping(&sl->state, cur) &&
16756 states_equal(env, &sl->state, cur, false) &&
16757 !iter_active_depths_differ(&sl->state, cur) &&
16758 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16759 verbose_linfo(env, insn_idx, "; ");
16760 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16761 verbose(env, "cur state:");
16762 print_verifier_state(env, cur->frame[cur->curframe], true);
16763 verbose(env, "old state:");
16764 print_verifier_state(env, sl->state.frame[cur->curframe], true);
16765 return -EINVAL;
16766 }
16767 /* if the verifier is processing a loop, avoid adding new state
16768 * too often, since different loop iterations have distinct
16769 * states and may not help future pruning.
16770 * This threshold shouldn't be too low to make sure that
16771 * a loop with large bound will be rejected quickly.
16772 * The most abusive loop will be:
16773 * r1 += 1
16774 * if r1 < 1000000 goto pc-2
16775 * 1M insn_procssed limit / 100 == 10k peak states.
16776 * This threshold shouldn't be too high either, since states
16777 * at the end of the loop are likely to be useful in pruning.
16778 */
16779 skip_inf_loop_check:
16780 if (!force_new_state &&
16781 env->jmps_processed - env->prev_jmps_processed < 20 &&
16782 env->insn_processed - env->prev_insn_processed < 100)
16783 add_new_state = false;
16784 goto miss;
16785 }
16786 /* If sl->state is a part of a loop and this loop's entry is a part of
16787 * current verification path then states have to be compared exactly.
16788 * 'force_exact' is needed to catch the following case:
16789 *
16790 * initial Here state 'succ' was processed first,
16791 * | it was eventually tracked to produce a
16792 * V state identical to 'hdr'.
16793 * .---------> hdr All branches from 'succ' had been explored
16794 * | | and thus 'succ' has its .branches == 0.
16795 * | V
16796 * | .------... Suppose states 'cur' and 'succ' correspond
16797 * | | | to the same instruction + callsites.
16798 * | V V In such case it is necessary to check
16799 * | ... ... if 'succ' and 'cur' are states_equal().
16800 * | | | If 'succ' and 'cur' are a part of the
16801 * | V V same loop exact flag has to be set.
16802 * | succ <- cur To check if that is the case, verify
16803 * | | if loop entry of 'succ' is in current
16804 * | V DFS path.
16805 * | ...
16806 * | |
16807 * '----'
16808 *
16809 * Additional details are in the comment before get_loop_entry().
16810 */
16811 loop_entry = get_loop_entry(&sl->state);
16812 force_exact = loop_entry && loop_entry->branches > 0;
16813 if (states_equal(env, &sl->state, cur, force_exact)) {
16814 if (force_exact)
16815 update_loop_entry(cur, loop_entry);
16816 hit:
16817 sl->hit_cnt++;
16818 /* reached equivalent register/stack state,
16819 * prune the search.
16820 * Registers read by the continuation are read by us.
16821 * If we have any write marks in env->cur_state, they
16822 * will prevent corresponding reads in the continuation
16823 * from reaching our parent (an explored_state). Our
16824 * own state will get the read marks recorded, but
16825 * they'll be immediately forgotten as we're pruning
16826 * this state and will pop a new one.
16827 */
16828 err = propagate_liveness(env, &sl->state, cur);
16829
16830 /* if previous state reached the exit with precision and
16831 * current state is equivalent to it (except precsion marks)
16832 * the precision needs to be propagated back in
16833 * the current state.
16834 */
16835 err = err ? : push_jmp_history(env, cur);
16836 err = err ? : propagate_precision(env, &sl->state);
16837 if (err)
16838 return err;
16839 return 1;
16840 }
16841 miss:
16842 /* when new state is not going to be added do not increase miss count.
16843 * Otherwise several loop iterations will remove the state
16844 * recorded earlier. The goal of these heuristics is to have
16845 * states from some iterations of the loop (some in the beginning
16846 * and some at the end) to help pruning.
16847 */
16848 if (add_new_state)
16849 sl->miss_cnt++;
16850 /* heuristic to determine whether this state is beneficial
16851 * to keep checking from state equivalence point of view.
16852 * Higher numbers increase max_states_per_insn and verification time,
16853 * but do not meaningfully decrease insn_processed.
16854 * 'n' controls how many times state could miss before eviction.
16855 * Use bigger 'n' for checkpoints because evicting checkpoint states
16856 * too early would hinder iterator convergence.
16857 */
16858 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16859 if (sl->miss_cnt > sl->hit_cnt * n + n) {
16860 /* the state is unlikely to be useful. Remove it to
16861 * speed up verification
16862 */
16863 *pprev = sl->next;
16864 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16865 !sl->state.used_as_loop_entry) {
16866 u32 br = sl->state.branches;
16867
16868 WARN_ONCE(br,
16869 "BUG live_done but branches_to_explore %d\n",
16870 br);
16871 free_verifier_state(&sl->state, false);
16872 kfree(sl);
16873 env->peak_states--;
16874 } else {
16875 /* cannot free this state, since parentage chain may
16876 * walk it later. Add it for free_list instead to
16877 * be freed at the end of verification
16878 */
16879 sl->next = env->free_list;
16880 env->free_list = sl;
16881 }
16882 sl = *pprev;
16883 continue;
16884 }
16885 next:
16886 pprev = &sl->next;
16887 sl = *pprev;
16888 }
16889
16890 if (env->max_states_per_insn < states_cnt)
16891 env->max_states_per_insn = states_cnt;
16892
16893 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16894 return 0;
16895
16896 if (!add_new_state)
16897 return 0;
16898
16899 /* There were no equivalent states, remember the current one.
16900 * Technically the current state is not proven to be safe yet,
16901 * but it will either reach outer most bpf_exit (which means it's safe)
16902 * or it will be rejected. When there are no loops the verifier won't be
16903 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16904 * again on the way to bpf_exit.
16905 * When looping the sl->state.branches will be > 0 and this state
16906 * will not be considered for equivalence until branches == 0.
16907 */
16908 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16909 if (!new_sl)
16910 return -ENOMEM;
16911 env->total_states++;
16912 env->peak_states++;
16913 env->prev_jmps_processed = env->jmps_processed;
16914 env->prev_insn_processed = env->insn_processed;
16915
16916 /* forget precise markings we inherited, see __mark_chain_precision */
16917 if (env->bpf_capable)
16918 mark_all_scalars_imprecise(env, cur);
16919
16920 /* add new state to the head of linked list */
16921 new = &new_sl->state;
16922 err = copy_verifier_state(new, cur);
16923 if (err) {
16924 free_verifier_state(new, false);
16925 kfree(new_sl);
16926 return err;
16927 }
16928 new->insn_idx = insn_idx;
16929 WARN_ONCE(new->branches != 1,
16930 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16931
16932 cur->parent = new;
16933 cur->first_insn_idx = insn_idx;
16934 cur->dfs_depth = new->dfs_depth + 1;
16935 clear_jmp_history(cur);
16936 new_sl->next = *explored_state(env, insn_idx);
16937 *explored_state(env, insn_idx) = new_sl;
16938 /* connect new state to parentage chain. Current frame needs all
16939 * registers connected. Only r6 - r9 of the callers are alive (pushed
16940 * to the stack implicitly by JITs) so in callers' frames connect just
16941 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16942 * the state of the call instruction (with WRITTEN set), and r0 comes
16943 * from callee with its full parentage chain, anyway.
16944 */
16945 /* clear write marks in current state: the writes we did are not writes
16946 * our child did, so they don't screen off its reads from us.
16947 * (There are no read marks in current state, because reads always mark
16948 * their parent and current state never has children yet. Only
16949 * explored_states can get read marks.)
16950 */
16951 for (j = 0; j <= cur->curframe; j++) {
16952 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16953 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16954 for (i = 0; i < BPF_REG_FP; i++)
16955 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16956 }
16957
16958 /* all stack frames are accessible from callee, clear them all */
16959 for (j = 0; j <= cur->curframe; j++) {
16960 struct bpf_func_state *frame = cur->frame[j];
16961 struct bpf_func_state *newframe = new->frame[j];
16962
16963 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16964 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16965 frame->stack[i].spilled_ptr.parent =
16966 &newframe->stack[i].spilled_ptr;
16967 }
16968 }
16969 return 0;
16970 }
16971
16972 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)16973 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16974 {
16975 switch (base_type(type)) {
16976 case PTR_TO_CTX:
16977 case PTR_TO_SOCKET:
16978 case PTR_TO_SOCK_COMMON:
16979 case PTR_TO_TCP_SOCK:
16980 case PTR_TO_XDP_SOCK:
16981 case PTR_TO_BTF_ID:
16982 return false;
16983 default:
16984 return true;
16985 }
16986 }
16987
16988 /* If an instruction was previously used with particular pointer types, then we
16989 * need to be careful to avoid cases such as the below, where it may be ok
16990 * for one branch accessing the pointer, but not ok for the other branch:
16991 *
16992 * R1 = sock_ptr
16993 * goto X;
16994 * ...
16995 * R1 = some_other_valid_ptr;
16996 * goto X;
16997 * ...
16998 * R2 = *(u32 *)(R1 + 0);
16999 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)17000 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
17001 {
17002 return src != prev && (!reg_type_mismatch_ok(src) ||
17003 !reg_type_mismatch_ok(prev));
17004 }
17005
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_missmatch)17006 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
17007 bool allow_trust_missmatch)
17008 {
17009 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
17010
17011 if (*prev_type == NOT_INIT) {
17012 /* Saw a valid insn
17013 * dst_reg = *(u32 *)(src_reg + off)
17014 * save type to validate intersecting paths
17015 */
17016 *prev_type = type;
17017 } else if (reg_type_mismatch(type, *prev_type)) {
17018 /* Abuser program is trying to use the same insn
17019 * dst_reg = *(u32*) (src_reg + off)
17020 * with different pointer types:
17021 * src_reg == ctx in one branch and
17022 * src_reg == stack|map in some other branch.
17023 * Reject it.
17024 */
17025 if (allow_trust_missmatch &&
17026 base_type(type) == PTR_TO_BTF_ID &&
17027 base_type(*prev_type) == PTR_TO_BTF_ID) {
17028 /*
17029 * Have to support a use case when one path through
17030 * the program yields TRUSTED pointer while another
17031 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17032 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17033 */
17034 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17035 } else {
17036 verbose(env, "same insn cannot be used with different pointers\n");
17037 return -EINVAL;
17038 }
17039 }
17040
17041 return 0;
17042 }
17043
do_check(struct bpf_verifier_env * env)17044 static int do_check(struct bpf_verifier_env *env)
17045 {
17046 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17047 struct bpf_verifier_state *state = env->cur_state;
17048 struct bpf_insn *insns = env->prog->insnsi;
17049 struct bpf_reg_state *regs;
17050 int insn_cnt = env->prog->len;
17051 bool do_print_state = false;
17052 int prev_insn_idx = -1;
17053
17054 for (;;) {
17055 struct bpf_insn *insn;
17056 u8 class;
17057 int err;
17058
17059 env->prev_insn_idx = prev_insn_idx;
17060 if (env->insn_idx >= insn_cnt) {
17061 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17062 env->insn_idx, insn_cnt);
17063 return -EFAULT;
17064 }
17065
17066 insn = &insns[env->insn_idx];
17067 class = BPF_CLASS(insn->code);
17068
17069 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17070 verbose(env,
17071 "BPF program is too large. Processed %d insn\n",
17072 env->insn_processed);
17073 return -E2BIG;
17074 }
17075
17076 state->last_insn_idx = env->prev_insn_idx;
17077
17078 if (is_prune_point(env, env->insn_idx)) {
17079 err = is_state_visited(env, env->insn_idx);
17080 if (err < 0)
17081 return err;
17082 if (err == 1) {
17083 /* found equivalent state, can prune the search */
17084 if (env->log.level & BPF_LOG_LEVEL) {
17085 if (do_print_state)
17086 verbose(env, "\nfrom %d to %d%s: safe\n",
17087 env->prev_insn_idx, env->insn_idx,
17088 env->cur_state->speculative ?
17089 " (speculative execution)" : "");
17090 else
17091 verbose(env, "%d: safe\n", env->insn_idx);
17092 }
17093 goto process_bpf_exit;
17094 }
17095 }
17096
17097 if (is_jmp_point(env, env->insn_idx)) {
17098 err = push_jmp_history(env, state);
17099 if (err)
17100 return err;
17101 }
17102
17103 if (signal_pending(current))
17104 return -EAGAIN;
17105
17106 if (need_resched())
17107 cond_resched();
17108
17109 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17110 verbose(env, "\nfrom %d to %d%s:",
17111 env->prev_insn_idx, env->insn_idx,
17112 env->cur_state->speculative ?
17113 " (speculative execution)" : "");
17114 print_verifier_state(env, state->frame[state->curframe], true);
17115 do_print_state = false;
17116 }
17117
17118 if (env->log.level & BPF_LOG_LEVEL) {
17119 const struct bpf_insn_cbs cbs = {
17120 .cb_call = disasm_kfunc_name,
17121 .cb_print = verbose,
17122 .private_data = env,
17123 };
17124
17125 if (verifier_state_scratched(env))
17126 print_insn_state(env, state->frame[state->curframe]);
17127
17128 verbose_linfo(env, env->insn_idx, "; ");
17129 env->prev_log_pos = env->log.end_pos;
17130 verbose(env, "%d: ", env->insn_idx);
17131 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17132 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17133 env->prev_log_pos = env->log.end_pos;
17134 }
17135
17136 if (bpf_prog_is_offloaded(env->prog->aux)) {
17137 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17138 env->prev_insn_idx);
17139 if (err)
17140 return err;
17141 }
17142
17143 regs = cur_regs(env);
17144 sanitize_mark_insn_seen(env);
17145 prev_insn_idx = env->insn_idx;
17146
17147 if (class == BPF_ALU || class == BPF_ALU64) {
17148 err = check_alu_op(env, insn);
17149 if (err)
17150 return err;
17151
17152 } else if (class == BPF_LDX) {
17153 enum bpf_reg_type src_reg_type;
17154
17155 /* check for reserved fields is already done */
17156
17157 /* check src operand */
17158 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17159 if (err)
17160 return err;
17161
17162 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17163 if (err)
17164 return err;
17165
17166 src_reg_type = regs[insn->src_reg].type;
17167
17168 /* check that memory (src_reg + off) is readable,
17169 * the state of dst_reg will be updated by this func
17170 */
17171 err = check_mem_access(env, env->insn_idx, insn->src_reg,
17172 insn->off, BPF_SIZE(insn->code),
17173 BPF_READ, insn->dst_reg, false,
17174 BPF_MODE(insn->code) == BPF_MEMSX);
17175 if (err)
17176 return err;
17177
17178 err = save_aux_ptr_type(env, src_reg_type, true);
17179 if (err)
17180 return err;
17181 } else if (class == BPF_STX) {
17182 enum bpf_reg_type dst_reg_type;
17183
17184 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17185 err = check_atomic(env, env->insn_idx, insn);
17186 if (err)
17187 return err;
17188 env->insn_idx++;
17189 continue;
17190 }
17191
17192 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17193 verbose(env, "BPF_STX uses reserved fields\n");
17194 return -EINVAL;
17195 }
17196
17197 /* check src1 operand */
17198 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17199 if (err)
17200 return err;
17201 /* check src2 operand */
17202 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17203 if (err)
17204 return err;
17205
17206 dst_reg_type = regs[insn->dst_reg].type;
17207
17208 /* check that memory (dst_reg + off) is writeable */
17209 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17210 insn->off, BPF_SIZE(insn->code),
17211 BPF_WRITE, insn->src_reg, false, false);
17212 if (err)
17213 return err;
17214
17215 err = save_aux_ptr_type(env, dst_reg_type, false);
17216 if (err)
17217 return err;
17218 } else if (class == BPF_ST) {
17219 enum bpf_reg_type dst_reg_type;
17220
17221 if (BPF_MODE(insn->code) != BPF_MEM ||
17222 insn->src_reg != BPF_REG_0) {
17223 verbose(env, "BPF_ST uses reserved fields\n");
17224 return -EINVAL;
17225 }
17226 /* check src operand */
17227 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17228 if (err)
17229 return err;
17230
17231 dst_reg_type = regs[insn->dst_reg].type;
17232
17233 /* check that memory (dst_reg + off) is writeable */
17234 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17235 insn->off, BPF_SIZE(insn->code),
17236 BPF_WRITE, -1, false, false);
17237 if (err)
17238 return err;
17239
17240 err = save_aux_ptr_type(env, dst_reg_type, false);
17241 if (err)
17242 return err;
17243 } else if (class == BPF_JMP || class == BPF_JMP32) {
17244 u8 opcode = BPF_OP(insn->code);
17245
17246 env->jmps_processed++;
17247 if (opcode == BPF_CALL) {
17248 if (BPF_SRC(insn->code) != BPF_K ||
17249 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17250 && insn->off != 0) ||
17251 (insn->src_reg != BPF_REG_0 &&
17252 insn->src_reg != BPF_PSEUDO_CALL &&
17253 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17254 insn->dst_reg != BPF_REG_0 ||
17255 class == BPF_JMP32) {
17256 verbose(env, "BPF_CALL uses reserved fields\n");
17257 return -EINVAL;
17258 }
17259
17260 if (env->cur_state->active_lock.ptr) {
17261 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17262 (insn->src_reg == BPF_PSEUDO_CALL) ||
17263 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17264 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17265 verbose(env, "function calls are not allowed while holding a lock\n");
17266 return -EINVAL;
17267 }
17268 }
17269 if (insn->src_reg == BPF_PSEUDO_CALL)
17270 err = check_func_call(env, insn, &env->insn_idx);
17271 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17272 err = check_kfunc_call(env, insn, &env->insn_idx);
17273 else
17274 err = check_helper_call(env, insn, &env->insn_idx);
17275 if (err)
17276 return err;
17277
17278 mark_reg_scratched(env, BPF_REG_0);
17279 } else if (opcode == BPF_JA) {
17280 if (BPF_SRC(insn->code) != BPF_K ||
17281 insn->src_reg != BPF_REG_0 ||
17282 insn->dst_reg != BPF_REG_0 ||
17283 (class == BPF_JMP && insn->imm != 0) ||
17284 (class == BPF_JMP32 && insn->off != 0)) {
17285 verbose(env, "BPF_JA uses reserved fields\n");
17286 return -EINVAL;
17287 }
17288
17289 if (class == BPF_JMP)
17290 env->insn_idx += insn->off + 1;
17291 else
17292 env->insn_idx += insn->imm + 1;
17293 continue;
17294
17295 } else if (opcode == BPF_EXIT) {
17296 if (BPF_SRC(insn->code) != BPF_K ||
17297 insn->imm != 0 ||
17298 insn->src_reg != BPF_REG_0 ||
17299 insn->dst_reg != BPF_REG_0 ||
17300 class == BPF_JMP32) {
17301 verbose(env, "BPF_EXIT uses reserved fields\n");
17302 return -EINVAL;
17303 }
17304
17305 if (env->cur_state->active_lock.ptr &&
17306 !in_rbtree_lock_required_cb(env)) {
17307 verbose(env, "bpf_spin_unlock is missing\n");
17308 return -EINVAL;
17309 }
17310
17311 if (env->cur_state->active_rcu_lock &&
17312 !in_rbtree_lock_required_cb(env)) {
17313 verbose(env, "bpf_rcu_read_unlock is missing\n");
17314 return -EINVAL;
17315 }
17316
17317 /* We must do check_reference_leak here before
17318 * prepare_func_exit to handle the case when
17319 * state->curframe > 0, it may be a callback
17320 * function, for which reference_state must
17321 * match caller reference state when it exits.
17322 */
17323 err = check_reference_leak(env);
17324 if (err)
17325 return err;
17326
17327 if (state->curframe) {
17328 /* exit from nested function */
17329 err = prepare_func_exit(env, &env->insn_idx);
17330 if (err)
17331 return err;
17332 do_print_state = true;
17333 continue;
17334 }
17335
17336 err = check_return_code(env);
17337 if (err)
17338 return err;
17339 process_bpf_exit:
17340 mark_verifier_state_scratched(env);
17341 update_branch_counts(env, env->cur_state);
17342 err = pop_stack(env, &prev_insn_idx,
17343 &env->insn_idx, pop_log);
17344 if (err < 0) {
17345 if (err != -ENOENT)
17346 return err;
17347 break;
17348 } else {
17349 do_print_state = true;
17350 continue;
17351 }
17352 } else {
17353 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17354 if (err)
17355 return err;
17356 }
17357 } else if (class == BPF_LD) {
17358 u8 mode = BPF_MODE(insn->code);
17359
17360 if (mode == BPF_ABS || mode == BPF_IND) {
17361 err = check_ld_abs(env, insn);
17362 if (err)
17363 return err;
17364
17365 } else if (mode == BPF_IMM) {
17366 err = check_ld_imm(env, insn);
17367 if (err)
17368 return err;
17369
17370 env->insn_idx++;
17371 sanitize_mark_insn_seen(env);
17372 } else {
17373 verbose(env, "invalid BPF_LD mode\n");
17374 return -EINVAL;
17375 }
17376 } else {
17377 verbose(env, "unknown insn class %d\n", class);
17378 return -EINVAL;
17379 }
17380
17381 env->insn_idx++;
17382 }
17383
17384 return 0;
17385 }
17386
find_btf_percpu_datasec(struct btf * btf)17387 static int find_btf_percpu_datasec(struct btf *btf)
17388 {
17389 const struct btf_type *t;
17390 const char *tname;
17391 int i, n;
17392
17393 /*
17394 * Both vmlinux and module each have their own ".data..percpu"
17395 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17396 * types to look at only module's own BTF types.
17397 */
17398 n = btf_nr_types(btf);
17399 if (btf_is_module(btf))
17400 i = btf_nr_types(btf_vmlinux);
17401 else
17402 i = 1;
17403
17404 for(; i < n; i++) {
17405 t = btf_type_by_id(btf, i);
17406 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17407 continue;
17408
17409 tname = btf_name_by_offset(btf, t->name_off);
17410 if (!strcmp(tname, ".data..percpu"))
17411 return i;
17412 }
17413
17414 return -ENOENT;
17415 }
17416
17417 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)17418 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17419 struct bpf_insn *insn,
17420 struct bpf_insn_aux_data *aux)
17421 {
17422 const struct btf_var_secinfo *vsi;
17423 const struct btf_type *datasec;
17424 struct btf_mod_pair *btf_mod;
17425 const struct btf_type *t;
17426 const char *sym_name;
17427 bool percpu = false;
17428 u32 type, id = insn->imm;
17429 struct btf *btf;
17430 s32 datasec_id;
17431 u64 addr;
17432 int i, btf_fd, err;
17433
17434 btf_fd = insn[1].imm;
17435 if (btf_fd) {
17436 btf = btf_get_by_fd(btf_fd);
17437 if (IS_ERR(btf)) {
17438 verbose(env, "invalid module BTF object FD specified.\n");
17439 return -EINVAL;
17440 }
17441 } else {
17442 if (!btf_vmlinux) {
17443 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17444 return -EINVAL;
17445 }
17446 btf = btf_vmlinux;
17447 btf_get(btf);
17448 }
17449
17450 t = btf_type_by_id(btf, id);
17451 if (!t) {
17452 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17453 err = -ENOENT;
17454 goto err_put;
17455 }
17456
17457 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17458 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17459 err = -EINVAL;
17460 goto err_put;
17461 }
17462
17463 sym_name = btf_name_by_offset(btf, t->name_off);
17464 addr = kallsyms_lookup_name(sym_name);
17465 if (!addr) {
17466 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17467 sym_name);
17468 err = -ENOENT;
17469 goto err_put;
17470 }
17471 insn[0].imm = (u32)addr;
17472 insn[1].imm = addr >> 32;
17473
17474 if (btf_type_is_func(t)) {
17475 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17476 aux->btf_var.mem_size = 0;
17477 goto check_btf;
17478 }
17479
17480 datasec_id = find_btf_percpu_datasec(btf);
17481 if (datasec_id > 0) {
17482 datasec = btf_type_by_id(btf, datasec_id);
17483 for_each_vsi(i, datasec, vsi) {
17484 if (vsi->type == id) {
17485 percpu = true;
17486 break;
17487 }
17488 }
17489 }
17490
17491 type = t->type;
17492 t = btf_type_skip_modifiers(btf, type, NULL);
17493 if (percpu) {
17494 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17495 aux->btf_var.btf = btf;
17496 aux->btf_var.btf_id = type;
17497 } else if (!btf_type_is_struct(t)) {
17498 const struct btf_type *ret;
17499 const char *tname;
17500 u32 tsize;
17501
17502 /* resolve the type size of ksym. */
17503 ret = btf_resolve_size(btf, t, &tsize);
17504 if (IS_ERR(ret)) {
17505 tname = btf_name_by_offset(btf, t->name_off);
17506 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17507 tname, PTR_ERR(ret));
17508 err = -EINVAL;
17509 goto err_put;
17510 }
17511 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17512 aux->btf_var.mem_size = tsize;
17513 } else {
17514 aux->btf_var.reg_type = PTR_TO_BTF_ID;
17515 aux->btf_var.btf = btf;
17516 aux->btf_var.btf_id = type;
17517 }
17518 check_btf:
17519 /* check whether we recorded this BTF (and maybe module) already */
17520 for (i = 0; i < env->used_btf_cnt; i++) {
17521 if (env->used_btfs[i].btf == btf) {
17522 btf_put(btf);
17523 return 0;
17524 }
17525 }
17526
17527 if (env->used_btf_cnt >= MAX_USED_BTFS) {
17528 err = -E2BIG;
17529 goto err_put;
17530 }
17531
17532 btf_mod = &env->used_btfs[env->used_btf_cnt];
17533 btf_mod->btf = btf;
17534 btf_mod->module = NULL;
17535
17536 /* if we reference variables from kernel module, bump its refcount */
17537 if (btf_is_module(btf)) {
17538 btf_mod->module = btf_try_get_module(btf);
17539 if (!btf_mod->module) {
17540 err = -ENXIO;
17541 goto err_put;
17542 }
17543 }
17544
17545 env->used_btf_cnt++;
17546
17547 return 0;
17548 err_put:
17549 btf_put(btf);
17550 return err;
17551 }
17552
is_tracing_prog_type(enum bpf_prog_type type)17553 static bool is_tracing_prog_type(enum bpf_prog_type type)
17554 {
17555 switch (type) {
17556 case BPF_PROG_TYPE_KPROBE:
17557 case BPF_PROG_TYPE_TRACEPOINT:
17558 case BPF_PROG_TYPE_PERF_EVENT:
17559 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17560 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17561 return true;
17562 default:
17563 return false;
17564 }
17565 }
17566
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)17567 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17568 struct bpf_map *map,
17569 struct bpf_prog *prog)
17570
17571 {
17572 enum bpf_prog_type prog_type = resolve_prog_type(prog);
17573
17574 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17575 btf_record_has_field(map->record, BPF_RB_ROOT)) {
17576 if (is_tracing_prog_type(prog_type)) {
17577 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17578 return -EINVAL;
17579 }
17580 }
17581
17582 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17583 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17584 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17585 return -EINVAL;
17586 }
17587
17588 if (is_tracing_prog_type(prog_type)) {
17589 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17590 return -EINVAL;
17591 }
17592 }
17593
17594 if (btf_record_has_field(map->record, BPF_TIMER)) {
17595 if (is_tracing_prog_type(prog_type)) {
17596 verbose(env, "tracing progs cannot use bpf_timer yet\n");
17597 return -EINVAL;
17598 }
17599 }
17600
17601 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17602 !bpf_offload_prog_map_match(prog, map)) {
17603 verbose(env, "offload device mismatch between prog and map\n");
17604 return -EINVAL;
17605 }
17606
17607 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17608 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17609 return -EINVAL;
17610 }
17611
17612 if (prog->aux->sleepable)
17613 switch (map->map_type) {
17614 case BPF_MAP_TYPE_HASH:
17615 case BPF_MAP_TYPE_LRU_HASH:
17616 case BPF_MAP_TYPE_ARRAY:
17617 case BPF_MAP_TYPE_PERCPU_HASH:
17618 case BPF_MAP_TYPE_PERCPU_ARRAY:
17619 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17620 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17621 case BPF_MAP_TYPE_HASH_OF_MAPS:
17622 case BPF_MAP_TYPE_RINGBUF:
17623 case BPF_MAP_TYPE_USER_RINGBUF:
17624 case BPF_MAP_TYPE_INODE_STORAGE:
17625 case BPF_MAP_TYPE_SK_STORAGE:
17626 case BPF_MAP_TYPE_TASK_STORAGE:
17627 case BPF_MAP_TYPE_CGRP_STORAGE:
17628 break;
17629 default:
17630 verbose(env,
17631 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17632 return -EINVAL;
17633 }
17634
17635 return 0;
17636 }
17637
bpf_map_is_cgroup_storage(struct bpf_map * map)17638 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17639 {
17640 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17641 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17642 }
17643
17644 /* find and rewrite pseudo imm in ld_imm64 instructions:
17645 *
17646 * 1. if it accesses map FD, replace it with actual map pointer.
17647 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17648 *
17649 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17650 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)17651 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17652 {
17653 struct bpf_insn *insn = env->prog->insnsi;
17654 int insn_cnt = env->prog->len;
17655 int i, j, err;
17656
17657 err = bpf_prog_calc_tag(env->prog);
17658 if (err)
17659 return err;
17660
17661 for (i = 0; i < insn_cnt; i++, insn++) {
17662 if (BPF_CLASS(insn->code) == BPF_LDX &&
17663 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17664 insn->imm != 0)) {
17665 verbose(env, "BPF_LDX uses reserved fields\n");
17666 return -EINVAL;
17667 }
17668
17669 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17670 struct bpf_insn_aux_data *aux;
17671 struct bpf_map *map;
17672 struct fd f;
17673 u64 addr;
17674 u32 fd;
17675
17676 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17677 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17678 insn[1].off != 0) {
17679 verbose(env, "invalid bpf_ld_imm64 insn\n");
17680 return -EINVAL;
17681 }
17682
17683 if (insn[0].src_reg == 0)
17684 /* valid generic load 64-bit imm */
17685 goto next_insn;
17686
17687 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17688 aux = &env->insn_aux_data[i];
17689 err = check_pseudo_btf_id(env, insn, aux);
17690 if (err)
17691 return err;
17692 goto next_insn;
17693 }
17694
17695 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17696 aux = &env->insn_aux_data[i];
17697 aux->ptr_type = PTR_TO_FUNC;
17698 goto next_insn;
17699 }
17700
17701 /* In final convert_pseudo_ld_imm64() step, this is
17702 * converted into regular 64-bit imm load insn.
17703 */
17704 switch (insn[0].src_reg) {
17705 case BPF_PSEUDO_MAP_VALUE:
17706 case BPF_PSEUDO_MAP_IDX_VALUE:
17707 break;
17708 case BPF_PSEUDO_MAP_FD:
17709 case BPF_PSEUDO_MAP_IDX:
17710 if (insn[1].imm == 0)
17711 break;
17712 fallthrough;
17713 default:
17714 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17715 return -EINVAL;
17716 }
17717
17718 switch (insn[0].src_reg) {
17719 case BPF_PSEUDO_MAP_IDX_VALUE:
17720 case BPF_PSEUDO_MAP_IDX:
17721 if (bpfptr_is_null(env->fd_array)) {
17722 verbose(env, "fd_idx without fd_array is invalid\n");
17723 return -EPROTO;
17724 }
17725 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17726 insn[0].imm * sizeof(fd),
17727 sizeof(fd)))
17728 return -EFAULT;
17729 break;
17730 default:
17731 fd = insn[0].imm;
17732 break;
17733 }
17734
17735 f = fdget(fd);
17736 map = __bpf_map_get(f);
17737 if (IS_ERR(map)) {
17738 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17739 return PTR_ERR(map);
17740 }
17741
17742 err = check_map_prog_compatibility(env, map, env->prog);
17743 if (err) {
17744 fdput(f);
17745 return err;
17746 }
17747
17748 aux = &env->insn_aux_data[i];
17749 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17750 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17751 addr = (unsigned long)map;
17752 } else {
17753 u32 off = insn[1].imm;
17754
17755 if (off >= BPF_MAX_VAR_OFF) {
17756 verbose(env, "direct value offset of %u is not allowed\n", off);
17757 fdput(f);
17758 return -EINVAL;
17759 }
17760
17761 if (!map->ops->map_direct_value_addr) {
17762 verbose(env, "no direct value access support for this map type\n");
17763 fdput(f);
17764 return -EINVAL;
17765 }
17766
17767 err = map->ops->map_direct_value_addr(map, &addr, off);
17768 if (err) {
17769 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17770 map->value_size, off);
17771 fdput(f);
17772 return err;
17773 }
17774
17775 aux->map_off = off;
17776 addr += off;
17777 }
17778
17779 insn[0].imm = (u32)addr;
17780 insn[1].imm = addr >> 32;
17781
17782 /* check whether we recorded this map already */
17783 for (j = 0; j < env->used_map_cnt; j++) {
17784 if (env->used_maps[j] == map) {
17785 aux->map_index = j;
17786 fdput(f);
17787 goto next_insn;
17788 }
17789 }
17790
17791 if (env->used_map_cnt >= MAX_USED_MAPS) {
17792 fdput(f);
17793 return -E2BIG;
17794 }
17795
17796 if (env->prog->aux->sleepable)
17797 atomic64_inc(&map->sleepable_refcnt);
17798 /* hold the map. If the program is rejected by verifier,
17799 * the map will be released by release_maps() or it
17800 * will be used by the valid program until it's unloaded
17801 * and all maps are released in bpf_free_used_maps()
17802 */
17803 bpf_map_inc(map);
17804
17805 aux->map_index = env->used_map_cnt;
17806 env->used_maps[env->used_map_cnt++] = map;
17807
17808 if (bpf_map_is_cgroup_storage(map) &&
17809 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17810 verbose(env, "only one cgroup storage of each type is allowed\n");
17811 fdput(f);
17812 return -EBUSY;
17813 }
17814
17815 fdput(f);
17816 next_insn:
17817 insn++;
17818 i++;
17819 continue;
17820 }
17821
17822 /* Basic sanity check before we invest more work here. */
17823 if (!bpf_opcode_in_insntable(insn->code)) {
17824 verbose(env, "unknown opcode %02x\n", insn->code);
17825 return -EINVAL;
17826 }
17827 }
17828
17829 /* now all pseudo BPF_LD_IMM64 instructions load valid
17830 * 'struct bpf_map *' into a register instead of user map_fd.
17831 * These pointers will be used later by verifier to validate map access.
17832 */
17833 return 0;
17834 }
17835
17836 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)17837 static void release_maps(struct bpf_verifier_env *env)
17838 {
17839 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17840 env->used_map_cnt);
17841 }
17842
17843 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)17844 static void release_btfs(struct bpf_verifier_env *env)
17845 {
17846 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17847 env->used_btf_cnt);
17848 }
17849
17850 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)17851 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17852 {
17853 struct bpf_insn *insn = env->prog->insnsi;
17854 int insn_cnt = env->prog->len;
17855 int i;
17856
17857 for (i = 0; i < insn_cnt; i++, insn++) {
17858 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17859 continue;
17860 if (insn->src_reg == BPF_PSEUDO_FUNC)
17861 continue;
17862 insn->src_reg = 0;
17863 }
17864 }
17865
17866 /* single env->prog->insni[off] instruction was replaced with the range
17867 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17868 * [0, off) and [off, end) to new locations, so the patched range stays zero
17869 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)17870 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17871 struct bpf_insn_aux_data *new_data,
17872 struct bpf_prog *new_prog, u32 off, u32 cnt)
17873 {
17874 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17875 struct bpf_insn *insn = new_prog->insnsi;
17876 u32 old_seen = old_data[off].seen;
17877 u32 prog_len;
17878 int i;
17879
17880 /* aux info at OFF always needs adjustment, no matter fast path
17881 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17882 * original insn at old prog.
17883 */
17884 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17885
17886 if (cnt == 1)
17887 return;
17888 prog_len = new_prog->len;
17889
17890 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17891 memcpy(new_data + off + cnt - 1, old_data + off,
17892 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17893 for (i = off; i < off + cnt - 1; i++) {
17894 /* Expand insni[off]'s seen count to the patched range. */
17895 new_data[i].seen = old_seen;
17896 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17897 }
17898 env->insn_aux_data = new_data;
17899 vfree(old_data);
17900 }
17901
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)17902 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17903 {
17904 int i;
17905
17906 if (len == 1)
17907 return;
17908 /* NOTE: fake 'exit' subprog should be updated as well. */
17909 for (i = 0; i <= env->subprog_cnt; i++) {
17910 if (env->subprog_info[i].start <= off)
17911 continue;
17912 env->subprog_info[i].start += len - 1;
17913 }
17914 }
17915
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)17916 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17917 {
17918 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17919 int i, sz = prog->aux->size_poke_tab;
17920 struct bpf_jit_poke_descriptor *desc;
17921
17922 for (i = 0; i < sz; i++) {
17923 desc = &tab[i];
17924 if (desc->insn_idx <= off)
17925 continue;
17926 desc->insn_idx += len - 1;
17927 }
17928 }
17929
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)17930 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17931 const struct bpf_insn *patch, u32 len)
17932 {
17933 struct bpf_prog *new_prog;
17934 struct bpf_insn_aux_data *new_data = NULL;
17935
17936 if (len > 1) {
17937 new_data = vzalloc(array_size(env->prog->len + len - 1,
17938 sizeof(struct bpf_insn_aux_data)));
17939 if (!new_data)
17940 return NULL;
17941 }
17942
17943 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17944 if (IS_ERR(new_prog)) {
17945 if (PTR_ERR(new_prog) == -ERANGE)
17946 verbose(env,
17947 "insn %d cannot be patched due to 16-bit range\n",
17948 env->insn_aux_data[off].orig_idx);
17949 vfree(new_data);
17950 return NULL;
17951 }
17952 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17953 adjust_subprog_starts(env, off, len);
17954 adjust_poke_descs(new_prog, off, len);
17955 return new_prog;
17956 }
17957
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17958 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17959 u32 off, u32 cnt)
17960 {
17961 int i, j;
17962
17963 /* find first prog starting at or after off (first to remove) */
17964 for (i = 0; i < env->subprog_cnt; i++)
17965 if (env->subprog_info[i].start >= off)
17966 break;
17967 /* find first prog starting at or after off + cnt (first to stay) */
17968 for (j = i; j < env->subprog_cnt; j++)
17969 if (env->subprog_info[j].start >= off + cnt)
17970 break;
17971 /* if j doesn't start exactly at off + cnt, we are just removing
17972 * the front of previous prog
17973 */
17974 if (env->subprog_info[j].start != off + cnt)
17975 j--;
17976
17977 if (j > i) {
17978 struct bpf_prog_aux *aux = env->prog->aux;
17979 int move;
17980
17981 /* move fake 'exit' subprog as well */
17982 move = env->subprog_cnt + 1 - j;
17983
17984 memmove(env->subprog_info + i,
17985 env->subprog_info + j,
17986 sizeof(*env->subprog_info) * move);
17987 env->subprog_cnt -= j - i;
17988
17989 /* remove func_info */
17990 if (aux->func_info) {
17991 move = aux->func_info_cnt - j;
17992
17993 memmove(aux->func_info + i,
17994 aux->func_info + j,
17995 sizeof(*aux->func_info) * move);
17996 aux->func_info_cnt -= j - i;
17997 /* func_info->insn_off is set after all code rewrites,
17998 * in adjust_btf_func() - no need to adjust
17999 */
18000 }
18001 } else {
18002 /* convert i from "first prog to remove" to "first to adjust" */
18003 if (env->subprog_info[i].start == off)
18004 i++;
18005 }
18006
18007 /* update fake 'exit' subprog as well */
18008 for (; i <= env->subprog_cnt; i++)
18009 env->subprog_info[i].start -= cnt;
18010
18011 return 0;
18012 }
18013
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)18014 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
18015 u32 cnt)
18016 {
18017 struct bpf_prog *prog = env->prog;
18018 u32 i, l_off, l_cnt, nr_linfo;
18019 struct bpf_line_info *linfo;
18020
18021 nr_linfo = prog->aux->nr_linfo;
18022 if (!nr_linfo)
18023 return 0;
18024
18025 linfo = prog->aux->linfo;
18026
18027 /* find first line info to remove, count lines to be removed */
18028 for (i = 0; i < nr_linfo; i++)
18029 if (linfo[i].insn_off >= off)
18030 break;
18031
18032 l_off = i;
18033 l_cnt = 0;
18034 for (; i < nr_linfo; i++)
18035 if (linfo[i].insn_off < off + cnt)
18036 l_cnt++;
18037 else
18038 break;
18039
18040 /* First live insn doesn't match first live linfo, it needs to "inherit"
18041 * last removed linfo. prog is already modified, so prog->len == off
18042 * means no live instructions after (tail of the program was removed).
18043 */
18044 if (prog->len != off && l_cnt &&
18045 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18046 l_cnt--;
18047 linfo[--i].insn_off = off + cnt;
18048 }
18049
18050 /* remove the line info which refer to the removed instructions */
18051 if (l_cnt) {
18052 memmove(linfo + l_off, linfo + i,
18053 sizeof(*linfo) * (nr_linfo - i));
18054
18055 prog->aux->nr_linfo -= l_cnt;
18056 nr_linfo = prog->aux->nr_linfo;
18057 }
18058
18059 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
18060 for (i = l_off; i < nr_linfo; i++)
18061 linfo[i].insn_off -= cnt;
18062
18063 /* fix up all subprogs (incl. 'exit') which start >= off */
18064 for (i = 0; i <= env->subprog_cnt; i++)
18065 if (env->subprog_info[i].linfo_idx > l_off) {
18066 /* program may have started in the removed region but
18067 * may not be fully removed
18068 */
18069 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18070 env->subprog_info[i].linfo_idx -= l_cnt;
18071 else
18072 env->subprog_info[i].linfo_idx = l_off;
18073 }
18074
18075 return 0;
18076 }
18077
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)18078 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18079 {
18080 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18081 unsigned int orig_prog_len = env->prog->len;
18082 int err;
18083
18084 if (bpf_prog_is_offloaded(env->prog->aux))
18085 bpf_prog_offload_remove_insns(env, off, cnt);
18086
18087 err = bpf_remove_insns(env->prog, off, cnt);
18088 if (err)
18089 return err;
18090
18091 err = adjust_subprog_starts_after_remove(env, off, cnt);
18092 if (err)
18093 return err;
18094
18095 err = bpf_adj_linfo_after_remove(env, off, cnt);
18096 if (err)
18097 return err;
18098
18099 memmove(aux_data + off, aux_data + off + cnt,
18100 sizeof(*aux_data) * (orig_prog_len - off - cnt));
18101
18102 return 0;
18103 }
18104
18105 /* The verifier does more data flow analysis than llvm and will not
18106 * explore branches that are dead at run time. Malicious programs can
18107 * have dead code too. Therefore replace all dead at-run-time code
18108 * with 'ja -1'.
18109 *
18110 * Just nops are not optimal, e.g. if they would sit at the end of the
18111 * program and through another bug we would manage to jump there, then
18112 * we'd execute beyond program memory otherwise. Returning exception
18113 * code also wouldn't work since we can have subprogs where the dead
18114 * code could be located.
18115 */
sanitize_dead_code(struct bpf_verifier_env * env)18116 static void sanitize_dead_code(struct bpf_verifier_env *env)
18117 {
18118 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18119 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18120 struct bpf_insn *insn = env->prog->insnsi;
18121 const int insn_cnt = env->prog->len;
18122 int i;
18123
18124 for (i = 0; i < insn_cnt; i++) {
18125 if (aux_data[i].seen)
18126 continue;
18127 memcpy(insn + i, &trap, sizeof(trap));
18128 aux_data[i].zext_dst = false;
18129 }
18130 }
18131
insn_is_cond_jump(u8 code)18132 static bool insn_is_cond_jump(u8 code)
18133 {
18134 u8 op;
18135
18136 op = BPF_OP(code);
18137 if (BPF_CLASS(code) == BPF_JMP32)
18138 return op != BPF_JA;
18139
18140 if (BPF_CLASS(code) != BPF_JMP)
18141 return false;
18142
18143 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18144 }
18145
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)18146 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18147 {
18148 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18149 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18150 struct bpf_insn *insn = env->prog->insnsi;
18151 const int insn_cnt = env->prog->len;
18152 int i;
18153
18154 for (i = 0; i < insn_cnt; i++, insn++) {
18155 if (!insn_is_cond_jump(insn->code))
18156 continue;
18157
18158 if (!aux_data[i + 1].seen)
18159 ja.off = insn->off;
18160 else if (!aux_data[i + 1 + insn->off].seen)
18161 ja.off = 0;
18162 else
18163 continue;
18164
18165 if (bpf_prog_is_offloaded(env->prog->aux))
18166 bpf_prog_offload_replace_insn(env, i, &ja);
18167
18168 memcpy(insn, &ja, sizeof(ja));
18169 }
18170 }
18171
opt_remove_dead_code(struct bpf_verifier_env * env)18172 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18173 {
18174 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18175 int insn_cnt = env->prog->len;
18176 int i, err;
18177
18178 for (i = 0; i < insn_cnt; i++) {
18179 int j;
18180
18181 j = 0;
18182 while (i + j < insn_cnt && !aux_data[i + j].seen)
18183 j++;
18184 if (!j)
18185 continue;
18186
18187 err = verifier_remove_insns(env, i, j);
18188 if (err)
18189 return err;
18190 insn_cnt = env->prog->len;
18191 }
18192
18193 return 0;
18194 }
18195
opt_remove_nops(struct bpf_verifier_env * env)18196 static int opt_remove_nops(struct bpf_verifier_env *env)
18197 {
18198 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18199 struct bpf_insn *insn = env->prog->insnsi;
18200 int insn_cnt = env->prog->len;
18201 int i, err;
18202
18203 for (i = 0; i < insn_cnt; i++) {
18204 if (memcmp(&insn[i], &ja, sizeof(ja)))
18205 continue;
18206
18207 err = verifier_remove_insns(env, i, 1);
18208 if (err)
18209 return err;
18210 insn_cnt--;
18211 i--;
18212 }
18213
18214 return 0;
18215 }
18216
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)18217 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18218 const union bpf_attr *attr)
18219 {
18220 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18221 struct bpf_insn_aux_data *aux = env->insn_aux_data;
18222 int i, patch_len, delta = 0, len = env->prog->len;
18223 struct bpf_insn *insns = env->prog->insnsi;
18224 struct bpf_prog *new_prog;
18225 bool rnd_hi32;
18226
18227 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18228 zext_patch[1] = BPF_ZEXT_REG(0);
18229 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18230 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18231 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18232 for (i = 0; i < len; i++) {
18233 int adj_idx = i + delta;
18234 struct bpf_insn insn;
18235 int load_reg;
18236
18237 insn = insns[adj_idx];
18238 load_reg = insn_def_regno(&insn);
18239 if (!aux[adj_idx].zext_dst) {
18240 u8 code, class;
18241 u32 imm_rnd;
18242
18243 if (!rnd_hi32)
18244 continue;
18245
18246 code = insn.code;
18247 class = BPF_CLASS(code);
18248 if (load_reg == -1)
18249 continue;
18250
18251 /* NOTE: arg "reg" (the fourth one) is only used for
18252 * BPF_STX + SRC_OP, so it is safe to pass NULL
18253 * here.
18254 */
18255 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18256 if (class == BPF_LD &&
18257 BPF_MODE(code) == BPF_IMM)
18258 i++;
18259 continue;
18260 }
18261
18262 /* ctx load could be transformed into wider load. */
18263 if (class == BPF_LDX &&
18264 aux[adj_idx].ptr_type == PTR_TO_CTX)
18265 continue;
18266
18267 imm_rnd = get_random_u32();
18268 rnd_hi32_patch[0] = insn;
18269 rnd_hi32_patch[1].imm = imm_rnd;
18270 rnd_hi32_patch[3].dst_reg = load_reg;
18271 patch = rnd_hi32_patch;
18272 patch_len = 4;
18273 goto apply_patch_buffer;
18274 }
18275
18276 /* Add in an zero-extend instruction if a) the JIT has requested
18277 * it or b) it's a CMPXCHG.
18278 *
18279 * The latter is because: BPF_CMPXCHG always loads a value into
18280 * R0, therefore always zero-extends. However some archs'
18281 * equivalent instruction only does this load when the
18282 * comparison is successful. This detail of CMPXCHG is
18283 * orthogonal to the general zero-extension behaviour of the
18284 * CPU, so it's treated independently of bpf_jit_needs_zext.
18285 */
18286 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18287 continue;
18288
18289 /* Zero-extension is done by the caller. */
18290 if (bpf_pseudo_kfunc_call(&insn))
18291 continue;
18292
18293 if (WARN_ON(load_reg == -1)) {
18294 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18295 return -EFAULT;
18296 }
18297
18298 zext_patch[0] = insn;
18299 zext_patch[1].dst_reg = load_reg;
18300 zext_patch[1].src_reg = load_reg;
18301 patch = zext_patch;
18302 patch_len = 2;
18303 apply_patch_buffer:
18304 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18305 if (!new_prog)
18306 return -ENOMEM;
18307 env->prog = new_prog;
18308 insns = new_prog->insnsi;
18309 aux = env->insn_aux_data;
18310 delta += patch_len - 1;
18311 }
18312
18313 return 0;
18314 }
18315
18316 /* convert load instructions that access fields of a context type into a
18317 * sequence of instructions that access fields of the underlying structure:
18318 * struct __sk_buff -> struct sk_buff
18319 * struct bpf_sock_ops -> struct sock
18320 */
convert_ctx_accesses(struct bpf_verifier_env * env)18321 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18322 {
18323 const struct bpf_verifier_ops *ops = env->ops;
18324 int i, cnt, size, ctx_field_size, delta = 0;
18325 const int insn_cnt = env->prog->len;
18326 struct bpf_insn insn_buf[16], *insn;
18327 u32 target_size, size_default, off;
18328 struct bpf_prog *new_prog;
18329 enum bpf_access_type type;
18330 bool is_narrower_load;
18331
18332 if (ops->gen_prologue || env->seen_direct_write) {
18333 if (!ops->gen_prologue) {
18334 verbose(env, "bpf verifier is misconfigured\n");
18335 return -EINVAL;
18336 }
18337 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18338 env->prog);
18339 if (cnt >= ARRAY_SIZE(insn_buf)) {
18340 verbose(env, "bpf verifier is misconfigured\n");
18341 return -EINVAL;
18342 } else if (cnt) {
18343 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18344 if (!new_prog)
18345 return -ENOMEM;
18346
18347 env->prog = new_prog;
18348 delta += cnt - 1;
18349 }
18350 }
18351
18352 if (bpf_prog_is_offloaded(env->prog->aux))
18353 return 0;
18354
18355 insn = env->prog->insnsi + delta;
18356
18357 for (i = 0; i < insn_cnt; i++, insn++) {
18358 bpf_convert_ctx_access_t convert_ctx_access;
18359 u8 mode;
18360
18361 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18362 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18363 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18364 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18365 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18366 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18367 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18368 type = BPF_READ;
18369 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18370 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18371 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18372 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18373 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18374 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18375 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18376 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18377 type = BPF_WRITE;
18378 } else {
18379 continue;
18380 }
18381
18382 if (type == BPF_WRITE &&
18383 env->insn_aux_data[i + delta].sanitize_stack_spill) {
18384 struct bpf_insn patch[] = {
18385 *insn,
18386 BPF_ST_NOSPEC(),
18387 };
18388
18389 cnt = ARRAY_SIZE(patch);
18390 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18391 if (!new_prog)
18392 return -ENOMEM;
18393
18394 delta += cnt - 1;
18395 env->prog = new_prog;
18396 insn = new_prog->insnsi + i + delta;
18397 continue;
18398 }
18399
18400 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18401 case PTR_TO_CTX:
18402 if (!ops->convert_ctx_access)
18403 continue;
18404 convert_ctx_access = ops->convert_ctx_access;
18405 break;
18406 case PTR_TO_SOCKET:
18407 case PTR_TO_SOCK_COMMON:
18408 convert_ctx_access = bpf_sock_convert_ctx_access;
18409 break;
18410 case PTR_TO_TCP_SOCK:
18411 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18412 break;
18413 case PTR_TO_XDP_SOCK:
18414 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18415 break;
18416 case PTR_TO_BTF_ID:
18417 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18418 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18419 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18420 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18421 * any faults for loads into such types. BPF_WRITE is disallowed
18422 * for this case.
18423 */
18424 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18425 if (type == BPF_READ) {
18426 if (BPF_MODE(insn->code) == BPF_MEM)
18427 insn->code = BPF_LDX | BPF_PROBE_MEM |
18428 BPF_SIZE((insn)->code);
18429 else
18430 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18431 BPF_SIZE((insn)->code);
18432 env->prog->aux->num_exentries++;
18433 }
18434 continue;
18435 default:
18436 continue;
18437 }
18438
18439 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18440 size = BPF_LDST_BYTES(insn);
18441 mode = BPF_MODE(insn->code);
18442
18443 /* If the read access is a narrower load of the field,
18444 * convert to a 4/8-byte load, to minimum program type specific
18445 * convert_ctx_access changes. If conversion is successful,
18446 * we will apply proper mask to the result.
18447 */
18448 is_narrower_load = size < ctx_field_size;
18449 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18450 off = insn->off;
18451 if (is_narrower_load) {
18452 u8 size_code;
18453
18454 if (type == BPF_WRITE) {
18455 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18456 return -EINVAL;
18457 }
18458
18459 size_code = BPF_H;
18460 if (ctx_field_size == 4)
18461 size_code = BPF_W;
18462 else if (ctx_field_size == 8)
18463 size_code = BPF_DW;
18464
18465 insn->off = off & ~(size_default - 1);
18466 insn->code = BPF_LDX | BPF_MEM | size_code;
18467 }
18468
18469 target_size = 0;
18470 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18471 &target_size);
18472 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18473 (ctx_field_size && !target_size)) {
18474 verbose(env, "bpf verifier is misconfigured\n");
18475 return -EINVAL;
18476 }
18477
18478 if (is_narrower_load && size < target_size) {
18479 u8 shift = bpf_ctx_narrow_access_offset(
18480 off, size, size_default) * 8;
18481 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18482 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18483 return -EINVAL;
18484 }
18485 if (ctx_field_size <= 4) {
18486 if (shift)
18487 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18488 insn->dst_reg,
18489 shift);
18490 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18491 (1 << size * 8) - 1);
18492 } else {
18493 if (shift)
18494 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18495 insn->dst_reg,
18496 shift);
18497 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18498 (1ULL << size * 8) - 1);
18499 }
18500 }
18501 if (mode == BPF_MEMSX)
18502 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18503 insn->dst_reg, insn->dst_reg,
18504 size * 8, 0);
18505
18506 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18507 if (!new_prog)
18508 return -ENOMEM;
18509
18510 delta += cnt - 1;
18511
18512 /* keep walking new program and skip insns we just inserted */
18513 env->prog = new_prog;
18514 insn = new_prog->insnsi + i + delta;
18515 }
18516
18517 return 0;
18518 }
18519
jit_subprogs(struct bpf_verifier_env * env)18520 static int jit_subprogs(struct bpf_verifier_env *env)
18521 {
18522 struct bpf_prog *prog = env->prog, **func, *tmp;
18523 int i, j, subprog_start, subprog_end = 0, len, subprog;
18524 struct bpf_map *map_ptr;
18525 struct bpf_insn *insn;
18526 void *old_bpf_func;
18527 int err, num_exentries;
18528
18529 if (env->subprog_cnt <= 1)
18530 return 0;
18531
18532 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18533 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18534 continue;
18535
18536 /* Upon error here we cannot fall back to interpreter but
18537 * need a hard reject of the program. Thus -EFAULT is
18538 * propagated in any case.
18539 */
18540 subprog = find_subprog(env, i + insn->imm + 1);
18541 if (subprog < 0) {
18542 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18543 i + insn->imm + 1);
18544 return -EFAULT;
18545 }
18546 /* temporarily remember subprog id inside insn instead of
18547 * aux_data, since next loop will split up all insns into funcs
18548 */
18549 insn->off = subprog;
18550 /* remember original imm in case JIT fails and fallback
18551 * to interpreter will be needed
18552 */
18553 env->insn_aux_data[i].call_imm = insn->imm;
18554 /* point imm to __bpf_call_base+1 from JITs point of view */
18555 insn->imm = 1;
18556 if (bpf_pseudo_func(insn))
18557 /* jit (e.g. x86_64) may emit fewer instructions
18558 * if it learns a u32 imm is the same as a u64 imm.
18559 * Force a non zero here.
18560 */
18561 insn[1].imm = 1;
18562 }
18563
18564 err = bpf_prog_alloc_jited_linfo(prog);
18565 if (err)
18566 goto out_undo_insn;
18567
18568 err = -ENOMEM;
18569 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18570 if (!func)
18571 goto out_undo_insn;
18572
18573 for (i = 0; i < env->subprog_cnt; i++) {
18574 subprog_start = subprog_end;
18575 subprog_end = env->subprog_info[i + 1].start;
18576
18577 len = subprog_end - subprog_start;
18578 /* bpf_prog_run() doesn't call subprogs directly,
18579 * hence main prog stats include the runtime of subprogs.
18580 * subprogs don't have IDs and not reachable via prog_get_next_id
18581 * func[i]->stats will never be accessed and stays NULL
18582 */
18583 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18584 if (!func[i])
18585 goto out_free;
18586 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18587 len * sizeof(struct bpf_insn));
18588 func[i]->type = prog->type;
18589 func[i]->len = len;
18590 if (bpf_prog_calc_tag(func[i]))
18591 goto out_free;
18592 func[i]->is_func = 1;
18593 func[i]->aux->func_idx = i;
18594 /* Below members will be freed only at prog->aux */
18595 func[i]->aux->btf = prog->aux->btf;
18596 func[i]->aux->func_info = prog->aux->func_info;
18597 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18598 func[i]->aux->poke_tab = prog->aux->poke_tab;
18599 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18600
18601 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18602 struct bpf_jit_poke_descriptor *poke;
18603
18604 poke = &prog->aux->poke_tab[j];
18605 if (poke->insn_idx < subprog_end &&
18606 poke->insn_idx >= subprog_start)
18607 poke->aux = func[i]->aux;
18608 }
18609
18610 func[i]->aux->name[0] = 'F';
18611 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18612 func[i]->jit_requested = 1;
18613 func[i]->blinding_requested = prog->blinding_requested;
18614 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18615 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18616 func[i]->aux->linfo = prog->aux->linfo;
18617 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18618 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18619 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18620 num_exentries = 0;
18621 insn = func[i]->insnsi;
18622 for (j = 0; j < func[i]->len; j++, insn++) {
18623 if (BPF_CLASS(insn->code) == BPF_LDX &&
18624 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18625 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18626 num_exentries++;
18627 }
18628 func[i]->aux->num_exentries = num_exentries;
18629 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18630 func[i]->aux->changes_pkt_data = env->subprog_info[i].changes_pkt_data;
18631 func[i] = bpf_int_jit_compile(func[i]);
18632 if (!func[i]->jited) {
18633 err = -ENOTSUPP;
18634 goto out_free;
18635 }
18636 cond_resched();
18637 }
18638
18639 /* at this point all bpf functions were successfully JITed
18640 * now populate all bpf_calls with correct addresses and
18641 * run last pass of JIT
18642 */
18643 for (i = 0; i < env->subprog_cnt; i++) {
18644 insn = func[i]->insnsi;
18645 for (j = 0; j < func[i]->len; j++, insn++) {
18646 if (bpf_pseudo_func(insn)) {
18647 subprog = insn->off;
18648 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18649 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18650 continue;
18651 }
18652 if (!bpf_pseudo_call(insn))
18653 continue;
18654 subprog = insn->off;
18655 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18656 }
18657
18658 /* we use the aux data to keep a list of the start addresses
18659 * of the JITed images for each function in the program
18660 *
18661 * for some architectures, such as powerpc64, the imm field
18662 * might not be large enough to hold the offset of the start
18663 * address of the callee's JITed image from __bpf_call_base
18664 *
18665 * in such cases, we can lookup the start address of a callee
18666 * by using its subprog id, available from the off field of
18667 * the call instruction, as an index for this list
18668 */
18669 func[i]->aux->func = func;
18670 func[i]->aux->func_cnt = env->subprog_cnt;
18671 }
18672 for (i = 0; i < env->subprog_cnt; i++) {
18673 old_bpf_func = func[i]->bpf_func;
18674 tmp = bpf_int_jit_compile(func[i]);
18675 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18676 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18677 err = -ENOTSUPP;
18678 goto out_free;
18679 }
18680 cond_resched();
18681 }
18682
18683 /* finally lock prog and jit images for all functions and
18684 * populate kallsysm. Begin at the first subprogram, since
18685 * bpf_prog_load will add the kallsyms for the main program.
18686 */
18687 for (i = 1; i < env->subprog_cnt; i++) {
18688 bpf_prog_lock_ro(func[i]);
18689 bpf_prog_kallsyms_add(func[i]);
18690 }
18691
18692 /* Last step: make now unused interpreter insns from main
18693 * prog consistent for later dump requests, so they can
18694 * later look the same as if they were interpreted only.
18695 */
18696 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18697 if (bpf_pseudo_func(insn)) {
18698 insn[0].imm = env->insn_aux_data[i].call_imm;
18699 insn[1].imm = insn->off;
18700 insn->off = 0;
18701 continue;
18702 }
18703 if (!bpf_pseudo_call(insn))
18704 continue;
18705 insn->off = env->insn_aux_data[i].call_imm;
18706 subprog = find_subprog(env, i + insn->off + 1);
18707 insn->imm = subprog;
18708 }
18709
18710 prog->jited = 1;
18711 prog->bpf_func = func[0]->bpf_func;
18712 prog->jited_len = func[0]->jited_len;
18713 prog->aux->extable = func[0]->aux->extable;
18714 prog->aux->num_exentries = func[0]->aux->num_exentries;
18715 prog->aux->func = func;
18716 prog->aux->func_cnt = env->subprog_cnt;
18717 bpf_prog_jit_attempt_done(prog);
18718 return 0;
18719 out_free:
18720 /* We failed JIT'ing, so at this point we need to unregister poke
18721 * descriptors from subprogs, so that kernel is not attempting to
18722 * patch it anymore as we're freeing the subprog JIT memory.
18723 */
18724 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18725 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18726 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18727 }
18728 /* At this point we're guaranteed that poke descriptors are not
18729 * live anymore. We can just unlink its descriptor table as it's
18730 * released with the main prog.
18731 */
18732 for (i = 0; i < env->subprog_cnt; i++) {
18733 if (!func[i])
18734 continue;
18735 func[i]->aux->poke_tab = NULL;
18736 bpf_jit_free(func[i]);
18737 }
18738 kfree(func);
18739 out_undo_insn:
18740 /* cleanup main prog to be interpreted */
18741 prog->jit_requested = 0;
18742 prog->blinding_requested = 0;
18743 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18744 if (!bpf_pseudo_call(insn))
18745 continue;
18746 insn->off = 0;
18747 insn->imm = env->insn_aux_data[i].call_imm;
18748 }
18749 bpf_prog_jit_attempt_done(prog);
18750 return err;
18751 }
18752
fixup_call_args(struct bpf_verifier_env * env)18753 static int fixup_call_args(struct bpf_verifier_env *env)
18754 {
18755 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18756 struct bpf_prog *prog = env->prog;
18757 struct bpf_insn *insn = prog->insnsi;
18758 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18759 int i, depth;
18760 #endif
18761 int err = 0;
18762
18763 if (env->prog->jit_requested &&
18764 !bpf_prog_is_offloaded(env->prog->aux)) {
18765 err = jit_subprogs(env);
18766 if (err == 0)
18767 return 0;
18768 if (err == -EFAULT)
18769 return err;
18770 }
18771 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18772 if (has_kfunc_call) {
18773 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18774 return -EINVAL;
18775 }
18776 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18777 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18778 * have to be rejected, since interpreter doesn't support them yet.
18779 */
18780 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18781 return -EINVAL;
18782 }
18783 for (i = 0; i < prog->len; i++, insn++) {
18784 if (bpf_pseudo_func(insn)) {
18785 /* When JIT fails the progs with callback calls
18786 * have to be rejected, since interpreter doesn't support them yet.
18787 */
18788 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18789 return -EINVAL;
18790 }
18791
18792 if (!bpf_pseudo_call(insn))
18793 continue;
18794 depth = get_callee_stack_depth(env, insn, i);
18795 if (depth < 0)
18796 return depth;
18797 bpf_patch_call_args(insn, depth);
18798 }
18799 err = 0;
18800 #endif
18801 return err;
18802 }
18803
18804 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)18805 static void specialize_kfunc(struct bpf_verifier_env *env,
18806 u32 func_id, u16 offset, unsigned long *addr)
18807 {
18808 struct bpf_prog *prog = env->prog;
18809 bool seen_direct_write;
18810 void *xdp_kfunc;
18811 bool is_rdonly;
18812
18813 if (bpf_dev_bound_kfunc_id(func_id)) {
18814 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18815 if (xdp_kfunc) {
18816 *addr = (unsigned long)xdp_kfunc;
18817 return;
18818 }
18819 /* fallback to default kfunc when not supported by netdev */
18820 }
18821
18822 if (offset)
18823 return;
18824
18825 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18826 seen_direct_write = env->seen_direct_write;
18827 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18828
18829 if (is_rdonly)
18830 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18831
18832 /* restore env->seen_direct_write to its original value, since
18833 * may_access_direct_pkt_data mutates it
18834 */
18835 env->seen_direct_write = seen_direct_write;
18836 }
18837 }
18838
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)18839 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18840 u16 struct_meta_reg,
18841 u16 node_offset_reg,
18842 struct bpf_insn *insn,
18843 struct bpf_insn *insn_buf,
18844 int *cnt)
18845 {
18846 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18847 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18848
18849 insn_buf[0] = addr[0];
18850 insn_buf[1] = addr[1];
18851 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18852 insn_buf[3] = *insn;
18853 *cnt = 4;
18854 }
18855
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)18856 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18857 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18858 {
18859 const struct bpf_kfunc_desc *desc;
18860
18861 if (!insn->imm) {
18862 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18863 return -EINVAL;
18864 }
18865
18866 *cnt = 0;
18867
18868 /* insn->imm has the btf func_id. Replace it with an offset relative to
18869 * __bpf_call_base, unless the JIT needs to call functions that are
18870 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18871 */
18872 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18873 if (!desc) {
18874 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18875 insn->imm);
18876 return -EFAULT;
18877 }
18878
18879 if (!bpf_jit_supports_far_kfunc_call())
18880 insn->imm = BPF_CALL_IMM(desc->addr);
18881 if (insn->off)
18882 return 0;
18883 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18884 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18885 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18886 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18887
18888 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18889 insn_buf[1] = addr[0];
18890 insn_buf[2] = addr[1];
18891 insn_buf[3] = *insn;
18892 *cnt = 4;
18893 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18894 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18895 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18896 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18897
18898 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18899 !kptr_struct_meta) {
18900 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18901 insn_idx);
18902 return -EFAULT;
18903 }
18904
18905 insn_buf[0] = addr[0];
18906 insn_buf[1] = addr[1];
18907 insn_buf[2] = *insn;
18908 *cnt = 3;
18909 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18910 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18911 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18912 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18913 int struct_meta_reg = BPF_REG_3;
18914 int node_offset_reg = BPF_REG_4;
18915
18916 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18917 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18918 struct_meta_reg = BPF_REG_4;
18919 node_offset_reg = BPF_REG_5;
18920 }
18921
18922 if (!kptr_struct_meta) {
18923 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18924 insn_idx);
18925 return -EFAULT;
18926 }
18927
18928 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18929 node_offset_reg, insn, insn_buf, cnt);
18930 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18931 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18932 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18933 *cnt = 1;
18934 }
18935 return 0;
18936 }
18937
18938 /* Do various post-verification rewrites in a single program pass.
18939 * These rewrites simplify JIT and interpreter implementations.
18940 */
do_misc_fixups(struct bpf_verifier_env * env)18941 static int do_misc_fixups(struct bpf_verifier_env *env)
18942 {
18943 struct bpf_prog *prog = env->prog;
18944 enum bpf_attach_type eatype = prog->expected_attach_type;
18945 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18946 struct bpf_insn *insn = prog->insnsi;
18947 const struct bpf_func_proto *fn;
18948 const int insn_cnt = prog->len;
18949 const struct bpf_map_ops *ops;
18950 struct bpf_insn_aux_data *aux;
18951 struct bpf_insn insn_buf[16];
18952 struct bpf_prog *new_prog;
18953 struct bpf_map *map_ptr;
18954 int i, ret, cnt, delta = 0;
18955
18956 for (i = 0; i < insn_cnt; i++, insn++) {
18957 /* Make divide-by-zero exceptions impossible. */
18958 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18959 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18960 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18961 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18962 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18963 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18964 struct bpf_insn *patchlet;
18965 struct bpf_insn chk_and_div[] = {
18966 /* [R,W]x div 0 -> 0 */
18967 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18968 BPF_JNE | BPF_K, insn->src_reg,
18969 0, 2, 0),
18970 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18971 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18972 *insn,
18973 };
18974 struct bpf_insn chk_and_mod[] = {
18975 /* [R,W]x mod 0 -> [R,W]x */
18976 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18977 BPF_JEQ | BPF_K, insn->src_reg,
18978 0, 1 + (is64 ? 0 : 1), 0),
18979 *insn,
18980 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18981 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18982 };
18983
18984 patchlet = isdiv ? chk_and_div : chk_and_mod;
18985 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18986 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18987
18988 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18989 if (!new_prog)
18990 return -ENOMEM;
18991
18992 delta += cnt - 1;
18993 env->prog = prog = new_prog;
18994 insn = new_prog->insnsi + i + delta;
18995 continue;
18996 }
18997
18998 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18999 if (BPF_CLASS(insn->code) == BPF_LD &&
19000 (BPF_MODE(insn->code) == BPF_ABS ||
19001 BPF_MODE(insn->code) == BPF_IND)) {
19002 cnt = env->ops->gen_ld_abs(insn, insn_buf);
19003 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19004 verbose(env, "bpf verifier is misconfigured\n");
19005 return -EINVAL;
19006 }
19007
19008 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19009 if (!new_prog)
19010 return -ENOMEM;
19011
19012 delta += cnt - 1;
19013 env->prog = prog = new_prog;
19014 insn = new_prog->insnsi + i + delta;
19015 continue;
19016 }
19017
19018 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
19019 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
19020 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
19021 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
19022 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
19023 struct bpf_insn *patch = &insn_buf[0];
19024 bool issrc, isneg, isimm;
19025 u32 off_reg;
19026
19027 aux = &env->insn_aux_data[i + delta];
19028 if (!aux->alu_state ||
19029 aux->alu_state == BPF_ALU_NON_POINTER)
19030 continue;
19031
19032 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19033 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19034 BPF_ALU_SANITIZE_SRC;
19035 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19036
19037 off_reg = issrc ? insn->src_reg : insn->dst_reg;
19038 if (isimm) {
19039 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19040 } else {
19041 if (isneg)
19042 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19043 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19044 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19045 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19046 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19047 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19048 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19049 }
19050 if (!issrc)
19051 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19052 insn->src_reg = BPF_REG_AX;
19053 if (isneg)
19054 insn->code = insn->code == code_add ?
19055 code_sub : code_add;
19056 *patch++ = *insn;
19057 if (issrc && isneg && !isimm)
19058 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19059 cnt = patch - insn_buf;
19060
19061 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19062 if (!new_prog)
19063 return -ENOMEM;
19064
19065 delta += cnt - 1;
19066 env->prog = prog = new_prog;
19067 insn = new_prog->insnsi + i + delta;
19068 continue;
19069 }
19070
19071 if (insn->code != (BPF_JMP | BPF_CALL))
19072 continue;
19073 if (insn->src_reg == BPF_PSEUDO_CALL)
19074 continue;
19075 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19076 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19077 if (ret)
19078 return ret;
19079 if (cnt == 0)
19080 continue;
19081
19082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19083 if (!new_prog)
19084 return -ENOMEM;
19085
19086 delta += cnt - 1;
19087 env->prog = prog = new_prog;
19088 insn = new_prog->insnsi + i + delta;
19089 continue;
19090 }
19091
19092 if (insn->imm == BPF_FUNC_get_route_realm)
19093 prog->dst_needed = 1;
19094 if (insn->imm == BPF_FUNC_get_prandom_u32)
19095 bpf_user_rnd_init_once();
19096 if (insn->imm == BPF_FUNC_override_return)
19097 prog->kprobe_override = 1;
19098 if (insn->imm == BPF_FUNC_tail_call) {
19099 /* If we tail call into other programs, we
19100 * cannot make any assumptions since they can
19101 * be replaced dynamically during runtime in
19102 * the program array.
19103 */
19104 prog->cb_access = 1;
19105 if (!allow_tail_call_in_subprogs(env))
19106 prog->aux->stack_depth = MAX_BPF_STACK;
19107 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19108
19109 /* mark bpf_tail_call as different opcode to avoid
19110 * conditional branch in the interpreter for every normal
19111 * call and to prevent accidental JITing by JIT compiler
19112 * that doesn't support bpf_tail_call yet
19113 */
19114 insn->imm = 0;
19115 insn->code = BPF_JMP | BPF_TAIL_CALL;
19116
19117 aux = &env->insn_aux_data[i + delta];
19118 if (env->bpf_capable && !prog->blinding_requested &&
19119 prog->jit_requested &&
19120 !bpf_map_key_poisoned(aux) &&
19121 !bpf_map_ptr_poisoned(aux) &&
19122 !bpf_map_ptr_unpriv(aux)) {
19123 struct bpf_jit_poke_descriptor desc = {
19124 .reason = BPF_POKE_REASON_TAIL_CALL,
19125 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19126 .tail_call.key = bpf_map_key_immediate(aux),
19127 .insn_idx = i + delta,
19128 };
19129
19130 ret = bpf_jit_add_poke_descriptor(prog, &desc);
19131 if (ret < 0) {
19132 verbose(env, "adding tail call poke descriptor failed\n");
19133 return ret;
19134 }
19135
19136 insn->imm = ret + 1;
19137 continue;
19138 }
19139
19140 if (!bpf_map_ptr_unpriv(aux))
19141 continue;
19142
19143 /* instead of changing every JIT dealing with tail_call
19144 * emit two extra insns:
19145 * if (index >= max_entries) goto out;
19146 * index &= array->index_mask;
19147 * to avoid out-of-bounds cpu speculation
19148 */
19149 if (bpf_map_ptr_poisoned(aux)) {
19150 verbose(env, "tail_call abusing map_ptr\n");
19151 return -EINVAL;
19152 }
19153
19154 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19155 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19156 map_ptr->max_entries, 2);
19157 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19158 container_of(map_ptr,
19159 struct bpf_array,
19160 map)->index_mask);
19161 insn_buf[2] = *insn;
19162 cnt = 3;
19163 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19164 if (!new_prog)
19165 return -ENOMEM;
19166
19167 delta += cnt - 1;
19168 env->prog = prog = new_prog;
19169 insn = new_prog->insnsi + i + delta;
19170 continue;
19171 }
19172
19173 if (insn->imm == BPF_FUNC_timer_set_callback) {
19174 /* The verifier will process callback_fn as many times as necessary
19175 * with different maps and the register states prepared by
19176 * set_timer_callback_state will be accurate.
19177 *
19178 * The following use case is valid:
19179 * map1 is shared by prog1, prog2, prog3.
19180 * prog1 calls bpf_timer_init for some map1 elements
19181 * prog2 calls bpf_timer_set_callback for some map1 elements.
19182 * Those that were not bpf_timer_init-ed will return -EINVAL.
19183 * prog3 calls bpf_timer_start for some map1 elements.
19184 * Those that were not both bpf_timer_init-ed and
19185 * bpf_timer_set_callback-ed will return -EINVAL.
19186 */
19187 struct bpf_insn ld_addrs[2] = {
19188 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19189 };
19190
19191 insn_buf[0] = ld_addrs[0];
19192 insn_buf[1] = ld_addrs[1];
19193 insn_buf[2] = *insn;
19194 cnt = 3;
19195
19196 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19197 if (!new_prog)
19198 return -ENOMEM;
19199
19200 delta += cnt - 1;
19201 env->prog = prog = new_prog;
19202 insn = new_prog->insnsi + i + delta;
19203 goto patch_call_imm;
19204 }
19205
19206 if (is_storage_get_function(insn->imm)) {
19207 if (!env->prog->aux->sleepable ||
19208 env->insn_aux_data[i + delta].storage_get_func_atomic)
19209 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19210 else
19211 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19212 insn_buf[1] = *insn;
19213 cnt = 2;
19214
19215 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19216 if (!new_prog)
19217 return -ENOMEM;
19218
19219 delta += cnt - 1;
19220 env->prog = prog = new_prog;
19221 insn = new_prog->insnsi + i + delta;
19222 goto patch_call_imm;
19223 }
19224
19225 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19226 * and other inlining handlers are currently limited to 64 bit
19227 * only.
19228 */
19229 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19230 (insn->imm == BPF_FUNC_map_lookup_elem ||
19231 insn->imm == BPF_FUNC_map_update_elem ||
19232 insn->imm == BPF_FUNC_map_delete_elem ||
19233 insn->imm == BPF_FUNC_map_push_elem ||
19234 insn->imm == BPF_FUNC_map_pop_elem ||
19235 insn->imm == BPF_FUNC_map_peek_elem ||
19236 insn->imm == BPF_FUNC_redirect_map ||
19237 insn->imm == BPF_FUNC_for_each_map_elem ||
19238 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19239 aux = &env->insn_aux_data[i + delta];
19240 if (bpf_map_ptr_poisoned(aux))
19241 goto patch_call_imm;
19242
19243 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19244 ops = map_ptr->ops;
19245 if (insn->imm == BPF_FUNC_map_lookup_elem &&
19246 ops->map_gen_lookup) {
19247 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19248 if (cnt == -EOPNOTSUPP)
19249 goto patch_map_ops_generic;
19250 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19251 verbose(env, "bpf verifier is misconfigured\n");
19252 return -EINVAL;
19253 }
19254
19255 new_prog = bpf_patch_insn_data(env, i + delta,
19256 insn_buf, cnt);
19257 if (!new_prog)
19258 return -ENOMEM;
19259
19260 delta += cnt - 1;
19261 env->prog = prog = new_prog;
19262 insn = new_prog->insnsi + i + delta;
19263 continue;
19264 }
19265
19266 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19267 (void *(*)(struct bpf_map *map, void *key))NULL));
19268 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19269 (long (*)(struct bpf_map *map, void *key))NULL));
19270 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19271 (long (*)(struct bpf_map *map, void *key, void *value,
19272 u64 flags))NULL));
19273 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19274 (long (*)(struct bpf_map *map, void *value,
19275 u64 flags))NULL));
19276 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19277 (long (*)(struct bpf_map *map, void *value))NULL));
19278 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19279 (long (*)(struct bpf_map *map, void *value))NULL));
19280 BUILD_BUG_ON(!__same_type(ops->map_redirect,
19281 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19282 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19283 (long (*)(struct bpf_map *map,
19284 bpf_callback_t callback_fn,
19285 void *callback_ctx,
19286 u64 flags))NULL));
19287 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19288 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19289
19290 patch_map_ops_generic:
19291 switch (insn->imm) {
19292 case BPF_FUNC_map_lookup_elem:
19293 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19294 continue;
19295 case BPF_FUNC_map_update_elem:
19296 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19297 continue;
19298 case BPF_FUNC_map_delete_elem:
19299 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19300 continue;
19301 case BPF_FUNC_map_push_elem:
19302 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19303 continue;
19304 case BPF_FUNC_map_pop_elem:
19305 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19306 continue;
19307 case BPF_FUNC_map_peek_elem:
19308 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19309 continue;
19310 case BPF_FUNC_redirect_map:
19311 insn->imm = BPF_CALL_IMM(ops->map_redirect);
19312 continue;
19313 case BPF_FUNC_for_each_map_elem:
19314 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19315 continue;
19316 case BPF_FUNC_map_lookup_percpu_elem:
19317 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19318 continue;
19319 }
19320
19321 goto patch_call_imm;
19322 }
19323
19324 /* Implement bpf_jiffies64 inline. */
19325 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19326 insn->imm == BPF_FUNC_jiffies64) {
19327 struct bpf_insn ld_jiffies_addr[2] = {
19328 BPF_LD_IMM64(BPF_REG_0,
19329 (unsigned long)&jiffies),
19330 };
19331
19332 insn_buf[0] = ld_jiffies_addr[0];
19333 insn_buf[1] = ld_jiffies_addr[1];
19334 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19335 BPF_REG_0, 0);
19336 cnt = 3;
19337
19338 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19339 cnt);
19340 if (!new_prog)
19341 return -ENOMEM;
19342
19343 delta += cnt - 1;
19344 env->prog = prog = new_prog;
19345 insn = new_prog->insnsi + i + delta;
19346 continue;
19347 }
19348
19349 /* Implement bpf_get_func_arg inline. */
19350 if (prog_type == BPF_PROG_TYPE_TRACING &&
19351 insn->imm == BPF_FUNC_get_func_arg) {
19352 /* Load nr_args from ctx - 8 */
19353 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19354 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19355 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19356 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19357 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19358 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19359 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19360 insn_buf[7] = BPF_JMP_A(1);
19361 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19362 cnt = 9;
19363
19364 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19365 if (!new_prog)
19366 return -ENOMEM;
19367
19368 delta += cnt - 1;
19369 env->prog = prog = new_prog;
19370 insn = new_prog->insnsi + i + delta;
19371 continue;
19372 }
19373
19374 /* Implement bpf_get_func_ret inline. */
19375 if (prog_type == BPF_PROG_TYPE_TRACING &&
19376 insn->imm == BPF_FUNC_get_func_ret) {
19377 if (eatype == BPF_TRACE_FEXIT ||
19378 eatype == BPF_MODIFY_RETURN) {
19379 /* Load nr_args from ctx - 8 */
19380 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19381 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19382 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19383 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19384 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19385 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19386 cnt = 6;
19387 } else {
19388 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19389 cnt = 1;
19390 }
19391
19392 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19393 if (!new_prog)
19394 return -ENOMEM;
19395
19396 delta += cnt - 1;
19397 env->prog = prog = new_prog;
19398 insn = new_prog->insnsi + i + delta;
19399 continue;
19400 }
19401
19402 /* Implement get_func_arg_cnt inline. */
19403 if (prog_type == BPF_PROG_TYPE_TRACING &&
19404 insn->imm == BPF_FUNC_get_func_arg_cnt) {
19405 /* Load nr_args from ctx - 8 */
19406 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19407
19408 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19409 if (!new_prog)
19410 return -ENOMEM;
19411
19412 env->prog = prog = new_prog;
19413 insn = new_prog->insnsi + i + delta;
19414 continue;
19415 }
19416
19417 /* Implement bpf_get_func_ip inline. */
19418 if (prog_type == BPF_PROG_TYPE_TRACING &&
19419 insn->imm == BPF_FUNC_get_func_ip) {
19420 /* Load IP address from ctx - 16 */
19421 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19422
19423 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19424 if (!new_prog)
19425 return -ENOMEM;
19426
19427 env->prog = prog = new_prog;
19428 insn = new_prog->insnsi + i + delta;
19429 continue;
19430 }
19431
19432 patch_call_imm:
19433 fn = env->ops->get_func_proto(insn->imm, env->prog);
19434 /* all functions that have prototype and verifier allowed
19435 * programs to call them, must be real in-kernel functions
19436 */
19437 if (!fn->func) {
19438 verbose(env,
19439 "kernel subsystem misconfigured func %s#%d\n",
19440 func_id_name(insn->imm), insn->imm);
19441 return -EFAULT;
19442 }
19443 insn->imm = fn->func - __bpf_call_base;
19444 }
19445
19446 /* Since poke tab is now finalized, publish aux to tracker. */
19447 for (i = 0; i < prog->aux->size_poke_tab; i++) {
19448 map_ptr = prog->aux->poke_tab[i].tail_call.map;
19449 if (!map_ptr->ops->map_poke_track ||
19450 !map_ptr->ops->map_poke_untrack ||
19451 !map_ptr->ops->map_poke_run) {
19452 verbose(env, "bpf verifier is misconfigured\n");
19453 return -EINVAL;
19454 }
19455
19456 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19457 if (ret < 0) {
19458 verbose(env, "tracking tail call prog failed\n");
19459 return ret;
19460 }
19461 }
19462
19463 sort_kfunc_descs_by_imm_off(env->prog);
19464
19465 return 0;
19466 }
19467
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)19468 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19469 int position,
19470 s32 stack_base,
19471 u32 callback_subprogno,
19472 u32 *cnt)
19473 {
19474 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19475 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19476 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19477 int reg_loop_max = BPF_REG_6;
19478 int reg_loop_cnt = BPF_REG_7;
19479 int reg_loop_ctx = BPF_REG_8;
19480
19481 struct bpf_prog *new_prog;
19482 u32 callback_start;
19483 u32 call_insn_offset;
19484 s32 callback_offset;
19485
19486 /* This represents an inlined version of bpf_iter.c:bpf_loop,
19487 * be careful to modify this code in sync.
19488 */
19489 struct bpf_insn insn_buf[] = {
19490 /* Return error and jump to the end of the patch if
19491 * expected number of iterations is too big.
19492 */
19493 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19494 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19495 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19496 /* spill R6, R7, R8 to use these as loop vars */
19497 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19498 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19499 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19500 /* initialize loop vars */
19501 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19502 BPF_MOV32_IMM(reg_loop_cnt, 0),
19503 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19504 /* loop header,
19505 * if reg_loop_cnt >= reg_loop_max skip the loop body
19506 */
19507 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19508 /* callback call,
19509 * correct callback offset would be set after patching
19510 */
19511 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19512 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19513 BPF_CALL_REL(0),
19514 /* increment loop counter */
19515 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19516 /* jump to loop header if callback returned 0 */
19517 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19518 /* return value of bpf_loop,
19519 * set R0 to the number of iterations
19520 */
19521 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19522 /* restore original values of R6, R7, R8 */
19523 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19524 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19525 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19526 };
19527
19528 *cnt = ARRAY_SIZE(insn_buf);
19529 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19530 if (!new_prog)
19531 return new_prog;
19532
19533 /* callback start is known only after patching */
19534 callback_start = env->subprog_info[callback_subprogno].start;
19535 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19536 call_insn_offset = position + 12;
19537 callback_offset = callback_start - call_insn_offset - 1;
19538 new_prog->insnsi[call_insn_offset].imm = callback_offset;
19539
19540 return new_prog;
19541 }
19542
is_bpf_loop_call(struct bpf_insn * insn)19543 static bool is_bpf_loop_call(struct bpf_insn *insn)
19544 {
19545 return insn->code == (BPF_JMP | BPF_CALL) &&
19546 insn->src_reg == 0 &&
19547 insn->imm == BPF_FUNC_loop;
19548 }
19549
19550 /* For all sub-programs in the program (including main) check
19551 * insn_aux_data to see if there are bpf_loop calls that require
19552 * inlining. If such calls are found the calls are replaced with a
19553 * sequence of instructions produced by `inline_bpf_loop` function and
19554 * subprog stack_depth is increased by the size of 3 registers.
19555 * This stack space is used to spill values of the R6, R7, R8. These
19556 * registers are used to store the loop bound, counter and context
19557 * variables.
19558 */
optimize_bpf_loop(struct bpf_verifier_env * env)19559 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19560 {
19561 struct bpf_subprog_info *subprogs = env->subprog_info;
19562 int i, cur_subprog = 0, cnt, delta = 0;
19563 struct bpf_insn *insn = env->prog->insnsi;
19564 int insn_cnt = env->prog->len;
19565 u16 stack_depth = subprogs[cur_subprog].stack_depth;
19566 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19567 u16 stack_depth_extra = 0;
19568
19569 for (i = 0; i < insn_cnt; i++, insn++) {
19570 struct bpf_loop_inline_state *inline_state =
19571 &env->insn_aux_data[i + delta].loop_inline_state;
19572
19573 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19574 struct bpf_prog *new_prog;
19575
19576 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19577 new_prog = inline_bpf_loop(env,
19578 i + delta,
19579 -(stack_depth + stack_depth_extra),
19580 inline_state->callback_subprogno,
19581 &cnt);
19582 if (!new_prog)
19583 return -ENOMEM;
19584
19585 delta += cnt - 1;
19586 env->prog = new_prog;
19587 insn = new_prog->insnsi + i + delta;
19588 }
19589
19590 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19591 subprogs[cur_subprog].stack_depth += stack_depth_extra;
19592 cur_subprog++;
19593 stack_depth = subprogs[cur_subprog].stack_depth;
19594 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19595 stack_depth_extra = 0;
19596 }
19597 }
19598
19599 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19600
19601 return 0;
19602 }
19603
free_states(struct bpf_verifier_env * env)19604 static void free_states(struct bpf_verifier_env *env)
19605 {
19606 struct bpf_verifier_state_list *sl, *sln;
19607 int i;
19608
19609 sl = env->free_list;
19610 while (sl) {
19611 sln = sl->next;
19612 free_verifier_state(&sl->state, false);
19613 kfree(sl);
19614 sl = sln;
19615 }
19616 env->free_list = NULL;
19617
19618 if (!env->explored_states)
19619 return;
19620
19621 for (i = 0; i < state_htab_size(env); i++) {
19622 sl = env->explored_states[i];
19623
19624 while (sl) {
19625 sln = sl->next;
19626 free_verifier_state(&sl->state, false);
19627 kfree(sl);
19628 sl = sln;
19629 }
19630 env->explored_states[i] = NULL;
19631 }
19632 }
19633
do_check_common(struct bpf_verifier_env * env,int subprog)19634 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19635 {
19636 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19637 struct bpf_verifier_state *state;
19638 struct bpf_reg_state *regs;
19639 int ret, i;
19640
19641 env->prev_linfo = NULL;
19642 env->pass_cnt++;
19643
19644 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19645 if (!state)
19646 return -ENOMEM;
19647 state->curframe = 0;
19648 state->speculative = false;
19649 state->branches = 1;
19650 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19651 if (!state->frame[0]) {
19652 kfree(state);
19653 return -ENOMEM;
19654 }
19655 env->cur_state = state;
19656 init_func_state(env, state->frame[0],
19657 BPF_MAIN_FUNC /* callsite */,
19658 0 /* frameno */,
19659 subprog);
19660 state->first_insn_idx = env->subprog_info[subprog].start;
19661 state->last_insn_idx = -1;
19662
19663 regs = state->frame[state->curframe]->regs;
19664 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19665 ret = btf_prepare_func_args(env, subprog, regs);
19666 if (ret)
19667 goto out;
19668 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19669 if (regs[i].type == PTR_TO_CTX)
19670 mark_reg_known_zero(env, regs, i);
19671 else if (regs[i].type == SCALAR_VALUE)
19672 mark_reg_unknown(env, regs, i);
19673 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19674 const u32 mem_size = regs[i].mem_size;
19675
19676 mark_reg_known_zero(env, regs, i);
19677 regs[i].mem_size = mem_size;
19678 regs[i].id = ++env->id_gen;
19679 }
19680 }
19681 } else {
19682 /* 1st arg to a function */
19683 regs[BPF_REG_1].type = PTR_TO_CTX;
19684 mark_reg_known_zero(env, regs, BPF_REG_1);
19685 ret = btf_check_subprog_arg_match(env, subprog, regs);
19686 if (ret == -EFAULT)
19687 /* unlikely verifier bug. abort.
19688 * ret == 0 and ret < 0 are sadly acceptable for
19689 * main() function due to backward compatibility.
19690 * Like socket filter program may be written as:
19691 * int bpf_prog(struct pt_regs *ctx)
19692 * and never dereference that ctx in the program.
19693 * 'struct pt_regs' is a type mismatch for socket
19694 * filter that should be using 'struct __sk_buff'.
19695 */
19696 goto out;
19697 }
19698
19699 ret = do_check(env);
19700 out:
19701 /* check for NULL is necessary, since cur_state can be freed inside
19702 * do_check() under memory pressure.
19703 */
19704 if (env->cur_state) {
19705 free_verifier_state(env->cur_state, true);
19706 env->cur_state = NULL;
19707 }
19708 while (!pop_stack(env, NULL, NULL, false));
19709 if (!ret && pop_log)
19710 bpf_vlog_reset(&env->log, 0);
19711 free_states(env);
19712 return ret;
19713 }
19714
19715 /* Verify all global functions in a BPF program one by one based on their BTF.
19716 * All global functions must pass verification. Otherwise the whole program is rejected.
19717 * Consider:
19718 * int bar(int);
19719 * int foo(int f)
19720 * {
19721 * return bar(f);
19722 * }
19723 * int bar(int b)
19724 * {
19725 * ...
19726 * }
19727 * foo() will be verified first for R1=any_scalar_value. During verification it
19728 * will be assumed that bar() already verified successfully and call to bar()
19729 * from foo() will be checked for type match only. Later bar() will be verified
19730 * independently to check that it's safe for R1=any_scalar_value.
19731 */
do_check_subprogs(struct bpf_verifier_env * env)19732 static int do_check_subprogs(struct bpf_verifier_env *env)
19733 {
19734 struct bpf_prog_aux *aux = env->prog->aux;
19735 int i, ret;
19736
19737 if (!aux->func_info)
19738 return 0;
19739
19740 for (i = 1; i < env->subprog_cnt; i++) {
19741 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19742 continue;
19743 env->insn_idx = env->subprog_info[i].start;
19744 WARN_ON_ONCE(env->insn_idx == 0);
19745 ret = do_check_common(env, i);
19746 if (ret) {
19747 return ret;
19748 } else if (env->log.level & BPF_LOG_LEVEL) {
19749 verbose(env,
19750 "Func#%d is safe for any args that match its prototype\n",
19751 i);
19752 }
19753 }
19754 return 0;
19755 }
19756
do_check_main(struct bpf_verifier_env * env)19757 static int do_check_main(struct bpf_verifier_env *env)
19758 {
19759 int ret;
19760
19761 env->insn_idx = 0;
19762 ret = do_check_common(env, 0);
19763 if (!ret)
19764 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19765 return ret;
19766 }
19767
19768
print_verification_stats(struct bpf_verifier_env * env)19769 static void print_verification_stats(struct bpf_verifier_env *env)
19770 {
19771 int i;
19772
19773 if (env->log.level & BPF_LOG_STATS) {
19774 verbose(env, "verification time %lld usec\n",
19775 div_u64(env->verification_time, 1000));
19776 verbose(env, "stack depth ");
19777 for (i = 0; i < env->subprog_cnt; i++) {
19778 u32 depth = env->subprog_info[i].stack_depth;
19779
19780 verbose(env, "%d", depth);
19781 if (i + 1 < env->subprog_cnt)
19782 verbose(env, "+");
19783 }
19784 verbose(env, "\n");
19785 }
19786 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19787 "total_states %d peak_states %d mark_read %d\n",
19788 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19789 env->max_states_per_insn, env->total_states,
19790 env->peak_states, env->longest_mark_read_walk);
19791 }
19792
check_struct_ops_btf_id(struct bpf_verifier_env * env)19793 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19794 {
19795 const struct btf_type *t, *func_proto;
19796 const struct bpf_struct_ops *st_ops;
19797 const struct btf_member *member;
19798 struct bpf_prog *prog = env->prog;
19799 u32 btf_id, member_idx;
19800 const char *mname;
19801
19802 if (!prog->gpl_compatible) {
19803 verbose(env, "struct ops programs must have a GPL compatible license\n");
19804 return -EINVAL;
19805 }
19806
19807 btf_id = prog->aux->attach_btf_id;
19808 st_ops = bpf_struct_ops_find(btf_id);
19809 if (!st_ops) {
19810 verbose(env, "attach_btf_id %u is not a supported struct\n",
19811 btf_id);
19812 return -ENOTSUPP;
19813 }
19814
19815 t = st_ops->type;
19816 member_idx = prog->expected_attach_type;
19817 if (member_idx >= btf_type_vlen(t)) {
19818 verbose(env, "attach to invalid member idx %u of struct %s\n",
19819 member_idx, st_ops->name);
19820 return -EINVAL;
19821 }
19822
19823 member = &btf_type_member(t)[member_idx];
19824 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19825 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19826 NULL);
19827 if (!func_proto) {
19828 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19829 mname, member_idx, st_ops->name);
19830 return -EINVAL;
19831 }
19832
19833 if (st_ops->check_member) {
19834 int err = st_ops->check_member(t, member, prog);
19835
19836 if (err) {
19837 verbose(env, "attach to unsupported member %s of struct %s\n",
19838 mname, st_ops->name);
19839 return err;
19840 }
19841 }
19842
19843 prog->aux->attach_func_proto = func_proto;
19844 prog->aux->attach_func_name = mname;
19845 env->ops = st_ops->verifier_ops;
19846
19847 return 0;
19848 }
19849 #define SECURITY_PREFIX "security_"
19850
check_attach_modify_return(unsigned long addr,const char * func_name)19851 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19852 {
19853 if (within_error_injection_list(addr) ||
19854 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19855 return 0;
19856
19857 return -EINVAL;
19858 }
19859
19860 /* list of non-sleepable functions that are otherwise on
19861 * ALLOW_ERROR_INJECTION list
19862 */
19863 BTF_SET_START(btf_non_sleepable_error_inject)
19864 /* Three functions below can be called from sleepable and non-sleepable context.
19865 * Assume non-sleepable from bpf safety point of view.
19866 */
BTF_ID(func,__filemap_add_folio)19867 BTF_ID(func, __filemap_add_folio)
19868 BTF_ID(func, should_fail_alloc_page)
19869 BTF_ID(func, should_failslab)
19870 BTF_SET_END(btf_non_sleepable_error_inject)
19871
19872 static int check_non_sleepable_error_inject(u32 btf_id)
19873 {
19874 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19875 }
19876
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)19877 int bpf_check_attach_target(struct bpf_verifier_log *log,
19878 const struct bpf_prog *prog,
19879 const struct bpf_prog *tgt_prog,
19880 u32 btf_id,
19881 struct bpf_attach_target_info *tgt_info)
19882 {
19883 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19884 const char prefix[] = "btf_trace_";
19885 int ret = 0, subprog = -1, i;
19886 const struct btf_type *t;
19887 bool conservative = true;
19888 const char *tname;
19889 struct btf *btf;
19890 long addr = 0;
19891 struct module *mod = NULL;
19892
19893 if (!btf_id) {
19894 bpf_log(log, "Tracing programs must provide btf_id\n");
19895 return -EINVAL;
19896 }
19897 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19898 if (!btf) {
19899 bpf_log(log,
19900 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19901 return -EINVAL;
19902 }
19903 t = btf_type_by_id(btf, btf_id);
19904 if (!t) {
19905 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19906 return -EINVAL;
19907 }
19908 tname = btf_name_by_offset(btf, t->name_off);
19909 if (!tname) {
19910 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19911 return -EINVAL;
19912 }
19913 if (tgt_prog) {
19914 struct bpf_prog_aux *aux = tgt_prog->aux;
19915 bool tgt_changes_pkt_data;
19916
19917 if (bpf_prog_is_dev_bound(prog->aux) &&
19918 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19919 bpf_log(log, "Target program bound device mismatch");
19920 return -EINVAL;
19921 }
19922
19923 for (i = 0; i < aux->func_info_cnt; i++)
19924 if (aux->func_info[i].type_id == btf_id) {
19925 subprog = i;
19926 break;
19927 }
19928 if (subprog == -1) {
19929 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19930 return -EINVAL;
19931 }
19932 conservative = aux->func_info_aux[subprog].unreliable;
19933 if (prog_extension) {
19934 if (conservative) {
19935 bpf_log(log,
19936 "Cannot replace static functions\n");
19937 return -EINVAL;
19938 }
19939 if (!prog->jit_requested) {
19940 bpf_log(log,
19941 "Extension programs should be JITed\n");
19942 return -EINVAL;
19943 }
19944 tgt_changes_pkt_data = aux->func
19945 ? aux->func[subprog]->aux->changes_pkt_data
19946 : aux->changes_pkt_data;
19947 if (prog->aux->changes_pkt_data && !tgt_changes_pkt_data) {
19948 bpf_log(log,
19949 "Extension program changes packet data, while original does not\n");
19950 return -EINVAL;
19951 }
19952 }
19953 if (!tgt_prog->jited) {
19954 bpf_log(log, "Can attach to only JITed progs\n");
19955 return -EINVAL;
19956 }
19957 if (tgt_prog->type == prog->type) {
19958 /* Cannot fentry/fexit another fentry/fexit program.
19959 * Cannot attach program extension to another extension.
19960 * It's ok to attach fentry/fexit to extension program.
19961 */
19962 bpf_log(log, "Cannot recursively attach\n");
19963 return -EINVAL;
19964 }
19965 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19966 prog_extension &&
19967 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19968 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19969 /* Program extensions can extend all program types
19970 * except fentry/fexit. The reason is the following.
19971 * The fentry/fexit programs are used for performance
19972 * analysis, stats and can be attached to any program
19973 * type except themselves. When extension program is
19974 * replacing XDP function it is necessary to allow
19975 * performance analysis of all functions. Both original
19976 * XDP program and its program extension. Hence
19977 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19978 * allowed. If extending of fentry/fexit was allowed it
19979 * would be possible to create long call chain
19980 * fentry->extension->fentry->extension beyond
19981 * reasonable stack size. Hence extending fentry is not
19982 * allowed.
19983 */
19984 bpf_log(log, "Cannot extend fentry/fexit\n");
19985 return -EINVAL;
19986 }
19987 } else {
19988 if (prog_extension) {
19989 bpf_log(log, "Cannot replace kernel functions\n");
19990 return -EINVAL;
19991 }
19992 }
19993
19994 switch (prog->expected_attach_type) {
19995 case BPF_TRACE_RAW_TP:
19996 if (tgt_prog) {
19997 bpf_log(log,
19998 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19999 return -EINVAL;
20000 }
20001 if (!btf_type_is_typedef(t)) {
20002 bpf_log(log, "attach_btf_id %u is not a typedef\n",
20003 btf_id);
20004 return -EINVAL;
20005 }
20006 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
20007 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
20008 btf_id, tname);
20009 return -EINVAL;
20010 }
20011 tname += sizeof(prefix) - 1;
20012 t = btf_type_by_id(btf, t->type);
20013 if (!btf_type_is_ptr(t))
20014 /* should never happen in valid vmlinux build */
20015 return -EINVAL;
20016 t = btf_type_by_id(btf, t->type);
20017 if (!btf_type_is_func_proto(t))
20018 /* should never happen in valid vmlinux build */
20019 return -EINVAL;
20020
20021 break;
20022 case BPF_TRACE_ITER:
20023 if (!btf_type_is_func(t)) {
20024 bpf_log(log, "attach_btf_id %u is not a function\n",
20025 btf_id);
20026 return -EINVAL;
20027 }
20028 t = btf_type_by_id(btf, t->type);
20029 if (!btf_type_is_func_proto(t))
20030 return -EINVAL;
20031 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20032 if (ret)
20033 return ret;
20034 break;
20035 default:
20036 if (!prog_extension)
20037 return -EINVAL;
20038 fallthrough;
20039 case BPF_MODIFY_RETURN:
20040 case BPF_LSM_MAC:
20041 case BPF_LSM_CGROUP:
20042 case BPF_TRACE_FENTRY:
20043 case BPF_TRACE_FEXIT:
20044 if (!btf_type_is_func(t)) {
20045 bpf_log(log, "attach_btf_id %u is not a function\n",
20046 btf_id);
20047 return -EINVAL;
20048 }
20049 if (prog_extension &&
20050 btf_check_type_match(log, prog, btf, t))
20051 return -EINVAL;
20052 t = btf_type_by_id(btf, t->type);
20053 if (!btf_type_is_func_proto(t))
20054 return -EINVAL;
20055
20056 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20057 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20058 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20059 return -EINVAL;
20060
20061 if (tgt_prog && conservative)
20062 t = NULL;
20063
20064 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20065 if (ret < 0)
20066 return ret;
20067
20068 if (tgt_prog) {
20069 if (subprog == 0)
20070 addr = (long) tgt_prog->bpf_func;
20071 else
20072 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20073 } else {
20074 if (btf_is_module(btf)) {
20075 mod = btf_try_get_module(btf);
20076 if (mod)
20077 addr = find_kallsyms_symbol_value(mod, tname);
20078 else
20079 addr = 0;
20080 } else {
20081 addr = kallsyms_lookup_name(tname);
20082 }
20083 if (!addr) {
20084 module_put(mod);
20085 bpf_log(log,
20086 "The address of function %s cannot be found\n",
20087 tname);
20088 return -ENOENT;
20089 }
20090 }
20091
20092 if (prog->aux->sleepable) {
20093 ret = -EINVAL;
20094 switch (prog->type) {
20095 case BPF_PROG_TYPE_TRACING:
20096
20097 /* fentry/fexit/fmod_ret progs can be sleepable if they are
20098 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20099 */
20100 if (!check_non_sleepable_error_inject(btf_id) &&
20101 within_error_injection_list(addr))
20102 ret = 0;
20103 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
20104 * in the fmodret id set with the KF_SLEEPABLE flag.
20105 */
20106 else {
20107 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20108 prog);
20109
20110 if (flags && (*flags & KF_SLEEPABLE))
20111 ret = 0;
20112 }
20113 break;
20114 case BPF_PROG_TYPE_LSM:
20115 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
20116 * Only some of them are sleepable.
20117 */
20118 if (bpf_lsm_is_sleepable_hook(btf_id))
20119 ret = 0;
20120 break;
20121 default:
20122 break;
20123 }
20124 if (ret) {
20125 module_put(mod);
20126 bpf_log(log, "%s is not sleepable\n", tname);
20127 return ret;
20128 }
20129 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20130 if (tgt_prog) {
20131 module_put(mod);
20132 bpf_log(log, "can't modify return codes of BPF programs\n");
20133 return -EINVAL;
20134 }
20135 ret = -EINVAL;
20136 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20137 !check_attach_modify_return(addr, tname))
20138 ret = 0;
20139 if (ret) {
20140 module_put(mod);
20141 bpf_log(log, "%s() is not modifiable\n", tname);
20142 return ret;
20143 }
20144 }
20145
20146 break;
20147 }
20148 tgt_info->tgt_addr = addr;
20149 tgt_info->tgt_name = tname;
20150 tgt_info->tgt_type = t;
20151 tgt_info->tgt_mod = mod;
20152 return 0;
20153 }
20154
BTF_SET_START(btf_id_deny)20155 BTF_SET_START(btf_id_deny)
20156 BTF_ID_UNUSED
20157 #ifdef CONFIG_SMP
20158 BTF_ID(func, migrate_disable)
20159 BTF_ID(func, migrate_enable)
20160 #endif
20161 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20162 BTF_ID(func, rcu_read_unlock_strict)
20163 #endif
20164 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20165 BTF_ID(func, preempt_count_add)
20166 BTF_ID(func, preempt_count_sub)
20167 #endif
20168 #ifdef CONFIG_PREEMPT_RCU
20169 BTF_ID(func, __rcu_read_lock)
20170 BTF_ID(func, __rcu_read_unlock)
20171 #endif
20172 BTF_SET_END(btf_id_deny)
20173
20174 /* fexit and fmod_ret can't be used to attach to __noreturn functions.
20175 * Currently, we must manually list all __noreturn functions here. Once a more
20176 * robust solution is implemented, this workaround can be removed.
20177 */
20178 BTF_SET_START(noreturn_deny)
20179 #ifdef CONFIG_IA32_EMULATION
20180 BTF_ID(func, __ia32_sys_exit)
20181 BTF_ID(func, __ia32_sys_exit_group)
20182 #endif
20183 #ifdef CONFIG_KUNIT
20184 BTF_ID(func, __kunit_abort)
20185 BTF_ID(func, kunit_try_catch_throw)
20186 #endif
20187 #ifdef CONFIG_MODULES
20188 BTF_ID(func, __module_put_and_kthread_exit)
20189 #endif
20190 #ifdef CONFIG_X86_64
20191 BTF_ID(func, __x64_sys_exit)
20192 BTF_ID(func, __x64_sys_exit_group)
20193 #endif
20194 BTF_ID(func, do_exit)
20195 BTF_ID(func, do_group_exit)
20196 BTF_ID(func, kthread_complete_and_exit)
20197 BTF_ID(func, kthread_exit)
20198 BTF_ID(func, make_task_dead)
20199 BTF_SET_END(noreturn_deny)
20200
20201 static bool can_be_sleepable(struct bpf_prog *prog)
20202 {
20203 if (prog->type == BPF_PROG_TYPE_TRACING) {
20204 switch (prog->expected_attach_type) {
20205 case BPF_TRACE_FENTRY:
20206 case BPF_TRACE_FEXIT:
20207 case BPF_MODIFY_RETURN:
20208 case BPF_TRACE_ITER:
20209 return true;
20210 default:
20211 return false;
20212 }
20213 }
20214 return prog->type == BPF_PROG_TYPE_LSM ||
20215 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20216 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20217 }
20218
check_attach_btf_id(struct bpf_verifier_env * env)20219 static int check_attach_btf_id(struct bpf_verifier_env *env)
20220 {
20221 struct bpf_prog *prog = env->prog;
20222 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20223 struct bpf_attach_target_info tgt_info = {};
20224 u32 btf_id = prog->aux->attach_btf_id;
20225 struct bpf_trampoline *tr;
20226 int ret;
20227 u64 key;
20228
20229 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20230 if (prog->aux->sleepable)
20231 /* attach_btf_id checked to be zero already */
20232 return 0;
20233 verbose(env, "Syscall programs can only be sleepable\n");
20234 return -EINVAL;
20235 }
20236
20237 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20238 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20239 return -EINVAL;
20240 }
20241
20242 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20243 return check_struct_ops_btf_id(env);
20244
20245 if (prog->type != BPF_PROG_TYPE_TRACING &&
20246 prog->type != BPF_PROG_TYPE_LSM &&
20247 prog->type != BPF_PROG_TYPE_EXT)
20248 return 0;
20249
20250 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20251 if (ret)
20252 return ret;
20253
20254 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20255 /* to make freplace equivalent to their targets, they need to
20256 * inherit env->ops and expected_attach_type for the rest of the
20257 * verification
20258 */
20259 env->ops = bpf_verifier_ops[tgt_prog->type];
20260 prog->expected_attach_type = tgt_prog->expected_attach_type;
20261 }
20262
20263 /* store info about the attachment target that will be used later */
20264 prog->aux->attach_func_proto = tgt_info.tgt_type;
20265 prog->aux->attach_func_name = tgt_info.tgt_name;
20266 prog->aux->mod = tgt_info.tgt_mod;
20267
20268 if (tgt_prog) {
20269 prog->aux->saved_dst_prog_type = tgt_prog->type;
20270 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20271 }
20272
20273 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20274 prog->aux->attach_btf_trace = true;
20275 return 0;
20276 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20277 if (!bpf_iter_prog_supported(prog))
20278 return -EINVAL;
20279 return 0;
20280 }
20281
20282 if (prog->type == BPF_PROG_TYPE_LSM) {
20283 ret = bpf_lsm_verify_prog(&env->log, prog);
20284 if (ret < 0)
20285 return ret;
20286 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
20287 btf_id_set_contains(&btf_id_deny, btf_id)) {
20288 return -EINVAL;
20289 } else if ((prog->expected_attach_type == BPF_TRACE_FEXIT ||
20290 prog->expected_attach_type == BPF_MODIFY_RETURN) &&
20291 btf_id_set_contains(&noreturn_deny, btf_id)) {
20292 verbose(env, "Attaching fexit/fmod_ret to __noreturn functions is rejected.\n");
20293 return -EINVAL;
20294 }
20295
20296 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20297 tr = bpf_trampoline_get(key, &tgt_info);
20298 if (!tr)
20299 return -ENOMEM;
20300
20301 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20302 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20303
20304 prog->aux->dst_trampoline = tr;
20305 return 0;
20306 }
20307
bpf_get_btf_vmlinux(void)20308 struct btf *bpf_get_btf_vmlinux(void)
20309 {
20310 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20311 mutex_lock(&bpf_verifier_lock);
20312 if (!btf_vmlinux)
20313 btf_vmlinux = btf_parse_vmlinux();
20314 mutex_unlock(&bpf_verifier_lock);
20315 }
20316 return btf_vmlinux;
20317 }
20318
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)20319 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20320 {
20321 u64 start_time = ktime_get_ns();
20322 struct bpf_verifier_env *env;
20323 int i, len, ret = -EINVAL, err;
20324 u32 log_true_size;
20325 bool is_priv;
20326
20327 /* no program is valid */
20328 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20329 return -EINVAL;
20330
20331 /* 'struct bpf_verifier_env' can be global, but since it's not small,
20332 * allocate/free it every time bpf_check() is called
20333 */
20334 env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20335 if (!env)
20336 return -ENOMEM;
20337
20338 env->bt.env = env;
20339
20340 len = (*prog)->len;
20341 env->insn_aux_data =
20342 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20343 ret = -ENOMEM;
20344 if (!env->insn_aux_data)
20345 goto err_free_env;
20346 for (i = 0; i < len; i++)
20347 env->insn_aux_data[i].orig_idx = i;
20348 env->prog = *prog;
20349 env->ops = bpf_verifier_ops[env->prog->type];
20350 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20351 is_priv = bpf_capable();
20352
20353 bpf_get_btf_vmlinux();
20354
20355 /* grab the mutex to protect few globals used by verifier */
20356 if (!is_priv)
20357 mutex_lock(&bpf_verifier_lock);
20358
20359 /* user could have requested verbose verifier output
20360 * and supplied buffer to store the verification trace
20361 */
20362 ret = bpf_vlog_init(&env->log, attr->log_level,
20363 (char __user *) (unsigned long) attr->log_buf,
20364 attr->log_size);
20365 if (ret)
20366 goto err_unlock;
20367
20368 mark_verifier_state_clean(env);
20369
20370 if (IS_ERR(btf_vmlinux)) {
20371 /* Either gcc or pahole or kernel are broken. */
20372 verbose(env, "in-kernel BTF is malformed\n");
20373 ret = PTR_ERR(btf_vmlinux);
20374 goto skip_full_check;
20375 }
20376
20377 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20378 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20379 env->strict_alignment = true;
20380 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20381 env->strict_alignment = false;
20382
20383 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20384 env->allow_uninit_stack = bpf_allow_uninit_stack();
20385 env->bypass_spec_v1 = bpf_bypass_spec_v1();
20386 env->bypass_spec_v4 = bpf_bypass_spec_v4();
20387 env->bpf_capable = bpf_capable();
20388
20389 if (is_priv)
20390 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20391
20392 env->explored_states = kvcalloc(state_htab_size(env),
20393 sizeof(struct bpf_verifier_state_list *),
20394 GFP_USER);
20395 ret = -ENOMEM;
20396 if (!env->explored_states)
20397 goto skip_full_check;
20398
20399 ret = add_subprog_and_kfunc(env);
20400 if (ret < 0)
20401 goto skip_full_check;
20402
20403 ret = check_subprogs(env);
20404 if (ret < 0)
20405 goto skip_full_check;
20406
20407 ret = check_btf_info(env, attr, uattr);
20408 if (ret < 0)
20409 goto skip_full_check;
20410
20411 ret = resolve_pseudo_ldimm64(env);
20412 if (ret < 0)
20413 goto skip_full_check;
20414
20415 if (bpf_prog_is_offloaded(env->prog->aux)) {
20416 ret = bpf_prog_offload_verifier_prep(env->prog);
20417 if (ret)
20418 goto skip_full_check;
20419 }
20420
20421 ret = check_cfg(env);
20422 if (ret < 0)
20423 goto skip_full_check;
20424
20425 ret = check_attach_btf_id(env);
20426 if (ret)
20427 goto skip_full_check;
20428
20429 ret = do_check_subprogs(env);
20430 ret = ret ?: do_check_main(env);
20431
20432 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20433 ret = bpf_prog_offload_finalize(env);
20434
20435 skip_full_check:
20436 kvfree(env->explored_states);
20437
20438 if (ret == 0)
20439 ret = check_max_stack_depth(env);
20440
20441 /* instruction rewrites happen after this point */
20442 if (ret == 0)
20443 ret = optimize_bpf_loop(env);
20444
20445 if (is_priv) {
20446 if (ret == 0)
20447 opt_hard_wire_dead_code_branches(env);
20448 if (ret == 0)
20449 ret = opt_remove_dead_code(env);
20450 if (ret == 0)
20451 ret = opt_remove_nops(env);
20452 } else {
20453 if (ret == 0)
20454 sanitize_dead_code(env);
20455 }
20456
20457 if (ret == 0)
20458 /* program is valid, convert *(u32*)(ctx + off) accesses */
20459 ret = convert_ctx_accesses(env);
20460
20461 if (ret == 0)
20462 ret = do_misc_fixups(env);
20463
20464 /* do 32-bit optimization after insn patching has done so those patched
20465 * insns could be handled correctly.
20466 */
20467 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20468 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20469 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20470 : false;
20471 }
20472
20473 if (ret == 0)
20474 ret = fixup_call_args(env);
20475
20476 env->verification_time = ktime_get_ns() - start_time;
20477 print_verification_stats(env);
20478 env->prog->aux->verified_insns = env->insn_processed;
20479
20480 /* preserve original error even if log finalization is successful */
20481 err = bpf_vlog_finalize(&env->log, &log_true_size);
20482 if (err)
20483 ret = err;
20484
20485 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20486 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20487 &log_true_size, sizeof(log_true_size))) {
20488 ret = -EFAULT;
20489 goto err_release_maps;
20490 }
20491
20492 if (ret)
20493 goto err_release_maps;
20494
20495 if (env->used_map_cnt) {
20496 /* if program passed verifier, update used_maps in bpf_prog_info */
20497 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20498 sizeof(env->used_maps[0]),
20499 GFP_KERNEL);
20500
20501 if (!env->prog->aux->used_maps) {
20502 ret = -ENOMEM;
20503 goto err_release_maps;
20504 }
20505
20506 memcpy(env->prog->aux->used_maps, env->used_maps,
20507 sizeof(env->used_maps[0]) * env->used_map_cnt);
20508 env->prog->aux->used_map_cnt = env->used_map_cnt;
20509 }
20510 if (env->used_btf_cnt) {
20511 /* if program passed verifier, update used_btfs in bpf_prog_aux */
20512 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20513 sizeof(env->used_btfs[0]),
20514 GFP_KERNEL);
20515 if (!env->prog->aux->used_btfs) {
20516 ret = -ENOMEM;
20517 goto err_release_maps;
20518 }
20519
20520 memcpy(env->prog->aux->used_btfs, env->used_btfs,
20521 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20522 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20523 }
20524 if (env->used_map_cnt || env->used_btf_cnt) {
20525 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
20526 * bpf_ld_imm64 instructions
20527 */
20528 convert_pseudo_ld_imm64(env);
20529 }
20530
20531 adjust_btf_func(env);
20532
20533 err_release_maps:
20534 if (!env->prog->aux->used_maps)
20535 /* if we didn't copy map pointers into bpf_prog_info, release
20536 * them now. Otherwise free_used_maps() will release them.
20537 */
20538 release_maps(env);
20539 if (!env->prog->aux->used_btfs)
20540 release_btfs(env);
20541
20542 /* extension progs temporarily inherit the attach_type of their targets
20543 for verification purposes, so set it back to zero before returning
20544 */
20545 if (env->prog->type == BPF_PROG_TYPE_EXT)
20546 env->prog->expected_attach_type = 0;
20547
20548 *prog = env->prog;
20549 err_unlock:
20550 if (!is_priv)
20551 mutex_unlock(&bpf_verifier_lock);
20552 vfree(env->insn_aux_data);
20553 err_free_env:
20554 kvfree(env);
20555 return ret;
20556 }
20557