1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
34 #include <linux/mm.h>
35
36 #include <asm/acpi.h>
37 #include <asm/fixmap.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
41 #include <asm/elf.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/scs.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/smp_plat.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 #include <asm/traps.h>
53 #include <asm/efi.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/mmu_context.h>
56
57 static int num_standard_resources;
58 static struct resource *standard_resources;
59
60 phys_addr_t __fdt_pointer __initdata;
61 u64 mmu_enabled_at_boot __initdata;
62
63 /*
64 * Standard memory resources
65 */
66 static struct resource mem_res[] = {
67 {
68 .name = "Kernel code",
69 .start = 0,
70 .end = 0,
71 .flags = IORESOURCE_SYSTEM_RAM
72 },
73 {
74 .name = "Kernel data",
75 .start = 0,
76 .end = 0,
77 .flags = IORESOURCE_SYSTEM_RAM
78 }
79 };
80
81 #define kernel_code mem_res[0]
82 #define kernel_data mem_res[1]
83
84 /*
85 * The recorded values of x0 .. x3 upon kernel entry.
86 */
87 u64 __cacheline_aligned boot_args[4];
88
smp_setup_processor_id(void)89 void __init smp_setup_processor_id(void)
90 {
91 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
92 set_cpu_logical_map(0, mpidr);
93
94 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
95 (unsigned long)mpidr, read_cpuid_id());
96 }
97
arch_match_cpu_phys_id(int cpu,u64 phys_id)98 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
99 {
100 return phys_id == cpu_logical_map(cpu);
101 }
102
103 struct mpidr_hash mpidr_hash;
104 /**
105 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
106 * level in order to build a linear index from an
107 * MPIDR value. Resulting algorithm is a collision
108 * free hash carried out through shifting and ORing
109 */
smp_build_mpidr_hash(void)110 static void __init smp_build_mpidr_hash(void)
111 {
112 u32 i, affinity, fs[4], bits[4], ls;
113 u64 mask = 0;
114 /*
115 * Pre-scan the list of MPIDRS and filter out bits that do
116 * not contribute to affinity levels, ie they never toggle.
117 */
118 for_each_possible_cpu(i)
119 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
120 pr_debug("mask of set bits %#llx\n", mask);
121 /*
122 * Find and stash the last and first bit set at all affinity levels to
123 * check how many bits are required to represent them.
124 */
125 for (i = 0; i < 4; i++) {
126 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
127 /*
128 * Find the MSB bit and LSB bits position
129 * to determine how many bits are required
130 * to express the affinity level.
131 */
132 ls = fls(affinity);
133 fs[i] = affinity ? ffs(affinity) - 1 : 0;
134 bits[i] = ls - fs[i];
135 }
136 /*
137 * An index can be created from the MPIDR_EL1 by isolating the
138 * significant bits at each affinity level and by shifting
139 * them in order to compress the 32 bits values space to a
140 * compressed set of values. This is equivalent to hashing
141 * the MPIDR_EL1 through shifting and ORing. It is a collision free
142 * hash though not minimal since some levels might contain a number
143 * of CPUs that is not an exact power of 2 and their bit
144 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
145 */
146 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
147 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
148 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
149 (bits[1] + bits[0]);
150 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
151 fs[3] - (bits[2] + bits[1] + bits[0]);
152 mpidr_hash.mask = mask;
153 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
154 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
155 mpidr_hash.shift_aff[0],
156 mpidr_hash.shift_aff[1],
157 mpidr_hash.shift_aff[2],
158 mpidr_hash.shift_aff[3],
159 mpidr_hash.mask,
160 mpidr_hash.bits);
161 /*
162 * 4x is an arbitrary value used to warn on a hash table much bigger
163 * than expected on most systems.
164 */
165 if (mpidr_hash_size() > 4 * num_possible_cpus())
166 pr_warn("Large number of MPIDR hash buckets detected\n");
167 }
168
169 static void *early_fdt_ptr __initdata;
170
get_early_fdt_ptr(void)171 void __init *get_early_fdt_ptr(void)
172 {
173 return early_fdt_ptr;
174 }
175
early_fdt_map(u64 dt_phys)176 asmlinkage void __init early_fdt_map(u64 dt_phys)
177 {
178 int fdt_size;
179
180 early_fixmap_init();
181 early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
182 }
183
setup_machine_fdt(phys_addr_t dt_phys)184 static void __init setup_machine_fdt(phys_addr_t dt_phys)
185 {
186 int size;
187 void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
188 const char *name;
189
190 if (dt_virt)
191 memblock_reserve(dt_phys, size);
192
193 if (!dt_virt || !early_init_dt_scan(dt_virt)) {
194 pr_crit("\n"
195 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
196 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
197 "\nPlease check your bootloader.",
198 &dt_phys, dt_virt);
199
200 /*
201 * Note that in this _really_ early stage we cannot even BUG()
202 * or oops, so the least terrible thing to do is cpu_relax(),
203 * or else we could end-up printing non-initialized data, etc.
204 */
205 while (true)
206 cpu_relax();
207 }
208
209 /* Early fixups are done, map the FDT as read-only now */
210 fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
211
212 name = of_flat_dt_get_machine_name();
213 if (!name)
214 return;
215
216 pr_info("Machine model: %s\n", name);
217 dump_stack_set_arch_desc("%s (DT)", name);
218 }
219
request_standard_resources(void)220 static void __init request_standard_resources(void)
221 {
222 struct memblock_region *region;
223 struct resource *res;
224 unsigned long i = 0;
225 size_t res_size;
226
227 kernel_code.start = __pa_symbol(_stext);
228 kernel_code.end = __pa_symbol(__init_begin - 1);
229 kernel_data.start = __pa_symbol(_sdata);
230 kernel_data.end = __pa_symbol(_end - 1);
231 insert_resource(&iomem_resource, &kernel_code);
232 insert_resource(&iomem_resource, &kernel_data);
233
234 num_standard_resources = memblock.memory.cnt;
235 res_size = num_standard_resources * sizeof(*standard_resources);
236 standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
237 if (!standard_resources)
238 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
239
240 for_each_mem_region(region) {
241 res = &standard_resources[i++];
242 if (memblock_is_nomap(region)) {
243 res->name = "reserved";
244 res->flags = IORESOURCE_MEM;
245 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
246 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
247 } else {
248 res->name = "System RAM";
249 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
250 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
251 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
252 }
253
254 insert_resource(&iomem_resource, res);
255 }
256 }
257
reserve_memblock_reserved_regions(void)258 static int __init reserve_memblock_reserved_regions(void)
259 {
260 u64 i, j;
261
262 for (i = 0; i < num_standard_resources; ++i) {
263 struct resource *mem = &standard_resources[i];
264 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
265
266 if (!memblock_is_region_reserved(mem->start, mem_size))
267 continue;
268
269 for_each_reserved_mem_range(j, &r_start, &r_end) {
270 resource_size_t start, end;
271
272 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
273 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
274
275 if (start > mem->end || end < mem->start)
276 continue;
277
278 reserve_region_with_split(mem, start, end, "reserved");
279 }
280 }
281
282 return 0;
283 }
284 arch_initcall(reserve_memblock_reserved_regions);
285
286 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
287
cpu_logical_map(unsigned int cpu)288 u64 cpu_logical_map(unsigned int cpu)
289 {
290 return __cpu_logical_map[cpu];
291 }
292
setup_arch(char ** cmdline_p)293 void __init __no_sanitize_address setup_arch(char **cmdline_p)
294 {
295 setup_initial_init_mm(_stext, _etext, _edata, _end);
296
297 *cmdline_p = boot_command_line;
298
299 kaslr_init();
300
301 /*
302 * If know now we are going to need KPTI then use non-global
303 * mappings from the start, avoiding the cost of rewriting
304 * everything later.
305 */
306 arm64_use_ng_mappings = kaslr_requires_kpti();
307
308 early_fixmap_init();
309 early_ioremap_init();
310
311 setup_machine_fdt(__fdt_pointer);
312
313 /*
314 * Initialise the static keys early as they may be enabled by the
315 * cpufeature code and early parameters.
316 */
317 jump_label_init();
318 parse_early_param();
319
320 dynamic_scs_init();
321
322 /*
323 * Unmask asynchronous aborts and fiq after bringing up possible
324 * earlycon. (Report possible System Errors once we can report this
325 * occurred).
326 */
327 local_daif_restore(DAIF_PROCCTX_NOIRQ);
328
329 /*
330 * TTBR0 is only used for the identity mapping at this stage. Make it
331 * point to zero page to avoid speculatively fetching new entries.
332 */
333 cpu_uninstall_idmap();
334
335 xen_early_init();
336 efi_init();
337
338 if (!efi_enabled(EFI_BOOT)) {
339 if ((u64)_text % MIN_KIMG_ALIGN)
340 pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
341 WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
342 FW_BUG "Booted with MMU enabled!");
343 }
344
345 arm64_memblock_init();
346
347 paging_init();
348
349 acpi_table_upgrade();
350
351 /* Parse the ACPI tables for possible boot-time configuration */
352 acpi_boot_table_init();
353
354 if (acpi_disabled)
355 unflatten_device_tree();
356
357 bootmem_init();
358
359 kasan_init();
360
361 request_standard_resources();
362
363 early_ioremap_reset();
364
365 if (acpi_disabled)
366 psci_dt_init();
367 else
368 psci_acpi_init();
369
370 init_bootcpu_ops();
371 smp_init_cpus();
372 smp_build_mpidr_hash();
373
374 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
375 /*
376 * Make sure init_thread_info.ttbr0 always generates translation
377 * faults in case uaccess_enable() is inadvertently called by the init
378 * thread.
379 */
380 init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
381 #endif
382
383 if (boot_args[1] || boot_args[2] || boot_args[3]) {
384 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
385 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
386 "This indicates a broken bootloader or old kernel\n",
387 boot_args[1], boot_args[2], boot_args[3]);
388 }
389 }
390
cpu_can_disable(unsigned int cpu)391 static inline bool cpu_can_disable(unsigned int cpu)
392 {
393 #ifdef CONFIG_HOTPLUG_CPU
394 const struct cpu_operations *ops = get_cpu_ops(cpu);
395
396 if (ops && ops->cpu_can_disable)
397 return ops->cpu_can_disable(cpu);
398 #endif
399 return false;
400 }
401
topology_init(void)402 static int __init topology_init(void)
403 {
404 int i;
405
406 for_each_possible_cpu(i) {
407 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
408 cpu->hotpluggable = cpu_can_disable(i);
409 register_cpu(cpu, i);
410 }
411
412 return 0;
413 }
414 subsys_initcall(topology_init);
415
dump_kernel_offset(void)416 static void dump_kernel_offset(void)
417 {
418 const unsigned long offset = kaslr_offset();
419
420 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
421 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
422 offset, KIMAGE_VADDR);
423 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
424 } else {
425 pr_emerg("Kernel Offset: disabled\n");
426 }
427 }
428
arm64_panic_block_dump(struct notifier_block * self,unsigned long v,void * p)429 static int arm64_panic_block_dump(struct notifier_block *self,
430 unsigned long v, void *p)
431 {
432 dump_kernel_offset();
433 dump_cpu_features();
434 dump_mem_limit();
435 return 0;
436 }
437
438 static struct notifier_block arm64_panic_block = {
439 .notifier_call = arm64_panic_block_dump
440 };
441
register_arm64_panic_block(void)442 static int __init register_arm64_panic_block(void)
443 {
444 atomic_notifier_chain_register(&panic_notifier_list,
445 &arm64_panic_block);
446 return 0;
447 }
448 device_initcall(register_arm64_panic_block);
449
check_mmu_enabled_at_boot(void)450 static int __init check_mmu_enabled_at_boot(void)
451 {
452 if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
453 panic("Non-EFI boot detected with MMU and caches enabled");
454 return 0;
455 }
456 device_initcall_sync(check_mmu_enabled_at_boot);
457