xref: /openbmc/linux/fs/ntfs3/fslog.c (revision 109d85a9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 /*
18  * LOG FILE structs
19  */
20 
21 // clang-format off
22 
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26 
27 struct RESTART_HDR {
28 	struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 	__le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 	__le32 page_size;     // 0x14: Log page size used for this log file.
31 	__le16 ra_off;        // 0x18:
32 	__le16 minor_ver;     // 0x1A:
33 	__le16 major_ver;     // 0x1C:
34 	__le16 fixups[];
35 };
36 
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39 
40 struct CLIENT_REC {
41 	__le64 oldest_lsn;
42 	__le64 restart_lsn; // 0x08:
43 	__le16 prev_client; // 0x10:
44 	__le16 next_client; // 0x12:
45 	__le16 seq_num;     // 0x14:
46 	u8 align[6];        // 0x16:
47 	__le32 name_bytes;  // 0x1C: In bytes.
48 	__le16 name[32];    // 0x20: Name of client.
49 };
50 
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52 
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55 	__le64 current_lsn;    // 0x00: Current logical end of log file.
56 	__le16 log_clients;    // 0x08: Maximum number of clients.
57 	__le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58 	__le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 	__le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60 	__le16 ra_len;         // 0x14:
61 	__le16 client_off;     // 0x16:
62 	__le64 l_size;         // 0x18: Usable log file size.
63 	__le32 last_lsn_data_len; // 0x20:
64 	__le16 rec_hdr_len;    // 0x24: Log page data offset.
65 	__le16 data_off;       // 0x26: Log page data length.
66 	__le32 open_log_count; // 0x28:
67 	__le32 align[5];       // 0x2C:
68 	struct CLIENT_REC clients[]; // 0x40:
69 };
70 
71 struct LOG_REC_HDR {
72 	__le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73 	__le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74 	__le16 redo_off;     // 0x04:  Offset to Redo record.
75 	__le16 redo_len;     // 0x06:  Redo length.
76 	__le16 undo_off;     // 0x08:  Offset to Undo record.
77 	__le16 undo_len;     // 0x0A:  Undo length.
78 	__le16 target_attr;  // 0x0C:
79 	__le16 lcns_follow;  // 0x0E:
80 	__le16 record_off;   // 0x10:
81 	__le16 attr_off;     // 0x12:
82 	__le16 cluster_off;  // 0x14:
83 	__le16 reserved;     // 0x16:
84 	__le64 target_vcn;   // 0x18:
85 	__le64 page_lcns[];  // 0x20:
86 };
87 
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89 
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92 
93 struct RESTART_TABLE {
94 	__le16 size;       // 0x00: In bytes
95 	__le16 used;       // 0x02: Entries
96 	__le16 total;      // 0x04: Entries
97 	__le16 res[3];     // 0x06:
98 	__le32 free_goal;  // 0x0C:
99 	__le32 first_free; // 0x10:
100 	__le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107 	__le16 off; // Offset in the Open attribute Table.
108 	__le16 name_bytes;
109 	__le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 	__le32 bytes_per_index; // 0x04:
115 	enum ATTR_TYPE type;    // 0x08:
116 	u8 is_dirty_pages;      // 0x0C:
117 	u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118 	u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119 	u8 res;
120 	struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121 	__le64 open_record_lsn; // 0x18:
122 	void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 	__le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128 	__le32 ptr;             // 0x04:
129 	struct MFT_REF ref;     // 0x08:
130 	__le64 open_record_lsn; // 0x10:
131 	u8 is_dirty_pages;      // 0x18:
132 	u8 is_attr_name;        // 0x19:
133 	u8 res1[2];
134 	enum ATTR_TYPE type;    // 0x1C:
135 	u8 name_len;            // 0x20: In wchar
136 	u8 res2[3];
137 	__le32 AttributeName;   // 0x24:
138 	__le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150 	__le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 	__le32 target_attr;  // 0x04: Index into the Open attribute Table
152 	__le32 transfer_len; // 0x08:
153 	__le32 lcns_follow;  // 0x0C:
154 	__le64 vcn;          // 0x10: Vcn of dirty page
155 	__le64 oldest_lsn;   // 0x18:
156 	__le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 	__le32 next;		// 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 	__le32 target_attr;	// 0x04: Index into the Open attribute Table
165 	__le32 transfer_len;	// 0x08:
166 	__le32 lcns_follow;	// 0x0C:
167 	__le32 reserved;	// 0x10:
168 	__le32 vcn_low;		// 0x14: Vcn of dirty page
169 	__le32 vcn_hi;		// 0x18: Vcn of dirty page
170 	__le32 oldest_lsn_low;	// 0x1C:
171 	__le32 oldest_lsn_hi;	// 0x1C:
172 	__le32 page_lcns_low;	// 0x24:
173 	__le32 page_lcns_hi;	// 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180 	TransactionUninitialized = 0,
181 	TransactionActive,
182 	TransactionPrepared,
183 	TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187 	__le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 	u8 transact_state;    // 0x04:
189 	u8 reserved[3];       // 0x05:
190 	__le64 first_lsn;     // 0x08:
191 	__le64 prev_lsn;      // 0x10:
192 	__le64 undo_next_lsn; // 0x18:
193 	__le32 undo_records;  // 0x20: Number of undo log records pending abort
194 	__le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200 	__le32 major_ver;             // 0x00:
201 	__le32 minor_ver;             // 0x04:
202 	__le64 check_point_start;     // 0x08:
203 	__le64 open_attr_table_lsn;   // 0x10:
204 	__le64 attr_names_lsn;        // 0x18:
205 	__le64 dirty_pages_table_lsn; // 0x20:
206 	__le64 transact_table_lsn;    // 0x28:
207 	__le32 open_attr_len;         // 0x30: In bytes
208 	__le32 attr_names_len;        // 0x34: In bytes
209 	__le32 dirty_pages_len;       // 0x38: In bytes
210 	__le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216 	__le64 alloc_size;
217 	__le64 valid_size;
218 	__le64 data_size;
219 	__le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223 	__le32 bitmap_off;
224 	__le32 bits;
225 };
226 
227 struct LCN_RANGE {
228 	__le64 lcn;
229 	__le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238 	__le16 seq_num;
239 	__le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 	__le64 this_lsn;		// 0x00:
245 	__le64 client_prev_lsn;		// 0x08:
246 	__le64 client_undo_next_lsn;	// 0x10:
247 	__le32 client_data_len;		// 0x18:
248 	struct CLIENT_ID client;	// 0x1C: Owner of this log record.
249 	__le32 record_type;		// 0x20: LfsClientRecord or LfsClientRestart.
250 	__le32 transact_id;		// 0x24:
251 	__le16 flags;			// 0x28: LOG_RECORD_MULTI_PAGE
252 	u8 align[6];			// 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260 	__le16 next_record_off;	// 0x00: Offset of the free space in the page,
261 	u8 align[6];		// 0x02:
262 	__le64 last_end_lsn;	// 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268 	struct NTFS_RECORD_HEADER rhdr;	// 'RCRD'
269 	__le32 rflags;			// 0x10: See LOG_PAGE_LOG_RECORD_END
270 	__le16 page_count;		// 0x14:
271 	__le16 page_pos;		// 0x16:
272 	struct LFS_RECORD record_hdr;	// 0x18:
273 	__le16 fixups[10];		// 0x28:
274 	__le32 file_off;		// 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
is_log_record_end(const struct RECORD_PAGE_HDR * hdr)282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284 	return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298 	Noop = 0x00,
299 	CompensationLogRecord = 0x01,
300 	InitializeFileRecordSegment = 0x02,
301 	DeallocateFileRecordSegment = 0x03,
302 	WriteEndOfFileRecordSegment = 0x04,
303 	CreateAttribute = 0x05,
304 	DeleteAttribute = 0x06,
305 	UpdateResidentValue = 0x07,
306 	UpdateNonresidentValue = 0x08,
307 	UpdateMappingPairs = 0x09,
308 	DeleteDirtyClusters = 0x0A,
309 	SetNewAttributeSizes = 0x0B,
310 	AddIndexEntryRoot = 0x0C,
311 	DeleteIndexEntryRoot = 0x0D,
312 	AddIndexEntryAllocation = 0x0E,
313 	DeleteIndexEntryAllocation = 0x0F,
314 	WriteEndOfIndexBuffer = 0x10,
315 	SetIndexEntryVcnRoot = 0x11,
316 	SetIndexEntryVcnAllocation = 0x12,
317 	UpdateFileNameRoot = 0x13,
318 	UpdateFileNameAllocation = 0x14,
319 	SetBitsInNonresidentBitMap = 0x15,
320 	ClearBitsInNonresidentBitMap = 0x16,
321 	HotFix = 0x17,
322 	EndTopLevelAction = 0x18,
323 	PrepareTransaction = 0x19,
324 	CommitTransaction = 0x1A,
325 	ForgetTransaction = 0x1B,
326 	OpenNonresidentAttribute = 0x1C,
327 	OpenAttributeTableDump = 0x1D,
328 	AttributeNamesDump = 0x1E,
329 	DirtyPageTableDump = 0x1F,
330 	TransactionTableDump = 0x20,
331 	UpdateRecordDataRoot = 0x21,
332 	UpdateRecordDataAllocation = 0x22,
333 
334 	UpdateRelativeDataInIndex =
335 		0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 	UpdateRelativeDataInIndex2 = 0x24,
337 	ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346 	0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
is_target_required(u16 op)349 static inline bool is_target_required(u16 op)
350 {
351 	bool ret = op <= UpdateRecordDataAllocation &&
352 		   (AttributeRequired[op >> 3] >> (op & 7) & 1);
353 	return ret;
354 }
355 
can_skip_action(enum NTFS_LOG_OPERATION op)356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358 	switch (op) {
359 	case Noop:
360 	case DeleteDirtyClusters:
361 	case HotFix:
362 	case EndTopLevelAction:
363 	case PrepareTransaction:
364 	case CommitTransaction:
365 	case ForgetTransaction:
366 	case CompensationLogRecord:
367 	case OpenNonresidentAttribute:
368 	case OpenAttributeTableDump:
369 	case AttributeNamesDump:
370 	case DirtyPageTableDump:
371 	case TransactionTableDump:
372 		return true;
373 	default:
374 		return false;
375 	}
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
bytes_per_rt(const struct RESTART_TABLE * rt)381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383 	return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 	       sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
lrh_length(const struct LOG_REC_HDR * lr)388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390 	u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392 	return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396 	struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 	struct LOG_REC_HDR *log_rec;
398 	u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 	struct CLIENT_ID client;
400 	bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
lcb_put(struct lcb * lcb)403 static void lcb_put(struct lcb *lcb)
404 {
405 	if (lcb->alloc)
406 		kfree(lcb->log_rec);
407 	kfree(lcb->lrh);
408 	kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
oldest_client_lsn(const struct CLIENT_REC * ca,__le16 next_client,u64 * oldest_lsn)412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 				     __le16 next_client, u64 *oldest_lsn)
414 {
415 	while (next_client != LFS_NO_CLIENT_LE) {
416 		const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 		u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419 		/* Ignore this block if it's oldest lsn is 0. */
420 		if (lsn && lsn < *oldest_lsn)
421 			*oldest_lsn = lsn;
422 
423 		next_client = cr->next_client;
424 	}
425 }
426 
is_rst_page_hdr_valid(u32 file_off,const struct RESTART_HDR * rhdr)427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 					 const struct RESTART_HDR *rhdr)
429 {
430 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 	u32 page_size = le32_to_cpu(rhdr->page_size);
432 	u32 end_usa;
433 	u16 ro;
434 
435 	if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 	    sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437 		return false;
438 	}
439 
440 	/* Check that if the file offset isn't 0, it is the system page size. */
441 	if (file_off && file_off != sys_page)
442 		return false;
443 
444 	/* Check support version 1.1+. */
445 	if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446 		return false;
447 
448 	if (le16_to_cpu(rhdr->major_ver) > 2)
449 		return false;
450 
451 	ro = le16_to_cpu(rhdr->ra_off);
452 	if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453 		return false;
454 
455 	end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 	end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458 	if (ro < end_usa)
459 		return false;
460 
461 	return true;
462 }
463 
is_rst_area_valid(const struct RESTART_HDR * rhdr)464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466 	const struct RESTART_AREA *ra;
467 	u16 cl, fl, ul;
468 	u32 off, l_size, seq_bits;
469 	u16 ro = le16_to_cpu(rhdr->ra_off);
470 	u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472 	if (ro + offsetof(struct RESTART_AREA, l_size) >
473 	    SECTOR_SIZE - sizeof(short))
474 		return false;
475 
476 	ra = Add2Ptr(rhdr, ro);
477 	cl = le16_to_cpu(ra->log_clients);
478 
479 	if (cl > 1)
480 		return false;
481 
482 	off = le16_to_cpu(ra->client_off);
483 
484 	if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485 		return false;
486 
487 	off += cl * sizeof(struct CLIENT_REC);
488 
489 	if (off > sys_page)
490 		return false;
491 
492 	/*
493 	 * Check the restart length field and whether the entire
494 	 * restart area is contained that length.
495 	 */
496 	if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 	    off > le16_to_cpu(ra->ra_len)) {
498 		return false;
499 	}
500 
501 	/*
502 	 * As a final check make sure that the use list and the free list
503 	 * are either empty or point to a valid client.
504 	 */
505 	fl = le16_to_cpu(ra->client_idx[0]);
506 	ul = le16_to_cpu(ra->client_idx[1]);
507 	if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 	    (ul != LFS_NO_CLIENT && ul >= cl))
509 		return false;
510 
511 	/* Make sure the sequence number bits match the log file size. */
512 	l_size = le64_to_cpu(ra->l_size);
513 
514 	seq_bits = sizeof(u64) * 8 + 3;
515 	while (l_size) {
516 		l_size >>= 1;
517 		seq_bits -= 1;
518 	}
519 
520 	if (seq_bits != ra->seq_num_bits)
521 		return false;
522 
523 	/* The log page data offset and record header length must be quad-aligned. */
524 	if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525 	    !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526 		return false;
527 
528 	return true;
529 }
530 
is_client_area_valid(const struct RESTART_HDR * rhdr,bool usa_error)531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 					bool usa_error)
533 {
534 	u16 ro = le16_to_cpu(rhdr->ra_off);
535 	const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536 	u16 ra_len = le16_to_cpu(ra->ra_len);
537 	const struct CLIENT_REC *ca;
538 	u32 i;
539 
540 	if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 		return false;
542 
543 	/* Find the start of the client array. */
544 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545 
546 	/*
547 	 * Start with the free list.
548 	 * Check that all the clients are valid and that there isn't a cycle.
549 	 * Do the in-use list on the second pass.
550 	 */
551 	for (i = 0; i < 2; i++) {
552 		u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553 		bool first_client = true;
554 		u16 clients = le16_to_cpu(ra->log_clients);
555 
556 		while (client_idx != LFS_NO_CLIENT) {
557 			const struct CLIENT_REC *cr;
558 
559 			if (!clients ||
560 			    client_idx >= le16_to_cpu(ra->log_clients))
561 				return false;
562 
563 			clients -= 1;
564 			cr = ca + client_idx;
565 
566 			client_idx = le16_to_cpu(cr->next_client);
567 
568 			if (first_client) {
569 				first_client = false;
570 				if (cr->prev_client != LFS_NO_CLIENT_LE)
571 					return false;
572 			}
573 		}
574 	}
575 
576 	return true;
577 }
578 
579 /*
580  * remove_client
581  *
582  * Remove a client record from a client record list an restart area.
583  */
remove_client(struct CLIENT_REC * ca,const struct CLIENT_REC * cr,__le16 * head)584 static inline void remove_client(struct CLIENT_REC *ca,
585 				 const struct CLIENT_REC *cr, __le16 *head)
586 {
587 	if (cr->prev_client == LFS_NO_CLIENT_LE)
588 		*head = cr->next_client;
589 	else
590 		ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591 
592 	if (cr->next_client != LFS_NO_CLIENT_LE)
593 		ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595 
596 /*
597  * add_client - Add a client record to the start of a list.
598  */
add_client(struct CLIENT_REC * ca,u16 index,__le16 * head)599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601 	struct CLIENT_REC *cr = ca + index;
602 
603 	cr->prev_client = LFS_NO_CLIENT_LE;
604 	cr->next_client = *head;
605 
606 	if (*head != LFS_NO_CLIENT_LE)
607 		ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608 
609 	*head = cpu_to_le16(index);
610 }
611 
enum_rstbl(struct RESTART_TABLE * t,void * c)612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613 {
614 	__le32 *e;
615 	u32 bprt;
616 	u16 rsize = t ? le16_to_cpu(t->size) : 0;
617 
618 	if (!c) {
619 		if (!t || !t->total)
620 			return NULL;
621 		e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622 	} else {
623 		e = Add2Ptr(c, rsize);
624 	}
625 
626 	/* Loop until we hit the first one allocated, or the end of the list. */
627 	for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
628 	     e = Add2Ptr(e, rsize)) {
629 		if (*e == RESTART_ENTRY_ALLOCATED_LE)
630 			return e;
631 	}
632 	return NULL;
633 }
634 
635 /*
636  * find_dp - Search for a @vcn in Dirty Page Table.
637  */
find_dp(struct RESTART_TABLE * dptbl,u32 target_attr,u64 vcn)638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639 					     u32 target_attr, u64 vcn)
640 {
641 	__le32 ta = cpu_to_le32(target_attr);
642 	struct DIR_PAGE_ENTRY *dp = NULL;
643 
644 	while ((dp = enum_rstbl(dptbl, dp))) {
645 		u64 dp_vcn = le64_to_cpu(dp->vcn);
646 
647 		if (dp->target_attr == ta && vcn >= dp_vcn &&
648 		    vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649 			return dp;
650 		}
651 	}
652 	return NULL;
653 }
654 
norm_file_page(u32 page_size,u32 * l_size,bool use_default)655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 {
657 	if (use_default)
658 		page_size = DefaultLogPageSize;
659 
660 	/* Round the file size down to a system page boundary. */
661 	*l_size &= ~(page_size - 1);
662 
663 	/* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664 	if (*l_size < (MinLogRecordPages + 2) * page_size)
665 		return 0;
666 
667 	return page_size;
668 }
669 
check_log_rec(const struct LOG_REC_HDR * lr,u32 bytes,u32 tr,u32 bytes_per_attr_entry)670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671 			  u32 bytes_per_attr_entry)
672 {
673 	u16 t16;
674 
675 	if (bytes < sizeof(struct LOG_REC_HDR))
676 		return false;
677 	if (!tr)
678 		return false;
679 
680 	if ((tr - sizeof(struct RESTART_TABLE)) %
681 	    sizeof(struct TRANSACTION_ENTRY))
682 		return false;
683 
684 	if (le16_to_cpu(lr->redo_off) & 7)
685 		return false;
686 
687 	if (le16_to_cpu(lr->undo_off) & 7)
688 		return false;
689 
690 	if (lr->target_attr)
691 		goto check_lcns;
692 
693 	if (is_target_required(le16_to_cpu(lr->redo_op)))
694 		return false;
695 
696 	if (is_target_required(le16_to_cpu(lr->undo_op)))
697 		return false;
698 
699 check_lcns:
700 	if (!lr->lcns_follow)
701 		goto check_length;
702 
703 	t16 = le16_to_cpu(lr->target_attr);
704 	if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705 		return false;
706 
707 check_length:
708 	if (bytes < lrh_length(lr))
709 		return false;
710 
711 	return true;
712 }
713 
check_rstbl(const struct RESTART_TABLE * rt,size_t bytes)714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715 {
716 	u32 ts;
717 	u32 i, off;
718 	u16 rsize = le16_to_cpu(rt->size);
719 	u16 ne = le16_to_cpu(rt->used);
720 	u32 ff = le32_to_cpu(rt->first_free);
721 	u32 lf = le32_to_cpu(rt->last_free);
722 
723 	ts = rsize * ne + sizeof(struct RESTART_TABLE);
724 
725 	if (!rsize || rsize > bytes ||
726 	    rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727 	    le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
728 	    (ff && ff < sizeof(struct RESTART_TABLE)) ||
729 	    (lf && lf < sizeof(struct RESTART_TABLE))) {
730 		return false;
731 	}
732 
733 	/*
734 	 * Verify each entry is either allocated or points
735 	 * to a valid offset the table.
736 	 */
737 	for (i = 0; i < ne; i++) {
738 		off = le32_to_cpu(*(__le32 *)Add2Ptr(
739 			rt, i * rsize + sizeof(struct RESTART_TABLE)));
740 
741 		if (off != RESTART_ENTRY_ALLOCATED && off &&
742 		    (off < sizeof(struct RESTART_TABLE) ||
743 		     ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
744 			return false;
745 		}
746 	}
747 
748 	/*
749 	 * Walk through the list headed by the first entry to make
750 	 * sure none of the entries are currently being used.
751 	 */
752 	for (off = ff; off;) {
753 		if (off == RESTART_ENTRY_ALLOCATED)
754 			return false;
755 
756 		off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
757 	}
758 
759 	return true;
760 }
761 
762 /*
763  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
764  */
free_rsttbl_idx(struct RESTART_TABLE * rt,u32 off)765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766 {
767 	__le32 *e;
768 	u32 lf = le32_to_cpu(rt->last_free);
769 	__le32 off_le = cpu_to_le32(off);
770 
771 	e = Add2Ptr(rt, off);
772 
773 	if (off < le32_to_cpu(rt->free_goal)) {
774 		*e = rt->first_free;
775 		rt->first_free = off_le;
776 		if (!lf)
777 			rt->last_free = off_le;
778 	} else {
779 		if (lf)
780 			*(__le32 *)Add2Ptr(rt, lf) = off_le;
781 		else
782 			rt->first_free = off_le;
783 
784 		rt->last_free = off_le;
785 		*e = 0;
786 	}
787 
788 	le16_sub_cpu(&rt->total, 1);
789 }
790 
init_rsttbl(u16 esize,u16 used)791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
792 {
793 	__le32 *e, *last_free;
794 	u32 off;
795 	u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
796 	u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
797 	struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
798 
799 	if (!t)
800 		return NULL;
801 
802 	t->size = cpu_to_le16(esize);
803 	t->used = cpu_to_le16(used);
804 	t->free_goal = cpu_to_le32(~0u);
805 	t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
806 	t->last_free = cpu_to_le32(lf);
807 
808 	e = (__le32 *)(t + 1);
809 	last_free = Add2Ptr(t, lf);
810 
811 	for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
812 	     e = Add2Ptr(e, esize), off += esize) {
813 		*e = cpu_to_le32(off);
814 	}
815 	return t;
816 }
817 
extend_rsttbl(struct RESTART_TABLE * tbl,u32 add,u32 free_goal)818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
819 						  u32 add, u32 free_goal)
820 {
821 	u16 esize = le16_to_cpu(tbl->size);
822 	__le32 osize = cpu_to_le32(bytes_per_rt(tbl));
823 	u32 used = le16_to_cpu(tbl->used);
824 	struct RESTART_TABLE *rt;
825 
826 	rt = init_rsttbl(esize, used + add);
827 	if (!rt)
828 		return NULL;
829 
830 	memcpy(rt + 1, tbl + 1, esize * used);
831 
832 	rt->free_goal = free_goal == ~0u ?
833 				cpu_to_le32(~0u) :
834 				cpu_to_le32(sizeof(struct RESTART_TABLE) +
835 					    free_goal * esize);
836 
837 	if (tbl->first_free) {
838 		rt->first_free = tbl->first_free;
839 		*(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
840 	} else {
841 		rt->first_free = osize;
842 	}
843 
844 	rt->total = tbl->total;
845 
846 	kfree(tbl);
847 	return rt;
848 }
849 
850 /*
851  * alloc_rsttbl_idx
852  *
853  * Allocate an index from within a previously initialized Restart Table.
854  */
alloc_rsttbl_idx(struct RESTART_TABLE ** tbl)855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
856 {
857 	u32 off;
858 	__le32 *e;
859 	struct RESTART_TABLE *t = *tbl;
860 
861 	if (!t->first_free) {
862 		*tbl = t = extend_rsttbl(t, 16, ~0u);
863 		if (!t)
864 			return NULL;
865 	}
866 
867 	off = le32_to_cpu(t->first_free);
868 
869 	/* Dequeue this entry and zero it. */
870 	e = Add2Ptr(t, off);
871 
872 	t->first_free = *e;
873 
874 	memset(e, 0, le16_to_cpu(t->size));
875 
876 	*e = RESTART_ENTRY_ALLOCATED_LE;
877 
878 	/* If list is going empty, then we fix the last_free as well. */
879 	if (!t->first_free)
880 		t->last_free = 0;
881 
882 	le16_add_cpu(&t->total, 1);
883 
884 	return Add2Ptr(t, off);
885 }
886 
887 /*
888  * alloc_rsttbl_from_idx
889  *
890  * Allocate a specific index from within a previously initialized Restart Table.
891  */
alloc_rsttbl_from_idx(struct RESTART_TABLE ** tbl,u32 vbo)892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
893 {
894 	u32 off;
895 	__le32 *e;
896 	struct RESTART_TABLE *rt = *tbl;
897 	u32 bytes = bytes_per_rt(rt);
898 	u16 esize = le16_to_cpu(rt->size);
899 
900 	/* If the entry is not the table, we will have to extend the table. */
901 	if (vbo >= bytes) {
902 		/*
903 		 * Extend the size by computing the number of entries between
904 		 * the existing size and the desired index and adding 1 to that.
905 		 */
906 		u32 bytes2idx = vbo - bytes;
907 
908 		/*
909 		 * There should always be an integral number of entries
910 		 * being added. Now extend the table.
911 		 */
912 		*tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
913 		if (!rt)
914 			return NULL;
915 	}
916 
917 	/* See if the entry is already allocated, and just return if it is. */
918 	e = Add2Ptr(rt, vbo);
919 
920 	if (*e == RESTART_ENTRY_ALLOCATED_LE)
921 		return e;
922 
923 	/*
924 	 * Walk through the table, looking for the entry we're
925 	 * interested and the previous entry.
926 	 */
927 	off = le32_to_cpu(rt->first_free);
928 	e = Add2Ptr(rt, off);
929 
930 	if (off == vbo) {
931 		/* this is a match */
932 		rt->first_free = *e;
933 		goto skip_looking;
934 	}
935 
936 	/*
937 	 * Need to walk through the list looking for the predecessor
938 	 * of our entry.
939 	 */
940 	for (;;) {
941 		/* Remember the entry just found */
942 		u32 last_off = off;
943 		__le32 *last_e = e;
944 
945 		/* Should never run of entries. */
946 
947 		/* Lookup up the next entry the list. */
948 		off = le32_to_cpu(*last_e);
949 		e = Add2Ptr(rt, off);
950 
951 		/* If this is our match we are done. */
952 		if (off == vbo) {
953 			*last_e = *e;
954 
955 			/*
956 			 * If this was the last entry, we update that
957 			 * table as well.
958 			 */
959 			if (le32_to_cpu(rt->last_free) == off)
960 				rt->last_free = cpu_to_le32(last_off);
961 			break;
962 		}
963 	}
964 
965 skip_looking:
966 	/* If the list is now empty, we fix the last_free as well. */
967 	if (!rt->first_free)
968 		rt->last_free = 0;
969 
970 	/* Zero this entry. */
971 	memset(e, 0, esize);
972 	*e = RESTART_ENTRY_ALLOCATED_LE;
973 
974 	le16_add_cpu(&rt->total, 1);
975 
976 	return e;
977 }
978 
979 struct restart_info {
980 	u64 last_lsn;
981 	struct RESTART_HDR *r_page;
982 	u32 vbo;
983 	bool chkdsk_was_run;
984 	bool valid_page;
985 	bool initialized;
986 	bool restart;
987 };
988 
989 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
990 
991 #define NTFSLOG_WRAPPED 0x00000001
992 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
993 #define NTFSLOG_NO_LAST_LSN 0x00000004
994 #define NTFSLOG_REUSE_TAIL 0x00000010
995 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
996 
997 /* Helper struct to work with NTFS $LogFile. */
998 struct ntfs_log {
999 	struct ntfs_inode *ni;
1000 
1001 	u32 l_size;
1002 	u32 orig_file_size;
1003 	u32 sys_page_size;
1004 	u32 sys_page_mask;
1005 	u32 page_size;
1006 	u32 page_mask; // page_size - 1
1007 	u8 page_bits;
1008 	struct RECORD_PAGE_HDR *one_page_buf;
1009 
1010 	struct RESTART_TABLE *open_attr_tbl;
1011 	u32 transaction_id;
1012 	u32 clst_per_page;
1013 
1014 	u32 first_page;
1015 	u32 next_page;
1016 	u32 ra_off;
1017 	u32 data_off;
1018 	u32 restart_size;
1019 	u32 data_size;
1020 	u16 record_header_len;
1021 	u64 seq_num;
1022 	u32 seq_num_bits;
1023 	u32 file_data_bits;
1024 	u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1025 
1026 	struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1027 	u32 ra_size; /* The usable size of the restart area. */
1028 
1029 	/*
1030 	 * If true, then the in-memory restart area is to be written
1031 	 * to the first position on the disk.
1032 	 */
1033 	bool init_ra;
1034 	bool set_dirty; /* True if we need to set dirty flag. */
1035 
1036 	u64 oldest_lsn;
1037 
1038 	u32 oldest_lsn_off;
1039 	u64 last_lsn;
1040 
1041 	u32 total_avail;
1042 	u32 total_avail_pages;
1043 	u32 total_undo_commit;
1044 	u32 max_current_avail;
1045 	u32 current_avail;
1046 	u32 reserved;
1047 
1048 	short major_ver;
1049 	short minor_ver;
1050 
1051 	u32 l_flags; /* See NTFSLOG_XXX */
1052 	u32 current_openlog_count; /* On-disk value for open_log_count. */
1053 
1054 	struct CLIENT_ID client_id;
1055 	u32 client_undo_commit;
1056 
1057 	struct restart_info rst_info, rst_info2;
1058 };
1059 
lsn_to_vbo(struct ntfs_log * log,const u64 lsn)1060 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1061 {
1062 	u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1063 
1064 	return vbo;
1065 }
1066 
1067 /* Compute the offset in the log file of the next log page. */
next_page_off(struct ntfs_log * log,u32 off)1068 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1069 {
1070 	off = (off & ~log->sys_page_mask) + log->page_size;
1071 	return off >= log->l_size ? log->first_page : off;
1072 }
1073 
lsn_to_page_off(struct ntfs_log * log,u64 lsn)1074 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1075 {
1076 	return (((u32)lsn) << 3) & log->page_mask;
1077 }
1078 
vbo_to_lsn(struct ntfs_log * log,u32 off,u64 Seq)1079 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1080 {
1081 	return (off >> 3) + (Seq << log->file_data_bits);
1082 }
1083 
is_lsn_in_file(struct ntfs_log * log,u64 lsn)1084 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1085 {
1086 	return lsn >= log->oldest_lsn &&
1087 	       lsn <= le64_to_cpu(log->ra->current_lsn);
1088 }
1089 
hdr_file_off(struct ntfs_log * log,struct RECORD_PAGE_HDR * hdr)1090 static inline u32 hdr_file_off(struct ntfs_log *log,
1091 			       struct RECORD_PAGE_HDR *hdr)
1092 {
1093 	if (log->major_ver < 2)
1094 		return le64_to_cpu(hdr->rhdr.lsn);
1095 
1096 	return le32_to_cpu(hdr->file_off);
1097 }
1098 
base_lsn(struct ntfs_log * log,const struct RECORD_PAGE_HDR * hdr,u64 lsn)1099 static inline u64 base_lsn(struct ntfs_log *log,
1100 			   const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1101 {
1102 	u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1103 	u64 ret = (((h_lsn >> log->file_data_bits) +
1104 		    (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1105 		   << log->file_data_bits) +
1106 		  ((((is_log_record_end(hdr) &&
1107 		      h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1108 			     le16_to_cpu(hdr->record_hdr.next_record_off) :
1109 			     log->page_size) +
1110 		    lsn) >>
1111 		   3);
1112 
1113 	return ret;
1114 }
1115 
verify_client_lsn(struct ntfs_log * log,const struct CLIENT_REC * client,u64 lsn)1116 static inline bool verify_client_lsn(struct ntfs_log *log,
1117 				     const struct CLIENT_REC *client, u64 lsn)
1118 {
1119 	return lsn >= le64_to_cpu(client->oldest_lsn) &&
1120 	       lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1121 }
1122 
read_log_page(struct ntfs_log * log,u32 vbo,struct RECORD_PAGE_HDR ** buffer,bool * usa_error)1123 static int read_log_page(struct ntfs_log *log, u32 vbo,
1124 			 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1125 {
1126 	int err = 0;
1127 	u32 page_idx = vbo >> log->page_bits;
1128 	u32 page_off = vbo & log->page_mask;
1129 	u32 bytes = log->page_size - page_off;
1130 	void *to_free = NULL;
1131 	u32 page_vbo = page_idx << log->page_bits;
1132 	struct RECORD_PAGE_HDR *page_buf;
1133 	struct ntfs_inode *ni = log->ni;
1134 	bool bBAAD;
1135 
1136 	if (vbo >= log->l_size)
1137 		return -EINVAL;
1138 
1139 	if (!*buffer) {
1140 		to_free = kmalloc(log->page_size, GFP_NOFS);
1141 		if (!to_free)
1142 			return -ENOMEM;
1143 		*buffer = to_free;
1144 	}
1145 
1146 	page_buf = page_off ? log->one_page_buf : *buffer;
1147 
1148 	err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1149 			       log->page_size, NULL);
1150 	if (err)
1151 		goto out;
1152 
1153 	if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1154 		ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1155 
1156 	if (page_buf != *buffer)
1157 		memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1158 
1159 	bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1160 
1161 	if (usa_error)
1162 		*usa_error = bBAAD;
1163 	/* Check that the update sequence array for this page is valid */
1164 	/* If we don't allow errors, raise an error status */
1165 	else if (bBAAD)
1166 		err = -EINVAL;
1167 
1168 out:
1169 	if (err && to_free) {
1170 		kfree(to_free);
1171 		*buffer = NULL;
1172 	}
1173 
1174 	return err;
1175 }
1176 
1177 /*
1178  * log_read_rst
1179  *
1180  * It walks through 512 blocks of the file looking for a valid
1181  * restart page header. It will stop the first time we find a
1182  * valid page header.
1183  */
log_read_rst(struct ntfs_log * log,bool first,struct restart_info * info)1184 static int log_read_rst(struct ntfs_log *log, bool first,
1185 			struct restart_info *info)
1186 {
1187 	u32 skip;
1188 	u64 vbo;
1189 	struct RESTART_HDR *r_page = NULL;
1190 
1191 	/* Determine which restart area we are looking for. */
1192 	if (first) {
1193 		vbo = 0;
1194 		skip = 512;
1195 	} else {
1196 		vbo = 512;
1197 		skip = 0;
1198 	}
1199 
1200 	/* Loop continuously until we succeed. */
1201 	for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1202 		bool usa_error;
1203 		bool brst, bchk;
1204 		struct RESTART_AREA *ra;
1205 
1206 		/* Read a page header at the current offset. */
1207 		if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1208 				  &usa_error)) {
1209 			/* Ignore any errors. */
1210 			continue;
1211 		}
1212 
1213 		/* Exit if the signature is a log record page. */
1214 		if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1215 			info->initialized = true;
1216 			break;
1217 		}
1218 
1219 		brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1220 		bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1221 
1222 		if (!bchk && !brst) {
1223 			if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1224 				/*
1225 				 * Remember if the signature does not
1226 				 * indicate uninitialized file.
1227 				 */
1228 				info->initialized = true;
1229 			}
1230 			continue;
1231 		}
1232 
1233 		ra = NULL;
1234 		info->valid_page = false;
1235 		info->initialized = true;
1236 		info->vbo = vbo;
1237 
1238 		/* Let's check the restart area if this is a valid page. */
1239 		if (!is_rst_page_hdr_valid(vbo, r_page))
1240 			goto check_result;
1241 		ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1242 
1243 		if (!is_rst_area_valid(r_page))
1244 			goto check_result;
1245 
1246 		/*
1247 		 * We have a valid restart page header and restart area.
1248 		 * If chkdsk was run or we have no clients then we have
1249 		 * no more checking to do.
1250 		 */
1251 		if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1252 			info->valid_page = true;
1253 			goto check_result;
1254 		}
1255 
1256 		if (is_client_area_valid(r_page, usa_error)) {
1257 			info->valid_page = true;
1258 			ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1259 		}
1260 
1261 check_result:
1262 		/*
1263 		 * If chkdsk was run then update the caller's
1264 		 * values and return.
1265 		 */
1266 		if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1267 			info->chkdsk_was_run = true;
1268 			info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1269 			info->restart = true;
1270 			info->r_page = r_page;
1271 			return 0;
1272 		}
1273 
1274 		/*
1275 		 * If we have a valid page then copy the values
1276 		 * we need from it.
1277 		 */
1278 		if (info->valid_page) {
1279 			info->last_lsn = le64_to_cpu(ra->current_lsn);
1280 			info->restart = true;
1281 			info->r_page = r_page;
1282 			return 0;
1283 		}
1284 	}
1285 
1286 	kfree(r_page);
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Ilog_init_pg_hdr - Init @log from restart page header.
1293  */
log_init_pg_hdr(struct ntfs_log * log,u16 major_ver,u16 minor_ver)1294 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1295 {
1296 	log->sys_page_size = log->page_size;
1297 	log->sys_page_mask = log->page_mask;
1298 
1299 	log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1300 	if (!log->clst_per_page)
1301 		log->clst_per_page = 1;
1302 
1303 	log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1304 					   4 * log->page_size;
1305 	log->major_ver = major_ver;
1306 	log->minor_ver = minor_ver;
1307 }
1308 
1309 /*
1310  * log_create - Init @log in cases when we don't have a restart area to use.
1311  */
log_create(struct ntfs_log * log,const u64 last_lsn,u32 open_log_count,bool wrapped,bool use_multi_page)1312 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1313 		       u32 open_log_count, bool wrapped, bool use_multi_page)
1314 {
1315 	/* All file offsets must be quadword aligned. */
1316 	log->file_data_bits = blksize_bits(log->l_size) - 3;
1317 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318 	log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319 	log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320 	log->next_page = log->first_page;
1321 	log->oldest_lsn = log->seq_num << log->file_data_bits;
1322 	log->oldest_lsn_off = 0;
1323 	log->last_lsn = log->oldest_lsn;
1324 
1325 	log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326 
1327 	/* Set the correct flags for the I/O and indicate if we have wrapped. */
1328 	if (wrapped)
1329 		log->l_flags |= NTFSLOG_WRAPPED;
1330 
1331 	if (use_multi_page)
1332 		log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333 
1334 	/* Compute the log page values. */
1335 	log->data_off = ALIGN(
1336 		offsetof(struct RECORD_PAGE_HDR, fixups) +
1337 			sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338 		8);
1339 	log->data_size = log->page_size - log->data_off;
1340 	log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341 
1342 	/* Remember the different page sizes for reservation. */
1343 	log->reserved = log->data_size - log->record_header_len;
1344 
1345 	/* Compute the restart page values. */
1346 	log->ra_off = ALIGN(
1347 		offsetof(struct RESTART_HDR, fixups) +
1348 			sizeof(short) *
1349 				((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350 		8);
1351 	log->restart_size = log->sys_page_size - log->ra_off;
1352 	log->ra_size = struct_size(log->ra, clients, 1);
1353 	log->current_openlog_count = open_log_count;
1354 
1355 	/*
1356 	 * The total available log file space is the number of
1357 	 * log file pages times the space available on each page.
1358 	 */
1359 	log->total_avail_pages = log->l_size - log->first_page;
1360 	log->total_avail = log->total_avail_pages >> log->page_bits;
1361 
1362 	/*
1363 	 * We assume that we can't use the end of the page less than
1364 	 * the file record size.
1365 	 * Then we won't need to reserve more than the caller asks for.
1366 	 */
1367 	log->max_current_avail = log->total_avail * log->reserved;
1368 	log->total_avail = log->total_avail * log->data_size;
1369 	log->current_avail = log->max_current_avail;
1370 }
1371 
1372 /*
1373  * log_create_ra - Fill a restart area from the values stored in @log.
1374  */
log_create_ra(struct ntfs_log * log)1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376 {
1377 	struct CLIENT_REC *cr;
1378 	struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1379 
1380 	if (!ra)
1381 		return NULL;
1382 
1383 	ra->current_lsn = cpu_to_le64(log->last_lsn);
1384 	ra->log_clients = cpu_to_le16(1);
1385 	ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386 	if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387 		ra->flags = RESTART_SINGLE_PAGE_IO;
1388 	ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389 	ra->ra_len = cpu_to_le16(log->ra_size);
1390 	ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391 	ra->l_size = cpu_to_le64(log->l_size);
1392 	ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393 	ra->data_off = cpu_to_le16(log->data_off);
1394 	ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395 
1396 	cr = ra->clients;
1397 
1398 	cr->prev_client = LFS_NO_CLIENT_LE;
1399 	cr->next_client = LFS_NO_CLIENT_LE;
1400 
1401 	return ra;
1402 }
1403 
final_log_off(struct ntfs_log * log,u64 lsn,u32 data_len)1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405 {
1406 	u32 base_vbo = lsn << 3;
1407 	u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408 	u32 page_off = base_vbo & log->page_mask;
1409 	u32 tail = log->page_size - page_off;
1410 
1411 	page_off -= 1;
1412 
1413 	/* Add the length of the header. */
1414 	data_len += log->record_header_len;
1415 
1416 	/*
1417 	 * If this lsn is contained this log page we are done.
1418 	 * Otherwise we need to walk through several log pages.
1419 	 */
1420 	if (data_len > tail) {
1421 		data_len -= tail;
1422 		tail = log->data_size;
1423 		page_off = log->data_off - 1;
1424 
1425 		for (;;) {
1426 			final_log_off = next_page_off(log, final_log_off);
1427 
1428 			/*
1429 			 * We are done if the remaining bytes
1430 			 * fit on this page.
1431 			 */
1432 			if (data_len <= tail)
1433 				break;
1434 			data_len -= tail;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * We add the remaining bytes to our starting position on this page
1440 	 * and then add that value to the file offset of this log page.
1441 	 */
1442 	return final_log_off + data_len + page_off;
1443 }
1444 
next_log_lsn(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,u64 * lsn)1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446 			u64 *lsn)
1447 {
1448 	int err;
1449 	u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450 	u32 vbo = lsn_to_vbo(log, this_lsn);
1451 	u32 end =
1452 		final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453 	u32 hdr_off = end & ~log->sys_page_mask;
1454 	u64 seq = this_lsn >> log->file_data_bits;
1455 	struct RECORD_PAGE_HDR *page = NULL;
1456 
1457 	/* Remember if we wrapped. */
1458 	if (end <= vbo)
1459 		seq += 1;
1460 
1461 	/* Log page header for this page. */
1462 	err = read_log_page(log, hdr_off, &page, NULL);
1463 	if (err)
1464 		return err;
1465 
1466 	/*
1467 	 * If the lsn we were given was not the last lsn on this page,
1468 	 * then the starting offset for the next lsn is on a quad word
1469 	 * boundary following the last file offset for the current lsn.
1470 	 * Otherwise the file offset is the start of the data on the next page.
1471 	 */
1472 	if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1473 		/* If we wrapped, we need to increment the sequence number. */
1474 		hdr_off = next_page_off(log, hdr_off);
1475 		if (hdr_off == log->first_page)
1476 			seq += 1;
1477 
1478 		vbo = hdr_off + log->data_off;
1479 	} else {
1480 		vbo = ALIGN(end, 8);
1481 	}
1482 
1483 	/* Compute the lsn based on the file offset and the sequence count. */
1484 	*lsn = vbo_to_lsn(log, vbo, seq);
1485 
1486 	/*
1487 	 * If this lsn is within the legal range for the file, we return true.
1488 	 * Otherwise false indicates that there are no more lsn's.
1489 	 */
1490 	if (!is_lsn_in_file(log, *lsn))
1491 		*lsn = 0;
1492 
1493 	kfree(page);
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * current_log_avail - Calculate the number of bytes available for log records.
1500  */
current_log_avail(struct ntfs_log * log)1501 static u32 current_log_avail(struct ntfs_log *log)
1502 {
1503 	u32 oldest_off, next_free_off, free_bytes;
1504 
1505 	if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1506 		/* The entire file is available. */
1507 		return log->max_current_avail;
1508 	}
1509 
1510 	/*
1511 	 * If there is a last lsn the restart area then we know that we will
1512 	 * have to compute the free range.
1513 	 * If there is no oldest lsn then start at the first page of the file.
1514 	 */
1515 	oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1516 			     log->first_page :
1517 			     (log->oldest_lsn_off & ~log->sys_page_mask);
1518 
1519 	/*
1520 	 * We will use the next log page offset to compute the next free page.
1521 	 * If we are going to reuse this page go to the next page.
1522 	 * If we are at the first page then use the end of the file.
1523 	 */
1524 	next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1525 				log->next_page + log->page_size :
1526 			log->next_page == log->first_page ? log->l_size :
1527 							    log->next_page;
1528 
1529 	/* If the two offsets are the same then there is no available space. */
1530 	if (oldest_off == next_free_off)
1531 		return 0;
1532 	/*
1533 	 * If the free offset follows the oldest offset then subtract
1534 	 * this range from the total available pages.
1535 	 */
1536 	free_bytes =
1537 		oldest_off < next_free_off ?
1538 			log->total_avail_pages - (next_free_off - oldest_off) :
1539 			oldest_off - next_free_off;
1540 
1541 	free_bytes >>= log->page_bits;
1542 	return free_bytes * log->reserved;
1543 }
1544 
check_subseq_log_page(struct ntfs_log * log,const struct RECORD_PAGE_HDR * rp,u32 vbo,u64 seq)1545 static bool check_subseq_log_page(struct ntfs_log *log,
1546 				  const struct RECORD_PAGE_HDR *rp, u32 vbo,
1547 				  u64 seq)
1548 {
1549 	u64 lsn_seq;
1550 	const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1551 	u64 lsn = le64_to_cpu(rhdr->lsn);
1552 
1553 	if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1554 		return false;
1555 
1556 	/*
1557 	 * If the last lsn on the page occurs was written after the page
1558 	 * that caused the original error then we have a fatal error.
1559 	 */
1560 	lsn_seq = lsn >> log->file_data_bits;
1561 
1562 	/*
1563 	 * If the sequence number for the lsn the page is equal or greater
1564 	 * than lsn we expect, then this is a subsequent write.
1565 	 */
1566 	return lsn_seq >= seq ||
1567 	       (lsn_seq == seq - 1 && log->first_page == vbo &&
1568 		vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1569 }
1570 
1571 /*
1572  * last_log_lsn
1573  *
1574  * Walks through the log pages for a file, searching for the
1575  * last log page written to the file.
1576  */
last_log_lsn(struct ntfs_log * log)1577 static int last_log_lsn(struct ntfs_log *log)
1578 {
1579 	int err;
1580 	bool usa_error = false;
1581 	bool replace_page = false;
1582 	bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1583 	bool wrapped_file, wrapped;
1584 
1585 	u32 page_cnt = 1, page_pos = 1;
1586 	u32 page_off = 0, page_off1 = 0, saved_off = 0;
1587 	u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1588 	u32 first_file_off = 0, second_file_off = 0;
1589 	u32 part_io_count = 0;
1590 	u32 tails = 0;
1591 	u32 this_off, curpage_off, nextpage_off, remain_pages;
1592 
1593 	u64 expected_seq, seq_base = 0, lsn_base = 0;
1594 	u64 best_lsn, best_lsn1, best_lsn2;
1595 	u64 lsn_cur, lsn1, lsn2;
1596 	u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1597 
1598 	u16 cur_pos, best_page_pos;
1599 
1600 	struct RECORD_PAGE_HDR *page = NULL;
1601 	struct RECORD_PAGE_HDR *tst_page = NULL;
1602 	struct RECORD_PAGE_HDR *first_tail = NULL;
1603 	struct RECORD_PAGE_HDR *second_tail = NULL;
1604 	struct RECORD_PAGE_HDR *tail_page = NULL;
1605 	struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1606 	struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1607 	struct RECORD_PAGE_HDR *page_bufs = NULL;
1608 	struct RECORD_PAGE_HDR *best_page;
1609 
1610 	if (log->major_ver >= 2) {
1611 		final_off = 0x02 * log->page_size;
1612 		second_off = 0x12 * log->page_size;
1613 
1614 		// 0x10 == 0x12 - 0x2
1615 		page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1616 		if (!page_bufs)
1617 			return -ENOMEM;
1618 	} else {
1619 		second_off = log->first_page - log->page_size;
1620 		final_off = second_off - log->page_size;
1621 	}
1622 
1623 next_tail:
1624 	/* Read second tail page (at pos 3/0x12000). */
1625 	if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1626 	    usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1627 		kfree(second_tail);
1628 		second_tail = NULL;
1629 		second_file_off = 0;
1630 		lsn2 = 0;
1631 	} else {
1632 		second_file_off = hdr_file_off(log, second_tail);
1633 		lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1634 	}
1635 
1636 	/* Read first tail page (at pos 2/0x2000). */
1637 	if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1638 	    usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1639 		kfree(first_tail);
1640 		first_tail = NULL;
1641 		first_file_off = 0;
1642 		lsn1 = 0;
1643 	} else {
1644 		first_file_off = hdr_file_off(log, first_tail);
1645 		lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1646 	}
1647 
1648 	if (log->major_ver < 2) {
1649 		int best_page;
1650 
1651 		first_tail_prev = first_tail;
1652 		final_off_prev = first_file_off;
1653 		second_tail_prev = second_tail;
1654 		second_off_prev = second_file_off;
1655 		tails = 1;
1656 
1657 		if (!first_tail && !second_tail)
1658 			goto tail_read;
1659 
1660 		if (first_tail && second_tail)
1661 			best_page = lsn1 < lsn2 ? 1 : 0;
1662 		else if (first_tail)
1663 			best_page = 0;
1664 		else
1665 			best_page = 1;
1666 
1667 		page_off = best_page ? second_file_off : first_file_off;
1668 		seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1669 		goto tail_read;
1670 	}
1671 
1672 	best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1673 	best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1674 				  0;
1675 
1676 	if (first_tail && second_tail) {
1677 		if (best_lsn1 > best_lsn2) {
1678 			best_lsn = best_lsn1;
1679 			best_page = first_tail;
1680 			this_off = first_file_off;
1681 		} else {
1682 			best_lsn = best_lsn2;
1683 			best_page = second_tail;
1684 			this_off = second_file_off;
1685 		}
1686 	} else if (first_tail) {
1687 		best_lsn = best_lsn1;
1688 		best_page = first_tail;
1689 		this_off = first_file_off;
1690 	} else if (second_tail) {
1691 		best_lsn = best_lsn2;
1692 		best_page = second_tail;
1693 		this_off = second_file_off;
1694 	} else {
1695 		goto tail_read;
1696 	}
1697 
1698 	best_page_pos = le16_to_cpu(best_page->page_pos);
1699 
1700 	if (!tails) {
1701 		if (best_page_pos == page_pos) {
1702 			seq_base = best_lsn >> log->file_data_bits;
1703 			saved_off = page_off = le32_to_cpu(best_page->file_off);
1704 			lsn_base = best_lsn;
1705 
1706 			memmove(page_bufs, best_page, log->page_size);
1707 
1708 			page_cnt = le16_to_cpu(best_page->page_count);
1709 			if (page_cnt > 1)
1710 				page_pos += 1;
1711 
1712 			tails = 1;
1713 		}
1714 	} else if (seq_base == (best_lsn >> log->file_data_bits) &&
1715 		   saved_off + log->page_size == this_off &&
1716 		   lsn_base < best_lsn &&
1717 		   (page_pos != page_cnt || best_page_pos == page_pos ||
1718 		    best_page_pos == 1) &&
1719 		   (page_pos >= page_cnt || best_page_pos == page_pos)) {
1720 		u16 bppc = le16_to_cpu(best_page->page_count);
1721 
1722 		saved_off += log->page_size;
1723 		lsn_base = best_lsn;
1724 
1725 		memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1726 			log->page_size);
1727 
1728 		tails += 1;
1729 
1730 		if (best_page_pos != bppc) {
1731 			page_cnt = bppc;
1732 			page_pos = best_page_pos;
1733 
1734 			if (page_cnt > 1)
1735 				page_pos += 1;
1736 		} else {
1737 			page_pos = page_cnt = 1;
1738 		}
1739 	} else {
1740 		kfree(first_tail);
1741 		kfree(second_tail);
1742 		goto tail_read;
1743 	}
1744 
1745 	kfree(first_tail_prev);
1746 	first_tail_prev = first_tail;
1747 	final_off_prev = first_file_off;
1748 	first_tail = NULL;
1749 
1750 	kfree(second_tail_prev);
1751 	second_tail_prev = second_tail;
1752 	second_off_prev = second_file_off;
1753 	second_tail = NULL;
1754 
1755 	final_off += log->page_size;
1756 	second_off += log->page_size;
1757 
1758 	if (tails < 0x10)
1759 		goto next_tail;
1760 tail_read:
1761 	first_tail = first_tail_prev;
1762 	final_off = final_off_prev;
1763 
1764 	second_tail = second_tail_prev;
1765 	second_off = second_off_prev;
1766 
1767 	page_cnt = page_pos = 1;
1768 
1769 	curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1770 						 log->next_page;
1771 
1772 	wrapped_file =
1773 		curpage_off == log->first_page &&
1774 		!(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1775 
1776 	expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1777 
1778 	nextpage_off = curpage_off;
1779 
1780 next_page:
1781 	tail_page = NULL;
1782 	/* Read the next log page. */
1783 	err = read_log_page(log, curpage_off, &page, &usa_error);
1784 
1785 	/* Compute the next log page offset the file. */
1786 	nextpage_off = next_page_off(log, curpage_off);
1787 	wrapped = nextpage_off == log->first_page;
1788 
1789 	if (tails > 1) {
1790 		struct RECORD_PAGE_HDR *cur_page =
1791 			Add2Ptr(page_bufs, curpage_off - page_off);
1792 
1793 		if (curpage_off == saved_off) {
1794 			tail_page = cur_page;
1795 			goto use_tail_page;
1796 		}
1797 
1798 		if (page_off > curpage_off || curpage_off >= saved_off)
1799 			goto use_tail_page;
1800 
1801 		if (page_off1)
1802 			goto use_cur_page;
1803 
1804 		if (!err && !usa_error &&
1805 		    page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1806 		    cur_page->rhdr.lsn == page->rhdr.lsn &&
1807 		    cur_page->record_hdr.next_record_off ==
1808 			    page->record_hdr.next_record_off &&
1809 		    ((page_pos == page_cnt &&
1810 		      le16_to_cpu(page->page_pos) == 1) ||
1811 		     (page_pos != page_cnt &&
1812 		      le16_to_cpu(page->page_pos) == page_pos + 1 &&
1813 		      le16_to_cpu(page->page_count) == page_cnt))) {
1814 			cur_page = NULL;
1815 			goto use_tail_page;
1816 		}
1817 
1818 		page_off1 = page_off;
1819 
1820 use_cur_page:
1821 
1822 		lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1823 
1824 		if (last_ok_lsn !=
1825 			    le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1826 		    ((lsn_cur >> log->file_data_bits) +
1827 		     ((curpage_off <
1828 		       (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1829 			      1 :
1830 			      0)) != expected_seq) {
1831 			goto check_tail;
1832 		}
1833 
1834 		if (!is_log_record_end(cur_page)) {
1835 			tail_page = NULL;
1836 			last_ok_lsn = lsn_cur;
1837 			goto next_page_1;
1838 		}
1839 
1840 		log->seq_num = expected_seq;
1841 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1842 		log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1843 		log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1844 
1845 		if (log->record_header_len <=
1846 		    log->page_size -
1847 			    le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1848 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1849 			log->next_page = curpage_off;
1850 		} else {
1851 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1852 			log->next_page = nextpage_off;
1853 		}
1854 
1855 		if (wrapped_file)
1856 			log->l_flags |= NTFSLOG_WRAPPED;
1857 
1858 		last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1859 		goto next_page_1;
1860 	}
1861 
1862 	/*
1863 	 * If we are at the expected first page of a transfer check to see
1864 	 * if either tail copy is at this offset.
1865 	 * If this page is the last page of a transfer, check if we wrote
1866 	 * a subsequent tail copy.
1867 	 */
1868 	if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1869 		/*
1870 		 * Check if the offset matches either the first or second
1871 		 * tail copy. It is possible it will match both.
1872 		 */
1873 		if (curpage_off == final_off)
1874 			tail_page = first_tail;
1875 
1876 		/*
1877 		 * If we already matched on the first page then
1878 		 * check the ending lsn's.
1879 		 */
1880 		if (curpage_off == second_off) {
1881 			if (!tail_page ||
1882 			    (second_tail &&
1883 			     le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1884 				     le64_to_cpu(first_tail->record_hdr
1885 							 .last_end_lsn))) {
1886 				tail_page = second_tail;
1887 			}
1888 		}
1889 	}
1890 
1891 use_tail_page:
1892 	if (tail_page) {
1893 		/* We have a candidate for a tail copy. */
1894 		lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1895 
1896 		if (last_ok_lsn < lsn_cur) {
1897 			/*
1898 			 * If the sequence number is not expected,
1899 			 * then don't use the tail copy.
1900 			 */
1901 			if (expected_seq != (lsn_cur >> log->file_data_bits))
1902 				tail_page = NULL;
1903 		} else if (last_ok_lsn > lsn_cur) {
1904 			/*
1905 			 * If the last lsn is greater than the one on
1906 			 * this page then forget this tail.
1907 			 */
1908 			tail_page = NULL;
1909 		}
1910 	}
1911 
1912 	/*
1913 	 *If we have an error on the current page,
1914 	 * we will break of this loop.
1915 	 */
1916 	if (err || usa_error)
1917 		goto check_tail;
1918 
1919 	/*
1920 	 * Done if the last lsn on this page doesn't match the previous known
1921 	 * last lsn or the sequence number is not expected.
1922 	 */
1923 	lsn_cur = le64_to_cpu(page->rhdr.lsn);
1924 	if (last_ok_lsn != lsn_cur &&
1925 	    expected_seq != (lsn_cur >> log->file_data_bits)) {
1926 		goto check_tail;
1927 	}
1928 
1929 	/*
1930 	 * Check that the page position and page count values are correct.
1931 	 * If this is the first page of a transfer the position must be 1
1932 	 * and the count will be unknown.
1933 	 */
1934 	if (page_cnt == page_pos) {
1935 		if (page->page_pos != cpu_to_le16(1) &&
1936 		    (!reuse_page || page->page_pos != page->page_count)) {
1937 			/*
1938 			 * If the current page is the first page we are
1939 			 * looking at and we are reusing this page then
1940 			 * it can be either the first or last page of a
1941 			 * transfer. Otherwise it can only be the first.
1942 			 */
1943 			goto check_tail;
1944 		}
1945 	} else if (le16_to_cpu(page->page_count) != page_cnt ||
1946 		   le16_to_cpu(page->page_pos) != page_pos + 1) {
1947 		/*
1948 		 * The page position better be 1 more than the last page
1949 		 * position and the page count better match.
1950 		 */
1951 		goto check_tail;
1952 	}
1953 
1954 	/*
1955 	 * We have a valid page the file and may have a valid page
1956 	 * the tail copy area.
1957 	 * If the tail page was written after the page the file then
1958 	 * break of the loop.
1959 	 */
1960 	if (tail_page &&
1961 	    le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1962 		/* Remember if we will replace the page. */
1963 		replace_page = true;
1964 		goto check_tail;
1965 	}
1966 
1967 	tail_page = NULL;
1968 
1969 	if (is_log_record_end(page)) {
1970 		/*
1971 		 * Since we have read this page we know the sequence number
1972 		 * is the same as our expected value.
1973 		 */
1974 		log->seq_num = expected_seq;
1975 		log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1976 		log->ra->current_lsn = page->record_hdr.last_end_lsn;
1977 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1978 
1979 		/*
1980 		 * If there is room on this page for another header then
1981 		 * remember we want to reuse the page.
1982 		 */
1983 		if (log->record_header_len <=
1984 		    log->page_size -
1985 			    le16_to_cpu(page->record_hdr.next_record_off)) {
1986 			log->l_flags |= NTFSLOG_REUSE_TAIL;
1987 			log->next_page = curpage_off;
1988 		} else {
1989 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1990 			log->next_page = nextpage_off;
1991 		}
1992 
1993 		/* Remember if we wrapped the log file. */
1994 		if (wrapped_file)
1995 			log->l_flags |= NTFSLOG_WRAPPED;
1996 	}
1997 
1998 	/*
1999 	 * Remember the last page count and position.
2000 	 * Also remember the last known lsn.
2001 	 */
2002 	page_cnt = le16_to_cpu(page->page_count);
2003 	page_pos = le16_to_cpu(page->page_pos);
2004 	last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2005 
2006 next_page_1:
2007 
2008 	if (wrapped) {
2009 		expected_seq += 1;
2010 		wrapped_file = 1;
2011 	}
2012 
2013 	curpage_off = nextpage_off;
2014 	kfree(page);
2015 	page = NULL;
2016 	reuse_page = 0;
2017 	goto next_page;
2018 
2019 check_tail:
2020 	if (tail_page) {
2021 		log->seq_num = expected_seq;
2022 		log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2023 		log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2024 		log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2025 
2026 		if (log->page_size -
2027 			    le16_to_cpu(
2028 				    tail_page->record_hdr.next_record_off) >=
2029 		    log->record_header_len) {
2030 			log->l_flags |= NTFSLOG_REUSE_TAIL;
2031 			log->next_page = curpage_off;
2032 		} else {
2033 			log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2034 			log->next_page = nextpage_off;
2035 		}
2036 
2037 		if (wrapped)
2038 			log->l_flags |= NTFSLOG_WRAPPED;
2039 	}
2040 
2041 	/* Remember that the partial IO will start at the next page. */
2042 	second_off = nextpage_off;
2043 
2044 	/*
2045 	 * If the next page is the first page of the file then update
2046 	 * the sequence number for log records which begon the next page.
2047 	 */
2048 	if (wrapped)
2049 		expected_seq += 1;
2050 
2051 	/*
2052 	 * If we have a tail copy or are performing single page I/O we can
2053 	 * immediately look at the next page.
2054 	 */
2055 	if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2056 		page_cnt = 2;
2057 		page_pos = 1;
2058 		goto check_valid;
2059 	}
2060 
2061 	if (page_pos != page_cnt)
2062 		goto check_valid;
2063 	/*
2064 	 * If the next page causes us to wrap to the beginning of the log
2065 	 * file then we know which page to check next.
2066 	 */
2067 	if (wrapped) {
2068 		page_cnt = 2;
2069 		page_pos = 1;
2070 		goto check_valid;
2071 	}
2072 
2073 	cur_pos = 2;
2074 
2075 next_test_page:
2076 	kfree(tst_page);
2077 	tst_page = NULL;
2078 
2079 	/* Walk through the file, reading log pages. */
2080 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2081 
2082 	/*
2083 	 * If we get a USA error then assume that we correctly found
2084 	 * the end of the original transfer.
2085 	 */
2086 	if (usa_error)
2087 		goto file_is_valid;
2088 
2089 	/*
2090 	 * If we were able to read the page, we examine it to see if it
2091 	 * is the same or different Io block.
2092 	 */
2093 	if (err)
2094 		goto next_test_page_1;
2095 
2096 	if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2097 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2098 		page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2099 		page_pos = le16_to_cpu(tst_page->page_pos);
2100 		goto check_valid;
2101 	} else {
2102 		goto file_is_valid;
2103 	}
2104 
2105 next_test_page_1:
2106 
2107 	nextpage_off = next_page_off(log, curpage_off);
2108 	wrapped = nextpage_off == log->first_page;
2109 
2110 	if (wrapped) {
2111 		expected_seq += 1;
2112 		page_cnt = 2;
2113 		page_pos = 1;
2114 	}
2115 
2116 	cur_pos += 1;
2117 	part_io_count += 1;
2118 	if (!wrapped)
2119 		goto next_test_page;
2120 
2121 check_valid:
2122 	/* Skip over the remaining pages this transfer. */
2123 	remain_pages = page_cnt - page_pos - 1;
2124 	part_io_count += remain_pages;
2125 
2126 	while (remain_pages--) {
2127 		nextpage_off = next_page_off(log, curpage_off);
2128 		wrapped = nextpage_off == log->first_page;
2129 
2130 		if (wrapped)
2131 			expected_seq += 1;
2132 	}
2133 
2134 	/* Call our routine to check this log page. */
2135 	kfree(tst_page);
2136 	tst_page = NULL;
2137 
2138 	err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2139 	if (!err && !usa_error &&
2140 	    check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2141 		err = -EINVAL;
2142 		goto out;
2143 	}
2144 
2145 file_is_valid:
2146 
2147 	/* We have a valid file. */
2148 	if (page_off1 || tail_page) {
2149 		struct RECORD_PAGE_HDR *tmp_page;
2150 
2151 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2152 			err = -EROFS;
2153 			goto out;
2154 		}
2155 
2156 		if (page_off1) {
2157 			tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2158 			tails -= (page_off1 - page_off) / log->page_size;
2159 			if (!tail_page)
2160 				tails -= 1;
2161 		} else {
2162 			tmp_page = tail_page;
2163 			tails = 1;
2164 		}
2165 
2166 		while (tails--) {
2167 			u64 off = hdr_file_off(log, tmp_page);
2168 
2169 			if (!page) {
2170 				page = kmalloc(log->page_size, GFP_NOFS);
2171 				if (!page) {
2172 					err = -ENOMEM;
2173 					goto out;
2174 				}
2175 			}
2176 
2177 			/*
2178 			 * Correct page and copy the data from this page
2179 			 * into it and flush it to disk.
2180 			 */
2181 			memcpy(page, tmp_page, log->page_size);
2182 
2183 			/* Fill last flushed lsn value flush the page. */
2184 			if (log->major_ver < 2)
2185 				page->rhdr.lsn = page->record_hdr.last_end_lsn;
2186 			else
2187 				page->file_off = 0;
2188 
2189 			page->page_pos = page->page_count = cpu_to_le16(1);
2190 
2191 			ntfs_fix_pre_write(&page->rhdr, log->page_size);
2192 
2193 			err = ntfs_sb_write_run(log->ni->mi.sbi,
2194 						&log->ni->file.run, off, page,
2195 						log->page_size, 0);
2196 
2197 			if (err)
2198 				goto out;
2199 
2200 			if (part_io_count && second_off == off) {
2201 				second_off += log->page_size;
2202 				part_io_count -= 1;
2203 			}
2204 
2205 			tmp_page = Add2Ptr(tmp_page, log->page_size);
2206 		}
2207 	}
2208 
2209 	if (part_io_count) {
2210 		if (sb_rdonly(log->ni->mi.sbi->sb)) {
2211 			err = -EROFS;
2212 			goto out;
2213 		}
2214 	}
2215 
2216 out:
2217 	kfree(second_tail);
2218 	kfree(first_tail);
2219 	kfree(page);
2220 	kfree(tst_page);
2221 	kfree(page_bufs);
2222 
2223 	return err;
2224 }
2225 
2226 /*
2227  * read_log_rec_buf - Copy a log record from the file to a buffer.
2228  *
2229  * The log record may span several log pages and may even wrap the file.
2230  */
read_log_rec_buf(struct ntfs_log * log,const struct LFS_RECORD_HDR * rh,void * buffer)2231 static int read_log_rec_buf(struct ntfs_log *log,
2232 			    const struct LFS_RECORD_HDR *rh, void *buffer)
2233 {
2234 	int err;
2235 	struct RECORD_PAGE_HDR *ph = NULL;
2236 	u64 lsn = le64_to_cpu(rh->this_lsn);
2237 	u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2238 	u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2239 	u32 data_len = le32_to_cpu(rh->client_data_len);
2240 
2241 	/*
2242 	 * While there are more bytes to transfer,
2243 	 * we continue to attempt to perform the read.
2244 	 */
2245 	for (;;) {
2246 		bool usa_error;
2247 		u32 tail = log->page_size - off;
2248 
2249 		if (tail >= data_len)
2250 			tail = data_len;
2251 
2252 		data_len -= tail;
2253 
2254 		err = read_log_page(log, vbo, &ph, &usa_error);
2255 		if (err)
2256 			goto out;
2257 
2258 		/*
2259 		 * The last lsn on this page better be greater or equal
2260 		 * to the lsn we are copying.
2261 		 */
2262 		if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2263 			err = -EINVAL;
2264 			goto out;
2265 		}
2266 
2267 		memcpy(buffer, Add2Ptr(ph, off), tail);
2268 
2269 		/* If there are no more bytes to transfer, we exit the loop. */
2270 		if (!data_len) {
2271 			if (!is_log_record_end(ph) ||
2272 			    lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2273 				err = -EINVAL;
2274 				goto out;
2275 			}
2276 			break;
2277 		}
2278 
2279 		if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2280 		    lsn > le64_to_cpu(ph->rhdr.lsn)) {
2281 			err = -EINVAL;
2282 			goto out;
2283 		}
2284 
2285 		vbo = next_page_off(log, vbo);
2286 		off = log->data_off;
2287 
2288 		/*
2289 		 * Adjust our pointer the user's buffer to transfer
2290 		 * the next block to.
2291 		 */
2292 		buffer = Add2Ptr(buffer, tail);
2293 	}
2294 
2295 out:
2296 	kfree(ph);
2297 	return err;
2298 }
2299 
read_rst_area(struct ntfs_log * log,struct NTFS_RESTART ** rst_,u64 * lsn)2300 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2301 			 u64 *lsn)
2302 {
2303 	int err;
2304 	struct LFS_RECORD_HDR *rh = NULL;
2305 	const struct CLIENT_REC *cr =
2306 		Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2307 	u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2308 	u32 len;
2309 	struct NTFS_RESTART *rst;
2310 
2311 	*lsn = 0;
2312 	*rst_ = NULL;
2313 
2314 	/* If the client doesn't have a restart area, go ahead and exit now. */
2315 	if (!lsnc)
2316 		return 0;
2317 
2318 	err = read_log_page(log, lsn_to_vbo(log, lsnc),
2319 			    (struct RECORD_PAGE_HDR **)&rh, NULL);
2320 	if (err)
2321 		return err;
2322 
2323 	rst = NULL;
2324 	lsnr = le64_to_cpu(rh->this_lsn);
2325 
2326 	if (lsnc != lsnr) {
2327 		/* If the lsn values don't match, then the disk is corrupt. */
2328 		err = -EINVAL;
2329 		goto out;
2330 	}
2331 
2332 	*lsn = lsnr;
2333 	len = le32_to_cpu(rh->client_data_len);
2334 
2335 	if (!len) {
2336 		err = 0;
2337 		goto out;
2338 	}
2339 
2340 	if (len < sizeof(struct NTFS_RESTART)) {
2341 		err = -EINVAL;
2342 		goto out;
2343 	}
2344 
2345 	rst = kmalloc(len, GFP_NOFS);
2346 	if (!rst) {
2347 		err = -ENOMEM;
2348 		goto out;
2349 	}
2350 
2351 	/* Copy the data into the 'rst' buffer. */
2352 	err = read_log_rec_buf(log, rh, rst);
2353 	if (err)
2354 		goto out;
2355 
2356 	*rst_ = rst;
2357 	rst = NULL;
2358 
2359 out:
2360 	kfree(rh);
2361 	kfree(rst);
2362 
2363 	return err;
2364 }
2365 
find_log_rec(struct ntfs_log * log,u64 lsn,struct lcb * lcb)2366 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2367 {
2368 	int err;
2369 	struct LFS_RECORD_HDR *rh = lcb->lrh;
2370 	u32 rec_len, len;
2371 
2372 	/* Read the record header for this lsn. */
2373 	if (!rh) {
2374 		err = read_log_page(log, lsn_to_vbo(log, lsn),
2375 				    (struct RECORD_PAGE_HDR **)&rh, NULL);
2376 
2377 		lcb->lrh = rh;
2378 		if (err)
2379 			return err;
2380 	}
2381 
2382 	/*
2383 	 * If the lsn the log record doesn't match the desired
2384 	 * lsn then the disk is corrupt.
2385 	 */
2386 	if (lsn != le64_to_cpu(rh->this_lsn))
2387 		return -EINVAL;
2388 
2389 	len = le32_to_cpu(rh->client_data_len);
2390 
2391 	/*
2392 	 * Check that the length field isn't greater than the total
2393 	 * available space the log file.
2394 	 */
2395 	rec_len = len + log->record_header_len;
2396 	if (rec_len >= log->total_avail)
2397 		return -EINVAL;
2398 
2399 	/*
2400 	 * If the entire log record is on this log page,
2401 	 * put a pointer to the log record the context block.
2402 	 */
2403 	if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2404 		void *lr = kmalloc(len, GFP_NOFS);
2405 
2406 		if (!lr)
2407 			return -ENOMEM;
2408 
2409 		lcb->log_rec = lr;
2410 		lcb->alloc = true;
2411 
2412 		/* Copy the data into the buffer returned. */
2413 		err = read_log_rec_buf(log, rh, lr);
2414 		if (err)
2415 			return err;
2416 	} else {
2417 		/* If beyond the end of the current page -> an error. */
2418 		u32 page_off = lsn_to_page_off(log, lsn);
2419 
2420 		if (page_off + len + log->record_header_len > log->page_size)
2421 			return -EINVAL;
2422 
2423 		lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2424 		lcb->alloc = false;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 /*
2431  * read_log_rec_lcb - Init the query operation.
2432  */
read_log_rec_lcb(struct ntfs_log * log,u64 lsn,u32 ctx_mode,struct lcb ** lcb_)2433 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2434 			    struct lcb **lcb_)
2435 {
2436 	int err;
2437 	const struct CLIENT_REC *cr;
2438 	struct lcb *lcb;
2439 
2440 	switch (ctx_mode) {
2441 	case lcb_ctx_undo_next:
2442 	case lcb_ctx_prev:
2443 	case lcb_ctx_next:
2444 		break;
2445 	default:
2446 		return -EINVAL;
2447 	}
2448 
2449 	/* Check that the given lsn is the legal range for this client. */
2450 	cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2451 
2452 	if (!verify_client_lsn(log, cr, lsn))
2453 		return -EINVAL;
2454 
2455 	lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2456 	if (!lcb)
2457 		return -ENOMEM;
2458 	lcb->client = log->client_id;
2459 	lcb->ctx_mode = ctx_mode;
2460 
2461 	/* Find the log record indicated by the given lsn. */
2462 	err = find_log_rec(log, lsn, lcb);
2463 	if (err)
2464 		goto out;
2465 
2466 	*lcb_ = lcb;
2467 	return 0;
2468 
2469 out:
2470 	lcb_put(lcb);
2471 	*lcb_ = NULL;
2472 	return err;
2473 }
2474 
2475 /*
2476  * find_client_next_lsn
2477  *
2478  * Attempt to find the next lsn to return to a client based on the context mode.
2479  */
find_client_next_lsn(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2480 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2481 {
2482 	int err;
2483 	u64 next_lsn;
2484 	struct LFS_RECORD_HDR *hdr;
2485 
2486 	hdr = lcb->lrh;
2487 	*lsn = 0;
2488 
2489 	if (lcb_ctx_next != lcb->ctx_mode)
2490 		goto check_undo_next;
2491 
2492 	/* Loop as long as another lsn can be found. */
2493 	for (;;) {
2494 		u64 current_lsn;
2495 
2496 		err = next_log_lsn(log, hdr, &current_lsn);
2497 		if (err)
2498 			goto out;
2499 
2500 		if (!current_lsn)
2501 			break;
2502 
2503 		if (hdr != lcb->lrh)
2504 			kfree(hdr);
2505 
2506 		hdr = NULL;
2507 		err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2508 				    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2509 		if (err)
2510 			goto out;
2511 
2512 		if (memcmp(&hdr->client, &lcb->client,
2513 			   sizeof(struct CLIENT_ID))) {
2514 			/*err = -EINVAL; */
2515 		} else if (LfsClientRecord == hdr->record_type) {
2516 			kfree(lcb->lrh);
2517 			lcb->lrh = hdr;
2518 			*lsn = current_lsn;
2519 			return 0;
2520 		}
2521 	}
2522 
2523 out:
2524 	if (hdr != lcb->lrh)
2525 		kfree(hdr);
2526 	return err;
2527 
2528 check_undo_next:
2529 	if (lcb_ctx_undo_next == lcb->ctx_mode)
2530 		next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2531 	else if (lcb_ctx_prev == lcb->ctx_mode)
2532 		next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2533 	else
2534 		return 0;
2535 
2536 	if (!next_lsn)
2537 		return 0;
2538 
2539 	if (!verify_client_lsn(
2540 		    log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2541 		    next_lsn))
2542 		return 0;
2543 
2544 	hdr = NULL;
2545 	err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2546 			    (struct RECORD_PAGE_HDR **)&hdr, NULL);
2547 	if (err)
2548 		return err;
2549 	kfree(lcb->lrh);
2550 	lcb->lrh = hdr;
2551 
2552 	*lsn = next_lsn;
2553 
2554 	return 0;
2555 }
2556 
read_next_log_rec(struct ntfs_log * log,struct lcb * lcb,u64 * lsn)2557 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2558 {
2559 	int err;
2560 
2561 	err = find_client_next_lsn(log, lcb, lsn);
2562 	if (err)
2563 		return err;
2564 
2565 	if (!*lsn)
2566 		return 0;
2567 
2568 	if (lcb->alloc)
2569 		kfree(lcb->log_rec);
2570 
2571 	lcb->log_rec = NULL;
2572 	lcb->alloc = false;
2573 	kfree(lcb->lrh);
2574 	lcb->lrh = NULL;
2575 
2576 	return find_log_rec(log, *lsn, lcb);
2577 }
2578 
check_index_header(const struct INDEX_HDR * hdr,size_t bytes)2579 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2580 {
2581 	__le16 mask;
2582 	u32 min_de, de_off, used, total;
2583 	const struct NTFS_DE *e;
2584 
2585 	if (hdr_has_subnode(hdr)) {
2586 		min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2587 		mask = NTFS_IE_HAS_SUBNODES;
2588 	} else {
2589 		min_de = sizeof(struct NTFS_DE);
2590 		mask = 0;
2591 	}
2592 
2593 	de_off = le32_to_cpu(hdr->de_off);
2594 	used = le32_to_cpu(hdr->used);
2595 	total = le32_to_cpu(hdr->total);
2596 
2597 	if (de_off > bytes - min_de || used > bytes || total > bytes ||
2598 	    de_off + min_de > used || used > total) {
2599 		return false;
2600 	}
2601 
2602 	e = Add2Ptr(hdr, de_off);
2603 	for (;;) {
2604 		u16 esize = le16_to_cpu(e->size);
2605 		struct NTFS_DE *next = Add2Ptr(e, esize);
2606 
2607 		if (esize < min_de || PtrOffset(hdr, next) > used ||
2608 		    (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2609 			return false;
2610 		}
2611 
2612 		if (de_is_last(e))
2613 			break;
2614 
2615 		e = next;
2616 	}
2617 
2618 	return true;
2619 }
2620 
check_index_buffer(const struct INDEX_BUFFER * ib,u32 bytes)2621 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2622 {
2623 	u16 fo;
2624 	const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2625 
2626 	if (r->sign != NTFS_INDX_SIGNATURE)
2627 		return false;
2628 
2629 	fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2630 
2631 	if (le16_to_cpu(r->fix_off) > fo)
2632 		return false;
2633 
2634 	if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2635 		return false;
2636 
2637 	return check_index_header(&ib->ihdr,
2638 				  bytes - offsetof(struct INDEX_BUFFER, ihdr));
2639 }
2640 
check_index_root(const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2641 static inline bool check_index_root(const struct ATTRIB *attr,
2642 				    struct ntfs_sb_info *sbi)
2643 {
2644 	bool ret;
2645 	const struct INDEX_ROOT *root = resident_data(attr);
2646 	u8 index_bits = le32_to_cpu(root->index_block_size) >=
2647 					sbi->cluster_size ?
2648 				sbi->cluster_bits :
2649 				SECTOR_SHIFT;
2650 	u8 block_clst = root->index_block_clst;
2651 
2652 	if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2653 	    (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2654 	    (root->type == ATTR_NAME &&
2655 	     root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2656 	    (le32_to_cpu(root->index_block_size) !=
2657 	     (block_clst << index_bits)) ||
2658 	    (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2659 	     block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2660 	     block_clst != 0x40 && block_clst != 0x80)) {
2661 		return false;
2662 	}
2663 
2664 	ret = check_index_header(&root->ihdr,
2665 				 le32_to_cpu(attr->res.data_size) -
2666 					 offsetof(struct INDEX_ROOT, ihdr));
2667 	return ret;
2668 }
2669 
check_attr(const struct MFT_REC * rec,const struct ATTRIB * attr,struct ntfs_sb_info * sbi)2670 static inline bool check_attr(const struct MFT_REC *rec,
2671 			      const struct ATTRIB *attr,
2672 			      struct ntfs_sb_info *sbi)
2673 {
2674 	u32 asize = le32_to_cpu(attr->size);
2675 	u32 rsize = 0;
2676 	u64 dsize, svcn, evcn;
2677 	u16 run_off;
2678 
2679 	/* Check the fixed part of the attribute record header. */
2680 	if (asize >= sbi->record_size ||
2681 	    asize + PtrOffset(rec, attr) >= sbi->record_size ||
2682 	    (attr->name_len &&
2683 	     le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2684 		     asize)) {
2685 		return false;
2686 	}
2687 
2688 	/* Check the attribute fields. */
2689 	switch (attr->non_res) {
2690 	case 0:
2691 		rsize = le32_to_cpu(attr->res.data_size);
2692 		if (rsize >= asize ||
2693 		    le16_to_cpu(attr->res.data_off) + rsize > asize) {
2694 			return false;
2695 		}
2696 		break;
2697 
2698 	case 1:
2699 		dsize = le64_to_cpu(attr->nres.data_size);
2700 		svcn = le64_to_cpu(attr->nres.svcn);
2701 		evcn = le64_to_cpu(attr->nres.evcn);
2702 		run_off = le16_to_cpu(attr->nres.run_off);
2703 
2704 		if (svcn > evcn + 1 || run_off >= asize ||
2705 		    le64_to_cpu(attr->nres.valid_size) > dsize ||
2706 		    dsize > le64_to_cpu(attr->nres.alloc_size)) {
2707 			return false;
2708 		}
2709 
2710 		if (run_off > asize)
2711 			return false;
2712 
2713 		if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2714 			       Add2Ptr(attr, run_off), asize - run_off) < 0) {
2715 			return false;
2716 		}
2717 
2718 		return true;
2719 
2720 	default:
2721 		return false;
2722 	}
2723 
2724 	switch (attr->type) {
2725 	case ATTR_NAME:
2726 		if (fname_full_size(Add2Ptr(
2727 			    attr, le16_to_cpu(attr->res.data_off))) > asize) {
2728 			return false;
2729 		}
2730 		break;
2731 
2732 	case ATTR_ROOT:
2733 		return check_index_root(attr, sbi);
2734 
2735 	case ATTR_STD:
2736 		if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2737 		    rsize != sizeof(struct ATTR_STD_INFO)) {
2738 			return false;
2739 		}
2740 		break;
2741 
2742 	case ATTR_LIST:
2743 	case ATTR_ID:
2744 	case ATTR_SECURE:
2745 	case ATTR_LABEL:
2746 	case ATTR_VOL_INFO:
2747 	case ATTR_DATA:
2748 	case ATTR_ALLOC:
2749 	case ATTR_BITMAP:
2750 	case ATTR_REPARSE:
2751 	case ATTR_EA_INFO:
2752 	case ATTR_EA:
2753 	case ATTR_PROPERTYSET:
2754 	case ATTR_LOGGED_UTILITY_STREAM:
2755 		break;
2756 
2757 	default:
2758 		return false;
2759 	}
2760 
2761 	return true;
2762 }
2763 
check_file_record(const struct MFT_REC * rec,const struct MFT_REC * rec2,struct ntfs_sb_info * sbi)2764 static inline bool check_file_record(const struct MFT_REC *rec,
2765 				     const struct MFT_REC *rec2,
2766 				     struct ntfs_sb_info *sbi)
2767 {
2768 	const struct ATTRIB *attr;
2769 	u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2770 	u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2771 	u16 ao = le16_to_cpu(rec->attr_off);
2772 	u32 rs = sbi->record_size;
2773 
2774 	/* Check the file record header for consistency. */
2775 	if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2776 	    fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2777 	    (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2778 	    ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2779 	    le32_to_cpu(rec->total) != rs) {
2780 		return false;
2781 	}
2782 
2783 	/* Loop to check all of the attributes. */
2784 	for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2785 	     attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2786 		if (check_attr(rec, attr, sbi))
2787 			continue;
2788 		return false;
2789 	}
2790 
2791 	return true;
2792 }
2793 
check_lsn(const struct NTFS_RECORD_HEADER * hdr,const u64 * rlsn)2794 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2795 			    const u64 *rlsn)
2796 {
2797 	u64 lsn;
2798 
2799 	if (!rlsn)
2800 		return true;
2801 
2802 	lsn = le64_to_cpu(hdr->lsn);
2803 
2804 	if (hdr->sign == NTFS_HOLE_SIGNATURE)
2805 		return false;
2806 
2807 	if (*rlsn > lsn)
2808 		return true;
2809 
2810 	return false;
2811 }
2812 
check_if_attr(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2813 static inline bool check_if_attr(const struct MFT_REC *rec,
2814 				 const struct LOG_REC_HDR *lrh)
2815 {
2816 	u16 ro = le16_to_cpu(lrh->record_off);
2817 	u16 o = le16_to_cpu(rec->attr_off);
2818 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2819 
2820 	while (o < ro) {
2821 		u32 asize;
2822 
2823 		if (attr->type == ATTR_END)
2824 			break;
2825 
2826 		asize = le32_to_cpu(attr->size);
2827 		if (!asize)
2828 			break;
2829 
2830 		o += asize;
2831 		attr = Add2Ptr(attr, asize);
2832 	}
2833 
2834 	return o == ro;
2835 }
2836 
check_if_index_root(const struct MFT_REC * rec,const struct LOG_REC_HDR * lrh)2837 static inline bool check_if_index_root(const struct MFT_REC *rec,
2838 				       const struct LOG_REC_HDR *lrh)
2839 {
2840 	u16 ro = le16_to_cpu(lrh->record_off);
2841 	u16 o = le16_to_cpu(rec->attr_off);
2842 	const struct ATTRIB *attr = Add2Ptr(rec, o);
2843 
2844 	while (o < ro) {
2845 		u32 asize;
2846 
2847 		if (attr->type == ATTR_END)
2848 			break;
2849 
2850 		asize = le32_to_cpu(attr->size);
2851 		if (!asize)
2852 			break;
2853 
2854 		o += asize;
2855 		attr = Add2Ptr(attr, asize);
2856 	}
2857 
2858 	return o == ro && attr->type == ATTR_ROOT;
2859 }
2860 
check_if_root_index(const struct ATTRIB * attr,const struct INDEX_HDR * hdr,const struct LOG_REC_HDR * lrh)2861 static inline bool check_if_root_index(const struct ATTRIB *attr,
2862 				       const struct INDEX_HDR *hdr,
2863 				       const struct LOG_REC_HDR *lrh)
2864 {
2865 	u16 ao = le16_to_cpu(lrh->attr_off);
2866 	u32 de_off = le32_to_cpu(hdr->de_off);
2867 	u32 o = PtrOffset(attr, hdr) + de_off;
2868 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2869 	u32 asize = le32_to_cpu(attr->size);
2870 
2871 	while (o < ao) {
2872 		u16 esize;
2873 
2874 		if (o >= asize)
2875 			break;
2876 
2877 		esize = le16_to_cpu(e->size);
2878 		if (!esize)
2879 			break;
2880 
2881 		o += esize;
2882 		e = Add2Ptr(e, esize);
2883 	}
2884 
2885 	return o == ao;
2886 }
2887 
check_if_alloc_index(const struct INDEX_HDR * hdr,u32 attr_off)2888 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2889 					u32 attr_off)
2890 {
2891 	u32 de_off = le32_to_cpu(hdr->de_off);
2892 	u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2893 	const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2894 	u32 used = le32_to_cpu(hdr->used);
2895 
2896 	while (o < attr_off) {
2897 		u16 esize;
2898 
2899 		if (de_off >= used)
2900 			break;
2901 
2902 		esize = le16_to_cpu(e->size);
2903 		if (!esize)
2904 			break;
2905 
2906 		o += esize;
2907 		de_off += esize;
2908 		e = Add2Ptr(e, esize);
2909 	}
2910 
2911 	return o == attr_off;
2912 }
2913 
change_attr_size(struct MFT_REC * rec,struct ATTRIB * attr,u32 nsize)2914 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2915 				    u32 nsize)
2916 {
2917 	u32 asize = le32_to_cpu(attr->size);
2918 	int dsize = nsize - asize;
2919 	u8 *next = Add2Ptr(attr, asize);
2920 	u32 used = le32_to_cpu(rec->used);
2921 
2922 	memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2923 
2924 	rec->used = cpu_to_le32(used + dsize);
2925 	attr->size = cpu_to_le32(nsize);
2926 }
2927 
2928 struct OpenAttr {
2929 	struct ATTRIB *attr;
2930 	struct runs_tree *run1;
2931 	struct runs_tree run0;
2932 	struct ntfs_inode *ni;
2933 	// CLST rno;
2934 };
2935 
2936 /*
2937  * cmp_type_and_name
2938  *
2939  * Return: 0 if 'attr' has the same type and name.
2940  */
cmp_type_and_name(const struct ATTRIB * a1,const struct ATTRIB * a2)2941 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2942 				    const struct ATTRIB *a2)
2943 {
2944 	return a1->type != a2->type || a1->name_len != a2->name_len ||
2945 	       (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2946 				       a1->name_len * sizeof(short)));
2947 }
2948 
find_loaded_attr(struct ntfs_log * log,const struct ATTRIB * attr,CLST rno)2949 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2950 					 const struct ATTRIB *attr, CLST rno)
2951 {
2952 	struct OPEN_ATTR_ENRTY *oe = NULL;
2953 
2954 	while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2955 		struct OpenAttr *op_attr;
2956 
2957 		if (ino_get(&oe->ref) != rno)
2958 			continue;
2959 
2960 		op_attr = (struct OpenAttr *)oe->ptr;
2961 		if (!cmp_type_and_name(op_attr->attr, attr))
2962 			return op_attr;
2963 	}
2964 	return NULL;
2965 }
2966 
attr_create_nonres_log(struct ntfs_sb_info * sbi,enum ATTR_TYPE type,u64 size,const u16 * name,size_t name_len,__le16 flags)2967 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2968 					     enum ATTR_TYPE type, u64 size,
2969 					     const u16 *name, size_t name_len,
2970 					     __le16 flags)
2971 {
2972 	struct ATTRIB *attr;
2973 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
2974 	bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2975 	u32 asize = name_size +
2976 		    (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2977 
2978 	attr = kzalloc(asize, GFP_NOFS);
2979 	if (!attr)
2980 		return NULL;
2981 
2982 	attr->type = type;
2983 	attr->size = cpu_to_le32(asize);
2984 	attr->flags = flags;
2985 	attr->non_res = 1;
2986 	attr->name_len = name_len;
2987 
2988 	attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2989 	attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2990 	attr->nres.data_size = cpu_to_le64(size);
2991 	attr->nres.valid_size = attr->nres.data_size;
2992 	if (is_ext) {
2993 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2994 		if (is_attr_compressed(attr))
2995 			attr->nres.c_unit = COMPRESSION_UNIT;
2996 
2997 		attr->nres.run_off =
2998 			cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2999 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3000 		       name_len * sizeof(short));
3001 	} else {
3002 		attr->name_off = SIZEOF_NONRESIDENT_LE;
3003 		attr->nres.run_off =
3004 			cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3005 		memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3006 		       name_len * sizeof(short));
3007 	}
3008 
3009 	return attr;
3010 }
3011 
3012 /*
3013  * do_action - Common routine for the Redo and Undo Passes.
3014  * @rlsn: If it is NULL then undo.
3015  */
do_action(struct ntfs_log * log,struct OPEN_ATTR_ENRTY * oe,const struct LOG_REC_HDR * lrh,u32 op,void * data,u32 dlen,u32 rec_len,const u64 * rlsn)3016 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3017 		     const struct LOG_REC_HDR *lrh, u32 op, void *data,
3018 		     u32 dlen, u32 rec_len, const u64 *rlsn)
3019 {
3020 	int err = 0;
3021 	struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3022 	struct inode *inode = NULL, *inode_parent;
3023 	struct mft_inode *mi = NULL, *mi2_child = NULL;
3024 	CLST rno = 0, rno_base = 0;
3025 	struct INDEX_BUFFER *ib = NULL;
3026 	struct MFT_REC *rec = NULL;
3027 	struct ATTRIB *attr = NULL, *attr2;
3028 	struct INDEX_HDR *hdr;
3029 	struct INDEX_ROOT *root;
3030 	struct NTFS_DE *e, *e1, *e2;
3031 	struct NEW_ATTRIBUTE_SIZES *new_sz;
3032 	struct ATTR_FILE_NAME *fname;
3033 	struct OpenAttr *oa, *oa2;
3034 	u32 nsize, t32, asize, used, esize, off, bits;
3035 	u16 id, id2;
3036 	u32 record_size = sbi->record_size;
3037 	u64 t64;
3038 	u16 roff = le16_to_cpu(lrh->record_off);
3039 	u16 aoff = le16_to_cpu(lrh->attr_off);
3040 	u64 lco = 0;
3041 	u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3042 	u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3043 	u64 vbo = cbo + tvo;
3044 	void *buffer_le = NULL;
3045 	u32 bytes = 0;
3046 	bool a_dirty = false;
3047 	u16 data_off;
3048 
3049 	oa = oe->ptr;
3050 
3051 	/* Big switch to prepare. */
3052 	switch (op) {
3053 	/* ============================================================
3054 	 * Process MFT records, as described by the current log record.
3055 	 * ============================================================
3056 	 */
3057 	case InitializeFileRecordSegment:
3058 	case DeallocateFileRecordSegment:
3059 	case WriteEndOfFileRecordSegment:
3060 	case CreateAttribute:
3061 	case DeleteAttribute:
3062 	case UpdateResidentValue:
3063 	case UpdateMappingPairs:
3064 	case SetNewAttributeSizes:
3065 	case AddIndexEntryRoot:
3066 	case DeleteIndexEntryRoot:
3067 	case SetIndexEntryVcnRoot:
3068 	case UpdateFileNameRoot:
3069 	case UpdateRecordDataRoot:
3070 	case ZeroEndOfFileRecord:
3071 		rno = vbo >> sbi->record_bits;
3072 		inode = ilookup(sbi->sb, rno);
3073 		if (inode) {
3074 			mi = &ntfs_i(inode)->mi;
3075 		} else if (op == InitializeFileRecordSegment) {
3076 			mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3077 			if (!mi)
3078 				return -ENOMEM;
3079 			err = mi_format_new(mi, sbi, rno, 0, false);
3080 			if (err)
3081 				goto out;
3082 		} else {
3083 			/* Read from disk. */
3084 			err = mi_get(sbi, rno, &mi);
3085 			if (err)
3086 				return err;
3087 		}
3088 		rec = mi->mrec;
3089 
3090 		if (op == DeallocateFileRecordSegment)
3091 			goto skip_load_parent;
3092 
3093 		if (InitializeFileRecordSegment != op) {
3094 			if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3095 				goto dirty_vol;
3096 			if (!check_lsn(&rec->rhdr, rlsn))
3097 				goto out;
3098 			if (!check_file_record(rec, NULL, sbi))
3099 				goto dirty_vol;
3100 			attr = Add2Ptr(rec, roff);
3101 		}
3102 
3103 		if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3104 			rno_base = rno;
3105 			goto skip_load_parent;
3106 		}
3107 
3108 		rno_base = ino_get(&rec->parent_ref);
3109 		inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3110 		if (IS_ERR(inode_parent))
3111 			goto skip_load_parent;
3112 
3113 		if (is_bad_inode(inode_parent)) {
3114 			iput(inode_parent);
3115 			goto skip_load_parent;
3116 		}
3117 
3118 		if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3119 			iput(inode_parent);
3120 		} else {
3121 			if (mi2_child->mrec != mi->mrec)
3122 				memcpy(mi2_child->mrec, mi->mrec,
3123 				       sbi->record_size);
3124 
3125 			if (inode)
3126 				iput(inode);
3127 			else if (mi)
3128 				mi_put(mi);
3129 
3130 			inode = inode_parent;
3131 			mi = mi2_child;
3132 			rec = mi2_child->mrec;
3133 			attr = Add2Ptr(rec, roff);
3134 		}
3135 
3136 skip_load_parent:
3137 		inode_parent = NULL;
3138 		break;
3139 
3140 	/*
3141 	 * Process attributes, as described by the current log record.
3142 	 */
3143 	case UpdateNonresidentValue:
3144 	case AddIndexEntryAllocation:
3145 	case DeleteIndexEntryAllocation:
3146 	case WriteEndOfIndexBuffer:
3147 	case SetIndexEntryVcnAllocation:
3148 	case UpdateFileNameAllocation:
3149 	case SetBitsInNonresidentBitMap:
3150 	case ClearBitsInNonresidentBitMap:
3151 	case UpdateRecordDataAllocation:
3152 		attr = oa->attr;
3153 		bytes = UpdateNonresidentValue == op ? dlen : 0;
3154 		lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3155 
3156 		if (attr->type == ATTR_ALLOC) {
3157 			t32 = le32_to_cpu(oe->bytes_per_index);
3158 			if (bytes < t32)
3159 				bytes = t32;
3160 		}
3161 
3162 		if (!bytes)
3163 			bytes = lco - cbo;
3164 
3165 		bytes += roff;
3166 		if (attr->type == ATTR_ALLOC)
3167 			bytes = (bytes + 511) & ~511; // align
3168 
3169 		buffer_le = kmalloc(bytes, GFP_NOFS);
3170 		if (!buffer_le)
3171 			return -ENOMEM;
3172 
3173 		err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3174 				       NULL);
3175 		if (err)
3176 			goto out;
3177 
3178 		if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3179 			ntfs_fix_post_read(buffer_le, bytes, false);
3180 		break;
3181 
3182 	default:
3183 		WARN_ON(1);
3184 	}
3185 
3186 	/* Big switch to do operation. */
3187 	switch (op) {
3188 	case InitializeFileRecordSegment:
3189 		if (roff + dlen > record_size)
3190 			goto dirty_vol;
3191 
3192 		memcpy(Add2Ptr(rec, roff), data, dlen);
3193 		mi->dirty = true;
3194 		break;
3195 
3196 	case DeallocateFileRecordSegment:
3197 		clear_rec_inuse(rec);
3198 		le16_add_cpu(&rec->seq, 1);
3199 		mi->dirty = true;
3200 		break;
3201 
3202 	case WriteEndOfFileRecordSegment:
3203 		attr2 = (struct ATTRIB *)data;
3204 		if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3205 			goto dirty_vol;
3206 
3207 		memmove(attr, attr2, dlen);
3208 		rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3209 
3210 		mi->dirty = true;
3211 		break;
3212 
3213 	case CreateAttribute:
3214 		attr2 = (struct ATTRIB *)data;
3215 		asize = le32_to_cpu(attr2->size);
3216 		used = le32_to_cpu(rec->used);
3217 
3218 		if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3219 		    !IS_ALIGNED(asize, 8) ||
3220 		    Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3221 		    dlen > record_size - used) {
3222 			goto dirty_vol;
3223 		}
3224 
3225 		memmove(Add2Ptr(attr, asize), attr, used - roff);
3226 		memcpy(attr, attr2, asize);
3227 
3228 		rec->used = cpu_to_le32(used + asize);
3229 		id = le16_to_cpu(rec->next_attr_id);
3230 		id2 = le16_to_cpu(attr2->id);
3231 		if (id <= id2)
3232 			rec->next_attr_id = cpu_to_le16(id2 + 1);
3233 		if (is_attr_indexed(attr))
3234 			le16_add_cpu(&rec->hard_links, 1);
3235 
3236 		oa2 = find_loaded_attr(log, attr, rno_base);
3237 		if (oa2) {
3238 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3239 					   GFP_NOFS);
3240 			if (p2) {
3241 				// run_close(oa2->run1);
3242 				kfree(oa2->attr);
3243 				oa2->attr = p2;
3244 			}
3245 		}
3246 
3247 		mi->dirty = true;
3248 		break;
3249 
3250 	case DeleteAttribute:
3251 		asize = le32_to_cpu(attr->size);
3252 		used = le32_to_cpu(rec->used);
3253 
3254 		if (!check_if_attr(rec, lrh))
3255 			goto dirty_vol;
3256 
3257 		rec->used = cpu_to_le32(used - asize);
3258 		if (is_attr_indexed(attr))
3259 			le16_add_cpu(&rec->hard_links, -1);
3260 
3261 		memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3262 
3263 		mi->dirty = true;
3264 		break;
3265 
3266 	case UpdateResidentValue:
3267 		nsize = aoff + dlen;
3268 
3269 		if (!check_if_attr(rec, lrh))
3270 			goto dirty_vol;
3271 
3272 		asize = le32_to_cpu(attr->size);
3273 		used = le32_to_cpu(rec->used);
3274 
3275 		if (lrh->redo_len == lrh->undo_len) {
3276 			if (nsize > asize)
3277 				goto dirty_vol;
3278 			goto move_data;
3279 		}
3280 
3281 		if (nsize > asize && nsize - asize > record_size - used)
3282 			goto dirty_vol;
3283 
3284 		nsize = ALIGN(nsize, 8);
3285 		data_off = le16_to_cpu(attr->res.data_off);
3286 
3287 		if (nsize < asize) {
3288 			memmove(Add2Ptr(attr, aoff), data, dlen);
3289 			data = NULL; // To skip below memmove().
3290 		}
3291 
3292 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3293 			used - le16_to_cpu(lrh->record_off) - asize);
3294 
3295 		rec->used = cpu_to_le32(used + nsize - asize);
3296 		attr->size = cpu_to_le32(nsize);
3297 		attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3298 
3299 move_data:
3300 		if (data)
3301 			memmove(Add2Ptr(attr, aoff), data, dlen);
3302 
3303 		oa2 = find_loaded_attr(log, attr, rno_base);
3304 		if (oa2) {
3305 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3306 					   GFP_NOFS);
3307 			if (p2) {
3308 				// run_close(&oa2->run0);
3309 				oa2->run1 = &oa2->run0;
3310 				kfree(oa2->attr);
3311 				oa2->attr = p2;
3312 			}
3313 		}
3314 
3315 		mi->dirty = true;
3316 		break;
3317 
3318 	case UpdateMappingPairs:
3319 		nsize = aoff + dlen;
3320 		asize = le32_to_cpu(attr->size);
3321 		used = le32_to_cpu(rec->used);
3322 
3323 		if (!check_if_attr(rec, lrh) || !attr->non_res ||
3324 		    aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3325 		    (nsize > asize && nsize - asize > record_size - used)) {
3326 			goto dirty_vol;
3327 		}
3328 
3329 		nsize = ALIGN(nsize, 8);
3330 
3331 		memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3332 			used - le16_to_cpu(lrh->record_off) - asize);
3333 		rec->used = cpu_to_le32(used + nsize - asize);
3334 		attr->size = cpu_to_le32(nsize);
3335 		memmove(Add2Ptr(attr, aoff), data, dlen);
3336 
3337 		if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3338 					attr_run(attr), &t64)) {
3339 			goto dirty_vol;
3340 		}
3341 
3342 		attr->nres.evcn = cpu_to_le64(t64);
3343 		oa2 = find_loaded_attr(log, attr, rno_base);
3344 		if (oa2 && oa2->attr->non_res)
3345 			oa2->attr->nres.evcn = attr->nres.evcn;
3346 
3347 		mi->dirty = true;
3348 		break;
3349 
3350 	case SetNewAttributeSizes:
3351 		new_sz = data;
3352 		if (!check_if_attr(rec, lrh) || !attr->non_res)
3353 			goto dirty_vol;
3354 
3355 		attr->nres.alloc_size = new_sz->alloc_size;
3356 		attr->nres.data_size = new_sz->data_size;
3357 		attr->nres.valid_size = new_sz->valid_size;
3358 
3359 		if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3360 			attr->nres.total_size = new_sz->total_size;
3361 
3362 		oa2 = find_loaded_attr(log, attr, rno_base);
3363 		if (oa2) {
3364 			void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3365 					   GFP_NOFS);
3366 			if (p2) {
3367 				kfree(oa2->attr);
3368 				oa2->attr = p2;
3369 			}
3370 		}
3371 		mi->dirty = true;
3372 		break;
3373 
3374 	case AddIndexEntryRoot:
3375 		e = (struct NTFS_DE *)data;
3376 		esize = le16_to_cpu(e->size);
3377 		root = resident_data(attr);
3378 		hdr = &root->ihdr;
3379 		used = le32_to_cpu(hdr->used);
3380 
3381 		if (!check_if_index_root(rec, lrh) ||
3382 		    !check_if_root_index(attr, hdr, lrh) ||
3383 		    Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3384 		    esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3385 			goto dirty_vol;
3386 		}
3387 
3388 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3389 
3390 		change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3391 
3392 		memmove(Add2Ptr(e1, esize), e1,
3393 			PtrOffset(e1, Add2Ptr(hdr, used)));
3394 		memmove(e1, e, esize);
3395 
3396 		le32_add_cpu(&attr->res.data_size, esize);
3397 		hdr->used = cpu_to_le32(used + esize);
3398 		le32_add_cpu(&hdr->total, esize);
3399 
3400 		mi->dirty = true;
3401 		break;
3402 
3403 	case DeleteIndexEntryRoot:
3404 		root = resident_data(attr);
3405 		hdr = &root->ihdr;
3406 		used = le32_to_cpu(hdr->used);
3407 
3408 		if (!check_if_index_root(rec, lrh) ||
3409 		    !check_if_root_index(attr, hdr, lrh)) {
3410 			goto dirty_vol;
3411 		}
3412 
3413 		e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3414 		esize = le16_to_cpu(e1->size);
3415 		e2 = Add2Ptr(e1, esize);
3416 
3417 		memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3418 
3419 		le32_sub_cpu(&attr->res.data_size, esize);
3420 		hdr->used = cpu_to_le32(used - esize);
3421 		le32_sub_cpu(&hdr->total, esize);
3422 
3423 		change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3424 
3425 		mi->dirty = true;
3426 		break;
3427 
3428 	case SetIndexEntryVcnRoot:
3429 		root = resident_data(attr);
3430 		hdr = &root->ihdr;
3431 
3432 		if (!check_if_index_root(rec, lrh) ||
3433 		    !check_if_root_index(attr, hdr, lrh)) {
3434 			goto dirty_vol;
3435 		}
3436 
3437 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3438 
3439 		de_set_vbn_le(e, *(__le64 *)data);
3440 		mi->dirty = true;
3441 		break;
3442 
3443 	case UpdateFileNameRoot:
3444 		root = resident_data(attr);
3445 		hdr = &root->ihdr;
3446 
3447 		if (!check_if_index_root(rec, lrh) ||
3448 		    !check_if_root_index(attr, hdr, lrh)) {
3449 			goto dirty_vol;
3450 		}
3451 
3452 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3453 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3454 		memmove(&fname->dup, data, sizeof(fname->dup)); //
3455 		mi->dirty = true;
3456 		break;
3457 
3458 	case UpdateRecordDataRoot:
3459 		root = resident_data(attr);
3460 		hdr = &root->ihdr;
3461 
3462 		if (!check_if_index_root(rec, lrh) ||
3463 		    !check_if_root_index(attr, hdr, lrh)) {
3464 			goto dirty_vol;
3465 		}
3466 
3467 		e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3468 
3469 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3470 
3471 		mi->dirty = true;
3472 		break;
3473 
3474 	case ZeroEndOfFileRecord:
3475 		if (roff + dlen > record_size)
3476 			goto dirty_vol;
3477 
3478 		memset(attr, 0, dlen);
3479 		mi->dirty = true;
3480 		break;
3481 
3482 	case UpdateNonresidentValue:
3483 		if (lco < cbo + roff + dlen)
3484 			goto dirty_vol;
3485 
3486 		memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3487 
3488 		a_dirty = true;
3489 		if (attr->type == ATTR_ALLOC)
3490 			ntfs_fix_pre_write(buffer_le, bytes);
3491 		break;
3492 
3493 	case AddIndexEntryAllocation:
3494 		ib = Add2Ptr(buffer_le, roff);
3495 		hdr = &ib->ihdr;
3496 		e = data;
3497 		esize = le16_to_cpu(e->size);
3498 		e1 = Add2Ptr(ib, aoff);
3499 
3500 		if (is_baad(&ib->rhdr))
3501 			goto dirty_vol;
3502 		if (!check_lsn(&ib->rhdr, rlsn))
3503 			goto out;
3504 
3505 		used = le32_to_cpu(hdr->used);
3506 
3507 		if (!check_index_buffer(ib, bytes) ||
3508 		    !check_if_alloc_index(hdr, aoff) ||
3509 		    Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3510 		    used + esize > le32_to_cpu(hdr->total)) {
3511 			goto dirty_vol;
3512 		}
3513 
3514 		memmove(Add2Ptr(e1, esize), e1,
3515 			PtrOffset(e1, Add2Ptr(hdr, used)));
3516 		memcpy(e1, e, esize);
3517 
3518 		hdr->used = cpu_to_le32(used + esize);
3519 
3520 		a_dirty = true;
3521 
3522 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3523 		break;
3524 
3525 	case DeleteIndexEntryAllocation:
3526 		ib = Add2Ptr(buffer_le, roff);
3527 		hdr = &ib->ihdr;
3528 		e = Add2Ptr(ib, aoff);
3529 		esize = le16_to_cpu(e->size);
3530 
3531 		if (is_baad(&ib->rhdr))
3532 			goto dirty_vol;
3533 		if (!check_lsn(&ib->rhdr, rlsn))
3534 			goto out;
3535 
3536 		if (!check_index_buffer(ib, bytes) ||
3537 		    !check_if_alloc_index(hdr, aoff)) {
3538 			goto dirty_vol;
3539 		}
3540 
3541 		e1 = Add2Ptr(e, esize);
3542 		nsize = esize;
3543 		used = le32_to_cpu(hdr->used);
3544 
3545 		memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3546 
3547 		hdr->used = cpu_to_le32(used - nsize);
3548 
3549 		a_dirty = true;
3550 
3551 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3552 		break;
3553 
3554 	case WriteEndOfIndexBuffer:
3555 		ib = Add2Ptr(buffer_le, roff);
3556 		hdr = &ib->ihdr;
3557 		e = Add2Ptr(ib, aoff);
3558 
3559 		if (is_baad(&ib->rhdr))
3560 			goto dirty_vol;
3561 		if (!check_lsn(&ib->rhdr, rlsn))
3562 			goto out;
3563 		if (!check_index_buffer(ib, bytes) ||
3564 		    !check_if_alloc_index(hdr, aoff) ||
3565 		    aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3566 					  le32_to_cpu(hdr->total)) {
3567 			goto dirty_vol;
3568 		}
3569 
3570 		hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3571 		memmove(e, data, dlen);
3572 
3573 		a_dirty = true;
3574 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3575 		break;
3576 
3577 	case SetIndexEntryVcnAllocation:
3578 		ib = Add2Ptr(buffer_le, roff);
3579 		hdr = &ib->ihdr;
3580 		e = Add2Ptr(ib, aoff);
3581 
3582 		if (is_baad(&ib->rhdr))
3583 			goto dirty_vol;
3584 
3585 		if (!check_lsn(&ib->rhdr, rlsn))
3586 			goto out;
3587 		if (!check_index_buffer(ib, bytes) ||
3588 		    !check_if_alloc_index(hdr, aoff)) {
3589 			goto dirty_vol;
3590 		}
3591 
3592 		de_set_vbn_le(e, *(__le64 *)data);
3593 
3594 		a_dirty = true;
3595 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3596 		break;
3597 
3598 	case UpdateFileNameAllocation:
3599 		ib = Add2Ptr(buffer_le, roff);
3600 		hdr = &ib->ihdr;
3601 		e = Add2Ptr(ib, aoff);
3602 
3603 		if (is_baad(&ib->rhdr))
3604 			goto dirty_vol;
3605 
3606 		if (!check_lsn(&ib->rhdr, rlsn))
3607 			goto out;
3608 		if (!check_index_buffer(ib, bytes) ||
3609 		    !check_if_alloc_index(hdr, aoff)) {
3610 			goto dirty_vol;
3611 		}
3612 
3613 		fname = (struct ATTR_FILE_NAME *)(e + 1);
3614 		memmove(&fname->dup, data, sizeof(fname->dup));
3615 
3616 		a_dirty = true;
3617 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3618 		break;
3619 
3620 	case SetBitsInNonresidentBitMap:
3621 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3622 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3623 
3624 		if (cbo + (off + 7) / 8 > lco ||
3625 		    cbo + ((off + bits + 7) / 8) > lco) {
3626 			goto dirty_vol;
3627 		}
3628 
3629 		ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3630 		a_dirty = true;
3631 		break;
3632 
3633 	case ClearBitsInNonresidentBitMap:
3634 		off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3635 		bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3636 
3637 		if (cbo + (off + 7) / 8 > lco ||
3638 		    cbo + ((off + bits + 7) / 8) > lco) {
3639 			goto dirty_vol;
3640 		}
3641 
3642 		ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3643 		a_dirty = true;
3644 		break;
3645 
3646 	case UpdateRecordDataAllocation:
3647 		ib = Add2Ptr(buffer_le, roff);
3648 		hdr = &ib->ihdr;
3649 		e = Add2Ptr(ib, aoff);
3650 
3651 		if (is_baad(&ib->rhdr))
3652 			goto dirty_vol;
3653 
3654 		if (!check_lsn(&ib->rhdr, rlsn))
3655 			goto out;
3656 		if (!check_index_buffer(ib, bytes) ||
3657 		    !check_if_alloc_index(hdr, aoff)) {
3658 			goto dirty_vol;
3659 		}
3660 
3661 		memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3662 
3663 		a_dirty = true;
3664 		ntfs_fix_pre_write(&ib->rhdr, bytes);
3665 		break;
3666 
3667 	default:
3668 		WARN_ON(1);
3669 	}
3670 
3671 	if (rlsn) {
3672 		__le64 t64 = cpu_to_le64(*rlsn);
3673 
3674 		if (rec)
3675 			rec->rhdr.lsn = t64;
3676 		if (ib)
3677 			ib->rhdr.lsn = t64;
3678 	}
3679 
3680 	if (mi && mi->dirty) {
3681 		err = mi_write(mi, 0);
3682 		if (err)
3683 			goto out;
3684 	}
3685 
3686 	if (a_dirty) {
3687 		attr = oa->attr;
3688 		err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3689 					0);
3690 		if (err)
3691 			goto out;
3692 	}
3693 
3694 out:
3695 
3696 	if (inode)
3697 		iput(inode);
3698 	else if (mi != mi2_child)
3699 		mi_put(mi);
3700 
3701 	kfree(buffer_le);
3702 
3703 	return err;
3704 
3705 dirty_vol:
3706 	log->set_dirty = true;
3707 	goto out;
3708 }
3709 
3710 /*
3711  * log_replay - Replays log and empties it.
3712  *
3713  * This function is called during mount operation.
3714  * It replays log and empties it.
3715  * Initialized is set false if logfile contains '-1'.
3716  */
log_replay(struct ntfs_inode * ni,bool * initialized)3717 int log_replay(struct ntfs_inode *ni, bool *initialized)
3718 {
3719 	int err;
3720 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3721 	struct ntfs_log *log;
3722 
3723 	u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3724 	struct ATTR_NAME_ENTRY *attr_names = NULL;
3725 	struct RESTART_TABLE *dptbl = NULL;
3726 	struct RESTART_TABLE *trtbl = NULL;
3727 	const struct RESTART_TABLE *rt;
3728 	struct RESTART_TABLE *oatbl = NULL;
3729 	struct inode *inode;
3730 	struct OpenAttr *oa;
3731 	struct ntfs_inode *ni_oe;
3732 	struct ATTRIB *attr = NULL;
3733 	u64 size, vcn, undo_next_lsn;
3734 	CLST rno, lcn, lcn0, len0, clen;
3735 	void *data;
3736 	struct NTFS_RESTART *rst = NULL;
3737 	struct lcb *lcb = NULL;
3738 	struct OPEN_ATTR_ENRTY *oe;
3739 	struct TRANSACTION_ENTRY *tr;
3740 	struct DIR_PAGE_ENTRY *dp;
3741 	u32 i, bytes_per_attr_entry;
3742 	u32 vbo, tail, off, dlen;
3743 	u32 saved_len, rec_len, transact_id;
3744 	bool use_second_page;
3745 	struct RESTART_AREA *ra2, *ra = NULL;
3746 	struct CLIENT_REC *ca, *cr;
3747 	__le16 client;
3748 	struct RESTART_HDR *rh;
3749 	const struct LFS_RECORD_HDR *frh;
3750 	const struct LOG_REC_HDR *lrh;
3751 	bool is_mapped;
3752 	bool is_ro = sb_rdonly(sbi->sb);
3753 	u64 t64;
3754 	u16 t16;
3755 	u32 t32;
3756 
3757 	log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3758 	if (!log)
3759 		return -ENOMEM;
3760 
3761 	log->ni = ni;
3762 	log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3763 
3764 	/* Get the size of page. NOTE: To replay we can use default page. */
3765 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3766 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3767 #else
3768 	log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3769 #endif
3770 	if (!log->page_size) {
3771 		err = -EINVAL;
3772 		goto out;
3773 	}
3774 
3775 	log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3776 	if (!log->one_page_buf) {
3777 		err = -ENOMEM;
3778 		goto out;
3779 	}
3780 
3781 	log->page_mask = log->page_size - 1;
3782 	log->page_bits = blksize_bits(log->page_size);
3783 
3784 	/* Look for a restart area on the disk. */
3785 	err = log_read_rst(log, true, &log->rst_info);
3786 	if (err)
3787 		goto out;
3788 
3789 	/* remember 'initialized' */
3790 	*initialized = log->rst_info.initialized;
3791 
3792 	if (!log->rst_info.restart) {
3793 		if (log->rst_info.initialized) {
3794 			/* No restart area but the file is not initialized. */
3795 			err = -EINVAL;
3796 			goto out;
3797 		}
3798 
3799 		log_init_pg_hdr(log, 1, 1);
3800 		log_create(log, 0, get_random_u32(), false, false);
3801 
3802 		ra = log_create_ra(log);
3803 		if (!ra) {
3804 			err = -ENOMEM;
3805 			goto out;
3806 		}
3807 		log->ra = ra;
3808 		log->init_ra = true;
3809 
3810 		goto process_log;
3811 	}
3812 
3813 	/*
3814 	 * If the restart offset above wasn't zero then we won't
3815 	 * look for a second restart.
3816 	 */
3817 	if (log->rst_info.vbo)
3818 		goto check_restart_area;
3819 
3820 	err = log_read_rst(log, false, &log->rst_info2);
3821 	if (err)
3822 		goto out;
3823 
3824 	/* Determine which restart area to use. */
3825 	if (!log->rst_info2.restart ||
3826 	    log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3827 		goto use_first_page;
3828 
3829 	use_second_page = true;
3830 
3831 	if (log->rst_info.chkdsk_was_run &&
3832 	    log->page_size != log->rst_info.vbo) {
3833 		struct RECORD_PAGE_HDR *sp = NULL;
3834 		bool usa_error;
3835 
3836 		if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3837 		    sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3838 			use_second_page = false;
3839 		}
3840 		kfree(sp);
3841 	}
3842 
3843 	if (use_second_page) {
3844 		kfree(log->rst_info.r_page);
3845 		memcpy(&log->rst_info, &log->rst_info2,
3846 		       sizeof(struct restart_info));
3847 		log->rst_info2.r_page = NULL;
3848 	}
3849 
3850 use_first_page:
3851 	kfree(log->rst_info2.r_page);
3852 
3853 check_restart_area:
3854 	/*
3855 	 * If the restart area is at offset 0, we want
3856 	 * to write the second restart area first.
3857 	 */
3858 	log->init_ra = !!log->rst_info.vbo;
3859 
3860 	/* If we have a valid page then grab a pointer to the restart area. */
3861 	ra2 = log->rst_info.valid_page ?
3862 		      Add2Ptr(log->rst_info.r_page,
3863 			      le16_to_cpu(log->rst_info.r_page->ra_off)) :
3864 		      NULL;
3865 
3866 	if (log->rst_info.chkdsk_was_run ||
3867 	    (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3868 		bool wrapped = false;
3869 		bool use_multi_page = false;
3870 		u32 open_log_count;
3871 
3872 		/* Do some checks based on whether we have a valid log page. */
3873 		open_log_count = log->rst_info.valid_page ?
3874 					 le32_to_cpu(ra2->open_log_count) :
3875 					 get_random_u32();
3876 
3877 		log_init_pg_hdr(log, 1, 1);
3878 
3879 		log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3880 			   use_multi_page);
3881 
3882 		ra = log_create_ra(log);
3883 		if (!ra) {
3884 			err = -ENOMEM;
3885 			goto out;
3886 		}
3887 		log->ra = ra;
3888 
3889 		/* Put the restart areas and initialize
3890 		 * the log file as required.
3891 		 */
3892 		goto process_log;
3893 	}
3894 
3895 	if (!ra2) {
3896 		err = -EINVAL;
3897 		goto out;
3898 	}
3899 
3900 	/*
3901 	 * If the log page or the system page sizes have changed, we can't
3902 	 * use the log file. We must use the system page size instead of the
3903 	 * default size if there is not a clean shutdown.
3904 	 */
3905 	t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3906 	if (log->page_size != t32) {
3907 		log->l_size = log->orig_file_size;
3908 		log->page_size = norm_file_page(t32, &log->l_size,
3909 						t32 == DefaultLogPageSize);
3910 	}
3911 
3912 	if (log->page_size != t32 ||
3913 	    log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3914 		err = -EINVAL;
3915 		goto out;
3916 	}
3917 
3918 	/* If the file size has shrunk then we won't mount it. */
3919 	if (log->l_size < le64_to_cpu(ra2->l_size)) {
3920 		err = -EINVAL;
3921 		goto out;
3922 	}
3923 
3924 	log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3925 			le16_to_cpu(log->rst_info.r_page->minor_ver));
3926 
3927 	log->l_size = le64_to_cpu(ra2->l_size);
3928 	log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3929 	log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3930 	log->seq_num_mask = (8 << log->file_data_bits) - 1;
3931 	log->last_lsn = le64_to_cpu(ra2->current_lsn);
3932 	log->seq_num = log->last_lsn >> log->file_data_bits;
3933 	log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3934 	log->restart_size = log->sys_page_size - log->ra_off;
3935 	log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3936 	log->ra_size = le16_to_cpu(ra2->ra_len);
3937 	log->data_off = le16_to_cpu(ra2->data_off);
3938 	log->data_size = log->page_size - log->data_off;
3939 	log->reserved = log->data_size - log->record_header_len;
3940 
3941 	vbo = lsn_to_vbo(log, log->last_lsn);
3942 
3943 	if (vbo < log->first_page) {
3944 		/* This is a pseudo lsn. */
3945 		log->l_flags |= NTFSLOG_NO_LAST_LSN;
3946 		log->next_page = log->first_page;
3947 		goto find_oldest;
3948 	}
3949 
3950 	/* Find the end of this log record. */
3951 	off = final_log_off(log, log->last_lsn,
3952 			    le32_to_cpu(ra2->last_lsn_data_len));
3953 
3954 	/* If we wrapped the file then increment the sequence number. */
3955 	if (off <= vbo) {
3956 		log->seq_num += 1;
3957 		log->l_flags |= NTFSLOG_WRAPPED;
3958 	}
3959 
3960 	/* Now compute the next log page to use. */
3961 	vbo &= ~log->sys_page_mask;
3962 	tail = log->page_size - (off & log->page_mask) - 1;
3963 
3964 	/*
3965 	 *If we can fit another log record on the page,
3966 	 * move back a page the log file.
3967 	 */
3968 	if (tail >= log->record_header_len) {
3969 		log->l_flags |= NTFSLOG_REUSE_TAIL;
3970 		log->next_page = vbo;
3971 	} else {
3972 		log->next_page = next_page_off(log, vbo);
3973 	}
3974 
3975 find_oldest:
3976 	/*
3977 	 * Find the oldest client lsn. Use the last
3978 	 * flushed lsn as a starting point.
3979 	 */
3980 	log->oldest_lsn = log->last_lsn;
3981 	oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3982 			  ra2->client_idx[1], &log->oldest_lsn);
3983 	log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3984 
3985 	if (log->oldest_lsn_off < log->first_page)
3986 		log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
3987 
3988 	if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
3989 		log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
3990 
3991 	log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
3992 	log->total_avail_pages = log->l_size - log->first_page;
3993 	log->total_avail = log->total_avail_pages >> log->page_bits;
3994 	log->max_current_avail = log->total_avail * log->reserved;
3995 	log->total_avail = log->total_avail * log->data_size;
3996 
3997 	log->current_avail = current_log_avail(log);
3998 
3999 	ra = kzalloc(log->restart_size, GFP_NOFS);
4000 	if (!ra) {
4001 		err = -ENOMEM;
4002 		goto out;
4003 	}
4004 	log->ra = ra;
4005 
4006 	t16 = le16_to_cpu(ra2->client_off);
4007 	if (t16 == offsetof(struct RESTART_AREA, clients)) {
4008 		memcpy(ra, ra2, log->ra_size);
4009 	} else {
4010 		memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4011 		memcpy(ra->clients, Add2Ptr(ra2, t16),
4012 		       le16_to_cpu(ra2->ra_len) - t16);
4013 
4014 		log->current_openlog_count = get_random_u32();
4015 		ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4016 		log->ra_size = offsetof(struct RESTART_AREA, clients) +
4017 			       sizeof(struct CLIENT_REC);
4018 		ra->client_off =
4019 			cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4020 		ra->ra_len = cpu_to_le16(log->ra_size);
4021 	}
4022 
4023 	le32_add_cpu(&ra->open_log_count, 1);
4024 
4025 	/* Now we need to walk through looking for the last lsn. */
4026 	err = last_log_lsn(log);
4027 	if (err)
4028 		goto out;
4029 
4030 	log->current_avail = current_log_avail(log);
4031 
4032 	/* Remember which restart area to write first. */
4033 	log->init_ra = log->rst_info.vbo;
4034 
4035 process_log:
4036 	/* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4037 	switch ((log->major_ver << 16) + log->minor_ver) {
4038 	case 0x10000:
4039 	case 0x10001:
4040 	case 0x20000:
4041 		break;
4042 	default:
4043 		ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4044 			  log->major_ver, log->minor_ver);
4045 		err = -EOPNOTSUPP;
4046 		log->set_dirty = true;
4047 		goto out;
4048 	}
4049 
4050 	/* One client "NTFS" per logfile. */
4051 	ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4052 
4053 	for (client = ra->client_idx[1];; client = cr->next_client) {
4054 		if (client == LFS_NO_CLIENT_LE) {
4055 			/* Insert "NTFS" client LogFile. */
4056 			client = ra->client_idx[0];
4057 			if (client == LFS_NO_CLIENT_LE) {
4058 				err = -EINVAL;
4059 				goto out;
4060 			}
4061 
4062 			t16 = le16_to_cpu(client);
4063 			cr = ca + t16;
4064 
4065 			remove_client(ca, cr, &ra->client_idx[0]);
4066 
4067 			cr->restart_lsn = 0;
4068 			cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4069 			cr->name_bytes = cpu_to_le32(8);
4070 			cr->name[0] = cpu_to_le16('N');
4071 			cr->name[1] = cpu_to_le16('T');
4072 			cr->name[2] = cpu_to_le16('F');
4073 			cr->name[3] = cpu_to_le16('S');
4074 
4075 			add_client(ca, t16, &ra->client_idx[1]);
4076 			break;
4077 		}
4078 
4079 		cr = ca + le16_to_cpu(client);
4080 
4081 		if (cpu_to_le32(8) == cr->name_bytes &&
4082 		    cpu_to_le16('N') == cr->name[0] &&
4083 		    cpu_to_le16('T') == cr->name[1] &&
4084 		    cpu_to_le16('F') == cr->name[2] &&
4085 		    cpu_to_le16('S') == cr->name[3])
4086 			break;
4087 	}
4088 
4089 	/* Update the client handle with the client block information. */
4090 	log->client_id.seq_num = cr->seq_num;
4091 	log->client_id.client_idx = client;
4092 
4093 	err = read_rst_area(log, &rst, &checkpt_lsn);
4094 	if (err)
4095 		goto out;
4096 
4097 	if (!rst)
4098 		goto out;
4099 
4100 	bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4101 
4102 	if (rst->check_point_start)
4103 		checkpt_lsn = le64_to_cpu(rst->check_point_start);
4104 
4105 	/* Allocate and Read the Transaction Table. */
4106 	if (!rst->transact_table_len)
4107 		goto check_dirty_page_table;
4108 
4109 	t64 = le64_to_cpu(rst->transact_table_lsn);
4110 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4111 	if (err)
4112 		goto out;
4113 
4114 	lrh = lcb->log_rec;
4115 	frh = lcb->lrh;
4116 	rec_len = le32_to_cpu(frh->client_data_len);
4117 
4118 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4119 			   bytes_per_attr_entry)) {
4120 		err = -EINVAL;
4121 		goto out;
4122 	}
4123 
4124 	t16 = le16_to_cpu(lrh->redo_off);
4125 
4126 	rt = Add2Ptr(lrh, t16);
4127 	t32 = rec_len - t16;
4128 
4129 	/* Now check that this is a valid restart table. */
4130 	if (!check_rstbl(rt, t32)) {
4131 		err = -EINVAL;
4132 		goto out;
4133 	}
4134 
4135 	trtbl = kmemdup(rt, t32, GFP_NOFS);
4136 	if (!trtbl) {
4137 		err = -ENOMEM;
4138 		goto out;
4139 	}
4140 
4141 	lcb_put(lcb);
4142 	lcb = NULL;
4143 
4144 check_dirty_page_table:
4145 	/* The next record back should be the Dirty Pages Table. */
4146 	if (!rst->dirty_pages_len)
4147 		goto check_attribute_names;
4148 
4149 	t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4150 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4151 	if (err)
4152 		goto out;
4153 
4154 	lrh = lcb->log_rec;
4155 	frh = lcb->lrh;
4156 	rec_len = le32_to_cpu(frh->client_data_len);
4157 
4158 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4159 			   bytes_per_attr_entry)) {
4160 		err = -EINVAL;
4161 		goto out;
4162 	}
4163 
4164 	t16 = le16_to_cpu(lrh->redo_off);
4165 
4166 	rt = Add2Ptr(lrh, t16);
4167 	t32 = rec_len - t16;
4168 
4169 	/* Now check that this is a valid restart table. */
4170 	if (!check_rstbl(rt, t32)) {
4171 		err = -EINVAL;
4172 		goto out;
4173 	}
4174 
4175 	dptbl = kmemdup(rt, t32, GFP_NOFS);
4176 	if (!dptbl) {
4177 		err = -ENOMEM;
4178 		goto out;
4179 	}
4180 
4181 	/* Convert Ra version '0' into version '1'. */
4182 	if (rst->major_ver)
4183 		goto end_conv_1;
4184 
4185 	dp = NULL;
4186 	while ((dp = enum_rstbl(dptbl, dp))) {
4187 		struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4188 		// NOTE: Danger. Check for of boundary.
4189 		memmove(&dp->vcn, &dp0->vcn_low,
4190 			2 * sizeof(u64) +
4191 				le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4192 	}
4193 
4194 end_conv_1:
4195 	lcb_put(lcb);
4196 	lcb = NULL;
4197 
4198 	/*
4199 	 * Go through the table and remove the duplicates,
4200 	 * remembering the oldest lsn values.
4201 	 */
4202 	if (sbi->cluster_size <= log->page_size)
4203 		goto trace_dp_table;
4204 
4205 	dp = NULL;
4206 	while ((dp = enum_rstbl(dptbl, dp))) {
4207 		struct DIR_PAGE_ENTRY *next = dp;
4208 
4209 		while ((next = enum_rstbl(dptbl, next))) {
4210 			if (next->target_attr == dp->target_attr &&
4211 			    next->vcn == dp->vcn) {
4212 				if (le64_to_cpu(next->oldest_lsn) <
4213 				    le64_to_cpu(dp->oldest_lsn)) {
4214 					dp->oldest_lsn = next->oldest_lsn;
4215 				}
4216 
4217 				free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4218 			}
4219 		}
4220 	}
4221 trace_dp_table:
4222 check_attribute_names:
4223 	/* The next record should be the Attribute Names. */
4224 	if (!rst->attr_names_len)
4225 		goto check_attr_table;
4226 
4227 	t64 = le64_to_cpu(rst->attr_names_lsn);
4228 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4229 	if (err)
4230 		goto out;
4231 
4232 	lrh = lcb->log_rec;
4233 	frh = lcb->lrh;
4234 	rec_len = le32_to_cpu(frh->client_data_len);
4235 
4236 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4237 			   bytes_per_attr_entry)) {
4238 		err = -EINVAL;
4239 		goto out;
4240 	}
4241 
4242 	t32 = lrh_length(lrh);
4243 	rec_len -= t32;
4244 
4245 	attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4246 	if (!attr_names) {
4247 		err = -ENOMEM;
4248 		goto out;
4249 	}
4250 
4251 	lcb_put(lcb);
4252 	lcb = NULL;
4253 
4254 check_attr_table:
4255 	/* The next record should be the attribute Table. */
4256 	if (!rst->open_attr_len)
4257 		goto check_attribute_names2;
4258 
4259 	t64 = le64_to_cpu(rst->open_attr_table_lsn);
4260 	err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4261 	if (err)
4262 		goto out;
4263 
4264 	lrh = lcb->log_rec;
4265 	frh = lcb->lrh;
4266 	rec_len = le32_to_cpu(frh->client_data_len);
4267 
4268 	if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4269 			   bytes_per_attr_entry)) {
4270 		err = -EINVAL;
4271 		goto out;
4272 	}
4273 
4274 	t16 = le16_to_cpu(lrh->redo_off);
4275 
4276 	rt = Add2Ptr(lrh, t16);
4277 	t32 = rec_len - t16;
4278 
4279 	if (!check_rstbl(rt, t32)) {
4280 		err = -EINVAL;
4281 		goto out;
4282 	}
4283 
4284 	oatbl = kmemdup(rt, t32, GFP_NOFS);
4285 	if (!oatbl) {
4286 		err = -ENOMEM;
4287 		goto out;
4288 	}
4289 
4290 	log->open_attr_tbl = oatbl;
4291 
4292 	/* Clear all of the Attr pointers. */
4293 	oe = NULL;
4294 	while ((oe = enum_rstbl(oatbl, oe))) {
4295 		if (!rst->major_ver) {
4296 			struct OPEN_ATTR_ENRTY_32 oe0;
4297 
4298 			/* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4299 			memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4300 
4301 			oe->bytes_per_index = oe0.bytes_per_index;
4302 			oe->type = oe0.type;
4303 			oe->is_dirty_pages = oe0.is_dirty_pages;
4304 			oe->name_len = 0;
4305 			oe->ref = oe0.ref;
4306 			oe->open_record_lsn = oe0.open_record_lsn;
4307 		}
4308 
4309 		oe->is_attr_name = 0;
4310 		oe->ptr = NULL;
4311 	}
4312 
4313 	lcb_put(lcb);
4314 	lcb = NULL;
4315 
4316 check_attribute_names2:
4317 	if (rst->attr_names_len && oatbl) {
4318 		struct ATTR_NAME_ENTRY *ane = attr_names;
4319 		while (ane->off) {
4320 			/* TODO: Clear table on exit! */
4321 			oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4322 			t16 = le16_to_cpu(ane->name_bytes);
4323 			oe->name_len = t16 / sizeof(short);
4324 			oe->ptr = ane->name;
4325 			oe->is_attr_name = 2;
4326 			ane = Add2Ptr(ane,
4327 				      sizeof(struct ATTR_NAME_ENTRY) + t16);
4328 		}
4329 	}
4330 
4331 	/*
4332 	 * If the checkpt_lsn is zero, then this is a freshly
4333 	 * formatted disk and we have no work to do.
4334 	 */
4335 	if (!checkpt_lsn) {
4336 		err = 0;
4337 		goto out;
4338 	}
4339 
4340 	if (!oatbl) {
4341 		oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4342 		if (!oatbl) {
4343 			err = -ENOMEM;
4344 			goto out;
4345 		}
4346 	}
4347 
4348 	log->open_attr_tbl = oatbl;
4349 
4350 	/* Start the analysis pass from the Checkpoint lsn. */
4351 	rec_lsn = checkpt_lsn;
4352 
4353 	/* Read the first lsn. */
4354 	err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4355 	if (err)
4356 		goto out;
4357 
4358 	/* Loop to read all subsequent records to the end of the log file. */
4359 next_log_record_analyze:
4360 	err = read_next_log_rec(log, lcb, &rec_lsn);
4361 	if (err)
4362 		goto out;
4363 
4364 	if (!rec_lsn)
4365 		goto end_log_records_enumerate;
4366 
4367 	frh = lcb->lrh;
4368 	transact_id = le32_to_cpu(frh->transact_id);
4369 	rec_len = le32_to_cpu(frh->client_data_len);
4370 	lrh = lcb->log_rec;
4371 
4372 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4373 		err = -EINVAL;
4374 		goto out;
4375 	}
4376 
4377 	/*
4378 	 * The first lsn after the previous lsn remembered
4379 	 * the checkpoint is the first candidate for the rlsn.
4380 	 */
4381 	if (!rlsn)
4382 		rlsn = rec_lsn;
4383 
4384 	if (LfsClientRecord != frh->record_type)
4385 		goto next_log_record_analyze;
4386 
4387 	/*
4388 	 * Now update the Transaction Table for this transaction. If there
4389 	 * is no entry present or it is unallocated we allocate the entry.
4390 	 */
4391 	if (!trtbl) {
4392 		trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4393 				    INITIAL_NUMBER_TRANSACTIONS);
4394 		if (!trtbl) {
4395 			err = -ENOMEM;
4396 			goto out;
4397 		}
4398 	}
4399 
4400 	tr = Add2Ptr(trtbl, transact_id);
4401 
4402 	if (transact_id >= bytes_per_rt(trtbl) ||
4403 	    tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4404 		tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4405 		if (!tr) {
4406 			err = -ENOMEM;
4407 			goto out;
4408 		}
4409 		tr->transact_state = TransactionActive;
4410 		tr->first_lsn = cpu_to_le64(rec_lsn);
4411 	}
4412 
4413 	tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4414 
4415 	/*
4416 	 * If this is a compensation log record, then change
4417 	 * the undo_next_lsn to be the undo_next_lsn of this record.
4418 	 */
4419 	if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4420 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4421 
4422 	/* Dispatch to handle log record depending on type. */
4423 	switch (le16_to_cpu(lrh->redo_op)) {
4424 	case InitializeFileRecordSegment:
4425 	case DeallocateFileRecordSegment:
4426 	case WriteEndOfFileRecordSegment:
4427 	case CreateAttribute:
4428 	case DeleteAttribute:
4429 	case UpdateResidentValue:
4430 	case UpdateNonresidentValue:
4431 	case UpdateMappingPairs:
4432 	case SetNewAttributeSizes:
4433 	case AddIndexEntryRoot:
4434 	case DeleteIndexEntryRoot:
4435 	case AddIndexEntryAllocation:
4436 	case DeleteIndexEntryAllocation:
4437 	case WriteEndOfIndexBuffer:
4438 	case SetIndexEntryVcnRoot:
4439 	case SetIndexEntryVcnAllocation:
4440 	case UpdateFileNameRoot:
4441 	case UpdateFileNameAllocation:
4442 	case SetBitsInNonresidentBitMap:
4443 	case ClearBitsInNonresidentBitMap:
4444 	case UpdateRecordDataRoot:
4445 	case UpdateRecordDataAllocation:
4446 	case ZeroEndOfFileRecord:
4447 		t16 = le16_to_cpu(lrh->target_attr);
4448 		t64 = le64_to_cpu(lrh->target_vcn);
4449 		dp = find_dp(dptbl, t16, t64);
4450 
4451 		if (dp)
4452 			goto copy_lcns;
4453 
4454 		/*
4455 		 * Calculate the number of clusters per page the system
4456 		 * which wrote the checkpoint, possibly creating the table.
4457 		 */
4458 		if (dptbl) {
4459 			t32 = (le16_to_cpu(dptbl->size) -
4460 			       sizeof(struct DIR_PAGE_ENTRY)) /
4461 			      sizeof(u64);
4462 		} else {
4463 			t32 = log->clst_per_page;
4464 			kfree(dptbl);
4465 			dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4466 					    32);
4467 			if (!dptbl) {
4468 				err = -ENOMEM;
4469 				goto out;
4470 			}
4471 		}
4472 
4473 		dp = alloc_rsttbl_idx(&dptbl);
4474 		if (!dp) {
4475 			err = -ENOMEM;
4476 			goto out;
4477 		}
4478 		dp->target_attr = cpu_to_le32(t16);
4479 		dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4480 		dp->lcns_follow = cpu_to_le32(t32);
4481 		dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4482 		dp->oldest_lsn = cpu_to_le64(rec_lsn);
4483 
4484 copy_lcns:
4485 		/*
4486 		 * Copy the Lcns from the log record into the Dirty Page Entry.
4487 		 * TODO: For different page size support, must somehow make
4488 		 * whole routine a loop, case Lcns do not fit below.
4489 		 */
4490 		t16 = le16_to_cpu(lrh->lcns_follow);
4491 		for (i = 0; i < t16; i++) {
4492 			size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4493 					    le64_to_cpu(dp->vcn));
4494 			dp->page_lcns[j + i] = lrh->page_lcns[i];
4495 		}
4496 
4497 		goto next_log_record_analyze;
4498 
4499 	case DeleteDirtyClusters: {
4500 		u32 range_count =
4501 			le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4502 		const struct LCN_RANGE *r =
4503 			Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4504 
4505 		/* Loop through all of the Lcn ranges this log record. */
4506 		for (i = 0; i < range_count; i++, r++) {
4507 			u64 lcn0 = le64_to_cpu(r->lcn);
4508 			u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4509 
4510 			dp = NULL;
4511 			while ((dp = enum_rstbl(dptbl, dp))) {
4512 				u32 j;
4513 
4514 				t32 = le32_to_cpu(dp->lcns_follow);
4515 				for (j = 0; j < t32; j++) {
4516 					t64 = le64_to_cpu(dp->page_lcns[j]);
4517 					if (t64 >= lcn0 && t64 <= lcn_e)
4518 						dp->page_lcns[j] = 0;
4519 				}
4520 			}
4521 		}
4522 		goto next_log_record_analyze;
4523 		;
4524 	}
4525 
4526 	case OpenNonresidentAttribute:
4527 		t16 = le16_to_cpu(lrh->target_attr);
4528 		if (t16 >= bytes_per_rt(oatbl)) {
4529 			/*
4530 			 * Compute how big the table needs to be.
4531 			 * Add 10 extra entries for some cushion.
4532 			 */
4533 			u32 new_e = t16 / le16_to_cpu(oatbl->size);
4534 
4535 			new_e += 10 - le16_to_cpu(oatbl->used);
4536 
4537 			oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4538 			log->open_attr_tbl = oatbl;
4539 			if (!oatbl) {
4540 				err = -ENOMEM;
4541 				goto out;
4542 			}
4543 		}
4544 
4545 		/* Point to the entry being opened. */
4546 		oe = alloc_rsttbl_from_idx(&oatbl, t16);
4547 		log->open_attr_tbl = oatbl;
4548 		if (!oe) {
4549 			err = -ENOMEM;
4550 			goto out;
4551 		}
4552 
4553 		/* Initialize this entry from the log record. */
4554 		t16 = le16_to_cpu(lrh->redo_off);
4555 		if (!rst->major_ver) {
4556 			/* Convert version '0' into version '1'. */
4557 			struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4558 
4559 			oe->bytes_per_index = oe0->bytes_per_index;
4560 			oe->type = oe0->type;
4561 			oe->is_dirty_pages = oe0->is_dirty_pages;
4562 			oe->name_len = 0; //oe0.name_len;
4563 			oe->ref = oe0->ref;
4564 			oe->open_record_lsn = oe0->open_record_lsn;
4565 		} else {
4566 			memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4567 		}
4568 
4569 		t16 = le16_to_cpu(lrh->undo_len);
4570 		if (t16) {
4571 			oe->ptr = kmalloc(t16, GFP_NOFS);
4572 			if (!oe->ptr) {
4573 				err = -ENOMEM;
4574 				goto out;
4575 			}
4576 			oe->name_len = t16 / sizeof(short);
4577 			memcpy(oe->ptr,
4578 			       Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4579 			oe->is_attr_name = 1;
4580 		} else {
4581 			oe->ptr = NULL;
4582 			oe->is_attr_name = 0;
4583 		}
4584 
4585 		goto next_log_record_analyze;
4586 
4587 	case HotFix:
4588 		t16 = le16_to_cpu(lrh->target_attr);
4589 		t64 = le64_to_cpu(lrh->target_vcn);
4590 		dp = find_dp(dptbl, t16, t64);
4591 		if (dp) {
4592 			size_t j = le64_to_cpu(lrh->target_vcn) -
4593 				   le64_to_cpu(dp->vcn);
4594 			if (dp->page_lcns[j])
4595 				dp->page_lcns[j] = lrh->page_lcns[0];
4596 		}
4597 		goto next_log_record_analyze;
4598 
4599 	case EndTopLevelAction:
4600 		tr = Add2Ptr(trtbl, transact_id);
4601 		tr->prev_lsn = cpu_to_le64(rec_lsn);
4602 		tr->undo_next_lsn = frh->client_undo_next_lsn;
4603 		goto next_log_record_analyze;
4604 
4605 	case PrepareTransaction:
4606 		tr = Add2Ptr(trtbl, transact_id);
4607 		tr->transact_state = TransactionPrepared;
4608 		goto next_log_record_analyze;
4609 
4610 	case CommitTransaction:
4611 		tr = Add2Ptr(trtbl, transact_id);
4612 		tr->transact_state = TransactionCommitted;
4613 		goto next_log_record_analyze;
4614 
4615 	case ForgetTransaction:
4616 		free_rsttbl_idx(trtbl, transact_id);
4617 		goto next_log_record_analyze;
4618 
4619 	case Noop:
4620 	case OpenAttributeTableDump:
4621 	case AttributeNamesDump:
4622 	case DirtyPageTableDump:
4623 	case TransactionTableDump:
4624 		/* The following cases require no action the Analysis Pass. */
4625 		goto next_log_record_analyze;
4626 
4627 	default:
4628 		/*
4629 		 * All codes will be explicitly handled.
4630 		 * If we see a code we do not expect, then we are trouble.
4631 		 */
4632 		goto next_log_record_analyze;
4633 	}
4634 
4635 end_log_records_enumerate:
4636 	lcb_put(lcb);
4637 	lcb = NULL;
4638 
4639 	/*
4640 	 * Scan the Dirty Page Table and Transaction Table for
4641 	 * the lowest lsn, and return it as the Redo lsn.
4642 	 */
4643 	dp = NULL;
4644 	while ((dp = enum_rstbl(dptbl, dp))) {
4645 		t64 = le64_to_cpu(dp->oldest_lsn);
4646 		if (t64 && t64 < rlsn)
4647 			rlsn = t64;
4648 	}
4649 
4650 	tr = NULL;
4651 	while ((tr = enum_rstbl(trtbl, tr))) {
4652 		t64 = le64_to_cpu(tr->first_lsn);
4653 		if (t64 && t64 < rlsn)
4654 			rlsn = t64;
4655 	}
4656 
4657 	/*
4658 	 * Only proceed if the Dirty Page Table or Transaction
4659 	 * table are not empty.
4660 	 */
4661 	if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4662 		goto end_reply;
4663 
4664 	sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4665 	if (is_ro)
4666 		goto out;
4667 
4668 	/* Reopen all of the attributes with dirty pages. */
4669 	oe = NULL;
4670 next_open_attribute:
4671 
4672 	oe = enum_rstbl(oatbl, oe);
4673 	if (!oe) {
4674 		err = 0;
4675 		dp = NULL;
4676 		goto next_dirty_page;
4677 	}
4678 
4679 	oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4680 	if (!oa) {
4681 		err = -ENOMEM;
4682 		goto out;
4683 	}
4684 
4685 	inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4686 	if (IS_ERR(inode))
4687 		goto fake_attr;
4688 
4689 	if (is_bad_inode(inode)) {
4690 		iput(inode);
4691 fake_attr:
4692 		if (oa->ni) {
4693 			iput(&oa->ni->vfs_inode);
4694 			oa->ni = NULL;
4695 		}
4696 
4697 		attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4698 					      oe->name_len, 0);
4699 		if (!attr) {
4700 			kfree(oa);
4701 			err = -ENOMEM;
4702 			goto out;
4703 		}
4704 		oa->attr = attr;
4705 		oa->run1 = &oa->run0;
4706 		goto final_oe;
4707 	}
4708 
4709 	ni_oe = ntfs_i(inode);
4710 	oa->ni = ni_oe;
4711 
4712 	attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4713 			    NULL, NULL);
4714 
4715 	if (!attr)
4716 		goto fake_attr;
4717 
4718 	t32 = le32_to_cpu(attr->size);
4719 	oa->attr = kmemdup(attr, t32, GFP_NOFS);
4720 	if (!oa->attr)
4721 		goto fake_attr;
4722 
4723 	if (!S_ISDIR(inode->i_mode)) {
4724 		if (attr->type == ATTR_DATA && !attr->name_len) {
4725 			oa->run1 = &ni_oe->file.run;
4726 			goto final_oe;
4727 		}
4728 	} else {
4729 		if (attr->type == ATTR_ALLOC &&
4730 		    attr->name_len == ARRAY_SIZE(I30_NAME) &&
4731 		    !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4732 			oa->run1 = &ni_oe->dir.alloc_run;
4733 			goto final_oe;
4734 		}
4735 	}
4736 
4737 	if (attr->non_res) {
4738 		u16 roff = le16_to_cpu(attr->nres.run_off);
4739 		CLST svcn = le64_to_cpu(attr->nres.svcn);
4740 
4741 		if (roff > t32) {
4742 			kfree(oa->attr);
4743 			oa->attr = NULL;
4744 			goto fake_attr;
4745 		}
4746 
4747 		err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4748 				 le64_to_cpu(attr->nres.evcn), svcn,
4749 				 Add2Ptr(attr, roff), t32 - roff);
4750 		if (err < 0) {
4751 			kfree(oa->attr);
4752 			oa->attr = NULL;
4753 			goto fake_attr;
4754 		}
4755 		err = 0;
4756 	}
4757 	oa->run1 = &oa->run0;
4758 	attr = oa->attr;
4759 
4760 final_oe:
4761 	if (oe->is_attr_name == 1)
4762 		kfree(oe->ptr);
4763 	oe->is_attr_name = 0;
4764 	oe->ptr = oa;
4765 	oe->name_len = attr->name_len;
4766 
4767 	goto next_open_attribute;
4768 
4769 	/*
4770 	 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4771 	 * Mapping that we have, and insert it into the appropriate run.
4772 	 */
4773 next_dirty_page:
4774 	dp = enum_rstbl(dptbl, dp);
4775 	if (!dp)
4776 		goto do_redo_1;
4777 
4778 	oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4779 
4780 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4781 		goto next_dirty_page;
4782 
4783 	oa = oe->ptr;
4784 	if (!oa)
4785 		goto next_dirty_page;
4786 
4787 	i = -1;
4788 next_dirty_page_vcn:
4789 	i += 1;
4790 	if (i >= le32_to_cpu(dp->lcns_follow))
4791 		goto next_dirty_page;
4792 
4793 	vcn = le64_to_cpu(dp->vcn) + i;
4794 	size = (vcn + 1) << sbi->cluster_bits;
4795 
4796 	if (!dp->page_lcns[i])
4797 		goto next_dirty_page_vcn;
4798 
4799 	rno = ino_get(&oe->ref);
4800 	if (rno <= MFT_REC_MIRR &&
4801 	    size < (MFT_REC_VOL + 1) * sbi->record_size &&
4802 	    oe->type == ATTR_DATA) {
4803 		goto next_dirty_page_vcn;
4804 	}
4805 
4806 	lcn = le64_to_cpu(dp->page_lcns[i]);
4807 
4808 	if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4809 	     lcn0 != lcn) &&
4810 	    !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4811 		err = -ENOMEM;
4812 		goto out;
4813 	}
4814 	attr = oa->attr;
4815 	if (size > le64_to_cpu(attr->nres.alloc_size)) {
4816 		attr->nres.valid_size = attr->nres.data_size =
4817 			attr->nres.alloc_size = cpu_to_le64(size);
4818 	}
4819 	goto next_dirty_page_vcn;
4820 
4821 do_redo_1:
4822 	/*
4823 	 * Perform the Redo Pass, to restore all of the dirty pages to the same
4824 	 * contents that they had immediately before the crash. If the dirty
4825 	 * page table is empty, then we can skip the entire Redo Pass.
4826 	 */
4827 	if (!dptbl || !dptbl->total)
4828 		goto do_undo_action;
4829 
4830 	rec_lsn = rlsn;
4831 
4832 	/*
4833 	 * Read the record at the Redo lsn, before falling
4834 	 * into common code to handle each record.
4835 	 */
4836 	err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4837 	if (err)
4838 		goto out;
4839 
4840 	/*
4841 	 * Now loop to read all of our log records forwards, until
4842 	 * we hit the end of the file, cleaning up at the end.
4843 	 */
4844 do_action_next:
4845 	frh = lcb->lrh;
4846 
4847 	if (LfsClientRecord != frh->record_type)
4848 		goto read_next_log_do_action;
4849 
4850 	transact_id = le32_to_cpu(frh->transact_id);
4851 	rec_len = le32_to_cpu(frh->client_data_len);
4852 	lrh = lcb->log_rec;
4853 
4854 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4855 		err = -EINVAL;
4856 		goto out;
4857 	}
4858 
4859 	/* Ignore log records that do not update pages. */
4860 	if (lrh->lcns_follow)
4861 		goto find_dirty_page;
4862 
4863 	goto read_next_log_do_action;
4864 
4865 find_dirty_page:
4866 	t16 = le16_to_cpu(lrh->target_attr);
4867 	t64 = le64_to_cpu(lrh->target_vcn);
4868 	dp = find_dp(dptbl, t16, t64);
4869 
4870 	if (!dp)
4871 		goto read_next_log_do_action;
4872 
4873 	if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4874 		goto read_next_log_do_action;
4875 
4876 	t16 = le16_to_cpu(lrh->target_attr);
4877 	if (t16 >= bytes_per_rt(oatbl)) {
4878 		err = -EINVAL;
4879 		goto out;
4880 	}
4881 
4882 	oe = Add2Ptr(oatbl, t16);
4883 
4884 	if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4885 		err = -EINVAL;
4886 		goto out;
4887 	}
4888 
4889 	oa = oe->ptr;
4890 
4891 	if (!oa) {
4892 		err = -EINVAL;
4893 		goto out;
4894 	}
4895 	attr = oa->attr;
4896 
4897 	vcn = le64_to_cpu(lrh->target_vcn);
4898 
4899 	if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4900 	    lcn == SPARSE_LCN) {
4901 		goto read_next_log_do_action;
4902 	}
4903 
4904 	/* Point to the Redo data and get its length. */
4905 	data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4906 	dlen = le16_to_cpu(lrh->redo_len);
4907 
4908 	/* Shorten length by any Lcns which were deleted. */
4909 	saved_len = dlen;
4910 
4911 	for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4912 		size_t j;
4913 		u32 alen, voff;
4914 
4915 		voff = le16_to_cpu(lrh->record_off) +
4916 		       le16_to_cpu(lrh->attr_off);
4917 		voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4918 
4919 		/* If the Vcn question is allocated, we can just get out. */
4920 		j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4921 		if (dp->page_lcns[j + i - 1])
4922 			break;
4923 
4924 		if (!saved_len)
4925 			saved_len = 1;
4926 
4927 		/*
4928 		 * Calculate the allocated space left relative to the
4929 		 * log record Vcn, after removing this unallocated Vcn.
4930 		 */
4931 		alen = (i - 1) << sbi->cluster_bits;
4932 
4933 		/*
4934 		 * If the update described this log record goes beyond
4935 		 * the allocated space, then we will have to reduce the length.
4936 		 */
4937 		if (voff >= alen)
4938 			dlen = 0;
4939 		else if (voff + dlen > alen)
4940 			dlen = alen - voff;
4941 	}
4942 
4943 	/*
4944 	 * If the resulting dlen from above is now zero,
4945 	 * we can skip this log record.
4946 	 */
4947 	if (!dlen && saved_len)
4948 		goto read_next_log_do_action;
4949 
4950 	t16 = le16_to_cpu(lrh->redo_op);
4951 	if (can_skip_action(t16))
4952 		goto read_next_log_do_action;
4953 
4954 	/* Apply the Redo operation a common routine. */
4955 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4956 	if (err)
4957 		goto out;
4958 
4959 	/* Keep reading and looping back until end of file. */
4960 read_next_log_do_action:
4961 	err = read_next_log_rec(log, lcb, &rec_lsn);
4962 	if (!err && rec_lsn)
4963 		goto do_action_next;
4964 
4965 	lcb_put(lcb);
4966 	lcb = NULL;
4967 
4968 do_undo_action:
4969 	/* Scan Transaction Table. */
4970 	tr = NULL;
4971 transaction_table_next:
4972 	tr = enum_rstbl(trtbl, tr);
4973 	if (!tr)
4974 		goto undo_action_done;
4975 
4976 	if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4977 		free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4978 		goto transaction_table_next;
4979 	}
4980 
4981 	log->transaction_id = PtrOffset(trtbl, tr);
4982 	undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
4983 
4984 	/*
4985 	 * We only have to do anything if the transaction has
4986 	 * something its undo_next_lsn field.
4987 	 */
4988 	if (!undo_next_lsn)
4989 		goto commit_undo;
4990 
4991 	/* Read the first record to be undone by this transaction. */
4992 	err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
4993 	if (err)
4994 		goto out;
4995 
4996 	/*
4997 	 * Now loop to read all of our log records forwards,
4998 	 * until we hit the end of the file, cleaning up at the end.
4999 	 */
5000 undo_action_next:
5001 
5002 	lrh = lcb->log_rec;
5003 	frh = lcb->lrh;
5004 	transact_id = le32_to_cpu(frh->transact_id);
5005 	rec_len = le32_to_cpu(frh->client_data_len);
5006 
5007 	if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5008 		err = -EINVAL;
5009 		goto out;
5010 	}
5011 
5012 	if (lrh->undo_op == cpu_to_le16(Noop))
5013 		goto read_next_log_undo_action;
5014 
5015 	oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5016 	oa = oe->ptr;
5017 
5018 	t16 = le16_to_cpu(lrh->lcns_follow);
5019 	if (!t16)
5020 		goto add_allocated_vcns;
5021 
5022 	is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5023 				     &lcn, &clen, NULL);
5024 
5025 	/*
5026 	 * If the mapping isn't already the table or the  mapping
5027 	 * corresponds to a hole the mapping, we need to make sure
5028 	 * there is no partial page already memory.
5029 	 */
5030 	if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5031 		goto add_allocated_vcns;
5032 
5033 	vcn = le64_to_cpu(lrh->target_vcn);
5034 	vcn &= ~(u64)(log->clst_per_page - 1);
5035 
5036 add_allocated_vcns:
5037 	for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5038 	    size = (vcn + 1) << sbi->cluster_bits;
5039 	     i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5040 		attr = oa->attr;
5041 		if (!attr->non_res) {
5042 			if (size > le32_to_cpu(attr->res.data_size))
5043 				attr->res.data_size = cpu_to_le32(size);
5044 		} else {
5045 			if (size > le64_to_cpu(attr->nres.data_size))
5046 				attr->nres.valid_size = attr->nres.data_size =
5047 					attr->nres.alloc_size =
5048 						cpu_to_le64(size);
5049 		}
5050 	}
5051 
5052 	t16 = le16_to_cpu(lrh->undo_op);
5053 	if (can_skip_action(t16))
5054 		goto read_next_log_undo_action;
5055 
5056 	/* Point to the Redo data and get its length. */
5057 	data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5058 	dlen = le16_to_cpu(lrh->undo_len);
5059 
5060 	/* It is time to apply the undo action. */
5061 	err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5062 
5063 read_next_log_undo_action:
5064 	/*
5065 	 * Keep reading and looping back until we have read the
5066 	 * last record for this transaction.
5067 	 */
5068 	err = read_next_log_rec(log, lcb, &rec_lsn);
5069 	if (err)
5070 		goto out;
5071 
5072 	if (rec_lsn)
5073 		goto undo_action_next;
5074 
5075 	lcb_put(lcb);
5076 	lcb = NULL;
5077 
5078 commit_undo:
5079 	free_rsttbl_idx(trtbl, log->transaction_id);
5080 
5081 	log->transaction_id = 0;
5082 
5083 	goto transaction_table_next;
5084 
5085 undo_action_done:
5086 
5087 	ntfs_update_mftmirr(sbi, 0);
5088 
5089 	sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5090 
5091 end_reply:
5092 
5093 	err = 0;
5094 	if (is_ro)
5095 		goto out;
5096 
5097 	rh = kzalloc(log->page_size, GFP_NOFS);
5098 	if (!rh) {
5099 		err = -ENOMEM;
5100 		goto out;
5101 	}
5102 
5103 	rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5104 	rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5105 	t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5106 	rh->rhdr.fix_num = cpu_to_le16(t16);
5107 	rh->sys_page_size = cpu_to_le32(log->page_size);
5108 	rh->page_size = cpu_to_le32(log->page_size);
5109 
5110 	t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5111 		    8);
5112 	rh->ra_off = cpu_to_le16(t16);
5113 	rh->minor_ver = cpu_to_le16(1); // 0x1A:
5114 	rh->major_ver = cpu_to_le16(1); // 0x1C:
5115 
5116 	ra2 = Add2Ptr(rh, t16);
5117 	memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5118 
5119 	ra2->client_idx[0] = 0;
5120 	ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5121 	ra2->flags = cpu_to_le16(2);
5122 
5123 	le32_add_cpu(&ra2->open_log_count, 1);
5124 
5125 	ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5126 
5127 	err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5128 	if (!err)
5129 		err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5130 					rh, log->page_size, 0);
5131 
5132 	kfree(rh);
5133 	if (err)
5134 		goto out;
5135 
5136 out:
5137 	kfree(rst);
5138 	if (lcb)
5139 		lcb_put(lcb);
5140 
5141 	/*
5142 	 * Scan the Open Attribute Table to close all of
5143 	 * the open attributes.
5144 	 */
5145 	oe = NULL;
5146 	while ((oe = enum_rstbl(oatbl, oe))) {
5147 		rno = ino_get(&oe->ref);
5148 
5149 		if (oe->is_attr_name == 1) {
5150 			kfree(oe->ptr);
5151 			oe->ptr = NULL;
5152 			continue;
5153 		}
5154 
5155 		if (oe->is_attr_name)
5156 			continue;
5157 
5158 		oa = oe->ptr;
5159 		if (!oa)
5160 			continue;
5161 
5162 		run_close(&oa->run0);
5163 		kfree(oa->attr);
5164 		if (oa->ni)
5165 			iput(&oa->ni->vfs_inode);
5166 		kfree(oa);
5167 	}
5168 
5169 	kfree(trtbl);
5170 	kfree(oatbl);
5171 	kfree(dptbl);
5172 	kfree(attr_names);
5173 	kfree(log->rst_info.r_page);
5174 
5175 	kfree(ra);
5176 	kfree(log->one_page_buf);
5177 
5178 	if (err)
5179 		sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5180 
5181 	if (err == -EROFS)
5182 		err = 0;
5183 	else if (log->set_dirty)
5184 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5185 
5186 	kfree(log);
5187 
5188 	return err;
5189 }
5190