xref: /openbmc/linux/drivers/crypto/intel/qat/qat_common/adf_heartbeat.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /* Copyright(c) 2023 Intel Corporation */
3  
4  #include <linux/dev_printk.h>
5  #include <linux/dma-mapping.h>
6  #include <linux/export.h>
7  #include <linux/kernel.h>
8  #include <linux/kstrtox.h>
9  #include <linux/overflow.h>
10  #include <linux/string.h>
11  #include <linux/slab.h>
12  #include <linux/types.h>
13  #include <asm/errno.h>
14  #include "adf_accel_devices.h"
15  #include "adf_cfg.h"
16  #include "adf_cfg_strings.h"
17  #include "adf_clock.h"
18  #include "adf_common_drv.h"
19  #include "adf_heartbeat.h"
20  #include "adf_transport_internal.h"
21  #include "icp_qat_fw_init_admin.h"
22  
23  #define ADF_HB_EMPTY_SIG 0xA5A5A5A5
24  
25  /* Heartbeat counter pair */
26  struct hb_cnt_pair {
27  	__u16 resp_heartbeat_cnt;
28  	__u16 req_heartbeat_cnt;
29  };
30  
adf_hb_check_polling_freq(struct adf_accel_dev * accel_dev)31  static int adf_hb_check_polling_freq(struct adf_accel_dev *accel_dev)
32  {
33  	u64 curr_time = adf_clock_get_current_time();
34  	u64 polling_time = curr_time - accel_dev->heartbeat->last_hb_check_time;
35  
36  	if (polling_time < accel_dev->heartbeat->hb_timer) {
37  		dev_warn(&GET_DEV(accel_dev),
38  			 "HB polling too frequent. Configured HB timer %d ms\n",
39  			 accel_dev->heartbeat->hb_timer);
40  		return -EINVAL;
41  	}
42  
43  	accel_dev->heartbeat->last_hb_check_time = curr_time;
44  	return 0;
45  }
46  
47  /**
48   * validate_hb_ctrs_cnt() - checks if the number of heartbeat counters should
49   * be updated by one to support the currently loaded firmware.
50   * @accel_dev: Pointer to acceleration device.
51   *
52   * Return:
53   * * true - hb_ctrs must increased by ADF_NUM_PKE_STRAND
54   * * false - no changes needed
55   */
validate_hb_ctrs_cnt(struct adf_accel_dev * accel_dev)56  static bool validate_hb_ctrs_cnt(struct adf_accel_dev *accel_dev)
57  {
58  	const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs;
59  	const size_t max_aes = accel_dev->hw_device->num_engines;
60  	const size_t hb_struct_size = sizeof(struct hb_cnt_pair);
61  	const size_t exp_diff_size = array3_size(ADF_NUM_PKE_STRAND, max_aes,
62  						 hb_struct_size);
63  	const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
64  	const size_t stats_size = size_mul(dev_ctrs, hb_struct_size);
65  	const u32 exp_diff_cnt = exp_diff_size / sizeof(u32);
66  	const u32 stats_el_cnt = stats_size / sizeof(u32);
67  	struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr;
68  	const u32 *mem_to_chk = (u32 *)(hb_stats + dev_ctrs);
69  	u32 el_diff_cnt = 0;
70  	int i;
71  
72  	/* count how many bytes are different from pattern */
73  	for (i = 0; i < stats_el_cnt; i++) {
74  		if (mem_to_chk[i] == ADF_HB_EMPTY_SIG)
75  			break;
76  
77  		el_diff_cnt++;
78  	}
79  
80  	return el_diff_cnt && el_diff_cnt == exp_diff_cnt;
81  }
82  
adf_heartbeat_check_ctrs(struct adf_accel_dev * accel_dev)83  void adf_heartbeat_check_ctrs(struct adf_accel_dev *accel_dev)
84  {
85  	struct hb_cnt_pair *hb_stats = accel_dev->heartbeat->dma.virt_addr;
86  	const size_t hb_ctrs = accel_dev->hw_device->num_hb_ctrs;
87  	const size_t max_aes = accel_dev->hw_device->num_engines;
88  	const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
89  	const size_t stats_size = size_mul(dev_ctrs, sizeof(struct hb_cnt_pair));
90  	const size_t mem_items_to_fill = size_mul(stats_size, 2) / sizeof(u32);
91  
92  	/* fill hb stats memory with pattern */
93  	memset32((uint32_t *)hb_stats, ADF_HB_EMPTY_SIG, mem_items_to_fill);
94  	accel_dev->heartbeat->ctrs_cnt_checked = false;
95  }
96  EXPORT_SYMBOL_GPL(adf_heartbeat_check_ctrs);
97  
get_timer_ticks(struct adf_accel_dev * accel_dev,unsigned int * value)98  static int get_timer_ticks(struct adf_accel_dev *accel_dev, unsigned int *value)
99  {
100  	char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = { };
101  	u32 timer_ms = ADF_CFG_HB_TIMER_DEFAULT_MS;
102  	int cfg_read_status;
103  	u32 ticks;
104  	int ret;
105  
106  	cfg_read_status = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC,
107  						  ADF_HEARTBEAT_TIMER, timer_str);
108  	if (cfg_read_status == 0) {
109  		if (kstrtouint(timer_str, 10, &timer_ms))
110  			dev_dbg(&GET_DEV(accel_dev),
111  				"kstrtouint failed to parse the %s, param value",
112  				ADF_HEARTBEAT_TIMER);
113  	}
114  
115  	if (timer_ms < ADF_CFG_HB_TIMER_MIN_MS) {
116  		dev_err(&GET_DEV(accel_dev), "Timer cannot be less than %u\n",
117  			ADF_CFG_HB_TIMER_MIN_MS);
118  		return -EINVAL;
119  	}
120  
121  	/*
122  	 * On 4xxx devices adf_timer is responsible for HB updates and
123  	 * its period is fixed to 200ms
124  	 */
125  	if (accel_dev->timer)
126  		timer_ms = ADF_CFG_HB_TIMER_MIN_MS;
127  
128  	ret = adf_heartbeat_ms_to_ticks(accel_dev, timer_ms, &ticks);
129  	if (ret)
130  		return ret;
131  
132  	adf_heartbeat_save_cfg_param(accel_dev, timer_ms);
133  
134  	accel_dev->heartbeat->hb_timer = timer_ms;
135  	*value = ticks;
136  
137  	return 0;
138  }
139  
check_ae(struct hb_cnt_pair * curr,struct hb_cnt_pair * prev,u16 * count,const size_t hb_ctrs)140  static int check_ae(struct hb_cnt_pair *curr, struct hb_cnt_pair *prev,
141  		    u16 *count, const size_t hb_ctrs)
142  {
143  	size_t thr;
144  
145  	/* loop through all threads in AE */
146  	for (thr = 0; thr < hb_ctrs; thr++) {
147  		u16 req = curr[thr].req_heartbeat_cnt;
148  		u16 resp = curr[thr].resp_heartbeat_cnt;
149  		u16 last = prev[thr].resp_heartbeat_cnt;
150  
151  		if ((thr == ADF_AE_ADMIN_THREAD || req != resp) && resp == last) {
152  			u16 retry = ++count[thr];
153  
154  			if (retry >= ADF_CFG_HB_COUNT_THRESHOLD)
155  				return -EIO;
156  
157  		} else {
158  			count[thr] = 0;
159  		}
160  	}
161  	return 0;
162  }
163  
adf_hb_get_status(struct adf_accel_dev * accel_dev)164  static int adf_hb_get_status(struct adf_accel_dev *accel_dev)
165  {
166  	struct adf_hw_device_data *hw_device = accel_dev->hw_device;
167  	struct hb_cnt_pair *live_stats, *last_stats, *curr_stats;
168  	const size_t hb_ctrs = hw_device->num_hb_ctrs;
169  	const unsigned long ae_mask = hw_device->ae_mask;
170  	const size_t max_aes = hw_device->num_engines;
171  	const size_t dev_ctrs = size_mul(max_aes, hb_ctrs);
172  	const size_t stats_size = size_mul(dev_ctrs, sizeof(*curr_stats));
173  	struct hb_cnt_pair *ae_curr_p, *ae_prev_p;
174  	u16 *count_fails, *ae_count_p;
175  	size_t ae_offset;
176  	size_t ae = 0;
177  	int ret = 0;
178  
179  	if (!accel_dev->heartbeat->ctrs_cnt_checked) {
180  		if (validate_hb_ctrs_cnt(accel_dev))
181  			hw_device->num_hb_ctrs += ADF_NUM_PKE_STRAND;
182  
183  		accel_dev->heartbeat->ctrs_cnt_checked = true;
184  	}
185  
186  	live_stats = accel_dev->heartbeat->dma.virt_addr;
187  	last_stats = live_stats + dev_ctrs;
188  	count_fails = (u16 *)(last_stats + dev_ctrs);
189  
190  	curr_stats = kmemdup(live_stats, stats_size, GFP_KERNEL);
191  	if (!curr_stats)
192  		return -ENOMEM;
193  
194  	/* loop through active AEs */
195  	for_each_set_bit(ae, &ae_mask, max_aes) {
196  		ae_offset = size_mul(ae, hb_ctrs);
197  		ae_curr_p = curr_stats + ae_offset;
198  		ae_prev_p = last_stats + ae_offset;
199  		ae_count_p = count_fails + ae_offset;
200  
201  		ret = check_ae(ae_curr_p, ae_prev_p, ae_count_p, hb_ctrs);
202  		if (ret)
203  			break;
204  	}
205  
206  	/* Copy current stats for the next iteration */
207  	memcpy(last_stats, curr_stats, stats_size);
208  	kfree(curr_stats);
209  
210  	return ret;
211  }
212  
adf_heartbeat_status(struct adf_accel_dev * accel_dev,enum adf_device_heartbeat_status * hb_status)213  void adf_heartbeat_status(struct adf_accel_dev *accel_dev,
214  			  enum adf_device_heartbeat_status *hb_status)
215  {
216  	struct adf_heartbeat *hb;
217  
218  	if (!adf_dev_started(accel_dev) ||
219  	    test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) {
220  		*hb_status = HB_DEV_UNRESPONSIVE;
221  		return;
222  	}
223  
224  	if (adf_hb_check_polling_freq(accel_dev) == -EINVAL) {
225  		*hb_status = HB_DEV_UNSUPPORTED;
226  		return;
227  	}
228  
229  	hb = accel_dev->heartbeat;
230  	hb->hb_sent_counter++;
231  
232  	if (adf_hb_get_status(accel_dev)) {
233  		dev_err(&GET_DEV(accel_dev),
234  			"Heartbeat ERROR: QAT is not responding.\n");
235  		*hb_status = HB_DEV_UNRESPONSIVE;
236  		hb->hb_failed_counter++;
237  		return;
238  	}
239  
240  	*hb_status = HB_DEV_ALIVE;
241  }
242  
adf_heartbeat_ms_to_ticks(struct adf_accel_dev * accel_dev,unsigned int time_ms,u32 * value)243  int adf_heartbeat_ms_to_ticks(struct adf_accel_dev *accel_dev, unsigned int time_ms,
244  			      u32 *value)
245  {
246  	struct adf_hw_device_data *hw_data = accel_dev->hw_device;
247  	u32 clk_per_sec;
248  
249  	/* HB clock may be different than AE clock */
250  	if (!hw_data->get_hb_clock)
251  		return -EINVAL;
252  
253  	clk_per_sec = hw_data->get_hb_clock(hw_data);
254  	*value = time_ms * (clk_per_sec / MSEC_PER_SEC);
255  
256  	return 0;
257  }
258  
adf_heartbeat_save_cfg_param(struct adf_accel_dev * accel_dev,unsigned int timer_ms)259  int adf_heartbeat_save_cfg_param(struct adf_accel_dev *accel_dev,
260  				 unsigned int timer_ms)
261  {
262  	char timer_str[ADF_CFG_MAX_VAL_LEN_IN_BYTES];
263  
264  	snprintf(timer_str, sizeof(timer_str), "%u", timer_ms);
265  	return adf_cfg_add_key_value_param(accel_dev, ADF_GENERAL_SEC,
266  					  ADF_HEARTBEAT_TIMER, timer_str,
267  					  ADF_STR);
268  }
269  EXPORT_SYMBOL_GPL(adf_heartbeat_save_cfg_param);
270  
adf_heartbeat_init(struct adf_accel_dev * accel_dev)271  int adf_heartbeat_init(struct adf_accel_dev *accel_dev)
272  {
273  	struct adf_heartbeat *hb;
274  
275  	hb = kzalloc(sizeof(*hb), GFP_KERNEL);
276  	if (!hb)
277  		goto err_ret;
278  
279  	hb->dma.virt_addr = dma_alloc_coherent(&GET_DEV(accel_dev), PAGE_SIZE,
280  					       &hb->dma.phy_addr, GFP_KERNEL);
281  	if (!hb->dma.virt_addr)
282  		goto err_free;
283  
284  	/*
285  	 * Default set this flag as true to avoid unnecessary checks,
286  	 * it will be reset on platforms that need such a check
287  	 */
288  	hb->ctrs_cnt_checked = true;
289  	accel_dev->heartbeat = hb;
290  
291  	return 0;
292  
293  err_free:
294  	kfree(hb);
295  err_ret:
296  	return -ENOMEM;
297  }
298  
adf_heartbeat_start(struct adf_accel_dev * accel_dev)299  int adf_heartbeat_start(struct adf_accel_dev *accel_dev)
300  {
301  	unsigned int timer_ticks;
302  	int ret;
303  
304  	if (!accel_dev->heartbeat) {
305  		dev_warn(&GET_DEV(accel_dev), "Heartbeat instance not found!");
306  		return -EFAULT;
307  	}
308  
309  	if (accel_dev->hw_device->check_hb_ctrs)
310  		accel_dev->hw_device->check_hb_ctrs(accel_dev);
311  
312  	ret = get_timer_ticks(accel_dev, &timer_ticks);
313  	if (ret)
314  		return ret;
315  
316  	ret = adf_send_admin_hb_timer(accel_dev, timer_ticks);
317  	if (ret)
318  		dev_warn(&GET_DEV(accel_dev), "Heartbeat not supported!");
319  
320  	return ret;
321  }
322  
adf_heartbeat_shutdown(struct adf_accel_dev * accel_dev)323  void adf_heartbeat_shutdown(struct adf_accel_dev *accel_dev)
324  {
325  	struct adf_heartbeat *hb = accel_dev->heartbeat;
326  
327  	if (!hb)
328  		return;
329  
330  	if (hb->dma.virt_addr)
331  		dma_free_coherent(&GET_DEV(accel_dev), PAGE_SIZE,
332  				  hb->dma.virt_addr, hb->dma.phy_addr);
333  
334  	kfree(hb);
335  	accel_dev->heartbeat = NULL;
336  }
337