xref: /openbmc/linux/net/wireless/util.c (revision 55b7acbd15b15e75c6df468c72177a6b32e648cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 	case NL80211_BAND_LC:
84 		if (chan == 14)
85 			return MHZ_TO_KHZ(2484);
86 		else if (chan < 14)
87 			return MHZ_TO_KHZ(2407 + chan * 5);
88 		break;
89 	case NL80211_BAND_5GHZ:
90 		if (chan >= 182 && chan <= 196)
91 			return MHZ_TO_KHZ(4000 + chan * 5);
92 		else
93 			return MHZ_TO_KHZ(5000 + chan * 5);
94 		break;
95 	case NL80211_BAND_6GHZ:
96 		/* see 802.11ax D6.1 27.3.23.2 */
97 		if (chan == 2)
98 			return MHZ_TO_KHZ(5935);
99 		if (chan <= 233)
100 			return MHZ_TO_KHZ(5950 + chan * 5);
101 		break;
102 	case NL80211_BAND_60GHZ:
103 		if (chan < 7)
104 			return MHZ_TO_KHZ(56160 + chan * 2160);
105 		break;
106 	case NL80211_BAND_S1GHZ:
107 		return 902000 + chan * 500;
108 	default:
109 		;
110 	}
111 	return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114 
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 		return NL80211_CHAN_WIDTH_20_NOHT;
120 
121 	/*S1G defines a single allowed channel width per channel.
122 	 * Extract that width here.
123 	 */
124 	if (chan->flags & IEEE80211_CHAN_1MHZ)
125 		return NL80211_CHAN_WIDTH_1;
126 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 		return NL80211_CHAN_WIDTH_2;
128 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 		return NL80211_CHAN_WIDTH_4;
130 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 		return NL80211_CHAN_WIDTH_8;
132 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 		return NL80211_CHAN_WIDTH_16;
134 
135 	pr_err("unknown channel width for channel at %dKHz?\n",
136 	       ieee80211_channel_to_khz(chan));
137 
138 	return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141 
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 	/* TODO: just handle MHz for now */
145 	freq = KHZ_TO_MHZ(freq);
146 
147 	/* see 802.11 17.3.8.3.2 and Annex J */
148 	if (freq == 2484)
149 		return 14;
150 	else if (freq < 2484)
151 		return (freq - 2407) / 5;
152 	else if (freq >= 4910 && freq <= 4980)
153 		return (freq - 4000) / 5;
154 	else if (freq < 5925)
155 		return (freq - 5000) / 5;
156 	else if (freq == 5935)
157 		return 2;
158 	else if (freq <= 45000) /* DMG band lower limit */
159 		/* see 802.11ax D6.1 27.3.22.2 */
160 		return (freq - 5950) / 5;
161 	else if (freq >= 58320 && freq <= 70200)
162 		return (freq - 56160) / 2160;
163 	else
164 		return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 						    u32 freq)
170 {
171 	enum nl80211_band band;
172 	struct ieee80211_supported_band *sband;
173 	int i;
174 
175 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 		sband = wiphy->bands[band];
177 
178 		if (!sband)
179 			continue;
180 
181 		for (i = 0; i < sband->n_channels; i++) {
182 			struct ieee80211_channel *chan = &sband->channels[i];
183 
184 			if (ieee80211_channel_to_khz(chan) == freq)
185 				return chan;
186 		}
187 	}
188 
189 	return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 	int i, want;
196 
197 	switch (sband->band) {
198 	case NL80211_BAND_5GHZ:
199 	case NL80211_BAND_6GHZ:
200 		want = 3;
201 		for (i = 0; i < sband->n_bitrates; i++) {
202 			if (sband->bitrates[i].bitrate == 60 ||
203 			    sband->bitrates[i].bitrate == 120 ||
204 			    sband->bitrates[i].bitrate == 240) {
205 				sband->bitrates[i].flags |=
206 					IEEE80211_RATE_MANDATORY_A;
207 				want--;
208 			}
209 		}
210 		WARN_ON(want);
211 		break;
212 	case NL80211_BAND_2GHZ:
213 	case NL80211_BAND_LC:
214 		want = 7;
215 		for (i = 0; i < sband->n_bitrates; i++) {
216 			switch (sband->bitrates[i].bitrate) {
217 			case 10:
218 			case 20:
219 			case 55:
220 			case 110:
221 				sband->bitrates[i].flags |=
222 					IEEE80211_RATE_MANDATORY_B |
223 					IEEE80211_RATE_MANDATORY_G;
224 				want--;
225 				break;
226 			case 60:
227 			case 120:
228 			case 240:
229 				sband->bitrates[i].flags |=
230 					IEEE80211_RATE_MANDATORY_G;
231 				want--;
232 				fallthrough;
233 			default:
234 				sband->bitrates[i].flags |=
235 					IEEE80211_RATE_ERP_G;
236 				break;
237 			}
238 		}
239 		WARN_ON(want != 0 && want != 3);
240 		break;
241 	case NL80211_BAND_60GHZ:
242 		/* check for mandatory HT MCS 1..4 */
243 		WARN_ON(!sband->ht_cap.ht_supported);
244 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 		break;
246 	case NL80211_BAND_S1GHZ:
247 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 		 * mandatory is ok.
249 		 */
250 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 		break;
252 	case NUM_NL80211_BANDS:
253 	default:
254 		WARN_ON(1);
255 		break;
256 	}
257 }
258 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 	enum nl80211_band band;
262 
263 	for (band = 0; band < NUM_NL80211_BANDS; band++)
264 		if (wiphy->bands[band])
265 			set_mandatory_flags_band(wiphy->bands[band]);
266 }
267 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 	int i;
271 	for (i = 0; i < wiphy->n_cipher_suites; i++)
272 		if (cipher == wiphy->cipher_suites[i])
273 			return true;
274 	return false;
275 }
276 
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 	struct wiphy *wiphy = &rdev->wiphy;
281 	int i;
282 
283 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 		switch (wiphy->cipher_suites[i]) {
285 		case WLAN_CIPHER_SUITE_AES_CMAC:
286 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 			return true;
290 		}
291 	}
292 
293 	return false;
294 }
295 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 			    int key_idx, bool pairwise)
298 {
299 	int max_key_idx;
300 
301 	if (pairwise)
302 		max_key_idx = 3;
303 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 		 wiphy_ext_feature_isset(&rdev->wiphy,
306 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 		max_key_idx = 7;
308 	else if (cfg80211_igtk_cipher_supported(rdev))
309 		max_key_idx = 5;
310 	else
311 		max_key_idx = 3;
312 
313 	if (key_idx < 0 || key_idx > max_key_idx)
314 		return false;
315 
316 	return true;
317 }
318 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 				   struct key_params *params, int key_idx,
321 				   bool pairwise, const u8 *mac_addr)
322 {
323 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 		return -EINVAL;
325 
326 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 		return -EINVAL;
328 
329 	if (pairwise && !mac_addr)
330 		return -EINVAL;
331 
332 	switch (params->cipher) {
333 	case WLAN_CIPHER_SUITE_TKIP:
334 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 		if ((pairwise && key_idx) ||
336 		    params->mode != NL80211_KEY_RX_TX)
337 			return -EINVAL;
338 		break;
339 	case WLAN_CIPHER_SUITE_CCMP:
340 	case WLAN_CIPHER_SUITE_CCMP_256:
341 	case WLAN_CIPHER_SUITE_GCMP:
342 	case WLAN_CIPHER_SUITE_GCMP_256:
343 		/* IEEE802.11-2016 allows only 0 and - when supporting
344 		 * Extended Key ID - 1 as index for pairwise keys.
345 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 		 * the driver supports Extended Key ID.
347 		 * @NL80211_KEY_SET_TX can't be set when installing and
348 		 * validating a key.
349 		 */
350 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 		    params->mode == NL80211_KEY_SET_TX)
352 			return -EINVAL;
353 		if (wiphy_ext_feature_isset(&rdev->wiphy,
354 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 			if (pairwise && (key_idx < 0 || key_idx > 1))
356 				return -EINVAL;
357 		} else if (pairwise && key_idx) {
358 			return -EINVAL;
359 		}
360 		break;
361 	case WLAN_CIPHER_SUITE_AES_CMAC:
362 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 		/* Disallow BIP (group-only) cipher as pairwise cipher */
366 		if (pairwise)
367 			return -EINVAL;
368 		if (key_idx < 4)
369 			return -EINVAL;
370 		break;
371 	case WLAN_CIPHER_SUITE_WEP40:
372 	case WLAN_CIPHER_SUITE_WEP104:
373 		if (key_idx > 3)
374 			return -EINVAL;
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	switch (params->cipher) {
381 	case WLAN_CIPHER_SUITE_WEP40:
382 		if (params->key_len != WLAN_KEY_LEN_WEP40)
383 			return -EINVAL;
384 		break;
385 	case WLAN_CIPHER_SUITE_TKIP:
386 		if (params->key_len != WLAN_KEY_LEN_TKIP)
387 			return -EINVAL;
388 		break;
389 	case WLAN_CIPHER_SUITE_CCMP:
390 		if (params->key_len != WLAN_KEY_LEN_CCMP)
391 			return -EINVAL;
392 		break;
393 	case WLAN_CIPHER_SUITE_CCMP_256:
394 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 			return -EINVAL;
396 		break;
397 	case WLAN_CIPHER_SUITE_GCMP:
398 		if (params->key_len != WLAN_KEY_LEN_GCMP)
399 			return -EINVAL;
400 		break;
401 	case WLAN_CIPHER_SUITE_GCMP_256:
402 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 			return -EINVAL;
404 		break;
405 	case WLAN_CIPHER_SUITE_WEP104:
406 		if (params->key_len != WLAN_KEY_LEN_WEP104)
407 			return -EINVAL;
408 		break;
409 	case WLAN_CIPHER_SUITE_AES_CMAC:
410 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 			return -EINVAL;
412 		break;
413 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 			return -EINVAL;
416 		break;
417 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 			return -EINVAL;
420 		break;
421 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 			return -EINVAL;
424 		break;
425 	default:
426 		/*
427 		 * We don't know anything about this algorithm,
428 		 * allow using it -- but the driver must check
429 		 * all parameters! We still check below whether
430 		 * or not the driver supports this algorithm,
431 		 * of course.
432 		 */
433 		break;
434 	}
435 
436 	if (params->seq) {
437 		switch (params->cipher) {
438 		case WLAN_CIPHER_SUITE_WEP40:
439 		case WLAN_CIPHER_SUITE_WEP104:
440 			/* These ciphers do not use key sequence */
441 			return -EINVAL;
442 		case WLAN_CIPHER_SUITE_TKIP:
443 		case WLAN_CIPHER_SUITE_CCMP:
444 		case WLAN_CIPHER_SUITE_CCMP_256:
445 		case WLAN_CIPHER_SUITE_GCMP:
446 		case WLAN_CIPHER_SUITE_GCMP_256:
447 		case WLAN_CIPHER_SUITE_AES_CMAC:
448 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 			if (params->seq_len != 6)
452 				return -EINVAL;
453 			break;
454 		}
455 	}
456 
457 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 		return -EINVAL;
459 
460 	return 0;
461 }
462 
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 	unsigned int hdrlen = 24;
466 
467 	if (ieee80211_is_ext(fc)) {
468 		hdrlen = 4;
469 		goto out;
470 	}
471 
472 	if (ieee80211_is_data(fc)) {
473 		if (ieee80211_has_a4(fc))
474 			hdrlen = 30;
475 		if (ieee80211_is_data_qos(fc)) {
476 			hdrlen += IEEE80211_QOS_CTL_LEN;
477 			if (ieee80211_has_order(fc))
478 				hdrlen += IEEE80211_HT_CTL_LEN;
479 		}
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_mgmt(fc)) {
484 		if (ieee80211_has_order(fc))
485 			hdrlen += IEEE80211_HT_CTL_LEN;
486 		goto out;
487 	}
488 
489 	if (ieee80211_is_ctl(fc)) {
490 		/*
491 		 * ACK and CTS are 10 bytes, all others 16. To see how
492 		 * to get this condition consider
493 		 *   subtype mask:   0b0000000011110000 (0x00F0)
494 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
495 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
496 		 *   bits that matter:         ^^^      (0x00E0)
497 		 *   value of those: 0b0000000011000000 (0x00C0)
498 		 */
499 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 			hdrlen = 10;
501 		else
502 			hdrlen = 16;
503 	}
504 out:
505 	return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 	const struct ieee80211_hdr *hdr =
512 			(const struct ieee80211_hdr *)skb->data;
513 	unsigned int hdrlen;
514 
515 	if (unlikely(skb->len < 10))
516 		return 0;
517 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 	if (unlikely(hdrlen > skb->len))
519 		return 0;
520 	return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523 
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 	int ae = flags & MESH_FLAGS_AE;
527 	/* 802.11-2012, 8.2.4.7.3 */
528 	switch (ae) {
529 	default:
530 	case 0:
531 		return 6;
532 	case MESH_FLAGS_AE_A4:
533 		return 12;
534 	case MESH_FLAGS_AE_A5_A6:
535 		return 18;
536 	}
537 }
538 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544 
ieee80211_get_8023_tunnel_proto(const void * hdr,__be16 * proto)545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547 	const __be16 *hdr_proto = hdr + ETH_ALEN;
548 
549 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 	      *hdr_proto != htons(ETH_P_AARP) &&
551 	      *hdr_proto != htons(ETH_P_IPX)) &&
552 	    !ether_addr_equal(hdr, bridge_tunnel_header))
553 		return false;
554 
555 	*proto = *hdr_proto;
556 
557 	return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560 
ieee80211_strip_8023_mesh_hdr(struct sk_buff * skb)561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563 	const void *mesh_addr;
564 	struct {
565 		struct ethhdr eth;
566 		u8 flags;
567 	} payload;
568 	int hdrlen;
569 	int ret;
570 
571 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 	if (ret)
573 		return ret;
574 
575 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576 
577 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 						   &payload.eth.h_proto)))
580 		hdrlen += ETH_ALEN + 2;
581 	else if (!pskb_may_pull(skb, hdrlen))
582 		return -EINVAL;
583 	else
584 		payload.eth.h_proto = htons(skb->len - hdrlen);
585 
586 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
587 	switch (payload.flags & MESH_FLAGS_AE) {
588 	case MESH_FLAGS_AE_A4:
589 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
590 		break;
591 	case MESH_FLAGS_AE_A5_A6:
592 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
593 		break;
594 	default:
595 		break;
596 	}
597 
598 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
599 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
600 
601 	return 0;
602 }
603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
604 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
606 				  const u8 *addr, enum nl80211_iftype iftype,
607 				  u8 data_offset, bool is_amsdu)
608 {
609 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
610 	struct {
611 		u8 hdr[ETH_ALEN] __aligned(2);
612 		__be16 proto;
613 	} payload;
614 	struct ethhdr tmp;
615 	u16 hdrlen;
616 
617 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
618 		return -1;
619 
620 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
621 	if (skb->len < hdrlen)
622 		return -1;
623 
624 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
625 	 * header
626 	 * IEEE 802.11 address fields:
627 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
628 	 *   0     0   DA    SA    BSSID n/a
629 	 *   0     1   DA    BSSID SA    n/a
630 	 *   1     0   BSSID SA    DA    n/a
631 	 *   1     1   RA    TA    DA    SA
632 	 */
633 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
634 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
635 
636 	switch (hdr->frame_control &
637 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
638 	case cpu_to_le16(IEEE80211_FCTL_TODS):
639 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
640 			     iftype != NL80211_IFTYPE_AP_VLAN &&
641 			     iftype != NL80211_IFTYPE_P2P_GO))
642 			return -1;
643 		break;
644 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
645 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
646 			     iftype != NL80211_IFTYPE_AP_VLAN &&
647 			     iftype != NL80211_IFTYPE_STATION))
648 			return -1;
649 		break;
650 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
651 		if ((iftype != NL80211_IFTYPE_STATION &&
652 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
653 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
654 		    (is_multicast_ether_addr(tmp.h_dest) &&
655 		     ether_addr_equal(tmp.h_source, addr)))
656 			return -1;
657 		break;
658 	case cpu_to_le16(0):
659 		if (iftype != NL80211_IFTYPE_ADHOC &&
660 		    iftype != NL80211_IFTYPE_STATION &&
661 		    iftype != NL80211_IFTYPE_OCB)
662 				return -1;
663 		break;
664 	}
665 
666 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
667 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
668 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
669 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
670 		hdrlen += ETH_ALEN + 2;
671 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
672 	} else {
673 		tmp.h_proto = htons(skb->len - hdrlen);
674 	}
675 
676 	pskb_pull(skb, hdrlen);
677 
678 	if (!ehdr)
679 		ehdr = skb_push(skb, sizeof(struct ethhdr));
680 	memcpy(ehdr, &tmp, sizeof(tmp));
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
685 
686 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)687 __frame_add_frag(struct sk_buff *skb, struct page *page,
688 		 void *ptr, int len, int size)
689 {
690 	struct skb_shared_info *sh = skb_shinfo(skb);
691 	int page_offset;
692 
693 	get_page(page);
694 	page_offset = ptr - page_address(page);
695 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
696 }
697 
698 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
700 			    int offset, int len)
701 {
702 	struct skb_shared_info *sh = skb_shinfo(skb);
703 	const skb_frag_t *frag = &sh->frags[0];
704 	struct page *frag_page;
705 	void *frag_ptr;
706 	int frag_len, frag_size;
707 	int head_size = skb->len - skb->data_len;
708 	int cur_len;
709 
710 	frag_page = virt_to_head_page(skb->head);
711 	frag_ptr = skb->data;
712 	frag_size = head_size;
713 
714 	while (offset >= frag_size) {
715 		offset -= frag_size;
716 		frag_page = skb_frag_page(frag);
717 		frag_ptr = skb_frag_address(frag);
718 		frag_size = skb_frag_size(frag);
719 		frag++;
720 	}
721 
722 	frag_ptr += offset;
723 	frag_len = frag_size - offset;
724 
725 	cur_len = min(len, frag_len);
726 
727 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
728 	len -= cur_len;
729 
730 	while (len > 0) {
731 		frag_len = skb_frag_size(frag);
732 		cur_len = min(len, frag_len);
733 		__frame_add_frag(frame, skb_frag_page(frag),
734 				 skb_frag_address(frag), cur_len, frag_len);
735 		len -= cur_len;
736 		frag++;
737 	}
738 }
739 
740 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag,int min_len)741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
742 		       int offset, int len, bool reuse_frag,
743 		       int min_len)
744 {
745 	struct sk_buff *frame;
746 	int cur_len = len;
747 
748 	if (skb->len - offset < len)
749 		return NULL;
750 
751 	/*
752 	 * When reusing framents, copy some data to the head to simplify
753 	 * ethernet header handling and speed up protocol header processing
754 	 * in the stack later.
755 	 */
756 	if (reuse_frag)
757 		cur_len = min_t(int, len, min_len);
758 
759 	/*
760 	 * Allocate and reserve two bytes more for payload
761 	 * alignment since sizeof(struct ethhdr) is 14.
762 	 */
763 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
764 	if (!frame)
765 		return NULL;
766 
767 	frame->priority = skb->priority;
768 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
769 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
770 
771 	len -= cur_len;
772 	if (!len)
773 		return frame;
774 
775 	offset += cur_len;
776 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
777 
778 	return frame;
779 }
780 
781 static u16
ieee80211_amsdu_subframe_length(void * field,u8 mesh_flags,u8 hdr_type)782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
783 {
784 	__le16 *field_le = field;
785 	__be16 *field_be = field;
786 	u16 len;
787 
788 	if (hdr_type >= 2)
789 		len = le16_to_cpu(*field_le);
790 	else
791 		len = be16_to_cpu(*field_be);
792 	if (hdr_type)
793 		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
794 
795 	return len;
796 }
797 
ieee80211_is_valid_amsdu(struct sk_buff * skb,u8 mesh_hdr)798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
799 {
800 	int offset = 0, subframe_len, padding;
801 
802 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
803 		int remaining = skb->len - offset;
804 		struct {
805 		    __be16 len;
806 		    u8 mesh_flags;
807 		} hdr;
808 		u16 len;
809 
810 		if (sizeof(hdr) > remaining)
811 			return false;
812 
813 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
814 			return false;
815 
816 		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
817 						      mesh_hdr);
818 		subframe_len = sizeof(struct ethhdr) + len;
819 		padding = (4 - subframe_len) & 0x3;
820 
821 		if (subframe_len > remaining)
822 			return false;
823 	}
824 
825 	return true;
826 }
827 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
828 
829 
830 /*
831  * Detects if an MSDU frame was maliciously converted into an A-MSDU
832  * frame by an adversary. This is done by parsing the received frame
833  * as if it were a regular MSDU, even though the A-MSDU flag is set.
834  *
835  * For non-mesh interfaces, detection involves checking whether the
836  * payload, when interpreted as an MSDU, begins with a valid RFC1042
837  * header. This is done by comparing the A-MSDU subheader's destination
838  * address to the start of the RFC1042 header.
839  *
840  * For mesh interfaces, the MSDU includes a 6-byte Mesh Control field
841  * and an optional variable-length Mesh Address Extension field before
842  * the RFC1042 header. The position of the RFC1042 header must therefore
843  * be calculated based on the mesh header length.
844  *
845  * Since this function intentionally parses an A-MSDU frame as an MSDU,
846  * it only assumes that the A-MSDU subframe header is present, and
847  * beyond this it performs its own bounds checks under the assumption
848  * that the frame is instead parsed as a non-aggregated MSDU.
849  */
850 static bool
is_amsdu_aggregation_attack(struct ethhdr * eth,struct sk_buff * skb,enum nl80211_iftype iftype)851 is_amsdu_aggregation_attack(struct ethhdr *eth, struct sk_buff *skb,
852 			    enum nl80211_iftype iftype)
853 {
854 	int offset;
855 
856 	/* Non-mesh case can be directly compared */
857 	if (iftype != NL80211_IFTYPE_MESH_POINT)
858 		return ether_addr_equal(eth->h_dest, rfc1042_header);
859 
860 	offset = __ieee80211_get_mesh_hdrlen(eth->h_dest[0]);
861 	if (offset == 6) {
862 		/* Mesh case with empty address extension field */
863 		return ether_addr_equal(eth->h_source, rfc1042_header);
864 	} else if (offset + ETH_ALEN <= skb->len) {
865 		/* Mesh case with non-empty address extension field */
866 		u8 temp[ETH_ALEN];
867 
868 		skb_copy_bits(skb, offset, temp, ETH_ALEN);
869 		return ether_addr_equal(temp, rfc1042_header);
870 	}
871 
872 	return false;
873 }
874 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa,u8 mesh_control)875 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
876 			      const u8 *addr, enum nl80211_iftype iftype,
877 			      const unsigned int extra_headroom,
878 			      const u8 *check_da, const u8 *check_sa,
879 			      u8 mesh_control)
880 {
881 	unsigned int hlen = ALIGN(extra_headroom, 4);
882 	struct sk_buff *frame = NULL;
883 	int offset = 0;
884 	struct {
885 		struct ethhdr eth;
886 		uint8_t flags;
887 	} hdr;
888 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
889 	bool reuse_skb = false;
890 	bool last = false;
891 	int copy_len = sizeof(hdr.eth);
892 
893 	if (iftype == NL80211_IFTYPE_MESH_POINT)
894 		copy_len = sizeof(hdr);
895 
896 	while (!last) {
897 		int remaining = skb->len - offset;
898 		unsigned int subframe_len;
899 		int len, mesh_len = 0;
900 		u8 padding;
901 
902 		if (copy_len > remaining)
903 			goto purge;
904 
905 		skb_copy_bits(skb, offset, &hdr, copy_len);
906 		if (iftype == NL80211_IFTYPE_MESH_POINT)
907 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
908 		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
909 						      mesh_control);
910 		subframe_len = sizeof(struct ethhdr) + len;
911 		padding = (4 - subframe_len) & 0x3;
912 
913 		/* the last MSDU has no padding */
914 		if (subframe_len > remaining)
915 			goto purge;
916 		/* mitigate A-MSDU aggregation injection attacks, to be
917 		 * checked when processing first subframe (offset == 0).
918 		 */
919 		if (offset == 0 && is_amsdu_aggregation_attack(&hdr.eth, skb, iftype))
920 			goto purge;
921 
922 		offset += sizeof(struct ethhdr);
923 		last = remaining <= subframe_len + padding;
924 
925 		/* FIXME: should we really accept multicast DA? */
926 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
927 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
928 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
929 			offset += len + padding;
930 			continue;
931 		}
932 
933 		/* reuse skb for the last subframe */
934 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
935 			skb_pull(skb, offset);
936 			frame = skb;
937 			reuse_skb = true;
938 		} else {
939 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
940 						       reuse_frag, 32 + mesh_len);
941 			if (!frame)
942 				goto purge;
943 
944 			offset += len + padding;
945 		}
946 
947 		skb_reset_network_header(frame);
948 		frame->dev = skb->dev;
949 		frame->priority = skb->priority;
950 
951 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
952 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
953 			skb_pull(frame, ETH_ALEN + 2);
954 
955 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
956 		__skb_queue_tail(list, frame);
957 	}
958 
959 	if (!reuse_skb)
960 		dev_kfree_skb(skb);
961 
962 	return;
963 
964  purge:
965 	__skb_queue_purge(list);
966 	dev_kfree_skb(skb);
967 }
968 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
969 
970 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)971 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
972 				    struct cfg80211_qos_map *qos_map)
973 {
974 	unsigned int dscp;
975 	unsigned char vlan_priority;
976 	unsigned int ret;
977 
978 	/* skb->priority values from 256->263 are magic values to
979 	 * directly indicate a specific 802.1d priority.  This is used
980 	 * to allow 802.1d priority to be passed directly in from VLAN
981 	 * tags, etc.
982 	 */
983 	if (skb->priority >= 256 && skb->priority <= 263) {
984 		ret = skb->priority - 256;
985 		goto out;
986 	}
987 
988 	if (skb_vlan_tag_present(skb)) {
989 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
990 			>> VLAN_PRIO_SHIFT;
991 		if (vlan_priority > 0) {
992 			ret = vlan_priority;
993 			goto out;
994 		}
995 	}
996 
997 	switch (skb->protocol) {
998 	case htons(ETH_P_IP):
999 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
1000 		break;
1001 	case htons(ETH_P_IPV6):
1002 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
1003 		break;
1004 	case htons(ETH_P_MPLS_UC):
1005 	case htons(ETH_P_MPLS_MC): {
1006 		struct mpls_label mpls_tmp, *mpls;
1007 
1008 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
1009 					  sizeof(*mpls), &mpls_tmp);
1010 		if (!mpls)
1011 			return 0;
1012 
1013 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
1014 			>> MPLS_LS_TC_SHIFT;
1015 		goto out;
1016 	}
1017 	case htons(ETH_P_80221):
1018 		/* 802.21 is always network control traffic */
1019 		return 7;
1020 	default:
1021 		return 0;
1022 	}
1023 
1024 	if (qos_map) {
1025 		unsigned int i, tmp_dscp = dscp >> 2;
1026 
1027 		for (i = 0; i < qos_map->num_des; i++) {
1028 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
1029 				ret = qos_map->dscp_exception[i].up;
1030 				goto out;
1031 			}
1032 		}
1033 
1034 		for (i = 0; i < 8; i++) {
1035 			if (tmp_dscp >= qos_map->up[i].low &&
1036 			    tmp_dscp <= qos_map->up[i].high) {
1037 				ret = i;
1038 				goto out;
1039 			}
1040 		}
1041 	}
1042 
1043 	ret = dscp >> 5;
1044 out:
1045 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
1046 }
1047 EXPORT_SYMBOL(cfg80211_classify8021d);
1048 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)1049 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
1050 {
1051 	const struct cfg80211_bss_ies *ies;
1052 
1053 	ies = rcu_dereference(bss->ies);
1054 	if (!ies)
1055 		return NULL;
1056 
1057 	return cfg80211_find_elem(id, ies->data, ies->len);
1058 }
1059 EXPORT_SYMBOL(ieee80211_bss_get_elem);
1060 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)1061 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1062 {
1063 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1064 	struct net_device *dev = wdev->netdev;
1065 	int i;
1066 
1067 	if (!wdev->connect_keys)
1068 		return;
1069 
1070 	for (i = 0; i < 4; i++) {
1071 		if (!wdev->connect_keys->params[i].cipher)
1072 			continue;
1073 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1074 				 &wdev->connect_keys->params[i])) {
1075 			netdev_err(dev, "failed to set key %d\n", i);
1076 			continue;
1077 		}
1078 		if (wdev->connect_keys->def == i &&
1079 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1080 			netdev_err(dev, "failed to set defkey %d\n", i);
1081 			continue;
1082 		}
1083 	}
1084 
1085 	kfree_sensitive(wdev->connect_keys);
1086 	wdev->connect_keys = NULL;
1087 }
1088 
cfg80211_process_wdev_events(struct wireless_dev * wdev)1089 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1090 {
1091 	struct cfg80211_event *ev;
1092 	unsigned long flags;
1093 
1094 	spin_lock_irqsave(&wdev->event_lock, flags);
1095 	while (!list_empty(&wdev->event_list)) {
1096 		ev = list_first_entry(&wdev->event_list,
1097 				      struct cfg80211_event, list);
1098 		list_del(&ev->list);
1099 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1100 
1101 		wdev_lock(wdev);
1102 		switch (ev->type) {
1103 		case EVENT_CONNECT_RESULT:
1104 			__cfg80211_connect_result(
1105 				wdev->netdev,
1106 				&ev->cr,
1107 				ev->cr.status == WLAN_STATUS_SUCCESS);
1108 			break;
1109 		case EVENT_ROAMED:
1110 			__cfg80211_roamed(wdev, &ev->rm);
1111 			break;
1112 		case EVENT_DISCONNECTED:
1113 			__cfg80211_disconnected(wdev->netdev,
1114 						ev->dc.ie, ev->dc.ie_len,
1115 						ev->dc.reason,
1116 						!ev->dc.locally_generated);
1117 			break;
1118 		case EVENT_IBSS_JOINED:
1119 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1120 					       ev->ij.channel);
1121 			break;
1122 		case EVENT_STOPPED:
1123 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1124 			break;
1125 		case EVENT_PORT_AUTHORIZED:
1126 			__cfg80211_port_authorized(wdev, ev->pa.bssid,
1127 						   ev->pa.td_bitmap,
1128 						   ev->pa.td_bitmap_len);
1129 			break;
1130 		}
1131 		wdev_unlock(wdev);
1132 
1133 		kfree(ev);
1134 
1135 		spin_lock_irqsave(&wdev->event_lock, flags);
1136 	}
1137 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1138 }
1139 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1140 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1141 {
1142 	struct wireless_dev *wdev;
1143 
1144 	lockdep_assert_held(&rdev->wiphy.mtx);
1145 
1146 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1147 		cfg80211_process_wdev_events(wdev);
1148 }
1149 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1150 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1151 			  struct net_device *dev, enum nl80211_iftype ntype,
1152 			  struct vif_params *params)
1153 {
1154 	int err;
1155 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1156 
1157 	lockdep_assert_held(&rdev->wiphy.mtx);
1158 
1159 	/* don't support changing VLANs, you just re-create them */
1160 	if (otype == NL80211_IFTYPE_AP_VLAN)
1161 		return -EOPNOTSUPP;
1162 
1163 	/* cannot change into P2P device or NAN */
1164 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1165 	    ntype == NL80211_IFTYPE_NAN)
1166 		return -EOPNOTSUPP;
1167 
1168 	if (!rdev->ops->change_virtual_intf ||
1169 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1170 		return -EOPNOTSUPP;
1171 
1172 	if (ntype != otype) {
1173 		/* if it's part of a bridge, reject changing type to station/ibss */
1174 		if (netif_is_bridge_port(dev) &&
1175 		    (ntype == NL80211_IFTYPE_ADHOC ||
1176 		     ntype == NL80211_IFTYPE_STATION ||
1177 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1178 			return -EBUSY;
1179 
1180 		dev->ieee80211_ptr->use_4addr = false;
1181 		wdev_lock(dev->ieee80211_ptr);
1182 		rdev_set_qos_map(rdev, dev, NULL);
1183 		wdev_unlock(dev->ieee80211_ptr);
1184 
1185 		switch (otype) {
1186 		case NL80211_IFTYPE_AP:
1187 		case NL80211_IFTYPE_P2P_GO:
1188 			cfg80211_stop_ap(rdev, dev, -1, true);
1189 			break;
1190 		case NL80211_IFTYPE_ADHOC:
1191 			cfg80211_leave_ibss(rdev, dev, false);
1192 			break;
1193 		case NL80211_IFTYPE_STATION:
1194 		case NL80211_IFTYPE_P2P_CLIENT:
1195 			wdev_lock(dev->ieee80211_ptr);
1196 			cfg80211_disconnect(rdev, dev,
1197 					    WLAN_REASON_DEAUTH_LEAVING, true);
1198 			wdev_unlock(dev->ieee80211_ptr);
1199 			break;
1200 		case NL80211_IFTYPE_MESH_POINT:
1201 			/* mesh should be handled? */
1202 			break;
1203 		case NL80211_IFTYPE_OCB:
1204 			cfg80211_leave_ocb(rdev, dev);
1205 			break;
1206 		default:
1207 			break;
1208 		}
1209 
1210 		cfg80211_process_rdev_events(rdev);
1211 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1212 
1213 		memset(&dev->ieee80211_ptr->u, 0,
1214 		       sizeof(dev->ieee80211_ptr->u));
1215 		memset(&dev->ieee80211_ptr->links, 0,
1216 		       sizeof(dev->ieee80211_ptr->links));
1217 	}
1218 
1219 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1220 
1221 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1222 
1223 	if (!err && params && params->use_4addr != -1)
1224 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1225 
1226 	if (!err) {
1227 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1228 		switch (ntype) {
1229 		case NL80211_IFTYPE_STATION:
1230 			if (dev->ieee80211_ptr->use_4addr)
1231 				break;
1232 			fallthrough;
1233 		case NL80211_IFTYPE_OCB:
1234 		case NL80211_IFTYPE_P2P_CLIENT:
1235 		case NL80211_IFTYPE_ADHOC:
1236 			dev->priv_flags |= IFF_DONT_BRIDGE;
1237 			break;
1238 		case NL80211_IFTYPE_P2P_GO:
1239 		case NL80211_IFTYPE_AP:
1240 		case NL80211_IFTYPE_AP_VLAN:
1241 		case NL80211_IFTYPE_MESH_POINT:
1242 			/* bridging OK */
1243 			break;
1244 		case NL80211_IFTYPE_MONITOR:
1245 			/* monitor can't bridge anyway */
1246 			break;
1247 		case NL80211_IFTYPE_UNSPECIFIED:
1248 		case NUM_NL80211_IFTYPES:
1249 			/* not happening */
1250 			break;
1251 		case NL80211_IFTYPE_P2P_DEVICE:
1252 		case NL80211_IFTYPE_WDS:
1253 		case NL80211_IFTYPE_NAN:
1254 			WARN_ON(1);
1255 			break;
1256 		}
1257 	}
1258 
1259 	if (!err && ntype != otype && netif_running(dev)) {
1260 		cfg80211_update_iface_num(rdev, ntype, 1);
1261 		cfg80211_update_iface_num(rdev, otype, -1);
1262 	}
1263 
1264 	return err;
1265 }
1266 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1267 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1268 {
1269 	int modulation, streams, bitrate;
1270 
1271 	/* the formula below does only work for MCS values smaller than 32 */
1272 	if (WARN_ON_ONCE(rate->mcs >= 32))
1273 		return 0;
1274 
1275 	modulation = rate->mcs & 7;
1276 	streams = (rate->mcs >> 3) + 1;
1277 
1278 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1279 
1280 	if (modulation < 4)
1281 		bitrate *= (modulation + 1);
1282 	else if (modulation == 4)
1283 		bitrate *= (modulation + 2);
1284 	else
1285 		bitrate *= (modulation + 3);
1286 
1287 	bitrate *= streams;
1288 
1289 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1290 		bitrate = (bitrate / 9) * 10;
1291 
1292 	/* do NOT round down here */
1293 	return (bitrate + 50000) / 100000;
1294 }
1295 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1296 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1297 {
1298 	static const u32 __mcs2bitrate[] = {
1299 		/* control PHY */
1300 		[0] =   275,
1301 		/* SC PHY */
1302 		[1] =  3850,
1303 		[2] =  7700,
1304 		[3] =  9625,
1305 		[4] = 11550,
1306 		[5] = 12512, /* 1251.25 mbps */
1307 		[6] = 15400,
1308 		[7] = 19250,
1309 		[8] = 23100,
1310 		[9] = 25025,
1311 		[10] = 30800,
1312 		[11] = 38500,
1313 		[12] = 46200,
1314 		/* OFDM PHY */
1315 		[13] =  6930,
1316 		[14] =  8662, /* 866.25 mbps */
1317 		[15] = 13860,
1318 		[16] = 17325,
1319 		[17] = 20790,
1320 		[18] = 27720,
1321 		[19] = 34650,
1322 		[20] = 41580,
1323 		[21] = 45045,
1324 		[22] = 51975,
1325 		[23] = 62370,
1326 		[24] = 67568, /* 6756.75 mbps */
1327 		/* LP-SC PHY */
1328 		[25] =  6260,
1329 		[26] =  8340,
1330 		[27] = 11120,
1331 		[28] = 12510,
1332 		[29] = 16680,
1333 		[30] = 22240,
1334 		[31] = 25030,
1335 	};
1336 
1337 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1338 		return 0;
1339 
1340 	return __mcs2bitrate[rate->mcs];
1341 }
1342 
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1343 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1344 {
1345 	static const u32 __mcs2bitrate[] = {
1346 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1347 		[7 - 6] = 50050, /* MCS 12.1 */
1348 		[8 - 6] = 53900,
1349 		[9 - 6] = 57750,
1350 		[10 - 6] = 63900,
1351 		[11 - 6] = 75075,
1352 		[12 - 6] = 80850,
1353 	};
1354 
1355 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1356 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1357 		return 0;
1358 
1359 	return __mcs2bitrate[rate->mcs - 6];
1360 }
1361 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1362 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1363 {
1364 	static const u32 __mcs2bitrate[] = {
1365 		/* control PHY */
1366 		[0] =   275,
1367 		/* SC PHY */
1368 		[1] =  3850,
1369 		[2] =  7700,
1370 		[3] =  9625,
1371 		[4] = 11550,
1372 		[5] = 12512, /* 1251.25 mbps */
1373 		[6] = 13475,
1374 		[7] = 15400,
1375 		[8] = 19250,
1376 		[9] = 23100,
1377 		[10] = 25025,
1378 		[11] = 26950,
1379 		[12] = 30800,
1380 		[13] = 38500,
1381 		[14] = 46200,
1382 		[15] = 50050,
1383 		[16] = 53900,
1384 		[17] = 57750,
1385 		[18] = 69300,
1386 		[19] = 75075,
1387 		[20] = 80850,
1388 	};
1389 
1390 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1391 		return 0;
1392 
1393 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1394 }
1395 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1396 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1397 {
1398 	static const u32 base[4][12] = {
1399 		{   6500000,
1400 		   13000000,
1401 		   19500000,
1402 		   26000000,
1403 		   39000000,
1404 		   52000000,
1405 		   58500000,
1406 		   65000000,
1407 		   78000000,
1408 		/* not in the spec, but some devices use this: */
1409 		   86700000,
1410 		   97500000,
1411 		  108300000,
1412 		},
1413 		{  13500000,
1414 		   27000000,
1415 		   40500000,
1416 		   54000000,
1417 		   81000000,
1418 		  108000000,
1419 		  121500000,
1420 		  135000000,
1421 		  162000000,
1422 		  180000000,
1423 		  202500000,
1424 		  225000000,
1425 		},
1426 		{  29300000,
1427 		   58500000,
1428 		   87800000,
1429 		  117000000,
1430 		  175500000,
1431 		  234000000,
1432 		  263300000,
1433 		  292500000,
1434 		  351000000,
1435 		  390000000,
1436 		  438800000,
1437 		  487500000,
1438 		},
1439 		{  58500000,
1440 		  117000000,
1441 		  175500000,
1442 		  234000000,
1443 		  351000000,
1444 		  468000000,
1445 		  526500000,
1446 		  585000000,
1447 		  702000000,
1448 		  780000000,
1449 		  877500000,
1450 		  975000000,
1451 		},
1452 	};
1453 	u32 bitrate;
1454 	int idx;
1455 
1456 	if (rate->mcs > 11)
1457 		goto warn;
1458 
1459 	switch (rate->bw) {
1460 	case RATE_INFO_BW_160:
1461 		idx = 3;
1462 		break;
1463 	case RATE_INFO_BW_80:
1464 		idx = 2;
1465 		break;
1466 	case RATE_INFO_BW_40:
1467 		idx = 1;
1468 		break;
1469 	case RATE_INFO_BW_5:
1470 	case RATE_INFO_BW_10:
1471 	default:
1472 		goto warn;
1473 	case RATE_INFO_BW_20:
1474 		idx = 0;
1475 	}
1476 
1477 	bitrate = base[idx][rate->mcs];
1478 	bitrate *= rate->nss;
1479 
1480 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1481 		bitrate = (bitrate / 9) * 10;
1482 
1483 	/* do NOT round down here */
1484 	return (bitrate + 50000) / 100000;
1485  warn:
1486 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1487 		  rate->bw, rate->mcs, rate->nss);
1488 	return 0;
1489 }
1490 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1491 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1492 {
1493 #define SCALE 6144
1494 	u32 mcs_divisors[14] = {
1495 		102399, /* 16.666666... */
1496 		 51201, /*  8.333333... */
1497 		 34134, /*  5.555555... */
1498 		 25599, /*  4.166666... */
1499 		 17067, /*  2.777777... */
1500 		 12801, /*  2.083333... */
1501 		 11377, /*  1.851725... */
1502 		 10239, /*  1.666666... */
1503 		  8532, /*  1.388888... */
1504 		  7680, /*  1.250000... */
1505 		  6828, /*  1.111111... */
1506 		  6144, /*  1.000000... */
1507 		  5690, /*  0.926106... */
1508 		  5120, /*  0.833333... */
1509 	};
1510 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1511 	u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1512 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1513 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1514 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1515 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1516 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1517 	u64 tmp;
1518 	u32 result;
1519 
1520 	if (WARN_ON_ONCE(rate->mcs > 13))
1521 		return 0;
1522 
1523 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1524 		return 0;
1525 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1526 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1527 		return 0;
1528 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1529 		return 0;
1530 
1531 	if (rate->bw == RATE_INFO_BW_160 ||
1532 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1533 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1534 		result = rates_160M[rate->he_gi];
1535 	else if (rate->bw == RATE_INFO_BW_80 ||
1536 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1537 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1538 		result = rates_996[rate->he_gi];
1539 	else if (rate->bw == RATE_INFO_BW_40 ||
1540 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1541 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1542 		result = rates_484[rate->he_gi];
1543 	else if (rate->bw == RATE_INFO_BW_20 ||
1544 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1545 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1546 		result = rates_242[rate->he_gi];
1547 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1548 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1549 		result = rates_106[rate->he_gi];
1550 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1551 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1552 		result = rates_52[rate->he_gi];
1553 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1554 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1555 		result = rates_26[rate->he_gi];
1556 	else {
1557 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1558 		     rate->bw, rate->he_ru_alloc);
1559 		return 0;
1560 	}
1561 
1562 	/* now scale to the appropriate MCS */
1563 	tmp = result;
1564 	tmp *= SCALE;
1565 	do_div(tmp, mcs_divisors[rate->mcs]);
1566 	result = tmp;
1567 
1568 	/* and take NSS, DCM into account */
1569 	result = (result * rate->nss) / 8;
1570 	if (rate->he_dcm)
1571 		result /= 2;
1572 
1573 	return result / 10000;
1574 }
1575 
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1576 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1577 {
1578 #define SCALE 6144
1579 	static const u32 mcs_divisors[16] = {
1580 		102399, /* 16.666666... */
1581 		 51201, /*  8.333333... */
1582 		 34134, /*  5.555555... */
1583 		 25599, /*  4.166666... */
1584 		 17067, /*  2.777777... */
1585 		 12801, /*  2.083333... */
1586 		 11377, /*  1.851725... */
1587 		 10239, /*  1.666666... */
1588 		  8532, /*  1.388888... */
1589 		  7680, /*  1.250000... */
1590 		  6828, /*  1.111111... */
1591 		  6144, /*  1.000000... */
1592 		  5690, /*  0.926106... */
1593 		  5120, /*  0.833333... */
1594 		409600, /* 66.666666... */
1595 		204800, /* 33.333333... */
1596 	};
1597 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1598 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1599 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1600 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1601 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1602 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1603 	u64 tmp;
1604 	u32 result;
1605 
1606 	if (WARN_ON_ONCE(rate->mcs > 15))
1607 		return 0;
1608 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1609 		return 0;
1610 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1611 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1612 		return 0;
1613 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1614 		return 0;
1615 
1616 	/* Bandwidth checks for MCS 14 */
1617 	if (rate->mcs == 14) {
1618 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1619 		     rate->bw != RATE_INFO_BW_80 &&
1620 		     rate->bw != RATE_INFO_BW_160 &&
1621 		     rate->bw != RATE_INFO_BW_320) ||
1622 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1623 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1624 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1625 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1626 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1627 			     rate->bw, rate->eht_ru_alloc);
1628 			return 0;
1629 		}
1630 	}
1631 
1632 	if (rate->bw == RATE_INFO_BW_320 ||
1633 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1634 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1635 		result = 4 * rates_996[rate->eht_gi];
1636 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1637 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1638 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1639 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1640 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1641 		result = 3 * rates_996[rate->eht_gi];
1642 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1643 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1644 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1645 	else if (rate->bw == RATE_INFO_BW_160 ||
1646 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1647 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1648 		result = 2 * rates_996[rate->eht_gi];
1649 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1650 		 rate->eht_ru_alloc ==
1651 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1652 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1653 			 + rates_242[rate->eht_gi];
1654 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1655 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1656 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1657 	else if (rate->bw == RATE_INFO_BW_80 ||
1658 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1659 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1660 		result = rates_996[rate->eht_gi];
1661 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1662 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1663 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1664 	else if (rate->bw == RATE_INFO_BW_40 ||
1665 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1666 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1667 		result = rates_484[rate->eht_gi];
1668 	else if (rate->bw == RATE_INFO_BW_20 ||
1669 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1670 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1671 		result = rates_242[rate->eht_gi];
1672 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1673 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1674 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1675 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1676 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1677 		result = rates_106[rate->eht_gi];
1678 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1679 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1680 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1681 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1682 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1683 		result = rates_52[rate->eht_gi];
1684 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1685 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1686 		result = rates_26[rate->eht_gi];
1687 	else {
1688 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1689 		     rate->bw, rate->eht_ru_alloc);
1690 		return 0;
1691 	}
1692 
1693 	/* now scale to the appropriate MCS */
1694 	tmp = result;
1695 	tmp *= SCALE;
1696 	do_div(tmp, mcs_divisors[rate->mcs]);
1697 
1698 	/* and take NSS */
1699 	tmp *= rate->nss;
1700 	do_div(tmp, 8);
1701 
1702 	result = tmp;
1703 
1704 	return result / 10000;
1705 }
1706 
cfg80211_calculate_bitrate_s1g(struct rate_info * rate)1707 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1708 {
1709 	/* For 1, 2, 4, 8 and 16 MHz channels */
1710 	static const u32 base[5][11] = {
1711 		{  300000,
1712 		   600000,
1713 		   900000,
1714 		  1200000,
1715 		  1800000,
1716 		  2400000,
1717 		  2700000,
1718 		  3000000,
1719 		  3600000,
1720 		  4000000,
1721 		  /* MCS 10 supported in 1 MHz only */
1722 		  150000,
1723 		},
1724 		{  650000,
1725 		  1300000,
1726 		  1950000,
1727 		  2600000,
1728 		  3900000,
1729 		  5200000,
1730 		  5850000,
1731 		  6500000,
1732 		  7800000,
1733 		  /* MCS 9 not valid */
1734 		},
1735 		{  1350000,
1736 		   2700000,
1737 		   4050000,
1738 		   5400000,
1739 		   8100000,
1740 		  10800000,
1741 		  12150000,
1742 		  13500000,
1743 		  16200000,
1744 		  18000000,
1745 		},
1746 		{  2925000,
1747 		   5850000,
1748 		   8775000,
1749 		  11700000,
1750 		  17550000,
1751 		  23400000,
1752 		  26325000,
1753 		  29250000,
1754 		  35100000,
1755 		  39000000,
1756 		},
1757 		{  8580000,
1758 		  11700000,
1759 		  17550000,
1760 		  23400000,
1761 		  35100000,
1762 		  46800000,
1763 		  52650000,
1764 		  58500000,
1765 		  70200000,
1766 		  78000000,
1767 		},
1768 	};
1769 	u32 bitrate;
1770 	/* default is 1 MHz index */
1771 	int idx = 0;
1772 
1773 	if (rate->mcs >= 11)
1774 		goto warn;
1775 
1776 	switch (rate->bw) {
1777 	case RATE_INFO_BW_16:
1778 		idx = 4;
1779 		break;
1780 	case RATE_INFO_BW_8:
1781 		idx = 3;
1782 		break;
1783 	case RATE_INFO_BW_4:
1784 		idx = 2;
1785 		break;
1786 	case RATE_INFO_BW_2:
1787 		idx = 1;
1788 		break;
1789 	case RATE_INFO_BW_1:
1790 		idx = 0;
1791 		break;
1792 	case RATE_INFO_BW_5:
1793 	case RATE_INFO_BW_10:
1794 	case RATE_INFO_BW_20:
1795 	case RATE_INFO_BW_40:
1796 	case RATE_INFO_BW_80:
1797 	case RATE_INFO_BW_160:
1798 	default:
1799 		goto warn;
1800 	}
1801 
1802 	bitrate = base[idx][rate->mcs];
1803 	bitrate *= rate->nss;
1804 
1805 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1806 		bitrate = (bitrate / 9) * 10;
1807 	/* do NOT round down here */
1808 	return (bitrate + 50000) / 100000;
1809 warn:
1810 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1811 		  rate->bw, rate->mcs, rate->nss);
1812 	return 0;
1813 }
1814 
cfg80211_calculate_bitrate(struct rate_info * rate)1815 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1816 {
1817 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1818 		return cfg80211_calculate_bitrate_ht(rate);
1819 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1820 		return cfg80211_calculate_bitrate_dmg(rate);
1821 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1822 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1823 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1824 		return cfg80211_calculate_bitrate_edmg(rate);
1825 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1826 		return cfg80211_calculate_bitrate_vht(rate);
1827 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1828 		return cfg80211_calculate_bitrate_he(rate);
1829 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1830 		return cfg80211_calculate_bitrate_eht(rate);
1831 	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1832 		return cfg80211_calculate_bitrate_s1g(rate);
1833 
1834 	return rate->legacy;
1835 }
1836 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1837 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1838 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1839 			  enum ieee80211_p2p_attr_id attr,
1840 			  u8 *buf, unsigned int bufsize)
1841 {
1842 	u8 *out = buf;
1843 	u16 attr_remaining = 0;
1844 	bool desired_attr = false;
1845 	u16 desired_len = 0;
1846 
1847 	while (len > 0) {
1848 		unsigned int iedatalen;
1849 		unsigned int copy;
1850 		const u8 *iedata;
1851 
1852 		if (len < 2)
1853 			return -EILSEQ;
1854 		iedatalen = ies[1];
1855 		if (iedatalen + 2 > len)
1856 			return -EILSEQ;
1857 
1858 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1859 			goto cont;
1860 
1861 		if (iedatalen < 4)
1862 			goto cont;
1863 
1864 		iedata = ies + 2;
1865 
1866 		/* check WFA OUI, P2P subtype */
1867 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1868 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1869 			goto cont;
1870 
1871 		iedatalen -= 4;
1872 		iedata += 4;
1873 
1874 		/* check attribute continuation into this IE */
1875 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1876 		if (copy && desired_attr) {
1877 			desired_len += copy;
1878 			if (out) {
1879 				memcpy(out, iedata, min(bufsize, copy));
1880 				out += min(bufsize, copy);
1881 				bufsize -= min(bufsize, copy);
1882 			}
1883 
1884 
1885 			if (copy == attr_remaining)
1886 				return desired_len;
1887 		}
1888 
1889 		attr_remaining -= copy;
1890 		if (attr_remaining)
1891 			goto cont;
1892 
1893 		iedatalen -= copy;
1894 		iedata += copy;
1895 
1896 		while (iedatalen > 0) {
1897 			u16 attr_len;
1898 
1899 			/* P2P attribute ID & size must fit */
1900 			if (iedatalen < 3)
1901 				return -EILSEQ;
1902 			desired_attr = iedata[0] == attr;
1903 			attr_len = get_unaligned_le16(iedata + 1);
1904 			iedatalen -= 3;
1905 			iedata += 3;
1906 
1907 			copy = min_t(unsigned int, attr_len, iedatalen);
1908 
1909 			if (desired_attr) {
1910 				desired_len += copy;
1911 				if (out) {
1912 					memcpy(out, iedata, min(bufsize, copy));
1913 					out += min(bufsize, copy);
1914 					bufsize -= min(bufsize, copy);
1915 				}
1916 
1917 				if (copy == attr_len)
1918 					return desired_len;
1919 			}
1920 
1921 			iedata += copy;
1922 			iedatalen -= copy;
1923 			attr_remaining = attr_len - copy;
1924 		}
1925 
1926  cont:
1927 		len -= ies[1] + 2;
1928 		ies += ies[1] + 2;
1929 	}
1930 
1931 	if (attr_remaining && desired_attr)
1932 		return -EILSEQ;
1933 
1934 	return -ENOENT;
1935 }
1936 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1937 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1938 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1939 {
1940 	int i;
1941 
1942 	/* Make sure array values are legal */
1943 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1944 		return false;
1945 
1946 	i = 0;
1947 	while (i < n_ids) {
1948 		if (ids[i] == WLAN_EID_EXTENSION) {
1949 			if (id_ext && (ids[i + 1] == id))
1950 				return true;
1951 
1952 			i += 2;
1953 			continue;
1954 		}
1955 
1956 		if (ids[i] == id && !id_ext)
1957 			return true;
1958 
1959 		i++;
1960 	}
1961 	return false;
1962 }
1963 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1964 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1965 {
1966 	/* we assume a validly formed IEs buffer */
1967 	u8 len = ies[pos + 1];
1968 
1969 	pos += 2 + len;
1970 
1971 	/* the IE itself must have 255 bytes for fragments to follow */
1972 	if (len < 255)
1973 		return pos;
1974 
1975 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1976 		len = ies[pos + 1];
1977 		pos += 2 + len;
1978 	}
1979 
1980 	return pos;
1981 }
1982 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1983 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1984 			      const u8 *ids, int n_ids,
1985 			      const u8 *after_ric, int n_after_ric,
1986 			      size_t offset)
1987 {
1988 	size_t pos = offset;
1989 
1990 	while (pos < ielen) {
1991 		u8 ext = 0;
1992 
1993 		if (ies[pos] == WLAN_EID_EXTENSION)
1994 			ext = 2;
1995 		if ((pos + ext) >= ielen)
1996 			break;
1997 
1998 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1999 					  ies[pos] == WLAN_EID_EXTENSION))
2000 			break;
2001 
2002 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
2003 			pos = skip_ie(ies, ielen, pos);
2004 
2005 			while (pos < ielen) {
2006 				if (ies[pos] == WLAN_EID_EXTENSION)
2007 					ext = 2;
2008 				else
2009 					ext = 0;
2010 
2011 				if ((pos + ext) >= ielen)
2012 					break;
2013 
2014 				if (!ieee80211_id_in_list(after_ric,
2015 							  n_after_ric,
2016 							  ies[pos + ext],
2017 							  ext == 2))
2018 					pos = skip_ie(ies, ielen, pos);
2019 				else
2020 					break;
2021 			}
2022 		} else {
2023 			pos = skip_ie(ies, ielen, pos);
2024 		}
2025 	}
2026 
2027 	return pos;
2028 }
2029 EXPORT_SYMBOL(ieee80211_ie_split_ric);
2030 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)2031 bool ieee80211_operating_class_to_band(u8 operating_class,
2032 				       enum nl80211_band *band)
2033 {
2034 	switch (operating_class) {
2035 	case 112:
2036 	case 115 ... 127:
2037 	case 128 ... 130:
2038 		*band = NL80211_BAND_5GHZ;
2039 		return true;
2040 	case 131 ... 135:
2041 		*band = NL80211_BAND_6GHZ;
2042 		return true;
2043 	case 81:
2044 	case 82:
2045 	case 83:
2046 	case 84:
2047 		*band = NL80211_BAND_2GHZ;
2048 		return true;
2049 	case 180:
2050 		*band = NL80211_BAND_60GHZ;
2051 		return true;
2052 	}
2053 
2054 	return false;
2055 }
2056 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2057 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)2058 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2059 					  u8 *op_class)
2060 {
2061 	u8 vht_opclass;
2062 	u32 freq = chandef->center_freq1;
2063 
2064 	if (freq >= 2412 && freq <= 2472) {
2065 		if (chandef->width > NL80211_CHAN_WIDTH_40)
2066 			return false;
2067 
2068 		/* 2.407 GHz, channels 1..13 */
2069 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2070 			if (freq > chandef->chan->center_freq)
2071 				*op_class = 83; /* HT40+ */
2072 			else
2073 				*op_class = 84; /* HT40- */
2074 		} else {
2075 			*op_class = 81;
2076 		}
2077 
2078 		return true;
2079 	}
2080 
2081 	if (freq == 2484) {
2082 		/* channel 14 is only for IEEE 802.11b */
2083 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2084 			return false;
2085 
2086 		*op_class = 82; /* channel 14 */
2087 		return true;
2088 	}
2089 
2090 	switch (chandef->width) {
2091 	case NL80211_CHAN_WIDTH_80:
2092 		vht_opclass = 128;
2093 		break;
2094 	case NL80211_CHAN_WIDTH_160:
2095 		vht_opclass = 129;
2096 		break;
2097 	case NL80211_CHAN_WIDTH_80P80:
2098 		vht_opclass = 130;
2099 		break;
2100 	case NL80211_CHAN_WIDTH_10:
2101 	case NL80211_CHAN_WIDTH_5:
2102 		return false; /* unsupported for now */
2103 	default:
2104 		vht_opclass = 0;
2105 		break;
2106 	}
2107 
2108 	/* 5 GHz, channels 36..48 */
2109 	if (freq >= 5180 && freq <= 5240) {
2110 		if (vht_opclass) {
2111 			*op_class = vht_opclass;
2112 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2113 			if (freq > chandef->chan->center_freq)
2114 				*op_class = 116;
2115 			else
2116 				*op_class = 117;
2117 		} else {
2118 			*op_class = 115;
2119 		}
2120 
2121 		return true;
2122 	}
2123 
2124 	/* 5 GHz, channels 52..64 */
2125 	if (freq >= 5260 && freq <= 5320) {
2126 		if (vht_opclass) {
2127 			*op_class = vht_opclass;
2128 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2129 			if (freq > chandef->chan->center_freq)
2130 				*op_class = 119;
2131 			else
2132 				*op_class = 120;
2133 		} else {
2134 			*op_class = 118;
2135 		}
2136 
2137 		return true;
2138 	}
2139 
2140 	/* 5 GHz, channels 100..144 */
2141 	if (freq >= 5500 && freq <= 5720) {
2142 		if (vht_opclass) {
2143 			*op_class = vht_opclass;
2144 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2145 			if (freq > chandef->chan->center_freq)
2146 				*op_class = 122;
2147 			else
2148 				*op_class = 123;
2149 		} else {
2150 			*op_class = 121;
2151 		}
2152 
2153 		return true;
2154 	}
2155 
2156 	/* 5 GHz, channels 149..169 */
2157 	if (freq >= 5745 && freq <= 5845) {
2158 		if (vht_opclass) {
2159 			*op_class = vht_opclass;
2160 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2161 			if (freq > chandef->chan->center_freq)
2162 				*op_class = 126;
2163 			else
2164 				*op_class = 127;
2165 		} else if (freq <= 5805) {
2166 			*op_class = 124;
2167 		} else {
2168 			*op_class = 125;
2169 		}
2170 
2171 		return true;
2172 	}
2173 
2174 	/* 56.16 GHz, channel 1..4 */
2175 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2176 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2177 			return false;
2178 
2179 		*op_class = 180;
2180 		return true;
2181 	}
2182 
2183 	/* not supported yet */
2184 	return false;
2185 }
2186 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2187 
cfg80211_wdev_bi(struct wireless_dev * wdev)2188 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2189 {
2190 	switch (wdev->iftype) {
2191 	case NL80211_IFTYPE_AP:
2192 	case NL80211_IFTYPE_P2P_GO:
2193 		WARN_ON(wdev->valid_links);
2194 		return wdev->links[0].ap.beacon_interval;
2195 	case NL80211_IFTYPE_MESH_POINT:
2196 		return wdev->u.mesh.beacon_interval;
2197 	case NL80211_IFTYPE_ADHOC:
2198 		return wdev->u.ibss.beacon_interval;
2199 	default:
2200 		break;
2201 	}
2202 
2203 	return 0;
2204 }
2205 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)2206 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2207 				       u32 *beacon_int_gcd,
2208 				       bool *beacon_int_different)
2209 {
2210 	struct wireless_dev *wdev;
2211 
2212 	*beacon_int_gcd = 0;
2213 	*beacon_int_different = false;
2214 
2215 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2216 		int wdev_bi;
2217 
2218 		/* this feature isn't supported with MLO */
2219 		if (wdev->valid_links)
2220 			continue;
2221 
2222 		wdev_bi = cfg80211_wdev_bi(wdev);
2223 
2224 		if (!wdev_bi)
2225 			continue;
2226 
2227 		if (!*beacon_int_gcd) {
2228 			*beacon_int_gcd = wdev_bi;
2229 			continue;
2230 		}
2231 
2232 		if (wdev_bi == *beacon_int_gcd)
2233 			continue;
2234 
2235 		*beacon_int_different = true;
2236 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2237 	}
2238 
2239 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2240 		if (*beacon_int_gcd)
2241 			*beacon_int_different = true;
2242 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2243 	}
2244 }
2245 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2246 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2247 				 enum nl80211_iftype iftype, u32 beacon_int)
2248 {
2249 	/*
2250 	 * This is just a basic pre-condition check; if interface combinations
2251 	 * are possible the driver must already be checking those with a call
2252 	 * to cfg80211_check_combinations(), in which case we'll validate more
2253 	 * through the cfg80211_calculate_bi_data() call and code in
2254 	 * cfg80211_iter_combinations().
2255 	 */
2256 
2257 	if (beacon_int < 10 || beacon_int > 10000)
2258 		return -EINVAL;
2259 
2260 	return 0;
2261 }
2262 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2263 int cfg80211_iter_combinations(struct wiphy *wiphy,
2264 			       struct iface_combination_params *params,
2265 			       void (*iter)(const struct ieee80211_iface_combination *c,
2266 					    void *data),
2267 			       void *data)
2268 {
2269 	const struct ieee80211_regdomain *regdom;
2270 	enum nl80211_dfs_regions region = 0;
2271 	int i, j, iftype;
2272 	int num_interfaces = 0;
2273 	u32 used_iftypes = 0;
2274 	u32 beacon_int_gcd;
2275 	bool beacon_int_different;
2276 
2277 	/*
2278 	 * This is a bit strange, since the iteration used to rely only on
2279 	 * the data given by the driver, but here it now relies on context,
2280 	 * in form of the currently operating interfaces.
2281 	 * This is OK for all current users, and saves us from having to
2282 	 * push the GCD calculations into all the drivers.
2283 	 * In the future, this should probably rely more on data that's in
2284 	 * cfg80211 already - the only thing not would appear to be any new
2285 	 * interfaces (while being brought up) and channel/radar data.
2286 	 */
2287 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2288 				   &beacon_int_gcd, &beacon_int_different);
2289 
2290 	if (params->radar_detect) {
2291 		rcu_read_lock();
2292 		regdom = rcu_dereference(cfg80211_regdomain);
2293 		if (regdom)
2294 			region = regdom->dfs_region;
2295 		rcu_read_unlock();
2296 	}
2297 
2298 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2299 		num_interfaces += params->iftype_num[iftype];
2300 		if (params->iftype_num[iftype] > 0 &&
2301 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2302 			used_iftypes |= BIT(iftype);
2303 	}
2304 
2305 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2306 		const struct ieee80211_iface_combination *c;
2307 		struct ieee80211_iface_limit *limits;
2308 		u32 all_iftypes = 0;
2309 
2310 		c = &wiphy->iface_combinations[i];
2311 
2312 		if (num_interfaces > c->max_interfaces)
2313 			continue;
2314 		if (params->num_different_channels > c->num_different_channels)
2315 			continue;
2316 
2317 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2318 				 GFP_KERNEL);
2319 		if (!limits)
2320 			return -ENOMEM;
2321 
2322 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2323 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2324 				continue;
2325 			for (j = 0; j < c->n_limits; j++) {
2326 				all_iftypes |= limits[j].types;
2327 				if (!(limits[j].types & BIT(iftype)))
2328 					continue;
2329 				if (limits[j].max < params->iftype_num[iftype])
2330 					goto cont;
2331 				limits[j].max -= params->iftype_num[iftype];
2332 			}
2333 		}
2334 
2335 		if (params->radar_detect !=
2336 			(c->radar_detect_widths & params->radar_detect))
2337 			goto cont;
2338 
2339 		if (params->radar_detect && c->radar_detect_regions &&
2340 		    !(c->radar_detect_regions & BIT(region)))
2341 			goto cont;
2342 
2343 		/* Finally check that all iftypes that we're currently
2344 		 * using are actually part of this combination. If they
2345 		 * aren't then we can't use this combination and have
2346 		 * to continue to the next.
2347 		 */
2348 		if ((all_iftypes & used_iftypes) != used_iftypes)
2349 			goto cont;
2350 
2351 		if (beacon_int_gcd) {
2352 			if (c->beacon_int_min_gcd &&
2353 			    beacon_int_gcd < c->beacon_int_min_gcd)
2354 				goto cont;
2355 			if (!c->beacon_int_min_gcd && beacon_int_different)
2356 				goto cont;
2357 		}
2358 
2359 		/* This combination covered all interface types and
2360 		 * supported the requested numbers, so we're good.
2361 		 */
2362 
2363 		(*iter)(c, data);
2364  cont:
2365 		kfree(limits);
2366 	}
2367 
2368 	return 0;
2369 }
2370 EXPORT_SYMBOL(cfg80211_iter_combinations);
2371 
2372 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2373 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2374 			  void *data)
2375 {
2376 	int *num = data;
2377 	(*num)++;
2378 }
2379 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2380 int cfg80211_check_combinations(struct wiphy *wiphy,
2381 				struct iface_combination_params *params)
2382 {
2383 	int err, num = 0;
2384 
2385 	err = cfg80211_iter_combinations(wiphy, params,
2386 					 cfg80211_iter_sum_ifcombs, &num);
2387 	if (err)
2388 		return err;
2389 	if (num == 0)
2390 		return -EBUSY;
2391 
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL(cfg80211_check_combinations);
2395 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2396 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2397 			   const u8 *rates, unsigned int n_rates,
2398 			   u32 *mask)
2399 {
2400 	int i, j;
2401 
2402 	if (!sband)
2403 		return -EINVAL;
2404 
2405 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2406 		return -EINVAL;
2407 
2408 	*mask = 0;
2409 
2410 	for (i = 0; i < n_rates; i++) {
2411 		int rate = (rates[i] & 0x7f) * 5;
2412 		bool found = false;
2413 
2414 		for (j = 0; j < sband->n_bitrates; j++) {
2415 			if (sband->bitrates[j].bitrate == rate) {
2416 				found = true;
2417 				*mask |= BIT(j);
2418 				break;
2419 			}
2420 		}
2421 		if (!found)
2422 			return -EINVAL;
2423 	}
2424 
2425 	/*
2426 	 * mask must have at least one bit set here since we
2427 	 * didn't accept a 0-length rates array nor allowed
2428 	 * entries in the array that didn't exist
2429 	 */
2430 
2431 	return 0;
2432 }
2433 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2434 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2435 {
2436 	enum nl80211_band band;
2437 	unsigned int n_channels = 0;
2438 
2439 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2440 		if (wiphy->bands[band])
2441 			n_channels += wiphy->bands[band]->n_channels;
2442 
2443 	return n_channels;
2444 }
2445 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2446 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2447 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2448 			 struct station_info *sinfo)
2449 {
2450 	struct cfg80211_registered_device *rdev;
2451 	struct wireless_dev *wdev;
2452 	int ret;
2453 
2454 	wdev = dev->ieee80211_ptr;
2455 	if (!wdev)
2456 		return -EOPNOTSUPP;
2457 
2458 	rdev = wiphy_to_rdev(wdev->wiphy);
2459 	if (!rdev->ops->get_station)
2460 		return -EOPNOTSUPP;
2461 
2462 	memset(sinfo, 0, sizeof(*sinfo));
2463 
2464 	wiphy_lock(&rdev->wiphy);
2465 	ret = rdev_get_station(rdev, dev, mac_addr, sinfo);
2466 	wiphy_unlock(&rdev->wiphy);
2467 
2468 	return ret;
2469 }
2470 EXPORT_SYMBOL(cfg80211_get_station);
2471 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2472 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2473 {
2474 	int i;
2475 
2476 	if (!f)
2477 		return;
2478 
2479 	kfree(f->serv_spec_info);
2480 	kfree(f->srf_bf);
2481 	kfree(f->srf_macs);
2482 	for (i = 0; i < f->num_rx_filters; i++)
2483 		kfree(f->rx_filters[i].filter);
2484 
2485 	for (i = 0; i < f->num_tx_filters; i++)
2486 		kfree(f->tx_filters[i].filter);
2487 
2488 	kfree(f->rx_filters);
2489 	kfree(f->tx_filters);
2490 	kfree(f);
2491 }
2492 EXPORT_SYMBOL(cfg80211_free_nan_func);
2493 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2494 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2495 				u32 center_freq_khz, u32 bw_khz)
2496 {
2497 	u32 start_freq_khz, end_freq_khz;
2498 
2499 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2500 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2501 
2502 	if (start_freq_khz >= freq_range->start_freq_khz &&
2503 	    end_freq_khz <= freq_range->end_freq_khz)
2504 		return true;
2505 
2506 	return false;
2507 }
2508 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2509 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2510 {
2511 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2512 				sizeof(*(sinfo->pertid)),
2513 				gfp);
2514 	if (!sinfo->pertid)
2515 		return -ENOMEM;
2516 
2517 	return 0;
2518 }
2519 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2520 
2521 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2522 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2523 const unsigned char rfc1042_header[] __aligned(2) =
2524 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2525 EXPORT_SYMBOL(rfc1042_header);
2526 
2527 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2528 const unsigned char bridge_tunnel_header[] __aligned(2) =
2529 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2530 EXPORT_SYMBOL(bridge_tunnel_header);
2531 
2532 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2533 struct iapp_layer2_update {
2534 	u8 da[ETH_ALEN];	/* broadcast */
2535 	u8 sa[ETH_ALEN];	/* STA addr */
2536 	__be16 len;		/* 6 */
2537 	u8 dsap;		/* 0 */
2538 	u8 ssap;		/* 0 */
2539 	u8 control;
2540 	u8 xid_info[3];
2541 } __packed;
2542 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2543 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2544 {
2545 	struct iapp_layer2_update *msg;
2546 	struct sk_buff *skb;
2547 
2548 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2549 	 * bridge devices */
2550 
2551 	skb = dev_alloc_skb(sizeof(*msg));
2552 	if (!skb)
2553 		return;
2554 	msg = skb_put(skb, sizeof(*msg));
2555 
2556 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2557 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2558 
2559 	eth_broadcast_addr(msg->da);
2560 	ether_addr_copy(msg->sa, addr);
2561 	msg->len = htons(6);
2562 	msg->dsap = 0;
2563 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2564 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2565 				 * F=0 (no poll command; unsolicited frame) */
2566 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2567 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2568 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2569 
2570 	skb->dev = dev;
2571 	skb->protocol = eth_type_trans(skb, dev);
2572 	memset(skb->cb, 0, sizeof(skb->cb));
2573 	netif_rx(skb);
2574 }
2575 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2576 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2577 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2578 			      enum ieee80211_vht_chanwidth bw,
2579 			      int mcs, bool ext_nss_bw_capable,
2580 			      unsigned int max_vht_nss)
2581 {
2582 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2583 	int ext_nss_bw;
2584 	int supp_width;
2585 	int i, mcs_encoding;
2586 
2587 	if (map == 0xffff)
2588 		return 0;
2589 
2590 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2591 		return 0;
2592 	if (mcs <= 7)
2593 		mcs_encoding = 0;
2594 	else if (mcs == 8)
2595 		mcs_encoding = 1;
2596 	else
2597 		mcs_encoding = 2;
2598 
2599 	if (!max_vht_nss) {
2600 		/* find max_vht_nss for the given MCS */
2601 		for (i = 7; i >= 0; i--) {
2602 			int supp = (map >> (2 * i)) & 3;
2603 
2604 			if (supp == 3)
2605 				continue;
2606 
2607 			if (supp >= mcs_encoding) {
2608 				max_vht_nss = i + 1;
2609 				break;
2610 			}
2611 		}
2612 	}
2613 
2614 	if (!(cap->supp_mcs.tx_mcs_map &
2615 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2616 		return max_vht_nss;
2617 
2618 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2619 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2620 	supp_width = le32_get_bits(cap->vht_cap_info,
2621 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2622 
2623 	/* if not capable, treat ext_nss_bw as 0 */
2624 	if (!ext_nss_bw_capable)
2625 		ext_nss_bw = 0;
2626 
2627 	/* This is invalid */
2628 	if (supp_width == 3)
2629 		return 0;
2630 
2631 	/* This is an invalid combination so pretend nothing is supported */
2632 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2633 		return 0;
2634 
2635 	/*
2636 	 * Cover all the special cases according to IEEE 802.11-2016
2637 	 * Table 9-250. All other cases are either factor of 1 or not
2638 	 * valid/supported.
2639 	 */
2640 	switch (bw) {
2641 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2642 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2643 		if ((supp_width == 1 || supp_width == 2) &&
2644 		    ext_nss_bw == 3)
2645 			return 2 * max_vht_nss;
2646 		break;
2647 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2648 		if (supp_width == 0 &&
2649 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2650 			return max_vht_nss / 2;
2651 		if (supp_width == 0 &&
2652 		    ext_nss_bw == 3)
2653 			return (3 * max_vht_nss) / 4;
2654 		if (supp_width == 1 &&
2655 		    ext_nss_bw == 3)
2656 			return 2 * max_vht_nss;
2657 		break;
2658 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2659 		if (supp_width == 0 && ext_nss_bw == 1)
2660 			return 0; /* not possible */
2661 		if (supp_width == 0 &&
2662 		    ext_nss_bw == 2)
2663 			return max_vht_nss / 2;
2664 		if (supp_width == 0 &&
2665 		    ext_nss_bw == 3)
2666 			return (3 * max_vht_nss) / 4;
2667 		if (supp_width == 1 &&
2668 		    ext_nss_bw == 0)
2669 			return 0; /* not possible */
2670 		if (supp_width == 1 &&
2671 		    ext_nss_bw == 1)
2672 			return max_vht_nss / 2;
2673 		if (supp_width == 1 &&
2674 		    ext_nss_bw == 2)
2675 			return (3 * max_vht_nss) / 4;
2676 		break;
2677 	}
2678 
2679 	/* not covered or invalid combination received */
2680 	return max_vht_nss;
2681 }
2682 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2683 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2684 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2685 			     bool is_4addr, u8 check_swif)
2686 
2687 {
2688 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2689 
2690 	switch (check_swif) {
2691 	case 0:
2692 		if (is_vlan && is_4addr)
2693 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2694 		return wiphy->interface_modes & BIT(iftype);
2695 	case 1:
2696 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2697 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2698 		return wiphy->software_iftypes & BIT(iftype);
2699 	default:
2700 		break;
2701 	}
2702 
2703 	return false;
2704 }
2705 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2706 
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2707 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2708 {
2709 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2710 
2711 	ASSERT_WDEV_LOCK(wdev);
2712 
2713 	switch (wdev->iftype) {
2714 	case NL80211_IFTYPE_AP:
2715 	case NL80211_IFTYPE_P2P_GO:
2716 		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2717 		break;
2718 	default:
2719 		/* per-link not relevant */
2720 		break;
2721 	}
2722 
2723 	wdev->valid_links &= ~BIT(link_id);
2724 
2725 	rdev_del_intf_link(rdev, wdev, link_id);
2726 
2727 	eth_zero_addr(wdev->links[link_id].addr);
2728 }
2729 
cfg80211_remove_links(struct wireless_dev * wdev)2730 void cfg80211_remove_links(struct wireless_dev *wdev)
2731 {
2732 	unsigned int link_id;
2733 
2734 	/*
2735 	 * links are controlled by upper layers (userspace/cfg)
2736 	 * only for AP mode, so only remove them here for AP
2737 	 */
2738 	if (wdev->iftype != NL80211_IFTYPE_AP)
2739 		return;
2740 
2741 	wdev_lock(wdev);
2742 	if (wdev->valid_links) {
2743 		for_each_valid_link(wdev, link_id)
2744 			cfg80211_remove_link(wdev, link_id);
2745 	}
2746 	wdev_unlock(wdev);
2747 }
2748 
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2749 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2750 				 struct wireless_dev *wdev)
2751 {
2752 	cfg80211_remove_links(wdev);
2753 
2754 	return rdev_del_virtual_intf(rdev, wdev);
2755 }
2756 
2757 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2758 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2759 {
2760 	int i;
2761 
2762 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2763 		if (wiphy->iftype_ext_capab[i].iftype == type)
2764 			return &wiphy->iftype_ext_capab[i];
2765 	}
2766 
2767 	return NULL;
2768 }
2769 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2770