xref: /openbmc/linux/arch/mips/pci/pci-octeon.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  /*
2   * This file is subject to the terms and conditions of the GNU General Public
3   * License.  See the file "COPYING" in the main directory of this archive
4   * for more details.
5   *
6   * Copyright (C) 2005-2009 Cavium Networks
7   */
8  #include <linux/kernel.h>
9  #include <linux/init.h>
10  #include <linux/pci.h>
11  #include <linux/interrupt.h>
12  #include <linux/time.h>
13  #include <linux/delay.h>
14  #include <linux/platform_device.h>
15  #include <linux/swiotlb.h>
16  
17  #include <asm/time.h>
18  
19  #include <asm/octeon/octeon.h>
20  #include <asm/octeon/cvmx-npi-defs.h>
21  #include <asm/octeon/cvmx-pci-defs.h>
22  #include <asm/octeon/pci-octeon.h>
23  
24  #define USE_OCTEON_INTERNAL_ARBITER
25  
26  /*
27   * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
28   * addresses. Use PCI endian swapping 1 so no address swapping is
29   * necessary. The Linux io routines will endian swap the data.
30   */
31  #define OCTEON_PCI_IOSPACE_BASE	    0x80011a0400000000ull
32  #define OCTEON_PCI_IOSPACE_SIZE	    (1ull<<32)
33  
34  /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
35  #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
36  
37  u64 octeon_bar1_pci_phys;
38  
39  /**
40   * This is the bit decoding used for the Octeon PCI controller addresses
41   */
42  union octeon_pci_address {
43  	uint64_t u64;
44  	struct {
45  		uint64_t upper:2;
46  		uint64_t reserved:13;
47  		uint64_t io:1;
48  		uint64_t did:5;
49  		uint64_t subdid:3;
50  		uint64_t reserved2:4;
51  		uint64_t endian_swap:2;
52  		uint64_t reserved3:10;
53  		uint64_t bus:8;
54  		uint64_t dev:5;
55  		uint64_t func:3;
56  		uint64_t reg:8;
57  	} s;
58  };
59  
60  int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
61  enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
62  
63  /**
64   * Map a PCI device to the appropriate interrupt line
65   *
66   * @dev:    The Linux PCI device structure for the device to map
67   * @slot:   The slot number for this device on __BUS 0__. Linux
68   *		 enumerates through all the bridges and figures out the
69   *		 slot on Bus 0 where this device eventually hooks to.
70   * @pin:    The PCI interrupt pin read from the device, then swizzled
71   *		 as it goes through each bridge.
72   * Returns Interrupt number for the device
73   */
pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)74  int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
75  {
76  	if (octeon_pcibios_map_irq)
77  		return octeon_pcibios_map_irq(dev, slot, pin);
78  	else
79  		panic("octeon_pcibios_map_irq not set.");
80  }
81  
82  
83  /*
84   * Called to perform platform specific PCI setup
85   */
pcibios_plat_dev_init(struct pci_dev * dev)86  int pcibios_plat_dev_init(struct pci_dev *dev)
87  {
88  	uint16_t config;
89  	uint32_t dconfig;
90  	int pos;
91  	/*
92  	 * Force the Cache line setting to 64 bytes. The standard
93  	 * Linux bus scan doesn't seem to set it. Octeon really has
94  	 * 128 byte lines, but Intel bridges get really upset if you
95  	 * try and set values above 64 bytes. Value is specified in
96  	 * 32bit words.
97  	 */
98  	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
99  	/* Set latency timers for all devices */
100  	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
101  
102  	/* Enable reporting System errors and parity errors on all devices */
103  	/* Enable parity checking and error reporting */
104  	pci_read_config_word(dev, PCI_COMMAND, &config);
105  	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
106  	pci_write_config_word(dev, PCI_COMMAND, config);
107  
108  	if (dev->subordinate) {
109  		/* Set latency timers on sub bridges */
110  		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
111  		/* More bridge error detection */
112  		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
113  		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
114  		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
115  	}
116  
117  	/* Enable the PCIe normal error reporting */
118  	config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
119  	config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
120  	config |= PCI_EXP_DEVCTL_FERE;	/* Fatal Error Reporting */
121  	config |= PCI_EXP_DEVCTL_URRE;	/* Unsupported Request */
122  	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
123  
124  	/* Find the Advanced Error Reporting capability */
125  	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
126  	if (pos) {
127  		/* Clear Uncorrectable Error Status */
128  		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
129  				      &dconfig);
130  		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131  				       dconfig);
132  		/* Enable reporting of all uncorrectable errors */
133  		/* Uncorrectable Error Mask - turned on bits disable errors */
134  		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
135  		/*
136  		 * Leave severity at HW default. This only controls if
137  		 * errors are reported as uncorrectable or
138  		 * correctable, not if the error is reported.
139  		 */
140  		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
141  		/* Clear Correctable Error Status */
142  		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
143  		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
144  		/* Enable reporting of all correctable errors */
145  		/* Correctable Error Mask - turned on bits disable errors */
146  		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
147  		/* Advanced Error Capabilities */
148  		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
149  		/* ECRC Generation Enable */
150  		if (config & PCI_ERR_CAP_ECRC_GENC)
151  			config |= PCI_ERR_CAP_ECRC_GENE;
152  		/* ECRC Check Enable */
153  		if (config & PCI_ERR_CAP_ECRC_CHKC)
154  			config |= PCI_ERR_CAP_ECRC_CHKE;
155  		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
156  		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
157  		/* Report all errors to the root complex */
158  		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
159  				       PCI_ERR_ROOT_CMD_COR_EN |
160  				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
161  				       PCI_ERR_ROOT_CMD_FATAL_EN);
162  		/* Clear the Root status register */
163  		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
164  		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
165  	}
166  
167  	return 0;
168  }
169  
170  /**
171   * Return the mapping of PCI device number to IRQ line. Each
172   * character in the return string represents the interrupt
173   * line for the device at that position. Device 1 maps to the
174   * first character, etc. The characters A-D are used for PCI
175   * interrupts.
176   *
177   * Returns PCI interrupt mapping
178   */
octeon_get_pci_interrupts(void)179  const char *octeon_get_pci_interrupts(void)
180  {
181  	/*
182  	 * Returning an empty string causes the interrupts to be
183  	 * routed based on the PCI specification. From the PCI spec:
184  	 *
185  	 * INTA# of Device Number 0 is connected to IRQW on the system
186  	 * board.  (Device Number has no significance regarding being
187  	 * located on the system board or in a connector.) INTA# of
188  	 * Device Number 1 is connected to IRQX on the system
189  	 * board. INTA# of Device Number 2 is connected to IRQY on the
190  	 * system board. INTA# of Device Number 3 is connected to IRQZ
191  	 * on the system board. The table below describes how each
192  	 * agent's INTx# lines are connected to the system board
193  	 * interrupt lines. The following equation can be used to
194  	 * determine to which INTx# signal on the system board a given
195  	 * device's INTx# line(s) is connected.
196  	 *
197  	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
198  	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
199  	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
200  	 * INTD# = 3)
201  	 */
202  	if (of_machine_is_compatible("dlink,dsr-500n"))
203  		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
204  	switch (octeon_bootinfo->board_type) {
205  	case CVMX_BOARD_TYPE_NAO38:
206  		/* This is really the NAC38 */
207  		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
208  	case CVMX_BOARD_TYPE_EBH3100:
209  	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
210  	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
211  		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
212  	case CVMX_BOARD_TYPE_BBGW_REF:
213  		return "AABCD";
214  	case CVMX_BOARD_TYPE_CUST_DSR1000N:
215  		return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
216  	case CVMX_BOARD_TYPE_THUNDER:
217  	case CVMX_BOARD_TYPE_EBH3000:
218  	default:
219  		return "";
220  	}
221  }
222  
223  /**
224   * Map a PCI device to the appropriate interrupt line
225   *
226   * @dev:    The Linux PCI device structure for the device to map
227   * @slot:   The slot number for this device on __BUS 0__. Linux
228   *		 enumerates through all the bridges and figures out the
229   *		 slot on Bus 0 where this device eventually hooks to.
230   * @pin:    The PCI interrupt pin read from the device, then swizzled
231   *		 as it goes through each bridge.
232   * Returns Interrupt number for the device
233   */
octeon_pci_pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)234  int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
235  				      u8 slot, u8 pin)
236  {
237  	int irq_num;
238  	const char *interrupts;
239  	int dev_num;
240  
241  	/* Get the board specific interrupt mapping */
242  	interrupts = octeon_get_pci_interrupts();
243  
244  	dev_num = dev->devfn >> 3;
245  	if (dev_num < strlen(interrupts))
246  		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
247  			OCTEON_IRQ_PCI_INT0;
248  	else
249  		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250  	return irq_num;
251  }
252  
253  
254  /*
255   * Read a value from configuration space
256   */
octeon_read_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 * val)257  static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258  			      int reg, int size, u32 *val)
259  {
260  	union octeon_pci_address pci_addr;
261  
262  	pci_addr.u64 = 0;
263  	pci_addr.s.upper = 2;
264  	pci_addr.s.io = 1;
265  	pci_addr.s.did = 3;
266  	pci_addr.s.subdid = 1;
267  	pci_addr.s.endian_swap = 1;
268  	pci_addr.s.bus = bus->number;
269  	pci_addr.s.dev = devfn >> 3;
270  	pci_addr.s.func = devfn & 0x7;
271  	pci_addr.s.reg = reg;
272  
273  	switch (size) {
274  	case 4:
275  		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
276  		return PCIBIOS_SUCCESSFUL;
277  	case 2:
278  		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
279  		return PCIBIOS_SUCCESSFUL;
280  	case 1:
281  		*val = cvmx_read64_uint8(pci_addr.u64);
282  		return PCIBIOS_SUCCESSFUL;
283  	}
284  	return PCIBIOS_FUNC_NOT_SUPPORTED;
285  }
286  
287  
288  /*
289   * Write a value to PCI configuration space
290   */
octeon_write_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 val)291  static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
292  			       int reg, int size, u32 val)
293  {
294  	union octeon_pci_address pci_addr;
295  
296  	pci_addr.u64 = 0;
297  	pci_addr.s.upper = 2;
298  	pci_addr.s.io = 1;
299  	pci_addr.s.did = 3;
300  	pci_addr.s.subdid = 1;
301  	pci_addr.s.endian_swap = 1;
302  	pci_addr.s.bus = bus->number;
303  	pci_addr.s.dev = devfn >> 3;
304  	pci_addr.s.func = devfn & 0x7;
305  	pci_addr.s.reg = reg;
306  
307  	switch (size) {
308  	case 4:
309  		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
310  		return PCIBIOS_SUCCESSFUL;
311  	case 2:
312  		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
313  		return PCIBIOS_SUCCESSFUL;
314  	case 1:
315  		cvmx_write64_uint8(pci_addr.u64, val);
316  		return PCIBIOS_SUCCESSFUL;
317  	}
318  	return PCIBIOS_FUNC_NOT_SUPPORTED;
319  }
320  
321  
322  static struct pci_ops octeon_pci_ops = {
323  	.read	= octeon_read_config,
324  	.write	= octeon_write_config,
325  };
326  
327  static struct resource octeon_pci_mem_resource = {
328  	.start = 0,
329  	.end = 0,
330  	.name = "Octeon PCI MEM",
331  	.flags = IORESOURCE_MEM,
332  };
333  
334  /*
335   * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
336   * bridge
337   */
338  static struct resource octeon_pci_io_resource = {
339  	.start = 0x4000,
340  	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
341  	.name = "Octeon PCI IO",
342  	.flags = IORESOURCE_IO,
343  };
344  
345  static struct pci_controller octeon_pci_controller = {
346  	.pci_ops = &octeon_pci_ops,
347  	.mem_resource = &octeon_pci_mem_resource,
348  	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
349  	.io_resource = &octeon_pci_io_resource,
350  	.io_offset = 0,
351  	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
352  };
353  
354  
355  /*
356   * Low level initialize the Octeon PCI controller
357   */
octeon_pci_initialize(void)358  static void octeon_pci_initialize(void)
359  {
360  	union cvmx_pci_cfg01 cfg01;
361  	union cvmx_npi_ctl_status ctl_status;
362  	union cvmx_pci_ctl_status_2 ctl_status_2;
363  	union cvmx_pci_cfg19 cfg19;
364  	union cvmx_pci_cfg16 cfg16;
365  	union cvmx_pci_cfg22 cfg22;
366  	union cvmx_pci_cfg56 cfg56;
367  
368  	/* Reset the PCI Bus */
369  	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
370  	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
371  
372  	udelay(2000);		/* Hold PCI reset for 2 ms */
373  
374  	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
375  	ctl_status.s.max_word = 1;
376  	ctl_status.s.timer = 1;
377  	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
378  
379  	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
380  	   (64b) */
381  	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
382  	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
383  
384  	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
385  
386  	ctl_status_2.u32 = 0;
387  	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
388  					   before any PCI reads. */
389  	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
390  	ctl_status_2.s.bar2_enb = 1;
391  	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
392  	ctl_status_2.s.bar2_esx = 1;
393  	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
394  	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
395  		/* BAR1 hole */
396  		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
397  		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
398  		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
399  		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
400  		ctl_status_2.s.bb1 = 1;	     /* BAR1 is big */
401  		ctl_status_2.s.bb0 = 1;	     /* BAR0 is big */
402  	}
403  
404  	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
405  	udelay(2000);		/* Wait 2 ms before doing PCI reads */
406  
407  	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
408  	pr_notice("PCI Status: %s %s-bit\n",
409  		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
410  		  ctl_status_2.s.ap_64ad ? "64" : "32");
411  
412  	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
413  		union cvmx_pci_cnt_reg cnt_reg_start;
414  		union cvmx_pci_cnt_reg cnt_reg_end;
415  		unsigned long cycles, pci_clock;
416  
417  		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
418  		cycles = read_c0_cvmcount();
419  		udelay(1000);
420  		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421  		cycles = read_c0_cvmcount() - cycles;
422  		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
423  			    (cycles / (mips_hpt_frequency / 1000000));
424  		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
425  	}
426  
427  	/*
428  	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
429  	 * in PCI-X mode to allow four outstanding splits. Otherwise,
430  	 * should not change from its reset value. Don't write PCI_CFG19
431  	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
432  	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
433  	 * MRBCM -> must be one.
434  	 */
435  	if (ctl_status_2.s.ap_pcix) {
436  		cfg19.u32 = 0;
437  		/*
438  		 * Target Delayed/Split request outstanding maximum
439  		 * count. [1..31] and 0=32.  NOTE: If the user
440  		 * programs these bits beyond the Designed Maximum
441  		 * outstanding count, then the designed maximum table
442  		 * depth will be used instead.	No additional
443  		 * Deferred/Split transactions will be accepted if
444  		 * this outstanding maximum count is
445  		 * reached. Furthermore, no additional deferred/split
446  		 * transactions will be accepted if the I/O delay/ I/O
447  		 * Split Request outstanding maximum is reached.
448  		 */
449  		cfg19.s.tdomc = 4;
450  		/*
451  		 * Master Deferred Read Request Outstanding Max Count
452  		 * (PCI only).	CR4C[26:24] Max SAC cycles MAX DAC
453  		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
454  		 * 5 2 110 6 3 111 7 3 For example, if these bits are
455  		 * programmed to 100, the core can support 2 DAC
456  		 * cycles, 4 SAC cycles or a combination of 1 DAC and
457  		 * 2 SAC cycles. NOTE: For the PCI-X maximum
458  		 * outstanding split transactions, refer to
459  		 * CRE0[22:20].
460  		 */
461  		cfg19.s.mdrrmc = 2;
462  		/*
463  		 * Master Request (Memory Read) Byte Count/Byte Enable
464  		 * select. 0 = Byte Enables valid. In PCI mode, a
465  		 * burst transaction cannot be performed using Memory
466  		 * Read command=4?h6. 1 = DWORD Byte Count valid
467  		 * (default). In PCI Mode, the memory read byte
468  		 * enables are automatically generated by the
469  		 * core. Note: N3 Master Request transaction sizes are
470  		 * always determined through the
471  		 * am_attr[<35:32>|<7:0>] field.
472  		 */
473  		cfg19.s.mrbcm = 1;
474  		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
475  	}
476  
477  
478  	cfg01.u32 = 0;
479  	cfg01.s.msae = 1;	/* Memory Space Access Enable */
480  	cfg01.s.me = 1;		/* Master Enable */
481  	cfg01.s.pee = 1;	/* PERR# Enable */
482  	cfg01.s.see = 1;	/* System Error Enable */
483  	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
484  
485  	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
486  
487  #ifdef USE_OCTEON_INTERNAL_ARBITER
488  	/*
489  	 * When OCTEON is a PCI host, most systems will use OCTEON's
490  	 * internal arbiter, so must enable it before any PCI/PCI-X
491  	 * traffic can occur.
492  	 */
493  	{
494  		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
495  
496  		pci_int_arb_cfg.u64 = 0;
497  		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
498  		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
499  	}
500  #endif	/* USE_OCTEON_INTERNAL_ARBITER */
501  
502  	/*
503  	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
504  	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
505  	 * 1..7.
506  	 */
507  	cfg16.u32 = 0;
508  	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
509  	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
510  
511  	/*
512  	 * Should be written to 0x4ff00. MTTV -> must be zero.
513  	 * FLUSH -> must be 1. MRV -> should be 0xFF.
514  	 */
515  	cfg22.u32 = 0;
516  	/* Master Retry Value [1..255] and 0=infinite */
517  	cfg22.s.mrv = 0xff;
518  	/*
519  	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
520  	 * N3K operation.
521  	 */
522  	cfg22.s.flush = 1;
523  	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
524  
525  	/*
526  	 * MOST Indicates the maximum number of outstanding splits (in -1
527  	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
528  	 * affected by the MOST selection.  Should generally be written
529  	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
530  	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
531  	 */
532  	cfg56.u32 = 0;
533  	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
534  	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
535  	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
536  	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
537  	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
538  				   [0=512B,1=1024B,2=2048B,3=4096B] */
539  	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
540  				   .. 7=32] */
541  
542  	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
543  
544  	/*
545  	 * Affects PCI performance when OCTEON services reads to its
546  	 * BAR1/BAR2. Refer to Section 10.6.1.	The recommended values are
547  	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
548  	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
549  	 * these values need to be changed so they won't possibly prefetch off
550  	 * of the end of memory if PCI is DMAing a buffer at the end of
551  	 * memory. Note that these values differ from their reset values.
552  	 */
553  	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
554  	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
555  	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
556  }
557  
558  
559  /*
560   * Initialize the Octeon PCI controller
561   */
octeon_pci_setup(void)562  static int __init octeon_pci_setup(void)
563  {
564  	union cvmx_npi_mem_access_subidx mem_access;
565  	int index;
566  
567  	/* Only these chips have PCI */
568  	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
569  		return 0;
570  
571  	if (!octeon_is_pci_host()) {
572  		pr_notice("Not in host mode, PCI Controller not initialized\n");
573  		return 0;
574  	}
575  
576  	/* Point pcibios_map_irq() to the PCI version of it */
577  	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
578  
579  	/* Only use the big bars on chips that support it */
580  	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
581  	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
582  	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
583  		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
584  	else
585  		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
586  
587  	/* PCI I/O and PCI MEM values */
588  	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
589  	ioport_resource.start = 0;
590  	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
591  
592  	pr_notice("%s Octeon big bar support\n",
593  		  (octeon_dma_bar_type ==
594  		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
595  
596  	octeon_pci_initialize();
597  
598  	mem_access.u64 = 0;
599  	mem_access.s.esr = 1;	/* Endian-Swap on read. */
600  	mem_access.s.esw = 1;	/* Endian-Swap on write. */
601  	mem_access.s.nsr = 0;	/* No-Snoop on read. */
602  	mem_access.s.nsw = 0;	/* No-Snoop on write. */
603  	mem_access.s.ror = 0;	/* Relax Read on read. */
604  	mem_access.s.row = 0;	/* Relax Order on write. */
605  	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
606  	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
607  
608  	/*
609  	 * Remap the Octeon BAR 2 above all 32 bit devices
610  	 * (0x8000000000ul).  This is done here so it is remapped
611  	 * before the readl()'s below. We don't want BAR2 overlapping
612  	 * with BAR0/BAR1 during these reads.
613  	 */
614  	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
615  			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
616  	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
617  			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
618  
619  	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
620  		/* Remap the Octeon BAR 0 to 0-2GB */
621  		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
622  		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
623  
624  		/*
625  		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
626  		 * BAR 1 hole).
627  		 */
628  		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
629  		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
630  
631  		/* BAR1 movable mappings set for identity mapping */
632  		octeon_bar1_pci_phys = 0x80000000ull;
633  		for (index = 0; index < 32; index++) {
634  			union cvmx_pci_bar1_indexx bar1_index;
635  
636  			bar1_index.u32 = 0;
637  			/* Address bits[35:22] sent to L2C */
638  			bar1_index.s.addr_idx =
639  				(octeon_bar1_pci_phys >> 22) + index;
640  			/* Don't put PCI accesses in L2. */
641  			bar1_index.s.ca = 1;
642  			/* Endian Swap Mode */
643  			bar1_index.s.end_swp = 1;
644  			/* Set '1' when the selected address range is valid. */
645  			bar1_index.s.addr_v = 1;
646  			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
647  					   bar1_index.u32);
648  		}
649  
650  		/* Devices go after BAR1 */
651  		octeon_pci_mem_resource.start =
652  			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
653  			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
654  		octeon_pci_mem_resource.end =
655  			octeon_pci_mem_resource.start + (1ul << 30);
656  	} else {
657  		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
658  		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
659  		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
660  
661  		/* Remap the Octeon BAR 1 to map 0-128MB */
662  		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
663  		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
664  
665  		/* BAR1 movable regions contiguous to cover the swiotlb */
666  		octeon_bar1_pci_phys =
667  			default_swiotlb_base() & ~((1ull << 22) - 1);
668  
669  		for (index = 0; index < 32; index++) {
670  			union cvmx_pci_bar1_indexx bar1_index;
671  
672  			bar1_index.u32 = 0;
673  			/* Address bits[35:22] sent to L2C */
674  			bar1_index.s.addr_idx =
675  				(octeon_bar1_pci_phys >> 22) + index;
676  			/* Don't put PCI accesses in L2. */
677  			bar1_index.s.ca = 1;
678  			/* Endian Swap Mode */
679  			bar1_index.s.end_swp = 1;
680  			/* Set '1' when the selected address range is valid. */
681  			bar1_index.s.addr_v = 1;
682  			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
683  					   bar1_index.u32);
684  		}
685  
686  		/* Devices go after BAR0 */
687  		octeon_pci_mem_resource.start =
688  			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
689  			(4ul << 10);
690  		octeon_pci_mem_resource.end =
691  			octeon_pci_mem_resource.start + (1ul << 30);
692  	}
693  
694  	register_pci_controller(&octeon_pci_controller);
695  
696  	/*
697  	 * Clear any errors that might be pending from before the bus
698  	 * was setup properly.
699  	 */
700  	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
701  
702  	if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
703  						   -1, NULL, 0)))
704  		pr_err("Registration of co_pci_edac failed!\n");
705  
706  	octeon_pci_dma_init();
707  
708  	return 0;
709  }
710  
711  arch_initcall(octeon_pci_setup);
712