1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4 *
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23
24 #include "cec-priv.h"
25
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 struct cec_msg *msg,
28 unsigned int la_idx);
29
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)30 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
31 {
32 int i;
33
34 for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
35 if (adap->log_addrs.log_addr[i] == log_addr)
36 return i;
37 return -1;
38 }
39
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)40 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
41 {
42 int i = cec_log_addr2idx(adap, log_addr);
43
44 return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
45 }
46
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)47 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
48 unsigned int *offset)
49 {
50 unsigned int loc = cec_get_edid_spa_location(edid, size);
51
52 if (offset)
53 *offset = loc;
54 if (loc == 0)
55 return CEC_PHYS_ADDR_INVALID;
56 return (edid[loc] << 8) | edid[loc + 1];
57 }
58 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
59
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)60 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
61 const struct drm_connector *connector)
62 {
63 memset(conn_info, 0, sizeof(*conn_info));
64 conn_info->type = CEC_CONNECTOR_TYPE_DRM;
65 conn_info->drm.card_no = connector->dev->primary->index;
66 conn_info->drm.connector_id = connector->base.id;
67 }
68 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
69
70 /*
71 * Queue a new event for this filehandle. If ts == 0, then set it
72 * to the current time.
73 *
74 * We keep a queue of at most max_event events where max_event differs
75 * per event. If the queue becomes full, then drop the oldest event and
76 * keep track of how many events we've dropped.
77 */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)78 void cec_queue_event_fh(struct cec_fh *fh,
79 const struct cec_event *new_ev, u64 ts)
80 {
81 static const u16 max_events[CEC_NUM_EVENTS] = {
82 1, 1, 800, 800, 8, 8, 8, 8
83 };
84 struct cec_event_entry *entry;
85 unsigned int ev_idx = new_ev->event - 1;
86
87 if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
88 return;
89
90 if (ts == 0)
91 ts = ktime_get_ns();
92
93 mutex_lock(&fh->lock);
94 if (ev_idx < CEC_NUM_CORE_EVENTS)
95 entry = &fh->core_events[ev_idx];
96 else
97 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
98 if (entry) {
99 if (new_ev->event == CEC_EVENT_LOST_MSGS &&
100 fh->queued_events[ev_idx]) {
101 entry->ev.lost_msgs.lost_msgs +=
102 new_ev->lost_msgs.lost_msgs;
103 goto unlock;
104 }
105 entry->ev = *new_ev;
106 entry->ev.ts = ts;
107
108 if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
109 /* Add new msg at the end of the queue */
110 list_add_tail(&entry->list, &fh->events[ev_idx]);
111 fh->queued_events[ev_idx]++;
112 fh->total_queued_events++;
113 goto unlock;
114 }
115
116 if (ev_idx >= CEC_NUM_CORE_EVENTS) {
117 list_add_tail(&entry->list, &fh->events[ev_idx]);
118 /* drop the oldest event */
119 entry = list_first_entry(&fh->events[ev_idx],
120 struct cec_event_entry, list);
121 list_del(&entry->list);
122 kfree(entry);
123 }
124 }
125 /* Mark that events were lost */
126 entry = list_first_entry_or_null(&fh->events[ev_idx],
127 struct cec_event_entry, list);
128 if (entry)
129 entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
130
131 unlock:
132 mutex_unlock(&fh->lock);
133 wake_up_interruptible(&fh->wait);
134 }
135
136 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)137 static void cec_queue_event(struct cec_adapter *adap,
138 const struct cec_event *ev)
139 {
140 u64 ts = ktime_get_ns();
141 struct cec_fh *fh;
142
143 mutex_lock(&adap->devnode.lock_fhs);
144 list_for_each_entry(fh, &adap->devnode.fhs, list)
145 cec_queue_event_fh(fh, ev, ts);
146 mutex_unlock(&adap->devnode.lock_fhs);
147 }
148
149 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)150 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
151 bool dropped_events, ktime_t ts)
152 {
153 struct cec_event ev = {
154 .event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
155 CEC_EVENT_PIN_CEC_LOW,
156 .flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
157 };
158 struct cec_fh *fh;
159
160 mutex_lock(&adap->devnode.lock_fhs);
161 list_for_each_entry(fh, &adap->devnode.fhs, list) {
162 if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
163 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
164 }
165 mutex_unlock(&adap->devnode.lock_fhs);
166 }
167 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
168
169 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)170 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
171 {
172 struct cec_event ev = {
173 .event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
174 CEC_EVENT_PIN_HPD_LOW,
175 };
176 struct cec_fh *fh;
177
178 mutex_lock(&adap->devnode.lock_fhs);
179 list_for_each_entry(fh, &adap->devnode.fhs, list)
180 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
181 mutex_unlock(&adap->devnode.lock_fhs);
182 }
183 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
184
185 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)186 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
187 {
188 struct cec_event ev = {
189 .event = is_high ? CEC_EVENT_PIN_5V_HIGH :
190 CEC_EVENT_PIN_5V_LOW,
191 };
192 struct cec_fh *fh;
193
194 mutex_lock(&adap->devnode.lock_fhs);
195 list_for_each_entry(fh, &adap->devnode.fhs, list)
196 cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
197 mutex_unlock(&adap->devnode.lock_fhs);
198 }
199 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
200
201 /*
202 * Queue a new message for this filehandle.
203 *
204 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
205 * queue becomes full, then drop the oldest message and keep track
206 * of how many messages we've dropped.
207 */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)208 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
209 {
210 static const struct cec_event ev_lost_msgs = {
211 .event = CEC_EVENT_LOST_MSGS,
212 .flags = 0,
213 {
214 .lost_msgs = { 1 },
215 },
216 };
217 struct cec_msg_entry *entry;
218
219 mutex_lock(&fh->lock);
220 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
221 if (entry) {
222 entry->msg = *msg;
223 /* Add new msg at the end of the queue */
224 list_add_tail(&entry->list, &fh->msgs);
225
226 if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
227 /* All is fine if there is enough room */
228 fh->queued_msgs++;
229 mutex_unlock(&fh->lock);
230 wake_up_interruptible(&fh->wait);
231 return;
232 }
233
234 /*
235 * if the message queue is full, then drop the oldest one and
236 * send a lost message event.
237 */
238 entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
239 list_del(&entry->list);
240 kfree(entry);
241 }
242 mutex_unlock(&fh->lock);
243
244 /*
245 * We lost a message, either because kmalloc failed or the queue
246 * was full.
247 */
248 cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
249 }
250
251 /*
252 * Queue the message for those filehandles that are in monitor mode.
253 * If valid_la is true (this message is for us or was sent by us),
254 * then pass it on to any monitoring filehandle. If this message
255 * isn't for us or from us, then only give it to filehandles that
256 * are in MONITOR_ALL mode.
257 *
258 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
259 * set and the CEC adapter was placed in 'monitor all' mode.
260 */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)261 static void cec_queue_msg_monitor(struct cec_adapter *adap,
262 const struct cec_msg *msg,
263 bool valid_la)
264 {
265 struct cec_fh *fh;
266 u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
267 CEC_MODE_MONITOR_ALL;
268
269 mutex_lock(&adap->devnode.lock_fhs);
270 list_for_each_entry(fh, &adap->devnode.fhs, list) {
271 if (fh->mode_follower >= monitor_mode)
272 cec_queue_msg_fh(fh, msg);
273 }
274 mutex_unlock(&adap->devnode.lock_fhs);
275 }
276
277 /*
278 * Queue the message for follower filehandles.
279 */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)280 static void cec_queue_msg_followers(struct cec_adapter *adap,
281 const struct cec_msg *msg)
282 {
283 struct cec_fh *fh;
284
285 mutex_lock(&adap->devnode.lock_fhs);
286 list_for_each_entry(fh, &adap->devnode.fhs, list) {
287 if (fh->mode_follower == CEC_MODE_FOLLOWER)
288 cec_queue_msg_fh(fh, msg);
289 }
290 mutex_unlock(&adap->devnode.lock_fhs);
291 }
292
293 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)294 static void cec_post_state_event(struct cec_adapter *adap)
295 {
296 struct cec_event ev = {
297 .event = CEC_EVENT_STATE_CHANGE,
298 };
299
300 ev.state_change.phys_addr = adap->phys_addr;
301 ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
302 ev.state_change.have_conn_info =
303 adap->conn_info.type != CEC_CONNECTOR_TYPE_NO_CONNECTOR;
304 cec_queue_event(adap, &ev);
305 }
306
307 /*
308 * A CEC transmit (and a possible wait for reply) completed.
309 * If this was in blocking mode, then complete it, otherwise
310 * queue the message for userspace to dequeue later.
311 *
312 * This function is called with adap->lock held.
313 */
cec_data_completed(struct cec_data * data)314 static void cec_data_completed(struct cec_data *data)
315 {
316 /*
317 * Delete this transmit from the filehandle's xfer_list since
318 * we're done with it.
319 *
320 * Note that if the filehandle is closed before this transmit
321 * finished, then the release() function will set data->fh to NULL.
322 * Without that we would be referring to a closed filehandle.
323 */
324 if (data->fh)
325 list_del_init(&data->xfer_list);
326
327 if (data->blocking) {
328 /*
329 * Someone is blocking so mark the message as completed
330 * and call complete.
331 */
332 data->completed = true;
333 complete(&data->c);
334 } else {
335 /*
336 * No blocking, so just queue the message if needed and
337 * free the memory.
338 */
339 if (data->fh)
340 cec_queue_msg_fh(data->fh, &data->msg);
341 kfree(data);
342 }
343 }
344
345 /*
346 * A pending CEC transmit needs to be cancelled, either because the CEC
347 * adapter is disabled or the transmit takes an impossibly long time to
348 * finish, or the reply timed out.
349 *
350 * This function is called with adap->lock held.
351 */
cec_data_cancel(struct cec_data * data,u8 tx_status,u8 rx_status)352 static void cec_data_cancel(struct cec_data *data, u8 tx_status, u8 rx_status)
353 {
354 struct cec_adapter *adap = data->adap;
355
356 /*
357 * It's either the current transmit, or it is a pending
358 * transmit. Take the appropriate action to clear it.
359 */
360 if (adap->transmitting == data) {
361 adap->transmitting = NULL;
362 } else {
363 list_del_init(&data->list);
364 if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
365 if (!WARN_ON(!adap->transmit_queue_sz))
366 adap->transmit_queue_sz--;
367 }
368
369 if (data->msg.tx_status & CEC_TX_STATUS_OK) {
370 data->msg.rx_ts = ktime_get_ns();
371 data->msg.rx_status = rx_status;
372 if (!data->blocking)
373 data->msg.tx_status = 0;
374 } else {
375 data->msg.tx_ts = ktime_get_ns();
376 data->msg.tx_status |= tx_status |
377 CEC_TX_STATUS_MAX_RETRIES;
378 data->msg.tx_error_cnt++;
379 data->attempts = 0;
380 if (!data->blocking)
381 data->msg.rx_status = 0;
382 }
383
384 /* Queue transmitted message for monitoring purposes */
385 cec_queue_msg_monitor(adap, &data->msg, 1);
386
387 if (!data->blocking && data->msg.sequence)
388 /* Allow drivers to react to a canceled transmit */
389 call_void_op(adap, adap_nb_transmit_canceled, &data->msg);
390
391 cec_data_completed(data);
392 }
393
394 /*
395 * Flush all pending transmits and cancel any pending timeout work.
396 *
397 * This function is called with adap->lock held.
398 */
cec_flush(struct cec_adapter * adap)399 static void cec_flush(struct cec_adapter *adap)
400 {
401 struct cec_data *data, *n;
402
403 /*
404 * If the adapter is disabled, or we're asked to stop,
405 * then cancel any pending transmits.
406 */
407 while (!list_empty(&adap->transmit_queue)) {
408 data = list_first_entry(&adap->transmit_queue,
409 struct cec_data, list);
410 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
411 }
412 if (adap->transmitting)
413 adap->transmit_in_progress_aborted = true;
414
415 /* Cancel the pending timeout work. */
416 list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
417 if (cancel_delayed_work(&data->work))
418 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
419 /*
420 * If cancel_delayed_work returned false, then
421 * the cec_wait_timeout function is running,
422 * which will call cec_data_completed. So no
423 * need to do anything special in that case.
424 */
425 }
426 /*
427 * If something went wrong and this counter isn't what it should
428 * be, then this will reset it back to 0. Warn if it is not 0,
429 * since it indicates a bug, either in this framework or in a
430 * CEC driver.
431 */
432 if (WARN_ON(adap->transmit_queue_sz))
433 adap->transmit_queue_sz = 0;
434 }
435
436 /*
437 * Main CEC state machine
438 *
439 * Wait until the thread should be stopped, or we are not transmitting and
440 * a new transmit message is queued up, in which case we start transmitting
441 * that message. When the adapter finished transmitting the message it will
442 * call cec_transmit_done().
443 *
444 * If the adapter is disabled, then remove all queued messages instead.
445 *
446 * If the current transmit times out, then cancel that transmit.
447 */
cec_thread_func(void * _adap)448 int cec_thread_func(void *_adap)
449 {
450 struct cec_adapter *adap = _adap;
451
452 for (;;) {
453 unsigned int signal_free_time;
454 struct cec_data *data;
455 bool timeout = false;
456 u8 attempts;
457
458 if (adap->transmit_in_progress) {
459 int err;
460
461 /*
462 * We are transmitting a message, so add a timeout
463 * to prevent the state machine to get stuck waiting
464 * for this message to finalize and add a check to
465 * see if the adapter is disabled in which case the
466 * transmit should be canceled.
467 */
468 err = wait_event_interruptible_timeout(adap->kthread_waitq,
469 (adap->needs_hpd &&
470 (!adap->is_configured && !adap->is_configuring)) ||
471 kthread_should_stop() ||
472 (!adap->transmit_in_progress &&
473 !list_empty(&adap->transmit_queue)),
474 msecs_to_jiffies(adap->xfer_timeout_ms));
475 timeout = err == 0;
476 } else {
477 /* Otherwise we just wait for something to happen. */
478 wait_event_interruptible(adap->kthread_waitq,
479 kthread_should_stop() ||
480 (!adap->transmit_in_progress &&
481 !list_empty(&adap->transmit_queue)));
482 }
483
484 mutex_lock(&adap->lock);
485
486 if ((adap->needs_hpd &&
487 (!adap->is_configured && !adap->is_configuring)) ||
488 kthread_should_stop()) {
489 cec_flush(adap);
490 goto unlock;
491 }
492
493 if (adap->transmit_in_progress &&
494 adap->transmit_in_progress_aborted) {
495 if (adap->transmitting)
496 cec_data_cancel(adap->transmitting,
497 CEC_TX_STATUS_ABORTED, 0);
498 adap->transmit_in_progress = false;
499 adap->transmit_in_progress_aborted = false;
500 goto unlock;
501 }
502 if (adap->transmit_in_progress && timeout) {
503 /*
504 * If we timeout, then log that. Normally this does
505 * not happen and it is an indication of a faulty CEC
506 * adapter driver, or the CEC bus is in some weird
507 * state. On rare occasions it can happen if there is
508 * so much traffic on the bus that the adapter was
509 * unable to transmit for xfer_timeout_ms (2.1s by
510 * default).
511 */
512 if (adap->transmitting) {
513 pr_warn("cec-%s: message %*ph timed out\n", adap->name,
514 adap->transmitting->msg.len,
515 adap->transmitting->msg.msg);
516 /* Just give up on this. */
517 cec_data_cancel(adap->transmitting,
518 CEC_TX_STATUS_TIMEOUT, 0);
519 } else {
520 pr_warn("cec-%s: transmit timed out\n", adap->name);
521 }
522 adap->transmit_in_progress = false;
523 adap->tx_timeouts++;
524 goto unlock;
525 }
526
527 /*
528 * If we are still transmitting, or there is nothing new to
529 * transmit, then just continue waiting.
530 */
531 if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
532 goto unlock;
533
534 /* Get a new message to transmit */
535 data = list_first_entry(&adap->transmit_queue,
536 struct cec_data, list);
537 list_del_init(&data->list);
538 if (!WARN_ON(!data->adap->transmit_queue_sz))
539 adap->transmit_queue_sz--;
540
541 /* Make this the current transmitting message */
542 adap->transmitting = data;
543
544 /*
545 * Suggested number of attempts as per the CEC 2.0 spec:
546 * 4 attempts is the default, except for 'secondary poll
547 * messages', i.e. poll messages not sent during the adapter
548 * configuration phase when it allocates logical addresses.
549 */
550 if (data->msg.len == 1 && adap->is_configured)
551 attempts = 2;
552 else
553 attempts = 4;
554
555 /* Set the suggested signal free time */
556 if (data->attempts) {
557 /* should be >= 3 data bit periods for a retry */
558 signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
559 } else if (adap->last_initiator !=
560 cec_msg_initiator(&data->msg)) {
561 /* should be >= 5 data bit periods for new initiator */
562 signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
563 adap->last_initiator = cec_msg_initiator(&data->msg);
564 } else {
565 /*
566 * should be >= 7 data bit periods for sending another
567 * frame immediately after another.
568 */
569 signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
570 }
571 if (data->attempts == 0)
572 data->attempts = attempts;
573
574 adap->transmit_in_progress_aborted = false;
575 /* Tell the adapter to transmit, cancel on error */
576 if (call_op(adap, adap_transmit, data->attempts,
577 signal_free_time, &data->msg))
578 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
579 else
580 adap->transmit_in_progress = true;
581
582 unlock:
583 mutex_unlock(&adap->lock);
584
585 if (kthread_should_stop())
586 break;
587 }
588 return 0;
589 }
590
591 /*
592 * Called by the CEC adapter if a transmit finished.
593 */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)594 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
595 u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
596 u8 error_cnt, ktime_t ts)
597 {
598 struct cec_data *data;
599 struct cec_msg *msg;
600 unsigned int attempts_made = arb_lost_cnt + nack_cnt +
601 low_drive_cnt + error_cnt;
602 bool done = status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK);
603 bool aborted = adap->transmit_in_progress_aborted;
604
605 dprintk(2, "%s: status 0x%02x\n", __func__, status);
606 if (attempts_made < 1)
607 attempts_made = 1;
608
609 mutex_lock(&adap->lock);
610 data = adap->transmitting;
611 if (!data) {
612 /*
613 * This might happen if a transmit was issued and the cable is
614 * unplugged while the transmit is ongoing. Ignore this
615 * transmit in that case.
616 */
617 if (!adap->transmit_in_progress)
618 dprintk(1, "%s was called without an ongoing transmit!\n",
619 __func__);
620 adap->transmit_in_progress = false;
621 goto wake_thread;
622 }
623 adap->transmit_in_progress = false;
624 adap->transmit_in_progress_aborted = false;
625
626 msg = &data->msg;
627
628 /* Drivers must fill in the status! */
629 WARN_ON(status == 0);
630 msg->tx_ts = ktime_to_ns(ts);
631 msg->tx_status |= status;
632 msg->tx_arb_lost_cnt += arb_lost_cnt;
633 msg->tx_nack_cnt += nack_cnt;
634 msg->tx_low_drive_cnt += low_drive_cnt;
635 msg->tx_error_cnt += error_cnt;
636
637 /* Mark that we're done with this transmit */
638 adap->transmitting = NULL;
639
640 /*
641 * If there are still retry attempts left and there was an error and
642 * the hardware didn't signal that it retried itself (by setting
643 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
644 */
645 if (!aborted && data->attempts > attempts_made && !done) {
646 /* Retry this message */
647 data->attempts -= attempts_made;
648 if (msg->timeout)
649 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
650 msg->len, msg->msg, data->attempts, msg->reply);
651 else
652 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
653 msg->len, msg->msg, data->attempts);
654 /* Add the message in front of the transmit queue */
655 list_add(&data->list, &adap->transmit_queue);
656 adap->transmit_queue_sz++;
657 goto wake_thread;
658 }
659
660 if (aborted && !done)
661 status |= CEC_TX_STATUS_ABORTED;
662 data->attempts = 0;
663
664 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
665 if (!(status & CEC_TX_STATUS_OK))
666 msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
667
668 /* Queue transmitted message for monitoring purposes */
669 cec_queue_msg_monitor(adap, msg, 1);
670
671 if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
672 msg->timeout) {
673 /*
674 * Queue the message into the wait queue if we want to wait
675 * for a reply.
676 */
677 list_add_tail(&data->list, &adap->wait_queue);
678 schedule_delayed_work(&data->work,
679 msecs_to_jiffies(msg->timeout));
680 } else {
681 /* Otherwise we're done */
682 cec_data_completed(data);
683 }
684
685 wake_thread:
686 /*
687 * Wake up the main thread to see if another message is ready
688 * for transmitting or to retry the current message.
689 */
690 wake_up_interruptible(&adap->kthread_waitq);
691 mutex_unlock(&adap->lock);
692 }
693 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
694
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)695 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
696 u8 status, ktime_t ts)
697 {
698 switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
699 case CEC_TX_STATUS_OK:
700 cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
701 return;
702 case CEC_TX_STATUS_ARB_LOST:
703 cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
704 return;
705 case CEC_TX_STATUS_NACK:
706 cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
707 return;
708 case CEC_TX_STATUS_LOW_DRIVE:
709 cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
710 return;
711 case CEC_TX_STATUS_ERROR:
712 cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
713 return;
714 default:
715 /* Should never happen */
716 WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
717 return;
718 }
719 }
720 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
721
722 /*
723 * Called when waiting for a reply times out.
724 */
cec_wait_timeout(struct work_struct * work)725 static void cec_wait_timeout(struct work_struct *work)
726 {
727 struct cec_data *data = container_of(work, struct cec_data, work.work);
728 struct cec_adapter *adap = data->adap;
729
730 mutex_lock(&adap->lock);
731 /*
732 * Sanity check in case the timeout and the arrival of the message
733 * happened at the same time.
734 */
735 if (list_empty(&data->list))
736 goto unlock;
737
738 /* Mark the message as timed out */
739 list_del_init(&data->list);
740 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_TIMEOUT);
741 unlock:
742 mutex_unlock(&adap->lock);
743 }
744
745 /*
746 * Transmit a message. The fh argument may be NULL if the transmit is not
747 * associated with a specific filehandle.
748 *
749 * This function is called with adap->lock held.
750 */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)751 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
752 struct cec_fh *fh, bool block)
753 {
754 struct cec_data *data;
755 bool is_raw = msg_is_raw(msg);
756 int err;
757
758 if (adap->devnode.unregistered)
759 return -ENODEV;
760
761 msg->rx_ts = 0;
762 msg->tx_ts = 0;
763 msg->rx_status = 0;
764 msg->tx_status = 0;
765 msg->tx_arb_lost_cnt = 0;
766 msg->tx_nack_cnt = 0;
767 msg->tx_low_drive_cnt = 0;
768 msg->tx_error_cnt = 0;
769 msg->sequence = 0;
770
771 if (msg->reply && msg->timeout == 0) {
772 /* Make sure the timeout isn't 0. */
773 msg->timeout = 1000;
774 }
775 msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
776
777 if (!msg->timeout)
778 msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
779
780 /* Sanity checks */
781 if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
782 dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
783 return -EINVAL;
784 }
785
786 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
787
788 if (msg->timeout)
789 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
790 __func__, msg->len, msg->msg, msg->reply,
791 !block ? ", nb" : "");
792 else
793 dprintk(2, "%s: %*ph%s\n",
794 __func__, msg->len, msg->msg, !block ? " (nb)" : "");
795
796 if (msg->timeout && msg->len == 1) {
797 dprintk(1, "%s: can't reply to poll msg\n", __func__);
798 return -EINVAL;
799 }
800
801 if (is_raw) {
802 if (!capable(CAP_SYS_RAWIO))
803 return -EPERM;
804 } else {
805 /* A CDC-Only device can only send CDC messages */
806 if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
807 (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
808 dprintk(1, "%s: not a CDC message\n", __func__);
809 return -EINVAL;
810 }
811
812 if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
813 msg->msg[2] = adap->phys_addr >> 8;
814 msg->msg[3] = adap->phys_addr & 0xff;
815 }
816
817 if (msg->len == 1) {
818 if (cec_msg_destination(msg) == 0xf) {
819 dprintk(1, "%s: invalid poll message\n",
820 __func__);
821 return -EINVAL;
822 }
823 if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
824 /*
825 * If the destination is a logical address our
826 * adapter has already claimed, then just NACK
827 * this. It depends on the hardware what it will
828 * do with a POLL to itself (some OK this), so
829 * it is just as easy to handle it here so the
830 * behavior will be consistent.
831 */
832 msg->tx_ts = ktime_get_ns();
833 msg->tx_status = CEC_TX_STATUS_NACK |
834 CEC_TX_STATUS_MAX_RETRIES;
835 msg->tx_nack_cnt = 1;
836 msg->sequence = ++adap->sequence;
837 if (!msg->sequence)
838 msg->sequence = ++adap->sequence;
839 return 0;
840 }
841 }
842 if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
843 cec_has_log_addr(adap, cec_msg_destination(msg))) {
844 dprintk(1, "%s: destination is the adapter itself\n",
845 __func__);
846 return -EINVAL;
847 }
848 if (msg->len > 1 && adap->is_configured &&
849 !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
850 dprintk(1, "%s: initiator has unknown logical address %d\n",
851 __func__, cec_msg_initiator(msg));
852 return -EINVAL;
853 }
854 /*
855 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
856 * transmitted to a TV, even if the adapter is unconfigured.
857 * This makes it possible to detect or wake up displays that
858 * pull down the HPD when in standby.
859 */
860 if (!adap->is_configured && !adap->is_configuring &&
861 (msg->len > 2 ||
862 cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
863 (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
864 msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
865 dprintk(1, "%s: adapter is unconfigured\n", __func__);
866 return -ENONET;
867 }
868 }
869
870 if (!adap->is_configured && !adap->is_configuring) {
871 if (adap->needs_hpd) {
872 dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
873 __func__);
874 return -ENONET;
875 }
876 if (msg->reply) {
877 dprintk(1, "%s: invalid msg->reply\n", __func__);
878 return -EINVAL;
879 }
880 }
881
882 if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
883 dprintk(2, "%s: transmit queue full\n", __func__);
884 return -EBUSY;
885 }
886
887 data = kzalloc(sizeof(*data), GFP_KERNEL);
888 if (!data)
889 return -ENOMEM;
890
891 msg->sequence = ++adap->sequence;
892 if (!msg->sequence)
893 msg->sequence = ++adap->sequence;
894
895 data->msg = *msg;
896 data->fh = fh;
897 data->adap = adap;
898 data->blocking = block;
899
900 init_completion(&data->c);
901 INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
902
903 if (fh)
904 list_add_tail(&data->xfer_list, &fh->xfer_list);
905 else
906 INIT_LIST_HEAD(&data->xfer_list);
907
908 list_add_tail(&data->list, &adap->transmit_queue);
909 adap->transmit_queue_sz++;
910 if (!adap->transmitting)
911 wake_up_interruptible(&adap->kthread_waitq);
912
913 /* All done if we don't need to block waiting for completion */
914 if (!block)
915 return 0;
916
917 /*
918 * Release the lock and wait, retake the lock afterwards.
919 */
920 mutex_unlock(&adap->lock);
921 err = wait_for_completion_killable(&data->c);
922 cancel_delayed_work_sync(&data->work);
923 mutex_lock(&adap->lock);
924
925 if (err)
926 adap->transmit_in_progress_aborted = true;
927
928 /* Cancel the transmit if it was interrupted */
929 if (!data->completed) {
930 if (data->msg.tx_status & CEC_TX_STATUS_OK)
931 cec_data_cancel(data, CEC_TX_STATUS_OK, CEC_RX_STATUS_ABORTED);
932 else
933 cec_data_cancel(data, CEC_TX_STATUS_ABORTED, 0);
934 }
935
936 /* The transmit completed (possibly with an error) */
937 *msg = data->msg;
938 if (WARN_ON(!list_empty(&data->list)))
939 list_del(&data->list);
940 if (WARN_ON(!list_empty(&data->xfer_list)))
941 list_del(&data->xfer_list);
942 kfree(data);
943 return 0;
944 }
945
946 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)947 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
948 bool block)
949 {
950 int ret;
951
952 mutex_lock(&adap->lock);
953 ret = cec_transmit_msg_fh(adap, msg, NULL, block);
954 mutex_unlock(&adap->lock);
955 return ret;
956 }
957 EXPORT_SYMBOL_GPL(cec_transmit_msg);
958
959 /*
960 * I don't like forward references but without this the low-level
961 * cec_received_msg() function would come after a bunch of high-level
962 * CEC protocol handling functions. That was very confusing.
963 */
964 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
965 bool is_reply);
966
967 #define DIRECTED 0x80
968 #define BCAST1_4 0x40
969 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
970 #define BCAST (BCAST1_4 | BCAST2_0)
971 #define BOTH (BCAST | DIRECTED)
972
973 /*
974 * Specify minimum length and whether the message is directed, broadcast
975 * or both. Messages that do not match the criteria are ignored as per
976 * the CEC specification.
977 */
978 static const u8 cec_msg_size[256] = {
979 [CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
980 [CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
981 [CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
982 [CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
983 [CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
984 [CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
985 [CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
986 [CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
987 [CEC_MSG_STANDBY] = 2 | BOTH,
988 [CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
989 [CEC_MSG_RECORD_ON] = 3 | DIRECTED,
990 [CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
991 [CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
992 [CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
993 [CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
994 [CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
995 [CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
996 [CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
997 [CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
998 [CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
999 [CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
1000 [CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
1001 [CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
1002 [CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
1003 [CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
1004 [CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
1005 [CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
1006 [CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
1007 [CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
1008 [CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
1009 [CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
1010 [CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
1011 [CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
1012 [CEC_MSG_PLAY] = 3 | DIRECTED,
1013 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
1014 [CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
1015 [CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
1016 [CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
1017 [CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
1018 [CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
1019 [CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
1020 [CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
1021 [CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
1022 [CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
1023 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
1024 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
1025 [CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
1026 [CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
1027 [CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
1028 [CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
1029 [CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
1030 [CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
1031 [CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
1032 [CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
1033 [CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
1034 [CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1035 [CEC_MSG_ABORT] = 2 | DIRECTED,
1036 [CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1037 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1038 [CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1039 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1040 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1041 [CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1042 [CEC_MSG_SET_AUDIO_VOLUME_LEVEL] = 3 | DIRECTED,
1043 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1044 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1045 [CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1046 [CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1047 [CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1048 [CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1049 [CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1050 [CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1051 [CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1052 [CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1053 [CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1054 [CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1055 };
1056
1057 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1058 void cec_received_msg_ts(struct cec_adapter *adap,
1059 struct cec_msg *msg, ktime_t ts)
1060 {
1061 struct cec_data *data;
1062 u8 msg_init = cec_msg_initiator(msg);
1063 u8 msg_dest = cec_msg_destination(msg);
1064 u8 cmd = msg->msg[1];
1065 bool is_reply = false;
1066 bool valid_la = true;
1067 bool monitor_valid_la = true;
1068 u8 min_len = 0;
1069
1070 if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1071 return;
1072
1073 if (adap->devnode.unregistered)
1074 return;
1075
1076 /*
1077 * Some CEC adapters will receive the messages that they transmitted.
1078 * This test filters out those messages by checking if we are the
1079 * initiator, and just returning in that case.
1080 *
1081 * Note that this won't work if this is an Unregistered device.
1082 *
1083 * It is bad practice if the hardware receives the message that it
1084 * transmitted and luckily most CEC adapters behave correctly in this
1085 * respect.
1086 */
1087 if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1088 cec_has_log_addr(adap, msg_init))
1089 return;
1090
1091 msg->rx_ts = ktime_to_ns(ts);
1092 msg->rx_status = CEC_RX_STATUS_OK;
1093 msg->sequence = msg->reply = msg->timeout = 0;
1094 msg->tx_status = 0;
1095 msg->tx_ts = 0;
1096 msg->tx_arb_lost_cnt = 0;
1097 msg->tx_nack_cnt = 0;
1098 msg->tx_low_drive_cnt = 0;
1099 msg->tx_error_cnt = 0;
1100 msg->flags = 0;
1101 memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1102
1103 mutex_lock(&adap->lock);
1104 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1105
1106 if (!adap->transmit_in_progress)
1107 adap->last_initiator = 0xff;
1108
1109 /* Check if this message was for us (directed or broadcast). */
1110 if (!cec_msg_is_broadcast(msg)) {
1111 valid_la = cec_has_log_addr(adap, msg_dest);
1112 monitor_valid_la = valid_la;
1113 }
1114
1115 /*
1116 * Check if the length is not too short or if the message is a
1117 * broadcast message where a directed message was expected or
1118 * vice versa. If so, then the message has to be ignored (according
1119 * to section CEC 7.3 and CEC 12.2).
1120 */
1121 if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1122 u8 dir_fl = cec_msg_size[cmd] & BOTH;
1123
1124 min_len = cec_msg_size[cmd] & 0x1f;
1125 if (msg->len < min_len)
1126 valid_la = false;
1127 else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1128 valid_la = false;
1129 else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST))
1130 valid_la = false;
1131 else if (cec_msg_is_broadcast(msg) &&
1132 adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0 &&
1133 !(dir_fl & BCAST1_4))
1134 valid_la = false;
1135 }
1136 if (valid_la && min_len) {
1137 /* These messages have special length requirements */
1138 switch (cmd) {
1139 case CEC_MSG_RECORD_ON:
1140 switch (msg->msg[2]) {
1141 case CEC_OP_RECORD_SRC_OWN:
1142 break;
1143 case CEC_OP_RECORD_SRC_DIGITAL:
1144 if (msg->len < 10)
1145 valid_la = false;
1146 break;
1147 case CEC_OP_RECORD_SRC_ANALOG:
1148 if (msg->len < 7)
1149 valid_la = false;
1150 break;
1151 case CEC_OP_RECORD_SRC_EXT_PLUG:
1152 if (msg->len < 4)
1153 valid_la = false;
1154 break;
1155 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1156 if (msg->len < 5)
1157 valid_la = false;
1158 break;
1159 }
1160 break;
1161 }
1162 }
1163
1164 /* It's a valid message and not a poll or CDC message */
1165 if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1166 bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1167
1168 /* The aborted command is in msg[2] */
1169 if (abort)
1170 cmd = msg->msg[2];
1171
1172 /*
1173 * Walk over all transmitted messages that are waiting for a
1174 * reply.
1175 */
1176 list_for_each_entry(data, &adap->wait_queue, list) {
1177 struct cec_msg *dst = &data->msg;
1178
1179 /*
1180 * The *only* CEC message that has two possible replies
1181 * is CEC_MSG_INITIATE_ARC.
1182 * In this case allow either of the two replies.
1183 */
1184 if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1185 (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1186 cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1187 (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1188 dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1189 dst->reply = cmd;
1190
1191 /* Does the command match? */
1192 if ((abort && cmd != dst->msg[1]) ||
1193 (!abort && cmd != dst->reply))
1194 continue;
1195
1196 /* Does the addressing match? */
1197 if (msg_init != cec_msg_destination(dst) &&
1198 !cec_msg_is_broadcast(dst))
1199 continue;
1200
1201 /* We got a reply */
1202 memcpy(dst->msg, msg->msg, msg->len);
1203 dst->len = msg->len;
1204 dst->rx_ts = msg->rx_ts;
1205 dst->rx_status = msg->rx_status;
1206 if (abort)
1207 dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1208 msg->flags = dst->flags;
1209 msg->sequence = dst->sequence;
1210 /* Remove it from the wait_queue */
1211 list_del_init(&data->list);
1212
1213 /* Cancel the pending timeout work */
1214 if (!cancel_delayed_work(&data->work)) {
1215 mutex_unlock(&adap->lock);
1216 cancel_delayed_work_sync(&data->work);
1217 mutex_lock(&adap->lock);
1218 }
1219 /*
1220 * Mark this as a reply, provided someone is still
1221 * waiting for the answer.
1222 */
1223 if (data->fh)
1224 is_reply = true;
1225 cec_data_completed(data);
1226 break;
1227 }
1228 }
1229 mutex_unlock(&adap->lock);
1230
1231 /* Pass the message on to any monitoring filehandles */
1232 cec_queue_msg_monitor(adap, msg, monitor_valid_la);
1233
1234 /* We're done if it is not for us or a poll message */
1235 if (!valid_la || msg->len <= 1)
1236 return;
1237
1238 if (adap->log_addrs.log_addr_mask == 0)
1239 return;
1240
1241 /*
1242 * Process the message on the protocol level. If is_reply is true,
1243 * then cec_receive_notify() won't pass on the reply to the listener(s)
1244 * since that was already done by cec_data_completed() above.
1245 */
1246 cec_receive_notify(adap, msg, is_reply);
1247 }
1248 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1249
1250 /* Logical Address Handling */
1251
1252 /*
1253 * Attempt to claim a specific logical address.
1254 *
1255 * This function is called with adap->lock held.
1256 */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1257 static int cec_config_log_addr(struct cec_adapter *adap,
1258 unsigned int idx,
1259 unsigned int log_addr)
1260 {
1261 struct cec_log_addrs *las = &adap->log_addrs;
1262 struct cec_msg msg = { };
1263 const unsigned int max_retries = 2;
1264 unsigned int i;
1265 int err;
1266
1267 if (cec_has_log_addr(adap, log_addr))
1268 return 0;
1269
1270 /* Send poll message */
1271 msg.len = 1;
1272 msg.msg[0] = (log_addr << 4) | log_addr;
1273
1274 for (i = 0; i < max_retries; i++) {
1275 err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1276
1277 /*
1278 * While trying to poll the physical address was reset
1279 * and the adapter was unconfigured, so bail out.
1280 */
1281 if (adap->phys_addr == CEC_PHYS_ADDR_INVALID)
1282 return -EINTR;
1283
1284 /* Also bail out if the PA changed while configuring. */
1285 if (adap->must_reconfigure)
1286 return -EINTR;
1287
1288 if (err)
1289 return err;
1290
1291 /*
1292 * The message was aborted or timed out due to a disconnect or
1293 * unconfigure, just bail out.
1294 */
1295 if (msg.tx_status &
1296 (CEC_TX_STATUS_ABORTED | CEC_TX_STATUS_TIMEOUT))
1297 return -EINTR;
1298 if (msg.tx_status & CEC_TX_STATUS_OK)
1299 return 0;
1300 if (msg.tx_status & CEC_TX_STATUS_NACK)
1301 break;
1302 /*
1303 * Retry up to max_retries times if the message was neither
1304 * OKed or NACKed. This can happen due to e.g. a Lost
1305 * Arbitration condition.
1306 */
1307 }
1308
1309 /*
1310 * If we are unable to get an OK or a NACK after max_retries attempts
1311 * (and note that each attempt already consists of four polls), then
1312 * we assume that something is really weird and that it is not a
1313 * good idea to try and claim this logical address.
1314 */
1315 if (i == max_retries) {
1316 dprintk(0, "polling for LA %u failed with tx_status=0x%04x\n",
1317 log_addr, msg.tx_status);
1318 return 0;
1319 }
1320
1321 /*
1322 * Message not acknowledged, so this logical
1323 * address is free to use.
1324 */
1325 err = call_op(adap, adap_log_addr, log_addr);
1326 if (err)
1327 return err;
1328
1329 las->log_addr[idx] = log_addr;
1330 las->log_addr_mask |= 1 << log_addr;
1331 return 1;
1332 }
1333
1334 /*
1335 * Unconfigure the adapter: clear all logical addresses and send
1336 * the state changed event.
1337 *
1338 * This function is called with adap->lock held.
1339 */
cec_adap_unconfigure(struct cec_adapter * adap)1340 static void cec_adap_unconfigure(struct cec_adapter *adap)
1341 {
1342 if (!adap->needs_hpd || adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1343 WARN_ON(call_op(adap, adap_log_addr, CEC_LOG_ADDR_INVALID));
1344 adap->log_addrs.log_addr_mask = 0;
1345 adap->is_configured = false;
1346 cec_flush(adap);
1347 wake_up_interruptible(&adap->kthread_waitq);
1348 cec_post_state_event(adap);
1349 call_void_op(adap, adap_unconfigured);
1350 }
1351
1352 /*
1353 * Attempt to claim the required logical addresses.
1354 */
cec_config_thread_func(void * arg)1355 static int cec_config_thread_func(void *arg)
1356 {
1357 /* The various LAs for each type of device */
1358 static const u8 tv_log_addrs[] = {
1359 CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1360 CEC_LOG_ADDR_INVALID
1361 };
1362 static const u8 record_log_addrs[] = {
1363 CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1364 CEC_LOG_ADDR_RECORD_3,
1365 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1366 CEC_LOG_ADDR_INVALID
1367 };
1368 static const u8 tuner_log_addrs[] = {
1369 CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1370 CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1371 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1372 CEC_LOG_ADDR_INVALID
1373 };
1374 static const u8 playback_log_addrs[] = {
1375 CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1376 CEC_LOG_ADDR_PLAYBACK_3,
1377 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1378 CEC_LOG_ADDR_INVALID
1379 };
1380 static const u8 audiosystem_log_addrs[] = {
1381 CEC_LOG_ADDR_AUDIOSYSTEM,
1382 CEC_LOG_ADDR_INVALID
1383 };
1384 static const u8 specific_use_log_addrs[] = {
1385 CEC_LOG_ADDR_SPECIFIC,
1386 CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1387 CEC_LOG_ADDR_INVALID
1388 };
1389 static const u8 *type2addrs[6] = {
1390 [CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1391 [CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1392 [CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1393 [CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1394 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1395 [CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1396 };
1397 static const u16 type2mask[] = {
1398 [CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1399 [CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1400 [CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1401 [CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1402 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1403 [CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1404 };
1405 struct cec_adapter *adap = arg;
1406 struct cec_log_addrs *las = &adap->log_addrs;
1407 int err;
1408 int i, j;
1409
1410 mutex_lock(&adap->lock);
1411 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1412 cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1413 las->log_addr_mask = 0;
1414
1415 if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1416 goto configured;
1417
1418 reconfigure:
1419 for (i = 0; i < las->num_log_addrs; i++) {
1420 unsigned int type = las->log_addr_type[i];
1421 const u8 *la_list;
1422 u8 last_la;
1423
1424 /*
1425 * The TV functionality can only map to physical address 0.
1426 * For any other address, try the Specific functionality
1427 * instead as per the spec.
1428 */
1429 if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1430 type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1431
1432 la_list = type2addrs[type];
1433 last_la = las->log_addr[i];
1434 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1435 if (last_la == CEC_LOG_ADDR_INVALID ||
1436 last_la == CEC_LOG_ADDR_UNREGISTERED ||
1437 !((1 << last_la) & type2mask[type]))
1438 last_la = la_list[0];
1439
1440 err = cec_config_log_addr(adap, i, last_la);
1441
1442 if (adap->must_reconfigure) {
1443 adap->must_reconfigure = false;
1444 las->log_addr_mask = 0;
1445 goto reconfigure;
1446 }
1447
1448 if (err > 0) /* Reused last LA */
1449 continue;
1450
1451 if (err < 0)
1452 goto unconfigure;
1453
1454 for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1455 /* Tried this one already, skip it */
1456 if (la_list[j] == last_la)
1457 continue;
1458 /* The backup addresses are CEC 2.0 specific */
1459 if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1460 la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1461 las->cec_version < CEC_OP_CEC_VERSION_2_0)
1462 continue;
1463
1464 err = cec_config_log_addr(adap, i, la_list[j]);
1465 if (err == 0) /* LA is in use */
1466 continue;
1467 if (err < 0)
1468 goto unconfigure;
1469 /* Done, claimed an LA */
1470 break;
1471 }
1472
1473 if (la_list[j] == CEC_LOG_ADDR_INVALID)
1474 dprintk(1, "could not claim LA %d\n", i);
1475 }
1476
1477 if (adap->log_addrs.log_addr_mask == 0 &&
1478 !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1479 goto unconfigure;
1480
1481 configured:
1482 if (adap->log_addrs.log_addr_mask == 0) {
1483 /* Fall back to unregistered */
1484 las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1485 las->log_addr_mask = 1 << las->log_addr[0];
1486 for (i = 1; i < las->num_log_addrs; i++)
1487 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1488 }
1489 for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1490 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1491 adap->is_configured = true;
1492 adap->is_configuring = false;
1493 adap->must_reconfigure = false;
1494 cec_post_state_event(adap);
1495
1496 /*
1497 * Now post the Report Features and Report Physical Address broadcast
1498 * messages. Note that these are non-blocking transmits, meaning that
1499 * they are just queued up and once adap->lock is unlocked the main
1500 * thread will kick in and start transmitting these.
1501 *
1502 * If after this function is done (but before one or more of these
1503 * messages are actually transmitted) the CEC adapter is unconfigured,
1504 * then any remaining messages will be dropped by the main thread.
1505 */
1506 for (i = 0; i < las->num_log_addrs; i++) {
1507 struct cec_msg msg = {};
1508
1509 if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1510 (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1511 continue;
1512
1513 msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1514
1515 /* Report Features must come first according to CEC 2.0 */
1516 if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1517 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1518 cec_fill_msg_report_features(adap, &msg, i);
1519 cec_transmit_msg_fh(adap, &msg, NULL, false);
1520 }
1521
1522 /* Report Physical Address */
1523 cec_msg_report_physical_addr(&msg, adap->phys_addr,
1524 las->primary_device_type[i]);
1525 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1526 las->log_addr[i],
1527 cec_phys_addr_exp(adap->phys_addr));
1528 cec_transmit_msg_fh(adap, &msg, NULL, false);
1529
1530 /* Report Vendor ID */
1531 if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1532 cec_msg_device_vendor_id(&msg,
1533 adap->log_addrs.vendor_id);
1534 cec_transmit_msg_fh(adap, &msg, NULL, false);
1535 }
1536 }
1537 adap->kthread_config = NULL;
1538 complete(&adap->config_completion);
1539 mutex_unlock(&adap->lock);
1540 call_void_op(adap, configured);
1541 return 0;
1542
1543 unconfigure:
1544 for (i = 0; i < las->num_log_addrs; i++)
1545 las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1546 cec_adap_unconfigure(adap);
1547 adap->is_configuring = false;
1548 adap->must_reconfigure = false;
1549 adap->kthread_config = NULL;
1550 complete(&adap->config_completion);
1551 mutex_unlock(&adap->lock);
1552 return 0;
1553 }
1554
1555 /*
1556 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1557 * logical addresses.
1558 *
1559 * This function is called with adap->lock held.
1560 */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1561 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1562 {
1563 if (WARN_ON(adap->is_claiming_log_addrs ||
1564 adap->is_configuring || adap->is_configured))
1565 return;
1566
1567 adap->is_claiming_log_addrs = true;
1568
1569 init_completion(&adap->config_completion);
1570
1571 /* Ready to kick off the thread */
1572 adap->is_configuring = true;
1573 adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1574 "ceccfg-%s", adap->name);
1575 if (IS_ERR(adap->kthread_config)) {
1576 adap->kthread_config = NULL;
1577 adap->is_configuring = false;
1578 } else if (block) {
1579 mutex_unlock(&adap->lock);
1580 wait_for_completion(&adap->config_completion);
1581 mutex_lock(&adap->lock);
1582 }
1583 adap->is_claiming_log_addrs = false;
1584 }
1585
1586 /*
1587 * Helper function to enable/disable the CEC adapter.
1588 *
1589 * This function is called with adap->lock held.
1590 */
cec_adap_enable(struct cec_adapter * adap)1591 int cec_adap_enable(struct cec_adapter *adap)
1592 {
1593 bool enable;
1594 int ret = 0;
1595
1596 enable = adap->monitor_all_cnt || adap->monitor_pin_cnt ||
1597 adap->log_addrs.num_log_addrs;
1598 if (adap->needs_hpd)
1599 enable = enable && adap->phys_addr != CEC_PHYS_ADDR_INVALID;
1600
1601 if (adap->devnode.unregistered)
1602 enable = false;
1603
1604 if (enable == adap->is_enabled)
1605 return 0;
1606
1607 /* serialize adap_enable */
1608 mutex_lock(&adap->devnode.lock);
1609 if (enable) {
1610 adap->last_initiator = 0xff;
1611 adap->transmit_in_progress = false;
1612 ret = adap->ops->adap_enable(adap, true);
1613 if (!ret) {
1614 /*
1615 * Enable monitor-all/pin modes if needed. We warn, but
1616 * continue if this fails as this is not a critical error.
1617 */
1618 if (adap->monitor_all_cnt)
1619 WARN_ON(call_op(adap, adap_monitor_all_enable, true));
1620 if (adap->monitor_pin_cnt)
1621 WARN_ON(call_op(adap, adap_monitor_pin_enable, true));
1622 }
1623 } else {
1624 /* Disable monitor-all/pin modes if needed (needs_hpd == 1) */
1625 if (adap->monitor_all_cnt)
1626 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1627 if (adap->monitor_pin_cnt)
1628 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
1629 WARN_ON(adap->ops->adap_enable(adap, false));
1630 adap->last_initiator = 0xff;
1631 adap->transmit_in_progress = false;
1632 adap->transmit_in_progress_aborted = false;
1633 if (adap->transmitting)
1634 cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED, 0);
1635 }
1636 if (!ret)
1637 adap->is_enabled = enable;
1638 wake_up_interruptible(&adap->kthread_waitq);
1639 mutex_unlock(&adap->devnode.lock);
1640 return ret;
1641 }
1642
1643 /* Set a new physical address and send an event notifying userspace of this.
1644 *
1645 * This function is called with adap->lock held.
1646 */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1647 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1648 {
1649 bool becomes_invalid = phys_addr == CEC_PHYS_ADDR_INVALID;
1650 bool is_invalid = adap->phys_addr == CEC_PHYS_ADDR_INVALID;
1651
1652 if (phys_addr == adap->phys_addr)
1653 return;
1654 if (!becomes_invalid && adap->devnode.unregistered)
1655 return;
1656
1657 dprintk(1, "new physical address %x.%x.%x.%x\n",
1658 cec_phys_addr_exp(phys_addr));
1659 if (becomes_invalid || !is_invalid) {
1660 adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1661 cec_post_state_event(adap);
1662 cec_adap_unconfigure(adap);
1663 if (becomes_invalid) {
1664 cec_adap_enable(adap);
1665 return;
1666 }
1667 }
1668
1669 adap->phys_addr = phys_addr;
1670 if (is_invalid)
1671 cec_adap_enable(adap);
1672
1673 cec_post_state_event(adap);
1674 if (!adap->log_addrs.num_log_addrs)
1675 return;
1676 if (adap->is_configuring)
1677 adap->must_reconfigure = true;
1678 else
1679 cec_claim_log_addrs(adap, block);
1680 }
1681
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1682 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1683 {
1684 if (IS_ERR_OR_NULL(adap))
1685 return;
1686
1687 mutex_lock(&adap->lock);
1688 __cec_s_phys_addr(adap, phys_addr, block);
1689 mutex_unlock(&adap->lock);
1690 }
1691 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1692
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1693 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1694 const struct edid *edid)
1695 {
1696 u16 pa = CEC_PHYS_ADDR_INVALID;
1697
1698 if (edid && edid->extensions)
1699 pa = cec_get_edid_phys_addr((const u8 *)edid,
1700 EDID_LENGTH * (edid->extensions + 1), NULL);
1701 cec_s_phys_addr(adap, pa, false);
1702 }
1703 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1704
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1705 void cec_s_conn_info(struct cec_adapter *adap,
1706 const struct cec_connector_info *conn_info)
1707 {
1708 if (IS_ERR_OR_NULL(adap))
1709 return;
1710
1711 if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1712 return;
1713
1714 mutex_lock(&adap->lock);
1715 if (conn_info)
1716 adap->conn_info = *conn_info;
1717 else
1718 memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1719 cec_post_state_event(adap);
1720 mutex_unlock(&adap->lock);
1721 }
1722 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1723
1724 /*
1725 * Called from either the ioctl or a driver to set the logical addresses.
1726 *
1727 * This function is called with adap->lock held.
1728 */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1729 int __cec_s_log_addrs(struct cec_adapter *adap,
1730 struct cec_log_addrs *log_addrs, bool block)
1731 {
1732 u16 type_mask = 0;
1733 int err;
1734 int i;
1735
1736 if (adap->devnode.unregistered)
1737 return -ENODEV;
1738
1739 if (!log_addrs || log_addrs->num_log_addrs == 0) {
1740 if (!adap->log_addrs.num_log_addrs)
1741 return 0;
1742 if (adap->is_configuring || adap->is_configured)
1743 cec_adap_unconfigure(adap);
1744 adap->log_addrs.num_log_addrs = 0;
1745 for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1746 adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1747 adap->log_addrs.osd_name[0] = '\0';
1748 adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1749 adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1750 cec_adap_enable(adap);
1751 return 0;
1752 }
1753
1754 if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1755 /*
1756 * Sanitize log_addrs fields if a CDC-Only device is
1757 * requested.
1758 */
1759 log_addrs->num_log_addrs = 1;
1760 log_addrs->osd_name[0] = '\0';
1761 log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1762 log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1763 /*
1764 * This is just an internal convention since a CDC-Only device
1765 * doesn't have to be a switch. But switches already use
1766 * unregistered, so it makes some kind of sense to pick this
1767 * as the primary device. Since a CDC-Only device never sends
1768 * any 'normal' CEC messages this primary device type is never
1769 * sent over the CEC bus.
1770 */
1771 log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1772 log_addrs->all_device_types[0] = 0;
1773 log_addrs->features[0][0] = 0;
1774 log_addrs->features[0][1] = 0;
1775 }
1776
1777 /* Ensure the osd name is 0-terminated */
1778 log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1779
1780 /* Sanity checks */
1781 if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1782 dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1783 return -EINVAL;
1784 }
1785
1786 /*
1787 * Vendor ID is a 24 bit number, so check if the value is
1788 * within the correct range.
1789 */
1790 if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1791 (log_addrs->vendor_id & 0xff000000) != 0) {
1792 dprintk(1, "invalid vendor ID\n");
1793 return -EINVAL;
1794 }
1795
1796 if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1797 log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1798 dprintk(1, "invalid CEC version\n");
1799 return -EINVAL;
1800 }
1801
1802 if (log_addrs->num_log_addrs > 1)
1803 for (i = 0; i < log_addrs->num_log_addrs; i++)
1804 if (log_addrs->log_addr_type[i] ==
1805 CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1806 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1807 return -EINVAL;
1808 }
1809
1810 for (i = 0; i < log_addrs->num_log_addrs; i++) {
1811 const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1812 u8 *features = log_addrs->features[i];
1813 bool op_is_dev_features = false;
1814 unsigned int j;
1815
1816 log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1817 if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1818 dprintk(1, "unknown logical address type\n");
1819 return -EINVAL;
1820 }
1821 if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1822 dprintk(1, "duplicate logical address type\n");
1823 return -EINVAL;
1824 }
1825 type_mask |= 1 << log_addrs->log_addr_type[i];
1826 if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1827 (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1828 /* Record already contains the playback functionality */
1829 dprintk(1, "invalid record + playback combination\n");
1830 return -EINVAL;
1831 }
1832 if (log_addrs->primary_device_type[i] >
1833 CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1834 dprintk(1, "unknown primary device type\n");
1835 return -EINVAL;
1836 }
1837 if (log_addrs->primary_device_type[i] == 2) {
1838 dprintk(1, "invalid primary device type\n");
1839 return -EINVAL;
1840 }
1841 for (j = 0; j < feature_sz; j++) {
1842 if ((features[j] & 0x80) == 0) {
1843 if (op_is_dev_features)
1844 break;
1845 op_is_dev_features = true;
1846 }
1847 }
1848 if (!op_is_dev_features || j == feature_sz) {
1849 dprintk(1, "malformed features\n");
1850 return -EINVAL;
1851 }
1852 /* Zero unused part of the feature array */
1853 memset(features + j + 1, 0, feature_sz - j - 1);
1854 }
1855
1856 if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1857 if (log_addrs->num_log_addrs > 2) {
1858 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1859 return -EINVAL;
1860 }
1861 if (log_addrs->num_log_addrs == 2) {
1862 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1863 (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1864 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1865 return -EINVAL;
1866 }
1867 if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1868 (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1869 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1870 return -EINVAL;
1871 }
1872 }
1873 }
1874
1875 /* Zero unused LAs */
1876 for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1877 log_addrs->primary_device_type[i] = 0;
1878 log_addrs->log_addr_type[i] = 0;
1879 log_addrs->all_device_types[i] = 0;
1880 memset(log_addrs->features[i], 0,
1881 sizeof(log_addrs->features[i]));
1882 }
1883
1884 log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1885 adap->log_addrs = *log_addrs;
1886 err = cec_adap_enable(adap);
1887 if (!err && adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1888 cec_claim_log_addrs(adap, block);
1889 return err;
1890 }
1891
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1892 int cec_s_log_addrs(struct cec_adapter *adap,
1893 struct cec_log_addrs *log_addrs, bool block)
1894 {
1895 int err;
1896
1897 mutex_lock(&adap->lock);
1898 err = __cec_s_log_addrs(adap, log_addrs, block);
1899 mutex_unlock(&adap->lock);
1900 return err;
1901 }
1902 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1903
1904 /* High-level core CEC message handling */
1905
1906 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1907 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1908 struct cec_msg *msg,
1909 unsigned int la_idx)
1910 {
1911 const struct cec_log_addrs *las = &adap->log_addrs;
1912 const u8 *features = las->features[la_idx];
1913 bool op_is_dev_features = false;
1914 unsigned int idx;
1915
1916 /* Report Features */
1917 msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1918 msg->len = 4;
1919 msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1920 msg->msg[2] = adap->log_addrs.cec_version;
1921 msg->msg[3] = las->all_device_types[la_idx];
1922
1923 /* Write RC Profiles first, then Device Features */
1924 for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1925 msg->msg[msg->len++] = features[idx];
1926 if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1927 if (op_is_dev_features)
1928 break;
1929 op_is_dev_features = true;
1930 }
1931 }
1932 }
1933
1934 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1935 static int cec_feature_abort_reason(struct cec_adapter *adap,
1936 struct cec_msg *msg, u8 reason)
1937 {
1938 struct cec_msg tx_msg = { };
1939
1940 /*
1941 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1942 * message!
1943 */
1944 if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1945 return 0;
1946 /* Don't Feature Abort messages from 'Unregistered' */
1947 if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1948 return 0;
1949 cec_msg_set_reply_to(&tx_msg, msg);
1950 cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1951 return cec_transmit_msg(adap, &tx_msg, false);
1952 }
1953
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1954 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1955 {
1956 return cec_feature_abort_reason(adap, msg,
1957 CEC_OP_ABORT_UNRECOGNIZED_OP);
1958 }
1959
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1960 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1961 {
1962 return cec_feature_abort_reason(adap, msg,
1963 CEC_OP_ABORT_REFUSED);
1964 }
1965
1966 /*
1967 * Called when a CEC message is received. This function will do any
1968 * necessary core processing. The is_reply bool is true if this message
1969 * is a reply to an earlier transmit.
1970 *
1971 * The message is either a broadcast message or a valid directed message.
1972 */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1973 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1974 bool is_reply)
1975 {
1976 bool is_broadcast = cec_msg_is_broadcast(msg);
1977 u8 dest_laddr = cec_msg_destination(msg);
1978 u8 init_laddr = cec_msg_initiator(msg);
1979 u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1980 int la_idx = cec_log_addr2idx(adap, dest_laddr);
1981 bool from_unregistered = init_laddr == 0xf;
1982 struct cec_msg tx_cec_msg = { };
1983
1984 dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1985
1986 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1987 if (cec_is_cdc_only(&adap->log_addrs) &&
1988 msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1989 return 0;
1990
1991 /* Allow drivers to process the message first */
1992 if (adap->ops->received && !adap->devnode.unregistered &&
1993 adap->ops->received(adap, msg) != -ENOMSG)
1994 return 0;
1995
1996 /*
1997 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1998 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1999 * handled by the CEC core, even if the passthrough mode is on.
2000 * The others are just ignored if passthrough mode is on.
2001 */
2002 switch (msg->msg[1]) {
2003 case CEC_MSG_GET_CEC_VERSION:
2004 case CEC_MSG_ABORT:
2005 case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
2006 case CEC_MSG_GIVE_OSD_NAME:
2007 /*
2008 * These messages reply with a directed message, so ignore if
2009 * the initiator is Unregistered.
2010 */
2011 if (!adap->passthrough && from_unregistered)
2012 return 0;
2013 fallthrough;
2014 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2015 case CEC_MSG_GIVE_FEATURES:
2016 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2017 /*
2018 * Skip processing these messages if the passthrough mode
2019 * is on.
2020 */
2021 if (adap->passthrough)
2022 goto skip_processing;
2023 /* Ignore if addressing is wrong */
2024 if (is_broadcast)
2025 return 0;
2026 break;
2027
2028 case CEC_MSG_USER_CONTROL_PRESSED:
2029 case CEC_MSG_USER_CONTROL_RELEASED:
2030 /* Wrong addressing mode: don't process */
2031 if (is_broadcast || from_unregistered)
2032 goto skip_processing;
2033 break;
2034
2035 case CEC_MSG_REPORT_PHYSICAL_ADDR:
2036 /*
2037 * This message is always processed, regardless of the
2038 * passthrough setting.
2039 *
2040 * Exception: don't process if wrong addressing mode.
2041 */
2042 if (!is_broadcast)
2043 goto skip_processing;
2044 break;
2045
2046 default:
2047 break;
2048 }
2049
2050 cec_msg_set_reply_to(&tx_cec_msg, msg);
2051
2052 switch (msg->msg[1]) {
2053 /* The following messages are processed but still passed through */
2054 case CEC_MSG_REPORT_PHYSICAL_ADDR: {
2055 u16 pa = (msg->msg[2] << 8) | msg->msg[3];
2056
2057 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
2058 cec_phys_addr_exp(pa), init_laddr);
2059 break;
2060 }
2061
2062 case CEC_MSG_USER_CONTROL_PRESSED:
2063 if (!(adap->capabilities & CEC_CAP_RC) ||
2064 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2065 break;
2066
2067 #ifdef CONFIG_MEDIA_CEC_RC
2068 switch (msg->msg[2]) {
2069 /*
2070 * Play function, this message can have variable length
2071 * depending on the specific play function that is used.
2072 */
2073 case CEC_OP_UI_CMD_PLAY_FUNCTION:
2074 if (msg->len == 2)
2075 rc_keydown(adap->rc, RC_PROTO_CEC,
2076 msg->msg[2], 0);
2077 else
2078 rc_keydown(adap->rc, RC_PROTO_CEC,
2079 msg->msg[2] << 8 | msg->msg[3], 0);
2080 break;
2081 /*
2082 * Other function messages that are not handled.
2083 * Currently the RC framework does not allow to supply an
2084 * additional parameter to a keypress. These "keys" contain
2085 * other information such as channel number, an input number
2086 * etc.
2087 * For the time being these messages are not processed by the
2088 * framework and are simply forwarded to the user space.
2089 */
2090 case CEC_OP_UI_CMD_SELECT_BROADCAST_TYPE:
2091 case CEC_OP_UI_CMD_SELECT_SOUND_PRESENTATION:
2092 case CEC_OP_UI_CMD_TUNE_FUNCTION:
2093 case CEC_OP_UI_CMD_SELECT_MEDIA_FUNCTION:
2094 case CEC_OP_UI_CMD_SELECT_AV_INPUT_FUNCTION:
2095 case CEC_OP_UI_CMD_SELECT_AUDIO_INPUT_FUNCTION:
2096 break;
2097 default:
2098 rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2099 break;
2100 }
2101 #endif
2102 break;
2103
2104 case CEC_MSG_USER_CONTROL_RELEASED:
2105 if (!(adap->capabilities & CEC_CAP_RC) ||
2106 !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2107 break;
2108 #ifdef CONFIG_MEDIA_CEC_RC
2109 rc_keyup(adap->rc);
2110 #endif
2111 break;
2112
2113 /*
2114 * The remaining messages are only processed if the passthrough mode
2115 * is off.
2116 */
2117 case CEC_MSG_GET_CEC_VERSION:
2118 cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2119 return cec_transmit_msg(adap, &tx_cec_msg, false);
2120
2121 case CEC_MSG_GIVE_PHYSICAL_ADDR:
2122 /* Do nothing for CEC switches using addr 15 */
2123 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2124 return 0;
2125 cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2126 return cec_transmit_msg(adap, &tx_cec_msg, false);
2127
2128 case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2129 if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2130 return cec_feature_abort(adap, msg);
2131 cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2132 return cec_transmit_msg(adap, &tx_cec_msg, false);
2133
2134 case CEC_MSG_ABORT:
2135 /* Do nothing for CEC switches */
2136 if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2137 return 0;
2138 return cec_feature_refused(adap, msg);
2139
2140 case CEC_MSG_GIVE_OSD_NAME: {
2141 if (adap->log_addrs.osd_name[0] == 0)
2142 return cec_feature_abort(adap, msg);
2143 cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2144 return cec_transmit_msg(adap, &tx_cec_msg, false);
2145 }
2146
2147 case CEC_MSG_GIVE_FEATURES:
2148 if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2149 return cec_feature_abort(adap, msg);
2150 cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2151 return cec_transmit_msg(adap, &tx_cec_msg, false);
2152
2153 default:
2154 /*
2155 * Unprocessed messages are aborted if userspace isn't doing
2156 * any processing either.
2157 */
2158 if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2159 !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2160 return cec_feature_abort(adap, msg);
2161 break;
2162 }
2163
2164 skip_processing:
2165 /* If this was a reply, then we're done, unless otherwise specified */
2166 if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2167 return 0;
2168
2169 /*
2170 * Send to the exclusive follower if there is one, otherwise send
2171 * to all followers.
2172 */
2173 if (adap->cec_follower)
2174 cec_queue_msg_fh(adap->cec_follower, msg);
2175 else
2176 cec_queue_msg_followers(adap, msg);
2177 return 0;
2178 }
2179
2180 /*
2181 * Helper functions to keep track of the 'monitor all' use count.
2182 *
2183 * These functions are called with adap->lock held.
2184 */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2185 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2186 {
2187 int ret;
2188
2189 if (adap->monitor_all_cnt++)
2190 return 0;
2191
2192 ret = cec_adap_enable(adap);
2193 if (ret)
2194 adap->monitor_all_cnt--;
2195 return ret;
2196 }
2197
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2198 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2199 {
2200 if (WARN_ON(!adap->monitor_all_cnt))
2201 return;
2202 if (--adap->monitor_all_cnt)
2203 return;
2204 WARN_ON(call_op(adap, adap_monitor_all_enable, false));
2205 cec_adap_enable(adap);
2206 }
2207
2208 /*
2209 * Helper functions to keep track of the 'monitor pin' use count.
2210 *
2211 * These functions are called with adap->lock held.
2212 */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2213 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2214 {
2215 int ret;
2216
2217 if (adap->monitor_pin_cnt++)
2218 return 0;
2219
2220 ret = cec_adap_enable(adap);
2221 if (ret)
2222 adap->monitor_pin_cnt--;
2223 return ret;
2224 }
2225
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2226 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2227 {
2228 if (WARN_ON(!adap->monitor_pin_cnt))
2229 return;
2230 if (--adap->monitor_pin_cnt)
2231 return;
2232 WARN_ON(call_op(adap, adap_monitor_pin_enable, false));
2233 cec_adap_enable(adap);
2234 }
2235
2236 #ifdef CONFIG_DEBUG_FS
2237 /*
2238 * Log the current state of the CEC adapter.
2239 * Very useful for debugging.
2240 */
cec_adap_status(struct seq_file * file,void * priv)2241 int cec_adap_status(struct seq_file *file, void *priv)
2242 {
2243 struct cec_adapter *adap = dev_get_drvdata(file->private);
2244 struct cec_data *data;
2245
2246 mutex_lock(&adap->lock);
2247 seq_printf(file, "enabled: %d\n", adap->is_enabled);
2248 seq_printf(file, "configured: %d\n", adap->is_configured);
2249 seq_printf(file, "configuring: %d\n", adap->is_configuring);
2250 seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2251 cec_phys_addr_exp(adap->phys_addr));
2252 seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2253 seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2254 if (adap->cec_follower)
2255 seq_printf(file, "has CEC follower%s\n",
2256 adap->passthrough ? " (in passthrough mode)" : "");
2257 if (adap->cec_initiator)
2258 seq_puts(file, "has CEC initiator\n");
2259 if (adap->monitor_all_cnt)
2260 seq_printf(file, "file handles in Monitor All mode: %u\n",
2261 adap->monitor_all_cnt);
2262 if (adap->monitor_pin_cnt)
2263 seq_printf(file, "file handles in Monitor Pin mode: %u\n",
2264 adap->monitor_pin_cnt);
2265 if (adap->tx_timeouts) {
2266 seq_printf(file, "transmit timeouts: %u\n",
2267 adap->tx_timeouts);
2268 adap->tx_timeouts = 0;
2269 }
2270 data = adap->transmitting;
2271 if (data)
2272 seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2273 data->msg.len, data->msg.msg, data->msg.reply,
2274 data->msg.timeout);
2275 seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2276 list_for_each_entry(data, &adap->transmit_queue, list) {
2277 seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2278 data->msg.len, data->msg.msg, data->msg.reply,
2279 data->msg.timeout);
2280 }
2281 list_for_each_entry(data, &adap->wait_queue, list) {
2282 seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2283 data->msg.len, data->msg.msg, data->msg.reply,
2284 data->msg.timeout);
2285 }
2286
2287 call_void_op(adap, adap_status, file);
2288 mutex_unlock(&adap->lock);
2289 return 0;
2290 }
2291 #endif
2292