1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23 /**
24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25 * @cblist: Callback list.
26 * @lock: Lock protecting per-CPU callback list.
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @lazy_timer: Timer to unlazify callbacks.
29 * @urgent_gp: Number of additional non-lazy grace periods.
30 * @rtp_n_lock_retries: Rough lock-contention statistic.
31 * @rtp_work: Work queue for invoking callbacks.
32 * @rtp_irq_work: IRQ work queue for deferred wakeups.
33 * @barrier_q_head: RCU callback for barrier operation.
34 * @rtp_blkd_tasks: List of tasks blocked as readers.
35 * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36 * @cpu: CPU number corresponding to this entry.
37 * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure.
38 * @rtpp: Pointer to the rcu_tasks structure.
39 */
40 struct rcu_tasks_percpu {
41 struct rcu_segcblist cblist;
42 raw_spinlock_t __private lock;
43 unsigned long rtp_jiffies;
44 unsigned long rtp_n_lock_retries;
45 struct timer_list lazy_timer;
46 unsigned int urgent_gp;
47 struct work_struct rtp_work;
48 struct irq_work rtp_irq_work;
49 struct rcu_head barrier_q_head;
50 struct list_head rtp_blkd_tasks;
51 struct list_head rtp_exit_list;
52 int cpu;
53 int index;
54 struct rcu_tasks *rtpp;
55 };
56
57 /**
58 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
59 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
60 * @cbs_gbl_lock: Lock protecting callback list.
61 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
62 * @gp_func: This flavor's grace-period-wait function.
63 * @gp_state: Grace period's most recent state transition (debugging).
64 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
65 * @init_fract: Initial backoff sleep interval.
66 * @gp_jiffies: Time of last @gp_state transition.
67 * @gp_start: Most recent grace-period start in jiffies.
68 * @tasks_gp_seq: Number of grace periods completed since boot.
69 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
70 * @n_ipis_fails: Number of IPI-send failures.
71 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
72 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
73 * @pregp_func: This flavor's pre-grace-period function (optional).
74 * @pertask_func: This flavor's per-task scan function (optional).
75 * @postscan_func: This flavor's post-task scan function (optional).
76 * @holdouts_func: This flavor's holdout-list scan function (optional).
77 * @postgp_func: This flavor's post-grace-period function (optional).
78 * @call_func: This flavor's call_rcu()-equivalent function.
79 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
80 * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask.
81 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
82 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
83 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
84 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
85 * @barrier_q_mutex: Serialize barrier operations.
86 * @barrier_q_count: Number of queues being waited on.
87 * @barrier_q_completion: Barrier wait/wakeup mechanism.
88 * @barrier_q_seq: Sequence number for barrier operations.
89 * @name: This flavor's textual name.
90 * @kname: This flavor's kthread name.
91 */
92 struct rcu_tasks {
93 struct rcuwait cbs_wait;
94 raw_spinlock_t cbs_gbl_lock;
95 struct mutex tasks_gp_mutex;
96 int gp_state;
97 int gp_sleep;
98 int init_fract;
99 unsigned long gp_jiffies;
100 unsigned long gp_start;
101 unsigned long tasks_gp_seq;
102 unsigned long n_ipis;
103 unsigned long n_ipis_fails;
104 struct task_struct *kthread_ptr;
105 unsigned long lazy_jiffies;
106 rcu_tasks_gp_func_t gp_func;
107 pregp_func_t pregp_func;
108 pertask_func_t pertask_func;
109 postscan_func_t postscan_func;
110 holdouts_func_t holdouts_func;
111 postgp_func_t postgp_func;
112 call_rcu_func_t call_func;
113 struct rcu_tasks_percpu __percpu *rtpcpu;
114 struct rcu_tasks_percpu **rtpcp_array;
115 int percpu_enqueue_shift;
116 int percpu_enqueue_lim;
117 int percpu_dequeue_lim;
118 unsigned long percpu_dequeue_gpseq;
119 struct mutex barrier_q_mutex;
120 atomic_t barrier_q_count;
121 struct completion barrier_q_completion;
122 unsigned long barrier_q_seq;
123 char *name;
124 char *kname;
125 };
126
127 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
128
129 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
130 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
131 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
132 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
133 }; \
134 static struct rcu_tasks rt_name = \
135 { \
136 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
137 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
138 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
139 .gp_func = gp, \
140 .call_func = call, \
141 .rtpcpu = &rt_name ## __percpu, \
142 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \
143 .name = n, \
144 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
145 .percpu_enqueue_lim = 1, \
146 .percpu_dequeue_lim = 1, \
147 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
148 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
149 .kname = #rt_name, \
150 }
151
152 #ifdef CONFIG_TASKS_RCU
153 /* Track exiting tasks in order to allow them to be waited for. */
154 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
155
156 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
157 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
158 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
159 #endif
160
161 /* Avoid IPIing CPUs early in the grace period. */
162 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
163 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
164 module_param(rcu_task_ipi_delay, int, 0644);
165
166 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
167 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
168 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
169 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
170 module_param(rcu_task_stall_timeout, int, 0644);
171 #define RCU_TASK_STALL_INFO (HZ * 10)
172 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
173 module_param(rcu_task_stall_info, int, 0644);
174 static int rcu_task_stall_info_mult __read_mostly = 3;
175 module_param(rcu_task_stall_info_mult, int, 0444);
176
177 static int rcu_task_enqueue_lim __read_mostly = -1;
178 module_param(rcu_task_enqueue_lim, int, 0444);
179
180 static bool rcu_task_cb_adjust;
181 static int rcu_task_contend_lim __read_mostly = 100;
182 module_param(rcu_task_contend_lim, int, 0444);
183 static int rcu_task_collapse_lim __read_mostly = 10;
184 module_param(rcu_task_collapse_lim, int, 0444);
185 static int rcu_task_lazy_lim __read_mostly = 32;
186 module_param(rcu_task_lazy_lim, int, 0444);
187
188 static int rcu_task_cpu_ids;
189
190 /* RCU tasks grace-period state for debugging. */
191 #define RTGS_INIT 0
192 #define RTGS_WAIT_WAIT_CBS 1
193 #define RTGS_WAIT_GP 2
194 #define RTGS_PRE_WAIT_GP 3
195 #define RTGS_SCAN_TASKLIST 4
196 #define RTGS_POST_SCAN_TASKLIST 5
197 #define RTGS_WAIT_SCAN_HOLDOUTS 6
198 #define RTGS_SCAN_HOLDOUTS 7
199 #define RTGS_POST_GP 8
200 #define RTGS_WAIT_READERS 9
201 #define RTGS_INVOKE_CBS 10
202 #define RTGS_WAIT_CBS 11
203 #ifndef CONFIG_TINY_RCU
204 static const char * const rcu_tasks_gp_state_names[] = {
205 "RTGS_INIT",
206 "RTGS_WAIT_WAIT_CBS",
207 "RTGS_WAIT_GP",
208 "RTGS_PRE_WAIT_GP",
209 "RTGS_SCAN_TASKLIST",
210 "RTGS_POST_SCAN_TASKLIST",
211 "RTGS_WAIT_SCAN_HOLDOUTS",
212 "RTGS_SCAN_HOLDOUTS",
213 "RTGS_POST_GP",
214 "RTGS_WAIT_READERS",
215 "RTGS_INVOKE_CBS",
216 "RTGS_WAIT_CBS",
217 };
218 #endif /* #ifndef CONFIG_TINY_RCU */
219
220 ////////////////////////////////////////////////////////////////////////
221 //
222 // Generic code.
223
224 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
225
226 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)227 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
228 {
229 rtp->gp_state = newstate;
230 rtp->gp_jiffies = jiffies;
231 }
232
233 #ifndef CONFIG_TINY_RCU
234 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)235 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
236 {
237 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
238 int j = READ_ONCE(i); // Prevent the compiler from reading twice
239
240 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
241 return "???";
242 return rcu_tasks_gp_state_names[j];
243 }
244 #endif /* #ifndef CONFIG_TINY_RCU */
245
246 // Initialize per-CPU callback lists for the specified flavor of
247 // Tasks RCU. Do not enqueue callbacks before this function is invoked.
cblist_init_generic(struct rcu_tasks * rtp)248 static void cblist_init_generic(struct rcu_tasks *rtp)
249 {
250 int cpu;
251 unsigned long flags;
252 int lim;
253 int shift;
254 int maxcpu;
255 int index = 0;
256
257 if (rcu_task_enqueue_lim < 0) {
258 rcu_task_enqueue_lim = 1;
259 rcu_task_cb_adjust = true;
260 } else if (rcu_task_enqueue_lim == 0) {
261 rcu_task_enqueue_lim = 1;
262 }
263 lim = rcu_task_enqueue_lim;
264
265 rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL);
266 BUG_ON(!rtp->rtpcp_array);
267
268 for_each_possible_cpu(cpu) {
269 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
270
271 WARN_ON_ONCE(!rtpcp);
272 if (cpu)
273 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
274 local_irq_save(flags); // serialize initialization
275 if (rcu_segcblist_empty(&rtpcp->cblist))
276 rcu_segcblist_init(&rtpcp->cblist);
277 local_irq_restore(flags);
278 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
279 rtpcp->cpu = cpu;
280 rtpcp->rtpp = rtp;
281 rtpcp->index = index;
282 rtp->rtpcp_array[index] = rtpcp;
283 index++;
284 if (!rtpcp->rtp_blkd_tasks.next)
285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
286 if (!rtpcp->rtp_exit_list.next)
287 INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
288 maxcpu = cpu;
289 }
290
291 rcu_task_cpu_ids = maxcpu + 1;
292 if (lim > rcu_task_cpu_ids)
293 lim = rcu_task_cpu_ids;
294 shift = ilog2(rcu_task_cpu_ids / lim);
295 if (((rcu_task_cpu_ids - 1) >> shift) >= lim)
296 shift++;
297 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
298 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
299 smp_store_release(&rtp->percpu_enqueue_lim, lim);
300
301 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n",
302 rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim),
303 rcu_task_cb_adjust, rcu_task_cpu_ids);
304 }
305
306 // Compute wakeup time for lazy callback timer.
rcu_tasks_lazy_time(struct rcu_tasks * rtp)307 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
308 {
309 return jiffies + rtp->lazy_jiffies;
310 }
311
312 // Timer handler that unlazifies lazy callbacks.
call_rcu_tasks_generic_timer(struct timer_list * tlp)313 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
314 {
315 unsigned long flags;
316 bool needwake = false;
317 struct rcu_tasks *rtp;
318 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
319
320 rtp = rtpcp->rtpp;
321 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
322 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
323 if (!rtpcp->urgent_gp)
324 rtpcp->urgent_gp = 1;
325 needwake = true;
326 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
327 }
328 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
329 if (needwake)
330 rcuwait_wake_up(&rtp->cbs_wait);
331 }
332
333 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
call_rcu_tasks_iw_wakeup(struct irq_work * iwp)334 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
335 {
336 struct rcu_tasks *rtp;
337 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
338
339 rtp = rtpcp->rtpp;
340 rcuwait_wake_up(&rtp->cbs_wait);
341 }
342
343 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)344 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
345 struct rcu_tasks *rtp)
346 {
347 int chosen_cpu;
348 unsigned long flags;
349 bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
350 int ideal_cpu;
351 unsigned long j;
352 bool needadjust = false;
353 bool needwake;
354 struct rcu_tasks_percpu *rtpcp;
355
356 rhp->next = NULL;
357 rhp->func = func;
358 local_irq_save(flags);
359 rcu_read_lock();
360 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
361 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
362 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
363 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
364 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
365 j = jiffies;
366 if (rtpcp->rtp_jiffies != j) {
367 rtpcp->rtp_jiffies = j;
368 rtpcp->rtp_n_lock_retries = 0;
369 }
370 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
371 READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids)
372 needadjust = true; // Defer adjustment to avoid deadlock.
373 }
374 // Queuing callbacks before initialization not yet supported.
375 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
376 rcu_segcblist_init(&rtpcp->cblist);
377 needwake = (func == wakeme_after_rcu) ||
378 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
379 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
380 if (rtp->lazy_jiffies)
381 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
382 else
383 needwake = rcu_segcblist_empty(&rtpcp->cblist);
384 }
385 if (needwake)
386 rtpcp->urgent_gp = 3;
387 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
388 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
389 if (unlikely(needadjust)) {
390 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
391 if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) {
392 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
393 WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids);
394 smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids);
395 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
396 }
397 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
398 }
399 rcu_read_unlock();
400 /* We can't create the thread unless interrupts are enabled. */
401 if (needwake && READ_ONCE(rtp->kthread_ptr))
402 irq_work_queue(&rtpcp->rtp_irq_work);
403 }
404
405 // RCU callback function for rcu_barrier_tasks_generic().
rcu_barrier_tasks_generic_cb(struct rcu_head * rhp)406 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
407 {
408 struct rcu_tasks *rtp;
409 struct rcu_tasks_percpu *rtpcp;
410
411 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
412 rtp = rtpcp->rtpp;
413 if (atomic_dec_and_test(&rtp->barrier_q_count))
414 complete(&rtp->barrier_q_completion);
415 }
416
417 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
418 // Operates in a manner similar to rcu_barrier().
rcu_barrier_tasks_generic(struct rcu_tasks * rtp)419 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
420 {
421 int cpu;
422 unsigned long flags;
423 struct rcu_tasks_percpu *rtpcp;
424 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
425
426 mutex_lock(&rtp->barrier_q_mutex);
427 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
428 smp_mb();
429 mutex_unlock(&rtp->barrier_q_mutex);
430 return;
431 }
432 rcu_seq_start(&rtp->barrier_q_seq);
433 init_completion(&rtp->barrier_q_completion);
434 atomic_set(&rtp->barrier_q_count, 2);
435 for_each_possible_cpu(cpu) {
436 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
437 break;
438 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
439 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
440 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
441 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
442 atomic_inc(&rtp->barrier_q_count);
443 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
444 }
445 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
446 complete(&rtp->barrier_q_completion);
447 wait_for_completion(&rtp->barrier_q_completion);
448 rcu_seq_end(&rtp->barrier_q_seq);
449 mutex_unlock(&rtp->barrier_q_mutex);
450 }
451
452 // Advance callbacks and indicate whether either a grace period or
453 // callback invocation is needed.
rcu_tasks_need_gpcb(struct rcu_tasks * rtp)454 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
455 {
456 int cpu;
457 int dequeue_limit;
458 unsigned long flags;
459 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
460 long n;
461 long ncbs = 0;
462 long ncbsnz = 0;
463 int needgpcb = 0;
464
465 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
466 for (cpu = 0; cpu < dequeue_limit; cpu++) {
467 if (!cpu_possible(cpu))
468 continue;
469 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
470
471 /* Advance and accelerate any new callbacks. */
472 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
473 continue;
474 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
475 // Should we shrink down to a single callback queue?
476 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
477 if (n) {
478 ncbs += n;
479 if (cpu > 0)
480 ncbsnz += n;
481 }
482 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
483 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
484 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
485 if (rtp->lazy_jiffies)
486 rtpcp->urgent_gp--;
487 needgpcb |= 0x3;
488 } else if (rcu_segcblist_empty(&rtpcp->cblist)) {
489 rtpcp->urgent_gp = 0;
490 }
491 if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
492 needgpcb |= 0x1;
493 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
494 }
495
496 // Shrink down to a single callback queue if appropriate.
497 // This is done in two stages: (1) If there are no more than
498 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
499 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
500 // if there has not been an increase in callbacks, limit dequeuing
501 // to CPU 0. Note the matching RCU read-side critical section in
502 // call_rcu_tasks_generic().
503 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
504 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
505 if (rtp->percpu_enqueue_lim > 1) {
506 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids));
507 smp_store_release(&rtp->percpu_enqueue_lim, 1);
508 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
509 gpdone = false;
510 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
511 }
512 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
513 }
514 if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
515 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
516 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
517 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
518 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
519 }
520 if (rtp->percpu_dequeue_lim == 1) {
521 for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) {
522 if (!cpu_possible(cpu))
523 continue;
524 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
525
526 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
527 }
528 }
529 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
530 }
531
532 return needgpcb;
533 }
534
535 // Advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs(struct rcu_tasks * rtp,struct rcu_tasks_percpu * rtpcp)536 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
537 {
538 int cpuwq;
539 unsigned long flags;
540 int len;
541 int index;
542 struct rcu_head *rhp;
543 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
544 struct rcu_tasks_percpu *rtpcp_next;
545
546 index = rtpcp->index * 2 + 1;
547 if (index < num_possible_cpus()) {
548 rtpcp_next = rtp->rtpcp_array[index];
549 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
550 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
551 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
552 index++;
553 if (index < num_possible_cpus()) {
554 rtpcp_next = rtp->rtpcp_array[index];
555 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
556 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND;
557 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
558 }
559 }
560 }
561 }
562
563 if (rcu_segcblist_empty(&rtpcp->cblist))
564 return;
565 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
566 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
567 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
568 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
569 len = rcl.len;
570 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
571 debug_rcu_head_callback(rhp);
572 local_bh_disable();
573 rhp->func(rhp);
574 local_bh_enable();
575 cond_resched();
576 }
577 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
578 rcu_segcblist_add_len(&rtpcp->cblist, -len);
579 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
580 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
581 }
582
583 // Workqueue flood to advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs_wq(struct work_struct * wp)584 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
585 {
586 struct rcu_tasks *rtp;
587 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
588
589 rtp = rtpcp->rtpp;
590 rcu_tasks_invoke_cbs(rtp, rtpcp);
591 }
592
593 // Wait for one grace period.
rcu_tasks_one_gp(struct rcu_tasks * rtp,bool midboot)594 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
595 {
596 int needgpcb;
597
598 mutex_lock(&rtp->tasks_gp_mutex);
599
600 // If there were none, wait a bit and start over.
601 if (unlikely(midboot)) {
602 needgpcb = 0x2;
603 } else {
604 mutex_unlock(&rtp->tasks_gp_mutex);
605 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
606 rcuwait_wait_event(&rtp->cbs_wait,
607 (needgpcb = rcu_tasks_need_gpcb(rtp)),
608 TASK_IDLE);
609 mutex_lock(&rtp->tasks_gp_mutex);
610 }
611
612 if (needgpcb & 0x2) {
613 // Wait for one grace period.
614 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
615 rtp->gp_start = jiffies;
616 rcu_seq_start(&rtp->tasks_gp_seq);
617 rtp->gp_func(rtp);
618 rcu_seq_end(&rtp->tasks_gp_seq);
619 }
620
621 // Invoke callbacks.
622 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
623 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
624 mutex_unlock(&rtp->tasks_gp_mutex);
625 }
626
627 // RCU-tasks kthread that detects grace periods and invokes callbacks.
rcu_tasks_kthread(void * arg)628 static int __noreturn rcu_tasks_kthread(void *arg)
629 {
630 int cpu;
631 struct rcu_tasks *rtp = arg;
632
633 for_each_possible_cpu(cpu) {
634 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
635
636 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
637 rtpcp->urgent_gp = 1;
638 }
639
640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
641 housekeeping_affine(current, HK_TYPE_RCU);
642 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
643
644 /*
645 * Each pass through the following loop makes one check for
646 * newly arrived callbacks, and, if there are some, waits for
647 * one RCU-tasks grace period and then invokes the callbacks.
648 * This loop is terminated by the system going down. ;-)
649 */
650 for (;;) {
651 // Wait for one grace period and invoke any callbacks
652 // that are ready.
653 rcu_tasks_one_gp(rtp, false);
654
655 // Paranoid sleep to keep this from entering a tight loop.
656 schedule_timeout_idle(rtp->gp_sleep);
657 }
658 }
659
660 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)661 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
662 {
663 /* Complain if the scheduler has not started. */
664 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
665 "synchronize_%s() called too soon", rtp->name))
666 return;
667
668 // If the grace-period kthread is running, use it.
669 if (READ_ONCE(rtp->kthread_ptr)) {
670 wait_rcu_gp(rtp->call_func);
671 return;
672 }
673 rcu_tasks_one_gp(rtp, true);
674 }
675
676 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)677 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
678 {
679 struct task_struct *t;
680
681 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
682 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
683 return;
684 smp_mb(); /* Ensure others see full kthread. */
685 }
686
687 #ifndef CONFIG_TINY_RCU
688
689 /*
690 * Print any non-default Tasks RCU settings.
691 */
rcu_tasks_bootup_oddness(void)692 static void __init rcu_tasks_bootup_oddness(void)
693 {
694 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
695 int rtsimc;
696
697 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
698 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
699 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
700 if (rtsimc != rcu_task_stall_info_mult) {
701 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
702 rcu_task_stall_info_mult = rtsimc;
703 }
704 #endif /* #ifdef CONFIG_TASKS_RCU */
705 #ifdef CONFIG_TASKS_RCU
706 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
707 #endif /* #ifdef CONFIG_TASKS_RCU */
708 #ifdef CONFIG_TASKS_RUDE_RCU
709 pr_info("\tRude variant of Tasks RCU enabled.\n");
710 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
711 #ifdef CONFIG_TASKS_TRACE_RCU
712 pr_info("\tTracing variant of Tasks RCU enabled.\n");
713 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
714 }
715
716 #endif /* #ifndef CONFIG_TINY_RCU */
717
718 #ifndef CONFIG_TINY_RCU
719 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)720 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
721 {
722 int cpu;
723 bool havecbs = false;
724 bool haveurgent = false;
725 bool haveurgentcbs = false;
726
727 for_each_possible_cpu(cpu) {
728 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
729
730 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
731 havecbs = true;
732 if (data_race(rtpcp->urgent_gp))
733 haveurgent = true;
734 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
735 haveurgentcbs = true;
736 if (havecbs && haveurgent && haveurgentcbs)
737 break;
738 }
739 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
740 rtp->kname,
741 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
742 jiffies - data_race(rtp->gp_jiffies),
743 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
744 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
745 ".k"[!!data_race(rtp->kthread_ptr)],
746 ".C"[havecbs],
747 ".u"[haveurgent],
748 ".U"[haveurgentcbs],
749 rtp->lazy_jiffies,
750 s);
751 }
752 #endif // #ifndef CONFIG_TINY_RCU
753
754 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
755
756 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
757
758 ////////////////////////////////////////////////////////////////////////
759 //
760 // Shared code between task-list-scanning variants of Tasks RCU.
761
762 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)763 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
764 {
765 struct task_struct *g;
766 int fract;
767 LIST_HEAD(holdouts);
768 unsigned long j;
769 unsigned long lastinfo;
770 unsigned long lastreport;
771 bool reported = false;
772 int rtsi;
773 struct task_struct *t;
774
775 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
776 rtp->pregp_func(&holdouts);
777
778 /*
779 * There were callbacks, so we need to wait for an RCU-tasks
780 * grace period. Start off by scanning the task list for tasks
781 * that are not already voluntarily blocked. Mark these tasks
782 * and make a list of them in holdouts.
783 */
784 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
785 if (rtp->pertask_func) {
786 rcu_read_lock();
787 for_each_process_thread(g, t)
788 rtp->pertask_func(t, &holdouts);
789 rcu_read_unlock();
790 }
791
792 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
793 rtp->postscan_func(&holdouts);
794
795 /*
796 * Each pass through the following loop scans the list of holdout
797 * tasks, removing any that are no longer holdouts. When the list
798 * is empty, we are done.
799 */
800 lastreport = jiffies;
801 lastinfo = lastreport;
802 rtsi = READ_ONCE(rcu_task_stall_info);
803
804 // Start off with initial wait and slowly back off to 1 HZ wait.
805 fract = rtp->init_fract;
806
807 while (!list_empty(&holdouts)) {
808 ktime_t exp;
809 bool firstreport;
810 bool needreport;
811 int rtst;
812
813 // Slowly back off waiting for holdouts
814 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
815 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
816 schedule_timeout_idle(fract);
817 } else {
818 exp = jiffies_to_nsecs(fract);
819 __set_current_state(TASK_IDLE);
820 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
821 }
822
823 if (fract < HZ)
824 fract++;
825
826 rtst = READ_ONCE(rcu_task_stall_timeout);
827 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
828 if (needreport) {
829 lastreport = jiffies;
830 reported = true;
831 }
832 firstreport = true;
833 WARN_ON(signal_pending(current));
834 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
835 rtp->holdouts_func(&holdouts, needreport, &firstreport);
836
837 // Print pre-stall informational messages if needed.
838 j = jiffies;
839 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
840 lastinfo = j;
841 rtsi = rtsi * rcu_task_stall_info_mult;
842 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
843 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
844 }
845 }
846
847 set_tasks_gp_state(rtp, RTGS_POST_GP);
848 rtp->postgp_func(rtp);
849 }
850
851 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
852
853 #ifdef CONFIG_TASKS_RCU
854
855 ////////////////////////////////////////////////////////////////////////
856 //
857 // Simple variant of RCU whose quiescent states are voluntary context
858 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
859 // As such, grace periods can take one good long time. There are no
860 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
861 // because this implementation is intended to get the system into a safe
862 // state for some of the manipulations involved in tracing and the like.
863 // Finally, this implementation does not support high call_rcu_tasks()
864 // rates from multiple CPUs. If this is required, per-CPU callback lists
865 // will be needed.
866 //
867 // The implementation uses rcu_tasks_wait_gp(), which relies on function
868 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
869 // function sets these function pointers up so that rcu_tasks_wait_gp()
870 // invokes these functions in this order:
871 //
872 // rcu_tasks_pregp_step():
873 // Invokes synchronize_rcu() in order to wait for all in-flight
874 // t->on_rq and t->nvcsw transitions to complete. This works because
875 // all such transitions are carried out with interrupts disabled.
876 // rcu_tasks_pertask(), invoked on every non-idle task:
877 // For every runnable non-idle task other than the current one, use
878 // get_task_struct() to pin down that task, snapshot that task's
879 // number of voluntary context switches, and add that task to the
880 // holdout list.
881 // rcu_tasks_postscan():
882 // Invoke synchronize_srcu() to ensure that all tasks that were
883 // in the process of exiting (and which thus might not know to
884 // synchronize with this RCU Tasks grace period) have completed
885 // exiting.
886 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
887 // Scans the holdout list, attempting to identify a quiescent state
888 // for each task on the list. If there is a quiescent state, the
889 // corresponding task is removed from the holdout list.
890 // rcu_tasks_postgp():
891 // Invokes synchronize_rcu() in order to ensure that all prior
892 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
893 // to have happened before the end of this RCU Tasks grace period.
894 // Again, this works because all such transitions are carried out
895 // with interrupts disabled.
896 //
897 // For each exiting task, the exit_tasks_rcu_start() and
898 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
899 // read-side critical sections waited for by rcu_tasks_postscan().
900 //
901 // Pre-grace-period update-side code is ordered before the grace
902 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
903 // is ordered before the grace period via synchronize_rcu() call in
904 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
905 // disabling.
906
907 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(struct list_head * hop)908 static void rcu_tasks_pregp_step(struct list_head *hop)
909 {
910 /*
911 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
912 * to complete. Invoking synchronize_rcu() suffices because all
913 * these transitions occur with interrupts disabled. Without this
914 * synchronize_rcu(), a read-side critical section that started
915 * before the grace period might be incorrectly seen as having
916 * started after the grace period.
917 *
918 * This synchronize_rcu() also dispenses with the need for a
919 * memory barrier on the first store to t->rcu_tasks_holdout,
920 * as it forces the store to happen after the beginning of the
921 * grace period.
922 */
923 synchronize_rcu();
924 }
925
926 /* Check for quiescent states since the pregp's synchronize_rcu() */
rcu_tasks_is_holdout(struct task_struct * t)927 static bool rcu_tasks_is_holdout(struct task_struct *t)
928 {
929 int cpu;
930
931 /* Has the task been seen voluntarily sleeping? */
932 if (!READ_ONCE(t->on_rq))
933 return false;
934
935 /*
936 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
937 * quiescent states. But CPU boot code performed by the idle task
938 * isn't a quiescent state.
939 */
940 if (is_idle_task(t))
941 return false;
942
943 cpu = task_cpu(t);
944
945 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
946 if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
947 return false;
948
949 return true;
950 }
951
952 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)953 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
954 {
955 if (t != current && rcu_tasks_is_holdout(t)) {
956 get_task_struct(t);
957 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
958 WRITE_ONCE(t->rcu_tasks_holdout, true);
959 list_add(&t->rcu_tasks_holdout_list, hop);
960 }
961 }
962
963 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)964 static void rcu_tasks_postscan(struct list_head *hop)
965 {
966 int rtsi = READ_ONCE(rcu_task_stall_info);
967
968 if (!IS_ENABLED(CONFIG_TINY_RCU)) {
969 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
970 add_timer(&tasks_rcu_exit_srcu_stall_timer);
971 }
972
973 /*
974 * Exiting tasks may escape the tasklist scan. Those are vulnerable
975 * until their final schedule() with TASK_DEAD state. To cope with
976 * this, divide the fragile exit path part in two intersecting
977 * read side critical sections:
978 *
979 * 1) An _SRCU_ read side starting before calling exit_notify(),
980 * which may remove the task from the tasklist, and ending after
981 * the final preempt_disable() call in do_exit().
982 *
983 * 2) An _RCU_ read side starting with the final preempt_disable()
984 * call in do_exit() and ending with the final call to schedule()
985 * with TASK_DEAD state.
986 *
987 * This handles the part 1). And postgp will handle part 2) with a
988 * call to synchronize_rcu().
989 */
990 synchronize_srcu(&tasks_rcu_exit_srcu);
991
992 if (!IS_ENABLED(CONFIG_TINY_RCU))
993 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
994 }
995
996 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)997 static void check_holdout_task(struct task_struct *t,
998 bool needreport, bool *firstreport)
999 {
1000 int cpu;
1001
1002 if (!READ_ONCE(t->rcu_tasks_holdout) ||
1003 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1004 !rcu_tasks_is_holdout(t) ||
1005 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1006 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
1007 WRITE_ONCE(t->rcu_tasks_holdout, false);
1008 list_del_init(&t->rcu_tasks_holdout_list);
1009 put_task_struct(t);
1010 return;
1011 }
1012 rcu_request_urgent_qs_task(t);
1013 if (!needreport)
1014 return;
1015 if (*firstreport) {
1016 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1017 *firstreport = false;
1018 }
1019 cpu = task_cpu(t);
1020 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1021 t, ".I"[is_idle_task(t)],
1022 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1023 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1024 t->rcu_tasks_idle_cpu, cpu);
1025 sched_show_task(t);
1026 }
1027
1028 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)1029 static void check_all_holdout_tasks(struct list_head *hop,
1030 bool needreport, bool *firstreport)
1031 {
1032 struct task_struct *t, *t1;
1033
1034 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1035 check_holdout_task(t, needreport, firstreport);
1036 cond_resched();
1037 }
1038 }
1039
1040 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)1041 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1042 {
1043 /*
1044 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1045 * memory barriers prior to them in the schedule() path, memory
1046 * reordering on other CPUs could cause their RCU-tasks read-side
1047 * critical sections to extend past the end of the grace period.
1048 * However, because these ->nvcsw updates are carried out with
1049 * interrupts disabled, we can use synchronize_rcu() to force the
1050 * needed ordering on all such CPUs.
1051 *
1052 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1053 * accesses to be within the grace period, avoiding the need for
1054 * memory barriers for ->rcu_tasks_holdout accesses.
1055 *
1056 * In addition, this synchronize_rcu() waits for exiting tasks
1057 * to complete their final preempt_disable() region of execution,
1058 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
1059 * enforcing the whole region before tasklist removal until
1060 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1061 * read side critical section.
1062 */
1063 synchronize_rcu();
1064 }
1065
1066 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1067 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1068
tasks_rcu_exit_srcu_stall(struct timer_list * unused)1069 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1070 {
1071 #ifndef CONFIG_TINY_RCU
1072 int rtsi;
1073
1074 rtsi = READ_ONCE(rcu_task_stall_info);
1075 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1076 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1077 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1078 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1079 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1080 add_timer(&tasks_rcu_exit_srcu_stall_timer);
1081 #endif // #ifndef CONFIG_TINY_RCU
1082 }
1083
1084 /**
1085 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1086 * @rhp: structure to be used for queueing the RCU updates.
1087 * @func: actual callback function to be invoked after the grace period
1088 *
1089 * The callback function will be invoked some time after a full grace
1090 * period elapses, in other words after all currently executing RCU
1091 * read-side critical sections have completed. call_rcu_tasks() assumes
1092 * that the read-side critical sections end at a voluntary context
1093 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1094 * or transition to usermode execution. As such, there are no read-side
1095 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1096 * this primitive is intended to determine that all tasks have passed
1097 * through a safe state, not so much for data-structure synchronization.
1098 *
1099 * See the description of call_rcu() for more detailed information on
1100 * memory ordering guarantees.
1101 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)1102 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1103 {
1104 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1105 }
1106 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1107
1108 /**
1109 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1110 *
1111 * Control will return to the caller some time after a full rcu-tasks
1112 * grace period has elapsed, in other words after all currently
1113 * executing rcu-tasks read-side critical sections have elapsed. These
1114 * read-side critical sections are delimited by calls to schedule(),
1115 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1116 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1117 *
1118 * This is a very specialized primitive, intended only for a few uses in
1119 * tracing and other situations requiring manipulation of function
1120 * preambles and profiling hooks. The synchronize_rcu_tasks() function
1121 * is not (yet) intended for heavy use from multiple CPUs.
1122 *
1123 * See the description of synchronize_rcu() for more detailed information
1124 * on memory ordering guarantees.
1125 */
synchronize_rcu_tasks(void)1126 void synchronize_rcu_tasks(void)
1127 {
1128 synchronize_rcu_tasks_generic(&rcu_tasks);
1129 }
1130 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1131
1132 /**
1133 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1134 *
1135 * Although the current implementation is guaranteed to wait, it is not
1136 * obligated to, for example, if there are no pending callbacks.
1137 */
rcu_barrier_tasks(void)1138 void rcu_barrier_tasks(void)
1139 {
1140 rcu_barrier_tasks_generic(&rcu_tasks);
1141 }
1142 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1143
1144 int rcu_tasks_lazy_ms = -1;
1145 module_param(rcu_tasks_lazy_ms, int, 0444);
1146
rcu_spawn_tasks_kthread(void)1147 static int __init rcu_spawn_tasks_kthread(void)
1148 {
1149 cblist_init_generic(&rcu_tasks);
1150 rcu_tasks.gp_sleep = HZ / 10;
1151 rcu_tasks.init_fract = HZ / 10;
1152 if (rcu_tasks_lazy_ms >= 0)
1153 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1154 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1155 rcu_tasks.pertask_func = rcu_tasks_pertask;
1156 rcu_tasks.postscan_func = rcu_tasks_postscan;
1157 rcu_tasks.holdouts_func = check_all_holdout_tasks;
1158 rcu_tasks.postgp_func = rcu_tasks_postgp;
1159 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1160 return 0;
1161 }
1162
1163 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_classic_gp_kthread(void)1164 void show_rcu_tasks_classic_gp_kthread(void)
1165 {
1166 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1167 }
1168 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1169 #endif // !defined(CONFIG_TINY_RCU)
1170
get_rcu_tasks_gp_kthread(void)1171 struct task_struct *get_rcu_tasks_gp_kthread(void)
1172 {
1173 return rcu_tasks.kthread_ptr;
1174 }
1175 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1176
1177 /*
1178 * Contribute to protect against tasklist scan blind spot while the
1179 * task is exiting and may be removed from the tasklist. See
1180 * corresponding synchronize_srcu() for further details.
1181 */
exit_tasks_rcu_start(void)1182 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
1183 {
1184 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
1185 }
1186
1187 /*
1188 * Contribute to protect against tasklist scan blind spot while the
1189 * task is exiting and may be removed from the tasklist. See
1190 * corresponding synchronize_srcu() for further details.
1191 */
exit_tasks_rcu_stop(void)1192 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
1193 {
1194 struct task_struct *t = current;
1195
1196 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1197 }
1198
1199 /*
1200 * Contribute to protect against tasklist scan blind spot while the
1201 * task is exiting and may be removed from the tasklist. See
1202 * corresponding synchronize_srcu() for further details.
1203 */
exit_tasks_rcu_finish(void)1204 void exit_tasks_rcu_finish(void)
1205 {
1206 exit_tasks_rcu_stop();
1207 exit_tasks_rcu_finish_trace(current);
1208 }
1209
1210 #else /* #ifdef CONFIG_TASKS_RCU */
exit_tasks_rcu_start(void)1211 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)1212 void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)1213 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1214 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1215
1216 #ifdef CONFIG_TASKS_RUDE_RCU
1217
1218 ////////////////////////////////////////////////////////////////////////
1219 //
1220 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1221 // passing an empty function to schedule_on_each_cpu(). This approach
1222 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1223 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1224 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1225 // and induces otherwise unnecessary context switches on all online CPUs,
1226 // whether idle or not.
1227 //
1228 // Callback handling is provided by the rcu_tasks_kthread() function.
1229 //
1230 // Ordering is provided by the scheduler's context-switch code.
1231
1232 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)1233 static void rcu_tasks_be_rude(struct work_struct *work)
1234 {
1235 }
1236
1237 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)1238 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1239 {
1240 rtp->n_ipis += cpumask_weight(cpu_online_mask);
1241 schedule_on_each_cpu(rcu_tasks_be_rude);
1242 }
1243
1244 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1245 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1246 "RCU Tasks Rude");
1247
1248 /**
1249 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1250 * @rhp: structure to be used for queueing the RCU updates.
1251 * @func: actual callback function to be invoked after the grace period
1252 *
1253 * The callback function will be invoked some time after a full grace
1254 * period elapses, in other words after all currently executing RCU
1255 * read-side critical sections have completed. call_rcu_tasks_rude()
1256 * assumes that the read-side critical sections end at context switch,
1257 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1258 * usermode execution is schedulable). As such, there are no read-side
1259 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1260 * this primitive is intended to determine that all tasks have passed
1261 * through a safe state, not so much for data-structure synchronization.
1262 *
1263 * See the description of call_rcu() for more detailed information on
1264 * memory ordering guarantees.
1265 */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)1266 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1267 {
1268 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1269 }
1270 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1271
1272 /**
1273 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1274 *
1275 * Control will return to the caller some time after a rude rcu-tasks
1276 * grace period has elapsed, in other words after all currently
1277 * executing rcu-tasks read-side critical sections have elapsed. These
1278 * read-side critical sections are delimited by calls to schedule(),
1279 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1280 * context), and (in theory, anyway) cond_resched().
1281 *
1282 * This is a very specialized primitive, intended only for a few uses in
1283 * tracing and other situations requiring manipulation of function preambles
1284 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1285 * (yet) intended for heavy use from multiple CPUs.
1286 *
1287 * See the description of synchronize_rcu() for more detailed information
1288 * on memory ordering guarantees.
1289 */
synchronize_rcu_tasks_rude(void)1290 void synchronize_rcu_tasks_rude(void)
1291 {
1292 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1293 }
1294 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1295
1296 /**
1297 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1298 *
1299 * Although the current implementation is guaranteed to wait, it is not
1300 * obligated to, for example, if there are no pending callbacks.
1301 */
rcu_barrier_tasks_rude(void)1302 void rcu_barrier_tasks_rude(void)
1303 {
1304 rcu_barrier_tasks_generic(&rcu_tasks_rude);
1305 }
1306 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1307
1308 int rcu_tasks_rude_lazy_ms = -1;
1309 module_param(rcu_tasks_rude_lazy_ms, int, 0444);
1310
rcu_spawn_tasks_rude_kthread(void)1311 static int __init rcu_spawn_tasks_rude_kthread(void)
1312 {
1313 cblist_init_generic(&rcu_tasks_rude);
1314 rcu_tasks_rude.gp_sleep = HZ / 10;
1315 if (rcu_tasks_rude_lazy_ms >= 0)
1316 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
1317 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1318 return 0;
1319 }
1320
1321 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_rude_gp_kthread(void)1322 void show_rcu_tasks_rude_gp_kthread(void)
1323 {
1324 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1325 }
1326 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1327 #endif // !defined(CONFIG_TINY_RCU)
1328
get_rcu_tasks_rude_gp_kthread(void)1329 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1330 {
1331 return rcu_tasks_rude.kthread_ptr;
1332 }
1333 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1334
1335 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1336
1337 ////////////////////////////////////////////////////////////////////////
1338 //
1339 // Tracing variant of Tasks RCU. This variant is designed to be used
1340 // to protect tracing hooks, including those of BPF. This variant
1341 // therefore:
1342 //
1343 // 1. Has explicit read-side markers to allow finite grace periods
1344 // in the face of in-kernel loops for PREEMPT=n builds.
1345 //
1346 // 2. Protects code in the idle loop, exception entry/exit, and
1347 // CPU-hotplug code paths, similar to the capabilities of SRCU.
1348 //
1349 // 3. Avoids expensive read-side instructions, having overhead similar
1350 // to that of Preemptible RCU.
1351 //
1352 // There are of course downsides. For example, the grace-period code
1353 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1354 // in nohz_full userspace. If needed, these downsides can be at least
1355 // partially remedied.
1356 //
1357 // Perhaps most important, this variant of RCU does not affect the vanilla
1358 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1359 // readers can operate from idle, offline, and exception entry/exit in no
1360 // way allows rcu_preempt and rcu_sched readers to also do so.
1361 //
1362 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1363 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1364 // function sets these function pointers up so that rcu_tasks_wait_gp()
1365 // invokes these functions in this order:
1366 //
1367 // rcu_tasks_trace_pregp_step():
1368 // Disables CPU hotplug, adds all currently executing tasks to the
1369 // holdout list, then checks the state of all tasks that blocked
1370 // or were preempted within their current RCU Tasks Trace read-side
1371 // critical section, adding them to the holdout list if appropriate.
1372 // Finally, this function re-enables CPU hotplug.
1373 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1374 // rcu_tasks_trace_postscan():
1375 // Invokes synchronize_rcu() to wait for late-stage exiting tasks
1376 // to finish exiting.
1377 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1378 // Scans the holdout list, attempting to identify a quiescent state
1379 // for each task on the list. If there is a quiescent state, the
1380 // corresponding task is removed from the holdout list. Once this
1381 // list is empty, the grace period has completed.
1382 // rcu_tasks_trace_postgp():
1383 // Provides the needed full memory barrier and does debug checks.
1384 //
1385 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1386 //
1387 // Pre-grace-period update-side code is ordered before the grace period
1388 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period
1389 // read-side code is ordered before the grace period by atomic operations
1390 // on .b.need_qs flag of each task involved in this process, or by scheduler
1391 // context-switch ordering (for locked-down non-running readers).
1392
1393 // The lockdep state must be outside of #ifdef to be useful.
1394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1395 static struct lock_class_key rcu_lock_trace_key;
1396 struct lockdep_map rcu_trace_lock_map =
1397 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1398 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1399 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1400
1401 #ifdef CONFIG_TASKS_TRACE_RCU
1402
1403 // Record outstanding IPIs to each CPU. No point in sending two...
1404 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1405
1406 // The number of detections of task quiescent state relying on
1407 // heavyweight readers executing explicit memory barriers.
1408 static unsigned long n_heavy_reader_attempts;
1409 static unsigned long n_heavy_reader_updates;
1410 static unsigned long n_heavy_reader_ofl_updates;
1411 static unsigned long n_trc_holdouts;
1412
1413 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1414 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1415 "RCU Tasks Trace");
1416
1417 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
rcu_ld_need_qs(struct task_struct * t)1418 static u8 rcu_ld_need_qs(struct task_struct *t)
1419 {
1420 smp_mb(); // Enforce full grace-period ordering.
1421 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1422 }
1423
1424 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
rcu_st_need_qs(struct task_struct * t,u8 v)1425 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1426 {
1427 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1428 smp_mb(); // Enforce full grace-period ordering.
1429 }
1430
1431 /*
1432 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1433 * the four-byte operand-size restriction of some platforms.
1434 * Returns the old value, which is often ignored.
1435 */
rcu_trc_cmpxchg_need_qs(struct task_struct * t,u8 old,u8 new)1436 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1437 {
1438 union rcu_special ret;
1439 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1440 union rcu_special trs_new = trs_old;
1441
1442 if (trs_old.b.need_qs != old)
1443 return trs_old.b.need_qs;
1444 trs_new.b.need_qs = new;
1445 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1446 return ret.b.need_qs;
1447 }
1448 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1449
1450 /*
1451 * If we are the last reader, signal the grace-period kthread.
1452 * Also remove from the per-CPU list of blocked tasks.
1453 */
rcu_read_unlock_trace_special(struct task_struct * t)1454 void rcu_read_unlock_trace_special(struct task_struct *t)
1455 {
1456 unsigned long flags;
1457 struct rcu_tasks_percpu *rtpcp;
1458 union rcu_special trs;
1459
1460 // Open-coded full-word version of rcu_ld_need_qs().
1461 smp_mb(); // Enforce full grace-period ordering.
1462 trs = smp_load_acquire(&t->trc_reader_special);
1463
1464 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1465 smp_mb(); // Pairs with update-side barriers.
1466 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1467 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1468 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1469 TRC_NEED_QS_CHECKED);
1470
1471 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1472 }
1473 if (trs.b.blocked) {
1474 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1475 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1476 list_del_init(&t->trc_blkd_node);
1477 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1478 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1479 }
1480 WRITE_ONCE(t->trc_reader_nesting, 0);
1481 }
1482 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1483
1484 /* Add a newly blocked reader task to its CPU's list. */
rcu_tasks_trace_qs_blkd(struct task_struct * t)1485 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1486 {
1487 unsigned long flags;
1488 struct rcu_tasks_percpu *rtpcp;
1489
1490 local_irq_save(flags);
1491 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1492 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1493 t->trc_blkd_cpu = smp_processor_id();
1494 if (!rtpcp->rtp_blkd_tasks.next)
1495 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1496 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1497 WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1498 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1499 }
1500 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1501
1502 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)1503 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1504 {
1505 if (list_empty(&t->trc_holdout_list)) {
1506 get_task_struct(t);
1507 list_add(&t->trc_holdout_list, bhp);
1508 n_trc_holdouts++;
1509 }
1510 }
1511
1512 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)1513 static void trc_del_holdout(struct task_struct *t)
1514 {
1515 if (!list_empty(&t->trc_holdout_list)) {
1516 list_del_init(&t->trc_holdout_list);
1517 put_task_struct(t);
1518 n_trc_holdouts--;
1519 }
1520 }
1521
1522 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)1523 static void trc_read_check_handler(void *t_in)
1524 {
1525 int nesting;
1526 struct task_struct *t = current;
1527 struct task_struct *texp = t_in;
1528
1529 // If the task is no longer running on this CPU, leave.
1530 if (unlikely(texp != t))
1531 goto reset_ipi; // Already on holdout list, so will check later.
1532
1533 // If the task is not in a read-side critical section, and
1534 // if this is the last reader, awaken the grace-period kthread.
1535 nesting = READ_ONCE(t->trc_reader_nesting);
1536 if (likely(!nesting)) {
1537 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1538 goto reset_ipi;
1539 }
1540 // If we are racing with an rcu_read_unlock_trace(), try again later.
1541 if (unlikely(nesting < 0))
1542 goto reset_ipi;
1543
1544 // Get here if the task is in a read-side critical section.
1545 // Set its state so that it will update state for the grace-period
1546 // kthread upon exit from that critical section.
1547 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1548
1549 reset_ipi:
1550 // Allow future IPIs to be sent on CPU and for task.
1551 // Also order this IPI handler against any later manipulations of
1552 // the intended task.
1553 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1554 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1555 }
1556
1557 /* Callback function for scheduler to check locked-down task. */
trc_inspect_reader(struct task_struct * t,void * bhp_in)1558 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1559 {
1560 struct list_head *bhp = bhp_in;
1561 int cpu = task_cpu(t);
1562 int nesting;
1563 bool ofl = cpu_is_offline(cpu);
1564
1565 if (task_curr(t) && !ofl) {
1566 // If no chance of heavyweight readers, do it the hard way.
1567 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1568 return -EINVAL;
1569
1570 // If heavyweight readers are enabled on the remote task,
1571 // we can inspect its state despite its currently running.
1572 // However, we cannot safely change its state.
1573 n_heavy_reader_attempts++;
1574 // Check for "running" idle tasks on offline CPUs.
1575 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1576 return -EINVAL; // No quiescent state, do it the hard way.
1577 n_heavy_reader_updates++;
1578 nesting = 0;
1579 } else {
1580 // The task is not running, so C-language access is safe.
1581 nesting = t->trc_reader_nesting;
1582 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1583 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1584 n_heavy_reader_ofl_updates++;
1585 }
1586
1587 // If not exiting a read-side critical section, mark as checked
1588 // so that the grace-period kthread will remove it from the
1589 // holdout list.
1590 if (!nesting) {
1591 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1592 return 0; // In QS, so done.
1593 }
1594 if (nesting < 0)
1595 return -EINVAL; // Reader transitioning, try again later.
1596
1597 // The task is in a read-side critical section, so set up its
1598 // state so that it will update state upon exit from that critical
1599 // section.
1600 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1601 trc_add_holdout(t, bhp);
1602 return 0;
1603 }
1604
1605 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)1606 static void trc_wait_for_one_reader(struct task_struct *t,
1607 struct list_head *bhp)
1608 {
1609 int cpu;
1610
1611 // If a previous IPI is still in flight, let it complete.
1612 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1613 return;
1614
1615 // The current task had better be in a quiescent state.
1616 if (t == current) {
1617 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1618 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1619 return;
1620 }
1621
1622 // Attempt to nail down the task for inspection.
1623 get_task_struct(t);
1624 if (!task_call_func(t, trc_inspect_reader, bhp)) {
1625 put_task_struct(t);
1626 return;
1627 }
1628 put_task_struct(t);
1629
1630 // If this task is not yet on the holdout list, then we are in
1631 // an RCU read-side critical section. Otherwise, the invocation of
1632 // trc_add_holdout() that added it to the list did the necessary
1633 // get_task_struct(). Either way, the task cannot be freed out
1634 // from under this code.
1635
1636 // If currently running, send an IPI, either way, add to list.
1637 trc_add_holdout(t, bhp);
1638 if (task_curr(t) &&
1639 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1640 // The task is currently running, so try IPIing it.
1641 cpu = task_cpu(t);
1642
1643 // If there is already an IPI outstanding, let it happen.
1644 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1645 return;
1646
1647 per_cpu(trc_ipi_to_cpu, cpu) = true;
1648 t->trc_ipi_to_cpu = cpu;
1649 rcu_tasks_trace.n_ipis++;
1650 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1651 // Just in case there is some other reason for
1652 // failure than the target CPU being offline.
1653 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1654 __func__, cpu);
1655 rcu_tasks_trace.n_ipis_fails++;
1656 per_cpu(trc_ipi_to_cpu, cpu) = false;
1657 t->trc_ipi_to_cpu = -1;
1658 }
1659 }
1660 }
1661
1662 /*
1663 * Initialize for first-round processing for the specified task.
1664 * Return false if task is NULL or already taken care of, true otherwise.
1665 */
rcu_tasks_trace_pertask_prep(struct task_struct * t,bool notself)1666 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1667 {
1668 // During early boot when there is only the one boot CPU, there
1669 // is no idle task for the other CPUs. Also, the grace-period
1670 // kthread is always in a quiescent state. In addition, just return
1671 // if this task is already on the list.
1672 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1673 return false;
1674
1675 rcu_st_need_qs(t, 0);
1676 t->trc_ipi_to_cpu = -1;
1677 return true;
1678 }
1679
1680 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)1681 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1682 {
1683 if (rcu_tasks_trace_pertask_prep(t, true))
1684 trc_wait_for_one_reader(t, hop);
1685 }
1686
1687 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(struct list_head * hop)1688 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1689 {
1690 LIST_HEAD(blkd_tasks);
1691 int cpu;
1692 unsigned long flags;
1693 struct rcu_tasks_percpu *rtpcp;
1694 struct task_struct *t;
1695
1696 // There shouldn't be any old IPIs, but...
1697 for_each_possible_cpu(cpu)
1698 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1699
1700 // Disable CPU hotplug across the CPU scan for the benefit of
1701 // any IPIs that might be needed. This also waits for all readers
1702 // in CPU-hotplug code paths.
1703 cpus_read_lock();
1704
1705 // These rcu_tasks_trace_pertask_prep() calls are serialized to
1706 // allow safe access to the hop list.
1707 for_each_online_cpu(cpu) {
1708 rcu_read_lock();
1709 // Note that cpu_curr_snapshot() picks up the target
1710 // CPU's current task while its runqueue is locked with
1711 // an smp_mb__after_spinlock(). This ensures that either
1712 // the grace-period kthread will see that task's read-side
1713 // critical section or the task will see the updater's pre-GP
1714 // accesses. The trailing smp_mb() in cpu_curr_snapshot()
1715 // does not currently play a role other than simplify
1716 // that function's ordering semantics. If these simplified
1717 // ordering semantics continue to be redundant, that smp_mb()
1718 // might be removed.
1719 t = cpu_curr_snapshot(cpu);
1720 if (rcu_tasks_trace_pertask_prep(t, true))
1721 trc_add_holdout(t, hop);
1722 rcu_read_unlock();
1723 cond_resched_tasks_rcu_qs();
1724 }
1725
1726 // Only after all running tasks have been accounted for is it
1727 // safe to take care of the tasks that have blocked within their
1728 // current RCU tasks trace read-side critical section.
1729 for_each_possible_cpu(cpu) {
1730 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1731 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1732 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1733 while (!list_empty(&blkd_tasks)) {
1734 rcu_read_lock();
1735 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1736 list_del_init(&t->trc_blkd_node);
1737 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1738 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1739 rcu_tasks_trace_pertask(t, hop);
1740 rcu_read_unlock();
1741 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1742 }
1743 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1744 cond_resched_tasks_rcu_qs();
1745 }
1746
1747 // Re-enable CPU hotplug now that the holdout list is populated.
1748 cpus_read_unlock();
1749 }
1750
1751 /*
1752 * Do intermediate processing between task and holdout scans.
1753 */
rcu_tasks_trace_postscan(struct list_head * hop)1754 static void rcu_tasks_trace_postscan(struct list_head *hop)
1755 {
1756 // Wait for late-stage exiting tasks to finish exiting.
1757 // These might have passed the call to exit_tasks_rcu_finish().
1758
1759 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1760 synchronize_rcu();
1761 // Any tasks that exit after this point will set
1762 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1763 }
1764
1765 /* Communicate task state back to the RCU tasks trace stall warning request. */
1766 struct trc_stall_chk_rdr {
1767 int nesting;
1768 int ipi_to_cpu;
1769 u8 needqs;
1770 };
1771
trc_check_slow_task(struct task_struct * t,void * arg)1772 static int trc_check_slow_task(struct task_struct *t, void *arg)
1773 {
1774 struct trc_stall_chk_rdr *trc_rdrp = arg;
1775
1776 if (task_curr(t) && cpu_online(task_cpu(t)))
1777 return false; // It is running, so decline to inspect it.
1778 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1779 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1780 trc_rdrp->needqs = rcu_ld_need_qs(t);
1781 return true;
1782 }
1783
1784 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1785 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1786 {
1787 int cpu;
1788 struct trc_stall_chk_rdr trc_rdr;
1789 bool is_idle_tsk = is_idle_task(t);
1790
1791 if (*firstreport) {
1792 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1793 *firstreport = false;
1794 }
1795 cpu = task_cpu(t);
1796 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1797 pr_alert("P%d: %c%c\n",
1798 t->pid,
1799 ".I"[t->trc_ipi_to_cpu >= 0],
1800 ".i"[is_idle_tsk]);
1801 else
1802 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1803 t->pid,
1804 ".I"[trc_rdr.ipi_to_cpu >= 0],
1805 ".i"[is_idle_tsk],
1806 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1807 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1808 trc_rdr.nesting,
1809 " !CN"[trc_rdr.needqs & 0x3],
1810 " ?"[trc_rdr.needqs > 0x3],
1811 cpu, cpu_online(cpu) ? "" : "(offline)");
1812 sched_show_task(t);
1813 }
1814
1815 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1816 static void show_stalled_ipi_trace(void)
1817 {
1818 int cpu;
1819
1820 for_each_possible_cpu(cpu)
1821 if (per_cpu(trc_ipi_to_cpu, cpu))
1822 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1823 }
1824
1825 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1826 static void check_all_holdout_tasks_trace(struct list_head *hop,
1827 bool needreport, bool *firstreport)
1828 {
1829 struct task_struct *g, *t;
1830
1831 // Disable CPU hotplug across the holdout list scan for IPIs.
1832 cpus_read_lock();
1833
1834 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1835 // If safe and needed, try to check the current task.
1836 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1837 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1838 trc_wait_for_one_reader(t, hop);
1839
1840 // If check succeeded, remove this task from the list.
1841 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1842 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1843 trc_del_holdout(t);
1844 else if (needreport)
1845 show_stalled_task_trace(t, firstreport);
1846 cond_resched_tasks_rcu_qs();
1847 }
1848
1849 // Re-enable CPU hotplug now that the holdout list scan has completed.
1850 cpus_read_unlock();
1851
1852 if (needreport) {
1853 if (*firstreport)
1854 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1855 show_stalled_ipi_trace();
1856 }
1857 }
1858
rcu_tasks_trace_empty_fn(void * unused)1859 static void rcu_tasks_trace_empty_fn(void *unused)
1860 {
1861 }
1862
1863 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1864 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1865 {
1866 int cpu;
1867
1868 // Wait for any lingering IPI handlers to complete. Note that
1869 // if a CPU has gone offline or transitioned to userspace in the
1870 // meantime, all IPI handlers should have been drained beforehand.
1871 // Yes, this assumes that CPUs process IPIs in order. If that ever
1872 // changes, there will need to be a recheck and/or timed wait.
1873 for_each_online_cpu(cpu)
1874 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1875 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1876
1877 smp_mb(); // Caller's code must be ordered after wakeup.
1878 // Pairs with pretty much every ordering primitive.
1879 }
1880
1881 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1882 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1883 {
1884 union rcu_special trs = READ_ONCE(t->trc_reader_special);
1885
1886 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1887 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1888 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1889 rcu_read_unlock_trace_special(t);
1890 else
1891 WRITE_ONCE(t->trc_reader_nesting, 0);
1892 }
1893
1894 /**
1895 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1896 * @rhp: structure to be used for queueing the RCU updates.
1897 * @func: actual callback function to be invoked after the grace period
1898 *
1899 * The callback function will be invoked some time after a trace rcu-tasks
1900 * grace period elapses, in other words after all currently executing
1901 * trace rcu-tasks read-side critical sections have completed. These
1902 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1903 * and rcu_read_unlock_trace().
1904 *
1905 * See the description of call_rcu() for more detailed information on
1906 * memory ordering guarantees.
1907 */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)1908 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1909 {
1910 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1911 }
1912 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1913
1914 /**
1915 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1916 *
1917 * Control will return to the caller some time after a trace rcu-tasks
1918 * grace period has elapsed, in other words after all currently executing
1919 * trace rcu-tasks read-side critical sections have elapsed. These read-side
1920 * critical sections are delimited by calls to rcu_read_lock_trace()
1921 * and rcu_read_unlock_trace().
1922 *
1923 * This is a very specialized primitive, intended only for a few uses in
1924 * tracing and other situations requiring manipulation of function preambles
1925 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1926 * (yet) intended for heavy use from multiple CPUs.
1927 *
1928 * See the description of synchronize_rcu() for more detailed information
1929 * on memory ordering guarantees.
1930 */
synchronize_rcu_tasks_trace(void)1931 void synchronize_rcu_tasks_trace(void)
1932 {
1933 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1934 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1935 }
1936 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1937
1938 /**
1939 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1940 *
1941 * Although the current implementation is guaranteed to wait, it is not
1942 * obligated to, for example, if there are no pending callbacks.
1943 */
rcu_barrier_tasks_trace(void)1944 void rcu_barrier_tasks_trace(void)
1945 {
1946 rcu_barrier_tasks_generic(&rcu_tasks_trace);
1947 }
1948 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1949
1950 int rcu_tasks_trace_lazy_ms = -1;
1951 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
1952
rcu_spawn_tasks_trace_kthread(void)1953 static int __init rcu_spawn_tasks_trace_kthread(void)
1954 {
1955 cblist_init_generic(&rcu_tasks_trace);
1956 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1957 rcu_tasks_trace.gp_sleep = HZ / 10;
1958 rcu_tasks_trace.init_fract = HZ / 10;
1959 } else {
1960 rcu_tasks_trace.gp_sleep = HZ / 200;
1961 if (rcu_tasks_trace.gp_sleep <= 0)
1962 rcu_tasks_trace.gp_sleep = 1;
1963 rcu_tasks_trace.init_fract = HZ / 200;
1964 if (rcu_tasks_trace.init_fract <= 0)
1965 rcu_tasks_trace.init_fract = 1;
1966 }
1967 if (rcu_tasks_trace_lazy_ms >= 0)
1968 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
1969 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1970 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1971 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1972 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1973 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1974 return 0;
1975 }
1976
1977 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_trace_gp_kthread(void)1978 void show_rcu_tasks_trace_gp_kthread(void)
1979 {
1980 char buf[64];
1981
1982 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
1983 data_race(n_trc_holdouts),
1984 data_race(n_heavy_reader_ofl_updates),
1985 data_race(n_heavy_reader_updates),
1986 data_race(n_heavy_reader_attempts));
1987 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1988 }
1989 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1990 #endif // !defined(CONFIG_TINY_RCU)
1991
get_rcu_tasks_trace_gp_kthread(void)1992 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
1993 {
1994 return rcu_tasks_trace.kthread_ptr;
1995 }
1996 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
1997
1998 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)1999 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2000 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2001
2002 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)2003 void show_rcu_tasks_gp_kthreads(void)
2004 {
2005 show_rcu_tasks_classic_gp_kthread();
2006 show_rcu_tasks_rude_gp_kthread();
2007 show_rcu_tasks_trace_gp_kthread();
2008 }
2009 #endif /* #ifndef CONFIG_TINY_RCU */
2010
2011 #ifdef CONFIG_PROVE_RCU
2012 struct rcu_tasks_test_desc {
2013 struct rcu_head rh;
2014 const char *name;
2015 bool notrun;
2016 unsigned long runstart;
2017 };
2018
2019 static struct rcu_tasks_test_desc tests[] = {
2020 {
2021 .name = "call_rcu_tasks()",
2022 /* If not defined, the test is skipped. */
2023 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2024 },
2025 {
2026 .name = "call_rcu_tasks_rude()",
2027 /* If not defined, the test is skipped. */
2028 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
2029 },
2030 {
2031 .name = "call_rcu_tasks_trace()",
2032 /* If not defined, the test is skipped. */
2033 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2034 }
2035 };
2036
test_rcu_tasks_callback(struct rcu_head * rhp)2037 static void test_rcu_tasks_callback(struct rcu_head *rhp)
2038 {
2039 struct rcu_tasks_test_desc *rttd =
2040 container_of(rhp, struct rcu_tasks_test_desc, rh);
2041
2042 pr_info("Callback from %s invoked.\n", rttd->name);
2043
2044 rttd->notrun = false;
2045 }
2046
rcu_tasks_initiate_self_tests(void)2047 static void rcu_tasks_initiate_self_tests(void)
2048 {
2049 pr_info("Running RCU-tasks wait API self tests\n");
2050 #ifdef CONFIG_TASKS_RCU
2051 tests[0].runstart = jiffies;
2052 synchronize_rcu_tasks();
2053 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2054 #endif
2055
2056 #ifdef CONFIG_TASKS_RUDE_RCU
2057 tests[1].runstart = jiffies;
2058 synchronize_rcu_tasks_rude();
2059 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
2060 #endif
2061
2062 #ifdef CONFIG_TASKS_TRACE_RCU
2063 tests[2].runstart = jiffies;
2064 synchronize_rcu_tasks_trace();
2065 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
2066 #endif
2067 }
2068
2069 /*
2070 * Return: 0 - test passed
2071 * 1 - test failed, but have not timed out yet
2072 * -1 - test failed and timed out
2073 */
rcu_tasks_verify_self_tests(void)2074 static int rcu_tasks_verify_self_tests(void)
2075 {
2076 int ret = 0;
2077 int i;
2078 unsigned long bst = rcu_task_stall_timeout;
2079
2080 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2081 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2082 for (i = 0; i < ARRAY_SIZE(tests); i++) {
2083 while (tests[i].notrun) { // still hanging.
2084 if (time_after(jiffies, tests[i].runstart + bst)) {
2085 pr_err("%s has failed boot-time tests.\n", tests[i].name);
2086 ret = -1;
2087 break;
2088 }
2089 ret = 1;
2090 break;
2091 }
2092 }
2093 WARN_ON(ret < 0);
2094
2095 return ret;
2096 }
2097
2098 /*
2099 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2100 * test passes or has timed out.
2101 */
2102 static struct delayed_work rcu_tasks_verify_work;
rcu_tasks_verify_work_fn(struct work_struct * work __maybe_unused)2103 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2104 {
2105 int ret = rcu_tasks_verify_self_tests();
2106
2107 if (ret <= 0)
2108 return;
2109
2110 /* Test fails but not timed out yet, reschedule another check */
2111 schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2112 }
2113
rcu_tasks_verify_schedule_work(void)2114 static int rcu_tasks_verify_schedule_work(void)
2115 {
2116 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2117 rcu_tasks_verify_work_fn(NULL);
2118 return 0;
2119 }
2120 late_initcall(rcu_tasks_verify_schedule_work);
2121 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_tasks_initiate_self_tests(void)2122 static void rcu_tasks_initiate_self_tests(void) { }
2123 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2124
rcu_init_tasks_generic(void)2125 void __init rcu_init_tasks_generic(void)
2126 {
2127 #ifdef CONFIG_TASKS_RCU
2128 rcu_spawn_tasks_kthread();
2129 #endif
2130
2131 #ifdef CONFIG_TASKS_RUDE_RCU
2132 rcu_spawn_tasks_rude_kthread();
2133 #endif
2134
2135 #ifdef CONFIG_TASKS_TRACE_RCU
2136 rcu_spawn_tasks_trace_kthread();
2137 #endif
2138
2139 // Run the self-tests.
2140 rcu_tasks_initiate_self_tests();
2141 }
2142
2143 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)2144 static inline void rcu_tasks_bootup_oddness(void) {}
2145 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2146