1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35
36 #include "pnode.h"
37 #include "internal.h"
38
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46
47 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)48 static int __init set_mhash_entries(char *str)
49 {
50 if (!str)
51 return 0;
52 mhash_entries = simple_strtoul(str, &str, 0);
53 return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56
57 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)58 static int __init set_mphash_entries(char *str)
59 {
60 if (!str)
61 return 0;
62 mphash_entries = simple_strtoul(str, &str, 0);
63 return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77
78 struct mount_kattr {
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
83 bool recurse;
84 struct user_namespace *mnt_userns;
85 struct mnt_idmap *mnt_idmap;
86 };
87
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91
92 /*
93 * vfsmount lock may be taken for read to prevent changes to the
94 * vfsmount hash, ie. during mountpoint lookups or walking back
95 * up the tree.
96 *
97 * It should be taken for write in all cases where the vfsmount
98 * tree or hash is modified or when a vfsmount structure is modified.
99 */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101
lock_mount_hash(void)102 static inline void lock_mount_hash(void)
103 {
104 write_seqlock(&mount_lock);
105 }
106
unlock_mount_hash(void)107 static inline void unlock_mount_hash(void)
108 {
109 write_sequnlock(&mount_lock);
110 }
111
m_hash(struct vfsmount * mnt,struct dentry * dentry)112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 tmp = tmp + (tmp >> m_hash_shift);
117 return &mount_hashtable[tmp & m_hash_mask];
118 }
119
mp_hash(struct dentry * dentry)120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 tmp = tmp + (tmp >> mp_hash_shift);
124 return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126
mnt_alloc_id(struct mount * mnt)127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130
131 if (res < 0)
132 return res;
133 mnt->mnt_id = res;
134 return 0;
135 }
136
mnt_free_id(struct mount * mnt)137 static void mnt_free_id(struct mount *mnt)
138 {
139 ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141
142 /*
143 * Allocate a new peer group ID
144 */
mnt_alloc_group_id(struct mount * mnt)145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148
149 if (res < 0)
150 return res;
151 mnt->mnt_group_id = res;
152 return 0;
153 }
154
155 /*
156 * Release a peer group ID
157 */
mnt_release_group_id(struct mount * mnt)158 void mnt_release_group_id(struct mount *mnt)
159 {
160 ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 mnt->mnt_group_id = 0;
162 }
163
164 /*
165 * vfsmount lock must be held for read
166 */
mnt_add_count(struct mount * mnt,int n)167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 preempt_disable();
173 mnt->mnt_count += n;
174 preempt_enable();
175 #endif
176 }
177
178 /*
179 * vfsmount lock must be held for write
180 */
mnt_get_count(struct mount * mnt)181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 int count = 0;
185 int cpu;
186
187 for_each_possible_cpu(cpu) {
188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 }
190
191 return count;
192 #else
193 return mnt->mnt_count;
194 #endif
195 }
196
alloc_vfsmnt(const char * name)197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 if (mnt) {
201 int err;
202
203 err = mnt_alloc_id(mnt);
204 if (err)
205 goto out_free_cache;
206
207 if (name) {
208 mnt->mnt_devname = kstrdup_const(name,
209 GFP_KERNEL_ACCOUNT);
210 if (!mnt->mnt_devname)
211 goto out_free_id;
212 }
213
214 #ifdef CONFIG_SMP
215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 if (!mnt->mnt_pcp)
217 goto out_free_devname;
218
219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 mnt->mnt_count = 1;
222 mnt->mnt_writers = 0;
223 #endif
224
225 INIT_HLIST_NODE(&mnt->mnt_hash);
226 INIT_LIST_HEAD(&mnt->mnt_child);
227 INIT_LIST_HEAD(&mnt->mnt_mounts);
228 INIT_LIST_HEAD(&mnt->mnt_list);
229 INIT_LIST_HEAD(&mnt->mnt_expire);
230 INIT_LIST_HEAD(&mnt->mnt_share);
231 INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 INIT_LIST_HEAD(&mnt->mnt_slave);
233 INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 INIT_LIST_HEAD(&mnt->mnt_umounting);
235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 }
238 return mnt;
239
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
249 }
250
251 /*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259 /*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
__mnt_is_readonly(struct vfsmount * mnt)270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275
mnt_inc_writers(struct mount * mnt)276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 mnt->mnt_writers++;
282 #endif
283 }
284
mnt_dec_writers(struct mount * mnt)285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 mnt->mnt_writers--;
291 #endif
292 }
293
mnt_get_writers(struct mount * mnt)294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 unsigned int count = 0;
298 int cpu;
299
300 for_each_possible_cpu(cpu) {
301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 }
303
304 return count;
305 #else
306 return mnt->mnt_writers;
307 #endif
308 }
309
mnt_is_readonly(struct vfsmount * mnt)310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
313 return 1;
314 /*
315 * The barrier pairs with the barrier in sb_start_ro_state_change()
316 * making sure if we don't see s_readonly_remount set yet, we also will
317 * not see any superblock / mount flag changes done by remount.
318 * It also pairs with the barrier in sb_end_ro_state_change()
319 * assuring that if we see s_readonly_remount already cleared, we will
320 * see the values of superblock / mount flags updated by remount.
321 */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
__mnt_want_write(struct vfsmount * m)342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 might_lock(&mount_lock.lock);
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
357 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
358 cpu_relax();
359 } else {
360 /*
361 * This prevents priority inversion, if the task
362 * setting MNT_WRITE_HOLD got preempted on a remote
363 * CPU, and it prevents life lock if the task setting
364 * MNT_WRITE_HOLD has a lower priority and is bound to
365 * the same CPU as the task that is spinning here.
366 */
367 preempt_enable();
368 lock_mount_hash();
369 unlock_mount_hash();
370 preempt_disable();
371 }
372 }
373 /*
374 * The barrier pairs with the barrier sb_start_ro_state_change() making
375 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
376 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
377 * mnt_is_readonly() and bail in case we are racing with remount
378 * read-only.
379 */
380 smp_rmb();
381 if (mnt_is_readonly(m)) {
382 mnt_dec_writers(mnt);
383 ret = -EROFS;
384 }
385 preempt_enable();
386
387 return ret;
388 }
389
390 /**
391 * mnt_want_write - get write access to a mount
392 * @m: the mount on which to take a write
393 *
394 * This tells the low-level filesystem that a write is about to be performed to
395 * it, and makes sure that writes are allowed (mount is read-write, filesystem
396 * is not frozen) before returning success. When the write operation is
397 * finished, mnt_drop_write() must be called. This is effectively a refcount.
398 */
mnt_want_write(struct vfsmount * m)399 int mnt_want_write(struct vfsmount *m)
400 {
401 int ret;
402
403 sb_start_write(m->mnt_sb);
404 ret = __mnt_want_write(m);
405 if (ret)
406 sb_end_write(m->mnt_sb);
407 return ret;
408 }
409 EXPORT_SYMBOL_GPL(mnt_want_write);
410
411 /**
412 * __mnt_want_write_file - get write access to a file's mount
413 * @file: the file who's mount on which to take a write
414 *
415 * This is like __mnt_want_write, but if the file is already open for writing it
416 * skips incrementing mnt_writers (since the open file already has a reference)
417 * and instead only does the check for emergency r/o remounts. This must be
418 * paired with __mnt_drop_write_file.
419 */
__mnt_want_write_file(struct file * file)420 int __mnt_want_write_file(struct file *file)
421 {
422 if (file->f_mode & FMODE_WRITER) {
423 /*
424 * Superblock may have become readonly while there are still
425 * writable fd's, e.g. due to a fs error with errors=remount-ro
426 */
427 if (__mnt_is_readonly(file->f_path.mnt))
428 return -EROFS;
429 return 0;
430 }
431 return __mnt_want_write(file->f_path.mnt);
432 }
433
434 /**
435 * mnt_want_write_file - get write access to a file's mount
436 * @file: the file who's mount on which to take a write
437 *
438 * This is like mnt_want_write, but if the file is already open for writing it
439 * skips incrementing mnt_writers (since the open file already has a reference)
440 * and instead only does the freeze protection and the check for emergency r/o
441 * remounts. This must be paired with mnt_drop_write_file.
442 */
mnt_want_write_file(struct file * file)443 int mnt_want_write_file(struct file *file)
444 {
445 int ret;
446
447 sb_start_write(file_inode(file)->i_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file_inode(file)->i_sb);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
454
455 /**
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
458 *
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
462 */
__mnt_drop_write(struct vfsmount * mnt)463 void __mnt_drop_write(struct vfsmount *mnt)
464 {
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
468 }
469
470 /**
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
473 *
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
477 */
mnt_drop_write(struct vfsmount * mnt)478 void mnt_drop_write(struct vfsmount *mnt)
479 {
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
482 }
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
484
__mnt_drop_write_file(struct file * file)485 void __mnt_drop_write_file(struct file *file)
486 {
487 if (!(file->f_mode & FMODE_WRITER))
488 __mnt_drop_write(file->f_path.mnt);
489 }
490
mnt_drop_write_file(struct file * file)491 void mnt_drop_write_file(struct file *file)
492 {
493 __mnt_drop_write_file(file);
494 sb_end_write(file_inode(file)->i_sb);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497
498 /**
499 * mnt_hold_writers - prevent write access to the given mount
500 * @mnt: mnt to prevent write access to
501 *
502 * Prevents write access to @mnt if there are no active writers for @mnt.
503 * This function needs to be called and return successfully before changing
504 * properties of @mnt that need to remain stable for callers with write access
505 * to @mnt.
506 *
507 * After this functions has been called successfully callers must pair it with
508 * a call to mnt_unhold_writers() in order to stop preventing write access to
509 * @mnt.
510 *
511 * Context: This function expects lock_mount_hash() to be held serializing
512 * setting MNT_WRITE_HOLD.
513 * Return: On success 0 is returned.
514 * On error, -EBUSY is returned.
515 */
mnt_hold_writers(struct mount * mnt)516 static inline int mnt_hold_writers(struct mount *mnt)
517 {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 /*
520 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
521 * should be visible before we do.
522 */
523 smp_mb();
524
525 /*
526 * With writers on hold, if this value is zero, then there are
527 * definitely no active writers (although held writers may subsequently
528 * increment the count, they'll have to wait, and decrement it after
529 * seeing MNT_READONLY).
530 *
531 * It is OK to have counter incremented on one CPU and decremented on
532 * another: the sum will add up correctly. The danger would be when we
533 * sum up each counter, if we read a counter before it is incremented,
534 * but then read another CPU's count which it has been subsequently
535 * decremented from -- we would see more decrements than we should.
536 * MNT_WRITE_HOLD protects against this scenario, because
537 * mnt_want_write first increments count, then smp_mb, then spins on
538 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
539 * we're counting up here.
540 */
541 if (mnt_get_writers(mnt) > 0)
542 return -EBUSY;
543
544 return 0;
545 }
546
547 /**
548 * mnt_unhold_writers - stop preventing write access to the given mount
549 * @mnt: mnt to stop preventing write access to
550 *
551 * Stop preventing write access to @mnt allowing callers to gain write access
552 * to @mnt again.
553 *
554 * This function can only be called after a successful call to
555 * mnt_hold_writers().
556 *
557 * Context: This function expects lock_mount_hash() to be held.
558 */
mnt_unhold_writers(struct mount * mnt)559 static inline void mnt_unhold_writers(struct mount *mnt)
560 {
561 /*
562 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
563 * that become unheld will see MNT_READONLY.
564 */
565 smp_wmb();
566 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
567 }
568
mnt_make_readonly(struct mount * mnt)569 static int mnt_make_readonly(struct mount *mnt)
570 {
571 int ret;
572
573 ret = mnt_hold_writers(mnt);
574 if (!ret)
575 mnt->mnt.mnt_flags |= MNT_READONLY;
576 mnt_unhold_writers(mnt);
577 return ret;
578 }
579
sb_prepare_remount_readonly(struct super_block * sb)580 int sb_prepare_remount_readonly(struct super_block *sb)
581 {
582 struct mount *mnt;
583 int err = 0;
584
585 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
586 if (atomic_long_read(&sb->s_remove_count))
587 return -EBUSY;
588
589 lock_mount_hash();
590 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
591 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
592 err = mnt_hold_writers(mnt);
593 if (err)
594 break;
595 }
596 }
597 if (!err && atomic_long_read(&sb->s_remove_count))
598 err = -EBUSY;
599
600 if (!err)
601 sb_start_ro_state_change(sb);
602 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
603 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
604 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
605 }
606 unlock_mount_hash();
607
608 return err;
609 }
610
free_vfsmnt(struct mount * mnt)611 static void free_vfsmnt(struct mount *mnt)
612 {
613 mnt_idmap_put(mnt_idmap(&mnt->mnt));
614 kfree_const(mnt->mnt_devname);
615 #ifdef CONFIG_SMP
616 free_percpu(mnt->mnt_pcp);
617 #endif
618 kmem_cache_free(mnt_cache, mnt);
619 }
620
delayed_free_vfsmnt(struct rcu_head * head)621 static void delayed_free_vfsmnt(struct rcu_head *head)
622 {
623 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
624 }
625
626 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)627 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
628 {
629 struct mount *mnt;
630 if (read_seqretry(&mount_lock, seq))
631 return 1;
632 if (bastard == NULL)
633 return 0;
634 mnt = real_mount(bastard);
635 mnt_add_count(mnt, 1);
636 smp_mb(); // see mntput_no_expire() and do_umount()
637 if (likely(!read_seqretry(&mount_lock, seq)))
638 return 0;
639 lock_mount_hash();
640 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
641 mnt_add_count(mnt, -1);
642 unlock_mount_hash();
643 return 1;
644 }
645 unlock_mount_hash();
646 /* caller will mntput() */
647 return -1;
648 }
649
650 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)651 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
652 {
653 int res = __legitimize_mnt(bastard, seq);
654 if (likely(!res))
655 return true;
656 if (unlikely(res < 0)) {
657 rcu_read_unlock();
658 mntput(bastard);
659 rcu_read_lock();
660 }
661 return false;
662 }
663
664 /**
665 * __lookup_mnt - find first child mount
666 * @mnt: parent mount
667 * @dentry: mountpoint
668 *
669 * If @mnt has a child mount @c mounted @dentry find and return it.
670 *
671 * Note that the child mount @c need not be unique. There are cases
672 * where shadow mounts are created. For example, during mount
673 * propagation when a source mount @mnt whose root got overmounted by a
674 * mount @o after path lookup but before @namespace_sem could be
675 * acquired gets copied and propagated. So @mnt gets copied including
676 * @o. When @mnt is propagated to a destination mount @d that already
677 * has another mount @n mounted at the same mountpoint then the source
678 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
679 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
680 * on @dentry.
681 *
682 * Return: The first child of @mnt mounted @dentry or NULL.
683 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)684 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
685 {
686 struct hlist_head *head = m_hash(mnt, dentry);
687 struct mount *p;
688
689 hlist_for_each_entry_rcu(p, head, mnt_hash)
690 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
691 return p;
692 return NULL;
693 }
694
695 /*
696 * lookup_mnt - Return the first child mount mounted at path
697 *
698 * "First" means first mounted chronologically. If you create the
699 * following mounts:
700 *
701 * mount /dev/sda1 /mnt
702 * mount /dev/sda2 /mnt
703 * mount /dev/sda3 /mnt
704 *
705 * Then lookup_mnt() on the base /mnt dentry in the root mount will
706 * return successively the root dentry and vfsmount of /dev/sda1, then
707 * /dev/sda2, then /dev/sda3, then NULL.
708 *
709 * lookup_mnt takes a reference to the found vfsmount.
710 */
lookup_mnt(const struct path * path)711 struct vfsmount *lookup_mnt(const struct path *path)
712 {
713 struct mount *child_mnt;
714 struct vfsmount *m;
715 unsigned seq;
716
717 rcu_read_lock();
718 do {
719 seq = read_seqbegin(&mount_lock);
720 child_mnt = __lookup_mnt(path->mnt, path->dentry);
721 m = child_mnt ? &child_mnt->mnt : NULL;
722 } while (!legitimize_mnt(m, seq));
723 rcu_read_unlock();
724 return m;
725 }
726
lock_ns_list(struct mnt_namespace * ns)727 static inline void lock_ns_list(struct mnt_namespace *ns)
728 {
729 spin_lock(&ns->ns_lock);
730 }
731
unlock_ns_list(struct mnt_namespace * ns)732 static inline void unlock_ns_list(struct mnt_namespace *ns)
733 {
734 spin_unlock(&ns->ns_lock);
735 }
736
mnt_is_cursor(struct mount * mnt)737 static inline bool mnt_is_cursor(struct mount *mnt)
738 {
739 return mnt->mnt.mnt_flags & MNT_CURSOR;
740 }
741
742 /*
743 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
744 * current mount namespace.
745 *
746 * The common case is dentries are not mountpoints at all and that
747 * test is handled inline. For the slow case when we are actually
748 * dealing with a mountpoint of some kind, walk through all of the
749 * mounts in the current mount namespace and test to see if the dentry
750 * is a mountpoint.
751 *
752 * The mount_hashtable is not usable in the context because we
753 * need to identify all mounts that may be in the current mount
754 * namespace not just a mount that happens to have some specified
755 * parent mount.
756 */
__is_local_mountpoint(struct dentry * dentry)757 bool __is_local_mountpoint(struct dentry *dentry)
758 {
759 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
760 struct mount *mnt;
761 bool is_covered = false;
762
763 down_read(&namespace_sem);
764 lock_ns_list(ns);
765 list_for_each_entry(mnt, &ns->list, mnt_list) {
766 if (mnt_is_cursor(mnt))
767 continue;
768 is_covered = (mnt->mnt_mountpoint == dentry);
769 if (is_covered)
770 break;
771 }
772 unlock_ns_list(ns);
773 up_read(&namespace_sem);
774
775 return is_covered;
776 }
777
lookup_mountpoint(struct dentry * dentry)778 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
779 {
780 struct hlist_head *chain = mp_hash(dentry);
781 struct mountpoint *mp;
782
783 hlist_for_each_entry(mp, chain, m_hash) {
784 if (mp->m_dentry == dentry) {
785 mp->m_count++;
786 return mp;
787 }
788 }
789 return NULL;
790 }
791
get_mountpoint(struct dentry * dentry)792 static struct mountpoint *get_mountpoint(struct dentry *dentry)
793 {
794 struct mountpoint *mp, *new = NULL;
795 int ret;
796
797 if (d_mountpoint(dentry)) {
798 /* might be worth a WARN_ON() */
799 if (d_unlinked(dentry))
800 return ERR_PTR(-ENOENT);
801 mountpoint:
802 read_seqlock_excl(&mount_lock);
803 mp = lookup_mountpoint(dentry);
804 read_sequnlock_excl(&mount_lock);
805 if (mp)
806 goto done;
807 }
808
809 if (!new)
810 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
811 if (!new)
812 return ERR_PTR(-ENOMEM);
813
814
815 /* Exactly one processes may set d_mounted */
816 ret = d_set_mounted(dentry);
817
818 /* Someone else set d_mounted? */
819 if (ret == -EBUSY)
820 goto mountpoint;
821
822 /* The dentry is not available as a mountpoint? */
823 mp = ERR_PTR(ret);
824 if (ret)
825 goto done;
826
827 /* Add the new mountpoint to the hash table */
828 read_seqlock_excl(&mount_lock);
829 new->m_dentry = dget(dentry);
830 new->m_count = 1;
831 hlist_add_head(&new->m_hash, mp_hash(dentry));
832 INIT_HLIST_HEAD(&new->m_list);
833 read_sequnlock_excl(&mount_lock);
834
835 mp = new;
836 new = NULL;
837 done:
838 kfree(new);
839 return mp;
840 }
841
842 /*
843 * vfsmount lock must be held. Additionally, the caller is responsible
844 * for serializing calls for given disposal list.
845 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)846 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
847 {
848 if (!--mp->m_count) {
849 struct dentry *dentry = mp->m_dentry;
850 BUG_ON(!hlist_empty(&mp->m_list));
851 spin_lock(&dentry->d_lock);
852 dentry->d_flags &= ~DCACHE_MOUNTED;
853 spin_unlock(&dentry->d_lock);
854 dput_to_list(dentry, list);
855 hlist_del(&mp->m_hash);
856 kfree(mp);
857 }
858 }
859
860 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)861 static void put_mountpoint(struct mountpoint *mp)
862 {
863 __put_mountpoint(mp, &ex_mountpoints);
864 }
865
check_mnt(struct mount * mnt)866 static inline int check_mnt(struct mount *mnt)
867 {
868 return mnt->mnt_ns == current->nsproxy->mnt_ns;
869 }
870
871 /*
872 * vfsmount lock must be held for write
873 */
touch_mnt_namespace(struct mnt_namespace * ns)874 static void touch_mnt_namespace(struct mnt_namespace *ns)
875 {
876 if (ns) {
877 ns->event = ++event;
878 wake_up_interruptible(&ns->poll);
879 }
880 }
881
882 /*
883 * vfsmount lock must be held for write
884 */
__touch_mnt_namespace(struct mnt_namespace * ns)885 static void __touch_mnt_namespace(struct mnt_namespace *ns)
886 {
887 if (ns && ns->event != event) {
888 ns->event = event;
889 wake_up_interruptible(&ns->poll);
890 }
891 }
892
893 /*
894 * vfsmount lock must be held for write
895 */
unhash_mnt(struct mount * mnt)896 static struct mountpoint *unhash_mnt(struct mount *mnt)
897 {
898 struct mountpoint *mp;
899 mnt->mnt_parent = mnt;
900 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
901 list_del_init(&mnt->mnt_child);
902 hlist_del_init_rcu(&mnt->mnt_hash);
903 hlist_del_init(&mnt->mnt_mp_list);
904 mp = mnt->mnt_mp;
905 mnt->mnt_mp = NULL;
906 return mp;
907 }
908
909 /*
910 * vfsmount lock must be held for write
911 */
umount_mnt(struct mount * mnt)912 static void umount_mnt(struct mount *mnt)
913 {
914 put_mountpoint(unhash_mnt(mnt));
915 }
916
917 /*
918 * vfsmount lock must be held for write
919 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)920 void mnt_set_mountpoint(struct mount *mnt,
921 struct mountpoint *mp,
922 struct mount *child_mnt)
923 {
924 mp->m_count++;
925 mnt_add_count(mnt, 1); /* essentially, that's mntget */
926 child_mnt->mnt_mountpoint = mp->m_dentry;
927 child_mnt->mnt_parent = mnt;
928 child_mnt->mnt_mp = mp;
929 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
930 }
931
932 /**
933 * mnt_set_mountpoint_beneath - mount a mount beneath another one
934 *
935 * @new_parent: the source mount
936 * @top_mnt: the mount beneath which @new_parent is mounted
937 * @new_mp: the new mountpoint of @top_mnt on @new_parent
938 *
939 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
940 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
941 * @new_mp. And mount @new_parent on the old parent and old
942 * mountpoint of @top_mnt.
943 *
944 * Context: This function expects namespace_lock() and lock_mount_hash()
945 * to have been acquired in that order.
946 */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)947 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
948 struct mount *top_mnt,
949 struct mountpoint *new_mp)
950 {
951 struct mount *old_top_parent = top_mnt->mnt_parent;
952 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
953
954 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
955 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
956 }
957
958
__attach_mnt(struct mount * mnt,struct mount * parent)959 static void __attach_mnt(struct mount *mnt, struct mount *parent)
960 {
961 hlist_add_head_rcu(&mnt->mnt_hash,
962 m_hash(&parent->mnt, mnt->mnt_mountpoint));
963 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
964 }
965
966 /**
967 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
968 * list of child mounts
969 * @parent: the parent
970 * @mnt: the new mount
971 * @mp: the new mountpoint
972 * @beneath: whether to mount @mnt beneath or on top of @parent
973 *
974 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
975 * to @parent's child mount list and to @mount_hashtable.
976 *
977 * If @beneath is true, remove @mnt from its current parent and
978 * mountpoint and mount it on @mp on @parent, and mount @parent on the
979 * old parent and old mountpoint of @mnt. Finally, attach @parent to
980 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
981 *
982 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
983 * to the correct parent.
984 *
985 * Context: This function expects namespace_lock() and lock_mount_hash()
986 * to have been acquired in that order.
987 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)988 static void attach_mnt(struct mount *mnt, struct mount *parent,
989 struct mountpoint *mp, bool beneath)
990 {
991 if (beneath)
992 mnt_set_mountpoint_beneath(mnt, parent, mp);
993 else
994 mnt_set_mountpoint(parent, mp, mnt);
995 /*
996 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
997 * beneath @parent then @mnt will need to be attached to
998 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
999 * isn't the same mount as @parent.
1000 */
1001 __attach_mnt(mnt, mnt->mnt_parent);
1002 }
1003
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1004 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1005 {
1006 struct mountpoint *old_mp = mnt->mnt_mp;
1007 struct mount *old_parent = mnt->mnt_parent;
1008
1009 list_del_init(&mnt->mnt_child);
1010 hlist_del_init(&mnt->mnt_mp_list);
1011 hlist_del_init_rcu(&mnt->mnt_hash);
1012
1013 attach_mnt(mnt, parent, mp, false);
1014
1015 put_mountpoint(old_mp);
1016 mnt_add_count(old_parent, -1);
1017 }
1018
1019 /*
1020 * vfsmount lock must be held for write
1021 */
commit_tree(struct mount * mnt)1022 static void commit_tree(struct mount *mnt)
1023 {
1024 struct mount *parent = mnt->mnt_parent;
1025 struct mount *m;
1026 LIST_HEAD(head);
1027 struct mnt_namespace *n = parent->mnt_ns;
1028
1029 BUG_ON(parent == mnt);
1030
1031 list_add_tail(&head, &mnt->mnt_list);
1032 list_for_each_entry(m, &head, mnt_list)
1033 m->mnt_ns = n;
1034
1035 list_splice(&head, n->list.prev);
1036
1037 n->mounts += n->pending_mounts;
1038 n->pending_mounts = 0;
1039
1040 __attach_mnt(mnt, parent);
1041 touch_mnt_namespace(n);
1042 }
1043
next_mnt(struct mount * p,struct mount * root)1044 static struct mount *next_mnt(struct mount *p, struct mount *root)
1045 {
1046 struct list_head *next = p->mnt_mounts.next;
1047 if (next == &p->mnt_mounts) {
1048 while (1) {
1049 if (p == root)
1050 return NULL;
1051 next = p->mnt_child.next;
1052 if (next != &p->mnt_parent->mnt_mounts)
1053 break;
1054 p = p->mnt_parent;
1055 }
1056 }
1057 return list_entry(next, struct mount, mnt_child);
1058 }
1059
skip_mnt_tree(struct mount * p)1060 static struct mount *skip_mnt_tree(struct mount *p)
1061 {
1062 struct list_head *prev = p->mnt_mounts.prev;
1063 while (prev != &p->mnt_mounts) {
1064 p = list_entry(prev, struct mount, mnt_child);
1065 prev = p->mnt_mounts.prev;
1066 }
1067 return p;
1068 }
1069
1070 /**
1071 * vfs_create_mount - Create a mount for a configured superblock
1072 * @fc: The configuration context with the superblock attached
1073 *
1074 * Create a mount to an already configured superblock. If necessary, the
1075 * caller should invoke vfs_get_tree() before calling this.
1076 *
1077 * Note that this does not attach the mount to anything.
1078 */
vfs_create_mount(struct fs_context * fc)1079 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1080 {
1081 struct mount *mnt;
1082
1083 if (!fc->root)
1084 return ERR_PTR(-EINVAL);
1085
1086 mnt = alloc_vfsmnt(fc->source ?: "none");
1087 if (!mnt)
1088 return ERR_PTR(-ENOMEM);
1089
1090 if (fc->sb_flags & SB_KERNMOUNT)
1091 mnt->mnt.mnt_flags = MNT_INTERNAL;
1092
1093 atomic_inc(&fc->root->d_sb->s_active);
1094 mnt->mnt.mnt_sb = fc->root->d_sb;
1095 mnt->mnt.mnt_root = dget(fc->root);
1096 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1097 mnt->mnt_parent = mnt;
1098
1099 lock_mount_hash();
1100 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1101 unlock_mount_hash();
1102 return &mnt->mnt;
1103 }
1104 EXPORT_SYMBOL(vfs_create_mount);
1105
fc_mount(struct fs_context * fc)1106 struct vfsmount *fc_mount(struct fs_context *fc)
1107 {
1108 int err = vfs_get_tree(fc);
1109 if (!err) {
1110 up_write(&fc->root->d_sb->s_umount);
1111 return vfs_create_mount(fc);
1112 }
1113 return ERR_PTR(err);
1114 }
1115 EXPORT_SYMBOL(fc_mount);
1116
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1117 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1118 int flags, const char *name,
1119 void *data)
1120 {
1121 struct fs_context *fc;
1122 struct vfsmount *mnt;
1123 int ret = 0;
1124
1125 if (!type)
1126 return ERR_PTR(-EINVAL);
1127
1128 fc = fs_context_for_mount(type, flags);
1129 if (IS_ERR(fc))
1130 return ERR_CAST(fc);
1131
1132 if (name)
1133 ret = vfs_parse_fs_string(fc, "source",
1134 name, strlen(name));
1135 if (!ret)
1136 ret = parse_monolithic_mount_data(fc, data);
1137 if (!ret)
1138 mnt = fc_mount(fc);
1139 else
1140 mnt = ERR_PTR(ret);
1141
1142 put_fs_context(fc);
1143 return mnt;
1144 }
1145 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1146
1147 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1148 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1149 const char *name, void *data)
1150 {
1151 /* Until it is worked out how to pass the user namespace
1152 * through from the parent mount to the submount don't support
1153 * unprivileged mounts with submounts.
1154 */
1155 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1156 return ERR_PTR(-EPERM);
1157
1158 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1159 }
1160 EXPORT_SYMBOL_GPL(vfs_submount);
1161
clone_mnt(struct mount * old,struct dentry * root,int flag)1162 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1163 int flag)
1164 {
1165 struct super_block *sb = old->mnt.mnt_sb;
1166 struct mount *mnt;
1167 int err;
1168
1169 mnt = alloc_vfsmnt(old->mnt_devname);
1170 if (!mnt)
1171 return ERR_PTR(-ENOMEM);
1172
1173 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1174 mnt->mnt_group_id = 0; /* not a peer of original */
1175 else
1176 mnt->mnt_group_id = old->mnt_group_id;
1177
1178 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1179 err = mnt_alloc_group_id(mnt);
1180 if (err)
1181 goto out_free;
1182 }
1183
1184 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1185 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1186
1187 atomic_inc(&sb->s_active);
1188 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1189
1190 mnt->mnt.mnt_sb = sb;
1191 mnt->mnt.mnt_root = dget(root);
1192 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1193 mnt->mnt_parent = mnt;
1194 lock_mount_hash();
1195 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1196 unlock_mount_hash();
1197
1198 if ((flag & CL_SLAVE) ||
1199 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1200 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1201 mnt->mnt_master = old;
1202 CLEAR_MNT_SHARED(mnt);
1203 } else if (!(flag & CL_PRIVATE)) {
1204 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1205 list_add(&mnt->mnt_share, &old->mnt_share);
1206 if (IS_MNT_SLAVE(old))
1207 list_add(&mnt->mnt_slave, &old->mnt_slave);
1208 mnt->mnt_master = old->mnt_master;
1209 } else {
1210 CLEAR_MNT_SHARED(mnt);
1211 }
1212 if (flag & CL_MAKE_SHARED)
1213 set_mnt_shared(mnt);
1214
1215 /* stick the duplicate mount on the same expiry list
1216 * as the original if that was on one */
1217 if (flag & CL_EXPIRE) {
1218 if (!list_empty(&old->mnt_expire))
1219 list_add(&mnt->mnt_expire, &old->mnt_expire);
1220 }
1221
1222 return mnt;
1223
1224 out_free:
1225 mnt_free_id(mnt);
1226 free_vfsmnt(mnt);
1227 return ERR_PTR(err);
1228 }
1229
cleanup_mnt(struct mount * mnt)1230 static void cleanup_mnt(struct mount *mnt)
1231 {
1232 struct hlist_node *p;
1233 struct mount *m;
1234 /*
1235 * The warning here probably indicates that somebody messed
1236 * up a mnt_want/drop_write() pair. If this happens, the
1237 * filesystem was probably unable to make r/w->r/o transitions.
1238 * The locking used to deal with mnt_count decrement provides barriers,
1239 * so mnt_get_writers() below is safe.
1240 */
1241 WARN_ON(mnt_get_writers(mnt));
1242 if (unlikely(mnt->mnt_pins.first))
1243 mnt_pin_kill(mnt);
1244 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1245 hlist_del(&m->mnt_umount);
1246 mntput(&m->mnt);
1247 }
1248 fsnotify_vfsmount_delete(&mnt->mnt);
1249 dput(mnt->mnt.mnt_root);
1250 deactivate_super(mnt->mnt.mnt_sb);
1251 mnt_free_id(mnt);
1252 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1253 }
1254
__cleanup_mnt(struct rcu_head * head)1255 static void __cleanup_mnt(struct rcu_head *head)
1256 {
1257 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1258 }
1259
1260 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1261 static void delayed_mntput(struct work_struct *unused)
1262 {
1263 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1264 struct mount *m, *t;
1265
1266 llist_for_each_entry_safe(m, t, node, mnt_llist)
1267 cleanup_mnt(m);
1268 }
1269 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1270
mntput_no_expire(struct mount * mnt)1271 static void mntput_no_expire(struct mount *mnt)
1272 {
1273 LIST_HEAD(list);
1274 int count;
1275
1276 rcu_read_lock();
1277 if (likely(READ_ONCE(mnt->mnt_ns))) {
1278 /*
1279 * Since we don't do lock_mount_hash() here,
1280 * ->mnt_ns can change under us. However, if it's
1281 * non-NULL, then there's a reference that won't
1282 * be dropped until after an RCU delay done after
1283 * turning ->mnt_ns NULL. So if we observe it
1284 * non-NULL under rcu_read_lock(), the reference
1285 * we are dropping is not the final one.
1286 */
1287 mnt_add_count(mnt, -1);
1288 rcu_read_unlock();
1289 return;
1290 }
1291 lock_mount_hash();
1292 /*
1293 * make sure that if __legitimize_mnt() has not seen us grab
1294 * mount_lock, we'll see their refcount increment here.
1295 */
1296 smp_mb();
1297 mnt_add_count(mnt, -1);
1298 count = mnt_get_count(mnt);
1299 if (count != 0) {
1300 WARN_ON(count < 0);
1301 rcu_read_unlock();
1302 unlock_mount_hash();
1303 return;
1304 }
1305 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1306 rcu_read_unlock();
1307 unlock_mount_hash();
1308 return;
1309 }
1310 mnt->mnt.mnt_flags |= MNT_DOOMED;
1311 rcu_read_unlock();
1312
1313 list_del(&mnt->mnt_instance);
1314
1315 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1316 struct mount *p, *tmp;
1317 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1318 __put_mountpoint(unhash_mnt(p), &list);
1319 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1320 }
1321 }
1322 unlock_mount_hash();
1323 shrink_dentry_list(&list);
1324
1325 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1326 struct task_struct *task = current;
1327 if (likely(!(task->flags & PF_KTHREAD))) {
1328 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1329 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1330 return;
1331 }
1332 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1333 schedule_delayed_work(&delayed_mntput_work, 1);
1334 return;
1335 }
1336 cleanup_mnt(mnt);
1337 }
1338
mntput(struct vfsmount * mnt)1339 void mntput(struct vfsmount *mnt)
1340 {
1341 if (mnt) {
1342 struct mount *m = real_mount(mnt);
1343 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1344 if (unlikely(m->mnt_expiry_mark))
1345 m->mnt_expiry_mark = 0;
1346 mntput_no_expire(m);
1347 }
1348 }
1349 EXPORT_SYMBOL(mntput);
1350
mntget(struct vfsmount * mnt)1351 struct vfsmount *mntget(struct vfsmount *mnt)
1352 {
1353 if (mnt)
1354 mnt_add_count(real_mount(mnt), 1);
1355 return mnt;
1356 }
1357 EXPORT_SYMBOL(mntget);
1358
1359 /*
1360 * Make a mount point inaccessible to new lookups.
1361 * Because there may still be current users, the caller MUST WAIT
1362 * for an RCU grace period before destroying the mount point.
1363 */
mnt_make_shortterm(struct vfsmount * mnt)1364 void mnt_make_shortterm(struct vfsmount *mnt)
1365 {
1366 if (mnt)
1367 real_mount(mnt)->mnt_ns = NULL;
1368 }
1369
1370 /**
1371 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1372 * @path: path to check
1373 *
1374 * d_mountpoint() can only be used reliably to establish if a dentry is
1375 * not mounted in any namespace and that common case is handled inline.
1376 * d_mountpoint() isn't aware of the possibility there may be multiple
1377 * mounts using a given dentry in a different namespace. This function
1378 * checks if the passed in path is a mountpoint rather than the dentry
1379 * alone.
1380 */
path_is_mountpoint(const struct path * path)1381 bool path_is_mountpoint(const struct path *path)
1382 {
1383 unsigned seq;
1384 bool res;
1385
1386 if (!d_mountpoint(path->dentry))
1387 return false;
1388
1389 rcu_read_lock();
1390 do {
1391 seq = read_seqbegin(&mount_lock);
1392 res = __path_is_mountpoint(path);
1393 } while (read_seqretry(&mount_lock, seq));
1394 rcu_read_unlock();
1395
1396 return res;
1397 }
1398 EXPORT_SYMBOL(path_is_mountpoint);
1399
mnt_clone_internal(const struct path * path)1400 struct vfsmount *mnt_clone_internal(const struct path *path)
1401 {
1402 struct mount *p;
1403 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1404 if (IS_ERR(p))
1405 return ERR_CAST(p);
1406 p->mnt.mnt_flags |= MNT_INTERNAL;
1407 return &p->mnt;
1408 }
1409
1410 #ifdef CONFIG_PROC_FS
mnt_list_next(struct mnt_namespace * ns,struct list_head * p)1411 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1412 struct list_head *p)
1413 {
1414 struct mount *mnt, *ret = NULL;
1415
1416 lock_ns_list(ns);
1417 list_for_each_continue(p, &ns->list) {
1418 mnt = list_entry(p, typeof(*mnt), mnt_list);
1419 if (!mnt_is_cursor(mnt)) {
1420 ret = mnt;
1421 break;
1422 }
1423 }
1424 unlock_ns_list(ns);
1425
1426 return ret;
1427 }
1428
1429 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1430 static void *m_start(struct seq_file *m, loff_t *pos)
1431 {
1432 struct proc_mounts *p = m->private;
1433 struct list_head *prev;
1434
1435 down_read(&namespace_sem);
1436 if (!*pos) {
1437 prev = &p->ns->list;
1438 } else {
1439 prev = &p->cursor.mnt_list;
1440
1441 /* Read after we'd reached the end? */
1442 if (list_empty(prev))
1443 return NULL;
1444 }
1445
1446 return mnt_list_next(p->ns, prev);
1447 }
1448
m_next(struct seq_file * m,void * v,loff_t * pos)1449 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1450 {
1451 struct proc_mounts *p = m->private;
1452 struct mount *mnt = v;
1453
1454 ++*pos;
1455 return mnt_list_next(p->ns, &mnt->mnt_list);
1456 }
1457
m_stop(struct seq_file * m,void * v)1458 static void m_stop(struct seq_file *m, void *v)
1459 {
1460 struct proc_mounts *p = m->private;
1461 struct mount *mnt = v;
1462
1463 lock_ns_list(p->ns);
1464 if (mnt)
1465 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1466 else
1467 list_del_init(&p->cursor.mnt_list);
1468 unlock_ns_list(p->ns);
1469 up_read(&namespace_sem);
1470 }
1471
m_show(struct seq_file * m,void * v)1472 static int m_show(struct seq_file *m, void *v)
1473 {
1474 struct proc_mounts *p = m->private;
1475 struct mount *r = v;
1476 return p->show(m, &r->mnt);
1477 }
1478
1479 const struct seq_operations mounts_op = {
1480 .start = m_start,
1481 .next = m_next,
1482 .stop = m_stop,
1483 .show = m_show,
1484 };
1485
mnt_cursor_del(struct mnt_namespace * ns,struct mount * cursor)1486 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1487 {
1488 down_read(&namespace_sem);
1489 lock_ns_list(ns);
1490 list_del(&cursor->mnt_list);
1491 unlock_ns_list(ns);
1492 up_read(&namespace_sem);
1493 }
1494 #endif /* CONFIG_PROC_FS */
1495
1496 /**
1497 * may_umount_tree - check if a mount tree is busy
1498 * @m: root of mount tree
1499 *
1500 * This is called to check if a tree of mounts has any
1501 * open files, pwds, chroots or sub mounts that are
1502 * busy.
1503 */
may_umount_tree(struct vfsmount * m)1504 int may_umount_tree(struct vfsmount *m)
1505 {
1506 struct mount *mnt = real_mount(m);
1507 int actual_refs = 0;
1508 int minimum_refs = 0;
1509 struct mount *p;
1510 BUG_ON(!m);
1511
1512 /* write lock needed for mnt_get_count */
1513 lock_mount_hash();
1514 for (p = mnt; p; p = next_mnt(p, mnt)) {
1515 actual_refs += mnt_get_count(p);
1516 minimum_refs += 2;
1517 }
1518 unlock_mount_hash();
1519
1520 if (actual_refs > minimum_refs)
1521 return 0;
1522
1523 return 1;
1524 }
1525
1526 EXPORT_SYMBOL(may_umount_tree);
1527
1528 /**
1529 * may_umount - check if a mount point is busy
1530 * @mnt: root of mount
1531 *
1532 * This is called to check if a mount point has any
1533 * open files, pwds, chroots or sub mounts. If the
1534 * mount has sub mounts this will return busy
1535 * regardless of whether the sub mounts are busy.
1536 *
1537 * Doesn't take quota and stuff into account. IOW, in some cases it will
1538 * give false negatives. The main reason why it's here is that we need
1539 * a non-destructive way to look for easily umountable filesystems.
1540 */
may_umount(struct vfsmount * mnt)1541 int may_umount(struct vfsmount *mnt)
1542 {
1543 int ret = 1;
1544 down_read(&namespace_sem);
1545 lock_mount_hash();
1546 if (propagate_mount_busy(real_mount(mnt), 2))
1547 ret = 0;
1548 unlock_mount_hash();
1549 up_read(&namespace_sem);
1550 return ret;
1551 }
1552
1553 EXPORT_SYMBOL(may_umount);
1554
namespace_unlock(void)1555 static void namespace_unlock(void)
1556 {
1557 struct hlist_head head;
1558 struct hlist_node *p;
1559 struct mount *m;
1560 LIST_HEAD(list);
1561
1562 hlist_move_list(&unmounted, &head);
1563 list_splice_init(&ex_mountpoints, &list);
1564
1565 up_write(&namespace_sem);
1566
1567 shrink_dentry_list(&list);
1568
1569 if (likely(hlist_empty(&head)))
1570 return;
1571
1572 synchronize_rcu_expedited();
1573
1574 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1575 hlist_del(&m->mnt_umount);
1576 mntput(&m->mnt);
1577 }
1578 }
1579
namespace_lock(void)1580 static inline void namespace_lock(void)
1581 {
1582 down_write(&namespace_sem);
1583 }
1584
1585 enum umount_tree_flags {
1586 UMOUNT_SYNC = 1,
1587 UMOUNT_PROPAGATE = 2,
1588 UMOUNT_CONNECTED = 4,
1589 };
1590
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1591 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1592 {
1593 /* Leaving mounts connected is only valid for lazy umounts */
1594 if (how & UMOUNT_SYNC)
1595 return true;
1596
1597 /* A mount without a parent has nothing to be connected to */
1598 if (!mnt_has_parent(mnt))
1599 return true;
1600
1601 /* Because the reference counting rules change when mounts are
1602 * unmounted and connected, umounted mounts may not be
1603 * connected to mounted mounts.
1604 */
1605 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1606 return true;
1607
1608 /* Has it been requested that the mount remain connected? */
1609 if (how & UMOUNT_CONNECTED)
1610 return false;
1611
1612 /* Is the mount locked such that it needs to remain connected? */
1613 if (IS_MNT_LOCKED(mnt))
1614 return false;
1615
1616 /* By default disconnect the mount */
1617 return true;
1618 }
1619
1620 /*
1621 * mount_lock must be held
1622 * namespace_sem must be held for write
1623 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1624 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1625 {
1626 LIST_HEAD(tmp_list);
1627 struct mount *p;
1628
1629 if (how & UMOUNT_PROPAGATE)
1630 propagate_mount_unlock(mnt);
1631
1632 /* Gather the mounts to umount */
1633 for (p = mnt; p; p = next_mnt(p, mnt)) {
1634 p->mnt.mnt_flags |= MNT_UMOUNT;
1635 list_move(&p->mnt_list, &tmp_list);
1636 }
1637
1638 /* Hide the mounts from mnt_mounts */
1639 list_for_each_entry(p, &tmp_list, mnt_list) {
1640 list_del_init(&p->mnt_child);
1641 }
1642
1643 /* Add propogated mounts to the tmp_list */
1644 if (how & UMOUNT_PROPAGATE)
1645 propagate_umount(&tmp_list);
1646
1647 while (!list_empty(&tmp_list)) {
1648 struct mnt_namespace *ns;
1649 bool disconnect;
1650 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1651 list_del_init(&p->mnt_expire);
1652 list_del_init(&p->mnt_list);
1653 ns = p->mnt_ns;
1654 if (ns) {
1655 ns->mounts--;
1656 __touch_mnt_namespace(ns);
1657 }
1658 p->mnt_ns = NULL;
1659 if (how & UMOUNT_SYNC)
1660 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1661
1662 disconnect = disconnect_mount(p, how);
1663 if (mnt_has_parent(p)) {
1664 mnt_add_count(p->mnt_parent, -1);
1665 if (!disconnect) {
1666 /* Don't forget about p */
1667 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1668 } else {
1669 umount_mnt(p);
1670 }
1671 }
1672 change_mnt_propagation(p, MS_PRIVATE);
1673 if (disconnect)
1674 hlist_add_head(&p->mnt_umount, &unmounted);
1675 }
1676 }
1677
1678 static void shrink_submounts(struct mount *mnt);
1679
do_umount_root(struct super_block * sb)1680 static int do_umount_root(struct super_block *sb)
1681 {
1682 int ret = 0;
1683
1684 down_write(&sb->s_umount);
1685 if (!sb_rdonly(sb)) {
1686 struct fs_context *fc;
1687
1688 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1689 SB_RDONLY);
1690 if (IS_ERR(fc)) {
1691 ret = PTR_ERR(fc);
1692 } else {
1693 ret = parse_monolithic_mount_data(fc, NULL);
1694 if (!ret)
1695 ret = reconfigure_super(fc);
1696 put_fs_context(fc);
1697 }
1698 }
1699 up_write(&sb->s_umount);
1700 return ret;
1701 }
1702
do_umount(struct mount * mnt,int flags)1703 static int do_umount(struct mount *mnt, int flags)
1704 {
1705 struct super_block *sb = mnt->mnt.mnt_sb;
1706 int retval;
1707
1708 retval = security_sb_umount(&mnt->mnt, flags);
1709 if (retval)
1710 return retval;
1711
1712 /*
1713 * Allow userspace to request a mountpoint be expired rather than
1714 * unmounting unconditionally. Unmount only happens if:
1715 * (1) the mark is already set (the mark is cleared by mntput())
1716 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1717 */
1718 if (flags & MNT_EXPIRE) {
1719 if (&mnt->mnt == current->fs->root.mnt ||
1720 flags & (MNT_FORCE | MNT_DETACH))
1721 return -EINVAL;
1722
1723 /*
1724 * probably don't strictly need the lock here if we examined
1725 * all race cases, but it's a slowpath.
1726 */
1727 lock_mount_hash();
1728 if (mnt_get_count(mnt) != 2) {
1729 unlock_mount_hash();
1730 return -EBUSY;
1731 }
1732 unlock_mount_hash();
1733
1734 if (!xchg(&mnt->mnt_expiry_mark, 1))
1735 return -EAGAIN;
1736 }
1737
1738 /*
1739 * If we may have to abort operations to get out of this
1740 * mount, and they will themselves hold resources we must
1741 * allow the fs to do things. In the Unix tradition of
1742 * 'Gee thats tricky lets do it in userspace' the umount_begin
1743 * might fail to complete on the first run through as other tasks
1744 * must return, and the like. Thats for the mount program to worry
1745 * about for the moment.
1746 */
1747
1748 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1749 sb->s_op->umount_begin(sb);
1750 }
1751
1752 /*
1753 * No sense to grab the lock for this test, but test itself looks
1754 * somewhat bogus. Suggestions for better replacement?
1755 * Ho-hum... In principle, we might treat that as umount + switch
1756 * to rootfs. GC would eventually take care of the old vfsmount.
1757 * Actually it makes sense, especially if rootfs would contain a
1758 * /reboot - static binary that would close all descriptors and
1759 * call reboot(9). Then init(8) could umount root and exec /reboot.
1760 */
1761 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1762 /*
1763 * Special case for "unmounting" root ...
1764 * we just try to remount it readonly.
1765 */
1766 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1767 return -EPERM;
1768 return do_umount_root(sb);
1769 }
1770
1771 namespace_lock();
1772 lock_mount_hash();
1773
1774 /* Recheck MNT_LOCKED with the locks held */
1775 retval = -EINVAL;
1776 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1777 goto out;
1778
1779 event++;
1780 if (flags & MNT_DETACH) {
1781 if (!list_empty(&mnt->mnt_list))
1782 umount_tree(mnt, UMOUNT_PROPAGATE);
1783 retval = 0;
1784 } else {
1785 smp_mb(); // paired with __legitimize_mnt()
1786 shrink_submounts(mnt);
1787 retval = -EBUSY;
1788 if (!propagate_mount_busy(mnt, 2)) {
1789 if (!list_empty(&mnt->mnt_list))
1790 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1791 retval = 0;
1792 }
1793 }
1794 out:
1795 unlock_mount_hash();
1796 namespace_unlock();
1797 return retval;
1798 }
1799
1800 /*
1801 * __detach_mounts - lazily unmount all mounts on the specified dentry
1802 *
1803 * During unlink, rmdir, and d_drop it is possible to loose the path
1804 * to an existing mountpoint, and wind up leaking the mount.
1805 * detach_mounts allows lazily unmounting those mounts instead of
1806 * leaking them.
1807 *
1808 * The caller may hold dentry->d_inode->i_mutex.
1809 */
__detach_mounts(struct dentry * dentry)1810 void __detach_mounts(struct dentry *dentry)
1811 {
1812 struct mountpoint *mp;
1813 struct mount *mnt;
1814
1815 namespace_lock();
1816 lock_mount_hash();
1817 mp = lookup_mountpoint(dentry);
1818 if (!mp)
1819 goto out_unlock;
1820
1821 event++;
1822 while (!hlist_empty(&mp->m_list)) {
1823 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1824 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1825 umount_mnt(mnt);
1826 hlist_add_head(&mnt->mnt_umount, &unmounted);
1827 }
1828 else umount_tree(mnt, UMOUNT_CONNECTED);
1829 }
1830 put_mountpoint(mp);
1831 out_unlock:
1832 unlock_mount_hash();
1833 namespace_unlock();
1834 }
1835
1836 /*
1837 * Is the caller allowed to modify his namespace?
1838 */
may_mount(void)1839 bool may_mount(void)
1840 {
1841 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1842 }
1843
1844 /**
1845 * path_mounted - check whether path is mounted
1846 * @path: path to check
1847 *
1848 * Determine whether @path refers to the root of a mount.
1849 *
1850 * Return: true if @path is the root of a mount, false if not.
1851 */
path_mounted(const struct path * path)1852 static inline bool path_mounted(const struct path *path)
1853 {
1854 return path->mnt->mnt_root == path->dentry;
1855 }
1856
warn_mandlock(void)1857 static void warn_mandlock(void)
1858 {
1859 pr_warn_once("=======================================================\n"
1860 "WARNING: The mand mount option has been deprecated and\n"
1861 " and is ignored by this kernel. Remove the mand\n"
1862 " option from the mount to silence this warning.\n"
1863 "=======================================================\n");
1864 }
1865
can_umount(const struct path * path,int flags)1866 static int can_umount(const struct path *path, int flags)
1867 {
1868 struct mount *mnt = real_mount(path->mnt);
1869 struct super_block *sb = path->dentry->d_sb;
1870
1871 if (!may_mount())
1872 return -EPERM;
1873 if (!path_mounted(path))
1874 return -EINVAL;
1875 if (!check_mnt(mnt))
1876 return -EINVAL;
1877 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1878 return -EINVAL;
1879 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1880 return -EPERM;
1881 return 0;
1882 }
1883
1884 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)1885 int path_umount(struct path *path, int flags)
1886 {
1887 struct mount *mnt = real_mount(path->mnt);
1888 int ret;
1889
1890 ret = can_umount(path, flags);
1891 if (!ret)
1892 ret = do_umount(mnt, flags);
1893
1894 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1895 dput(path->dentry);
1896 mntput_no_expire(mnt);
1897 return ret;
1898 }
1899
ksys_umount(char __user * name,int flags)1900 static int ksys_umount(char __user *name, int flags)
1901 {
1902 int lookup_flags = LOOKUP_MOUNTPOINT;
1903 struct path path;
1904 int ret;
1905
1906 // basic validity checks done first
1907 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1908 return -EINVAL;
1909
1910 if (!(flags & UMOUNT_NOFOLLOW))
1911 lookup_flags |= LOOKUP_FOLLOW;
1912 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1913 if (ret)
1914 return ret;
1915 return path_umount(&path, flags);
1916 }
1917
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1918 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1919 {
1920 return ksys_umount(name, flags);
1921 }
1922
1923 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1924
1925 /*
1926 * The 2.0 compatible umount. No flags.
1927 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1928 SYSCALL_DEFINE1(oldumount, char __user *, name)
1929 {
1930 return ksys_umount(name, 0);
1931 }
1932
1933 #endif
1934
is_mnt_ns_file(struct dentry * dentry)1935 static bool is_mnt_ns_file(struct dentry *dentry)
1936 {
1937 /* Is this a proxy for a mount namespace? */
1938 return dentry->d_op == &ns_dentry_operations &&
1939 dentry->d_fsdata == &mntns_operations;
1940 }
1941
to_mnt_ns(struct ns_common * ns)1942 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1943 {
1944 return container_of(ns, struct mnt_namespace, ns);
1945 }
1946
from_mnt_ns(struct mnt_namespace * mnt)1947 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1948 {
1949 return &mnt->ns;
1950 }
1951
mnt_ns_loop(struct dentry * dentry)1952 static bool mnt_ns_loop(struct dentry *dentry)
1953 {
1954 /* Could bind mounting the mount namespace inode cause a
1955 * mount namespace loop?
1956 */
1957 struct mnt_namespace *mnt_ns;
1958 if (!is_mnt_ns_file(dentry))
1959 return false;
1960
1961 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1962 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1963 }
1964
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1965 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1966 int flag)
1967 {
1968 struct mount *res, *p, *q, *r, *parent;
1969
1970 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1971 return ERR_PTR(-EINVAL);
1972
1973 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1974 return ERR_PTR(-EINVAL);
1975
1976 res = q = clone_mnt(mnt, dentry, flag);
1977 if (IS_ERR(q))
1978 return q;
1979
1980 q->mnt_mountpoint = mnt->mnt_mountpoint;
1981
1982 p = mnt;
1983 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1984 struct mount *s;
1985 if (!is_subdir(r->mnt_mountpoint, dentry))
1986 continue;
1987
1988 for (s = r; s; s = next_mnt(s, r)) {
1989 if (!(flag & CL_COPY_UNBINDABLE) &&
1990 IS_MNT_UNBINDABLE(s)) {
1991 if (s->mnt.mnt_flags & MNT_LOCKED) {
1992 /* Both unbindable and locked. */
1993 q = ERR_PTR(-EPERM);
1994 goto out;
1995 } else {
1996 s = skip_mnt_tree(s);
1997 continue;
1998 }
1999 }
2000 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2001 is_mnt_ns_file(s->mnt.mnt_root)) {
2002 s = skip_mnt_tree(s);
2003 continue;
2004 }
2005 while (p != s->mnt_parent) {
2006 p = p->mnt_parent;
2007 q = q->mnt_parent;
2008 }
2009 p = s;
2010 parent = q;
2011 q = clone_mnt(p, p->mnt.mnt_root, flag);
2012 if (IS_ERR(q))
2013 goto out;
2014 lock_mount_hash();
2015 list_add_tail(&q->mnt_list, &res->mnt_list);
2016 attach_mnt(q, parent, p->mnt_mp, false);
2017 unlock_mount_hash();
2018 }
2019 }
2020 return res;
2021 out:
2022 if (res) {
2023 lock_mount_hash();
2024 umount_tree(res, UMOUNT_SYNC);
2025 unlock_mount_hash();
2026 }
2027 return q;
2028 }
2029
2030 /* Caller should check returned pointer for errors */
2031
collect_mounts(const struct path * path)2032 struct vfsmount *collect_mounts(const struct path *path)
2033 {
2034 struct mount *tree;
2035 namespace_lock();
2036 if (!check_mnt(real_mount(path->mnt)))
2037 tree = ERR_PTR(-EINVAL);
2038 else
2039 tree = copy_tree(real_mount(path->mnt), path->dentry,
2040 CL_COPY_ALL | CL_PRIVATE);
2041 namespace_unlock();
2042 if (IS_ERR(tree))
2043 return ERR_CAST(tree);
2044 return &tree->mnt;
2045 }
2046
2047 static void free_mnt_ns(struct mnt_namespace *);
2048 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2049
dissolve_on_fput(struct vfsmount * mnt)2050 void dissolve_on_fput(struct vfsmount *mnt)
2051 {
2052 struct mnt_namespace *ns;
2053 namespace_lock();
2054 lock_mount_hash();
2055 ns = real_mount(mnt)->mnt_ns;
2056 if (ns) {
2057 if (is_anon_ns(ns))
2058 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2059 else
2060 ns = NULL;
2061 }
2062 unlock_mount_hash();
2063 namespace_unlock();
2064 if (ns)
2065 free_mnt_ns(ns);
2066 }
2067
drop_collected_mounts(struct vfsmount * mnt)2068 void drop_collected_mounts(struct vfsmount *mnt)
2069 {
2070 namespace_lock();
2071 lock_mount_hash();
2072 umount_tree(real_mount(mnt), 0);
2073 unlock_mount_hash();
2074 namespace_unlock();
2075 }
2076
has_locked_children(struct mount * mnt,struct dentry * dentry)2077 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2078 {
2079 struct mount *child;
2080
2081 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2082 if (!is_subdir(child->mnt_mountpoint, dentry))
2083 continue;
2084
2085 if (child->mnt.mnt_flags & MNT_LOCKED)
2086 return true;
2087 }
2088 return false;
2089 }
2090
2091 /**
2092 * clone_private_mount - create a private clone of a path
2093 * @path: path to clone
2094 *
2095 * This creates a new vfsmount, which will be the clone of @path. The new mount
2096 * will not be attached anywhere in the namespace and will be private (i.e.
2097 * changes to the originating mount won't be propagated into this).
2098 *
2099 * Release with mntput().
2100 */
clone_private_mount(const struct path * path)2101 struct vfsmount *clone_private_mount(const struct path *path)
2102 {
2103 struct mount *old_mnt = real_mount(path->mnt);
2104 struct mount *new_mnt;
2105
2106 down_read(&namespace_sem);
2107 if (IS_MNT_UNBINDABLE(old_mnt))
2108 goto invalid;
2109
2110 if (!check_mnt(old_mnt))
2111 goto invalid;
2112
2113 if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN)) {
2114 up_read(&namespace_sem);
2115 return ERR_PTR(-EPERM);
2116 }
2117
2118 if (has_locked_children(old_mnt, path->dentry))
2119 goto invalid;
2120
2121 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2122 up_read(&namespace_sem);
2123
2124 if (IS_ERR(new_mnt))
2125 return ERR_CAST(new_mnt);
2126
2127 /* Longterm mount to be removed by kern_unmount*() */
2128 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2129
2130 return &new_mnt->mnt;
2131
2132 invalid:
2133 up_read(&namespace_sem);
2134 return ERR_PTR(-EINVAL);
2135 }
2136 EXPORT_SYMBOL_GPL(clone_private_mount);
2137
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2138 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2139 struct vfsmount *root)
2140 {
2141 struct mount *mnt;
2142 int res = f(root, arg);
2143 if (res)
2144 return res;
2145 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2146 res = f(&mnt->mnt, arg);
2147 if (res)
2148 return res;
2149 }
2150 return 0;
2151 }
2152
lock_mnt_tree(struct mount * mnt)2153 static void lock_mnt_tree(struct mount *mnt)
2154 {
2155 struct mount *p;
2156
2157 for (p = mnt; p; p = next_mnt(p, mnt)) {
2158 int flags = p->mnt.mnt_flags;
2159 /* Don't allow unprivileged users to change mount flags */
2160 flags |= MNT_LOCK_ATIME;
2161
2162 if (flags & MNT_READONLY)
2163 flags |= MNT_LOCK_READONLY;
2164
2165 if (flags & MNT_NODEV)
2166 flags |= MNT_LOCK_NODEV;
2167
2168 if (flags & MNT_NOSUID)
2169 flags |= MNT_LOCK_NOSUID;
2170
2171 if (flags & MNT_NOEXEC)
2172 flags |= MNT_LOCK_NOEXEC;
2173 /* Don't allow unprivileged users to reveal what is under a mount */
2174 if (list_empty(&p->mnt_expire))
2175 flags |= MNT_LOCKED;
2176 p->mnt.mnt_flags = flags;
2177 }
2178 }
2179
cleanup_group_ids(struct mount * mnt,struct mount * end)2180 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2181 {
2182 struct mount *p;
2183
2184 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2185 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2186 mnt_release_group_id(p);
2187 }
2188 }
2189
invent_group_ids(struct mount * mnt,bool recurse)2190 static int invent_group_ids(struct mount *mnt, bool recurse)
2191 {
2192 struct mount *p;
2193
2194 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2195 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2196 int err = mnt_alloc_group_id(p);
2197 if (err) {
2198 cleanup_group_ids(mnt, p);
2199 return err;
2200 }
2201 }
2202 }
2203
2204 return 0;
2205 }
2206
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2207 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2208 {
2209 unsigned int max = READ_ONCE(sysctl_mount_max);
2210 unsigned int mounts = 0;
2211 struct mount *p;
2212
2213 if (ns->mounts >= max)
2214 return -ENOSPC;
2215 max -= ns->mounts;
2216 if (ns->pending_mounts >= max)
2217 return -ENOSPC;
2218 max -= ns->pending_mounts;
2219
2220 for (p = mnt; p; p = next_mnt(p, mnt))
2221 mounts++;
2222
2223 if (mounts > max)
2224 return -ENOSPC;
2225
2226 ns->pending_mounts += mounts;
2227 return 0;
2228 }
2229
2230 enum mnt_tree_flags_t {
2231 MNT_TREE_MOVE = BIT(0),
2232 MNT_TREE_BENEATH = BIT(1),
2233 };
2234
2235 /**
2236 * attach_recursive_mnt - attach a source mount tree
2237 * @source_mnt: mount tree to be attached
2238 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2239 * @dest_mp: the mountpoint @source_mnt will be mounted at
2240 * @flags: modify how @source_mnt is supposed to be attached
2241 *
2242 * NOTE: in the table below explains the semantics when a source mount
2243 * of a given type is attached to a destination mount of a given type.
2244 * ---------------------------------------------------------------------------
2245 * | BIND MOUNT OPERATION |
2246 * |**************************************************************************
2247 * | source-->| shared | private | slave | unbindable |
2248 * | dest | | | | |
2249 * | | | | | | |
2250 * | v | | | | |
2251 * |**************************************************************************
2252 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2253 * | | | | | |
2254 * |non-shared| shared (+) | private | slave (*) | invalid |
2255 * ***************************************************************************
2256 * A bind operation clones the source mount and mounts the clone on the
2257 * destination mount.
2258 *
2259 * (++) the cloned mount is propagated to all the mounts in the propagation
2260 * tree of the destination mount and the cloned mount is added to
2261 * the peer group of the source mount.
2262 * (+) the cloned mount is created under the destination mount and is marked
2263 * as shared. The cloned mount is added to the peer group of the source
2264 * mount.
2265 * (+++) the mount is propagated to all the mounts in the propagation tree
2266 * of the destination mount and the cloned mount is made slave
2267 * of the same master as that of the source mount. The cloned mount
2268 * is marked as 'shared and slave'.
2269 * (*) the cloned mount is made a slave of the same master as that of the
2270 * source mount.
2271 *
2272 * ---------------------------------------------------------------------------
2273 * | MOVE MOUNT OPERATION |
2274 * |**************************************************************************
2275 * | source-->| shared | private | slave | unbindable |
2276 * | dest | | | | |
2277 * | | | | | | |
2278 * | v | | | | |
2279 * |**************************************************************************
2280 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2281 * | | | | | |
2282 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2283 * ***************************************************************************
2284 *
2285 * (+) the mount is moved to the destination. And is then propagated to
2286 * all the mounts in the propagation tree of the destination mount.
2287 * (+*) the mount is moved to the destination.
2288 * (+++) the mount is moved to the destination and is then propagated to
2289 * all the mounts belonging to the destination mount's propagation tree.
2290 * the mount is marked as 'shared and slave'.
2291 * (*) the mount continues to be a slave at the new location.
2292 *
2293 * if the source mount is a tree, the operations explained above is
2294 * applied to each mount in the tree.
2295 * Must be called without spinlocks held, since this function can sleep
2296 * in allocations.
2297 *
2298 * Context: The function expects namespace_lock() to be held.
2299 * Return: If @source_mnt was successfully attached 0 is returned.
2300 * Otherwise a negative error code is returned.
2301 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2302 static int attach_recursive_mnt(struct mount *source_mnt,
2303 struct mount *top_mnt,
2304 struct mountpoint *dest_mp,
2305 enum mnt_tree_flags_t flags)
2306 {
2307 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2308 HLIST_HEAD(tree_list);
2309 struct mnt_namespace *ns = top_mnt->mnt_ns;
2310 struct mountpoint *smp;
2311 struct mount *child, *dest_mnt, *p;
2312 struct hlist_node *n;
2313 int err = 0;
2314 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2315
2316 /*
2317 * Preallocate a mountpoint in case the new mounts need to be
2318 * mounted beneath mounts on the same mountpoint.
2319 */
2320 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2321 if (IS_ERR(smp))
2322 return PTR_ERR(smp);
2323
2324 /* Is there space to add these mounts to the mount namespace? */
2325 if (!moving) {
2326 err = count_mounts(ns, source_mnt);
2327 if (err)
2328 goto out;
2329 }
2330
2331 if (beneath)
2332 dest_mnt = top_mnt->mnt_parent;
2333 else
2334 dest_mnt = top_mnt;
2335
2336 if (IS_MNT_SHARED(dest_mnt)) {
2337 err = invent_group_ids(source_mnt, true);
2338 if (err)
2339 goto out;
2340 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2341 }
2342 lock_mount_hash();
2343 if (err)
2344 goto out_cleanup_ids;
2345
2346 if (IS_MNT_SHARED(dest_mnt)) {
2347 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2348 set_mnt_shared(p);
2349 }
2350
2351 if (moving) {
2352 if (beneath)
2353 dest_mp = smp;
2354 unhash_mnt(source_mnt);
2355 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2356 touch_mnt_namespace(source_mnt->mnt_ns);
2357 } else {
2358 if (source_mnt->mnt_ns) {
2359 /* move from anon - the caller will destroy */
2360 list_del_init(&source_mnt->mnt_ns->list);
2361 }
2362 if (beneath)
2363 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2364 else
2365 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2366 commit_tree(source_mnt);
2367 }
2368
2369 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2370 struct mount *q;
2371 hlist_del_init(&child->mnt_hash);
2372 /* Notice when we are propagating across user namespaces */
2373 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2374 lock_mnt_tree(child);
2375 child->mnt.mnt_flags &= ~MNT_LOCKED;
2376 q = __lookup_mnt(&child->mnt_parent->mnt,
2377 child->mnt_mountpoint);
2378 if (q)
2379 mnt_change_mountpoint(child, smp, q);
2380 commit_tree(child);
2381 }
2382 put_mountpoint(smp);
2383 unlock_mount_hash();
2384
2385 return 0;
2386
2387 out_cleanup_ids:
2388 while (!hlist_empty(&tree_list)) {
2389 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2390 child->mnt_parent->mnt_ns->pending_mounts = 0;
2391 umount_tree(child, UMOUNT_SYNC);
2392 }
2393 unlock_mount_hash();
2394 cleanup_group_ids(source_mnt, NULL);
2395 out:
2396 ns->pending_mounts = 0;
2397
2398 read_seqlock_excl(&mount_lock);
2399 put_mountpoint(smp);
2400 read_sequnlock_excl(&mount_lock);
2401
2402 return err;
2403 }
2404
2405 /**
2406 * do_lock_mount - lock mount and mountpoint
2407 * @path: target path
2408 * @beneath: whether the intention is to mount beneath @path
2409 *
2410 * Follow the mount stack on @path until the top mount @mnt is found. If
2411 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2412 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2413 * until nothing is stacked on top of it anymore.
2414 *
2415 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2416 * against concurrent removal of the new mountpoint from another mount
2417 * namespace.
2418 *
2419 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2420 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2421 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2422 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2423 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2424 * on top of it for @beneath.
2425 *
2426 * In addition, @beneath needs to make sure that @mnt hasn't been
2427 * unmounted or moved from its current mountpoint in between dropping
2428 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2429 * being unmounted would be detected later by e.g., calling
2430 * check_mnt(mnt) in the function it's called from. For the @beneath
2431 * case however, it's useful to detect it directly in do_lock_mount().
2432 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2433 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2434 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2435 *
2436 * Return: Either the target mountpoint on the top mount or the top
2437 * mount's mountpoint.
2438 */
do_lock_mount(struct path * path,bool beneath)2439 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2440 {
2441 struct vfsmount *mnt = path->mnt;
2442 struct dentry *dentry;
2443 struct mountpoint *mp = ERR_PTR(-ENOENT);
2444 struct path under = {};
2445
2446 for (;;) {
2447 struct mount *m = real_mount(mnt);
2448
2449 if (beneath) {
2450 path_put(&under);
2451 read_seqlock_excl(&mount_lock);
2452 under.mnt = mntget(&m->mnt_parent->mnt);
2453 under.dentry = dget(m->mnt_mountpoint);
2454 read_sequnlock_excl(&mount_lock);
2455 dentry = under.dentry;
2456 } else {
2457 dentry = path->dentry;
2458 }
2459
2460 inode_lock(dentry->d_inode);
2461 namespace_lock();
2462
2463 if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2464 break; // not to be mounted on
2465
2466 if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2467 &m->mnt_parent->mnt != under.mnt)) {
2468 namespace_unlock();
2469 inode_unlock(dentry->d_inode);
2470 continue; // got moved
2471 }
2472
2473 mnt = lookup_mnt(path);
2474 if (unlikely(mnt)) {
2475 namespace_unlock();
2476 inode_unlock(dentry->d_inode);
2477 path_put(path);
2478 path->mnt = mnt;
2479 path->dentry = dget(mnt->mnt_root);
2480 continue; // got overmounted
2481 }
2482 mp = get_mountpoint(dentry);
2483 if (IS_ERR(mp))
2484 break;
2485 if (beneath) {
2486 /*
2487 * @under duplicates the references that will stay
2488 * at least until namespace_unlock(), so the path_put()
2489 * below is safe (and OK to do under namespace_lock -
2490 * we are not dropping the final references here).
2491 */
2492 path_put(&under);
2493 }
2494 return mp;
2495 }
2496 namespace_unlock();
2497 inode_unlock(dentry->d_inode);
2498 if (beneath)
2499 path_put(&under);
2500 return mp;
2501 }
2502
lock_mount(struct path * path)2503 static inline struct mountpoint *lock_mount(struct path *path)
2504 {
2505 return do_lock_mount(path, false);
2506 }
2507
unlock_mount(struct mountpoint * where)2508 static void unlock_mount(struct mountpoint *where)
2509 {
2510 inode_unlock(where->m_dentry->d_inode);
2511 read_seqlock_excl(&mount_lock);
2512 put_mountpoint(where);
2513 read_sequnlock_excl(&mount_lock);
2514 namespace_unlock();
2515 }
2516
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2517 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2518 {
2519 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2520 return -EINVAL;
2521
2522 if (d_is_dir(mp->m_dentry) !=
2523 d_is_dir(mnt->mnt.mnt_root))
2524 return -ENOTDIR;
2525
2526 return attach_recursive_mnt(mnt, p, mp, 0);
2527 }
2528
2529 /*
2530 * Sanity check the flags to change_mnt_propagation.
2531 */
2532
flags_to_propagation_type(int ms_flags)2533 static int flags_to_propagation_type(int ms_flags)
2534 {
2535 int type = ms_flags & ~(MS_REC | MS_SILENT);
2536
2537 /* Fail if any non-propagation flags are set */
2538 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2539 return 0;
2540 /* Only one propagation flag should be set */
2541 if (!is_power_of_2(type))
2542 return 0;
2543 return type;
2544 }
2545
2546 /*
2547 * recursively change the type of the mountpoint.
2548 */
do_change_type(struct path * path,int ms_flags)2549 static int do_change_type(struct path *path, int ms_flags)
2550 {
2551 struct mount *m;
2552 struct mount *mnt = real_mount(path->mnt);
2553 int recurse = ms_flags & MS_REC;
2554 int type;
2555 int err = 0;
2556
2557 if (!path_mounted(path))
2558 return -EINVAL;
2559
2560 type = flags_to_propagation_type(ms_flags);
2561 if (!type)
2562 return -EINVAL;
2563
2564 namespace_lock();
2565 if (!check_mnt(mnt)) {
2566 err = -EINVAL;
2567 goto out_unlock;
2568 }
2569 if (type == MS_SHARED) {
2570 err = invent_group_ids(mnt, recurse);
2571 if (err)
2572 goto out_unlock;
2573 }
2574
2575 lock_mount_hash();
2576 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2577 change_mnt_propagation(m, type);
2578 unlock_mount_hash();
2579
2580 out_unlock:
2581 namespace_unlock();
2582 return err;
2583 }
2584
__do_loopback(struct path * old_path,int recurse)2585 static struct mount *__do_loopback(struct path *old_path, int recurse)
2586 {
2587 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2588
2589 if (IS_MNT_UNBINDABLE(old))
2590 return mnt;
2591
2592 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2593 return mnt;
2594
2595 if (!recurse && has_locked_children(old, old_path->dentry))
2596 return mnt;
2597
2598 if (recurse)
2599 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2600 else
2601 mnt = clone_mnt(old, old_path->dentry, 0);
2602
2603 if (!IS_ERR(mnt))
2604 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2605
2606 return mnt;
2607 }
2608
2609 /*
2610 * do loopback mount.
2611 */
do_loopback(struct path * path,const char * old_name,int recurse)2612 static int do_loopback(struct path *path, const char *old_name,
2613 int recurse)
2614 {
2615 struct path old_path;
2616 struct mount *mnt = NULL, *parent;
2617 struct mountpoint *mp;
2618 int err;
2619 if (!old_name || !*old_name)
2620 return -EINVAL;
2621 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2622 if (err)
2623 return err;
2624
2625 err = -EINVAL;
2626 if (mnt_ns_loop(old_path.dentry))
2627 goto out;
2628
2629 mp = lock_mount(path);
2630 if (IS_ERR(mp)) {
2631 err = PTR_ERR(mp);
2632 goto out;
2633 }
2634
2635 parent = real_mount(path->mnt);
2636 if (!check_mnt(parent))
2637 goto out2;
2638
2639 mnt = __do_loopback(&old_path, recurse);
2640 if (IS_ERR(mnt)) {
2641 err = PTR_ERR(mnt);
2642 goto out2;
2643 }
2644
2645 err = graft_tree(mnt, parent, mp);
2646 if (err) {
2647 lock_mount_hash();
2648 umount_tree(mnt, UMOUNT_SYNC);
2649 unlock_mount_hash();
2650 }
2651 out2:
2652 unlock_mount(mp);
2653 out:
2654 path_put(&old_path);
2655 return err;
2656 }
2657
open_detached_copy(struct path * path,bool recursive)2658 static struct file *open_detached_copy(struct path *path, bool recursive)
2659 {
2660 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2661 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2662 struct mount *mnt, *p;
2663 struct file *file;
2664
2665 if (IS_ERR(ns))
2666 return ERR_CAST(ns);
2667
2668 namespace_lock();
2669 mnt = __do_loopback(path, recursive);
2670 if (IS_ERR(mnt)) {
2671 namespace_unlock();
2672 free_mnt_ns(ns);
2673 return ERR_CAST(mnt);
2674 }
2675
2676 lock_mount_hash();
2677 for (p = mnt; p; p = next_mnt(p, mnt)) {
2678 p->mnt_ns = ns;
2679 ns->mounts++;
2680 }
2681 ns->root = mnt;
2682 list_add_tail(&ns->list, &mnt->mnt_list);
2683 mntget(&mnt->mnt);
2684 unlock_mount_hash();
2685 namespace_unlock();
2686
2687 mntput(path->mnt);
2688 path->mnt = &mnt->mnt;
2689 file = dentry_open(path, O_PATH, current_cred());
2690 if (IS_ERR(file))
2691 dissolve_on_fput(path->mnt);
2692 else
2693 file->f_mode |= FMODE_NEED_UNMOUNT;
2694 return file;
2695 }
2696
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)2697 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2698 {
2699 struct file *file;
2700 struct path path;
2701 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2702 bool detached = flags & OPEN_TREE_CLONE;
2703 int error;
2704 int fd;
2705
2706 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2707
2708 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2709 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2710 OPEN_TREE_CLOEXEC))
2711 return -EINVAL;
2712
2713 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2714 return -EINVAL;
2715
2716 if (flags & AT_NO_AUTOMOUNT)
2717 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2718 if (flags & AT_SYMLINK_NOFOLLOW)
2719 lookup_flags &= ~LOOKUP_FOLLOW;
2720 if (flags & AT_EMPTY_PATH)
2721 lookup_flags |= LOOKUP_EMPTY;
2722
2723 if (detached && !may_mount())
2724 return -EPERM;
2725
2726 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2727 if (fd < 0)
2728 return fd;
2729
2730 error = user_path_at(dfd, filename, lookup_flags, &path);
2731 if (unlikely(error)) {
2732 file = ERR_PTR(error);
2733 } else {
2734 if (detached)
2735 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2736 else
2737 file = dentry_open(&path, O_PATH, current_cred());
2738 path_put(&path);
2739 }
2740 if (IS_ERR(file)) {
2741 put_unused_fd(fd);
2742 return PTR_ERR(file);
2743 }
2744 fd_install(fd, file);
2745 return fd;
2746 }
2747
2748 /*
2749 * Don't allow locked mount flags to be cleared.
2750 *
2751 * No locks need to be held here while testing the various MNT_LOCK
2752 * flags because those flags can never be cleared once they are set.
2753 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2754 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2755 {
2756 unsigned int fl = mnt->mnt.mnt_flags;
2757
2758 if ((fl & MNT_LOCK_READONLY) &&
2759 !(mnt_flags & MNT_READONLY))
2760 return false;
2761
2762 if ((fl & MNT_LOCK_NODEV) &&
2763 !(mnt_flags & MNT_NODEV))
2764 return false;
2765
2766 if ((fl & MNT_LOCK_NOSUID) &&
2767 !(mnt_flags & MNT_NOSUID))
2768 return false;
2769
2770 if ((fl & MNT_LOCK_NOEXEC) &&
2771 !(mnt_flags & MNT_NOEXEC))
2772 return false;
2773
2774 if ((fl & MNT_LOCK_ATIME) &&
2775 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2776 return false;
2777
2778 return true;
2779 }
2780
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2781 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2782 {
2783 bool readonly_request = (mnt_flags & MNT_READONLY);
2784
2785 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2786 return 0;
2787
2788 if (readonly_request)
2789 return mnt_make_readonly(mnt);
2790
2791 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2792 return 0;
2793 }
2794
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2795 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2796 {
2797 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2798 mnt->mnt.mnt_flags = mnt_flags;
2799 touch_mnt_namespace(mnt->mnt_ns);
2800 }
2801
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2802 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2803 {
2804 struct super_block *sb = mnt->mnt_sb;
2805
2806 if (!__mnt_is_readonly(mnt) &&
2807 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2808 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2809 char *buf, *mntpath;
2810
2811 buf = (char *)__get_free_page(GFP_KERNEL);
2812 if (buf)
2813 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
2814 else
2815 mntpath = ERR_PTR(-ENOMEM);
2816 if (IS_ERR(mntpath))
2817 mntpath = "(unknown)";
2818
2819 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2820 sb->s_type->name,
2821 is_mounted(mnt) ? "remounted" : "mounted",
2822 mntpath, &sb->s_time_max,
2823 (unsigned long long)sb->s_time_max);
2824
2825 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2826 if (buf)
2827 free_page((unsigned long)buf);
2828 }
2829 }
2830
2831 /*
2832 * Handle reconfiguration of the mountpoint only without alteration of the
2833 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2834 * to mount(2).
2835 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2836 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2837 {
2838 struct super_block *sb = path->mnt->mnt_sb;
2839 struct mount *mnt = real_mount(path->mnt);
2840 int ret;
2841
2842 if (!check_mnt(mnt))
2843 return -EINVAL;
2844
2845 if (!path_mounted(path))
2846 return -EINVAL;
2847
2848 if (!can_change_locked_flags(mnt, mnt_flags))
2849 return -EPERM;
2850
2851 /*
2852 * We're only checking whether the superblock is read-only not
2853 * changing it, so only take down_read(&sb->s_umount).
2854 */
2855 down_read(&sb->s_umount);
2856 lock_mount_hash();
2857 ret = change_mount_ro_state(mnt, mnt_flags);
2858 if (ret == 0)
2859 set_mount_attributes(mnt, mnt_flags);
2860 unlock_mount_hash();
2861 up_read(&sb->s_umount);
2862
2863 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2864
2865 return ret;
2866 }
2867
2868 /*
2869 * change filesystem flags. dir should be a physical root of filesystem.
2870 * If you've mounted a non-root directory somewhere and want to do remount
2871 * on it - tough luck.
2872 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2873 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2874 int mnt_flags, void *data)
2875 {
2876 int err;
2877 struct super_block *sb = path->mnt->mnt_sb;
2878 struct mount *mnt = real_mount(path->mnt);
2879 struct fs_context *fc;
2880
2881 if (!check_mnt(mnt))
2882 return -EINVAL;
2883
2884 if (!path_mounted(path))
2885 return -EINVAL;
2886
2887 if (!can_change_locked_flags(mnt, mnt_flags))
2888 return -EPERM;
2889
2890 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2891 if (IS_ERR(fc))
2892 return PTR_ERR(fc);
2893
2894 /*
2895 * Indicate to the filesystem that the remount request is coming
2896 * from the legacy mount system call.
2897 */
2898 fc->oldapi = true;
2899
2900 err = parse_monolithic_mount_data(fc, data);
2901 if (!err) {
2902 down_write(&sb->s_umount);
2903 err = -EPERM;
2904 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2905 err = reconfigure_super(fc);
2906 if (!err) {
2907 lock_mount_hash();
2908 set_mount_attributes(mnt, mnt_flags);
2909 unlock_mount_hash();
2910 }
2911 }
2912 up_write(&sb->s_umount);
2913 }
2914
2915 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2916
2917 put_fs_context(fc);
2918 return err;
2919 }
2920
tree_contains_unbindable(struct mount * mnt)2921 static inline int tree_contains_unbindable(struct mount *mnt)
2922 {
2923 struct mount *p;
2924 for (p = mnt; p; p = next_mnt(p, mnt)) {
2925 if (IS_MNT_UNBINDABLE(p))
2926 return 1;
2927 }
2928 return 0;
2929 }
2930
2931 /*
2932 * Check that there aren't references to earlier/same mount namespaces in the
2933 * specified subtree. Such references can act as pins for mount namespaces
2934 * that aren't checked by the mount-cycle checking code, thereby allowing
2935 * cycles to be made.
2936 */
check_for_nsfs_mounts(struct mount * subtree)2937 static bool check_for_nsfs_mounts(struct mount *subtree)
2938 {
2939 struct mount *p;
2940 bool ret = false;
2941
2942 lock_mount_hash();
2943 for (p = subtree; p; p = next_mnt(p, subtree))
2944 if (mnt_ns_loop(p->mnt.mnt_root))
2945 goto out;
2946
2947 ret = true;
2948 out:
2949 unlock_mount_hash();
2950 return ret;
2951 }
2952
do_set_group(struct path * from_path,struct path * to_path)2953 static int do_set_group(struct path *from_path, struct path *to_path)
2954 {
2955 struct mount *from, *to;
2956 int err;
2957
2958 from = real_mount(from_path->mnt);
2959 to = real_mount(to_path->mnt);
2960
2961 namespace_lock();
2962
2963 err = -EINVAL;
2964 /* To and From must be mounted */
2965 if (!is_mounted(&from->mnt))
2966 goto out;
2967 if (!is_mounted(&to->mnt))
2968 goto out;
2969
2970 err = -EPERM;
2971 /* We should be allowed to modify mount namespaces of both mounts */
2972 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2973 goto out;
2974 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2975 goto out;
2976
2977 err = -EINVAL;
2978 /* To and From paths should be mount roots */
2979 if (!path_mounted(from_path))
2980 goto out;
2981 if (!path_mounted(to_path))
2982 goto out;
2983
2984 /* Setting sharing groups is only allowed across same superblock */
2985 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2986 goto out;
2987
2988 /* From mount root should be wider than To mount root */
2989 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2990 goto out;
2991
2992 /* From mount should not have locked children in place of To's root */
2993 if (has_locked_children(from, to->mnt.mnt_root))
2994 goto out;
2995
2996 /* Setting sharing groups is only allowed on private mounts */
2997 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2998 goto out;
2999
3000 /* From should not be private */
3001 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3002 goto out;
3003
3004 if (IS_MNT_SLAVE(from)) {
3005 struct mount *m = from->mnt_master;
3006
3007 list_add(&to->mnt_slave, &from->mnt_slave);
3008 to->mnt_master = m;
3009 }
3010
3011 if (IS_MNT_SHARED(from)) {
3012 to->mnt_group_id = from->mnt_group_id;
3013 list_add(&to->mnt_share, &from->mnt_share);
3014 lock_mount_hash();
3015 set_mnt_shared(to);
3016 unlock_mount_hash();
3017 }
3018
3019 err = 0;
3020 out:
3021 namespace_unlock();
3022 return err;
3023 }
3024
3025 /**
3026 * path_overmounted - check if path is overmounted
3027 * @path: path to check
3028 *
3029 * Check if path is overmounted, i.e., if there's a mount on top of
3030 * @path->mnt with @path->dentry as mountpoint.
3031 *
3032 * Context: namespace_sem must be held at least shared.
3033 * MUST NOT be called under lock_mount_hash() (there one should just
3034 * call __lookup_mnt() and check if it returns NULL).
3035 * Return: If path is overmounted true is returned, false if not.
3036 */
path_overmounted(const struct path * path)3037 static inline bool path_overmounted(const struct path *path)
3038 {
3039 unsigned seq = read_seqbegin(&mount_lock);
3040 bool no_child;
3041
3042 rcu_read_lock();
3043 no_child = !__lookup_mnt(path->mnt, path->dentry);
3044 rcu_read_unlock();
3045 if (need_seqretry(&mount_lock, seq)) {
3046 read_seqlock_excl(&mount_lock);
3047 no_child = !__lookup_mnt(path->mnt, path->dentry);
3048 read_sequnlock_excl(&mount_lock);
3049 }
3050 return unlikely(!no_child);
3051 }
3052
3053 /**
3054 * can_move_mount_beneath - check that we can mount beneath the top mount
3055 * @from: mount to mount beneath
3056 * @to: mount under which to mount
3057 *
3058 * - Make sure that @to->dentry is actually the root of a mount under
3059 * which we can mount another mount.
3060 * - Make sure that nothing can be mounted beneath the caller's current
3061 * root or the rootfs of the namespace.
3062 * - Make sure that the caller can unmount the topmost mount ensuring
3063 * that the caller could reveal the underlying mountpoint.
3064 * - Ensure that nothing has been mounted on top of @from before we
3065 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3066 * - Prevent mounting beneath a mount if the propagation relationship
3067 * between the source mount, parent mount, and top mount would lead to
3068 * nonsensical mount trees.
3069 *
3070 * Context: This function expects namespace_lock() to be held.
3071 * Return: On success 0, and on error a negative error code is returned.
3072 */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3073 static int can_move_mount_beneath(const struct path *from,
3074 const struct path *to,
3075 const struct mountpoint *mp)
3076 {
3077 struct mount *mnt_from = real_mount(from->mnt),
3078 *mnt_to = real_mount(to->mnt),
3079 *parent_mnt_to = mnt_to->mnt_parent;
3080
3081 if (!mnt_has_parent(mnt_to))
3082 return -EINVAL;
3083
3084 if (!path_mounted(to))
3085 return -EINVAL;
3086
3087 if (IS_MNT_LOCKED(mnt_to))
3088 return -EINVAL;
3089
3090 /* Avoid creating shadow mounts during mount propagation. */
3091 if (path_overmounted(from))
3092 return -EINVAL;
3093
3094 /*
3095 * Mounting beneath the rootfs only makes sense when the
3096 * semantics of pivot_root(".", ".") are used.
3097 */
3098 if (&mnt_to->mnt == current->fs->root.mnt)
3099 return -EINVAL;
3100 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3101 return -EINVAL;
3102
3103 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3104 if (p == mnt_to)
3105 return -EINVAL;
3106
3107 /*
3108 * If the parent mount propagates to the child mount this would
3109 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3110 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3111 * defeats the whole purpose of mounting beneath another mount.
3112 */
3113 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3114 return -EINVAL;
3115
3116 /*
3117 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3118 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3119 * Afterwards @mnt_from would be mounted on top of
3120 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3121 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3122 * already mounted on @mnt_from, @mnt_to would ultimately be
3123 * remounted on top of @c. Afterwards, @mnt_from would be
3124 * covered by a copy @c of @mnt_from and @c would be covered by
3125 * @mnt_from itself. This defeats the whole purpose of mounting
3126 * @mnt_from beneath @mnt_to.
3127 */
3128 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3129 return -EINVAL;
3130
3131 return 0;
3132 }
3133
do_move_mount(struct path * old_path,struct path * new_path,bool beneath)3134 static int do_move_mount(struct path *old_path, struct path *new_path,
3135 bool beneath)
3136 {
3137 struct mnt_namespace *ns;
3138 struct mount *p;
3139 struct mount *old;
3140 struct mount *parent;
3141 struct mountpoint *mp, *old_mp;
3142 int err;
3143 bool attached;
3144 enum mnt_tree_flags_t flags = 0;
3145
3146 mp = do_lock_mount(new_path, beneath);
3147 if (IS_ERR(mp))
3148 return PTR_ERR(mp);
3149
3150 old = real_mount(old_path->mnt);
3151 p = real_mount(new_path->mnt);
3152 parent = old->mnt_parent;
3153 attached = mnt_has_parent(old);
3154 if (attached)
3155 flags |= MNT_TREE_MOVE;
3156 old_mp = old->mnt_mp;
3157 ns = old->mnt_ns;
3158
3159 err = -EINVAL;
3160 /* The mountpoint must be in our namespace. */
3161 if (!check_mnt(p))
3162 goto out;
3163
3164 /* The thing moved must be mounted... */
3165 if (!is_mounted(&old->mnt))
3166 goto out;
3167
3168 /* ... and either ours or the root of anon namespace */
3169 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3170 goto out;
3171
3172 if (old->mnt.mnt_flags & MNT_LOCKED)
3173 goto out;
3174
3175 if (!path_mounted(old_path))
3176 goto out;
3177
3178 if (d_is_dir(new_path->dentry) !=
3179 d_is_dir(old_path->dentry))
3180 goto out;
3181 /*
3182 * Don't move a mount residing in a shared parent.
3183 */
3184 if (attached && IS_MNT_SHARED(parent))
3185 goto out;
3186
3187 if (beneath) {
3188 err = can_move_mount_beneath(old_path, new_path, mp);
3189 if (err)
3190 goto out;
3191
3192 err = -EINVAL;
3193 p = p->mnt_parent;
3194 flags |= MNT_TREE_BENEATH;
3195 }
3196
3197 /*
3198 * Don't move a mount tree containing unbindable mounts to a destination
3199 * mount which is shared.
3200 */
3201 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3202 goto out;
3203 err = -ELOOP;
3204 if (!check_for_nsfs_mounts(old))
3205 goto out;
3206 for (; mnt_has_parent(p); p = p->mnt_parent)
3207 if (p == old)
3208 goto out;
3209
3210 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3211 if (err)
3212 goto out;
3213
3214 /* if the mount is moved, it should no longer be expire
3215 * automatically */
3216 list_del_init(&old->mnt_expire);
3217 if (attached)
3218 put_mountpoint(old_mp);
3219 out:
3220 unlock_mount(mp);
3221 if (!err) {
3222 if (attached)
3223 mntput_no_expire(parent);
3224 else
3225 free_mnt_ns(ns);
3226 }
3227 return err;
3228 }
3229
do_move_mount_old(struct path * path,const char * old_name)3230 static int do_move_mount_old(struct path *path, const char *old_name)
3231 {
3232 struct path old_path;
3233 int err;
3234
3235 if (!old_name || !*old_name)
3236 return -EINVAL;
3237
3238 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3239 if (err)
3240 return err;
3241
3242 err = do_move_mount(&old_path, path, false);
3243 path_put(&old_path);
3244 return err;
3245 }
3246
3247 /*
3248 * add a mount into a namespace's mount tree
3249 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3250 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3251 const struct path *path, int mnt_flags)
3252 {
3253 struct mount *parent = real_mount(path->mnt);
3254
3255 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3256
3257 if (unlikely(!check_mnt(parent))) {
3258 /* that's acceptable only for automounts done in private ns */
3259 if (!(mnt_flags & MNT_SHRINKABLE))
3260 return -EINVAL;
3261 /* ... and for those we'd better have mountpoint still alive */
3262 if (!parent->mnt_ns)
3263 return -EINVAL;
3264 }
3265
3266 /* Refuse the same filesystem on the same mount point */
3267 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3268 return -EBUSY;
3269
3270 if (d_is_symlink(newmnt->mnt.mnt_root))
3271 return -EINVAL;
3272
3273 newmnt->mnt.mnt_flags = mnt_flags;
3274 return graft_tree(newmnt, parent, mp);
3275 }
3276
3277 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3278
3279 /*
3280 * Create a new mount using a superblock configuration and request it
3281 * be added to the namespace tree.
3282 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3283 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3284 unsigned int mnt_flags)
3285 {
3286 struct vfsmount *mnt;
3287 struct mountpoint *mp;
3288 struct super_block *sb = fc->root->d_sb;
3289 int error;
3290
3291 error = security_sb_kern_mount(sb);
3292 if (!error && mount_too_revealing(sb, &mnt_flags))
3293 error = -EPERM;
3294
3295 if (unlikely(error)) {
3296 fc_drop_locked(fc);
3297 return error;
3298 }
3299
3300 up_write(&sb->s_umount);
3301
3302 mnt = vfs_create_mount(fc);
3303 if (IS_ERR(mnt))
3304 return PTR_ERR(mnt);
3305
3306 mnt_warn_timestamp_expiry(mountpoint, mnt);
3307
3308 mp = lock_mount(mountpoint);
3309 if (IS_ERR(mp)) {
3310 mntput(mnt);
3311 return PTR_ERR(mp);
3312 }
3313 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3314 unlock_mount(mp);
3315 if (error < 0)
3316 mntput(mnt);
3317 return error;
3318 }
3319
3320 /*
3321 * create a new mount for userspace and request it to be added into the
3322 * namespace's tree
3323 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3324 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3325 int mnt_flags, const char *name, void *data)
3326 {
3327 struct file_system_type *type;
3328 struct fs_context *fc;
3329 const char *subtype = NULL;
3330 int err = 0;
3331
3332 if (!fstype)
3333 return -EINVAL;
3334
3335 type = get_fs_type(fstype);
3336 if (!type)
3337 return -ENODEV;
3338
3339 if (type->fs_flags & FS_HAS_SUBTYPE) {
3340 subtype = strchr(fstype, '.');
3341 if (subtype) {
3342 subtype++;
3343 if (!*subtype) {
3344 put_filesystem(type);
3345 return -EINVAL;
3346 }
3347 }
3348 }
3349
3350 fc = fs_context_for_mount(type, sb_flags);
3351 put_filesystem(type);
3352 if (IS_ERR(fc))
3353 return PTR_ERR(fc);
3354
3355 /*
3356 * Indicate to the filesystem that the mount request is coming
3357 * from the legacy mount system call.
3358 */
3359 fc->oldapi = true;
3360
3361 if (subtype)
3362 err = vfs_parse_fs_string(fc, "subtype",
3363 subtype, strlen(subtype));
3364 if (!err && name)
3365 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3366 if (!err)
3367 err = parse_monolithic_mount_data(fc, data);
3368 if (!err && !mount_capable(fc))
3369 err = -EPERM;
3370 if (!err)
3371 err = vfs_get_tree(fc);
3372 if (!err)
3373 err = do_new_mount_fc(fc, path, mnt_flags);
3374
3375 put_fs_context(fc);
3376 return err;
3377 }
3378
finish_automount(struct vfsmount * m,const struct path * path)3379 int finish_automount(struct vfsmount *m, const struct path *path)
3380 {
3381 struct dentry *dentry = path->dentry;
3382 struct mountpoint *mp;
3383 struct mount *mnt;
3384 int err;
3385
3386 if (!m)
3387 return 0;
3388 if (IS_ERR(m))
3389 return PTR_ERR(m);
3390
3391 mnt = real_mount(m);
3392 /* The new mount record should have at least 2 refs to prevent it being
3393 * expired before we get a chance to add it
3394 */
3395 BUG_ON(mnt_get_count(mnt) < 2);
3396
3397 if (m->mnt_sb == path->mnt->mnt_sb &&
3398 m->mnt_root == dentry) {
3399 err = -ELOOP;
3400 goto discard;
3401 }
3402
3403 /*
3404 * we don't want to use lock_mount() - in this case finding something
3405 * that overmounts our mountpoint to be means "quitely drop what we've
3406 * got", not "try to mount it on top".
3407 */
3408 inode_lock(dentry->d_inode);
3409 namespace_lock();
3410 if (unlikely(cant_mount(dentry))) {
3411 err = -ENOENT;
3412 goto discard_locked;
3413 }
3414 if (path_overmounted(path)) {
3415 err = 0;
3416 goto discard_locked;
3417 }
3418 mp = get_mountpoint(dentry);
3419 if (IS_ERR(mp)) {
3420 err = PTR_ERR(mp);
3421 goto discard_locked;
3422 }
3423
3424 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3425 unlock_mount(mp);
3426 if (unlikely(err))
3427 goto discard;
3428 mntput(m);
3429 return 0;
3430
3431 discard_locked:
3432 namespace_unlock();
3433 inode_unlock(dentry->d_inode);
3434 discard:
3435 /* remove m from any expiration list it may be on */
3436 if (!list_empty(&mnt->mnt_expire)) {
3437 namespace_lock();
3438 list_del_init(&mnt->mnt_expire);
3439 namespace_unlock();
3440 }
3441 mntput(m);
3442 mntput(m);
3443 return err;
3444 }
3445
3446 /**
3447 * mnt_set_expiry - Put a mount on an expiration list
3448 * @mnt: The mount to list.
3449 * @expiry_list: The list to add the mount to.
3450 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3451 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3452 {
3453 namespace_lock();
3454
3455 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3456
3457 namespace_unlock();
3458 }
3459 EXPORT_SYMBOL(mnt_set_expiry);
3460
3461 /*
3462 * process a list of expirable mountpoints with the intent of discarding any
3463 * mountpoints that aren't in use and haven't been touched since last we came
3464 * here
3465 */
mark_mounts_for_expiry(struct list_head * mounts)3466 void mark_mounts_for_expiry(struct list_head *mounts)
3467 {
3468 struct mount *mnt, *next;
3469 LIST_HEAD(graveyard);
3470
3471 if (list_empty(mounts))
3472 return;
3473
3474 namespace_lock();
3475 lock_mount_hash();
3476
3477 /* extract from the expiration list every vfsmount that matches the
3478 * following criteria:
3479 * - only referenced by its parent vfsmount
3480 * - still marked for expiry (marked on the last call here; marks are
3481 * cleared by mntput())
3482 */
3483 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3484 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3485 propagate_mount_busy(mnt, 1))
3486 continue;
3487 list_move(&mnt->mnt_expire, &graveyard);
3488 }
3489 while (!list_empty(&graveyard)) {
3490 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3491 touch_mnt_namespace(mnt->mnt_ns);
3492 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3493 }
3494 unlock_mount_hash();
3495 namespace_unlock();
3496 }
3497
3498 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3499
3500 /*
3501 * Ripoff of 'select_parent()'
3502 *
3503 * search the list of submounts for a given mountpoint, and move any
3504 * shrinkable submounts to the 'graveyard' list.
3505 */
select_submounts(struct mount * parent,struct list_head * graveyard)3506 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3507 {
3508 struct mount *this_parent = parent;
3509 struct list_head *next;
3510 int found = 0;
3511
3512 repeat:
3513 next = this_parent->mnt_mounts.next;
3514 resume:
3515 while (next != &this_parent->mnt_mounts) {
3516 struct list_head *tmp = next;
3517 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3518
3519 next = tmp->next;
3520 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3521 continue;
3522 /*
3523 * Descend a level if the d_mounts list is non-empty.
3524 */
3525 if (!list_empty(&mnt->mnt_mounts)) {
3526 this_parent = mnt;
3527 goto repeat;
3528 }
3529
3530 if (!propagate_mount_busy(mnt, 1)) {
3531 list_move_tail(&mnt->mnt_expire, graveyard);
3532 found++;
3533 }
3534 }
3535 /*
3536 * All done at this level ... ascend and resume the search
3537 */
3538 if (this_parent != parent) {
3539 next = this_parent->mnt_child.next;
3540 this_parent = this_parent->mnt_parent;
3541 goto resume;
3542 }
3543 return found;
3544 }
3545
3546 /*
3547 * process a list of expirable mountpoints with the intent of discarding any
3548 * submounts of a specific parent mountpoint
3549 *
3550 * mount_lock must be held for write
3551 */
shrink_submounts(struct mount * mnt)3552 static void shrink_submounts(struct mount *mnt)
3553 {
3554 LIST_HEAD(graveyard);
3555 struct mount *m;
3556
3557 /* extract submounts of 'mountpoint' from the expiration list */
3558 while (select_submounts(mnt, &graveyard)) {
3559 while (!list_empty(&graveyard)) {
3560 m = list_first_entry(&graveyard, struct mount,
3561 mnt_expire);
3562 touch_mnt_namespace(m->mnt_ns);
3563 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3564 }
3565 }
3566 }
3567
copy_mount_options(const void __user * data)3568 static void *copy_mount_options(const void __user * data)
3569 {
3570 char *copy;
3571 unsigned left, offset;
3572
3573 if (!data)
3574 return NULL;
3575
3576 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3577 if (!copy)
3578 return ERR_PTR(-ENOMEM);
3579
3580 left = copy_from_user(copy, data, PAGE_SIZE);
3581
3582 /*
3583 * Not all architectures have an exact copy_from_user(). Resort to
3584 * byte at a time.
3585 */
3586 offset = PAGE_SIZE - left;
3587 while (left) {
3588 char c;
3589 if (get_user(c, (const char __user *)data + offset))
3590 break;
3591 copy[offset] = c;
3592 left--;
3593 offset++;
3594 }
3595
3596 if (left == PAGE_SIZE) {
3597 kfree(copy);
3598 return ERR_PTR(-EFAULT);
3599 }
3600
3601 return copy;
3602 }
3603
copy_mount_string(const void __user * data)3604 static char *copy_mount_string(const void __user *data)
3605 {
3606 return data ? strndup_user(data, PATH_MAX) : NULL;
3607 }
3608
3609 /*
3610 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3611 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3612 *
3613 * data is a (void *) that can point to any structure up to
3614 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3615 * information (or be NULL).
3616 *
3617 * Pre-0.97 versions of mount() didn't have a flags word.
3618 * When the flags word was introduced its top half was required
3619 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3620 * Therefore, if this magic number is present, it carries no information
3621 * and must be discarded.
3622 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)3623 int path_mount(const char *dev_name, struct path *path,
3624 const char *type_page, unsigned long flags, void *data_page)
3625 {
3626 unsigned int mnt_flags = 0, sb_flags;
3627 int ret;
3628
3629 /* Discard magic */
3630 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3631 flags &= ~MS_MGC_MSK;
3632
3633 /* Basic sanity checks */
3634 if (data_page)
3635 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3636
3637 if (flags & MS_NOUSER)
3638 return -EINVAL;
3639
3640 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3641 if (ret)
3642 return ret;
3643 if (!may_mount())
3644 return -EPERM;
3645 if (flags & SB_MANDLOCK)
3646 warn_mandlock();
3647
3648 /* Default to relatime unless overriden */
3649 if (!(flags & MS_NOATIME))
3650 mnt_flags |= MNT_RELATIME;
3651
3652 /* Separate the per-mountpoint flags */
3653 if (flags & MS_NOSUID)
3654 mnt_flags |= MNT_NOSUID;
3655 if (flags & MS_NODEV)
3656 mnt_flags |= MNT_NODEV;
3657 if (flags & MS_NOEXEC)
3658 mnt_flags |= MNT_NOEXEC;
3659 if (flags & MS_NOATIME)
3660 mnt_flags |= MNT_NOATIME;
3661 if (flags & MS_NODIRATIME)
3662 mnt_flags |= MNT_NODIRATIME;
3663 if (flags & MS_STRICTATIME)
3664 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3665 if (flags & MS_RDONLY)
3666 mnt_flags |= MNT_READONLY;
3667 if (flags & MS_NOSYMFOLLOW)
3668 mnt_flags |= MNT_NOSYMFOLLOW;
3669
3670 /* The default atime for remount is preservation */
3671 if ((flags & MS_REMOUNT) &&
3672 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3673 MS_STRICTATIME)) == 0)) {
3674 mnt_flags &= ~MNT_ATIME_MASK;
3675 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3676 }
3677
3678 sb_flags = flags & (SB_RDONLY |
3679 SB_SYNCHRONOUS |
3680 SB_MANDLOCK |
3681 SB_DIRSYNC |
3682 SB_SILENT |
3683 SB_POSIXACL |
3684 SB_LAZYTIME |
3685 SB_I_VERSION);
3686
3687 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3688 return do_reconfigure_mnt(path, mnt_flags);
3689 if (flags & MS_REMOUNT)
3690 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3691 if (flags & MS_BIND)
3692 return do_loopback(path, dev_name, flags & MS_REC);
3693 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3694 return do_change_type(path, flags);
3695 if (flags & MS_MOVE)
3696 return do_move_mount_old(path, dev_name);
3697
3698 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3699 data_page);
3700 }
3701
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3702 long do_mount(const char *dev_name, const char __user *dir_name,
3703 const char *type_page, unsigned long flags, void *data_page)
3704 {
3705 struct path path;
3706 int ret;
3707
3708 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3709 if (ret)
3710 return ret;
3711 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3712 path_put(&path);
3713 return ret;
3714 }
3715
inc_mnt_namespaces(struct user_namespace * ns)3716 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3717 {
3718 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3719 }
3720
dec_mnt_namespaces(struct ucounts * ucounts)3721 static void dec_mnt_namespaces(struct ucounts *ucounts)
3722 {
3723 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3724 }
3725
free_mnt_ns(struct mnt_namespace * ns)3726 static void free_mnt_ns(struct mnt_namespace *ns)
3727 {
3728 if (!is_anon_ns(ns))
3729 ns_free_inum(&ns->ns);
3730 dec_mnt_namespaces(ns->ucounts);
3731 put_user_ns(ns->user_ns);
3732 kfree(ns);
3733 }
3734
3735 /*
3736 * Assign a sequence number so we can detect when we attempt to bind
3737 * mount a reference to an older mount namespace into the current
3738 * mount namespace, preventing reference counting loops. A 64bit
3739 * number incrementing at 10Ghz will take 12,427 years to wrap which
3740 * is effectively never, so we can ignore the possibility.
3741 */
3742 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3743
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3744 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3745 {
3746 struct mnt_namespace *new_ns;
3747 struct ucounts *ucounts;
3748 int ret;
3749
3750 ucounts = inc_mnt_namespaces(user_ns);
3751 if (!ucounts)
3752 return ERR_PTR(-ENOSPC);
3753
3754 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3755 if (!new_ns) {
3756 dec_mnt_namespaces(ucounts);
3757 return ERR_PTR(-ENOMEM);
3758 }
3759 if (!anon) {
3760 ret = ns_alloc_inum(&new_ns->ns);
3761 if (ret) {
3762 kfree(new_ns);
3763 dec_mnt_namespaces(ucounts);
3764 return ERR_PTR(ret);
3765 }
3766 }
3767 new_ns->ns.ops = &mntns_operations;
3768 if (!anon)
3769 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3770 refcount_set(&new_ns->ns.count, 1);
3771 INIT_LIST_HEAD(&new_ns->list);
3772 init_waitqueue_head(&new_ns->poll);
3773 spin_lock_init(&new_ns->ns_lock);
3774 new_ns->user_ns = get_user_ns(user_ns);
3775 new_ns->ucounts = ucounts;
3776 return new_ns;
3777 }
3778
3779 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3780 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3781 struct user_namespace *user_ns, struct fs_struct *new_fs)
3782 {
3783 struct mnt_namespace *new_ns;
3784 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3785 struct mount *p, *q;
3786 struct mount *old;
3787 struct mount *new;
3788 int copy_flags;
3789
3790 BUG_ON(!ns);
3791
3792 if (likely(!(flags & CLONE_NEWNS))) {
3793 get_mnt_ns(ns);
3794 return ns;
3795 }
3796
3797 old = ns->root;
3798
3799 new_ns = alloc_mnt_ns(user_ns, false);
3800 if (IS_ERR(new_ns))
3801 return new_ns;
3802
3803 namespace_lock();
3804 /* First pass: copy the tree topology */
3805 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3806 if (user_ns != ns->user_ns)
3807 copy_flags |= CL_SHARED_TO_SLAVE;
3808 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3809 if (IS_ERR(new)) {
3810 namespace_unlock();
3811 free_mnt_ns(new_ns);
3812 return ERR_CAST(new);
3813 }
3814 if (user_ns != ns->user_ns) {
3815 lock_mount_hash();
3816 lock_mnt_tree(new);
3817 unlock_mount_hash();
3818 }
3819 new_ns->root = new;
3820 list_add_tail(&new_ns->list, &new->mnt_list);
3821
3822 /*
3823 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3824 * as belonging to new namespace. We have already acquired a private
3825 * fs_struct, so tsk->fs->lock is not needed.
3826 */
3827 p = old;
3828 q = new;
3829 while (p) {
3830 q->mnt_ns = new_ns;
3831 new_ns->mounts++;
3832 if (new_fs) {
3833 if (&p->mnt == new_fs->root.mnt) {
3834 new_fs->root.mnt = mntget(&q->mnt);
3835 rootmnt = &p->mnt;
3836 }
3837 if (&p->mnt == new_fs->pwd.mnt) {
3838 new_fs->pwd.mnt = mntget(&q->mnt);
3839 pwdmnt = &p->mnt;
3840 }
3841 }
3842 p = next_mnt(p, old);
3843 q = next_mnt(q, new);
3844 if (!q)
3845 break;
3846 // an mntns binding we'd skipped?
3847 while (p->mnt.mnt_root != q->mnt.mnt_root)
3848 p = next_mnt(skip_mnt_tree(p), old);
3849 }
3850 namespace_unlock();
3851
3852 if (rootmnt)
3853 mntput(rootmnt);
3854 if (pwdmnt)
3855 mntput(pwdmnt);
3856
3857 return new_ns;
3858 }
3859
mount_subtree(struct vfsmount * m,const char * name)3860 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3861 {
3862 struct mount *mnt = real_mount(m);
3863 struct mnt_namespace *ns;
3864 struct super_block *s;
3865 struct path path;
3866 int err;
3867
3868 ns = alloc_mnt_ns(&init_user_ns, true);
3869 if (IS_ERR(ns)) {
3870 mntput(m);
3871 return ERR_CAST(ns);
3872 }
3873 mnt->mnt_ns = ns;
3874 ns->root = mnt;
3875 ns->mounts++;
3876 list_add(&mnt->mnt_list, &ns->list);
3877
3878 err = vfs_path_lookup(m->mnt_root, m,
3879 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3880
3881 put_mnt_ns(ns);
3882
3883 if (err)
3884 return ERR_PTR(err);
3885
3886 /* trade a vfsmount reference for active sb one */
3887 s = path.mnt->mnt_sb;
3888 atomic_inc(&s->s_active);
3889 mntput(path.mnt);
3890 /* lock the sucker */
3891 down_write(&s->s_umount);
3892 /* ... and return the root of (sub)tree on it */
3893 return path.dentry;
3894 }
3895 EXPORT_SYMBOL(mount_subtree);
3896
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3897 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3898 char __user *, type, unsigned long, flags, void __user *, data)
3899 {
3900 int ret;
3901 char *kernel_type;
3902 char *kernel_dev;
3903 void *options;
3904
3905 kernel_type = copy_mount_string(type);
3906 ret = PTR_ERR(kernel_type);
3907 if (IS_ERR(kernel_type))
3908 goto out_type;
3909
3910 kernel_dev = copy_mount_string(dev_name);
3911 ret = PTR_ERR(kernel_dev);
3912 if (IS_ERR(kernel_dev))
3913 goto out_dev;
3914
3915 options = copy_mount_options(data);
3916 ret = PTR_ERR(options);
3917 if (IS_ERR(options))
3918 goto out_data;
3919
3920 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3921
3922 kfree(options);
3923 out_data:
3924 kfree(kernel_dev);
3925 out_dev:
3926 kfree(kernel_type);
3927 out_type:
3928 return ret;
3929 }
3930
3931 #define FSMOUNT_VALID_FLAGS \
3932 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3933 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3934 MOUNT_ATTR_NOSYMFOLLOW)
3935
3936 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3937
3938 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3939 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3940
attr_flags_to_mnt_flags(u64 attr_flags)3941 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3942 {
3943 unsigned int mnt_flags = 0;
3944
3945 if (attr_flags & MOUNT_ATTR_RDONLY)
3946 mnt_flags |= MNT_READONLY;
3947 if (attr_flags & MOUNT_ATTR_NOSUID)
3948 mnt_flags |= MNT_NOSUID;
3949 if (attr_flags & MOUNT_ATTR_NODEV)
3950 mnt_flags |= MNT_NODEV;
3951 if (attr_flags & MOUNT_ATTR_NOEXEC)
3952 mnt_flags |= MNT_NOEXEC;
3953 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3954 mnt_flags |= MNT_NODIRATIME;
3955 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3956 mnt_flags |= MNT_NOSYMFOLLOW;
3957
3958 return mnt_flags;
3959 }
3960
3961 /*
3962 * Create a kernel mount representation for a new, prepared superblock
3963 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3964 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3965 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3966 unsigned int, attr_flags)
3967 {
3968 struct mnt_namespace *ns;
3969 struct fs_context *fc;
3970 struct file *file;
3971 struct path newmount;
3972 struct mount *mnt;
3973 struct fd f;
3974 unsigned int mnt_flags = 0;
3975 long ret;
3976
3977 if (!may_mount())
3978 return -EPERM;
3979
3980 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3981 return -EINVAL;
3982
3983 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3984 return -EINVAL;
3985
3986 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3987
3988 switch (attr_flags & MOUNT_ATTR__ATIME) {
3989 case MOUNT_ATTR_STRICTATIME:
3990 break;
3991 case MOUNT_ATTR_NOATIME:
3992 mnt_flags |= MNT_NOATIME;
3993 break;
3994 case MOUNT_ATTR_RELATIME:
3995 mnt_flags |= MNT_RELATIME;
3996 break;
3997 default:
3998 return -EINVAL;
3999 }
4000
4001 f = fdget(fs_fd);
4002 if (!f.file)
4003 return -EBADF;
4004
4005 ret = -EINVAL;
4006 if (f.file->f_op != &fscontext_fops)
4007 goto err_fsfd;
4008
4009 fc = f.file->private_data;
4010
4011 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4012 if (ret < 0)
4013 goto err_fsfd;
4014
4015 /* There must be a valid superblock or we can't mount it */
4016 ret = -EINVAL;
4017 if (!fc->root)
4018 goto err_unlock;
4019
4020 ret = -EPERM;
4021 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4022 pr_warn("VFS: Mount too revealing\n");
4023 goto err_unlock;
4024 }
4025
4026 ret = -EBUSY;
4027 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4028 goto err_unlock;
4029
4030 if (fc->sb_flags & SB_MANDLOCK)
4031 warn_mandlock();
4032
4033 newmount.mnt = vfs_create_mount(fc);
4034 if (IS_ERR(newmount.mnt)) {
4035 ret = PTR_ERR(newmount.mnt);
4036 goto err_unlock;
4037 }
4038 newmount.dentry = dget(fc->root);
4039 newmount.mnt->mnt_flags = mnt_flags;
4040
4041 /* We've done the mount bit - now move the file context into more or
4042 * less the same state as if we'd done an fspick(). We don't want to
4043 * do any memory allocation or anything like that at this point as we
4044 * don't want to have to handle any errors incurred.
4045 */
4046 vfs_clean_context(fc);
4047
4048 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4049 if (IS_ERR(ns)) {
4050 ret = PTR_ERR(ns);
4051 goto err_path;
4052 }
4053 mnt = real_mount(newmount.mnt);
4054 mnt->mnt_ns = ns;
4055 ns->root = mnt;
4056 ns->mounts = 1;
4057 list_add(&mnt->mnt_list, &ns->list);
4058 mntget(newmount.mnt);
4059
4060 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4061 * it, not just simply put it.
4062 */
4063 file = dentry_open(&newmount, O_PATH, fc->cred);
4064 if (IS_ERR(file)) {
4065 dissolve_on_fput(newmount.mnt);
4066 ret = PTR_ERR(file);
4067 goto err_path;
4068 }
4069 file->f_mode |= FMODE_NEED_UNMOUNT;
4070
4071 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4072 if (ret >= 0)
4073 fd_install(ret, file);
4074 else
4075 fput(file);
4076
4077 err_path:
4078 path_put(&newmount);
4079 err_unlock:
4080 mutex_unlock(&fc->uapi_mutex);
4081 err_fsfd:
4082 fdput(f);
4083 return ret;
4084 }
4085
4086 /*
4087 * Move a mount from one place to another. In combination with
4088 * fsopen()/fsmount() this is used to install a new mount and in combination
4089 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4090 * a mount subtree.
4091 *
4092 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4093 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4094 SYSCALL_DEFINE5(move_mount,
4095 int, from_dfd, const char __user *, from_pathname,
4096 int, to_dfd, const char __user *, to_pathname,
4097 unsigned int, flags)
4098 {
4099 struct path from_path, to_path;
4100 unsigned int lflags;
4101 int ret = 0;
4102
4103 if (!may_mount())
4104 return -EPERM;
4105
4106 if (flags & ~MOVE_MOUNT__MASK)
4107 return -EINVAL;
4108
4109 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4110 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4111 return -EINVAL;
4112
4113 /* If someone gives a pathname, they aren't permitted to move
4114 * from an fd that requires unmount as we can't get at the flag
4115 * to clear it afterwards.
4116 */
4117 lflags = 0;
4118 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4119 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4120 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4121
4122 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
4123 if (ret < 0)
4124 return ret;
4125
4126 lflags = 0;
4127 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4128 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4129 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
4130
4131 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
4132 if (ret < 0)
4133 goto out_from;
4134
4135 ret = security_move_mount(&from_path, &to_path);
4136 if (ret < 0)
4137 goto out_to;
4138
4139 if (flags & MOVE_MOUNT_SET_GROUP)
4140 ret = do_set_group(&from_path, &to_path);
4141 else
4142 ret = do_move_mount(&from_path, &to_path,
4143 (flags & MOVE_MOUNT_BENEATH));
4144
4145 out_to:
4146 path_put(&to_path);
4147 out_from:
4148 path_put(&from_path);
4149 return ret;
4150 }
4151
4152 /*
4153 * Return true if path is reachable from root
4154 *
4155 * namespace_sem or mount_lock is held
4156 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4157 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4158 const struct path *root)
4159 {
4160 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4161 dentry = mnt->mnt_mountpoint;
4162 mnt = mnt->mnt_parent;
4163 }
4164 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4165 }
4166
path_is_under(const struct path * path1,const struct path * path2)4167 bool path_is_under(const struct path *path1, const struct path *path2)
4168 {
4169 bool res;
4170 read_seqlock_excl(&mount_lock);
4171 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4172 read_sequnlock_excl(&mount_lock);
4173 return res;
4174 }
4175 EXPORT_SYMBOL(path_is_under);
4176
4177 /*
4178 * pivot_root Semantics:
4179 * Moves the root file system of the current process to the directory put_old,
4180 * makes new_root as the new root file system of the current process, and sets
4181 * root/cwd of all processes which had them on the current root to new_root.
4182 *
4183 * Restrictions:
4184 * The new_root and put_old must be directories, and must not be on the
4185 * same file system as the current process root. The put_old must be
4186 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4187 * pointed to by put_old must yield the same directory as new_root. No other
4188 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4189 *
4190 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4191 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4192 * in this situation.
4193 *
4194 * Notes:
4195 * - we don't move root/cwd if they are not at the root (reason: if something
4196 * cared enough to change them, it's probably wrong to force them elsewhere)
4197 * - it's okay to pick a root that isn't the root of a file system, e.g.
4198 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4199 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4200 * first.
4201 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4202 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4203 const char __user *, put_old)
4204 {
4205 struct path new, old, root;
4206 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4207 struct mountpoint *old_mp, *root_mp;
4208 int error;
4209
4210 if (!may_mount())
4211 return -EPERM;
4212
4213 error = user_path_at(AT_FDCWD, new_root,
4214 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4215 if (error)
4216 goto out0;
4217
4218 error = user_path_at(AT_FDCWD, put_old,
4219 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4220 if (error)
4221 goto out1;
4222
4223 error = security_sb_pivotroot(&old, &new);
4224 if (error)
4225 goto out2;
4226
4227 get_fs_root(current->fs, &root);
4228 old_mp = lock_mount(&old);
4229 error = PTR_ERR(old_mp);
4230 if (IS_ERR(old_mp))
4231 goto out3;
4232
4233 error = -EINVAL;
4234 new_mnt = real_mount(new.mnt);
4235 root_mnt = real_mount(root.mnt);
4236 old_mnt = real_mount(old.mnt);
4237 ex_parent = new_mnt->mnt_parent;
4238 root_parent = root_mnt->mnt_parent;
4239 if (IS_MNT_SHARED(old_mnt) ||
4240 IS_MNT_SHARED(ex_parent) ||
4241 IS_MNT_SHARED(root_parent))
4242 goto out4;
4243 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4244 goto out4;
4245 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4246 goto out4;
4247 error = -ENOENT;
4248 if (d_unlinked(new.dentry))
4249 goto out4;
4250 error = -EBUSY;
4251 if (new_mnt == root_mnt || old_mnt == root_mnt)
4252 goto out4; /* loop, on the same file system */
4253 error = -EINVAL;
4254 if (!path_mounted(&root))
4255 goto out4; /* not a mountpoint */
4256 if (!mnt_has_parent(root_mnt))
4257 goto out4; /* not attached */
4258 if (!path_mounted(&new))
4259 goto out4; /* not a mountpoint */
4260 if (!mnt_has_parent(new_mnt))
4261 goto out4; /* not attached */
4262 /* make sure we can reach put_old from new_root */
4263 if (!is_path_reachable(old_mnt, old.dentry, &new))
4264 goto out4;
4265 /* make certain new is below the root */
4266 if (!is_path_reachable(new_mnt, new.dentry, &root))
4267 goto out4;
4268 lock_mount_hash();
4269 umount_mnt(new_mnt);
4270 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4271 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4272 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4273 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4274 }
4275 /* mount old root on put_old */
4276 attach_mnt(root_mnt, old_mnt, old_mp, false);
4277 /* mount new_root on / */
4278 attach_mnt(new_mnt, root_parent, root_mp, false);
4279 mnt_add_count(root_parent, -1);
4280 touch_mnt_namespace(current->nsproxy->mnt_ns);
4281 /* A moved mount should not expire automatically */
4282 list_del_init(&new_mnt->mnt_expire);
4283 put_mountpoint(root_mp);
4284 unlock_mount_hash();
4285 chroot_fs_refs(&root, &new);
4286 error = 0;
4287 out4:
4288 unlock_mount(old_mp);
4289 if (!error)
4290 mntput_no_expire(ex_parent);
4291 out3:
4292 path_put(&root);
4293 out2:
4294 path_put(&old);
4295 out1:
4296 path_put(&new);
4297 out0:
4298 return error;
4299 }
4300
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4301 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4302 {
4303 unsigned int flags = mnt->mnt.mnt_flags;
4304
4305 /* flags to clear */
4306 flags &= ~kattr->attr_clr;
4307 /* flags to raise */
4308 flags |= kattr->attr_set;
4309
4310 return flags;
4311 }
4312
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4313 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4314 {
4315 struct vfsmount *m = &mnt->mnt;
4316 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4317
4318 if (!kattr->mnt_idmap)
4319 return 0;
4320
4321 /*
4322 * Creating an idmapped mount with the filesystem wide idmapping
4323 * doesn't make sense so block that. We don't allow mushy semantics.
4324 */
4325 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
4326 return -EINVAL;
4327
4328 /*
4329 * Once a mount has been idmapped we don't allow it to change its
4330 * mapping. It makes things simpler and callers can just create
4331 * another bind-mount they can idmap if they want to.
4332 */
4333 if (is_idmapped_mnt(m))
4334 return -EPERM;
4335
4336 /* The underlying filesystem doesn't support idmapped mounts yet. */
4337 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4338 return -EINVAL;
4339
4340 /* We're not controlling the superblock. */
4341 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4342 return -EPERM;
4343
4344 /* Mount has already been visible in the filesystem hierarchy. */
4345 if (!is_anon_ns(mnt->mnt_ns))
4346 return -EINVAL;
4347
4348 return 0;
4349 }
4350
4351 /**
4352 * mnt_allow_writers() - check whether the attribute change allows writers
4353 * @kattr: the new mount attributes
4354 * @mnt: the mount to which @kattr will be applied
4355 *
4356 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4357 *
4358 * Return: true if writers need to be held, false if not
4359 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4360 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4361 const struct mount *mnt)
4362 {
4363 return (!(kattr->attr_set & MNT_READONLY) ||
4364 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4365 !kattr->mnt_idmap;
4366 }
4367
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4368 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4369 {
4370 struct mount *m;
4371 int err;
4372
4373 for (m = mnt; m; m = next_mnt(m, mnt)) {
4374 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4375 err = -EPERM;
4376 break;
4377 }
4378
4379 err = can_idmap_mount(kattr, m);
4380 if (err)
4381 break;
4382
4383 if (!mnt_allow_writers(kattr, m)) {
4384 err = mnt_hold_writers(m);
4385 if (err)
4386 break;
4387 }
4388
4389 if (!kattr->recurse)
4390 return 0;
4391 }
4392
4393 if (err) {
4394 struct mount *p;
4395
4396 /*
4397 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4398 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4399 * mounts and needs to take care to include the first mount.
4400 */
4401 for (p = mnt; p; p = next_mnt(p, mnt)) {
4402 /* If we had to hold writers unblock them. */
4403 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4404 mnt_unhold_writers(p);
4405
4406 /*
4407 * We're done once the first mount we changed got
4408 * MNT_WRITE_HOLD unset.
4409 */
4410 if (p == m)
4411 break;
4412 }
4413 }
4414 return err;
4415 }
4416
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4417 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4418 {
4419 if (!kattr->mnt_idmap)
4420 return;
4421
4422 /*
4423 * Pairs with smp_load_acquire() in mnt_idmap().
4424 *
4425 * Since we only allow a mount to change the idmapping once and
4426 * verified this in can_idmap_mount() we know that the mount has
4427 * @nop_mnt_idmap attached to it. So there's no need to drop any
4428 * references.
4429 */
4430 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4431 }
4432
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4433 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4434 {
4435 struct mount *m;
4436
4437 for (m = mnt; m; m = next_mnt(m, mnt)) {
4438 unsigned int flags;
4439
4440 do_idmap_mount(kattr, m);
4441 flags = recalc_flags(kattr, m);
4442 WRITE_ONCE(m->mnt.mnt_flags, flags);
4443
4444 /* If we had to hold writers unblock them. */
4445 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4446 mnt_unhold_writers(m);
4447
4448 if (kattr->propagation)
4449 change_mnt_propagation(m, kattr->propagation);
4450 if (!kattr->recurse)
4451 break;
4452 }
4453 touch_mnt_namespace(mnt->mnt_ns);
4454 }
4455
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4456 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4457 {
4458 struct mount *mnt = real_mount(path->mnt);
4459 int err = 0;
4460
4461 if (!path_mounted(path))
4462 return -EINVAL;
4463
4464 if (kattr->mnt_userns) {
4465 struct mnt_idmap *mnt_idmap;
4466
4467 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4468 if (IS_ERR(mnt_idmap))
4469 return PTR_ERR(mnt_idmap);
4470 kattr->mnt_idmap = mnt_idmap;
4471 }
4472
4473 if (kattr->propagation) {
4474 /*
4475 * Only take namespace_lock() if we're actually changing
4476 * propagation.
4477 */
4478 namespace_lock();
4479 if (kattr->propagation == MS_SHARED) {
4480 err = invent_group_ids(mnt, kattr->recurse);
4481 if (err) {
4482 namespace_unlock();
4483 return err;
4484 }
4485 }
4486 }
4487
4488 err = -EINVAL;
4489 lock_mount_hash();
4490
4491 /* Ensure that this isn't anything purely vfs internal. */
4492 if (!is_mounted(&mnt->mnt))
4493 goto out;
4494
4495 /*
4496 * If this is an attached mount make sure it's located in the callers
4497 * mount namespace. If it's not don't let the caller interact with it.
4498 *
4499 * If this mount doesn't have a parent it's most often simply a
4500 * detached mount with an anonymous mount namespace. IOW, something
4501 * that's simply not attached yet. But there are apparently also users
4502 * that do change mount properties on the rootfs itself. That obviously
4503 * neither has a parent nor is it a detached mount so we cannot
4504 * unconditionally check for detached mounts.
4505 */
4506 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
4507 goto out;
4508
4509 /*
4510 * First, we get the mount tree in a shape where we can change mount
4511 * properties without failure. If we succeeded to do so we commit all
4512 * changes and if we failed we clean up.
4513 */
4514 err = mount_setattr_prepare(kattr, mnt);
4515 if (!err)
4516 mount_setattr_commit(kattr, mnt);
4517
4518 out:
4519 unlock_mount_hash();
4520
4521 if (kattr->propagation) {
4522 if (err)
4523 cleanup_group_ids(mnt, NULL);
4524 namespace_unlock();
4525 }
4526
4527 return err;
4528 }
4529
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4530 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4531 struct mount_kattr *kattr, unsigned int flags)
4532 {
4533 int err = 0;
4534 struct ns_common *ns;
4535 struct user_namespace *mnt_userns;
4536 struct fd f;
4537
4538 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4539 return 0;
4540
4541 /*
4542 * We currently do not support clearing an idmapped mount. If this ever
4543 * is a use-case we can revisit this but for now let's keep it simple
4544 * and not allow it.
4545 */
4546 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4547 return -EINVAL;
4548
4549 if (attr->userns_fd > INT_MAX)
4550 return -EINVAL;
4551
4552 f = fdget(attr->userns_fd);
4553 if (!f.file)
4554 return -EBADF;
4555
4556 if (!proc_ns_file(f.file)) {
4557 err = -EINVAL;
4558 goto out_fput;
4559 }
4560
4561 ns = get_proc_ns(file_inode(f.file));
4562 if (ns->ops->type != CLONE_NEWUSER) {
4563 err = -EINVAL;
4564 goto out_fput;
4565 }
4566
4567 /*
4568 * The initial idmapping cannot be used to create an idmapped
4569 * mount. We use the initial idmapping as an indicator of a mount
4570 * that is not idmapped. It can simply be passed into helpers that
4571 * are aware of idmapped mounts as a convenient shortcut. A user
4572 * can just create a dedicated identity mapping to achieve the same
4573 * result.
4574 */
4575 mnt_userns = container_of(ns, struct user_namespace, ns);
4576 if (mnt_userns == &init_user_ns) {
4577 err = -EPERM;
4578 goto out_fput;
4579 }
4580
4581 /* We're not controlling the target namespace. */
4582 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4583 err = -EPERM;
4584 goto out_fput;
4585 }
4586
4587 kattr->mnt_userns = get_user_ns(mnt_userns);
4588
4589 out_fput:
4590 fdput(f);
4591 return err;
4592 }
4593
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr,unsigned int flags)4594 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4595 struct mount_kattr *kattr, unsigned int flags)
4596 {
4597 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4598
4599 if (flags & AT_NO_AUTOMOUNT)
4600 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4601 if (flags & AT_SYMLINK_NOFOLLOW)
4602 lookup_flags &= ~LOOKUP_FOLLOW;
4603 if (flags & AT_EMPTY_PATH)
4604 lookup_flags |= LOOKUP_EMPTY;
4605
4606 *kattr = (struct mount_kattr) {
4607 .lookup_flags = lookup_flags,
4608 .recurse = !!(flags & AT_RECURSIVE),
4609 };
4610
4611 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4612 return -EINVAL;
4613 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4614 return -EINVAL;
4615 kattr->propagation = attr->propagation;
4616
4617 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4618 return -EINVAL;
4619
4620 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4621 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4622
4623 /*
4624 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4625 * users wanting to transition to a different atime setting cannot
4626 * simply specify the atime setting in @attr_set, but must also
4627 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4628 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4629 * @attr_clr and that @attr_set can't have any atime bits set if
4630 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4631 */
4632 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4633 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4634 return -EINVAL;
4635
4636 /*
4637 * Clear all previous time settings as they are mutually
4638 * exclusive.
4639 */
4640 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4641 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4642 case MOUNT_ATTR_RELATIME:
4643 kattr->attr_set |= MNT_RELATIME;
4644 break;
4645 case MOUNT_ATTR_NOATIME:
4646 kattr->attr_set |= MNT_NOATIME;
4647 break;
4648 case MOUNT_ATTR_STRICTATIME:
4649 break;
4650 default:
4651 return -EINVAL;
4652 }
4653 } else {
4654 if (attr->attr_set & MOUNT_ATTR__ATIME)
4655 return -EINVAL;
4656 }
4657
4658 return build_mount_idmapped(attr, usize, kattr, flags);
4659 }
4660
finish_mount_kattr(struct mount_kattr * kattr)4661 static void finish_mount_kattr(struct mount_kattr *kattr)
4662 {
4663 put_user_ns(kattr->mnt_userns);
4664 kattr->mnt_userns = NULL;
4665
4666 if (kattr->mnt_idmap)
4667 mnt_idmap_put(kattr->mnt_idmap);
4668 }
4669
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4670 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4671 unsigned int, flags, struct mount_attr __user *, uattr,
4672 size_t, usize)
4673 {
4674 int err;
4675 struct path target;
4676 struct mount_attr attr;
4677 struct mount_kattr kattr;
4678
4679 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4680
4681 if (flags & ~(AT_EMPTY_PATH |
4682 AT_RECURSIVE |
4683 AT_SYMLINK_NOFOLLOW |
4684 AT_NO_AUTOMOUNT))
4685 return -EINVAL;
4686
4687 if (unlikely(usize > PAGE_SIZE))
4688 return -E2BIG;
4689 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4690 return -EINVAL;
4691
4692 if (!may_mount())
4693 return -EPERM;
4694
4695 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4696 if (err)
4697 return err;
4698
4699 /* Don't bother walking through the mounts if this is a nop. */
4700 if (attr.attr_set == 0 &&
4701 attr.attr_clr == 0 &&
4702 attr.propagation == 0)
4703 return 0;
4704
4705 err = build_mount_kattr(&attr, usize, &kattr, flags);
4706 if (err)
4707 return err;
4708
4709 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4710 if (!err) {
4711 err = do_mount_setattr(&target, &kattr);
4712 path_put(&target);
4713 }
4714 finish_mount_kattr(&kattr);
4715 return err;
4716 }
4717
init_mount_tree(void)4718 static void __init init_mount_tree(void)
4719 {
4720 struct vfsmount *mnt;
4721 struct mount *m;
4722 struct mnt_namespace *ns;
4723 struct path root;
4724
4725 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4726 if (IS_ERR(mnt))
4727 panic("Can't create rootfs");
4728
4729 ns = alloc_mnt_ns(&init_user_ns, false);
4730 if (IS_ERR(ns))
4731 panic("Can't allocate initial namespace");
4732 m = real_mount(mnt);
4733 m->mnt_ns = ns;
4734 ns->root = m;
4735 ns->mounts = 1;
4736 list_add(&m->mnt_list, &ns->list);
4737 init_task.nsproxy->mnt_ns = ns;
4738 get_mnt_ns(ns);
4739
4740 root.mnt = mnt;
4741 root.dentry = mnt->mnt_root;
4742 mnt->mnt_flags |= MNT_LOCKED;
4743
4744 set_fs_pwd(current->fs, &root);
4745 set_fs_root(current->fs, &root);
4746 }
4747
mnt_init(void)4748 void __init mnt_init(void)
4749 {
4750 int err;
4751
4752 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4753 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4754
4755 mount_hashtable = alloc_large_system_hash("Mount-cache",
4756 sizeof(struct hlist_head),
4757 mhash_entries, 19,
4758 HASH_ZERO,
4759 &m_hash_shift, &m_hash_mask, 0, 0);
4760 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4761 sizeof(struct hlist_head),
4762 mphash_entries, 19,
4763 HASH_ZERO,
4764 &mp_hash_shift, &mp_hash_mask, 0, 0);
4765
4766 if (!mount_hashtable || !mountpoint_hashtable)
4767 panic("Failed to allocate mount hash table\n");
4768
4769 kernfs_init();
4770
4771 err = sysfs_init();
4772 if (err)
4773 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4774 __func__, err);
4775 fs_kobj = kobject_create_and_add("fs", NULL);
4776 if (!fs_kobj)
4777 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4778 shmem_init();
4779 init_rootfs();
4780 init_mount_tree();
4781 }
4782
put_mnt_ns(struct mnt_namespace * ns)4783 void put_mnt_ns(struct mnt_namespace *ns)
4784 {
4785 if (!refcount_dec_and_test(&ns->ns.count))
4786 return;
4787 drop_collected_mounts(&ns->root->mnt);
4788 free_mnt_ns(ns);
4789 }
4790
kern_mount(struct file_system_type * type)4791 struct vfsmount *kern_mount(struct file_system_type *type)
4792 {
4793 struct vfsmount *mnt;
4794 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4795 if (!IS_ERR(mnt)) {
4796 /*
4797 * it is a longterm mount, don't release mnt until
4798 * we unmount before file sys is unregistered
4799 */
4800 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4801 }
4802 return mnt;
4803 }
4804 EXPORT_SYMBOL_GPL(kern_mount);
4805
kern_unmount(struct vfsmount * mnt)4806 void kern_unmount(struct vfsmount *mnt)
4807 {
4808 /* release long term mount so mount point can be released */
4809 if (!IS_ERR(mnt)) {
4810 mnt_make_shortterm(mnt);
4811 synchronize_rcu(); /* yecchhh... */
4812 mntput(mnt);
4813 }
4814 }
4815 EXPORT_SYMBOL(kern_unmount);
4816
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)4817 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4818 {
4819 unsigned int i;
4820
4821 for (i = 0; i < num; i++)
4822 mnt_make_shortterm(mnt[i]);
4823 synchronize_rcu_expedited();
4824 for (i = 0; i < num; i++)
4825 mntput(mnt[i]);
4826 }
4827 EXPORT_SYMBOL(kern_unmount_array);
4828
our_mnt(struct vfsmount * mnt)4829 bool our_mnt(struct vfsmount *mnt)
4830 {
4831 return check_mnt(real_mount(mnt));
4832 }
4833
current_chrooted(void)4834 bool current_chrooted(void)
4835 {
4836 /* Does the current process have a non-standard root */
4837 struct path ns_root;
4838 struct path fs_root;
4839 bool chrooted;
4840
4841 /* Find the namespace root */
4842 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4843 ns_root.dentry = ns_root.mnt->mnt_root;
4844 path_get(&ns_root);
4845 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4846 ;
4847
4848 get_fs_root(current->fs, &fs_root);
4849
4850 chrooted = !path_equal(&fs_root, &ns_root);
4851
4852 path_put(&fs_root);
4853 path_put(&ns_root);
4854
4855 return chrooted;
4856 }
4857
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)4858 static bool mnt_already_visible(struct mnt_namespace *ns,
4859 const struct super_block *sb,
4860 int *new_mnt_flags)
4861 {
4862 int new_flags = *new_mnt_flags;
4863 struct mount *mnt;
4864 bool visible = false;
4865
4866 down_read(&namespace_sem);
4867 lock_ns_list(ns);
4868 list_for_each_entry(mnt, &ns->list, mnt_list) {
4869 struct mount *child;
4870 int mnt_flags;
4871
4872 if (mnt_is_cursor(mnt))
4873 continue;
4874
4875 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4876 continue;
4877
4878 /* This mount is not fully visible if it's root directory
4879 * is not the root directory of the filesystem.
4880 */
4881 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4882 continue;
4883
4884 /* A local view of the mount flags */
4885 mnt_flags = mnt->mnt.mnt_flags;
4886
4887 /* Don't miss readonly hidden in the superblock flags */
4888 if (sb_rdonly(mnt->mnt.mnt_sb))
4889 mnt_flags |= MNT_LOCK_READONLY;
4890
4891 /* Verify the mount flags are equal to or more permissive
4892 * than the proposed new mount.
4893 */
4894 if ((mnt_flags & MNT_LOCK_READONLY) &&
4895 !(new_flags & MNT_READONLY))
4896 continue;
4897 if ((mnt_flags & MNT_LOCK_ATIME) &&
4898 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4899 continue;
4900
4901 /* This mount is not fully visible if there are any
4902 * locked child mounts that cover anything except for
4903 * empty directories.
4904 */
4905 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4906 struct inode *inode = child->mnt_mountpoint->d_inode;
4907 /* Only worry about locked mounts */
4908 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4909 continue;
4910 /* Is the directory permanetly empty? */
4911 if (!is_empty_dir_inode(inode))
4912 goto next;
4913 }
4914 /* Preserve the locked attributes */
4915 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4916 MNT_LOCK_ATIME);
4917 visible = true;
4918 goto found;
4919 next: ;
4920 }
4921 found:
4922 unlock_ns_list(ns);
4923 up_read(&namespace_sem);
4924 return visible;
4925 }
4926
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)4927 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4928 {
4929 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4930 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4931 unsigned long s_iflags;
4932
4933 if (ns->user_ns == &init_user_ns)
4934 return false;
4935
4936 /* Can this filesystem be too revealing? */
4937 s_iflags = sb->s_iflags;
4938 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4939 return false;
4940
4941 if ((s_iflags & required_iflags) != required_iflags) {
4942 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4943 required_iflags);
4944 return true;
4945 }
4946
4947 return !mnt_already_visible(ns, sb, new_mnt_flags);
4948 }
4949
mnt_may_suid(struct vfsmount * mnt)4950 bool mnt_may_suid(struct vfsmount *mnt)
4951 {
4952 /*
4953 * Foreign mounts (accessed via fchdir or through /proc
4954 * symlinks) are always treated as if they are nosuid. This
4955 * prevents namespaces from trusting potentially unsafe
4956 * suid/sgid bits, file caps, or security labels that originate
4957 * in other namespaces.
4958 */
4959 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4960 current_in_userns(mnt->mnt_sb->s_user_ns);
4961 }
4962
mntns_get(struct task_struct * task)4963 static struct ns_common *mntns_get(struct task_struct *task)
4964 {
4965 struct ns_common *ns = NULL;
4966 struct nsproxy *nsproxy;
4967
4968 task_lock(task);
4969 nsproxy = task->nsproxy;
4970 if (nsproxy) {
4971 ns = &nsproxy->mnt_ns->ns;
4972 get_mnt_ns(to_mnt_ns(ns));
4973 }
4974 task_unlock(task);
4975
4976 return ns;
4977 }
4978
mntns_put(struct ns_common * ns)4979 static void mntns_put(struct ns_common *ns)
4980 {
4981 put_mnt_ns(to_mnt_ns(ns));
4982 }
4983
mntns_install(struct nsset * nsset,struct ns_common * ns)4984 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4985 {
4986 struct nsproxy *nsproxy = nsset->nsproxy;
4987 struct fs_struct *fs = nsset->fs;
4988 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4989 struct user_namespace *user_ns = nsset->cred->user_ns;
4990 struct path root;
4991 int err;
4992
4993 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4994 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4995 !ns_capable(user_ns, CAP_SYS_ADMIN))
4996 return -EPERM;
4997
4998 if (is_anon_ns(mnt_ns))
4999 return -EINVAL;
5000
5001 if (fs->users != 1)
5002 return -EINVAL;
5003
5004 get_mnt_ns(mnt_ns);
5005 old_mnt_ns = nsproxy->mnt_ns;
5006 nsproxy->mnt_ns = mnt_ns;
5007
5008 /* Find the root */
5009 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
5010 "/", LOOKUP_DOWN, &root);
5011 if (err) {
5012 /* revert to old namespace */
5013 nsproxy->mnt_ns = old_mnt_ns;
5014 put_mnt_ns(mnt_ns);
5015 return err;
5016 }
5017
5018 put_mnt_ns(old_mnt_ns);
5019
5020 /* Update the pwd and root */
5021 set_fs_pwd(fs, &root);
5022 set_fs_root(fs, &root);
5023
5024 path_put(&root);
5025 return 0;
5026 }
5027
mntns_owner(struct ns_common * ns)5028 static struct user_namespace *mntns_owner(struct ns_common *ns)
5029 {
5030 return to_mnt_ns(ns)->user_ns;
5031 }
5032
5033 const struct proc_ns_operations mntns_operations = {
5034 .name = "mnt",
5035 .type = CLONE_NEWNS,
5036 .get = mntns_get,
5037 .put = mntns_put,
5038 .install = mntns_install,
5039 .owner = mntns_owner,
5040 };
5041
5042 #ifdef CONFIG_SYSCTL
5043 static struct ctl_table fs_namespace_sysctls[] = {
5044 {
5045 .procname = "mount-max",
5046 .data = &sysctl_mount_max,
5047 .maxlen = sizeof(unsigned int),
5048 .mode = 0644,
5049 .proc_handler = proc_dointvec_minmax,
5050 .extra1 = SYSCTL_ONE,
5051 },
5052 { }
5053 };
5054
init_fs_namespace_sysctls(void)5055 static int __init init_fs_namespace_sysctls(void)
5056 {
5057 register_sysctl_init("fs", fs_namespace_sysctls);
5058 return 0;
5059 }
5060 fs_initcall(init_fs_namespace_sysctls);
5061
5062 #endif /* CONFIG_SYSCTL */
5063