1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
btrfs_should_fragment_free_space(struct btrfs_block_group * block_group)26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
btrfs_get_block_group(struct btrfs_block_group * cache)141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
btrfs_put_block_group(struct btrfs_block_group * cache)146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 kfree(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
176 /*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 struct btrfs_block_group *block_group)
181 {
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
184 struct btrfs_block_group *cache;
185 bool leftmost = true;
186
187 ASSERT(block_group->length != 0);
188
189 write_lock(&info->block_group_cache_lock);
190 p = &info->block_group_cache_tree.rb_root.rb_node;
191
192 while (*p) {
193 parent = *p;
194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 if (block_group->start < cache->start) {
196 p = &(*p)->rb_left;
197 } else if (block_group->start > cache->start) {
198 p = &(*p)->rb_right;
199 leftmost = false;
200 } else {
201 write_unlock(&info->block_group_cache_lock);
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
209
210 write_unlock(&info->block_group_cache_lock);
211
212 return 0;
213 }
214
215 /*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)219 static struct btrfs_block_group *block_group_cache_tree_search(
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 struct btrfs_block_group *cache, *ret = NULL;
223 struct rb_node *n;
224 u64 end, start;
225
226 read_lock(&info->block_group_cache_lock);
227 n = info->block_group_cache_tree.rb_root.rb_node;
228
229 while (n) {
230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 end = cache->start + cache->length - 1;
232 start = cache->start;
233
234 if (bytenr < start) {
235 if (!contains && (!ret || start < ret->start))
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
249 if (ret)
250 btrfs_get_block_group(ret);
251 read_unlock(&info->block_group_cache_lock);
252
253 return ret;
254 }
255
256 /*
257 * Return the block group that starts at or after bytenr
258 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 struct btrfs_fs_info *info, u64 bytenr)
261 {
262 return block_group_cache_tree_search(info, bytenr, 0);
263 }
264
265 /*
266 * Return the block group that contains the given bytenr
267 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr)
270 {
271 return block_group_cache_tree_search(info, bytenr, 1);
272 }
273
btrfs_next_block_group(struct btrfs_block_group * cache)274 struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
276 {
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
280 read_lock(&fs_info->block_group_cache_lock);
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
284 const u64 next_bytenr = cache->start + cache->length;
285
286 read_unlock(&fs_info->block_group_cache_lock);
287 btrfs_put_block_group(cache);
288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
297 read_unlock(&fs_info->block_group_cache_lock);
298 return cache;
299 }
300
301 /*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
318 {
319 struct btrfs_block_group *bg;
320 bool can_nocow = true;
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
324 return NULL;
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
328 can_nocow = false;
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
333 if (!can_nocow) {
334 btrfs_put_block_group(bg);
335 return NULL;
336 }
337
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
340 }
341
342 /*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
btrfs_dec_nocow_writers(struct btrfs_block_group * bg)353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg);
360 }
361
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369 {
370 struct btrfs_block_group *bg;
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377 }
378
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403
btrfs_get_caching_control(struct btrfs_block_group * cache)404 struct btrfs_caching_control *btrfs_get_caching_control(
405 struct btrfs_block_group *cache)
406 {
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419 }
420
btrfs_put_caching_control(struct btrfs_caching_control * ctl)421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425 }
426
427 /*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 u64 num_bytes)
442 {
443 struct btrfs_caching_control *caching_ctl;
444 int progress;
445
446 caching_ctl = btrfs_get_caching_control(cache);
447 if (!caching_ctl)
448 return;
449
450 /*
451 * We've already failed to allocate from this block group, so even if
452 * there's enough space in the block group it isn't contiguous enough to
453 * allow for an allocation, so wait for at least the next wakeup tick,
454 * or for the thing to be done.
455 */
456 progress = atomic_read(&caching_ctl->progress);
457
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
459 (progress != atomic_read(&caching_ctl->progress) &&
460 (cache->free_space_ctl->free_space >= num_bytes)));
461
462 btrfs_put_caching_control(caching_ctl);
463 }
464
btrfs_caching_ctl_wait_done(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)465 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
466 struct btrfs_caching_control *caching_ctl)
467 {
468 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
469 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
470 }
471
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)472 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
473 {
474 struct btrfs_caching_control *caching_ctl;
475 int ret;
476
477 caching_ctl = btrfs_get_caching_control(cache);
478 if (!caching_ctl)
479 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
480 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
481 btrfs_put_caching_control(caching_ctl);
482 return ret;
483 }
484
485 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)486 static void fragment_free_space(struct btrfs_block_group *block_group)
487 {
488 struct btrfs_fs_info *fs_info = block_group->fs_info;
489 u64 start = block_group->start;
490 u64 len = block_group->length;
491 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
492 fs_info->nodesize : fs_info->sectorsize;
493 u64 step = chunk << 1;
494
495 while (len > chunk) {
496 btrfs_remove_free_space(block_group, start, chunk);
497 start += step;
498 if (len < step)
499 len = 0;
500 else
501 len -= step;
502 }
503 }
504 #endif
505
506 /*
507 * Add a free space range to the in memory free space cache of a block group.
508 * This checks if the range contains super block locations and any such
509 * locations are not added to the free space cache.
510 *
511 * @block_group: The target block group.
512 * @start: Start offset of the range.
513 * @end: End offset of the range (exclusive).
514 * @total_added_ret: Optional pointer to return the total amount of space
515 * added to the block group's free space cache.
516 *
517 * Returns 0 on success or < 0 on error.
518 */
btrfs_add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end,u64 * total_added_ret)519 int btrfs_add_new_free_space(struct btrfs_block_group *block_group, u64 start,
520 u64 end, u64 *total_added_ret)
521 {
522 struct btrfs_fs_info *info = block_group->fs_info;
523 u64 extent_start, extent_end, size;
524 int ret;
525
526 if (total_added_ret)
527 *total_added_ret = 0;
528
529 while (start < end) {
530 if (!find_first_extent_bit(&info->excluded_extents, start,
531 &extent_start, &extent_end,
532 EXTENT_DIRTY | EXTENT_UPTODATE,
533 NULL))
534 break;
535
536 if (extent_start <= start) {
537 start = extent_end + 1;
538 } else if (extent_start > start && extent_start < end) {
539 size = extent_start - start;
540 ret = btrfs_add_free_space_async_trimmed(block_group,
541 start, size);
542 if (ret)
543 return ret;
544 if (total_added_ret)
545 *total_added_ret += size;
546 start = extent_end + 1;
547 } else {
548 break;
549 }
550 }
551
552 if (start < end) {
553 size = end - start;
554 ret = btrfs_add_free_space_async_trimmed(block_group, start,
555 size);
556 if (ret)
557 return ret;
558 if (total_added_ret)
559 *total_added_ret += size;
560 }
561
562 return 0;
563 }
564
565 /*
566 * Get an arbitrary extent item index / max_index through the block group
567 *
568 * @block_group the block group to sample from
569 * @index: the integral step through the block group to grab from
570 * @max_index: the granularity of the sampling
571 * @key: return value parameter for the item we find
572 *
573 * Pre-conditions on indices:
574 * 0 <= index <= max_index
575 * 0 < max_index
576 *
577 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
578 * error code on error.
579 */
sample_block_group_extent_item(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group,int index,int max_index,struct btrfs_key * found_key)580 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
581 struct btrfs_block_group *block_group,
582 int index, int max_index,
583 struct btrfs_key *found_key)
584 {
585 struct btrfs_fs_info *fs_info = block_group->fs_info;
586 struct btrfs_root *extent_root;
587 u64 search_offset;
588 u64 search_end = block_group->start + block_group->length;
589 struct btrfs_path *path;
590 struct btrfs_key search_key;
591 int ret = 0;
592
593 ASSERT(index >= 0);
594 ASSERT(index <= max_index);
595 ASSERT(max_index > 0);
596 lockdep_assert_held(&caching_ctl->mutex);
597 lockdep_assert_held_read(&fs_info->commit_root_sem);
598
599 path = btrfs_alloc_path();
600 if (!path)
601 return -ENOMEM;
602
603 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
604 BTRFS_SUPER_INFO_OFFSET));
605
606 path->skip_locking = 1;
607 path->search_commit_root = 1;
608 path->reada = READA_FORWARD;
609
610 search_offset = index * div_u64(block_group->length, max_index);
611 search_key.objectid = block_group->start + search_offset;
612 search_key.type = BTRFS_EXTENT_ITEM_KEY;
613 search_key.offset = 0;
614
615 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
616 /* Success; sampled an extent item in the block group */
617 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
618 found_key->objectid >= block_group->start &&
619 found_key->objectid + found_key->offset <= search_end)
620 break;
621
622 /* We can't possibly find a valid extent item anymore */
623 if (found_key->objectid >= search_end) {
624 ret = 1;
625 break;
626 }
627 }
628
629 lockdep_assert_held(&caching_ctl->mutex);
630 lockdep_assert_held_read(&fs_info->commit_root_sem);
631 btrfs_free_path(path);
632 return ret;
633 }
634
635 /*
636 * Best effort attempt to compute a block group's size class while caching it.
637 *
638 * @block_group: the block group we are caching
639 *
640 * We cannot infer the size class while adding free space extents, because that
641 * logic doesn't care about contiguous file extents (it doesn't differentiate
642 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
643 * file extent items. Reading all of them is quite wasteful, because usually
644 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
645 * them at even steps through the block group and pick the smallest size class
646 * we see. Since size class is best effort, and not guaranteed in general,
647 * inaccuracy is acceptable.
648 *
649 * To be more explicit about why this algorithm makes sense:
650 *
651 * If we are caching in a block group from disk, then there are three major cases
652 * to consider:
653 * 1. the block group is well behaved and all extents in it are the same size
654 * class.
655 * 2. the block group is mostly one size class with rare exceptions for last
656 * ditch allocations
657 * 3. the block group was populated before size classes and can have a totally
658 * arbitrary mix of size classes.
659 *
660 * In case 1, looking at any extent in the block group will yield the correct
661 * result. For the mixed cases, taking the minimum size class seems like a good
662 * approximation, since gaps from frees will be usable to the size class. For
663 * 2., a small handful of file extents is likely to yield the right answer. For
664 * 3, we can either read every file extent, or admit that this is best effort
665 * anyway and try to stay fast.
666 *
667 * Returns: 0 on success, negative error code on error.
668 */
load_block_group_size_class(struct btrfs_caching_control * caching_ctl,struct btrfs_block_group * block_group)669 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
670 struct btrfs_block_group *block_group)
671 {
672 struct btrfs_fs_info *fs_info = block_group->fs_info;
673 struct btrfs_key key;
674 int i;
675 u64 min_size = block_group->length;
676 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
677 int ret;
678
679 if (!btrfs_block_group_should_use_size_class(block_group))
680 return 0;
681
682 lockdep_assert_held(&caching_ctl->mutex);
683 lockdep_assert_held_read(&fs_info->commit_root_sem);
684 for (i = 0; i < 5; ++i) {
685 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
686 if (ret < 0)
687 goto out;
688 if (ret > 0)
689 continue;
690 min_size = min_t(u64, min_size, key.offset);
691 size_class = btrfs_calc_block_group_size_class(min_size);
692 }
693 if (size_class != BTRFS_BG_SZ_NONE) {
694 spin_lock(&block_group->lock);
695 block_group->size_class = size_class;
696 spin_unlock(&block_group->lock);
697 }
698 out:
699 return ret;
700 }
701
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)702 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
703 {
704 struct btrfs_block_group *block_group = caching_ctl->block_group;
705 struct btrfs_fs_info *fs_info = block_group->fs_info;
706 struct btrfs_root *extent_root;
707 struct btrfs_path *path;
708 struct extent_buffer *leaf;
709 struct btrfs_key key;
710 u64 total_found = 0;
711 u64 last = 0;
712 u32 nritems;
713 int ret;
714 bool wakeup = true;
715
716 path = btrfs_alloc_path();
717 if (!path)
718 return -ENOMEM;
719
720 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
721 extent_root = btrfs_extent_root(fs_info, last);
722
723 #ifdef CONFIG_BTRFS_DEBUG
724 /*
725 * If we're fragmenting we don't want to make anybody think we can
726 * allocate from this block group until we've had a chance to fragment
727 * the free space.
728 */
729 if (btrfs_should_fragment_free_space(block_group))
730 wakeup = false;
731 #endif
732 /*
733 * We don't want to deadlock with somebody trying to allocate a new
734 * extent for the extent root while also trying to search the extent
735 * root to add free space. So we skip locking and search the commit
736 * root, since its read-only
737 */
738 path->skip_locking = 1;
739 path->search_commit_root = 1;
740 path->reada = READA_FORWARD;
741
742 key.objectid = last;
743 key.offset = 0;
744 key.type = BTRFS_EXTENT_ITEM_KEY;
745
746 next:
747 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
748 if (ret < 0)
749 goto out;
750
751 leaf = path->nodes[0];
752 nritems = btrfs_header_nritems(leaf);
753
754 while (1) {
755 if (btrfs_fs_closing(fs_info) > 1) {
756 last = (u64)-1;
757 break;
758 }
759
760 if (path->slots[0] < nritems) {
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762 } else {
763 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
764 if (ret)
765 break;
766
767 if (need_resched() ||
768 rwsem_is_contended(&fs_info->commit_root_sem)) {
769 btrfs_release_path(path);
770 up_read(&fs_info->commit_root_sem);
771 mutex_unlock(&caching_ctl->mutex);
772 cond_resched();
773 mutex_lock(&caching_ctl->mutex);
774 down_read(&fs_info->commit_root_sem);
775 goto next;
776 }
777
778 ret = btrfs_next_leaf(extent_root, path);
779 if (ret < 0)
780 goto out;
781 if (ret)
782 break;
783 leaf = path->nodes[0];
784 nritems = btrfs_header_nritems(leaf);
785 continue;
786 }
787
788 if (key.objectid < last) {
789 key.objectid = last;
790 key.offset = 0;
791 key.type = BTRFS_EXTENT_ITEM_KEY;
792 btrfs_release_path(path);
793 goto next;
794 }
795
796 if (key.objectid < block_group->start) {
797 path->slots[0]++;
798 continue;
799 }
800
801 if (key.objectid >= block_group->start + block_group->length)
802 break;
803
804 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
805 key.type == BTRFS_METADATA_ITEM_KEY) {
806 u64 space_added;
807
808 ret = btrfs_add_new_free_space(block_group, last,
809 key.objectid, &space_added);
810 if (ret)
811 goto out;
812 total_found += space_added;
813 if (key.type == BTRFS_METADATA_ITEM_KEY)
814 last = key.objectid +
815 fs_info->nodesize;
816 else
817 last = key.objectid + key.offset;
818
819 if (total_found > CACHING_CTL_WAKE_UP) {
820 total_found = 0;
821 if (wakeup) {
822 atomic_inc(&caching_ctl->progress);
823 wake_up(&caching_ctl->wait);
824 }
825 }
826 }
827 path->slots[0]++;
828 }
829
830 ret = btrfs_add_new_free_space(block_group, last,
831 block_group->start + block_group->length,
832 NULL);
833 out:
834 btrfs_free_path(path);
835 return ret;
836 }
837
btrfs_free_excluded_extents(const struct btrfs_block_group * bg)838 static inline void btrfs_free_excluded_extents(const struct btrfs_block_group *bg)
839 {
840 clear_extent_bits(&bg->fs_info->excluded_extents, bg->start,
841 bg->start + bg->length - 1, EXTENT_UPTODATE);
842 }
843
caching_thread(struct btrfs_work * work)844 static noinline void caching_thread(struct btrfs_work *work)
845 {
846 struct btrfs_block_group *block_group;
847 struct btrfs_fs_info *fs_info;
848 struct btrfs_caching_control *caching_ctl;
849 int ret;
850
851 caching_ctl = container_of(work, struct btrfs_caching_control, work);
852 block_group = caching_ctl->block_group;
853 fs_info = block_group->fs_info;
854
855 mutex_lock(&caching_ctl->mutex);
856 down_read(&fs_info->commit_root_sem);
857
858 load_block_group_size_class(caching_ctl, block_group);
859 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
860 ret = load_free_space_cache(block_group);
861 if (ret == 1) {
862 ret = 0;
863 goto done;
864 }
865
866 /*
867 * We failed to load the space cache, set ourselves to
868 * CACHE_STARTED and carry on.
869 */
870 spin_lock(&block_group->lock);
871 block_group->cached = BTRFS_CACHE_STARTED;
872 spin_unlock(&block_group->lock);
873 wake_up(&caching_ctl->wait);
874 }
875
876 /*
877 * If we are in the transaction that populated the free space tree we
878 * can't actually cache from the free space tree as our commit root and
879 * real root are the same, so we could change the contents of the blocks
880 * while caching. Instead do the slow caching in this case, and after
881 * the transaction has committed we will be safe.
882 */
883 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
884 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
885 ret = load_free_space_tree(caching_ctl);
886 else
887 ret = load_extent_tree_free(caching_ctl);
888 done:
889 spin_lock(&block_group->lock);
890 block_group->caching_ctl = NULL;
891 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
892 spin_unlock(&block_group->lock);
893
894 #ifdef CONFIG_BTRFS_DEBUG
895 if (btrfs_should_fragment_free_space(block_group)) {
896 u64 bytes_used;
897
898 spin_lock(&block_group->space_info->lock);
899 spin_lock(&block_group->lock);
900 bytes_used = block_group->length - block_group->used;
901 block_group->space_info->bytes_used += bytes_used >> 1;
902 spin_unlock(&block_group->lock);
903 spin_unlock(&block_group->space_info->lock);
904 fragment_free_space(block_group);
905 }
906 #endif
907
908 up_read(&fs_info->commit_root_sem);
909 btrfs_free_excluded_extents(block_group);
910 mutex_unlock(&caching_ctl->mutex);
911
912 wake_up(&caching_ctl->wait);
913
914 btrfs_put_caching_control(caching_ctl);
915 btrfs_put_block_group(block_group);
916 }
917
btrfs_cache_block_group(struct btrfs_block_group * cache,bool wait)918 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
919 {
920 struct btrfs_fs_info *fs_info = cache->fs_info;
921 struct btrfs_caching_control *caching_ctl = NULL;
922 int ret = 0;
923
924 /* Allocator for zoned filesystems does not use the cache at all */
925 if (btrfs_is_zoned(fs_info))
926 return 0;
927
928 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
929 if (!caching_ctl)
930 return -ENOMEM;
931
932 INIT_LIST_HEAD(&caching_ctl->list);
933 mutex_init(&caching_ctl->mutex);
934 init_waitqueue_head(&caching_ctl->wait);
935 caching_ctl->block_group = cache;
936 refcount_set(&caching_ctl->count, 2);
937 atomic_set(&caching_ctl->progress, 0);
938 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
939
940 spin_lock(&cache->lock);
941 if (cache->cached != BTRFS_CACHE_NO) {
942 kfree(caching_ctl);
943
944 caching_ctl = cache->caching_ctl;
945 if (caching_ctl)
946 refcount_inc(&caching_ctl->count);
947 spin_unlock(&cache->lock);
948 goto out;
949 }
950 WARN_ON(cache->caching_ctl);
951 cache->caching_ctl = caching_ctl;
952 cache->cached = BTRFS_CACHE_STARTED;
953 spin_unlock(&cache->lock);
954
955 write_lock(&fs_info->block_group_cache_lock);
956 refcount_inc(&caching_ctl->count);
957 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
958 write_unlock(&fs_info->block_group_cache_lock);
959
960 btrfs_get_block_group(cache);
961
962 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
963 out:
964 if (wait && caching_ctl)
965 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
966 if (caching_ctl)
967 btrfs_put_caching_control(caching_ctl);
968
969 return ret;
970 }
971
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)972 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
973 {
974 u64 extra_flags = chunk_to_extended(flags) &
975 BTRFS_EXTENDED_PROFILE_MASK;
976
977 write_seqlock(&fs_info->profiles_lock);
978 if (flags & BTRFS_BLOCK_GROUP_DATA)
979 fs_info->avail_data_alloc_bits &= ~extra_flags;
980 if (flags & BTRFS_BLOCK_GROUP_METADATA)
981 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
982 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
983 fs_info->avail_system_alloc_bits &= ~extra_flags;
984 write_sequnlock(&fs_info->profiles_lock);
985 }
986
987 /*
988 * Clear incompat bits for the following feature(s):
989 *
990 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
991 * in the whole filesystem
992 *
993 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
994 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)995 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
996 {
997 bool found_raid56 = false;
998 bool found_raid1c34 = false;
999
1000 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
1001 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
1002 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
1003 struct list_head *head = &fs_info->space_info;
1004 struct btrfs_space_info *sinfo;
1005
1006 list_for_each_entry_rcu(sinfo, head, list) {
1007 down_read(&sinfo->groups_sem);
1008 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
1009 found_raid56 = true;
1010 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
1011 found_raid56 = true;
1012 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
1013 found_raid1c34 = true;
1014 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
1015 found_raid1c34 = true;
1016 up_read(&sinfo->groups_sem);
1017 }
1018 if (!found_raid56)
1019 btrfs_clear_fs_incompat(fs_info, RAID56);
1020 if (!found_raid1c34)
1021 btrfs_clear_fs_incompat(fs_info, RAID1C34);
1022 }
1023 }
1024
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)1025 static int remove_block_group_item(struct btrfs_trans_handle *trans,
1026 struct btrfs_path *path,
1027 struct btrfs_block_group *block_group)
1028 {
1029 struct btrfs_fs_info *fs_info = trans->fs_info;
1030 struct btrfs_root *root;
1031 struct btrfs_key key;
1032 int ret;
1033
1034 root = btrfs_block_group_root(fs_info);
1035 key.objectid = block_group->start;
1036 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1037 key.offset = block_group->length;
1038
1039 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1040 if (ret > 0)
1041 ret = -ENOENT;
1042 if (ret < 0)
1043 return ret;
1044
1045 ret = btrfs_del_item(trans, root, path);
1046 return ret;
1047 }
1048
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)1049 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1050 u64 group_start, struct extent_map *em)
1051 {
1052 struct btrfs_fs_info *fs_info = trans->fs_info;
1053 struct btrfs_path *path;
1054 struct btrfs_block_group *block_group;
1055 struct btrfs_free_cluster *cluster;
1056 struct inode *inode;
1057 struct kobject *kobj = NULL;
1058 int ret;
1059 int index;
1060 int factor;
1061 struct btrfs_caching_control *caching_ctl = NULL;
1062 bool remove_em;
1063 bool remove_rsv = false;
1064
1065 block_group = btrfs_lookup_block_group(fs_info, group_start);
1066 BUG_ON(!block_group);
1067 BUG_ON(!block_group->ro);
1068
1069 trace_btrfs_remove_block_group(block_group);
1070 /*
1071 * Free the reserved super bytes from this block group before
1072 * remove it.
1073 */
1074 btrfs_free_excluded_extents(block_group);
1075 btrfs_free_ref_tree_range(fs_info, block_group->start,
1076 block_group->length);
1077
1078 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1079 factor = btrfs_bg_type_to_factor(block_group->flags);
1080
1081 /* make sure this block group isn't part of an allocation cluster */
1082 cluster = &fs_info->data_alloc_cluster;
1083 spin_lock(&cluster->refill_lock);
1084 btrfs_return_cluster_to_free_space(block_group, cluster);
1085 spin_unlock(&cluster->refill_lock);
1086
1087 /*
1088 * make sure this block group isn't part of a metadata
1089 * allocation cluster
1090 */
1091 cluster = &fs_info->meta_alloc_cluster;
1092 spin_lock(&cluster->refill_lock);
1093 btrfs_return_cluster_to_free_space(block_group, cluster);
1094 spin_unlock(&cluster->refill_lock);
1095
1096 btrfs_clear_treelog_bg(block_group);
1097 btrfs_clear_data_reloc_bg(block_group);
1098
1099 path = btrfs_alloc_path();
1100 if (!path) {
1101 ret = -ENOMEM;
1102 goto out;
1103 }
1104
1105 /*
1106 * get the inode first so any iput calls done for the io_list
1107 * aren't the final iput (no unlinks allowed now)
1108 */
1109 inode = lookup_free_space_inode(block_group, path);
1110
1111 mutex_lock(&trans->transaction->cache_write_mutex);
1112 /*
1113 * Make sure our free space cache IO is done before removing the
1114 * free space inode
1115 */
1116 spin_lock(&trans->transaction->dirty_bgs_lock);
1117 if (!list_empty(&block_group->io_list)) {
1118 list_del_init(&block_group->io_list);
1119
1120 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1121
1122 spin_unlock(&trans->transaction->dirty_bgs_lock);
1123 btrfs_wait_cache_io(trans, block_group, path);
1124 btrfs_put_block_group(block_group);
1125 spin_lock(&trans->transaction->dirty_bgs_lock);
1126 }
1127
1128 if (!list_empty(&block_group->dirty_list)) {
1129 list_del_init(&block_group->dirty_list);
1130 remove_rsv = true;
1131 btrfs_put_block_group(block_group);
1132 }
1133 spin_unlock(&trans->transaction->dirty_bgs_lock);
1134 mutex_unlock(&trans->transaction->cache_write_mutex);
1135
1136 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1137 if (ret)
1138 goto out;
1139
1140 write_lock(&fs_info->block_group_cache_lock);
1141 rb_erase_cached(&block_group->cache_node,
1142 &fs_info->block_group_cache_tree);
1143 RB_CLEAR_NODE(&block_group->cache_node);
1144
1145 /* Once for the block groups rbtree */
1146 btrfs_put_block_group(block_group);
1147
1148 write_unlock(&fs_info->block_group_cache_lock);
1149
1150 down_write(&block_group->space_info->groups_sem);
1151 /*
1152 * we must use list_del_init so people can check to see if they
1153 * are still on the list after taking the semaphore
1154 */
1155 list_del_init(&block_group->list);
1156 if (list_empty(&block_group->space_info->block_groups[index])) {
1157 kobj = block_group->space_info->block_group_kobjs[index];
1158 block_group->space_info->block_group_kobjs[index] = NULL;
1159 clear_avail_alloc_bits(fs_info, block_group->flags);
1160 }
1161 up_write(&block_group->space_info->groups_sem);
1162 clear_incompat_bg_bits(fs_info, block_group->flags);
1163 if (kobj) {
1164 kobject_del(kobj);
1165 kobject_put(kobj);
1166 }
1167
1168 if (block_group->cached == BTRFS_CACHE_STARTED)
1169 btrfs_wait_block_group_cache_done(block_group);
1170
1171 write_lock(&fs_info->block_group_cache_lock);
1172 caching_ctl = btrfs_get_caching_control(block_group);
1173 if (!caching_ctl) {
1174 struct btrfs_caching_control *ctl;
1175
1176 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1177 if (ctl->block_group == block_group) {
1178 caching_ctl = ctl;
1179 refcount_inc(&caching_ctl->count);
1180 break;
1181 }
1182 }
1183 }
1184 if (caching_ctl)
1185 list_del_init(&caching_ctl->list);
1186 write_unlock(&fs_info->block_group_cache_lock);
1187
1188 if (caching_ctl) {
1189 /* Once for the caching bgs list and once for us. */
1190 btrfs_put_caching_control(caching_ctl);
1191 btrfs_put_caching_control(caching_ctl);
1192 }
1193
1194 spin_lock(&trans->transaction->dirty_bgs_lock);
1195 WARN_ON(!list_empty(&block_group->dirty_list));
1196 WARN_ON(!list_empty(&block_group->io_list));
1197 spin_unlock(&trans->transaction->dirty_bgs_lock);
1198
1199 btrfs_remove_free_space_cache(block_group);
1200
1201 spin_lock(&block_group->space_info->lock);
1202 list_del_init(&block_group->ro_list);
1203
1204 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1205 WARN_ON(block_group->space_info->total_bytes
1206 < block_group->length);
1207 WARN_ON(block_group->space_info->bytes_readonly
1208 < block_group->length - block_group->zone_unusable);
1209 WARN_ON(block_group->space_info->bytes_zone_unusable
1210 < block_group->zone_unusable);
1211 WARN_ON(block_group->space_info->disk_total
1212 < block_group->length * factor);
1213 }
1214 block_group->space_info->total_bytes -= block_group->length;
1215 block_group->space_info->bytes_readonly -=
1216 (block_group->length - block_group->zone_unusable);
1217 btrfs_space_info_update_bytes_zone_unusable(fs_info, block_group->space_info,
1218 -block_group->zone_unusable);
1219 block_group->space_info->disk_total -= block_group->length * factor;
1220
1221 spin_unlock(&block_group->space_info->lock);
1222
1223 /*
1224 * Remove the free space for the block group from the free space tree
1225 * and the block group's item from the extent tree before marking the
1226 * block group as removed. This is to prevent races with tasks that
1227 * freeze and unfreeze a block group, this task and another task
1228 * allocating a new block group - the unfreeze task ends up removing
1229 * the block group's extent map before the task calling this function
1230 * deletes the block group item from the extent tree, allowing for
1231 * another task to attempt to create another block group with the same
1232 * item key (and failing with -EEXIST and a transaction abort).
1233 */
1234 ret = remove_block_group_free_space(trans, block_group);
1235 if (ret)
1236 goto out;
1237
1238 ret = remove_block_group_item(trans, path, block_group);
1239 if (ret < 0)
1240 goto out;
1241
1242 spin_lock(&block_group->lock);
1243 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1244
1245 /*
1246 * At this point trimming or scrub can't start on this block group,
1247 * because we removed the block group from the rbtree
1248 * fs_info->block_group_cache_tree so no one can't find it anymore and
1249 * even if someone already got this block group before we removed it
1250 * from the rbtree, they have already incremented block_group->frozen -
1251 * if they didn't, for the trimming case they won't find any free space
1252 * entries because we already removed them all when we called
1253 * btrfs_remove_free_space_cache().
1254 *
1255 * And we must not remove the extent map from the fs_info->mapping_tree
1256 * to prevent the same logical address range and physical device space
1257 * ranges from being reused for a new block group. This is needed to
1258 * avoid races with trimming and scrub.
1259 *
1260 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1261 * completely transactionless, so while it is trimming a range the
1262 * currently running transaction might finish and a new one start,
1263 * allowing for new block groups to be created that can reuse the same
1264 * physical device locations unless we take this special care.
1265 *
1266 * There may also be an implicit trim operation if the file system
1267 * is mounted with -odiscard. The same protections must remain
1268 * in place until the extents have been discarded completely when
1269 * the transaction commit has completed.
1270 */
1271 remove_em = (atomic_read(&block_group->frozen) == 0);
1272 spin_unlock(&block_group->lock);
1273
1274 if (remove_em) {
1275 struct extent_map_tree *em_tree;
1276
1277 em_tree = &fs_info->mapping_tree;
1278 write_lock(&em_tree->lock);
1279 remove_extent_mapping(em_tree, em);
1280 write_unlock(&em_tree->lock);
1281 /* once for the tree */
1282 free_extent_map(em);
1283 }
1284
1285 out:
1286 /* Once for the lookup reference */
1287 btrfs_put_block_group(block_group);
1288 if (remove_rsv)
1289 btrfs_delayed_refs_rsv_release(fs_info, 1);
1290 btrfs_free_path(path);
1291 return ret;
1292 }
1293
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1294 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1295 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1296 {
1297 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1298 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1299 struct extent_map *em;
1300 struct map_lookup *map;
1301 unsigned int num_items;
1302
1303 read_lock(&em_tree->lock);
1304 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1305 read_unlock(&em_tree->lock);
1306 ASSERT(em && em->start == chunk_offset);
1307
1308 /*
1309 * We need to reserve 3 + N units from the metadata space info in order
1310 * to remove a block group (done at btrfs_remove_chunk() and at
1311 * btrfs_remove_block_group()), which are used for:
1312 *
1313 * 1 unit for adding the free space inode's orphan (located in the tree
1314 * of tree roots).
1315 * 1 unit for deleting the block group item (located in the extent
1316 * tree).
1317 * 1 unit for deleting the free space item (located in tree of tree
1318 * roots).
1319 * N units for deleting N device extent items corresponding to each
1320 * stripe (located in the device tree).
1321 *
1322 * In order to remove a block group we also need to reserve units in the
1323 * system space info in order to update the chunk tree (update one or
1324 * more device items and remove one chunk item), but this is done at
1325 * btrfs_remove_chunk() through a call to check_system_chunk().
1326 */
1327 map = em->map_lookup;
1328 num_items = 3 + map->num_stripes;
1329 free_extent_map(em);
1330
1331 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1332 }
1333
1334 /*
1335 * Mark block group @cache read-only, so later write won't happen to block
1336 * group @cache.
1337 *
1338 * If @force is not set, this function will only mark the block group readonly
1339 * if we have enough free space (1M) in other metadata/system block groups.
1340 * If @force is not set, this function will mark the block group readonly
1341 * without checking free space.
1342 *
1343 * NOTE: This function doesn't care if other block groups can contain all the
1344 * data in this block group. That check should be done by relocation routine,
1345 * not this function.
1346 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1347 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1348 {
1349 struct btrfs_space_info *sinfo = cache->space_info;
1350 u64 num_bytes;
1351 int ret = -ENOSPC;
1352
1353 spin_lock(&sinfo->lock);
1354 spin_lock(&cache->lock);
1355
1356 if (cache->swap_extents) {
1357 ret = -ETXTBSY;
1358 goto out;
1359 }
1360
1361 if (cache->ro) {
1362 cache->ro++;
1363 ret = 0;
1364 goto out;
1365 }
1366
1367 num_bytes = cache->length - cache->reserved - cache->pinned -
1368 cache->bytes_super - cache->zone_unusable - cache->used;
1369
1370 /*
1371 * Data never overcommits, even in mixed mode, so do just the straight
1372 * check of left over space in how much we have allocated.
1373 */
1374 if (force) {
1375 ret = 0;
1376 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1377 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1378
1379 /*
1380 * Here we make sure if we mark this bg RO, we still have enough
1381 * free space as buffer.
1382 */
1383 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1384 ret = 0;
1385 } else {
1386 /*
1387 * We overcommit metadata, so we need to do the
1388 * btrfs_can_overcommit check here, and we need to pass in
1389 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1390 * leeway to allow us to mark this block group as read only.
1391 */
1392 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1393 BTRFS_RESERVE_NO_FLUSH))
1394 ret = 0;
1395 }
1396
1397 if (!ret) {
1398 sinfo->bytes_readonly += num_bytes;
1399 if (btrfs_is_zoned(cache->fs_info)) {
1400 /* Migrate zone_unusable bytes to readonly */
1401 sinfo->bytes_readonly += cache->zone_unusable;
1402 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
1403 -cache->zone_unusable);
1404 cache->zone_unusable = 0;
1405 }
1406 cache->ro++;
1407 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1408 }
1409 out:
1410 spin_unlock(&cache->lock);
1411 spin_unlock(&sinfo->lock);
1412 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1413 btrfs_info(cache->fs_info,
1414 "unable to make block group %llu ro", cache->start);
1415 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1416 }
1417 return ret;
1418 }
1419
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1420 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1421 struct btrfs_block_group *bg)
1422 {
1423 struct btrfs_fs_info *fs_info = bg->fs_info;
1424 struct btrfs_transaction *prev_trans = NULL;
1425 const u64 start = bg->start;
1426 const u64 end = start + bg->length - 1;
1427 int ret;
1428
1429 spin_lock(&fs_info->trans_lock);
1430 if (trans->transaction->list.prev != &fs_info->trans_list) {
1431 prev_trans = list_last_entry(&trans->transaction->list,
1432 struct btrfs_transaction, list);
1433 refcount_inc(&prev_trans->use_count);
1434 }
1435 spin_unlock(&fs_info->trans_lock);
1436
1437 /*
1438 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1439 * btrfs_finish_extent_commit(). If we are at transaction N, another
1440 * task might be running finish_extent_commit() for the previous
1441 * transaction N - 1, and have seen a range belonging to the block
1442 * group in pinned_extents before we were able to clear the whole block
1443 * group range from pinned_extents. This means that task can lookup for
1444 * the block group after we unpinned it from pinned_extents and removed
1445 * it, leading to a BUG_ON() at unpin_extent_range().
1446 */
1447 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1448 if (prev_trans) {
1449 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1450 EXTENT_DIRTY);
1451 if (ret)
1452 goto out;
1453 }
1454
1455 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1456 EXTENT_DIRTY);
1457 out:
1458 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1459 if (prev_trans)
1460 btrfs_put_transaction(prev_trans);
1461
1462 return ret == 0;
1463 }
1464
1465 /*
1466 * Process the unused_bgs list and remove any that don't have any allocated
1467 * space inside of them.
1468 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1469 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1470 {
1471 LIST_HEAD(retry_list);
1472 struct btrfs_block_group *block_group;
1473 struct btrfs_space_info *space_info;
1474 struct btrfs_trans_handle *trans;
1475 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1476 int ret = 0;
1477
1478 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1479 return;
1480
1481 if (btrfs_fs_closing(fs_info))
1482 return;
1483
1484 /*
1485 * Long running balances can keep us blocked here for eternity, so
1486 * simply skip deletion if we're unable to get the mutex.
1487 */
1488 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1489 return;
1490
1491 spin_lock(&fs_info->unused_bgs_lock);
1492 while (!list_empty(&fs_info->unused_bgs)) {
1493 u64 used;
1494 int trimming;
1495
1496 block_group = list_first_entry(&fs_info->unused_bgs,
1497 struct btrfs_block_group,
1498 bg_list);
1499 list_del_init(&block_group->bg_list);
1500
1501 space_info = block_group->space_info;
1502
1503 if (ret || btrfs_mixed_space_info(space_info)) {
1504 btrfs_put_block_group(block_group);
1505 continue;
1506 }
1507 spin_unlock(&fs_info->unused_bgs_lock);
1508
1509 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1510
1511 /* Don't want to race with allocators so take the groups_sem */
1512 down_write(&space_info->groups_sem);
1513
1514 /*
1515 * Async discard moves the final block group discard to be prior
1516 * to the unused_bgs code path. Therefore, if it's not fully
1517 * trimmed, punt it back to the async discard lists.
1518 */
1519 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1520 !btrfs_is_free_space_trimmed(block_group)) {
1521 trace_btrfs_skip_unused_block_group(block_group);
1522 up_write(&space_info->groups_sem);
1523 /* Requeue if we failed because of async discard */
1524 btrfs_discard_queue_work(&fs_info->discard_ctl,
1525 block_group);
1526 goto next;
1527 }
1528
1529 spin_lock(&space_info->lock);
1530 spin_lock(&block_group->lock);
1531 if (btrfs_is_block_group_used(block_group) || block_group->ro ||
1532 list_is_singular(&block_group->list)) {
1533 /*
1534 * We want to bail if we made new allocations or have
1535 * outstanding allocations in this block group. We do
1536 * the ro check in case balance is currently acting on
1537 * this block group.
1538 */
1539 trace_btrfs_skip_unused_block_group(block_group);
1540 spin_unlock(&block_group->lock);
1541 spin_unlock(&space_info->lock);
1542 up_write(&space_info->groups_sem);
1543 goto next;
1544 }
1545
1546 /*
1547 * The block group may be unused but there may be space reserved
1548 * accounting with the existence of that block group, that is,
1549 * space_info->bytes_may_use was incremented by a task but no
1550 * space was yet allocated from the block group by the task.
1551 * That space may or may not be allocated, as we are generally
1552 * pessimistic about space reservation for metadata as well as
1553 * for data when using compression (as we reserve space based on
1554 * the worst case, when data can't be compressed, and before
1555 * actually attempting compression, before starting writeback).
1556 *
1557 * So check if the total space of the space_info minus the size
1558 * of this block group is less than the used space of the
1559 * space_info - if that's the case, then it means we have tasks
1560 * that might be relying on the block group in order to allocate
1561 * extents, and add back the block group to the unused list when
1562 * we finish, so that we retry later in case no tasks ended up
1563 * needing to allocate extents from the block group.
1564 */
1565 used = btrfs_space_info_used(space_info, true);
1566 if (space_info->total_bytes - block_group->length < used &&
1567 block_group->zone_unusable < block_group->length) {
1568 /*
1569 * Add a reference for the list, compensate for the ref
1570 * drop under the "next" label for the
1571 * fs_info->unused_bgs list.
1572 */
1573 btrfs_get_block_group(block_group);
1574 list_add_tail(&block_group->bg_list, &retry_list);
1575
1576 trace_btrfs_skip_unused_block_group(block_group);
1577 spin_unlock(&block_group->lock);
1578 spin_unlock(&space_info->lock);
1579 up_write(&space_info->groups_sem);
1580 goto next;
1581 }
1582
1583 spin_unlock(&block_group->lock);
1584 spin_unlock(&space_info->lock);
1585
1586 /* We don't want to force the issue, only flip if it's ok. */
1587 ret = inc_block_group_ro(block_group, 0);
1588 up_write(&space_info->groups_sem);
1589 if (ret < 0) {
1590 ret = 0;
1591 goto next;
1592 }
1593
1594 ret = btrfs_zone_finish(block_group);
1595 if (ret < 0) {
1596 btrfs_dec_block_group_ro(block_group);
1597 if (ret == -EAGAIN)
1598 ret = 0;
1599 goto next;
1600 }
1601
1602 /*
1603 * Want to do this before we do anything else so we can recover
1604 * properly if we fail to join the transaction.
1605 */
1606 trans = btrfs_start_trans_remove_block_group(fs_info,
1607 block_group->start);
1608 if (IS_ERR(trans)) {
1609 btrfs_dec_block_group_ro(block_group);
1610 ret = PTR_ERR(trans);
1611 goto next;
1612 }
1613
1614 /*
1615 * We could have pending pinned extents for this block group,
1616 * just delete them, we don't care about them anymore.
1617 */
1618 if (!clean_pinned_extents(trans, block_group)) {
1619 btrfs_dec_block_group_ro(block_group);
1620 goto end_trans;
1621 }
1622
1623 /*
1624 * At this point, the block_group is read only and should fail
1625 * new allocations. However, btrfs_finish_extent_commit() can
1626 * cause this block_group to be placed back on the discard
1627 * lists because now the block_group isn't fully discarded.
1628 * Bail here and try again later after discarding everything.
1629 */
1630 spin_lock(&fs_info->discard_ctl.lock);
1631 if (!list_empty(&block_group->discard_list)) {
1632 spin_unlock(&fs_info->discard_ctl.lock);
1633 btrfs_dec_block_group_ro(block_group);
1634 btrfs_discard_queue_work(&fs_info->discard_ctl,
1635 block_group);
1636 goto end_trans;
1637 }
1638 spin_unlock(&fs_info->discard_ctl.lock);
1639
1640 /* Reset pinned so btrfs_put_block_group doesn't complain */
1641 spin_lock(&space_info->lock);
1642 spin_lock(&block_group->lock);
1643
1644 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1645 -block_group->pinned);
1646 space_info->bytes_readonly += block_group->pinned;
1647 block_group->pinned = 0;
1648
1649 spin_unlock(&block_group->lock);
1650 spin_unlock(&space_info->lock);
1651
1652 /*
1653 * The normal path here is an unused block group is passed here,
1654 * then trimming is handled in the transaction commit path.
1655 * Async discard interposes before this to do the trimming
1656 * before coming down the unused block group path as trimming
1657 * will no longer be done later in the transaction commit path.
1658 */
1659 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1660 goto flip_async;
1661
1662 /*
1663 * DISCARD can flip during remount. On zoned filesystems, we
1664 * need to reset sequential-required zones.
1665 */
1666 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1667 btrfs_is_zoned(fs_info);
1668
1669 /* Implicit trim during transaction commit. */
1670 if (trimming)
1671 btrfs_freeze_block_group(block_group);
1672
1673 /*
1674 * Btrfs_remove_chunk will abort the transaction if things go
1675 * horribly wrong.
1676 */
1677 ret = btrfs_remove_chunk(trans, block_group->start);
1678
1679 if (ret) {
1680 if (trimming)
1681 btrfs_unfreeze_block_group(block_group);
1682 goto end_trans;
1683 }
1684
1685 /*
1686 * If we're not mounted with -odiscard, we can just forget
1687 * about this block group. Otherwise we'll need to wait
1688 * until transaction commit to do the actual discard.
1689 */
1690 if (trimming) {
1691 spin_lock(&fs_info->unused_bgs_lock);
1692 /*
1693 * A concurrent scrub might have added us to the list
1694 * fs_info->unused_bgs, so use a list_move operation
1695 * to add the block group to the deleted_bgs list.
1696 */
1697 list_move(&block_group->bg_list,
1698 &trans->transaction->deleted_bgs);
1699 spin_unlock(&fs_info->unused_bgs_lock);
1700 btrfs_get_block_group(block_group);
1701 }
1702 end_trans:
1703 btrfs_end_transaction(trans);
1704 next:
1705 btrfs_put_block_group(block_group);
1706 spin_lock(&fs_info->unused_bgs_lock);
1707 }
1708 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1709 spin_unlock(&fs_info->unused_bgs_lock);
1710 mutex_unlock(&fs_info->reclaim_bgs_lock);
1711 return;
1712
1713 flip_async:
1714 btrfs_end_transaction(trans);
1715 spin_lock(&fs_info->unused_bgs_lock);
1716 list_splice_tail(&retry_list, &fs_info->unused_bgs);
1717 spin_unlock(&fs_info->unused_bgs_lock);
1718 mutex_unlock(&fs_info->reclaim_bgs_lock);
1719 btrfs_put_block_group(block_group);
1720 btrfs_discard_punt_unused_bgs_list(fs_info);
1721 }
1722
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1723 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1724 {
1725 struct btrfs_fs_info *fs_info = bg->fs_info;
1726
1727 spin_lock(&fs_info->unused_bgs_lock);
1728 if (list_empty(&bg->bg_list)) {
1729 btrfs_get_block_group(bg);
1730 trace_btrfs_add_unused_block_group(bg);
1731 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1732 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1733 /* Pull out the block group from the reclaim_bgs list. */
1734 trace_btrfs_add_unused_block_group(bg);
1735 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1736 }
1737 spin_unlock(&fs_info->unused_bgs_lock);
1738 }
1739
1740 /*
1741 * We want block groups with a low number of used bytes to be in the beginning
1742 * of the list, so they will get reclaimed first.
1743 */
reclaim_bgs_cmp(void * unused,const struct list_head * a,const struct list_head * b)1744 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1745 const struct list_head *b)
1746 {
1747 const struct btrfs_block_group *bg1, *bg2;
1748
1749 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1750 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1751
1752 return bg1->used > bg2->used;
1753 }
1754
btrfs_should_reclaim(struct btrfs_fs_info * fs_info)1755 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1756 {
1757 if (btrfs_is_zoned(fs_info))
1758 return btrfs_zoned_should_reclaim(fs_info);
1759 return true;
1760 }
1761
should_reclaim_block_group(struct btrfs_block_group * bg,u64 bytes_freed)1762 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1763 {
1764 const struct btrfs_space_info *space_info = bg->space_info;
1765 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1766 const u64 new_val = bg->used;
1767 const u64 old_val = new_val + bytes_freed;
1768 u64 thresh;
1769
1770 if (reclaim_thresh == 0)
1771 return false;
1772
1773 thresh = mult_perc(bg->length, reclaim_thresh);
1774
1775 /*
1776 * If we were below the threshold before don't reclaim, we are likely a
1777 * brand new block group and we don't want to relocate new block groups.
1778 */
1779 if (old_val < thresh)
1780 return false;
1781 if (new_val >= thresh)
1782 return false;
1783 return true;
1784 }
1785
btrfs_reclaim_bgs_work(struct work_struct * work)1786 void btrfs_reclaim_bgs_work(struct work_struct *work)
1787 {
1788 struct btrfs_fs_info *fs_info =
1789 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1790 struct btrfs_block_group *bg;
1791 struct btrfs_space_info *space_info;
1792 LIST_HEAD(retry_list);
1793
1794 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1795 return;
1796
1797 if (btrfs_fs_closing(fs_info))
1798 return;
1799
1800 if (!btrfs_should_reclaim(fs_info))
1801 return;
1802
1803 sb_start_write(fs_info->sb);
1804
1805 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1806 sb_end_write(fs_info->sb);
1807 return;
1808 }
1809
1810 /*
1811 * Long running balances can keep us blocked here for eternity, so
1812 * simply skip reclaim if we're unable to get the mutex.
1813 */
1814 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1815 btrfs_exclop_finish(fs_info);
1816 sb_end_write(fs_info->sb);
1817 return;
1818 }
1819
1820 spin_lock(&fs_info->unused_bgs_lock);
1821 /*
1822 * Sort happens under lock because we can't simply splice it and sort.
1823 * The block groups might still be in use and reachable via bg_list,
1824 * and their presence in the reclaim_bgs list must be preserved.
1825 */
1826 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1827 while (!list_empty(&fs_info->reclaim_bgs)) {
1828 u64 zone_unusable;
1829 int ret = 0;
1830
1831 bg = list_first_entry(&fs_info->reclaim_bgs,
1832 struct btrfs_block_group,
1833 bg_list);
1834 list_del_init(&bg->bg_list);
1835
1836 space_info = bg->space_info;
1837 spin_unlock(&fs_info->unused_bgs_lock);
1838
1839 /* Don't race with allocators so take the groups_sem */
1840 down_write(&space_info->groups_sem);
1841
1842 spin_lock(&bg->lock);
1843 if (bg->reserved || bg->pinned || bg->ro) {
1844 /*
1845 * We want to bail if we made new allocations or have
1846 * outstanding allocations in this block group. We do
1847 * the ro check in case balance is currently acting on
1848 * this block group.
1849 */
1850 spin_unlock(&bg->lock);
1851 up_write(&space_info->groups_sem);
1852 goto next;
1853 }
1854 if (bg->used == 0) {
1855 /*
1856 * It is possible that we trigger relocation on a block
1857 * group as its extents are deleted and it first goes
1858 * below the threshold, then shortly after goes empty.
1859 *
1860 * In this case, relocating it does delete it, but has
1861 * some overhead in relocation specific metadata, looking
1862 * for the non-existent extents and running some extra
1863 * transactions, which we can avoid by using one of the
1864 * other mechanisms for dealing with empty block groups.
1865 */
1866 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1867 btrfs_mark_bg_unused(bg);
1868 spin_unlock(&bg->lock);
1869 up_write(&space_info->groups_sem);
1870 goto next;
1871
1872 }
1873 /*
1874 * The block group might no longer meet the reclaim condition by
1875 * the time we get around to reclaiming it, so to avoid
1876 * reclaiming overly full block_groups, skip reclaiming them.
1877 *
1878 * Since the decision making process also depends on the amount
1879 * being freed, pass in a fake giant value to skip that extra
1880 * check, which is more meaningful when adding to the list in
1881 * the first place.
1882 */
1883 if (!should_reclaim_block_group(bg, bg->length)) {
1884 spin_unlock(&bg->lock);
1885 up_write(&space_info->groups_sem);
1886 goto next;
1887 }
1888
1889 /*
1890 * Cache the zone_unusable value before turning the block group
1891 * to read only. As soon as the block group is read only it's
1892 * zone_unusable value gets moved to the block group's read-only
1893 * bytes and isn't available for calculations anymore. We also
1894 * cache it before unlocking the block group, to prevent races
1895 * (reports from KCSAN and such tools) with tasks updating it.
1896 */
1897 zone_unusable = bg->zone_unusable;
1898
1899 spin_unlock(&bg->lock);
1900
1901 /*
1902 * Get out fast, in case we're read-only or unmounting the
1903 * filesystem. It is OK to drop block groups from the list even
1904 * for the read-only case. As we did sb_start_write(),
1905 * "mount -o remount,ro" won't happen and read-only filesystem
1906 * means it is forced read-only due to a fatal error. So, it
1907 * never gets back to read-write to let us reclaim again.
1908 */
1909 if (btrfs_need_cleaner_sleep(fs_info)) {
1910 up_write(&space_info->groups_sem);
1911 goto next;
1912 }
1913
1914 ret = inc_block_group_ro(bg, 0);
1915 up_write(&space_info->groups_sem);
1916 if (ret < 0)
1917 goto next;
1918
1919 btrfs_info(fs_info,
1920 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1921 bg->start,
1922 div64_u64(bg->used * 100, bg->length),
1923 div64_u64(zone_unusable * 100, bg->length));
1924 trace_btrfs_reclaim_block_group(bg);
1925 ret = btrfs_relocate_chunk(fs_info, bg->start);
1926 if (ret) {
1927 btrfs_dec_block_group_ro(bg);
1928 btrfs_err(fs_info, "error relocating chunk %llu",
1929 bg->start);
1930 }
1931
1932 next:
1933 if (ret) {
1934 /* Refcount held by the reclaim_bgs list after splice. */
1935 spin_lock(&fs_info->unused_bgs_lock);
1936 /*
1937 * This block group might be added to the unused list
1938 * during the above process. Move it back to the
1939 * reclaim list otherwise.
1940 */
1941 if (list_empty(&bg->bg_list)) {
1942 btrfs_get_block_group(bg);
1943 list_add_tail(&bg->bg_list, &retry_list);
1944 }
1945 spin_unlock(&fs_info->unused_bgs_lock);
1946 }
1947 btrfs_put_block_group(bg);
1948
1949 mutex_unlock(&fs_info->reclaim_bgs_lock);
1950 /*
1951 * Reclaiming all the block groups in the list can take really
1952 * long. Prioritize cleaning up unused block groups.
1953 */
1954 btrfs_delete_unused_bgs(fs_info);
1955 /*
1956 * If we are interrupted by a balance, we can just bail out. The
1957 * cleaner thread restart again if necessary.
1958 */
1959 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1960 goto end;
1961 spin_lock(&fs_info->unused_bgs_lock);
1962 }
1963 spin_unlock(&fs_info->unused_bgs_lock);
1964 mutex_unlock(&fs_info->reclaim_bgs_lock);
1965 end:
1966 spin_lock(&fs_info->unused_bgs_lock);
1967 list_splice_tail(&retry_list, &fs_info->reclaim_bgs);
1968 spin_unlock(&fs_info->unused_bgs_lock);
1969 btrfs_exclop_finish(fs_info);
1970 sb_end_write(fs_info->sb);
1971 }
1972
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1973 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1974 {
1975 spin_lock(&fs_info->unused_bgs_lock);
1976 if (!list_empty(&fs_info->reclaim_bgs))
1977 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1978 spin_unlock(&fs_info->unused_bgs_lock);
1979 }
1980
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1981 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1982 {
1983 struct btrfs_fs_info *fs_info = bg->fs_info;
1984
1985 spin_lock(&fs_info->unused_bgs_lock);
1986 if (list_empty(&bg->bg_list)) {
1987 btrfs_get_block_group(bg);
1988 trace_btrfs_add_reclaim_block_group(bg);
1989 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1990 }
1991 spin_unlock(&fs_info->unused_bgs_lock);
1992 }
1993
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1994 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1995 struct btrfs_path *path)
1996 {
1997 struct extent_map_tree *em_tree;
1998 struct extent_map *em;
1999 struct btrfs_block_group_item bg;
2000 struct extent_buffer *leaf;
2001 int slot;
2002 u64 flags;
2003 int ret = 0;
2004
2005 slot = path->slots[0];
2006 leaf = path->nodes[0];
2007
2008 em_tree = &fs_info->mapping_tree;
2009 read_lock(&em_tree->lock);
2010 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
2011 read_unlock(&em_tree->lock);
2012 if (!em) {
2013 btrfs_err(fs_info,
2014 "logical %llu len %llu found bg but no related chunk",
2015 key->objectid, key->offset);
2016 return -ENOENT;
2017 }
2018
2019 if (em->start != key->objectid || em->len != key->offset) {
2020 btrfs_err(fs_info,
2021 "block group %llu len %llu mismatch with chunk %llu len %llu",
2022 key->objectid, key->offset, em->start, em->len);
2023 ret = -EUCLEAN;
2024 goto out_free_em;
2025 }
2026
2027 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
2028 sizeof(bg));
2029 flags = btrfs_stack_block_group_flags(&bg) &
2030 BTRFS_BLOCK_GROUP_TYPE_MASK;
2031
2032 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2033 btrfs_err(fs_info,
2034 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
2035 key->objectid, key->offset, flags,
2036 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
2037 ret = -EUCLEAN;
2038 }
2039
2040 out_free_em:
2041 free_extent_map(em);
2042 return ret;
2043 }
2044
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)2045 static int find_first_block_group(struct btrfs_fs_info *fs_info,
2046 struct btrfs_path *path,
2047 struct btrfs_key *key)
2048 {
2049 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2050 int ret;
2051 struct btrfs_key found_key;
2052
2053 btrfs_for_each_slot(root, key, &found_key, path, ret) {
2054 if (found_key.objectid >= key->objectid &&
2055 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
2056 return read_bg_from_eb(fs_info, &found_key, path);
2057 }
2058 }
2059 return ret;
2060 }
2061
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)2062 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2063 {
2064 u64 extra_flags = chunk_to_extended(flags) &
2065 BTRFS_EXTENDED_PROFILE_MASK;
2066
2067 write_seqlock(&fs_info->profiles_lock);
2068 if (flags & BTRFS_BLOCK_GROUP_DATA)
2069 fs_info->avail_data_alloc_bits |= extra_flags;
2070 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2071 fs_info->avail_metadata_alloc_bits |= extra_flags;
2072 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2073 fs_info->avail_system_alloc_bits |= extra_flags;
2074 write_sequnlock(&fs_info->profiles_lock);
2075 }
2076
2077 /*
2078 * Map a physical disk address to a list of logical addresses.
2079 *
2080 * @fs_info: the filesystem
2081 * @chunk_start: logical address of block group
2082 * @physical: physical address to map to logical addresses
2083 * @logical: return array of logical addresses which map to @physical
2084 * @naddrs: length of @logical
2085 * @stripe_len: size of IO stripe for the given block group
2086 *
2087 * Maps a particular @physical disk address to a list of @logical addresses.
2088 * Used primarily to exclude those portions of a block group that contain super
2089 * block copies.
2090 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)2091 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
2092 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
2093 {
2094 struct extent_map *em;
2095 struct map_lookup *map;
2096 u64 *buf;
2097 u64 bytenr;
2098 u64 data_stripe_length;
2099 u64 io_stripe_size;
2100 int i, nr = 0;
2101 int ret = 0;
2102
2103 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2104 if (IS_ERR(em))
2105 return -EIO;
2106
2107 map = em->map_lookup;
2108 data_stripe_length = em->orig_block_len;
2109 io_stripe_size = BTRFS_STRIPE_LEN;
2110 chunk_start = em->start;
2111
2112 /* For RAID5/6 adjust to a full IO stripe length */
2113 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2114 io_stripe_size = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2115
2116 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2117 if (!buf) {
2118 ret = -ENOMEM;
2119 goto out;
2120 }
2121
2122 for (i = 0; i < map->num_stripes; i++) {
2123 bool already_inserted = false;
2124 u32 stripe_nr;
2125 u32 offset;
2126 int j;
2127
2128 if (!in_range(physical, map->stripes[i].physical,
2129 data_stripe_length))
2130 continue;
2131
2132 stripe_nr = (physical - map->stripes[i].physical) >>
2133 BTRFS_STRIPE_LEN_SHIFT;
2134 offset = (physical - map->stripes[i].physical) &
2135 BTRFS_STRIPE_LEN_MASK;
2136
2137 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2138 BTRFS_BLOCK_GROUP_RAID10))
2139 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2140 map->sub_stripes);
2141 /*
2142 * The remaining case would be for RAID56, multiply by
2143 * nr_data_stripes(). Alternatively, just use rmap_len below
2144 * instead of map->stripe_len
2145 */
2146 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2147
2148 /* Ensure we don't add duplicate addresses */
2149 for (j = 0; j < nr; j++) {
2150 if (buf[j] == bytenr) {
2151 already_inserted = true;
2152 break;
2153 }
2154 }
2155
2156 if (!already_inserted)
2157 buf[nr++] = bytenr;
2158 }
2159
2160 *logical = buf;
2161 *naddrs = nr;
2162 *stripe_len = io_stripe_size;
2163 out:
2164 free_extent_map(em);
2165 return ret;
2166 }
2167
exclude_super_stripes(struct btrfs_block_group * cache)2168 static int exclude_super_stripes(struct btrfs_block_group *cache)
2169 {
2170 struct btrfs_fs_info *fs_info = cache->fs_info;
2171 const bool zoned = btrfs_is_zoned(fs_info);
2172 u64 bytenr;
2173 u64 *logical;
2174 int stripe_len;
2175 int i, nr, ret;
2176
2177 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2178 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2179 cache->bytes_super += stripe_len;
2180 ret = set_extent_bit(&fs_info->excluded_extents, cache->start,
2181 cache->start + stripe_len - 1,
2182 EXTENT_UPTODATE, NULL);
2183 if (ret)
2184 return ret;
2185 }
2186
2187 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2188 bytenr = btrfs_sb_offset(i);
2189 ret = btrfs_rmap_block(fs_info, cache->start,
2190 bytenr, &logical, &nr, &stripe_len);
2191 if (ret)
2192 return ret;
2193
2194 /* Shouldn't have super stripes in sequential zones */
2195 if (zoned && nr) {
2196 kfree(logical);
2197 btrfs_err(fs_info,
2198 "zoned: block group %llu must not contain super block",
2199 cache->start);
2200 return -EUCLEAN;
2201 }
2202
2203 while (nr--) {
2204 u64 len = min_t(u64, stripe_len,
2205 cache->start + cache->length - logical[nr]);
2206
2207 cache->bytes_super += len;
2208 ret = set_extent_bit(&fs_info->excluded_extents, logical[nr],
2209 logical[nr] + len - 1,
2210 EXTENT_UPTODATE, NULL);
2211 if (ret) {
2212 kfree(logical);
2213 return ret;
2214 }
2215 }
2216
2217 kfree(logical);
2218 }
2219 return 0;
2220 }
2221
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)2222 static struct btrfs_block_group *btrfs_create_block_group_cache(
2223 struct btrfs_fs_info *fs_info, u64 start)
2224 {
2225 struct btrfs_block_group *cache;
2226
2227 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2228 if (!cache)
2229 return NULL;
2230
2231 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2232 GFP_NOFS);
2233 if (!cache->free_space_ctl) {
2234 kfree(cache);
2235 return NULL;
2236 }
2237
2238 cache->start = start;
2239
2240 cache->fs_info = fs_info;
2241 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2242
2243 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2244
2245 refcount_set(&cache->refs, 1);
2246 spin_lock_init(&cache->lock);
2247 init_rwsem(&cache->data_rwsem);
2248 INIT_LIST_HEAD(&cache->list);
2249 INIT_LIST_HEAD(&cache->cluster_list);
2250 INIT_LIST_HEAD(&cache->bg_list);
2251 INIT_LIST_HEAD(&cache->ro_list);
2252 INIT_LIST_HEAD(&cache->discard_list);
2253 INIT_LIST_HEAD(&cache->dirty_list);
2254 INIT_LIST_HEAD(&cache->io_list);
2255 INIT_LIST_HEAD(&cache->active_bg_list);
2256 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2257 atomic_set(&cache->frozen, 0);
2258 mutex_init(&cache->free_space_lock);
2259
2260 return cache;
2261 }
2262
2263 /*
2264 * Iterate all chunks and verify that each of them has the corresponding block
2265 * group
2266 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)2267 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2268 {
2269 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2270 struct extent_map *em;
2271 struct btrfs_block_group *bg;
2272 u64 start = 0;
2273 int ret = 0;
2274
2275 while (1) {
2276 read_lock(&map_tree->lock);
2277 /*
2278 * lookup_extent_mapping will return the first extent map
2279 * intersecting the range, so setting @len to 1 is enough to
2280 * get the first chunk.
2281 */
2282 em = lookup_extent_mapping(map_tree, start, 1);
2283 read_unlock(&map_tree->lock);
2284 if (!em)
2285 break;
2286
2287 bg = btrfs_lookup_block_group(fs_info, em->start);
2288 if (!bg) {
2289 btrfs_err(fs_info,
2290 "chunk start=%llu len=%llu doesn't have corresponding block group",
2291 em->start, em->len);
2292 ret = -EUCLEAN;
2293 free_extent_map(em);
2294 break;
2295 }
2296 if (bg->start != em->start || bg->length != em->len ||
2297 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2298 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2299 btrfs_err(fs_info,
2300 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2301 em->start, em->len,
2302 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2303 bg->start, bg->length,
2304 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2305 ret = -EUCLEAN;
2306 free_extent_map(em);
2307 btrfs_put_block_group(bg);
2308 break;
2309 }
2310 start = em->start + em->len;
2311 free_extent_map(em);
2312 btrfs_put_block_group(bg);
2313 }
2314 return ret;
2315 }
2316
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)2317 static int read_one_block_group(struct btrfs_fs_info *info,
2318 struct btrfs_block_group_item *bgi,
2319 const struct btrfs_key *key,
2320 int need_clear)
2321 {
2322 struct btrfs_block_group *cache;
2323 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2324 int ret;
2325
2326 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2327
2328 cache = btrfs_create_block_group_cache(info, key->objectid);
2329 if (!cache)
2330 return -ENOMEM;
2331
2332 cache->length = key->offset;
2333 cache->used = btrfs_stack_block_group_used(bgi);
2334 cache->commit_used = cache->used;
2335 cache->flags = btrfs_stack_block_group_flags(bgi);
2336 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2337
2338 set_free_space_tree_thresholds(cache);
2339
2340 if (need_clear) {
2341 /*
2342 * When we mount with old space cache, we need to
2343 * set BTRFS_DC_CLEAR and set dirty flag.
2344 *
2345 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2346 * truncate the old free space cache inode and
2347 * setup a new one.
2348 * b) Setting 'dirty flag' makes sure that we flush
2349 * the new space cache info onto disk.
2350 */
2351 if (btrfs_test_opt(info, SPACE_CACHE))
2352 cache->disk_cache_state = BTRFS_DC_CLEAR;
2353 }
2354 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2355 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2356 btrfs_err(info,
2357 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2358 cache->start);
2359 ret = -EINVAL;
2360 goto error;
2361 }
2362
2363 ret = btrfs_load_block_group_zone_info(cache, false);
2364 if (ret) {
2365 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2366 cache->start);
2367 goto error;
2368 }
2369
2370 /*
2371 * We need to exclude the super stripes now so that the space info has
2372 * super bytes accounted for, otherwise we'll think we have more space
2373 * than we actually do.
2374 */
2375 ret = exclude_super_stripes(cache);
2376 if (ret) {
2377 /* We may have excluded something, so call this just in case. */
2378 btrfs_free_excluded_extents(cache);
2379 goto error;
2380 }
2381
2382 /*
2383 * For zoned filesystem, space after the allocation offset is the only
2384 * free space for a block group. So, we don't need any caching work.
2385 * btrfs_calc_zone_unusable() will set the amount of free space and
2386 * zone_unusable space.
2387 *
2388 * For regular filesystem, check for two cases, either we are full, and
2389 * therefore don't need to bother with the caching work since we won't
2390 * find any space, or we are empty, and we can just add all the space
2391 * in and be done with it. This saves us _a_lot_ of time, particularly
2392 * in the full case.
2393 */
2394 if (btrfs_is_zoned(info)) {
2395 btrfs_calc_zone_unusable(cache);
2396 /* Should not have any excluded extents. Just in case, though. */
2397 btrfs_free_excluded_extents(cache);
2398 } else if (cache->length == cache->used) {
2399 cache->cached = BTRFS_CACHE_FINISHED;
2400 btrfs_free_excluded_extents(cache);
2401 } else if (cache->used == 0) {
2402 cache->cached = BTRFS_CACHE_FINISHED;
2403 ret = btrfs_add_new_free_space(cache, cache->start,
2404 cache->start + cache->length, NULL);
2405 btrfs_free_excluded_extents(cache);
2406 if (ret)
2407 goto error;
2408 }
2409
2410 ret = btrfs_add_block_group_cache(info, cache);
2411 if (ret) {
2412 btrfs_remove_free_space_cache(cache);
2413 goto error;
2414 }
2415 trace_btrfs_add_block_group(info, cache, 0);
2416 btrfs_add_bg_to_space_info(info, cache);
2417
2418 set_avail_alloc_bits(info, cache->flags);
2419 if (btrfs_chunk_writeable(info, cache->start)) {
2420 if (cache->used == 0) {
2421 ASSERT(list_empty(&cache->bg_list));
2422 if (btrfs_test_opt(info, DISCARD_ASYNC))
2423 btrfs_discard_queue_work(&info->discard_ctl, cache);
2424 else
2425 btrfs_mark_bg_unused(cache);
2426 }
2427 } else {
2428 inc_block_group_ro(cache, 1);
2429 }
2430
2431 return 0;
2432 error:
2433 btrfs_put_block_group(cache);
2434 return ret;
2435 }
2436
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2437 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2438 {
2439 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2440 struct rb_node *node;
2441 int ret = 0;
2442
2443 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2444 struct extent_map *em;
2445 struct map_lookup *map;
2446 struct btrfs_block_group *bg;
2447
2448 em = rb_entry(node, struct extent_map, rb_node);
2449 map = em->map_lookup;
2450 bg = btrfs_create_block_group_cache(fs_info, em->start);
2451 if (!bg) {
2452 ret = -ENOMEM;
2453 break;
2454 }
2455
2456 /* Fill dummy cache as FULL */
2457 bg->length = em->len;
2458 bg->flags = map->type;
2459 bg->cached = BTRFS_CACHE_FINISHED;
2460 bg->used = em->len;
2461 bg->flags = map->type;
2462 ret = btrfs_add_block_group_cache(fs_info, bg);
2463 /*
2464 * We may have some valid block group cache added already, in
2465 * that case we skip to the next one.
2466 */
2467 if (ret == -EEXIST) {
2468 ret = 0;
2469 btrfs_put_block_group(bg);
2470 continue;
2471 }
2472
2473 if (ret) {
2474 btrfs_remove_free_space_cache(bg);
2475 btrfs_put_block_group(bg);
2476 break;
2477 }
2478
2479 btrfs_add_bg_to_space_info(fs_info, bg);
2480
2481 set_avail_alloc_bits(fs_info, bg->flags);
2482 }
2483 if (!ret)
2484 btrfs_init_global_block_rsv(fs_info);
2485 return ret;
2486 }
2487
btrfs_read_block_groups(struct btrfs_fs_info * info)2488 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2489 {
2490 struct btrfs_root *root = btrfs_block_group_root(info);
2491 struct btrfs_path *path;
2492 int ret;
2493 struct btrfs_block_group *cache;
2494 struct btrfs_space_info *space_info;
2495 struct btrfs_key key;
2496 int need_clear = 0;
2497 u64 cache_gen;
2498
2499 /*
2500 * Either no extent root (with ibadroots rescue option) or we have
2501 * unsupported RO options. The fs can never be mounted read-write, so no
2502 * need to waste time searching block group items.
2503 *
2504 * This also allows new extent tree related changes to be RO compat,
2505 * no need for a full incompat flag.
2506 */
2507 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2508 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2509 return fill_dummy_bgs(info);
2510
2511 key.objectid = 0;
2512 key.offset = 0;
2513 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 return -ENOMEM;
2517
2518 cache_gen = btrfs_super_cache_generation(info->super_copy);
2519 if (btrfs_test_opt(info, SPACE_CACHE) &&
2520 btrfs_super_generation(info->super_copy) != cache_gen)
2521 need_clear = 1;
2522 if (btrfs_test_opt(info, CLEAR_CACHE))
2523 need_clear = 1;
2524
2525 while (1) {
2526 struct btrfs_block_group_item bgi;
2527 struct extent_buffer *leaf;
2528 int slot;
2529
2530 ret = find_first_block_group(info, path, &key);
2531 if (ret > 0)
2532 break;
2533 if (ret != 0)
2534 goto error;
2535
2536 leaf = path->nodes[0];
2537 slot = path->slots[0];
2538
2539 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2540 sizeof(bgi));
2541
2542 btrfs_item_key_to_cpu(leaf, &key, slot);
2543 btrfs_release_path(path);
2544 ret = read_one_block_group(info, &bgi, &key, need_clear);
2545 if (ret < 0)
2546 goto error;
2547 key.objectid += key.offset;
2548 key.offset = 0;
2549 }
2550 btrfs_release_path(path);
2551
2552 list_for_each_entry(space_info, &info->space_info, list) {
2553 int i;
2554
2555 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2556 if (list_empty(&space_info->block_groups[i]))
2557 continue;
2558 cache = list_first_entry(&space_info->block_groups[i],
2559 struct btrfs_block_group,
2560 list);
2561 btrfs_sysfs_add_block_group_type(cache);
2562 }
2563
2564 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2565 (BTRFS_BLOCK_GROUP_RAID10 |
2566 BTRFS_BLOCK_GROUP_RAID1_MASK |
2567 BTRFS_BLOCK_GROUP_RAID56_MASK |
2568 BTRFS_BLOCK_GROUP_DUP)))
2569 continue;
2570 /*
2571 * Avoid allocating from un-mirrored block group if there are
2572 * mirrored block groups.
2573 */
2574 list_for_each_entry(cache,
2575 &space_info->block_groups[BTRFS_RAID_RAID0],
2576 list)
2577 inc_block_group_ro(cache, 1);
2578 list_for_each_entry(cache,
2579 &space_info->block_groups[BTRFS_RAID_SINGLE],
2580 list)
2581 inc_block_group_ro(cache, 1);
2582 }
2583
2584 btrfs_init_global_block_rsv(info);
2585 ret = check_chunk_block_group_mappings(info);
2586 error:
2587 btrfs_free_path(path);
2588 /*
2589 * We've hit some error while reading the extent tree, and have
2590 * rescue=ibadroots mount option.
2591 * Try to fill the tree using dummy block groups so that the user can
2592 * continue to mount and grab their data.
2593 */
2594 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2595 ret = fill_dummy_bgs(info);
2596 return ret;
2597 }
2598
2599 /*
2600 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2601 * allocation.
2602 *
2603 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2604 * phases.
2605 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2606 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2607 struct btrfs_block_group *block_group)
2608 {
2609 struct btrfs_fs_info *fs_info = trans->fs_info;
2610 struct btrfs_block_group_item bgi;
2611 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2612 struct btrfs_key key;
2613 u64 old_commit_used;
2614 int ret;
2615
2616 spin_lock(&block_group->lock);
2617 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2618 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2619 block_group->global_root_id);
2620 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2621 old_commit_used = block_group->commit_used;
2622 block_group->commit_used = block_group->used;
2623 key.objectid = block_group->start;
2624 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2625 key.offset = block_group->length;
2626 spin_unlock(&block_group->lock);
2627
2628 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2629 if (ret < 0) {
2630 spin_lock(&block_group->lock);
2631 block_group->commit_used = old_commit_used;
2632 spin_unlock(&block_group->lock);
2633 }
2634
2635 return ret;
2636 }
2637
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2638 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2639 struct btrfs_device *device, u64 chunk_offset,
2640 u64 start, u64 num_bytes)
2641 {
2642 struct btrfs_fs_info *fs_info = device->fs_info;
2643 struct btrfs_root *root = fs_info->dev_root;
2644 struct btrfs_path *path;
2645 struct btrfs_dev_extent *extent;
2646 struct extent_buffer *leaf;
2647 struct btrfs_key key;
2648 int ret;
2649
2650 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2651 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2652 path = btrfs_alloc_path();
2653 if (!path)
2654 return -ENOMEM;
2655
2656 key.objectid = device->devid;
2657 key.type = BTRFS_DEV_EXTENT_KEY;
2658 key.offset = start;
2659 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2660 if (ret)
2661 goto out;
2662
2663 leaf = path->nodes[0];
2664 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2665 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2666 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2667 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2668 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2669
2670 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2671 btrfs_mark_buffer_dirty(trans, leaf);
2672 out:
2673 btrfs_free_path(path);
2674 return ret;
2675 }
2676
2677 /*
2678 * This function belongs to phase 2.
2679 *
2680 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2681 * phases.
2682 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2683 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2684 u64 chunk_offset, u64 chunk_size)
2685 {
2686 struct btrfs_fs_info *fs_info = trans->fs_info;
2687 struct btrfs_device *device;
2688 struct extent_map *em;
2689 struct map_lookup *map;
2690 u64 dev_offset;
2691 u64 stripe_size;
2692 int i;
2693 int ret = 0;
2694
2695 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2696 if (IS_ERR(em))
2697 return PTR_ERR(em);
2698
2699 map = em->map_lookup;
2700 stripe_size = em->orig_block_len;
2701
2702 /*
2703 * Take the device list mutex to prevent races with the final phase of
2704 * a device replace operation that replaces the device object associated
2705 * with the map's stripes, because the device object's id can change
2706 * at any time during that final phase of the device replace operation
2707 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2708 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2709 * resulting in persisting a device extent item with such ID.
2710 */
2711 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2712 for (i = 0; i < map->num_stripes; i++) {
2713 device = map->stripes[i].dev;
2714 dev_offset = map->stripes[i].physical;
2715
2716 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2717 stripe_size);
2718 if (ret)
2719 break;
2720 }
2721 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2722
2723 free_extent_map(em);
2724 return ret;
2725 }
2726
2727 /*
2728 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2729 * chunk allocation.
2730 *
2731 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2732 * phases.
2733 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2734 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2735 {
2736 struct btrfs_fs_info *fs_info = trans->fs_info;
2737 struct btrfs_block_group *block_group;
2738 int ret = 0;
2739
2740 while (!list_empty(&trans->new_bgs)) {
2741 int index;
2742
2743 block_group = list_first_entry(&trans->new_bgs,
2744 struct btrfs_block_group,
2745 bg_list);
2746 if (ret)
2747 goto next;
2748
2749 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2750
2751 ret = insert_block_group_item(trans, block_group);
2752 if (ret)
2753 btrfs_abort_transaction(trans, ret);
2754 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2755 &block_group->runtime_flags)) {
2756 mutex_lock(&fs_info->chunk_mutex);
2757 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2758 mutex_unlock(&fs_info->chunk_mutex);
2759 if (ret)
2760 btrfs_abort_transaction(trans, ret);
2761 }
2762 ret = insert_dev_extents(trans, block_group->start,
2763 block_group->length);
2764 if (ret)
2765 btrfs_abort_transaction(trans, ret);
2766 add_block_group_free_space(trans, block_group);
2767
2768 /*
2769 * If we restriped during balance, we may have added a new raid
2770 * type, so now add the sysfs entries when it is safe to do so.
2771 * We don't have to worry about locking here as it's handled in
2772 * btrfs_sysfs_add_block_group_type.
2773 */
2774 if (block_group->space_info->block_group_kobjs[index] == NULL)
2775 btrfs_sysfs_add_block_group_type(block_group);
2776
2777 /* Already aborted the transaction if it failed. */
2778 next:
2779 btrfs_delayed_refs_rsv_release(fs_info, 1);
2780 list_del_init(&block_group->bg_list);
2781 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2782 }
2783 btrfs_trans_release_chunk_metadata(trans);
2784 }
2785
2786 /*
2787 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2788 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2789 */
calculate_global_root_id(struct btrfs_fs_info * fs_info,u64 offset)2790 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2791 {
2792 u64 div = SZ_1G;
2793 u64 index;
2794
2795 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2796 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2797
2798 /* If we have a smaller fs index based on 128MiB. */
2799 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2800 div = SZ_128M;
2801
2802 offset = div64_u64(offset, div);
2803 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2804 return index;
2805 }
2806
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 type,u64 chunk_offset,u64 size)2807 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2808 u64 type,
2809 u64 chunk_offset, u64 size)
2810 {
2811 struct btrfs_fs_info *fs_info = trans->fs_info;
2812 struct btrfs_block_group *cache;
2813 int ret;
2814
2815 btrfs_set_log_full_commit(trans);
2816
2817 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2818 if (!cache)
2819 return ERR_PTR(-ENOMEM);
2820
2821 /*
2822 * Mark it as new before adding it to the rbtree of block groups or any
2823 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2824 * before the new flag is set.
2825 */
2826 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2827
2828 cache->length = size;
2829 set_free_space_tree_thresholds(cache);
2830 cache->flags = type;
2831 cache->cached = BTRFS_CACHE_FINISHED;
2832 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2833
2834 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2835 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2836
2837 ret = btrfs_load_block_group_zone_info(cache, true);
2838 if (ret) {
2839 btrfs_put_block_group(cache);
2840 return ERR_PTR(ret);
2841 }
2842
2843 ret = exclude_super_stripes(cache);
2844 if (ret) {
2845 /* We may have excluded something, so call this just in case */
2846 btrfs_free_excluded_extents(cache);
2847 btrfs_put_block_group(cache);
2848 return ERR_PTR(ret);
2849 }
2850
2851 ret = btrfs_add_new_free_space(cache, chunk_offset, chunk_offset + size, NULL);
2852 btrfs_free_excluded_extents(cache);
2853 if (ret) {
2854 btrfs_put_block_group(cache);
2855 return ERR_PTR(ret);
2856 }
2857
2858 /*
2859 * Ensure the corresponding space_info object is created and
2860 * assigned to our block group. We want our bg to be added to the rbtree
2861 * with its ->space_info set.
2862 */
2863 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2864 ASSERT(cache->space_info);
2865
2866 ret = btrfs_add_block_group_cache(fs_info, cache);
2867 if (ret) {
2868 btrfs_remove_free_space_cache(cache);
2869 btrfs_put_block_group(cache);
2870 return ERR_PTR(ret);
2871 }
2872
2873 /*
2874 * Now that our block group has its ->space_info set and is inserted in
2875 * the rbtree, update the space info's counters.
2876 */
2877 trace_btrfs_add_block_group(fs_info, cache, 1);
2878 btrfs_add_bg_to_space_info(fs_info, cache);
2879 btrfs_update_global_block_rsv(fs_info);
2880
2881 #ifdef CONFIG_BTRFS_DEBUG
2882 if (btrfs_should_fragment_free_space(cache)) {
2883 cache->space_info->bytes_used += size >> 1;
2884 fragment_free_space(cache);
2885 }
2886 #endif
2887
2888 list_add_tail(&cache->bg_list, &trans->new_bgs);
2889 trans->delayed_ref_updates++;
2890 btrfs_update_delayed_refs_rsv(trans);
2891
2892 set_avail_alloc_bits(fs_info, type);
2893 return cache;
2894 }
2895
2896 /*
2897 * Mark one block group RO, can be called several times for the same block
2898 * group.
2899 *
2900 * @cache: the destination block group
2901 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2902 * ensure we still have some free space after marking this
2903 * block group RO.
2904 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2905 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2906 bool do_chunk_alloc)
2907 {
2908 struct btrfs_fs_info *fs_info = cache->fs_info;
2909 struct btrfs_trans_handle *trans;
2910 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2911 u64 alloc_flags;
2912 int ret;
2913 bool dirty_bg_running;
2914
2915 /*
2916 * This can only happen when we are doing read-only scrub on read-only
2917 * mount.
2918 * In that case we should not start a new transaction on read-only fs.
2919 * Thus here we skip all chunk allocations.
2920 */
2921 if (sb_rdonly(fs_info->sb)) {
2922 mutex_lock(&fs_info->ro_block_group_mutex);
2923 ret = inc_block_group_ro(cache, 0);
2924 mutex_unlock(&fs_info->ro_block_group_mutex);
2925 return ret;
2926 }
2927
2928 do {
2929 trans = btrfs_join_transaction(root);
2930 if (IS_ERR(trans))
2931 return PTR_ERR(trans);
2932
2933 dirty_bg_running = false;
2934
2935 /*
2936 * We're not allowed to set block groups readonly after the dirty
2937 * block group cache has started writing. If it already started,
2938 * back off and let this transaction commit.
2939 */
2940 mutex_lock(&fs_info->ro_block_group_mutex);
2941 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2942 u64 transid = trans->transid;
2943
2944 mutex_unlock(&fs_info->ro_block_group_mutex);
2945 btrfs_end_transaction(trans);
2946
2947 ret = btrfs_wait_for_commit(fs_info, transid);
2948 if (ret)
2949 return ret;
2950 dirty_bg_running = true;
2951 }
2952 } while (dirty_bg_running);
2953
2954 if (do_chunk_alloc) {
2955 /*
2956 * If we are changing raid levels, try to allocate a
2957 * corresponding block group with the new raid level.
2958 */
2959 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2960 if (alloc_flags != cache->flags) {
2961 ret = btrfs_chunk_alloc(trans, alloc_flags,
2962 CHUNK_ALLOC_FORCE);
2963 /*
2964 * ENOSPC is allowed here, we may have enough space
2965 * already allocated at the new raid level to carry on
2966 */
2967 if (ret == -ENOSPC)
2968 ret = 0;
2969 if (ret < 0)
2970 goto out;
2971 }
2972 }
2973
2974 ret = inc_block_group_ro(cache, 0);
2975 if (!ret)
2976 goto out;
2977 if (ret == -ETXTBSY)
2978 goto unlock_out;
2979
2980 /*
2981 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2982 * chunk allocation storm to exhaust the system chunk array. Otherwise
2983 * we still want to try our best to mark the block group read-only.
2984 */
2985 if (!do_chunk_alloc && ret == -ENOSPC &&
2986 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2987 goto unlock_out;
2988
2989 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2990 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2991 if (ret < 0)
2992 goto out;
2993 /*
2994 * We have allocated a new chunk. We also need to activate that chunk to
2995 * grant metadata tickets for zoned filesystem.
2996 */
2997 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2998 if (ret < 0)
2999 goto out;
3000
3001 ret = inc_block_group_ro(cache, 0);
3002 if (ret == -ETXTBSY)
3003 goto unlock_out;
3004 out:
3005 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
3006 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
3007 mutex_lock(&fs_info->chunk_mutex);
3008 check_system_chunk(trans, alloc_flags);
3009 mutex_unlock(&fs_info->chunk_mutex);
3010 }
3011 unlock_out:
3012 mutex_unlock(&fs_info->ro_block_group_mutex);
3013
3014 btrfs_end_transaction(trans);
3015 return ret;
3016 }
3017
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)3018 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
3019 {
3020 struct btrfs_space_info *sinfo = cache->space_info;
3021 u64 num_bytes;
3022
3023 BUG_ON(!cache->ro);
3024
3025 spin_lock(&sinfo->lock);
3026 spin_lock(&cache->lock);
3027 if (!--cache->ro) {
3028 if (btrfs_is_zoned(cache->fs_info)) {
3029 /* Migrate zone_unusable bytes back */
3030 cache->zone_unusable =
3031 (cache->alloc_offset - cache->used - cache->pinned -
3032 cache->reserved) +
3033 (cache->length - cache->zone_capacity);
3034 btrfs_space_info_update_bytes_zone_unusable(cache->fs_info, sinfo,
3035 cache->zone_unusable);
3036 sinfo->bytes_readonly -= cache->zone_unusable;
3037 }
3038 num_bytes = cache->length - cache->reserved -
3039 cache->pinned - cache->bytes_super -
3040 cache->zone_unusable - cache->used;
3041 sinfo->bytes_readonly -= num_bytes;
3042 list_del_init(&cache->ro_list);
3043 }
3044 spin_unlock(&cache->lock);
3045 spin_unlock(&sinfo->lock);
3046 }
3047
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)3048 static int update_block_group_item(struct btrfs_trans_handle *trans,
3049 struct btrfs_path *path,
3050 struct btrfs_block_group *cache)
3051 {
3052 struct btrfs_fs_info *fs_info = trans->fs_info;
3053 int ret;
3054 struct btrfs_root *root = btrfs_block_group_root(fs_info);
3055 unsigned long bi;
3056 struct extent_buffer *leaf;
3057 struct btrfs_block_group_item bgi;
3058 struct btrfs_key key;
3059 u64 old_commit_used;
3060 u64 used;
3061
3062 /*
3063 * Block group items update can be triggered out of commit transaction
3064 * critical section, thus we need a consistent view of used bytes.
3065 * We cannot use cache->used directly outside of the spin lock, as it
3066 * may be changed.
3067 */
3068 spin_lock(&cache->lock);
3069 old_commit_used = cache->commit_used;
3070 used = cache->used;
3071 /* No change in used bytes, can safely skip it. */
3072 if (cache->commit_used == used) {
3073 spin_unlock(&cache->lock);
3074 return 0;
3075 }
3076 cache->commit_used = used;
3077 spin_unlock(&cache->lock);
3078
3079 key.objectid = cache->start;
3080 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
3081 key.offset = cache->length;
3082
3083 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3084 if (ret) {
3085 if (ret > 0)
3086 ret = -ENOENT;
3087 goto fail;
3088 }
3089
3090 leaf = path->nodes[0];
3091 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3092 btrfs_set_stack_block_group_used(&bgi, used);
3093 btrfs_set_stack_block_group_chunk_objectid(&bgi,
3094 cache->global_root_id);
3095 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
3096 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
3097 btrfs_mark_buffer_dirty(trans, leaf);
3098 fail:
3099 btrfs_release_path(path);
3100 /*
3101 * We didn't update the block group item, need to revert commit_used
3102 * unless the block group item didn't exist yet - this is to prevent a
3103 * race with a concurrent insertion of the block group item, with
3104 * insert_block_group_item(), that happened just after we attempted to
3105 * update. In that case we would reset commit_used to 0 just after the
3106 * insertion set it to a value greater than 0 - if the block group later
3107 * becomes with 0 used bytes, we would incorrectly skip its update.
3108 */
3109 if (ret < 0 && ret != -ENOENT) {
3110 spin_lock(&cache->lock);
3111 cache->commit_used = old_commit_used;
3112 spin_unlock(&cache->lock);
3113 }
3114 return ret;
3115
3116 }
3117
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3118 static int cache_save_setup(struct btrfs_block_group *block_group,
3119 struct btrfs_trans_handle *trans,
3120 struct btrfs_path *path)
3121 {
3122 struct btrfs_fs_info *fs_info = block_group->fs_info;
3123 struct btrfs_root *root = fs_info->tree_root;
3124 struct inode *inode = NULL;
3125 struct extent_changeset *data_reserved = NULL;
3126 u64 alloc_hint = 0;
3127 int dcs = BTRFS_DC_ERROR;
3128 u64 cache_size = 0;
3129 int retries = 0;
3130 int ret = 0;
3131
3132 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3133 return 0;
3134
3135 /*
3136 * If this block group is smaller than 100 megs don't bother caching the
3137 * block group.
3138 */
3139 if (block_group->length < (100 * SZ_1M)) {
3140 spin_lock(&block_group->lock);
3141 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3142 spin_unlock(&block_group->lock);
3143 return 0;
3144 }
3145
3146 if (TRANS_ABORTED(trans))
3147 return 0;
3148 again:
3149 inode = lookup_free_space_inode(block_group, path);
3150 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3151 ret = PTR_ERR(inode);
3152 btrfs_release_path(path);
3153 goto out;
3154 }
3155
3156 if (IS_ERR(inode)) {
3157 BUG_ON(retries);
3158 retries++;
3159
3160 if (block_group->ro)
3161 goto out_free;
3162
3163 ret = create_free_space_inode(trans, block_group, path);
3164 if (ret)
3165 goto out_free;
3166 goto again;
3167 }
3168
3169 /*
3170 * We want to set the generation to 0, that way if anything goes wrong
3171 * from here on out we know not to trust this cache when we load up next
3172 * time.
3173 */
3174 BTRFS_I(inode)->generation = 0;
3175 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3176 if (ret) {
3177 /*
3178 * So theoretically we could recover from this, simply set the
3179 * super cache generation to 0 so we know to invalidate the
3180 * cache, but then we'd have to keep track of the block groups
3181 * that fail this way so we know we _have_ to reset this cache
3182 * before the next commit or risk reading stale cache. So to
3183 * limit our exposure to horrible edge cases lets just abort the
3184 * transaction, this only happens in really bad situations
3185 * anyway.
3186 */
3187 btrfs_abort_transaction(trans, ret);
3188 goto out_put;
3189 }
3190 WARN_ON(ret);
3191
3192 /* We've already setup this transaction, go ahead and exit */
3193 if (block_group->cache_generation == trans->transid &&
3194 i_size_read(inode)) {
3195 dcs = BTRFS_DC_SETUP;
3196 goto out_put;
3197 }
3198
3199 if (i_size_read(inode) > 0) {
3200 ret = btrfs_check_trunc_cache_free_space(fs_info,
3201 &fs_info->global_block_rsv);
3202 if (ret)
3203 goto out_put;
3204
3205 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3206 if (ret)
3207 goto out_put;
3208 }
3209
3210 spin_lock(&block_group->lock);
3211 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3212 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3213 /*
3214 * don't bother trying to write stuff out _if_
3215 * a) we're not cached,
3216 * b) we're with nospace_cache mount option,
3217 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3218 */
3219 dcs = BTRFS_DC_WRITTEN;
3220 spin_unlock(&block_group->lock);
3221 goto out_put;
3222 }
3223 spin_unlock(&block_group->lock);
3224
3225 /*
3226 * We hit an ENOSPC when setting up the cache in this transaction, just
3227 * skip doing the setup, we've already cleared the cache so we're safe.
3228 */
3229 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3230 ret = -ENOSPC;
3231 goto out_put;
3232 }
3233
3234 /*
3235 * Try to preallocate enough space based on how big the block group is.
3236 * Keep in mind this has to include any pinned space which could end up
3237 * taking up quite a bit since it's not folded into the other space
3238 * cache.
3239 */
3240 cache_size = div_u64(block_group->length, SZ_256M);
3241 if (!cache_size)
3242 cache_size = 1;
3243
3244 cache_size *= 16;
3245 cache_size *= fs_info->sectorsize;
3246
3247 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3248 cache_size, false);
3249 if (ret)
3250 goto out_put;
3251
3252 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3253 cache_size, cache_size,
3254 &alloc_hint);
3255 /*
3256 * Our cache requires contiguous chunks so that we don't modify a bunch
3257 * of metadata or split extents when writing the cache out, which means
3258 * we can enospc if we are heavily fragmented in addition to just normal
3259 * out of space conditions. So if we hit this just skip setting up any
3260 * other block groups for this transaction, maybe we'll unpin enough
3261 * space the next time around.
3262 */
3263 if (!ret)
3264 dcs = BTRFS_DC_SETUP;
3265 else if (ret == -ENOSPC)
3266 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3267
3268 out_put:
3269 iput(inode);
3270 out_free:
3271 btrfs_release_path(path);
3272 out:
3273 spin_lock(&block_group->lock);
3274 if (!ret && dcs == BTRFS_DC_SETUP)
3275 block_group->cache_generation = trans->transid;
3276 block_group->disk_cache_state = dcs;
3277 spin_unlock(&block_group->lock);
3278
3279 extent_changeset_free(data_reserved);
3280 return ret;
3281 }
3282
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)3283 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3284 {
3285 struct btrfs_fs_info *fs_info = trans->fs_info;
3286 struct btrfs_block_group *cache, *tmp;
3287 struct btrfs_transaction *cur_trans = trans->transaction;
3288 struct btrfs_path *path;
3289
3290 if (list_empty(&cur_trans->dirty_bgs) ||
3291 !btrfs_test_opt(fs_info, SPACE_CACHE))
3292 return 0;
3293
3294 path = btrfs_alloc_path();
3295 if (!path)
3296 return -ENOMEM;
3297
3298 /* Could add new block groups, use _safe just in case */
3299 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3300 dirty_list) {
3301 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3302 cache_save_setup(cache, trans, path);
3303 }
3304
3305 btrfs_free_path(path);
3306 return 0;
3307 }
3308
3309 /*
3310 * Transaction commit does final block group cache writeback during a critical
3311 * section where nothing is allowed to change the FS. This is required in
3312 * order for the cache to actually match the block group, but can introduce a
3313 * lot of latency into the commit.
3314 *
3315 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3316 * There's a chance we'll have to redo some of it if the block group changes
3317 * again during the commit, but it greatly reduces the commit latency by
3318 * getting rid of the easy block groups while we're still allowing others to
3319 * join the commit.
3320 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)3321 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3322 {
3323 struct btrfs_fs_info *fs_info = trans->fs_info;
3324 struct btrfs_block_group *cache;
3325 struct btrfs_transaction *cur_trans = trans->transaction;
3326 int ret = 0;
3327 int should_put;
3328 struct btrfs_path *path = NULL;
3329 LIST_HEAD(dirty);
3330 struct list_head *io = &cur_trans->io_bgs;
3331 int loops = 0;
3332
3333 spin_lock(&cur_trans->dirty_bgs_lock);
3334 if (list_empty(&cur_trans->dirty_bgs)) {
3335 spin_unlock(&cur_trans->dirty_bgs_lock);
3336 return 0;
3337 }
3338 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3339 spin_unlock(&cur_trans->dirty_bgs_lock);
3340
3341 again:
3342 /* Make sure all the block groups on our dirty list actually exist */
3343 btrfs_create_pending_block_groups(trans);
3344
3345 if (!path) {
3346 path = btrfs_alloc_path();
3347 if (!path) {
3348 ret = -ENOMEM;
3349 goto out;
3350 }
3351 }
3352
3353 /*
3354 * cache_write_mutex is here only to save us from balance or automatic
3355 * removal of empty block groups deleting this block group while we are
3356 * writing out the cache
3357 */
3358 mutex_lock(&trans->transaction->cache_write_mutex);
3359 while (!list_empty(&dirty)) {
3360 bool drop_reserve = true;
3361
3362 cache = list_first_entry(&dirty, struct btrfs_block_group,
3363 dirty_list);
3364 /*
3365 * This can happen if something re-dirties a block group that
3366 * is already under IO. Just wait for it to finish and then do
3367 * it all again
3368 */
3369 if (!list_empty(&cache->io_list)) {
3370 list_del_init(&cache->io_list);
3371 btrfs_wait_cache_io(trans, cache, path);
3372 btrfs_put_block_group(cache);
3373 }
3374
3375
3376 /*
3377 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3378 * it should update the cache_state. Don't delete until after
3379 * we wait.
3380 *
3381 * Since we're not running in the commit critical section
3382 * we need the dirty_bgs_lock to protect from update_block_group
3383 */
3384 spin_lock(&cur_trans->dirty_bgs_lock);
3385 list_del_init(&cache->dirty_list);
3386 spin_unlock(&cur_trans->dirty_bgs_lock);
3387
3388 should_put = 1;
3389
3390 cache_save_setup(cache, trans, path);
3391
3392 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3393 cache->io_ctl.inode = NULL;
3394 ret = btrfs_write_out_cache(trans, cache, path);
3395 if (ret == 0 && cache->io_ctl.inode) {
3396 should_put = 0;
3397
3398 /*
3399 * The cache_write_mutex is protecting the
3400 * io_list, also refer to the definition of
3401 * btrfs_transaction::io_bgs for more details
3402 */
3403 list_add_tail(&cache->io_list, io);
3404 } else {
3405 /*
3406 * If we failed to write the cache, the
3407 * generation will be bad and life goes on
3408 */
3409 ret = 0;
3410 }
3411 }
3412 if (!ret) {
3413 ret = update_block_group_item(trans, path, cache);
3414 /*
3415 * Our block group might still be attached to the list
3416 * of new block groups in the transaction handle of some
3417 * other task (struct btrfs_trans_handle->new_bgs). This
3418 * means its block group item isn't yet in the extent
3419 * tree. If this happens ignore the error, as we will
3420 * try again later in the critical section of the
3421 * transaction commit.
3422 */
3423 if (ret == -ENOENT) {
3424 ret = 0;
3425 spin_lock(&cur_trans->dirty_bgs_lock);
3426 if (list_empty(&cache->dirty_list)) {
3427 list_add_tail(&cache->dirty_list,
3428 &cur_trans->dirty_bgs);
3429 btrfs_get_block_group(cache);
3430 drop_reserve = false;
3431 }
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433 } else if (ret) {
3434 btrfs_abort_transaction(trans, ret);
3435 }
3436 }
3437
3438 /* If it's not on the io list, we need to put the block group */
3439 if (should_put)
3440 btrfs_put_block_group(cache);
3441 if (drop_reserve)
3442 btrfs_delayed_refs_rsv_release(fs_info, 1);
3443 /*
3444 * Avoid blocking other tasks for too long. It might even save
3445 * us from writing caches for block groups that are going to be
3446 * removed.
3447 */
3448 mutex_unlock(&trans->transaction->cache_write_mutex);
3449 if (ret)
3450 goto out;
3451 mutex_lock(&trans->transaction->cache_write_mutex);
3452 }
3453 mutex_unlock(&trans->transaction->cache_write_mutex);
3454
3455 /*
3456 * Go through delayed refs for all the stuff we've just kicked off
3457 * and then loop back (just once)
3458 */
3459 if (!ret)
3460 ret = btrfs_run_delayed_refs(trans, 0);
3461 if (!ret && loops == 0) {
3462 loops++;
3463 spin_lock(&cur_trans->dirty_bgs_lock);
3464 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3465 /*
3466 * dirty_bgs_lock protects us from concurrent block group
3467 * deletes too (not just cache_write_mutex).
3468 */
3469 if (!list_empty(&dirty)) {
3470 spin_unlock(&cur_trans->dirty_bgs_lock);
3471 goto again;
3472 }
3473 spin_unlock(&cur_trans->dirty_bgs_lock);
3474 }
3475 out:
3476 if (ret < 0) {
3477 spin_lock(&cur_trans->dirty_bgs_lock);
3478 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3479 spin_unlock(&cur_trans->dirty_bgs_lock);
3480 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3481 }
3482
3483 btrfs_free_path(path);
3484 return ret;
3485 }
3486
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3487 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3488 {
3489 struct btrfs_fs_info *fs_info = trans->fs_info;
3490 struct btrfs_block_group *cache;
3491 struct btrfs_transaction *cur_trans = trans->transaction;
3492 int ret = 0;
3493 int should_put;
3494 struct btrfs_path *path;
3495 struct list_head *io = &cur_trans->io_bgs;
3496
3497 path = btrfs_alloc_path();
3498 if (!path)
3499 return -ENOMEM;
3500
3501 /*
3502 * Even though we are in the critical section of the transaction commit,
3503 * we can still have concurrent tasks adding elements to this
3504 * transaction's list of dirty block groups. These tasks correspond to
3505 * endio free space workers started when writeback finishes for a
3506 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3507 * allocate new block groups as a result of COWing nodes of the root
3508 * tree when updating the free space inode. The writeback for the space
3509 * caches is triggered by an earlier call to
3510 * btrfs_start_dirty_block_groups() and iterations of the following
3511 * loop.
3512 * Also we want to do the cache_save_setup first and then run the
3513 * delayed refs to make sure we have the best chance at doing this all
3514 * in one shot.
3515 */
3516 spin_lock(&cur_trans->dirty_bgs_lock);
3517 while (!list_empty(&cur_trans->dirty_bgs)) {
3518 cache = list_first_entry(&cur_trans->dirty_bgs,
3519 struct btrfs_block_group,
3520 dirty_list);
3521
3522 /*
3523 * This can happen if cache_save_setup re-dirties a block group
3524 * that is already under IO. Just wait for it to finish and
3525 * then do it all again
3526 */
3527 if (!list_empty(&cache->io_list)) {
3528 spin_unlock(&cur_trans->dirty_bgs_lock);
3529 list_del_init(&cache->io_list);
3530 btrfs_wait_cache_io(trans, cache, path);
3531 btrfs_put_block_group(cache);
3532 spin_lock(&cur_trans->dirty_bgs_lock);
3533 }
3534
3535 /*
3536 * Don't remove from the dirty list until after we've waited on
3537 * any pending IO
3538 */
3539 list_del_init(&cache->dirty_list);
3540 spin_unlock(&cur_trans->dirty_bgs_lock);
3541 should_put = 1;
3542
3543 cache_save_setup(cache, trans, path);
3544
3545 if (!ret)
3546 ret = btrfs_run_delayed_refs(trans,
3547 (unsigned long) -1);
3548
3549 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3550 cache->io_ctl.inode = NULL;
3551 ret = btrfs_write_out_cache(trans, cache, path);
3552 if (ret == 0 && cache->io_ctl.inode) {
3553 should_put = 0;
3554 list_add_tail(&cache->io_list, io);
3555 } else {
3556 /*
3557 * If we failed to write the cache, the
3558 * generation will be bad and life goes on
3559 */
3560 ret = 0;
3561 }
3562 }
3563 if (!ret) {
3564 ret = update_block_group_item(trans, path, cache);
3565 /*
3566 * One of the free space endio workers might have
3567 * created a new block group while updating a free space
3568 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3569 * and hasn't released its transaction handle yet, in
3570 * which case the new block group is still attached to
3571 * its transaction handle and its creation has not
3572 * finished yet (no block group item in the extent tree
3573 * yet, etc). If this is the case, wait for all free
3574 * space endio workers to finish and retry. This is a
3575 * very rare case so no need for a more efficient and
3576 * complex approach.
3577 */
3578 if (ret == -ENOENT) {
3579 wait_event(cur_trans->writer_wait,
3580 atomic_read(&cur_trans->num_writers) == 1);
3581 ret = update_block_group_item(trans, path, cache);
3582 }
3583 if (ret)
3584 btrfs_abort_transaction(trans, ret);
3585 }
3586
3587 /* If its not on the io list, we need to put the block group */
3588 if (should_put)
3589 btrfs_put_block_group(cache);
3590 btrfs_delayed_refs_rsv_release(fs_info, 1);
3591 spin_lock(&cur_trans->dirty_bgs_lock);
3592 }
3593 spin_unlock(&cur_trans->dirty_bgs_lock);
3594
3595 /*
3596 * Refer to the definition of io_bgs member for details why it's safe
3597 * to use it without any locking
3598 */
3599 while (!list_empty(io)) {
3600 cache = list_first_entry(io, struct btrfs_block_group,
3601 io_list);
3602 list_del_init(&cache->io_list);
3603 btrfs_wait_cache_io(trans, cache, path);
3604 btrfs_put_block_group(cache);
3605 }
3606
3607 btrfs_free_path(path);
3608 return ret;
3609 }
3610
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool alloc)3611 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3612 u64 bytenr, u64 num_bytes, bool alloc)
3613 {
3614 struct btrfs_fs_info *info = trans->fs_info;
3615 struct btrfs_block_group *cache = NULL;
3616 u64 total = num_bytes;
3617 u64 old_val;
3618 u64 byte_in_group;
3619 int factor;
3620 int ret = 0;
3621
3622 /* Block accounting for super block */
3623 spin_lock(&info->delalloc_root_lock);
3624 old_val = btrfs_super_bytes_used(info->super_copy);
3625 if (alloc)
3626 old_val += num_bytes;
3627 else
3628 old_val -= num_bytes;
3629 btrfs_set_super_bytes_used(info->super_copy, old_val);
3630 spin_unlock(&info->delalloc_root_lock);
3631
3632 while (total) {
3633 struct btrfs_space_info *space_info;
3634 bool reclaim = false;
3635
3636 cache = btrfs_lookup_block_group(info, bytenr);
3637 if (!cache) {
3638 ret = -ENOENT;
3639 break;
3640 }
3641 space_info = cache->space_info;
3642 factor = btrfs_bg_type_to_factor(cache->flags);
3643
3644 /*
3645 * If this block group has free space cache written out, we
3646 * need to make sure to load it if we are removing space. This
3647 * is because we need the unpinning stage to actually add the
3648 * space back to the block group, otherwise we will leak space.
3649 */
3650 if (!alloc && !btrfs_block_group_done(cache))
3651 btrfs_cache_block_group(cache, true);
3652
3653 byte_in_group = bytenr - cache->start;
3654 WARN_ON(byte_in_group > cache->length);
3655
3656 spin_lock(&space_info->lock);
3657 spin_lock(&cache->lock);
3658
3659 if (btrfs_test_opt(info, SPACE_CACHE) &&
3660 cache->disk_cache_state < BTRFS_DC_CLEAR)
3661 cache->disk_cache_state = BTRFS_DC_CLEAR;
3662
3663 old_val = cache->used;
3664 num_bytes = min(total, cache->length - byte_in_group);
3665 if (alloc) {
3666 old_val += num_bytes;
3667 cache->used = old_val;
3668 cache->reserved -= num_bytes;
3669 space_info->bytes_reserved -= num_bytes;
3670 space_info->bytes_used += num_bytes;
3671 space_info->disk_used += num_bytes * factor;
3672 spin_unlock(&cache->lock);
3673 spin_unlock(&space_info->lock);
3674 } else {
3675 old_val -= num_bytes;
3676 cache->used = old_val;
3677 cache->pinned += num_bytes;
3678 btrfs_space_info_update_bytes_pinned(info, space_info,
3679 num_bytes);
3680 space_info->bytes_used -= num_bytes;
3681 space_info->disk_used -= num_bytes * factor;
3682
3683 reclaim = should_reclaim_block_group(cache, num_bytes);
3684
3685 spin_unlock(&cache->lock);
3686 spin_unlock(&space_info->lock);
3687
3688 set_extent_bit(&trans->transaction->pinned_extents,
3689 bytenr, bytenr + num_bytes - 1,
3690 EXTENT_DIRTY, NULL);
3691 }
3692
3693 spin_lock(&trans->transaction->dirty_bgs_lock);
3694 if (list_empty(&cache->dirty_list)) {
3695 list_add_tail(&cache->dirty_list,
3696 &trans->transaction->dirty_bgs);
3697 trans->delayed_ref_updates++;
3698 btrfs_get_block_group(cache);
3699 }
3700 spin_unlock(&trans->transaction->dirty_bgs_lock);
3701
3702 /*
3703 * No longer have used bytes in this block group, queue it for
3704 * deletion. We do this after adding the block group to the
3705 * dirty list to avoid races between cleaner kthread and space
3706 * cache writeout.
3707 */
3708 if (!alloc && old_val == 0) {
3709 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3710 btrfs_mark_bg_unused(cache);
3711 } else if (!alloc && reclaim) {
3712 btrfs_mark_bg_to_reclaim(cache);
3713 }
3714
3715 btrfs_put_block_group(cache);
3716 total -= num_bytes;
3717 bytenr += num_bytes;
3718 }
3719
3720 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3721 btrfs_update_delayed_refs_rsv(trans);
3722 return ret;
3723 }
3724
3725 /*
3726 * Update the block_group and space info counters.
3727 *
3728 * @cache: The cache we are manipulating
3729 * @ram_bytes: The number of bytes of file content, and will be same to
3730 * @num_bytes except for the compress path.
3731 * @num_bytes: The number of bytes in question
3732 * @delalloc: The blocks are allocated for the delalloc write
3733 *
3734 * This is called by the allocator when it reserves space. If this is a
3735 * reservation and the block group has become read only we cannot make the
3736 * reservation and return -EAGAIN, otherwise this function always succeeds.
3737 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc,bool force_wrong_size_class)3738 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3739 u64 ram_bytes, u64 num_bytes, int delalloc,
3740 bool force_wrong_size_class)
3741 {
3742 struct btrfs_space_info *space_info = cache->space_info;
3743 enum btrfs_block_group_size_class size_class;
3744 int ret = 0;
3745
3746 spin_lock(&space_info->lock);
3747 spin_lock(&cache->lock);
3748 if (cache->ro) {
3749 ret = -EAGAIN;
3750 goto out;
3751 }
3752
3753 if (btrfs_block_group_should_use_size_class(cache)) {
3754 size_class = btrfs_calc_block_group_size_class(num_bytes);
3755 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3756 if (ret)
3757 goto out;
3758 }
3759 cache->reserved += num_bytes;
3760 space_info->bytes_reserved += num_bytes;
3761 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3762 space_info->flags, num_bytes, 1);
3763 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3764 space_info, -ram_bytes);
3765 if (delalloc)
3766 cache->delalloc_bytes += num_bytes;
3767
3768 /*
3769 * Compression can use less space than we reserved, so wake tickets if
3770 * that happens.
3771 */
3772 if (num_bytes < ram_bytes)
3773 btrfs_try_granting_tickets(cache->fs_info, space_info);
3774 out:
3775 spin_unlock(&cache->lock);
3776 spin_unlock(&space_info->lock);
3777 return ret;
3778 }
3779
3780 /*
3781 * Update the block_group and space info counters.
3782 *
3783 * @cache: The cache we are manipulating
3784 * @num_bytes: The number of bytes in question
3785 * @delalloc: The blocks are allocated for the delalloc write
3786 *
3787 * This is called by somebody who is freeing space that was never actually used
3788 * on disk. For example if you reserve some space for a new leaf in transaction
3789 * A and before transaction A commits you free that leaf, you call this with
3790 * reserve set to 0 in order to clear the reservation.
3791 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3792 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3793 u64 num_bytes, int delalloc)
3794 {
3795 struct btrfs_space_info *space_info = cache->space_info;
3796
3797 spin_lock(&space_info->lock);
3798 spin_lock(&cache->lock);
3799 if (cache->ro)
3800 space_info->bytes_readonly += num_bytes;
3801 else if (btrfs_is_zoned(cache->fs_info))
3802 space_info->bytes_zone_unusable += num_bytes;
3803 cache->reserved -= num_bytes;
3804 space_info->bytes_reserved -= num_bytes;
3805 space_info->max_extent_size = 0;
3806
3807 if (delalloc)
3808 cache->delalloc_bytes -= num_bytes;
3809 spin_unlock(&cache->lock);
3810
3811 btrfs_try_granting_tickets(cache->fs_info, space_info);
3812 spin_unlock(&space_info->lock);
3813 }
3814
force_metadata_allocation(struct btrfs_fs_info * info)3815 static void force_metadata_allocation(struct btrfs_fs_info *info)
3816 {
3817 struct list_head *head = &info->space_info;
3818 struct btrfs_space_info *found;
3819
3820 list_for_each_entry(found, head, list) {
3821 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3822 found->force_alloc = CHUNK_ALLOC_FORCE;
3823 }
3824 }
3825
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3826 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3827 struct btrfs_space_info *sinfo, int force)
3828 {
3829 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3830 u64 thresh;
3831
3832 if (force == CHUNK_ALLOC_FORCE)
3833 return 1;
3834
3835 /*
3836 * in limited mode, we want to have some free space up to
3837 * about 1% of the FS size.
3838 */
3839 if (force == CHUNK_ALLOC_LIMITED) {
3840 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3841 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3842
3843 if (sinfo->total_bytes - bytes_used < thresh)
3844 return 1;
3845 }
3846
3847 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3848 return 0;
3849 return 1;
3850 }
3851
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3852 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3853 {
3854 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3855
3856 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3857 }
3858
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3859 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3860 {
3861 struct btrfs_block_group *bg;
3862 int ret;
3863
3864 /*
3865 * Check if we have enough space in the system space info because we
3866 * will need to update device items in the chunk btree and insert a new
3867 * chunk item in the chunk btree as well. This will allocate a new
3868 * system block group if needed.
3869 */
3870 check_system_chunk(trans, flags);
3871
3872 bg = btrfs_create_chunk(trans, flags);
3873 if (IS_ERR(bg)) {
3874 ret = PTR_ERR(bg);
3875 goto out;
3876 }
3877
3878 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3879 /*
3880 * Normally we are not expected to fail with -ENOSPC here, since we have
3881 * previously reserved space in the system space_info and allocated one
3882 * new system chunk if necessary. However there are three exceptions:
3883 *
3884 * 1) We may have enough free space in the system space_info but all the
3885 * existing system block groups have a profile which can not be used
3886 * for extent allocation.
3887 *
3888 * This happens when mounting in degraded mode. For example we have a
3889 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3890 * using the other device in degraded mode. If we then allocate a chunk,
3891 * we may have enough free space in the existing system space_info, but
3892 * none of the block groups can be used for extent allocation since they
3893 * have a RAID1 profile, and because we are in degraded mode with a
3894 * single device, we are forced to allocate a new system chunk with a
3895 * SINGLE profile. Making check_system_chunk() iterate over all system
3896 * block groups and check if they have a usable profile and enough space
3897 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3898 * try again after forcing allocation of a new system chunk. Like this
3899 * we avoid paying the cost of that search in normal circumstances, when
3900 * we were not mounted in degraded mode;
3901 *
3902 * 2) We had enough free space info the system space_info, and one suitable
3903 * block group to allocate from when we called check_system_chunk()
3904 * above. However right after we called it, the only system block group
3905 * with enough free space got turned into RO mode by a running scrub,
3906 * and in this case we have to allocate a new one and retry. We only
3907 * need do this allocate and retry once, since we have a transaction
3908 * handle and scrub uses the commit root to search for block groups;
3909 *
3910 * 3) We had one system block group with enough free space when we called
3911 * check_system_chunk(), but after that, right before we tried to
3912 * allocate the last extent buffer we needed, a discard operation came
3913 * in and it temporarily removed the last free space entry from the
3914 * block group (discard removes a free space entry, discards it, and
3915 * then adds back the entry to the block group cache).
3916 */
3917 if (ret == -ENOSPC) {
3918 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3919 struct btrfs_block_group *sys_bg;
3920
3921 sys_bg = btrfs_create_chunk(trans, sys_flags);
3922 if (IS_ERR(sys_bg)) {
3923 ret = PTR_ERR(sys_bg);
3924 btrfs_abort_transaction(trans, ret);
3925 goto out;
3926 }
3927
3928 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3929 if (ret) {
3930 btrfs_abort_transaction(trans, ret);
3931 goto out;
3932 }
3933
3934 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3935 if (ret) {
3936 btrfs_abort_transaction(trans, ret);
3937 goto out;
3938 }
3939 } else if (ret) {
3940 btrfs_abort_transaction(trans, ret);
3941 goto out;
3942 }
3943 out:
3944 btrfs_trans_release_chunk_metadata(trans);
3945
3946 if (ret)
3947 return ERR_PTR(ret);
3948
3949 btrfs_get_block_group(bg);
3950 return bg;
3951 }
3952
3953 /*
3954 * Chunk allocation is done in 2 phases:
3955 *
3956 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3957 * the chunk, the chunk mapping, create its block group and add the items
3958 * that belong in the chunk btree to it - more specifically, we need to
3959 * update device items in the chunk btree and add a new chunk item to it.
3960 *
3961 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3962 * group item to the extent btree and the device extent items to the devices
3963 * btree.
3964 *
3965 * This is done to prevent deadlocks. For example when COWing a node from the
3966 * extent btree we are holding a write lock on the node's parent and if we
3967 * trigger chunk allocation and attempted to insert the new block group item
3968 * in the extent btree right way, we could deadlock because the path for the
3969 * insertion can include that parent node. At first glance it seems impossible
3970 * to trigger chunk allocation after starting a transaction since tasks should
3971 * reserve enough transaction units (metadata space), however while that is true
3972 * most of the time, chunk allocation may still be triggered for several reasons:
3973 *
3974 * 1) When reserving metadata, we check if there is enough free space in the
3975 * metadata space_info and therefore don't trigger allocation of a new chunk.
3976 * However later when the task actually tries to COW an extent buffer from
3977 * the extent btree or from the device btree for example, it is forced to
3978 * allocate a new block group (chunk) because the only one that had enough
3979 * free space was just turned to RO mode by a running scrub for example (or
3980 * device replace, block group reclaim thread, etc), so we can not use it
3981 * for allocating an extent and end up being forced to allocate a new one;
3982 *
3983 * 2) Because we only check that the metadata space_info has enough free bytes,
3984 * we end up not allocating a new metadata chunk in that case. However if
3985 * the filesystem was mounted in degraded mode, none of the existing block
3986 * groups might be suitable for extent allocation due to their incompatible
3987 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3988 * use a RAID1 profile, in degraded mode using a single device). In this case
3989 * when the task attempts to COW some extent buffer of the extent btree for
3990 * example, it will trigger allocation of a new metadata block group with a
3991 * suitable profile (SINGLE profile in the example of the degraded mount of
3992 * the RAID1 filesystem);
3993 *
3994 * 3) The task has reserved enough transaction units / metadata space, but when
3995 * it attempts to COW an extent buffer from the extent or device btree for
3996 * example, it does not find any free extent in any metadata block group,
3997 * therefore forced to try to allocate a new metadata block group.
3998 * This is because some other task allocated all available extents in the
3999 * meanwhile - this typically happens with tasks that don't reserve space
4000 * properly, either intentionally or as a bug. One example where this is
4001 * done intentionally is fsync, as it does not reserve any transaction units
4002 * and ends up allocating a variable number of metadata extents for log
4003 * tree extent buffers;
4004 *
4005 * 4) The task has reserved enough transaction units / metadata space, but right
4006 * before it tries to allocate the last extent buffer it needs, a discard
4007 * operation comes in and, temporarily, removes the last free space entry from
4008 * the only metadata block group that had free space (discard starts by
4009 * removing a free space entry from a block group, then does the discard
4010 * operation and, once it's done, it adds back the free space entry to the
4011 * block group).
4012 *
4013 * We also need this 2 phases setup when adding a device to a filesystem with
4014 * a seed device - we must create new metadata and system chunks without adding
4015 * any of the block group items to the chunk, extent and device btrees. If we
4016 * did not do it this way, we would get ENOSPC when attempting to update those
4017 * btrees, since all the chunks from the seed device are read-only.
4018 *
4019 * Phase 1 does the updates and insertions to the chunk btree because if we had
4020 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
4021 * parallel, we risk having too many system chunks allocated by many tasks if
4022 * many tasks reach phase 1 without the previous ones completing phase 2. In the
4023 * extreme case this leads to exhaustion of the system chunk array in the
4024 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
4025 * and with RAID filesystems (so we have more device items in the chunk btree).
4026 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
4027 * the system chunk array due to concurrent allocations") provides more details.
4028 *
4029 * Allocation of system chunks does not happen through this function. A task that
4030 * needs to update the chunk btree (the only btree that uses system chunks), must
4031 * preallocate chunk space by calling either check_system_chunk() or
4032 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
4033 * metadata chunk or when removing a chunk, while the later is used before doing
4034 * a modification to the chunk btree - use cases for the later are adding,
4035 * removing and resizing a device as well as relocation of a system chunk.
4036 * See the comment below for more details.
4037 *
4038 * The reservation of system space, done through check_system_chunk(), as well
4039 * as all the updates and insertions into the chunk btree must be done while
4040 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
4041 * an extent buffer from the chunks btree we never trigger allocation of a new
4042 * system chunk, which would result in a deadlock (trying to lock twice an
4043 * extent buffer of the chunk btree, first time before triggering the chunk
4044 * allocation and the second time during chunk allocation while attempting to
4045 * update the chunks btree). The system chunk array is also updated while holding
4046 * that mutex. The same logic applies to removing chunks - we must reserve system
4047 * space, update the chunk btree and the system chunk array in the superblock
4048 * while holding fs_info->chunk_mutex.
4049 *
4050 * This function, btrfs_chunk_alloc(), belongs to phase 1.
4051 *
4052 * If @force is CHUNK_ALLOC_FORCE:
4053 * - return 1 if it successfully allocates a chunk,
4054 * - return errors including -ENOSPC otherwise.
4055 * If @force is NOT CHUNK_ALLOC_FORCE:
4056 * - return 0 if it doesn't need to allocate a new chunk,
4057 * - return 1 if it successfully allocates a chunk,
4058 * - return errors including -ENOSPC otherwise.
4059 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)4060 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4061 enum btrfs_chunk_alloc_enum force)
4062 {
4063 struct btrfs_fs_info *fs_info = trans->fs_info;
4064 struct btrfs_space_info *space_info;
4065 struct btrfs_block_group *ret_bg;
4066 bool wait_for_alloc = false;
4067 bool should_alloc = false;
4068 bool from_extent_allocation = false;
4069 int ret = 0;
4070
4071 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
4072 from_extent_allocation = true;
4073 force = CHUNK_ALLOC_FORCE;
4074 }
4075
4076 /* Don't re-enter if we're already allocating a chunk */
4077 if (trans->allocating_chunk)
4078 return -ENOSPC;
4079 /*
4080 * Allocation of system chunks can not happen through this path, as we
4081 * could end up in a deadlock if we are allocating a data or metadata
4082 * chunk and there is another task modifying the chunk btree.
4083 *
4084 * This is because while we are holding the chunk mutex, we will attempt
4085 * to add the new chunk item to the chunk btree or update an existing
4086 * device item in the chunk btree, while the other task that is modifying
4087 * the chunk btree is attempting to COW an extent buffer while holding a
4088 * lock on it and on its parent - if the COW operation triggers a system
4089 * chunk allocation, then we can deadlock because we are holding the
4090 * chunk mutex and we may need to access that extent buffer or its parent
4091 * in order to add the chunk item or update a device item.
4092 *
4093 * Tasks that want to modify the chunk tree should reserve system space
4094 * before updating the chunk btree, by calling either
4095 * btrfs_reserve_chunk_metadata() or check_system_chunk().
4096 * It's possible that after a task reserves the space, it still ends up
4097 * here - this happens in the cases described above at do_chunk_alloc().
4098 * The task will have to either retry or fail.
4099 */
4100 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4101 return -ENOSPC;
4102
4103 space_info = btrfs_find_space_info(fs_info, flags);
4104 ASSERT(space_info);
4105
4106 do {
4107 spin_lock(&space_info->lock);
4108 if (force < space_info->force_alloc)
4109 force = space_info->force_alloc;
4110 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4111 if (space_info->full) {
4112 /* No more free physical space */
4113 if (should_alloc)
4114 ret = -ENOSPC;
4115 else
4116 ret = 0;
4117 spin_unlock(&space_info->lock);
4118 return ret;
4119 } else if (!should_alloc) {
4120 spin_unlock(&space_info->lock);
4121 return 0;
4122 } else if (space_info->chunk_alloc) {
4123 /*
4124 * Someone is already allocating, so we need to block
4125 * until this someone is finished and then loop to
4126 * recheck if we should continue with our allocation
4127 * attempt.
4128 */
4129 wait_for_alloc = true;
4130 force = CHUNK_ALLOC_NO_FORCE;
4131 spin_unlock(&space_info->lock);
4132 mutex_lock(&fs_info->chunk_mutex);
4133 mutex_unlock(&fs_info->chunk_mutex);
4134 } else {
4135 /* Proceed with allocation */
4136 space_info->chunk_alloc = 1;
4137 wait_for_alloc = false;
4138 spin_unlock(&space_info->lock);
4139 }
4140
4141 cond_resched();
4142 } while (wait_for_alloc);
4143
4144 mutex_lock(&fs_info->chunk_mutex);
4145 trans->allocating_chunk = true;
4146
4147 /*
4148 * If we have mixed data/metadata chunks we want to make sure we keep
4149 * allocating mixed chunks instead of individual chunks.
4150 */
4151 if (btrfs_mixed_space_info(space_info))
4152 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4153
4154 /*
4155 * if we're doing a data chunk, go ahead and make sure that
4156 * we keep a reasonable number of metadata chunks allocated in the
4157 * FS as well.
4158 */
4159 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4160 fs_info->data_chunk_allocations++;
4161 if (!(fs_info->data_chunk_allocations %
4162 fs_info->metadata_ratio))
4163 force_metadata_allocation(fs_info);
4164 }
4165
4166 ret_bg = do_chunk_alloc(trans, flags);
4167 trans->allocating_chunk = false;
4168
4169 if (IS_ERR(ret_bg)) {
4170 ret = PTR_ERR(ret_bg);
4171 } else if (from_extent_allocation && (flags & BTRFS_BLOCK_GROUP_DATA)) {
4172 /*
4173 * New block group is likely to be used soon. Try to activate
4174 * it now. Failure is OK for now.
4175 */
4176 btrfs_zone_activate(ret_bg);
4177 }
4178
4179 if (!ret)
4180 btrfs_put_block_group(ret_bg);
4181
4182 spin_lock(&space_info->lock);
4183 if (ret < 0) {
4184 if (ret == -ENOSPC)
4185 space_info->full = 1;
4186 else
4187 goto out;
4188 } else {
4189 ret = 1;
4190 space_info->max_extent_size = 0;
4191 }
4192
4193 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4194 out:
4195 space_info->chunk_alloc = 0;
4196 spin_unlock(&space_info->lock);
4197 mutex_unlock(&fs_info->chunk_mutex);
4198
4199 return ret;
4200 }
4201
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)4202 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4203 {
4204 u64 num_dev;
4205
4206 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4207 if (!num_dev)
4208 num_dev = fs_info->fs_devices->rw_devices;
4209
4210 return num_dev;
4211 }
4212
reserve_chunk_space(struct btrfs_trans_handle * trans,u64 bytes,u64 type)4213 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4214 u64 bytes,
4215 u64 type)
4216 {
4217 struct btrfs_fs_info *fs_info = trans->fs_info;
4218 struct btrfs_space_info *info;
4219 u64 left;
4220 int ret = 0;
4221
4222 /*
4223 * Needed because we can end up allocating a system chunk and for an
4224 * atomic and race free space reservation in the chunk block reserve.
4225 */
4226 lockdep_assert_held(&fs_info->chunk_mutex);
4227
4228 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4229 spin_lock(&info->lock);
4230 left = info->total_bytes - btrfs_space_info_used(info, true);
4231 spin_unlock(&info->lock);
4232
4233 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4234 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4235 left, bytes, type);
4236 btrfs_dump_space_info(fs_info, info, 0, 0);
4237 }
4238
4239 if (left < bytes) {
4240 u64 flags = btrfs_system_alloc_profile(fs_info);
4241 struct btrfs_block_group *bg;
4242
4243 /*
4244 * Ignore failure to create system chunk. We might end up not
4245 * needing it, as we might not need to COW all nodes/leafs from
4246 * the paths we visit in the chunk tree (they were already COWed
4247 * or created in the current transaction for example).
4248 */
4249 bg = btrfs_create_chunk(trans, flags);
4250 if (IS_ERR(bg)) {
4251 ret = PTR_ERR(bg);
4252 } else {
4253 /*
4254 * We have a new chunk. We also need to activate it for
4255 * zoned filesystem.
4256 */
4257 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4258 if (ret < 0)
4259 return;
4260
4261 /*
4262 * If we fail to add the chunk item here, we end up
4263 * trying again at phase 2 of chunk allocation, at
4264 * btrfs_create_pending_block_groups(). So ignore
4265 * any error here. An ENOSPC here could happen, due to
4266 * the cases described at do_chunk_alloc() - the system
4267 * block group we just created was just turned into RO
4268 * mode by a scrub for example, or a running discard
4269 * temporarily removed its free space entries, etc.
4270 */
4271 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4272 }
4273 }
4274
4275 if (!ret) {
4276 ret = btrfs_block_rsv_add(fs_info,
4277 &fs_info->chunk_block_rsv,
4278 bytes, BTRFS_RESERVE_NO_FLUSH);
4279 if (!ret)
4280 trans->chunk_bytes_reserved += bytes;
4281 }
4282 }
4283
4284 /*
4285 * Reserve space in the system space for allocating or removing a chunk.
4286 * The caller must be holding fs_info->chunk_mutex.
4287 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)4288 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4289 {
4290 struct btrfs_fs_info *fs_info = trans->fs_info;
4291 const u64 num_devs = get_profile_num_devs(fs_info, type);
4292 u64 bytes;
4293
4294 /* num_devs device items to update and 1 chunk item to add or remove. */
4295 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4296 btrfs_calc_insert_metadata_size(fs_info, 1);
4297
4298 reserve_chunk_space(trans, bytes, type);
4299 }
4300
4301 /*
4302 * Reserve space in the system space, if needed, for doing a modification to the
4303 * chunk btree.
4304 *
4305 * @trans: A transaction handle.
4306 * @is_item_insertion: Indicate if the modification is for inserting a new item
4307 * in the chunk btree or if it's for the deletion or update
4308 * of an existing item.
4309 *
4310 * This is used in a context where we need to update the chunk btree outside
4311 * block group allocation and removal, to avoid a deadlock with a concurrent
4312 * task that is allocating a metadata or data block group and therefore needs to
4313 * update the chunk btree while holding the chunk mutex. After the update to the
4314 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4315 *
4316 */
btrfs_reserve_chunk_metadata(struct btrfs_trans_handle * trans,bool is_item_insertion)4317 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4318 bool is_item_insertion)
4319 {
4320 struct btrfs_fs_info *fs_info = trans->fs_info;
4321 u64 bytes;
4322
4323 if (is_item_insertion)
4324 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4325 else
4326 bytes = btrfs_calc_metadata_size(fs_info, 1);
4327
4328 mutex_lock(&fs_info->chunk_mutex);
4329 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4330 mutex_unlock(&fs_info->chunk_mutex);
4331 }
4332
btrfs_put_block_group_cache(struct btrfs_fs_info * info)4333 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4334 {
4335 struct btrfs_block_group *block_group;
4336
4337 block_group = btrfs_lookup_first_block_group(info, 0);
4338 while (block_group) {
4339 btrfs_wait_block_group_cache_done(block_group);
4340 spin_lock(&block_group->lock);
4341 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4342 &block_group->runtime_flags)) {
4343 struct inode *inode = block_group->inode;
4344
4345 block_group->inode = NULL;
4346 spin_unlock(&block_group->lock);
4347
4348 ASSERT(block_group->io_ctl.inode == NULL);
4349 iput(inode);
4350 } else {
4351 spin_unlock(&block_group->lock);
4352 }
4353 block_group = btrfs_next_block_group(block_group);
4354 }
4355 }
4356
4357 /*
4358 * Must be called only after stopping all workers, since we could have block
4359 * group caching kthreads running, and therefore they could race with us if we
4360 * freed the block groups before stopping them.
4361 */
btrfs_free_block_groups(struct btrfs_fs_info * info)4362 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4363 {
4364 struct btrfs_block_group *block_group;
4365 struct btrfs_space_info *space_info;
4366 struct btrfs_caching_control *caching_ctl;
4367 struct rb_node *n;
4368
4369 if (btrfs_is_zoned(info)) {
4370 if (info->active_meta_bg) {
4371 btrfs_put_block_group(info->active_meta_bg);
4372 info->active_meta_bg = NULL;
4373 }
4374 if (info->active_system_bg) {
4375 btrfs_put_block_group(info->active_system_bg);
4376 info->active_system_bg = NULL;
4377 }
4378 }
4379
4380 write_lock(&info->block_group_cache_lock);
4381 while (!list_empty(&info->caching_block_groups)) {
4382 caching_ctl = list_entry(info->caching_block_groups.next,
4383 struct btrfs_caching_control, list);
4384 list_del(&caching_ctl->list);
4385 btrfs_put_caching_control(caching_ctl);
4386 }
4387 write_unlock(&info->block_group_cache_lock);
4388
4389 spin_lock(&info->unused_bgs_lock);
4390 while (!list_empty(&info->unused_bgs)) {
4391 block_group = list_first_entry(&info->unused_bgs,
4392 struct btrfs_block_group,
4393 bg_list);
4394 list_del_init(&block_group->bg_list);
4395 btrfs_put_block_group(block_group);
4396 }
4397
4398 while (!list_empty(&info->reclaim_bgs)) {
4399 block_group = list_first_entry(&info->reclaim_bgs,
4400 struct btrfs_block_group,
4401 bg_list);
4402 list_del_init(&block_group->bg_list);
4403 btrfs_put_block_group(block_group);
4404 }
4405 spin_unlock(&info->unused_bgs_lock);
4406
4407 spin_lock(&info->zone_active_bgs_lock);
4408 while (!list_empty(&info->zone_active_bgs)) {
4409 block_group = list_first_entry(&info->zone_active_bgs,
4410 struct btrfs_block_group,
4411 active_bg_list);
4412 list_del_init(&block_group->active_bg_list);
4413 btrfs_put_block_group(block_group);
4414 }
4415 spin_unlock(&info->zone_active_bgs_lock);
4416
4417 write_lock(&info->block_group_cache_lock);
4418 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4419 block_group = rb_entry(n, struct btrfs_block_group,
4420 cache_node);
4421 rb_erase_cached(&block_group->cache_node,
4422 &info->block_group_cache_tree);
4423 RB_CLEAR_NODE(&block_group->cache_node);
4424 write_unlock(&info->block_group_cache_lock);
4425
4426 down_write(&block_group->space_info->groups_sem);
4427 list_del(&block_group->list);
4428 up_write(&block_group->space_info->groups_sem);
4429
4430 /*
4431 * We haven't cached this block group, which means we could
4432 * possibly have excluded extents on this block group.
4433 */
4434 if (block_group->cached == BTRFS_CACHE_NO ||
4435 block_group->cached == BTRFS_CACHE_ERROR)
4436 btrfs_free_excluded_extents(block_group);
4437
4438 btrfs_remove_free_space_cache(block_group);
4439 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4440 ASSERT(list_empty(&block_group->dirty_list));
4441 ASSERT(list_empty(&block_group->io_list));
4442 ASSERT(list_empty(&block_group->bg_list));
4443 ASSERT(refcount_read(&block_group->refs) == 1);
4444 ASSERT(block_group->swap_extents == 0);
4445 btrfs_put_block_group(block_group);
4446
4447 write_lock(&info->block_group_cache_lock);
4448 }
4449 write_unlock(&info->block_group_cache_lock);
4450
4451 btrfs_release_global_block_rsv(info);
4452
4453 while (!list_empty(&info->space_info)) {
4454 space_info = list_entry(info->space_info.next,
4455 struct btrfs_space_info,
4456 list);
4457
4458 /*
4459 * Do not hide this behind enospc_debug, this is actually
4460 * important and indicates a real bug if this happens.
4461 */
4462 if (WARN_ON(space_info->bytes_pinned > 0 ||
4463 space_info->bytes_may_use > 0))
4464 btrfs_dump_space_info(info, space_info, 0, 0);
4465
4466 /*
4467 * If there was a failure to cleanup a log tree, very likely due
4468 * to an IO failure on a writeback attempt of one or more of its
4469 * extent buffers, we could not do proper (and cheap) unaccounting
4470 * of their reserved space, so don't warn on bytes_reserved > 0 in
4471 * that case.
4472 */
4473 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4474 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4475 if (WARN_ON(space_info->bytes_reserved > 0))
4476 btrfs_dump_space_info(info, space_info, 0, 0);
4477 }
4478
4479 WARN_ON(space_info->reclaim_size > 0);
4480 list_del(&space_info->list);
4481 btrfs_sysfs_remove_space_info(space_info);
4482 }
4483 return 0;
4484 }
4485
btrfs_freeze_block_group(struct btrfs_block_group * cache)4486 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4487 {
4488 atomic_inc(&cache->frozen);
4489 }
4490
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)4491 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4492 {
4493 struct btrfs_fs_info *fs_info = block_group->fs_info;
4494 struct extent_map_tree *em_tree;
4495 struct extent_map *em;
4496 bool cleanup;
4497
4498 spin_lock(&block_group->lock);
4499 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4500 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4501 spin_unlock(&block_group->lock);
4502
4503 if (cleanup) {
4504 em_tree = &fs_info->mapping_tree;
4505 write_lock(&em_tree->lock);
4506 em = lookup_extent_mapping(em_tree, block_group->start,
4507 1);
4508 BUG_ON(!em); /* logic error, can't happen */
4509 remove_extent_mapping(em_tree, em);
4510 write_unlock(&em_tree->lock);
4511
4512 /* once for us and once for the tree */
4513 free_extent_map(em);
4514 free_extent_map(em);
4515
4516 /*
4517 * We may have left one free space entry and other possible
4518 * tasks trimming this block group have left 1 entry each one.
4519 * Free them if any.
4520 */
4521 btrfs_remove_free_space_cache(block_group);
4522 }
4523 }
4524
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)4525 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4526 {
4527 bool ret = true;
4528
4529 spin_lock(&bg->lock);
4530 if (bg->ro)
4531 ret = false;
4532 else
4533 bg->swap_extents++;
4534 spin_unlock(&bg->lock);
4535
4536 return ret;
4537 }
4538
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)4539 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4540 {
4541 spin_lock(&bg->lock);
4542 ASSERT(!bg->ro);
4543 ASSERT(bg->swap_extents >= amount);
4544 bg->swap_extents -= amount;
4545 spin_unlock(&bg->lock);
4546 }
4547
btrfs_calc_block_group_size_class(u64 size)4548 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4549 {
4550 if (size <= SZ_128K)
4551 return BTRFS_BG_SZ_SMALL;
4552 if (size <= SZ_8M)
4553 return BTRFS_BG_SZ_MEDIUM;
4554 return BTRFS_BG_SZ_LARGE;
4555 }
4556
4557 /*
4558 * Handle a block group allocating an extent in a size class
4559 *
4560 * @bg: The block group we allocated in.
4561 * @size_class: The size class of the allocation.
4562 * @force_wrong_size_class: Whether we are desperate enough to allow
4563 * mismatched size classes.
4564 *
4565 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4566 * case of a race that leads to the wrong size class without
4567 * force_wrong_size_class set.
4568 *
4569 * find_free_extent will skip block groups with a mismatched size class until
4570 * it really needs to avoid ENOSPC. In that case it will set
4571 * force_wrong_size_class. However, if a block group is newly allocated and
4572 * doesn't yet have a size class, then it is possible for two allocations of
4573 * different sizes to race and both try to use it. The loser is caught here and
4574 * has to retry.
4575 */
btrfs_use_block_group_size_class(struct btrfs_block_group * bg,enum btrfs_block_group_size_class size_class,bool force_wrong_size_class)4576 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4577 enum btrfs_block_group_size_class size_class,
4578 bool force_wrong_size_class)
4579 {
4580 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4581
4582 /* The new allocation is in the right size class, do nothing */
4583 if (bg->size_class == size_class)
4584 return 0;
4585 /*
4586 * The new allocation is in a mismatched size class.
4587 * This means one of two things:
4588 *
4589 * 1. Two tasks in find_free_extent for different size_classes raced
4590 * and hit the same empty block_group. Make the loser try again.
4591 * 2. A call to find_free_extent got desperate enough to set
4592 * 'force_wrong_slab'. Don't change the size_class, but allow the
4593 * allocation.
4594 */
4595 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4596 if (force_wrong_size_class)
4597 return 0;
4598 return -EAGAIN;
4599 }
4600 /*
4601 * The happy new block group case: the new allocation is the first
4602 * one in the block_group so we set size_class.
4603 */
4604 bg->size_class = size_class;
4605
4606 return 0;
4607 }
4608
btrfs_block_group_should_use_size_class(struct btrfs_block_group * bg)4609 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4610 {
4611 if (btrfs_is_zoned(bg->fs_info))
4612 return false;
4613 if (!btrfs_is_block_group_data_only(bg))
4614 return false;
4615 return true;
4616 }
4617