1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "extent_map.h"
18 #include "disk-io.h"
19 #include "transaction.h"
20 #include "print-tree.h"
21 #include "volumes.h"
22 #include "raid56.h"
23 #include "rcu-string.h"
24 #include "dev-replace.h"
25 #include "sysfs.h"
26 #include "tree-checker.h"
27 #include "space-info.h"
28 #include "block-group.h"
29 #include "discard.h"
30 #include "zoned.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 #include "super.h"
38
39 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
43 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
48 .devs_min = 2,
49 .tolerated_failures = 1,
50 .devs_increment = 2,
51 .ncopies = 2,
52 .nparity = 0,
53 .raid_name = "raid10",
54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
62 .tolerated_failures = 1,
63 .devs_increment = 2,
64 .ncopies = 2,
65 .nparity = 0,
66 .raid_name = "raid1",
67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
69 },
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
73 .devs_max = 3,
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
78 .nparity = 0,
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 4,
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
91 .nparity = 0,
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
101 .tolerated_failures = 0,
102 .devs_increment = 1,
103 .ncopies = 2,
104 .nparity = 0,
105 .raid_name = "dup",
106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
107 .mindev_error = 0,
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
113 .devs_min = 1,
114 .tolerated_failures = 0,
115 .devs_increment = 1,
116 .ncopies = 1,
117 .nparity = 0,
118 .raid_name = "raid0",
119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
120 .mindev_error = 0,
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
127 .tolerated_failures = 0,
128 .devs_increment = 1,
129 .ncopies = 1,
130 .nparity = 0,
131 .raid_name = "single",
132 .bg_flag = 0,
133 .mindev_error = 0,
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
140 .tolerated_failures = 1,
141 .devs_increment = 1,
142 .ncopies = 1,
143 .nparity = 1,
144 .raid_name = "raid5",
145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
153 .tolerated_failures = 2,
154 .devs_increment = 1,
155 .ncopies = 1,
156 .nparity = 2,
157 .raid_name = "raid6",
158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
160 },
161 };
162
163 /*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
btrfs_bg_flags_to_raid_index(u64 flags)167 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168 {
169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
170
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
175 }
176
btrfs_bg_type_to_raid_name(u64 flags)177 const char *btrfs_bg_type_to_raid_name(u64 flags)
178 {
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
182 return NULL;
183
184 return btrfs_raid_array[index].raid_name;
185 }
186
btrfs_nr_parity_stripes(u64 type)187 int btrfs_nr_parity_stripes(u64 type)
188 {
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192 }
193
194 /*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)198 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199 {
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211 #define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231 #undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245 out_overflow:;
246 }
247
248 static int init_first_rw_device(struct btrfs_trans_handle *trans);
249 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
250 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
251
252 /*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
268 * seeding, structure cloning, opening/closing devices at mount/umount time
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
315 *
316 *
317 * Exclusive operations
318 * ====================
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
348 * The exclusive status is cleared when the device operation is canceled or
349 * completed.
350 */
351
352 DEFINE_MUTEX(uuid_mutex);
353 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)354 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
355 {
356 return &fs_uuids;
357 }
358
359 /*
360 * alloc_fs_devices - allocate struct btrfs_fs_devices
361 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
362 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
363 *
364 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
365 * The returned struct is not linked onto any lists and can be destroyed with
366 * kfree() right away.
367 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)368 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
369 const u8 *metadata_fsid)
370 {
371 struct btrfs_fs_devices *fs_devs;
372
373 ASSERT(fsid || !metadata_fsid);
374
375 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
376 if (!fs_devs)
377 return ERR_PTR(-ENOMEM);
378
379 mutex_init(&fs_devs->device_list_mutex);
380
381 INIT_LIST_HEAD(&fs_devs->devices);
382 INIT_LIST_HEAD(&fs_devs->alloc_list);
383 INIT_LIST_HEAD(&fs_devs->fs_list);
384 INIT_LIST_HEAD(&fs_devs->seed_list);
385
386 if (fsid) {
387 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
388 memcpy(fs_devs->metadata_uuid,
389 metadata_fsid ?: fsid, BTRFS_FSID_SIZE);
390 }
391
392 return fs_devs;
393 }
394
btrfs_free_device(struct btrfs_device * device)395 static void btrfs_free_device(struct btrfs_device *device)
396 {
397 WARN_ON(!list_empty(&device->post_commit_list));
398 rcu_string_free(device->name);
399 extent_io_tree_release(&device->alloc_state);
400 btrfs_destroy_dev_zone_info(device);
401 kfree(device);
402 }
403
free_fs_devices(struct btrfs_fs_devices * fs_devices)404 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
405 {
406 struct btrfs_device *device;
407
408 WARN_ON(fs_devices->opened);
409 while (!list_empty(&fs_devices->devices)) {
410 device = list_entry(fs_devices->devices.next,
411 struct btrfs_device, dev_list);
412 list_del(&device->dev_list);
413 btrfs_free_device(device);
414 }
415 kfree(fs_devices);
416 }
417
btrfs_cleanup_fs_uuids(void)418 void __exit btrfs_cleanup_fs_uuids(void)
419 {
420 struct btrfs_fs_devices *fs_devices;
421
422 while (!list_empty(&fs_uuids)) {
423 fs_devices = list_entry(fs_uuids.next,
424 struct btrfs_fs_devices, fs_list);
425 list_del(&fs_devices->fs_list);
426 free_fs_devices(fs_devices);
427 }
428 }
429
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)430 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
431 const u8 *fsid, const u8 *metadata_fsid)
432 {
433 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
434 return false;
435
436 if (!metadata_fsid)
437 return true;
438
439 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
440 return false;
441
442 return true;
443 }
444
find_fsid(const u8 * fsid,const u8 * metadata_fsid)445 static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447 {
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
455 return fs_devices;
456 }
457 return NULL;
458 }
459
460 /*
461 * First check if the metadata_uuid is different from the fsid in the given
462 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
463 * in the fs_devices. If it is, return true; otherwise, return false.
464 */
check_fsid_changed(const struct btrfs_fs_devices * fs_devices,const u8 * fsid)465 static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
466 const u8 *fsid)
467 {
468 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
469 BTRFS_FSID_SIZE) != 0 &&
470 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
471 }
472
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)473 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
474 struct btrfs_super_block *disk_super)
475 {
476
477 struct btrfs_fs_devices *fs_devices;
478
479 /*
480 * Handle scanned device having completed its fsid change but
481 * belonging to a fs_devices that was created by first scanning
482 * a device which didn't have its fsid/metadata_uuid changed
483 * at all and the CHANGING_FSID_V2 flag set.
484 */
485 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
486 if (!fs_devices->fsid_change)
487 continue;
488
489 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
490 fs_devices->fsid))
491 return fs_devices;
492 }
493
494 /*
495 * Handle scanned device having completed its fsid change but
496 * belonging to a fs_devices that was created by a device that
497 * has an outdated pair of fsid/metadata_uuid and
498 * CHANGING_FSID_V2 flag set.
499 */
500 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
501 if (!fs_devices->fsid_change)
502 continue;
503
504 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
505 return fs_devices;
506 }
507
508 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
509 }
510
511
512 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)513 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
514 int flush, struct block_device **bdev,
515 struct btrfs_super_block **disk_super)
516 {
517 int ret;
518
519 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
520
521 if (IS_ERR(*bdev)) {
522 ret = PTR_ERR(*bdev);
523 goto error;
524 }
525
526 if (flush)
527 sync_blockdev(*bdev);
528 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
529 if (ret) {
530 blkdev_put(*bdev, holder);
531 goto error;
532 }
533 invalidate_bdev(*bdev);
534 *disk_super = btrfs_read_dev_super(*bdev);
535 if (IS_ERR(*disk_super)) {
536 ret = PTR_ERR(*disk_super);
537 blkdev_put(*bdev, holder);
538 goto error;
539 }
540
541 return 0;
542
543 error:
544 *bdev = NULL;
545 return ret;
546 }
547
548 /*
549 * Search and remove all stale devices (which are not mounted). When both
550 * inputs are NULL, it will search and release all stale devices.
551 *
552 * @devt: Optional. When provided will it release all unmounted devices
553 * matching this devt only.
554 * @skip_device: Optional. Will skip this device when searching for the stale
555 * devices.
556 *
557 * Return: 0 for success or if @devt is 0.
558 * -EBUSY if @devt is a mounted device.
559 * -ENOENT if @devt does not match any device in the list.
560 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)561 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
562 {
563 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
564 struct btrfs_device *device, *tmp_device;
565 int ret = 0;
566
567 lockdep_assert_held(&uuid_mutex);
568
569 if (devt)
570 ret = -ENOENT;
571
572 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
573
574 mutex_lock(&fs_devices->device_list_mutex);
575 list_for_each_entry_safe(device, tmp_device,
576 &fs_devices->devices, dev_list) {
577 if (skip_device && skip_device == device)
578 continue;
579 if (devt && devt != device->devt)
580 continue;
581 if (fs_devices->opened) {
582 /* for an already deleted device return 0 */
583 if (devt && ret != 0)
584 ret = -EBUSY;
585 break;
586 }
587
588 /* delete the stale device */
589 fs_devices->num_devices--;
590 list_del(&device->dev_list);
591 btrfs_free_device(device);
592
593 ret = 0;
594 }
595 mutex_unlock(&fs_devices->device_list_mutex);
596
597 if (fs_devices->num_devices == 0) {
598 btrfs_sysfs_remove_fsid(fs_devices);
599 list_del(&fs_devices->fs_list);
600 free_fs_devices(fs_devices);
601 }
602 }
603
604 return ret;
605 }
606
607 /*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)612 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
613 struct btrfs_device *device, blk_mode_t flags,
614 void *holder)
615 {
616 struct block_device *bdev;
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
627 &bdev, &disk_super);
628 if (ret)
629 return ret;
630
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
633 goto error_free_page;
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
636 goto error_free_page;
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
645 goto error_free_page;
646 }
647
648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
649 fs_devices->seeding = true;
650 } else {
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
655 }
656
657 if (!bdev_nonrot(bdev))
658 fs_devices->rotating = true;
659
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
663 device->bdev = bdev;
664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
665 device->holder = holder;
666
667 fs_devices->open_devices++;
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
670 fs_devices->rw_devices++;
671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
672 }
673 btrfs_release_disk_super(disk_super);
674
675 return 0;
676
677 error_free_page:
678 btrfs_release_disk_super(disk_super);
679 blkdev_put(bdev, holder);
680
681 return -EINVAL;
682 }
683
btrfs_sb_fsid_ptr(struct btrfs_super_block * sb)684 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685 {
686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690 }
691
is_same_device(struct btrfs_device * device,const char * new_path)692 static bool is_same_device(struct btrfs_device *device, const char *new_path)
693 {
694 struct path old = { .mnt = NULL, .dentry = NULL };
695 struct path new = { .mnt = NULL, .dentry = NULL };
696 char *old_path = NULL;
697 bool is_same = false;
698 int ret;
699
700 if (!device->name)
701 goto out;
702
703 old_path = kzalloc(PATH_MAX, GFP_NOFS);
704 if (!old_path)
705 goto out;
706
707 rcu_read_lock();
708 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
709 rcu_read_unlock();
710 if (ret < 0)
711 goto out;
712
713 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
714 if (ret)
715 goto out;
716 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
717 if (ret)
718 goto out;
719 if (path_equal(&old, &new))
720 is_same = true;
721 out:
722 kfree(old_path);
723 path_put(&old);
724 path_put(&new);
725 return is_same;
726 }
727
728 /*
729 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
730 * being created with a disk that has already completed its fsid change. Such
731 * disk can belong to an fs which has its FSID changed or to one which doesn't.
732 * Handle both cases here.
733 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)734 static struct btrfs_fs_devices *find_fsid_inprogress(
735 struct btrfs_super_block *disk_super)
736 {
737 struct btrfs_fs_devices *fs_devices;
738
739 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
740 if (fs_devices->fsid_change)
741 continue;
742
743 if (check_fsid_changed(fs_devices, disk_super->fsid))
744 return fs_devices;
745 }
746
747 return find_fsid(disk_super->fsid, NULL);
748 }
749
find_fsid_changed(struct btrfs_super_block * disk_super)750 static struct btrfs_fs_devices *find_fsid_changed(
751 struct btrfs_super_block *disk_super)
752 {
753 struct btrfs_fs_devices *fs_devices;
754
755 /*
756 * Handles the case where scanned device is part of an fs that had
757 * multiple successful changes of FSID but currently device didn't
758 * observe it. Meaning our fsid will be different than theirs. We need
759 * to handle two subcases :
760 * 1 - The fs still continues to have different METADATA/FSID uuids.
761 * 2 - The fs is switched back to its original FSID (METADATA/FSID
762 * are equal).
763 */
764 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
765 /* Changed UUIDs */
766 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
767 memcmp(fs_devices->fsid, disk_super->fsid,
768 BTRFS_FSID_SIZE) != 0)
769 return fs_devices;
770
771 /* Unchanged UUIDs */
772 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
773 BTRFS_FSID_SIZE) == 0 &&
774 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
775 BTRFS_FSID_SIZE) == 0)
776 return fs_devices;
777 }
778
779 return NULL;
780 }
781
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)782 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
783 struct btrfs_super_block *disk_super)
784 {
785 struct btrfs_fs_devices *fs_devices;
786
787 /*
788 * Handle the case where the scanned device is part of an fs whose last
789 * metadata UUID change reverted it to the original FSID. At the same
790 * time fs_devices was first created by another constituent device
791 * which didn't fully observe the operation. This results in an
792 * btrfs_fs_devices created with metadata/fsid different AND
793 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
794 * fs_devices equal to the FSID of the disk.
795 */
796 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
797 if (!fs_devices->fsid_change)
798 continue;
799
800 if (check_fsid_changed(fs_devices, disk_super->fsid))
801 return fs_devices;
802 }
803
804 return NULL;
805 }
806 /*
807 * Add new device to list of registered devices
808 *
809 * Returns:
810 * device pointer which was just added or updated when successful
811 * error pointer when failed
812 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)813 static noinline struct btrfs_device *device_list_add(const char *path,
814 struct btrfs_super_block *disk_super,
815 bool *new_device_added)
816 {
817 struct btrfs_device *device;
818 struct btrfs_fs_devices *fs_devices = NULL;
819 struct rcu_string *name;
820 u64 found_transid = btrfs_super_generation(disk_super);
821 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
822 dev_t path_devt;
823 int error;
824 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
825 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
826 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
827 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
828
829 error = lookup_bdev(path, &path_devt);
830 if (error) {
831 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
832 path, error);
833 return ERR_PTR(error);
834 }
835
836 if (fsid_change_in_progress) {
837 if (!has_metadata_uuid)
838 fs_devices = find_fsid_inprogress(disk_super);
839 else
840 fs_devices = find_fsid_changed(disk_super);
841 } else if (has_metadata_uuid) {
842 fs_devices = find_fsid_with_metadata_uuid(disk_super);
843 } else {
844 fs_devices = find_fsid_reverted_metadata(disk_super);
845 if (!fs_devices)
846 fs_devices = find_fsid(disk_super->fsid, NULL);
847 }
848
849
850 if (!fs_devices) {
851 fs_devices = alloc_fs_devices(disk_super->fsid,
852 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
853 if (IS_ERR(fs_devices))
854 return ERR_CAST(fs_devices);
855
856 fs_devices->fsid_change = fsid_change_in_progress;
857
858 mutex_lock(&fs_devices->device_list_mutex);
859 list_add(&fs_devices->fs_list, &fs_uuids);
860
861 device = NULL;
862 } else {
863 struct btrfs_dev_lookup_args args = {
864 .devid = devid,
865 .uuid = disk_super->dev_item.uuid,
866 };
867
868 mutex_lock(&fs_devices->device_list_mutex);
869 device = btrfs_find_device(fs_devices, &args);
870
871 /*
872 * If this disk has been pulled into an fs devices created by
873 * a device which had the CHANGING_FSID_V2 flag then replace the
874 * metadata_uuid/fsid values of the fs_devices.
875 */
876 if (fs_devices->fsid_change &&
877 found_transid > fs_devices->latest_generation) {
878 memcpy(fs_devices->fsid, disk_super->fsid,
879 BTRFS_FSID_SIZE);
880 memcpy(fs_devices->metadata_uuid,
881 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
882 fs_devices->fsid_change = false;
883 }
884 }
885
886 if (!device) {
887 unsigned int nofs_flag;
888
889 if (fs_devices->opened) {
890 btrfs_err(NULL,
891 "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
892 path, fs_devices->fsid, current->comm,
893 task_pid_nr(current));
894 mutex_unlock(&fs_devices->device_list_mutex);
895 return ERR_PTR(-EBUSY);
896 }
897
898 nofs_flag = memalloc_nofs_save();
899 device = btrfs_alloc_device(NULL, &devid,
900 disk_super->dev_item.uuid, path);
901 memalloc_nofs_restore(nofs_flag);
902 if (IS_ERR(device)) {
903 mutex_unlock(&fs_devices->device_list_mutex);
904 /* we can safely leave the fs_devices entry around */
905 return device;
906 }
907
908 device->devt = path_devt;
909
910 list_add_rcu(&device->dev_list, &fs_devices->devices);
911 fs_devices->num_devices++;
912
913 device->fs_devices = fs_devices;
914 *new_device_added = true;
915
916 if (disk_super->label[0])
917 pr_info(
918 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
919 disk_super->label, devid, found_transid, path,
920 current->comm, task_pid_nr(current));
921 else
922 pr_info(
923 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
924 disk_super->fsid, devid, found_transid, path,
925 current->comm, task_pid_nr(current));
926
927 } else if (!device->name || !is_same_device(device, path)) {
928 /*
929 * When FS is already mounted.
930 * 1. If you are here and if the device->name is NULL that
931 * means this device was missing at time of FS mount.
932 * 2. If you are here and if the device->name is different
933 * from 'path' that means either
934 * a. The same device disappeared and reappeared with
935 * different name. or
936 * b. The missing-disk-which-was-replaced, has
937 * reappeared now.
938 *
939 * We must allow 1 and 2a above. But 2b would be a spurious
940 * and unintentional.
941 *
942 * Further in case of 1 and 2a above, the disk at 'path'
943 * would have missed some transaction when it was away and
944 * in case of 2a the stale bdev has to be updated as well.
945 * 2b must not be allowed at all time.
946 */
947
948 /*
949 * For now, we do allow update to btrfs_fs_device through the
950 * btrfs dev scan cli after FS has been mounted. We're still
951 * tracking a problem where systems fail mount by subvolume id
952 * when we reject replacement on a mounted FS.
953 */
954 if (!fs_devices->opened && found_transid < device->generation) {
955 /*
956 * That is if the FS is _not_ mounted and if you
957 * are here, that means there is more than one
958 * disk with same uuid and devid.We keep the one
959 * with larger generation number or the last-in if
960 * generation are equal.
961 */
962 mutex_unlock(&fs_devices->device_list_mutex);
963 btrfs_err(NULL,
964 "device %s already registered with a higher generation, found %llu expect %llu",
965 path, found_transid, device->generation);
966 return ERR_PTR(-EEXIST);
967 }
968
969 /*
970 * We are going to replace the device path for a given devid,
971 * make sure it's the same device if the device is mounted
972 *
973 * NOTE: the device->fs_info may not be reliable here so pass
974 * in a NULL to message helpers instead. This avoids a possible
975 * use-after-free when the fs_info and fs_info->sb are already
976 * torn down.
977 */
978 if (device->bdev) {
979 if (device->devt != path_devt) {
980 mutex_unlock(&fs_devices->device_list_mutex);
981 btrfs_warn_in_rcu(NULL,
982 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
983 path, devid, found_transid,
984 current->comm,
985 task_pid_nr(current));
986 return ERR_PTR(-EEXIST);
987 }
988 btrfs_info_in_rcu(NULL,
989 "devid %llu device path %s changed to %s scanned by %s (%d)",
990 devid, btrfs_dev_name(device),
991 path, current->comm,
992 task_pid_nr(current));
993 }
994
995 name = rcu_string_strdup(path, GFP_NOFS);
996 if (!name) {
997 mutex_unlock(&fs_devices->device_list_mutex);
998 return ERR_PTR(-ENOMEM);
999 }
1000 rcu_string_free(device->name);
1001 rcu_assign_pointer(device->name, name);
1002 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1003 fs_devices->missing_devices--;
1004 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1005 }
1006 device->devt = path_devt;
1007 }
1008
1009 /*
1010 * Unmount does not free the btrfs_device struct but would zero
1011 * generation along with most of the other members. So just update
1012 * it back. We need it to pick the disk with largest generation
1013 * (as above).
1014 */
1015 if (!fs_devices->opened) {
1016 device->generation = found_transid;
1017 fs_devices->latest_generation = max_t(u64, found_transid,
1018 fs_devices->latest_generation);
1019 }
1020
1021 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1022
1023 mutex_unlock(&fs_devices->device_list_mutex);
1024 return device;
1025 }
1026
clone_fs_devices(struct btrfs_fs_devices * orig)1027 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1028 {
1029 struct btrfs_fs_devices *fs_devices;
1030 struct btrfs_device *device;
1031 struct btrfs_device *orig_dev;
1032 int ret = 0;
1033
1034 lockdep_assert_held(&uuid_mutex);
1035
1036 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1037 if (IS_ERR(fs_devices))
1038 return fs_devices;
1039
1040 fs_devices->total_devices = orig->total_devices;
1041
1042 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1043 const char *dev_path = NULL;
1044
1045 /*
1046 * This is ok to do without RCU read locked because we hold the
1047 * uuid mutex so nothing we touch in here is going to disappear.
1048 */
1049 if (orig_dev->name)
1050 dev_path = orig_dev->name->str;
1051
1052 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1053 orig_dev->uuid, dev_path);
1054 if (IS_ERR(device)) {
1055 ret = PTR_ERR(device);
1056 goto error;
1057 }
1058
1059 if (orig_dev->zone_info) {
1060 struct btrfs_zoned_device_info *zone_info;
1061
1062 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1063 if (!zone_info) {
1064 btrfs_free_device(device);
1065 ret = -ENOMEM;
1066 goto error;
1067 }
1068 device->zone_info = zone_info;
1069 }
1070
1071 list_add(&device->dev_list, &fs_devices->devices);
1072 device->fs_devices = fs_devices;
1073 fs_devices->num_devices++;
1074 }
1075 return fs_devices;
1076 error:
1077 free_fs_devices(fs_devices);
1078 return ERR_PTR(ret);
1079 }
1080
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1081 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1082 struct btrfs_device **latest_dev)
1083 {
1084 struct btrfs_device *device, *next;
1085
1086 /* This is the initialized path, it is safe to release the devices. */
1087 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1088 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1089 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1090 &device->dev_state) &&
1091 !test_bit(BTRFS_DEV_STATE_MISSING,
1092 &device->dev_state) &&
1093 (!*latest_dev ||
1094 device->generation > (*latest_dev)->generation)) {
1095 *latest_dev = device;
1096 }
1097 continue;
1098 }
1099
1100 /*
1101 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1102 * in btrfs_init_dev_replace() so just continue.
1103 */
1104 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1105 continue;
1106
1107 if (device->bdev) {
1108 blkdev_put(device->bdev, device->holder);
1109 device->bdev = NULL;
1110 fs_devices->open_devices--;
1111 }
1112 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1113 list_del_init(&device->dev_alloc_list);
1114 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1115 fs_devices->rw_devices--;
1116 }
1117 list_del_init(&device->dev_list);
1118 fs_devices->num_devices--;
1119 btrfs_free_device(device);
1120 }
1121
1122 }
1123
1124 /*
1125 * After we have read the system tree and know devids belonging to this
1126 * filesystem, remove the device which does not belong there.
1127 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1128 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1129 {
1130 struct btrfs_device *latest_dev = NULL;
1131 struct btrfs_fs_devices *seed_dev;
1132
1133 mutex_lock(&uuid_mutex);
1134 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1135
1136 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1137 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1138
1139 fs_devices->latest_dev = latest_dev;
1140
1141 mutex_unlock(&uuid_mutex);
1142 }
1143
btrfs_close_bdev(struct btrfs_device * device)1144 static void btrfs_close_bdev(struct btrfs_device *device)
1145 {
1146 if (!device->bdev)
1147 return;
1148
1149 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1150 sync_blockdev(device->bdev);
1151 invalidate_bdev(device->bdev);
1152 }
1153
1154 blkdev_put(device->bdev, device->holder);
1155 }
1156
btrfs_close_one_device(struct btrfs_device * device)1157 static void btrfs_close_one_device(struct btrfs_device *device)
1158 {
1159 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1160
1161 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1162 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1163 list_del_init(&device->dev_alloc_list);
1164 fs_devices->rw_devices--;
1165 }
1166
1167 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1168 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1169
1170 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1171 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1172 fs_devices->missing_devices--;
1173 }
1174
1175 btrfs_close_bdev(device);
1176 if (device->bdev) {
1177 fs_devices->open_devices--;
1178 device->bdev = NULL;
1179 }
1180 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1181 btrfs_destroy_dev_zone_info(device);
1182
1183 device->fs_info = NULL;
1184 atomic_set(&device->dev_stats_ccnt, 0);
1185 extent_io_tree_release(&device->alloc_state);
1186
1187 /*
1188 * Reset the flush error record. We might have a transient flush error
1189 * in this mount, and if so we aborted the current transaction and set
1190 * the fs to an error state, guaranteeing no super blocks can be further
1191 * committed. However that error might be transient and if we unmount the
1192 * filesystem and mount it again, we should allow the mount to succeed
1193 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1194 * filesystem again we still get flush errors, then we will again abort
1195 * any transaction and set the error state, guaranteeing no commits of
1196 * unsafe super blocks.
1197 */
1198 device->last_flush_error = 0;
1199
1200 /* Verify the device is back in a pristine state */
1201 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1202 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1203 WARN_ON(!list_empty(&device->dev_alloc_list));
1204 WARN_ON(!list_empty(&device->post_commit_list));
1205 }
1206
close_fs_devices(struct btrfs_fs_devices * fs_devices)1207 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1208 {
1209 struct btrfs_device *device, *tmp;
1210
1211 lockdep_assert_held(&uuid_mutex);
1212
1213 if (--fs_devices->opened > 0)
1214 return;
1215
1216 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1217 btrfs_close_one_device(device);
1218
1219 WARN_ON(fs_devices->open_devices);
1220 WARN_ON(fs_devices->rw_devices);
1221 fs_devices->opened = 0;
1222 fs_devices->seeding = false;
1223 fs_devices->fs_info = NULL;
1224 }
1225
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1226 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1227 {
1228 LIST_HEAD(list);
1229 struct btrfs_fs_devices *tmp;
1230
1231 mutex_lock(&uuid_mutex);
1232 close_fs_devices(fs_devices);
1233 if (!fs_devices->opened) {
1234 list_splice_init(&fs_devices->seed_list, &list);
1235
1236 /*
1237 * If the struct btrfs_fs_devices is not assembled with any
1238 * other device, it can be re-initialized during the next mount
1239 * without the needing device-scan step. Therefore, it can be
1240 * fully freed.
1241 */
1242 if (fs_devices->num_devices == 1) {
1243 list_del(&fs_devices->fs_list);
1244 free_fs_devices(fs_devices);
1245 }
1246 }
1247
1248
1249 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1250 close_fs_devices(fs_devices);
1251 list_del(&fs_devices->seed_list);
1252 free_fs_devices(fs_devices);
1253 }
1254 mutex_unlock(&uuid_mutex);
1255 }
1256
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1257 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1258 blk_mode_t flags, void *holder)
1259 {
1260 struct btrfs_device *device;
1261 struct btrfs_device *latest_dev = NULL;
1262 struct btrfs_device *tmp_device;
1263 int ret = 0;
1264
1265 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1266 dev_list) {
1267 int ret2;
1268
1269 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1270 if (ret2 == 0 &&
1271 (!latest_dev || device->generation > latest_dev->generation)) {
1272 latest_dev = device;
1273 } else if (ret2 == -ENODATA) {
1274 fs_devices->num_devices--;
1275 list_del(&device->dev_list);
1276 btrfs_free_device(device);
1277 }
1278 if (ret == 0 && ret2 != 0)
1279 ret = ret2;
1280 }
1281
1282 if (fs_devices->open_devices == 0) {
1283 if (ret)
1284 return ret;
1285 return -EINVAL;
1286 }
1287
1288 fs_devices->opened = 1;
1289 fs_devices->latest_dev = latest_dev;
1290 fs_devices->total_rw_bytes = 0;
1291 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1292 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1293
1294 return 0;
1295 }
1296
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1297 static int devid_cmp(void *priv, const struct list_head *a,
1298 const struct list_head *b)
1299 {
1300 const struct btrfs_device *dev1, *dev2;
1301
1302 dev1 = list_entry(a, struct btrfs_device, dev_list);
1303 dev2 = list_entry(b, struct btrfs_device, dev_list);
1304
1305 if (dev1->devid < dev2->devid)
1306 return -1;
1307 else if (dev1->devid > dev2->devid)
1308 return 1;
1309 return 0;
1310 }
1311
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1312 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1313 blk_mode_t flags, void *holder)
1314 {
1315 int ret;
1316
1317 lockdep_assert_held(&uuid_mutex);
1318 /*
1319 * The device_list_mutex cannot be taken here in case opening the
1320 * underlying device takes further locks like open_mutex.
1321 *
1322 * We also don't need the lock here as this is called during mount and
1323 * exclusion is provided by uuid_mutex
1324 */
1325
1326 if (fs_devices->opened) {
1327 fs_devices->opened++;
1328 ret = 0;
1329 } else {
1330 list_sort(NULL, &fs_devices->devices, devid_cmp);
1331 ret = open_fs_devices(fs_devices, flags, holder);
1332 }
1333
1334 return ret;
1335 }
1336
btrfs_release_disk_super(struct btrfs_super_block * super)1337 void btrfs_release_disk_super(struct btrfs_super_block *super)
1338 {
1339 struct page *page = virt_to_page(super);
1340
1341 put_page(page);
1342 }
1343
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,u64 bytenr_orig)1344 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1345 u64 bytenr, u64 bytenr_orig)
1346 {
1347 struct btrfs_super_block *disk_super;
1348 struct page *page;
1349 void *p;
1350 pgoff_t index;
1351
1352 /* make sure our super fits in the device */
1353 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1354 return ERR_PTR(-EINVAL);
1355
1356 /* make sure our super fits in the page */
1357 if (sizeof(*disk_super) > PAGE_SIZE)
1358 return ERR_PTR(-EINVAL);
1359
1360 /* make sure our super doesn't straddle pages on disk */
1361 index = bytenr >> PAGE_SHIFT;
1362 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1363 return ERR_PTR(-EINVAL);
1364
1365 /* pull in the page with our super */
1366 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1367
1368 if (IS_ERR(page))
1369 return ERR_CAST(page);
1370
1371 p = page_address(page);
1372
1373 /* align our pointer to the offset of the super block */
1374 disk_super = p + offset_in_page(bytenr);
1375
1376 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1377 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1378 btrfs_release_disk_super(p);
1379 return ERR_PTR(-EINVAL);
1380 }
1381
1382 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1383 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1384
1385 return disk_super;
1386 }
1387
btrfs_forget_devices(dev_t devt)1388 int btrfs_forget_devices(dev_t devt)
1389 {
1390 int ret;
1391
1392 mutex_lock(&uuid_mutex);
1393 ret = btrfs_free_stale_devices(devt, NULL);
1394 mutex_unlock(&uuid_mutex);
1395
1396 return ret;
1397 }
1398
1399 /*
1400 * Look for a btrfs signature on a device. This may be called out of the mount path
1401 * and we are not allowed to call set_blocksize during the scan. The superblock
1402 * is read via pagecache
1403 */
btrfs_scan_one_device(const char * path,blk_mode_t flags)1404 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags)
1405 {
1406 struct btrfs_super_block *disk_super;
1407 bool new_device_added = false;
1408 struct btrfs_device *device = NULL;
1409 struct block_device *bdev;
1410 u64 bytenr, bytenr_orig;
1411 int ret;
1412
1413 lockdep_assert_held(&uuid_mutex);
1414
1415 /*
1416 * we would like to check all the supers, but that would make
1417 * a btrfs mount succeed after a mkfs from a different FS.
1418 * So, we need to add a special mount option to scan for
1419 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1420 */
1421
1422 /*
1423 * Avoid an exclusive open here, as the systemd-udev may initiate the
1424 * device scan which may race with the user's mount or mkfs command,
1425 * resulting in failure.
1426 * Since the device scan is solely for reading purposes, there is no
1427 * need for an exclusive open. Additionally, the devices are read again
1428 * during the mount process. It is ok to get some inconsistent
1429 * values temporarily, as the device paths of the fsid are the only
1430 * required information for assembling the volume.
1431 */
1432 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
1433 if (IS_ERR(bdev))
1434 return ERR_CAST(bdev);
1435
1436 bytenr_orig = btrfs_sb_offset(0);
1437 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1438 if (ret) {
1439 device = ERR_PTR(ret);
1440 goto error_bdev_put;
1441 }
1442
1443 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1444 if (IS_ERR(disk_super)) {
1445 device = ERR_CAST(disk_super);
1446 goto error_bdev_put;
1447 }
1448
1449 device = device_list_add(path, disk_super, &new_device_added);
1450 if (!IS_ERR(device) && new_device_added)
1451 btrfs_free_stale_devices(device->devt, device);
1452
1453 btrfs_release_disk_super(disk_super);
1454
1455 error_bdev_put:
1456 blkdev_put(bdev, NULL);
1457
1458 return device;
1459 }
1460
1461 /*
1462 * Try to find a chunk that intersects [start, start + len] range and when one
1463 * such is found, record the end of it in *start
1464 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1465 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1466 u64 len)
1467 {
1468 u64 physical_start, physical_end;
1469
1470 lockdep_assert_held(&device->fs_info->chunk_mutex);
1471
1472 if (find_first_extent_bit(&device->alloc_state, *start,
1473 &physical_start, &physical_end,
1474 CHUNK_ALLOCATED, NULL)) {
1475
1476 if (in_range(physical_start, *start, len) ||
1477 in_range(*start, physical_start,
1478 physical_end + 1 - physical_start)) {
1479 *start = physical_end + 1;
1480 return true;
1481 }
1482 }
1483 return false;
1484 }
1485
dev_extent_search_start(struct btrfs_device * device)1486 static u64 dev_extent_search_start(struct btrfs_device *device)
1487 {
1488 switch (device->fs_devices->chunk_alloc_policy) {
1489 case BTRFS_CHUNK_ALLOC_REGULAR:
1490 return BTRFS_DEVICE_RANGE_RESERVED;
1491 case BTRFS_CHUNK_ALLOC_ZONED:
1492 /*
1493 * We don't care about the starting region like regular
1494 * allocator, because we anyway use/reserve the first two zones
1495 * for superblock logging.
1496 */
1497 return 0;
1498 default:
1499 BUG();
1500 }
1501 }
1502
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1503 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1504 u64 *hole_start, u64 *hole_size,
1505 u64 num_bytes)
1506 {
1507 u64 zone_size = device->zone_info->zone_size;
1508 u64 pos;
1509 int ret;
1510 bool changed = false;
1511
1512 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1513
1514 while (*hole_size > 0) {
1515 pos = btrfs_find_allocatable_zones(device, *hole_start,
1516 *hole_start + *hole_size,
1517 num_bytes);
1518 if (pos != *hole_start) {
1519 *hole_size = *hole_start + *hole_size - pos;
1520 *hole_start = pos;
1521 changed = true;
1522 if (*hole_size < num_bytes)
1523 break;
1524 }
1525
1526 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1527
1528 /* Range is ensured to be empty */
1529 if (!ret)
1530 return changed;
1531
1532 /* Given hole range was invalid (outside of device) */
1533 if (ret == -ERANGE) {
1534 *hole_start += *hole_size;
1535 *hole_size = 0;
1536 return true;
1537 }
1538
1539 *hole_start += zone_size;
1540 *hole_size -= zone_size;
1541 changed = true;
1542 }
1543
1544 return changed;
1545 }
1546
1547 /*
1548 * Check if specified hole is suitable for allocation.
1549 *
1550 * @device: the device which we have the hole
1551 * @hole_start: starting position of the hole
1552 * @hole_size: the size of the hole
1553 * @num_bytes: the size of the free space that we need
1554 *
1555 * This function may modify @hole_start and @hole_size to reflect the suitable
1556 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1557 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1558 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1559 u64 *hole_size, u64 num_bytes)
1560 {
1561 bool changed = false;
1562 u64 hole_end = *hole_start + *hole_size;
1563
1564 for (;;) {
1565 /*
1566 * Check before we set max_hole_start, otherwise we could end up
1567 * sending back this offset anyway.
1568 */
1569 if (contains_pending_extent(device, hole_start, *hole_size)) {
1570 if (hole_end >= *hole_start)
1571 *hole_size = hole_end - *hole_start;
1572 else
1573 *hole_size = 0;
1574 changed = true;
1575 }
1576
1577 switch (device->fs_devices->chunk_alloc_policy) {
1578 case BTRFS_CHUNK_ALLOC_REGULAR:
1579 /* No extra check */
1580 break;
1581 case BTRFS_CHUNK_ALLOC_ZONED:
1582 if (dev_extent_hole_check_zoned(device, hole_start,
1583 hole_size, num_bytes)) {
1584 changed = true;
1585 /*
1586 * The changed hole can contain pending extent.
1587 * Loop again to check that.
1588 */
1589 continue;
1590 }
1591 break;
1592 default:
1593 BUG();
1594 }
1595
1596 break;
1597 }
1598
1599 return changed;
1600 }
1601
1602 /*
1603 * Find free space in the specified device.
1604 *
1605 * @device: the device which we search the free space in
1606 * @num_bytes: the size of the free space that we need
1607 * @search_start: the position from which to begin the search
1608 * @start: store the start of the free space.
1609 * @len: the size of the free space. that we find, or the size
1610 * of the max free space if we don't find suitable free space
1611 *
1612 * This does a pretty simple search, the expectation is that it is called very
1613 * infrequently and that a given device has a small number of extents.
1614 *
1615 * @start is used to store the start of the free space if we find. But if we
1616 * don't find suitable free space, it will be used to store the start position
1617 * of the max free space.
1618 *
1619 * @len is used to store the size of the free space that we find.
1620 * But if we don't find suitable free space, it is used to store the size of
1621 * the max free space.
1622 *
1623 * NOTE: This function will search *commit* root of device tree, and does extra
1624 * check to ensure dev extents are not double allocated.
1625 * This makes the function safe to allocate dev extents but may not report
1626 * correct usable device space, as device extent freed in current transaction
1627 * is not reported as available.
1628 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1629 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1630 u64 *start, u64 *len)
1631 {
1632 struct btrfs_fs_info *fs_info = device->fs_info;
1633 struct btrfs_root *root = fs_info->dev_root;
1634 struct btrfs_key key;
1635 struct btrfs_dev_extent *dev_extent;
1636 struct btrfs_path *path;
1637 u64 search_start;
1638 u64 hole_size;
1639 u64 max_hole_start;
1640 u64 max_hole_size = 0;
1641 u64 extent_end;
1642 u64 search_end = device->total_bytes;
1643 int ret;
1644 int slot;
1645 struct extent_buffer *l;
1646
1647 search_start = dev_extent_search_start(device);
1648 max_hole_start = search_start;
1649
1650 WARN_ON(device->zone_info &&
1651 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1652
1653 path = btrfs_alloc_path();
1654 if (!path) {
1655 ret = -ENOMEM;
1656 goto out;
1657 }
1658 again:
1659 if (search_start >= search_end ||
1660 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1661 ret = -ENOSPC;
1662 goto out;
1663 }
1664
1665 path->reada = READA_FORWARD;
1666 path->search_commit_root = 1;
1667 path->skip_locking = 1;
1668
1669 key.objectid = device->devid;
1670 key.offset = search_start;
1671 key.type = BTRFS_DEV_EXTENT_KEY;
1672
1673 ret = btrfs_search_backwards(root, &key, path);
1674 if (ret < 0)
1675 goto out;
1676
1677 while (search_start < search_end) {
1678 l = path->nodes[0];
1679 slot = path->slots[0];
1680 if (slot >= btrfs_header_nritems(l)) {
1681 ret = btrfs_next_leaf(root, path);
1682 if (ret == 0)
1683 continue;
1684 if (ret < 0)
1685 goto out;
1686
1687 break;
1688 }
1689 btrfs_item_key_to_cpu(l, &key, slot);
1690
1691 if (key.objectid < device->devid)
1692 goto next;
1693
1694 if (key.objectid > device->devid)
1695 break;
1696
1697 if (key.type != BTRFS_DEV_EXTENT_KEY)
1698 goto next;
1699
1700 if (key.offset > search_end)
1701 break;
1702
1703 if (key.offset > search_start) {
1704 hole_size = key.offset - search_start;
1705 dev_extent_hole_check(device, &search_start, &hole_size,
1706 num_bytes);
1707
1708 if (hole_size > max_hole_size) {
1709 max_hole_start = search_start;
1710 max_hole_size = hole_size;
1711 }
1712
1713 /*
1714 * If this free space is greater than which we need,
1715 * it must be the max free space that we have found
1716 * until now, so max_hole_start must point to the start
1717 * of this free space and the length of this free space
1718 * is stored in max_hole_size. Thus, we return
1719 * max_hole_start and max_hole_size and go back to the
1720 * caller.
1721 */
1722 if (hole_size >= num_bytes) {
1723 ret = 0;
1724 goto out;
1725 }
1726 }
1727
1728 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1729 extent_end = key.offset + btrfs_dev_extent_length(l,
1730 dev_extent);
1731 if (extent_end > search_start)
1732 search_start = extent_end;
1733 next:
1734 path->slots[0]++;
1735 cond_resched();
1736 }
1737
1738 /*
1739 * At this point, search_start should be the end of
1740 * allocated dev extents, and when shrinking the device,
1741 * search_end may be smaller than search_start.
1742 */
1743 if (search_end > search_start) {
1744 hole_size = search_end - search_start;
1745 if (dev_extent_hole_check(device, &search_start, &hole_size,
1746 num_bytes)) {
1747 btrfs_release_path(path);
1748 goto again;
1749 }
1750
1751 if (hole_size > max_hole_size) {
1752 max_hole_start = search_start;
1753 max_hole_size = hole_size;
1754 }
1755 }
1756
1757 /* See above. */
1758 if (max_hole_size < num_bytes)
1759 ret = -ENOSPC;
1760 else
1761 ret = 0;
1762
1763 ASSERT(max_hole_start + max_hole_size <= search_end);
1764 out:
1765 btrfs_free_path(path);
1766 *start = max_hole_start;
1767 if (len)
1768 *len = max_hole_size;
1769 return ret;
1770 }
1771
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1772 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1773 struct btrfs_device *device,
1774 u64 start, u64 *dev_extent_len)
1775 {
1776 struct btrfs_fs_info *fs_info = device->fs_info;
1777 struct btrfs_root *root = fs_info->dev_root;
1778 int ret;
1779 struct btrfs_path *path;
1780 struct btrfs_key key;
1781 struct btrfs_key found_key;
1782 struct extent_buffer *leaf = NULL;
1783 struct btrfs_dev_extent *extent = NULL;
1784
1785 path = btrfs_alloc_path();
1786 if (!path)
1787 return -ENOMEM;
1788
1789 key.objectid = device->devid;
1790 key.offset = start;
1791 key.type = BTRFS_DEV_EXTENT_KEY;
1792 again:
1793 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1794 if (ret > 0) {
1795 ret = btrfs_previous_item(root, path, key.objectid,
1796 BTRFS_DEV_EXTENT_KEY);
1797 if (ret)
1798 goto out;
1799 leaf = path->nodes[0];
1800 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1801 extent = btrfs_item_ptr(leaf, path->slots[0],
1802 struct btrfs_dev_extent);
1803 BUG_ON(found_key.offset > start || found_key.offset +
1804 btrfs_dev_extent_length(leaf, extent) < start);
1805 key = found_key;
1806 btrfs_release_path(path);
1807 goto again;
1808 } else if (ret == 0) {
1809 leaf = path->nodes[0];
1810 extent = btrfs_item_ptr(leaf, path->slots[0],
1811 struct btrfs_dev_extent);
1812 } else {
1813 goto out;
1814 }
1815
1816 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1817
1818 ret = btrfs_del_item(trans, root, path);
1819 if (ret == 0)
1820 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1821 out:
1822 btrfs_free_path(path);
1823 return ret;
1824 }
1825
find_next_chunk(struct btrfs_fs_info * fs_info)1826 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1827 {
1828 struct extent_map_tree *em_tree;
1829 struct extent_map *em;
1830 struct rb_node *n;
1831 u64 ret = 0;
1832
1833 em_tree = &fs_info->mapping_tree;
1834 read_lock(&em_tree->lock);
1835 n = rb_last(&em_tree->map.rb_root);
1836 if (n) {
1837 em = rb_entry(n, struct extent_map, rb_node);
1838 ret = em->start + em->len;
1839 }
1840 read_unlock(&em_tree->lock);
1841
1842 return ret;
1843 }
1844
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1845 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1846 u64 *devid_ret)
1847 {
1848 int ret;
1849 struct btrfs_key key;
1850 struct btrfs_key found_key;
1851 struct btrfs_path *path;
1852
1853 path = btrfs_alloc_path();
1854 if (!path)
1855 return -ENOMEM;
1856
1857 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1858 key.type = BTRFS_DEV_ITEM_KEY;
1859 key.offset = (u64)-1;
1860
1861 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1862 if (ret < 0)
1863 goto error;
1864
1865 if (ret == 0) {
1866 /* Corruption */
1867 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1868 ret = -EUCLEAN;
1869 goto error;
1870 }
1871
1872 ret = btrfs_previous_item(fs_info->chunk_root, path,
1873 BTRFS_DEV_ITEMS_OBJECTID,
1874 BTRFS_DEV_ITEM_KEY);
1875 if (ret) {
1876 *devid_ret = 1;
1877 } else {
1878 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1879 path->slots[0]);
1880 *devid_ret = found_key.offset + 1;
1881 }
1882 ret = 0;
1883 error:
1884 btrfs_free_path(path);
1885 return ret;
1886 }
1887
1888 /*
1889 * the device information is stored in the chunk root
1890 * the btrfs_device struct should be fully filled in
1891 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1892 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1893 struct btrfs_device *device)
1894 {
1895 int ret;
1896 struct btrfs_path *path;
1897 struct btrfs_dev_item *dev_item;
1898 struct extent_buffer *leaf;
1899 struct btrfs_key key;
1900 unsigned long ptr;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
1910 btrfs_reserve_chunk_metadata(trans, true);
1911 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1912 &key, sizeof(*dev_item));
1913 btrfs_trans_release_chunk_metadata(trans);
1914 if (ret)
1915 goto out;
1916
1917 leaf = path->nodes[0];
1918 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1919
1920 btrfs_set_device_id(leaf, dev_item, device->devid);
1921 btrfs_set_device_generation(leaf, dev_item, 0);
1922 btrfs_set_device_type(leaf, dev_item, device->type);
1923 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1924 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1925 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1926 btrfs_set_device_total_bytes(leaf, dev_item,
1927 btrfs_device_get_disk_total_bytes(device));
1928 btrfs_set_device_bytes_used(leaf, dev_item,
1929 btrfs_device_get_bytes_used(device));
1930 btrfs_set_device_group(leaf, dev_item, 0);
1931 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1932 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1933 btrfs_set_device_start_offset(leaf, dev_item, 0);
1934
1935 ptr = btrfs_device_uuid(dev_item);
1936 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1937 ptr = btrfs_device_fsid(dev_item);
1938 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1939 ptr, BTRFS_FSID_SIZE);
1940 btrfs_mark_buffer_dirty(trans, leaf);
1941
1942 ret = 0;
1943 out:
1944 btrfs_free_path(path);
1945 return ret;
1946 }
1947
1948 /*
1949 * Function to update ctime/mtime for a given device path.
1950 * Mainly used for ctime/mtime based probe like libblkid.
1951 *
1952 * We don't care about errors here, this is just to be kind to userspace.
1953 */
update_dev_time(const char * device_path)1954 static void update_dev_time(const char *device_path)
1955 {
1956 struct path path;
1957 int ret;
1958
1959 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1960 if (ret)
1961 return;
1962
1963 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1964 path_put(&path);
1965 }
1966
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1967 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1968 struct btrfs_device *device)
1969 {
1970 struct btrfs_root *root = device->fs_info->chunk_root;
1971 int ret;
1972 struct btrfs_path *path;
1973 struct btrfs_key key;
1974
1975 path = btrfs_alloc_path();
1976 if (!path)
1977 return -ENOMEM;
1978
1979 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1980 key.type = BTRFS_DEV_ITEM_KEY;
1981 key.offset = device->devid;
1982
1983 btrfs_reserve_chunk_metadata(trans, false);
1984 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1985 btrfs_trans_release_chunk_metadata(trans);
1986 if (ret) {
1987 if (ret > 0)
1988 ret = -ENOENT;
1989 goto out;
1990 }
1991
1992 ret = btrfs_del_item(trans, root, path);
1993 out:
1994 btrfs_free_path(path);
1995 return ret;
1996 }
1997
1998 /*
1999 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2000 * filesystem. It's up to the caller to adjust that number regarding eg. device
2001 * replace.
2002 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2003 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2004 u64 num_devices)
2005 {
2006 u64 all_avail;
2007 unsigned seq;
2008 int i;
2009
2010 do {
2011 seq = read_seqbegin(&fs_info->profiles_lock);
2012
2013 all_avail = fs_info->avail_data_alloc_bits |
2014 fs_info->avail_system_alloc_bits |
2015 fs_info->avail_metadata_alloc_bits;
2016 } while (read_seqretry(&fs_info->profiles_lock, seq));
2017
2018 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2019 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2020 continue;
2021
2022 if (num_devices < btrfs_raid_array[i].devs_min)
2023 return btrfs_raid_array[i].mindev_error;
2024 }
2025
2026 return 0;
2027 }
2028
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2029 static struct btrfs_device * btrfs_find_next_active_device(
2030 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2031 {
2032 struct btrfs_device *next_device;
2033
2034 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2035 if (next_device != device &&
2036 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2037 && next_device->bdev)
2038 return next_device;
2039 }
2040
2041 return NULL;
2042 }
2043
2044 /*
2045 * Helper function to check if the given device is part of s_bdev / latest_dev
2046 * and replace it with the provided or the next active device, in the context
2047 * where this function called, there should be always be another device (or
2048 * this_dev) which is active.
2049 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2050 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2051 struct btrfs_device *next_device)
2052 {
2053 struct btrfs_fs_info *fs_info = device->fs_info;
2054
2055 if (!next_device)
2056 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2057 device);
2058 ASSERT(next_device);
2059
2060 if (fs_info->sb->s_bdev &&
2061 (fs_info->sb->s_bdev == device->bdev))
2062 fs_info->sb->s_bdev = next_device->bdev;
2063
2064 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2065 fs_info->fs_devices->latest_dev = next_device;
2066 }
2067
2068 /*
2069 * Return btrfs_fs_devices::num_devices excluding the device that's being
2070 * currently replaced.
2071 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2072 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2073 {
2074 u64 num_devices = fs_info->fs_devices->num_devices;
2075
2076 down_read(&fs_info->dev_replace.rwsem);
2077 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2078 ASSERT(num_devices > 1);
2079 num_devices--;
2080 }
2081 up_read(&fs_info->dev_replace.rwsem);
2082
2083 return num_devices;
2084 }
2085
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2086 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2087 struct block_device *bdev, int copy_num)
2088 {
2089 struct btrfs_super_block *disk_super;
2090 const size_t len = sizeof(disk_super->magic);
2091 const u64 bytenr = btrfs_sb_offset(copy_num);
2092 int ret;
2093
2094 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2095 if (IS_ERR(disk_super))
2096 return;
2097
2098 memset(&disk_super->magic, 0, len);
2099 folio_mark_dirty(virt_to_folio(disk_super));
2100 btrfs_release_disk_super(disk_super);
2101
2102 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2103 if (ret)
2104 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2105 copy_num, ret);
2106 }
2107
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2108 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2109 struct block_device *bdev,
2110 const char *device_path)
2111 {
2112 int copy_num;
2113
2114 if (!bdev)
2115 return;
2116
2117 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2118 if (bdev_is_zoned(bdev))
2119 btrfs_reset_sb_log_zones(bdev, copy_num);
2120 else
2121 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2122 }
2123
2124 /* Notify udev that device has changed */
2125 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2126
2127 /* Update ctime/mtime for device path for libblkid */
2128 update_dev_time(device_path);
2129 }
2130
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct block_device ** bdev,void ** holder)2131 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2132 struct btrfs_dev_lookup_args *args,
2133 struct block_device **bdev, void **holder)
2134 {
2135 struct btrfs_trans_handle *trans;
2136 struct btrfs_device *device;
2137 struct btrfs_fs_devices *cur_devices;
2138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2139 u64 num_devices;
2140 int ret = 0;
2141
2142 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2143 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2144 return -EINVAL;
2145 }
2146
2147 /*
2148 * The device list in fs_devices is accessed without locks (neither
2149 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2150 * filesystem and another device rm cannot run.
2151 */
2152 num_devices = btrfs_num_devices(fs_info);
2153
2154 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2155 if (ret)
2156 return ret;
2157
2158 device = btrfs_find_device(fs_info->fs_devices, args);
2159 if (!device) {
2160 if (args->missing)
2161 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2162 else
2163 ret = -ENOENT;
2164 return ret;
2165 }
2166
2167 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2168 btrfs_warn_in_rcu(fs_info,
2169 "cannot remove device %s (devid %llu) due to active swapfile",
2170 btrfs_dev_name(device), device->devid);
2171 return -ETXTBSY;
2172 }
2173
2174 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2175 return BTRFS_ERROR_DEV_TGT_REPLACE;
2176
2177 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2178 fs_info->fs_devices->rw_devices == 1)
2179 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2180
2181 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2182 mutex_lock(&fs_info->chunk_mutex);
2183 list_del_init(&device->dev_alloc_list);
2184 device->fs_devices->rw_devices--;
2185 mutex_unlock(&fs_info->chunk_mutex);
2186 }
2187
2188 ret = btrfs_shrink_device(device, 0);
2189 if (ret)
2190 goto error_undo;
2191
2192 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2193 if (IS_ERR(trans)) {
2194 ret = PTR_ERR(trans);
2195 goto error_undo;
2196 }
2197
2198 ret = btrfs_rm_dev_item(trans, device);
2199 if (ret) {
2200 /* Any error in dev item removal is critical */
2201 btrfs_crit(fs_info,
2202 "failed to remove device item for devid %llu: %d",
2203 device->devid, ret);
2204 btrfs_abort_transaction(trans, ret);
2205 btrfs_end_transaction(trans);
2206 return ret;
2207 }
2208
2209 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2210 btrfs_scrub_cancel_dev(device);
2211
2212 /*
2213 * the device list mutex makes sure that we don't change
2214 * the device list while someone else is writing out all
2215 * the device supers. Whoever is writing all supers, should
2216 * lock the device list mutex before getting the number of
2217 * devices in the super block (super_copy). Conversely,
2218 * whoever updates the number of devices in the super block
2219 * (super_copy) should hold the device list mutex.
2220 */
2221
2222 /*
2223 * In normal cases the cur_devices == fs_devices. But in case
2224 * of deleting a seed device, the cur_devices should point to
2225 * its own fs_devices listed under the fs_devices->seed_list.
2226 */
2227 cur_devices = device->fs_devices;
2228 mutex_lock(&fs_devices->device_list_mutex);
2229 list_del_rcu(&device->dev_list);
2230
2231 cur_devices->num_devices--;
2232 cur_devices->total_devices--;
2233 /* Update total_devices of the parent fs_devices if it's seed */
2234 if (cur_devices != fs_devices)
2235 fs_devices->total_devices--;
2236
2237 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2238 cur_devices->missing_devices--;
2239
2240 btrfs_assign_next_active_device(device, NULL);
2241
2242 if (device->bdev) {
2243 cur_devices->open_devices--;
2244 /* remove sysfs entry */
2245 btrfs_sysfs_remove_device(device);
2246 }
2247
2248 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2249 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2250 mutex_unlock(&fs_devices->device_list_mutex);
2251
2252 /*
2253 * At this point, the device is zero sized and detached from the
2254 * devices list. All that's left is to zero out the old supers and
2255 * free the device.
2256 *
2257 * We cannot call btrfs_close_bdev() here because we're holding the sb
2258 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2259 * block device and it's dependencies. Instead just flush the device
2260 * and let the caller do the final blkdev_put.
2261 */
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263 btrfs_scratch_superblocks(fs_info, device->bdev,
2264 device->name->str);
2265 if (device->bdev) {
2266 sync_blockdev(device->bdev);
2267 invalidate_bdev(device->bdev);
2268 }
2269 }
2270
2271 *bdev = device->bdev;
2272 *holder = device->holder;
2273 synchronize_rcu();
2274 btrfs_free_device(device);
2275
2276 /*
2277 * This can happen if cur_devices is the private seed devices list. We
2278 * cannot call close_fs_devices() here because it expects the uuid_mutex
2279 * to be held, but in fact we don't need that for the private
2280 * seed_devices, we can simply decrement cur_devices->opened and then
2281 * remove it from our list and free the fs_devices.
2282 */
2283 if (cur_devices->num_devices == 0) {
2284 list_del_init(&cur_devices->seed_list);
2285 ASSERT(cur_devices->opened == 1);
2286 cur_devices->opened--;
2287 free_fs_devices(cur_devices);
2288 }
2289
2290 ret = btrfs_commit_transaction(trans);
2291
2292 return ret;
2293
2294 error_undo:
2295 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2296 mutex_lock(&fs_info->chunk_mutex);
2297 list_add(&device->dev_alloc_list,
2298 &fs_devices->alloc_list);
2299 device->fs_devices->rw_devices++;
2300 mutex_unlock(&fs_info->chunk_mutex);
2301 }
2302 return ret;
2303 }
2304
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2305 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2306 {
2307 struct btrfs_fs_devices *fs_devices;
2308
2309 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2310
2311 /*
2312 * in case of fs with no seed, srcdev->fs_devices will point
2313 * to fs_devices of fs_info. However when the dev being replaced is
2314 * a seed dev it will point to the seed's local fs_devices. In short
2315 * srcdev will have its correct fs_devices in both the cases.
2316 */
2317 fs_devices = srcdev->fs_devices;
2318
2319 list_del_rcu(&srcdev->dev_list);
2320 list_del(&srcdev->dev_alloc_list);
2321 fs_devices->num_devices--;
2322 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2323 fs_devices->missing_devices--;
2324
2325 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2326 fs_devices->rw_devices--;
2327
2328 if (srcdev->bdev)
2329 fs_devices->open_devices--;
2330 }
2331
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2332 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2333 {
2334 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2335
2336 mutex_lock(&uuid_mutex);
2337
2338 btrfs_close_bdev(srcdev);
2339 synchronize_rcu();
2340 btrfs_free_device(srcdev);
2341
2342 /* if this is no devs we rather delete the fs_devices */
2343 if (!fs_devices->num_devices) {
2344 /*
2345 * On a mounted FS, num_devices can't be zero unless it's a
2346 * seed. In case of a seed device being replaced, the replace
2347 * target added to the sprout FS, so there will be no more
2348 * device left under the seed FS.
2349 */
2350 ASSERT(fs_devices->seeding);
2351
2352 list_del_init(&fs_devices->seed_list);
2353 close_fs_devices(fs_devices);
2354 free_fs_devices(fs_devices);
2355 }
2356 mutex_unlock(&uuid_mutex);
2357 }
2358
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2359 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2360 {
2361 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2362
2363 mutex_lock(&fs_devices->device_list_mutex);
2364
2365 btrfs_sysfs_remove_device(tgtdev);
2366
2367 if (tgtdev->bdev)
2368 fs_devices->open_devices--;
2369
2370 fs_devices->num_devices--;
2371
2372 btrfs_assign_next_active_device(tgtdev, NULL);
2373
2374 list_del_rcu(&tgtdev->dev_list);
2375
2376 mutex_unlock(&fs_devices->device_list_mutex);
2377
2378 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2379 tgtdev->name->str);
2380
2381 btrfs_close_bdev(tgtdev);
2382 synchronize_rcu();
2383 btrfs_free_device(tgtdev);
2384 }
2385
2386 /*
2387 * Populate args from device at path.
2388 *
2389 * @fs_info: the filesystem
2390 * @args: the args to populate
2391 * @path: the path to the device
2392 *
2393 * This will read the super block of the device at @path and populate @args with
2394 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2395 * lookup a device to operate on, but need to do it before we take any locks.
2396 * This properly handles the special case of "missing" that a user may pass in,
2397 * and does some basic sanity checks. The caller must make sure that @path is
2398 * properly NUL terminated before calling in, and must call
2399 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2400 * uuid buffers.
2401 *
2402 * Return: 0 for success, -errno for failure
2403 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2404 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2405 struct btrfs_dev_lookup_args *args,
2406 const char *path)
2407 {
2408 struct btrfs_super_block *disk_super;
2409 struct block_device *bdev;
2410 int ret;
2411
2412 if (!path || !path[0])
2413 return -EINVAL;
2414 if (!strcmp(path, "missing")) {
2415 args->missing = true;
2416 return 0;
2417 }
2418
2419 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2420 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2421 if (!args->uuid || !args->fsid) {
2422 btrfs_put_dev_args_from_path(args);
2423 return -ENOMEM;
2424 }
2425
2426 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2427 &bdev, &disk_super);
2428 if (ret) {
2429 btrfs_put_dev_args_from_path(args);
2430 return ret;
2431 }
2432
2433 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2434 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2435 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2436 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2437 else
2438 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2439 btrfs_release_disk_super(disk_super);
2440 blkdev_put(bdev, NULL);
2441 return 0;
2442 }
2443
2444 /*
2445 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2446 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2447 * that don't need to be freed.
2448 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2449 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2450 {
2451 kfree(args->uuid);
2452 kfree(args->fsid);
2453 args->uuid = NULL;
2454 args->fsid = NULL;
2455 }
2456
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2457 struct btrfs_device *btrfs_find_device_by_devspec(
2458 struct btrfs_fs_info *fs_info, u64 devid,
2459 const char *device_path)
2460 {
2461 BTRFS_DEV_LOOKUP_ARGS(args);
2462 struct btrfs_device *device;
2463 int ret;
2464
2465 if (devid) {
2466 args.devid = devid;
2467 device = btrfs_find_device(fs_info->fs_devices, &args);
2468 if (!device)
2469 return ERR_PTR(-ENOENT);
2470 return device;
2471 }
2472
2473 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2474 if (ret)
2475 return ERR_PTR(ret);
2476 device = btrfs_find_device(fs_info->fs_devices, &args);
2477 btrfs_put_dev_args_from_path(&args);
2478 if (!device)
2479 return ERR_PTR(-ENOENT);
2480 return device;
2481 }
2482
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2483 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2484 {
2485 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2486 struct btrfs_fs_devices *old_devices;
2487 struct btrfs_fs_devices *seed_devices;
2488
2489 lockdep_assert_held(&uuid_mutex);
2490 if (!fs_devices->seeding)
2491 return ERR_PTR(-EINVAL);
2492
2493 /*
2494 * Private copy of the seed devices, anchored at
2495 * fs_info->fs_devices->seed_list
2496 */
2497 seed_devices = alloc_fs_devices(NULL, NULL);
2498 if (IS_ERR(seed_devices))
2499 return seed_devices;
2500
2501 /*
2502 * It's necessary to retain a copy of the original seed fs_devices in
2503 * fs_uuids so that filesystems which have been seeded can successfully
2504 * reference the seed device from open_seed_devices. This also supports
2505 * multiple fs seed.
2506 */
2507 old_devices = clone_fs_devices(fs_devices);
2508 if (IS_ERR(old_devices)) {
2509 kfree(seed_devices);
2510 return old_devices;
2511 }
2512
2513 list_add(&old_devices->fs_list, &fs_uuids);
2514
2515 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2516 seed_devices->opened = 1;
2517 INIT_LIST_HEAD(&seed_devices->devices);
2518 INIT_LIST_HEAD(&seed_devices->alloc_list);
2519 mutex_init(&seed_devices->device_list_mutex);
2520
2521 return seed_devices;
2522 }
2523
2524 /*
2525 * Splice seed devices into the sprout fs_devices.
2526 * Generate a new fsid for the sprouted read-write filesystem.
2527 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2528 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2529 struct btrfs_fs_devices *seed_devices)
2530 {
2531 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2532 struct btrfs_super_block *disk_super = fs_info->super_copy;
2533 struct btrfs_device *device;
2534 u64 super_flags;
2535
2536 /*
2537 * We are updating the fsid, the thread leading to device_list_add()
2538 * could race, so uuid_mutex is needed.
2539 */
2540 lockdep_assert_held(&uuid_mutex);
2541
2542 /*
2543 * The threads listed below may traverse dev_list but can do that without
2544 * device_list_mutex:
2545 * - All device ops and balance - as we are in btrfs_exclop_start.
2546 * - Various dev_list readers - are using RCU.
2547 * - btrfs_ioctl_fitrim() - is using RCU.
2548 *
2549 * For-read threads as below are using device_list_mutex:
2550 * - Readonly scrub btrfs_scrub_dev()
2551 * - Readonly scrub btrfs_scrub_progress()
2552 * - btrfs_get_dev_stats()
2553 */
2554 lockdep_assert_held(&fs_devices->device_list_mutex);
2555
2556 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2557 synchronize_rcu);
2558 list_for_each_entry(device, &seed_devices->devices, dev_list)
2559 device->fs_devices = seed_devices;
2560
2561 fs_devices->seeding = false;
2562 fs_devices->num_devices = 0;
2563 fs_devices->open_devices = 0;
2564 fs_devices->missing_devices = 0;
2565 fs_devices->rotating = false;
2566 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2567
2568 generate_random_uuid(fs_devices->fsid);
2569 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2570 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2571
2572 super_flags = btrfs_super_flags(disk_super) &
2573 ~BTRFS_SUPER_FLAG_SEEDING;
2574 btrfs_set_super_flags(disk_super, super_flags);
2575 }
2576
2577 /*
2578 * Store the expected generation for seed devices in device items.
2579 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2580 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2581 {
2582 BTRFS_DEV_LOOKUP_ARGS(args);
2583 struct btrfs_fs_info *fs_info = trans->fs_info;
2584 struct btrfs_root *root = fs_info->chunk_root;
2585 struct btrfs_path *path;
2586 struct extent_buffer *leaf;
2587 struct btrfs_dev_item *dev_item;
2588 struct btrfs_device *device;
2589 struct btrfs_key key;
2590 u8 fs_uuid[BTRFS_FSID_SIZE];
2591 u8 dev_uuid[BTRFS_UUID_SIZE];
2592 int ret;
2593
2594 path = btrfs_alloc_path();
2595 if (!path)
2596 return -ENOMEM;
2597
2598 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2599 key.offset = 0;
2600 key.type = BTRFS_DEV_ITEM_KEY;
2601
2602 while (1) {
2603 btrfs_reserve_chunk_metadata(trans, false);
2604 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2605 btrfs_trans_release_chunk_metadata(trans);
2606 if (ret < 0)
2607 goto error;
2608
2609 leaf = path->nodes[0];
2610 next_slot:
2611 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2612 ret = btrfs_next_leaf(root, path);
2613 if (ret > 0)
2614 break;
2615 if (ret < 0)
2616 goto error;
2617 leaf = path->nodes[0];
2618 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2619 btrfs_release_path(path);
2620 continue;
2621 }
2622
2623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2624 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2625 key.type != BTRFS_DEV_ITEM_KEY)
2626 break;
2627
2628 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2629 struct btrfs_dev_item);
2630 args.devid = btrfs_device_id(leaf, dev_item);
2631 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2632 BTRFS_UUID_SIZE);
2633 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2634 BTRFS_FSID_SIZE);
2635 args.uuid = dev_uuid;
2636 args.fsid = fs_uuid;
2637 device = btrfs_find_device(fs_info->fs_devices, &args);
2638 BUG_ON(!device); /* Logic error */
2639
2640 if (device->fs_devices->seeding) {
2641 btrfs_set_device_generation(leaf, dev_item,
2642 device->generation);
2643 btrfs_mark_buffer_dirty(trans, leaf);
2644 }
2645
2646 path->slots[0]++;
2647 goto next_slot;
2648 }
2649 ret = 0;
2650 error:
2651 btrfs_free_path(path);
2652 return ret;
2653 }
2654
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2655 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2656 {
2657 struct btrfs_root *root = fs_info->dev_root;
2658 struct btrfs_trans_handle *trans;
2659 struct btrfs_device *device;
2660 struct block_device *bdev;
2661 struct super_block *sb = fs_info->sb;
2662 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2663 struct btrfs_fs_devices *seed_devices = NULL;
2664 u64 orig_super_total_bytes;
2665 u64 orig_super_num_devices;
2666 int ret = 0;
2667 bool seeding_dev = false;
2668 bool locked = false;
2669
2670 if (sb_rdonly(sb) && !fs_devices->seeding)
2671 return -EROFS;
2672
2673 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
2674 fs_info->bdev_holder, NULL);
2675 if (IS_ERR(bdev))
2676 return PTR_ERR(bdev);
2677
2678 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2679 ret = -EINVAL;
2680 goto error;
2681 }
2682
2683 if (fs_devices->seeding) {
2684 seeding_dev = true;
2685 down_write(&sb->s_umount);
2686 mutex_lock(&uuid_mutex);
2687 locked = true;
2688 }
2689
2690 sync_blockdev(bdev);
2691
2692 rcu_read_lock();
2693 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2694 if (device->bdev == bdev) {
2695 ret = -EEXIST;
2696 rcu_read_unlock();
2697 goto error;
2698 }
2699 }
2700 rcu_read_unlock();
2701
2702 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2703 if (IS_ERR(device)) {
2704 /* we can safely leave the fs_devices entry around */
2705 ret = PTR_ERR(device);
2706 goto error;
2707 }
2708
2709 device->fs_info = fs_info;
2710 device->bdev = bdev;
2711 ret = lookup_bdev(device_path, &device->devt);
2712 if (ret)
2713 goto error_free_device;
2714
2715 ret = btrfs_get_dev_zone_info(device, false);
2716 if (ret)
2717 goto error_free_device;
2718
2719 trans = btrfs_start_transaction(root, 0);
2720 if (IS_ERR(trans)) {
2721 ret = PTR_ERR(trans);
2722 goto error_free_zone;
2723 }
2724
2725 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2726 device->generation = trans->transid;
2727 device->io_width = fs_info->sectorsize;
2728 device->io_align = fs_info->sectorsize;
2729 device->sector_size = fs_info->sectorsize;
2730 device->total_bytes =
2731 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2732 device->disk_total_bytes = device->total_bytes;
2733 device->commit_total_bytes = device->total_bytes;
2734 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2735 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2736 device->holder = fs_info->bdev_holder;
2737 device->dev_stats_valid = 1;
2738 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2739
2740 if (seeding_dev) {
2741 /* GFP_KERNEL allocation must not be under device_list_mutex */
2742 seed_devices = btrfs_init_sprout(fs_info);
2743 if (IS_ERR(seed_devices)) {
2744 ret = PTR_ERR(seed_devices);
2745 btrfs_abort_transaction(trans, ret);
2746 goto error_trans;
2747 }
2748 }
2749
2750 mutex_lock(&fs_devices->device_list_mutex);
2751 if (seeding_dev) {
2752 btrfs_setup_sprout(fs_info, seed_devices);
2753 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2754 device);
2755 }
2756
2757 device->fs_devices = fs_devices;
2758
2759 mutex_lock(&fs_info->chunk_mutex);
2760 list_add_rcu(&device->dev_list, &fs_devices->devices);
2761 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2762 fs_devices->num_devices++;
2763 fs_devices->open_devices++;
2764 fs_devices->rw_devices++;
2765 fs_devices->total_devices++;
2766 fs_devices->total_rw_bytes += device->total_bytes;
2767
2768 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2769
2770 if (!bdev_nonrot(bdev))
2771 fs_devices->rotating = true;
2772
2773 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2774 btrfs_set_super_total_bytes(fs_info->super_copy,
2775 round_down(orig_super_total_bytes + device->total_bytes,
2776 fs_info->sectorsize));
2777
2778 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2779 btrfs_set_super_num_devices(fs_info->super_copy,
2780 orig_super_num_devices + 1);
2781
2782 /*
2783 * we've got more storage, clear any full flags on the space
2784 * infos
2785 */
2786 btrfs_clear_space_info_full(fs_info);
2787
2788 mutex_unlock(&fs_info->chunk_mutex);
2789
2790 /* Add sysfs device entry */
2791 btrfs_sysfs_add_device(device);
2792
2793 mutex_unlock(&fs_devices->device_list_mutex);
2794
2795 if (seeding_dev) {
2796 mutex_lock(&fs_info->chunk_mutex);
2797 ret = init_first_rw_device(trans);
2798 mutex_unlock(&fs_info->chunk_mutex);
2799 if (ret) {
2800 btrfs_abort_transaction(trans, ret);
2801 goto error_sysfs;
2802 }
2803 }
2804
2805 ret = btrfs_add_dev_item(trans, device);
2806 if (ret) {
2807 btrfs_abort_transaction(trans, ret);
2808 goto error_sysfs;
2809 }
2810
2811 if (seeding_dev) {
2812 ret = btrfs_finish_sprout(trans);
2813 if (ret) {
2814 btrfs_abort_transaction(trans, ret);
2815 goto error_sysfs;
2816 }
2817
2818 /*
2819 * fs_devices now represents the newly sprouted filesystem and
2820 * its fsid has been changed by btrfs_sprout_splice().
2821 */
2822 btrfs_sysfs_update_sprout_fsid(fs_devices);
2823 }
2824
2825 ret = btrfs_commit_transaction(trans);
2826
2827 if (seeding_dev) {
2828 mutex_unlock(&uuid_mutex);
2829 up_write(&sb->s_umount);
2830 locked = false;
2831
2832 if (ret) /* transaction commit */
2833 return ret;
2834
2835 ret = btrfs_relocate_sys_chunks(fs_info);
2836 if (ret < 0)
2837 btrfs_handle_fs_error(fs_info, ret,
2838 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2839 trans = btrfs_attach_transaction(root);
2840 if (IS_ERR(trans)) {
2841 if (PTR_ERR(trans) == -ENOENT)
2842 return 0;
2843 ret = PTR_ERR(trans);
2844 trans = NULL;
2845 goto error_sysfs;
2846 }
2847 ret = btrfs_commit_transaction(trans);
2848 }
2849
2850 /*
2851 * Now that we have written a new super block to this device, check all
2852 * other fs_devices list if device_path alienates any other scanned
2853 * device.
2854 * We can ignore the return value as it typically returns -EINVAL and
2855 * only succeeds if the device was an alien.
2856 */
2857 btrfs_forget_devices(device->devt);
2858
2859 /* Update ctime/mtime for blkid or udev */
2860 update_dev_time(device_path);
2861
2862 return ret;
2863
2864 error_sysfs:
2865 btrfs_sysfs_remove_device(device);
2866 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2867 mutex_lock(&fs_info->chunk_mutex);
2868 list_del_rcu(&device->dev_list);
2869 list_del(&device->dev_alloc_list);
2870 fs_info->fs_devices->num_devices--;
2871 fs_info->fs_devices->open_devices--;
2872 fs_info->fs_devices->rw_devices--;
2873 fs_info->fs_devices->total_devices--;
2874 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2875 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2876 btrfs_set_super_total_bytes(fs_info->super_copy,
2877 orig_super_total_bytes);
2878 btrfs_set_super_num_devices(fs_info->super_copy,
2879 orig_super_num_devices);
2880 mutex_unlock(&fs_info->chunk_mutex);
2881 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2882 error_trans:
2883 if (trans)
2884 btrfs_end_transaction(trans);
2885 error_free_zone:
2886 btrfs_destroy_dev_zone_info(device);
2887 error_free_device:
2888 btrfs_free_device(device);
2889 error:
2890 blkdev_put(bdev, fs_info->bdev_holder);
2891 if (locked) {
2892 mutex_unlock(&uuid_mutex);
2893 up_write(&sb->s_umount);
2894 }
2895 return ret;
2896 }
2897
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2898 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2899 struct btrfs_device *device)
2900 {
2901 int ret;
2902 struct btrfs_path *path;
2903 struct btrfs_root *root = device->fs_info->chunk_root;
2904 struct btrfs_dev_item *dev_item;
2905 struct extent_buffer *leaf;
2906 struct btrfs_key key;
2907
2908 path = btrfs_alloc_path();
2909 if (!path)
2910 return -ENOMEM;
2911
2912 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2913 key.type = BTRFS_DEV_ITEM_KEY;
2914 key.offset = device->devid;
2915
2916 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2917 if (ret < 0)
2918 goto out;
2919
2920 if (ret > 0) {
2921 ret = -ENOENT;
2922 goto out;
2923 }
2924
2925 leaf = path->nodes[0];
2926 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2927
2928 btrfs_set_device_id(leaf, dev_item, device->devid);
2929 btrfs_set_device_type(leaf, dev_item, device->type);
2930 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2931 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2932 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2933 btrfs_set_device_total_bytes(leaf, dev_item,
2934 btrfs_device_get_disk_total_bytes(device));
2935 btrfs_set_device_bytes_used(leaf, dev_item,
2936 btrfs_device_get_bytes_used(device));
2937 btrfs_mark_buffer_dirty(trans, leaf);
2938
2939 out:
2940 btrfs_free_path(path);
2941 return ret;
2942 }
2943
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2944 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2945 struct btrfs_device *device, u64 new_size)
2946 {
2947 struct btrfs_fs_info *fs_info = device->fs_info;
2948 struct btrfs_super_block *super_copy = fs_info->super_copy;
2949 u64 old_total;
2950 u64 diff;
2951 int ret;
2952
2953 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2954 return -EACCES;
2955
2956 new_size = round_down(new_size, fs_info->sectorsize);
2957
2958 mutex_lock(&fs_info->chunk_mutex);
2959 old_total = btrfs_super_total_bytes(super_copy);
2960 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2961
2962 if (new_size <= device->total_bytes ||
2963 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2964 mutex_unlock(&fs_info->chunk_mutex);
2965 return -EINVAL;
2966 }
2967
2968 btrfs_set_super_total_bytes(super_copy,
2969 round_down(old_total + diff, fs_info->sectorsize));
2970 device->fs_devices->total_rw_bytes += diff;
2971
2972 btrfs_device_set_total_bytes(device, new_size);
2973 btrfs_device_set_disk_total_bytes(device, new_size);
2974 btrfs_clear_space_info_full(device->fs_info);
2975 if (list_empty(&device->post_commit_list))
2976 list_add_tail(&device->post_commit_list,
2977 &trans->transaction->dev_update_list);
2978 mutex_unlock(&fs_info->chunk_mutex);
2979
2980 btrfs_reserve_chunk_metadata(trans, false);
2981 ret = btrfs_update_device(trans, device);
2982 btrfs_trans_release_chunk_metadata(trans);
2983
2984 return ret;
2985 }
2986
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2987 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2988 {
2989 struct btrfs_fs_info *fs_info = trans->fs_info;
2990 struct btrfs_root *root = fs_info->chunk_root;
2991 int ret;
2992 struct btrfs_path *path;
2993 struct btrfs_key key;
2994
2995 path = btrfs_alloc_path();
2996 if (!path)
2997 return -ENOMEM;
2998
2999 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3000 key.offset = chunk_offset;
3001 key.type = BTRFS_CHUNK_ITEM_KEY;
3002
3003 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3004 if (ret < 0)
3005 goto out;
3006 else if (ret > 0) { /* Logic error or corruption */
3007 btrfs_handle_fs_error(fs_info, -ENOENT,
3008 "Failed lookup while freeing chunk.");
3009 ret = -ENOENT;
3010 goto out;
3011 }
3012
3013 ret = btrfs_del_item(trans, root, path);
3014 if (ret < 0)
3015 btrfs_handle_fs_error(fs_info, ret,
3016 "Failed to delete chunk item.");
3017 out:
3018 btrfs_free_path(path);
3019 return ret;
3020 }
3021
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3022 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3023 {
3024 struct btrfs_super_block *super_copy = fs_info->super_copy;
3025 struct btrfs_disk_key *disk_key;
3026 struct btrfs_chunk *chunk;
3027 u8 *ptr;
3028 int ret = 0;
3029 u32 num_stripes;
3030 u32 array_size;
3031 u32 len = 0;
3032 u32 cur;
3033 struct btrfs_key key;
3034
3035 lockdep_assert_held(&fs_info->chunk_mutex);
3036 array_size = btrfs_super_sys_array_size(super_copy);
3037
3038 ptr = super_copy->sys_chunk_array;
3039 cur = 0;
3040
3041 while (cur < array_size) {
3042 disk_key = (struct btrfs_disk_key *)ptr;
3043 btrfs_disk_key_to_cpu(&key, disk_key);
3044
3045 len = sizeof(*disk_key);
3046
3047 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3048 chunk = (struct btrfs_chunk *)(ptr + len);
3049 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3050 len += btrfs_chunk_item_size(num_stripes);
3051 } else {
3052 ret = -EIO;
3053 break;
3054 }
3055 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3056 key.offset == chunk_offset) {
3057 memmove(ptr, ptr + len, array_size - (cur + len));
3058 array_size -= len;
3059 btrfs_set_super_sys_array_size(super_copy, array_size);
3060 } else {
3061 ptr += len;
3062 cur += len;
3063 }
3064 }
3065 return ret;
3066 }
3067
3068 /*
3069 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3070 * @logical: Logical block offset in bytes.
3071 * @length: Length of extent in bytes.
3072 *
3073 * Return: Chunk mapping or ERR_PTR.
3074 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3075 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3076 u64 logical, u64 length)
3077 {
3078 struct extent_map_tree *em_tree;
3079 struct extent_map *em;
3080
3081 em_tree = &fs_info->mapping_tree;
3082 read_lock(&em_tree->lock);
3083 em = lookup_extent_mapping(em_tree, logical, length);
3084 read_unlock(&em_tree->lock);
3085
3086 if (!em) {
3087 btrfs_crit(fs_info,
3088 "unable to find chunk map for logical %llu length %llu",
3089 logical, length);
3090 return ERR_PTR(-EINVAL);
3091 }
3092
3093 if (em->start > logical || em->start + em->len <= logical) {
3094 btrfs_crit(fs_info,
3095 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3096 logical, logical + length, em->start, em->start + em->len);
3097 free_extent_map(em);
3098 return ERR_PTR(-EINVAL);
3099 }
3100
3101 /* callers are responsible for dropping em's ref. */
3102 return em;
3103 }
3104
remove_chunk_item(struct btrfs_trans_handle * trans,struct map_lookup * map,u64 chunk_offset)3105 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3106 struct map_lookup *map, u64 chunk_offset)
3107 {
3108 int i;
3109
3110 /*
3111 * Removing chunk items and updating the device items in the chunks btree
3112 * requires holding the chunk_mutex.
3113 * See the comment at btrfs_chunk_alloc() for the details.
3114 */
3115 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3116
3117 for (i = 0; i < map->num_stripes; i++) {
3118 int ret;
3119
3120 ret = btrfs_update_device(trans, map->stripes[i].dev);
3121 if (ret)
3122 return ret;
3123 }
3124
3125 return btrfs_free_chunk(trans, chunk_offset);
3126 }
3127
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3128 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3129 {
3130 struct btrfs_fs_info *fs_info = trans->fs_info;
3131 struct extent_map *em;
3132 struct map_lookup *map;
3133 u64 dev_extent_len = 0;
3134 int i, ret = 0;
3135 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3136
3137 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3138 if (IS_ERR(em)) {
3139 /*
3140 * This is a logic error, but we don't want to just rely on the
3141 * user having built with ASSERT enabled, so if ASSERT doesn't
3142 * do anything we still error out.
3143 */
3144 ASSERT(0);
3145 return PTR_ERR(em);
3146 }
3147 map = em->map_lookup;
3148
3149 /*
3150 * First delete the device extent items from the devices btree.
3151 * We take the device_list_mutex to avoid racing with the finishing phase
3152 * of a device replace operation. See the comment below before acquiring
3153 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3154 * because that can result in a deadlock when deleting the device extent
3155 * items from the devices btree - COWing an extent buffer from the btree
3156 * may result in allocating a new metadata chunk, which would attempt to
3157 * lock again fs_info->chunk_mutex.
3158 */
3159 mutex_lock(&fs_devices->device_list_mutex);
3160 for (i = 0; i < map->num_stripes; i++) {
3161 struct btrfs_device *device = map->stripes[i].dev;
3162 ret = btrfs_free_dev_extent(trans, device,
3163 map->stripes[i].physical,
3164 &dev_extent_len);
3165 if (ret) {
3166 mutex_unlock(&fs_devices->device_list_mutex);
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 if (device->bytes_used > 0) {
3172 mutex_lock(&fs_info->chunk_mutex);
3173 btrfs_device_set_bytes_used(device,
3174 device->bytes_used - dev_extent_len);
3175 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3176 btrfs_clear_space_info_full(fs_info);
3177
3178 if (list_empty(&device->post_commit_list)) {
3179 list_add_tail(&device->post_commit_list,
3180 &trans->transaction->dev_update_list);
3181 }
3182
3183 mutex_unlock(&fs_info->chunk_mutex);
3184 }
3185 }
3186 mutex_unlock(&fs_devices->device_list_mutex);
3187
3188 /*
3189 * We acquire fs_info->chunk_mutex for 2 reasons:
3190 *
3191 * 1) Just like with the first phase of the chunk allocation, we must
3192 * reserve system space, do all chunk btree updates and deletions, and
3193 * update the system chunk array in the superblock while holding this
3194 * mutex. This is for similar reasons as explained on the comment at
3195 * the top of btrfs_chunk_alloc();
3196 *
3197 * 2) Prevent races with the final phase of a device replace operation
3198 * that replaces the device object associated with the map's stripes,
3199 * because the device object's id can change at any time during that
3200 * final phase of the device replace operation
3201 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3202 * replaced device and then see it with an ID of
3203 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3204 * the device item, which does not exists on the chunk btree.
3205 * The finishing phase of device replace acquires both the
3206 * device_list_mutex and the chunk_mutex, in that order, so we are
3207 * safe by just acquiring the chunk_mutex.
3208 */
3209 trans->removing_chunk = true;
3210 mutex_lock(&fs_info->chunk_mutex);
3211
3212 check_system_chunk(trans, map->type);
3213
3214 ret = remove_chunk_item(trans, map, chunk_offset);
3215 /*
3216 * Normally we should not get -ENOSPC since we reserved space before
3217 * through the call to check_system_chunk().
3218 *
3219 * Despite our system space_info having enough free space, we may not
3220 * be able to allocate extents from its block groups, because all have
3221 * an incompatible profile, which will force us to allocate a new system
3222 * block group with the right profile, or right after we called
3223 * check_system_space() above, a scrub turned the only system block group
3224 * with enough free space into RO mode.
3225 * This is explained with more detail at do_chunk_alloc().
3226 *
3227 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3228 */
3229 if (ret == -ENOSPC) {
3230 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3231 struct btrfs_block_group *sys_bg;
3232
3233 sys_bg = btrfs_create_chunk(trans, sys_flags);
3234 if (IS_ERR(sys_bg)) {
3235 ret = PTR_ERR(sys_bg);
3236 btrfs_abort_transaction(trans, ret);
3237 goto out;
3238 }
3239
3240 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3241 if (ret) {
3242 btrfs_abort_transaction(trans, ret);
3243 goto out;
3244 }
3245
3246 ret = remove_chunk_item(trans, map, chunk_offset);
3247 if (ret) {
3248 btrfs_abort_transaction(trans, ret);
3249 goto out;
3250 }
3251 } else if (ret) {
3252 btrfs_abort_transaction(trans, ret);
3253 goto out;
3254 }
3255
3256 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3257
3258 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3259 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3260 if (ret) {
3261 btrfs_abort_transaction(trans, ret);
3262 goto out;
3263 }
3264 }
3265
3266 mutex_unlock(&fs_info->chunk_mutex);
3267 trans->removing_chunk = false;
3268
3269 /*
3270 * We are done with chunk btree updates and deletions, so release the
3271 * system space we previously reserved (with check_system_chunk()).
3272 */
3273 btrfs_trans_release_chunk_metadata(trans);
3274
3275 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3276 if (ret) {
3277 btrfs_abort_transaction(trans, ret);
3278 goto out;
3279 }
3280
3281 out:
3282 if (trans->removing_chunk) {
3283 mutex_unlock(&fs_info->chunk_mutex);
3284 trans->removing_chunk = false;
3285 }
3286 /* once for us */
3287 free_extent_map(em);
3288 return ret;
3289 }
3290
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3291 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3292 {
3293 struct btrfs_root *root = fs_info->chunk_root;
3294 struct btrfs_trans_handle *trans;
3295 struct btrfs_block_group *block_group;
3296 u64 length;
3297 int ret;
3298
3299 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3300 btrfs_err(fs_info,
3301 "relocate: not supported on extent tree v2 yet");
3302 return -EINVAL;
3303 }
3304
3305 /*
3306 * Prevent races with automatic removal of unused block groups.
3307 * After we relocate and before we remove the chunk with offset
3308 * chunk_offset, automatic removal of the block group can kick in,
3309 * resulting in a failure when calling btrfs_remove_chunk() below.
3310 *
3311 * Make sure to acquire this mutex before doing a tree search (dev
3312 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3313 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3314 * we release the path used to search the chunk/dev tree and before
3315 * the current task acquires this mutex and calls us.
3316 */
3317 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3318
3319 /* step one, relocate all the extents inside this chunk */
3320 btrfs_scrub_pause(fs_info);
3321 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3322 btrfs_scrub_continue(fs_info);
3323 if (ret) {
3324 /*
3325 * If we had a transaction abort, stop all running scrubs.
3326 * See transaction.c:cleanup_transaction() why we do it here.
3327 */
3328 if (BTRFS_FS_ERROR(fs_info))
3329 btrfs_scrub_cancel(fs_info);
3330 return ret;
3331 }
3332
3333 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3334 if (!block_group)
3335 return -ENOENT;
3336 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3337 length = block_group->length;
3338 btrfs_put_block_group(block_group);
3339
3340 /*
3341 * On a zoned file system, discard the whole block group, this will
3342 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3343 * resetting the zone fails, don't treat it as a fatal problem from the
3344 * filesystem's point of view.
3345 */
3346 if (btrfs_is_zoned(fs_info)) {
3347 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3348 if (ret)
3349 btrfs_info(fs_info,
3350 "failed to reset zone %llu after relocation",
3351 chunk_offset);
3352 }
3353
3354 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3355 chunk_offset);
3356 if (IS_ERR(trans)) {
3357 ret = PTR_ERR(trans);
3358 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3359 return ret;
3360 }
3361
3362 /*
3363 * step two, delete the device extents and the
3364 * chunk tree entries
3365 */
3366 ret = btrfs_remove_chunk(trans, chunk_offset);
3367 btrfs_end_transaction(trans);
3368 return ret;
3369 }
3370
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3371 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3372 {
3373 struct btrfs_root *chunk_root = fs_info->chunk_root;
3374 struct btrfs_path *path;
3375 struct extent_buffer *leaf;
3376 struct btrfs_chunk *chunk;
3377 struct btrfs_key key;
3378 struct btrfs_key found_key;
3379 u64 chunk_type;
3380 bool retried = false;
3381 int failed = 0;
3382 int ret;
3383
3384 path = btrfs_alloc_path();
3385 if (!path)
3386 return -ENOMEM;
3387
3388 again:
3389 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3390 key.offset = (u64)-1;
3391 key.type = BTRFS_CHUNK_ITEM_KEY;
3392
3393 while (1) {
3394 mutex_lock(&fs_info->reclaim_bgs_lock);
3395 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3396 if (ret < 0) {
3397 mutex_unlock(&fs_info->reclaim_bgs_lock);
3398 goto error;
3399 }
3400 if (ret == 0) {
3401 /*
3402 * On the first search we would find chunk tree with
3403 * offset -1, which is not possible. On subsequent
3404 * loops this would find an existing item on an invalid
3405 * offset (one less than the previous one, wrong
3406 * alignment and size).
3407 */
3408 ret = -EUCLEAN;
3409 mutex_unlock(&fs_info->reclaim_bgs_lock);
3410 goto error;
3411 }
3412
3413 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3414 key.type);
3415 if (ret)
3416 mutex_unlock(&fs_info->reclaim_bgs_lock);
3417 if (ret < 0)
3418 goto error;
3419 if (ret > 0)
3420 break;
3421
3422 leaf = path->nodes[0];
3423 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3424
3425 chunk = btrfs_item_ptr(leaf, path->slots[0],
3426 struct btrfs_chunk);
3427 chunk_type = btrfs_chunk_type(leaf, chunk);
3428 btrfs_release_path(path);
3429
3430 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3431 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3432 if (ret == -ENOSPC)
3433 failed++;
3434 else
3435 BUG_ON(ret);
3436 }
3437 mutex_unlock(&fs_info->reclaim_bgs_lock);
3438
3439 if (found_key.offset == 0)
3440 break;
3441 key.offset = found_key.offset - 1;
3442 }
3443 ret = 0;
3444 if (failed && !retried) {
3445 failed = 0;
3446 retried = true;
3447 goto again;
3448 } else if (WARN_ON(failed && retried)) {
3449 ret = -ENOSPC;
3450 }
3451 error:
3452 btrfs_free_path(path);
3453 return ret;
3454 }
3455
3456 /*
3457 * return 1 : allocate a data chunk successfully,
3458 * return <0: errors during allocating a data chunk,
3459 * return 0 : no need to allocate a data chunk.
3460 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3461 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3462 u64 chunk_offset)
3463 {
3464 struct btrfs_block_group *cache;
3465 u64 bytes_used;
3466 u64 chunk_type;
3467
3468 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3469 ASSERT(cache);
3470 chunk_type = cache->flags;
3471 btrfs_put_block_group(cache);
3472
3473 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3474 return 0;
3475
3476 spin_lock(&fs_info->data_sinfo->lock);
3477 bytes_used = fs_info->data_sinfo->bytes_used;
3478 spin_unlock(&fs_info->data_sinfo->lock);
3479
3480 if (!bytes_used) {
3481 struct btrfs_trans_handle *trans;
3482 int ret;
3483
3484 trans = btrfs_join_transaction(fs_info->tree_root);
3485 if (IS_ERR(trans))
3486 return PTR_ERR(trans);
3487
3488 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3489 btrfs_end_transaction(trans);
3490 if (ret < 0)
3491 return ret;
3492 return 1;
3493 }
3494
3495 return 0;
3496 }
3497
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3498 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3499 struct btrfs_balance_control *bctl)
3500 {
3501 struct btrfs_root *root = fs_info->tree_root;
3502 struct btrfs_trans_handle *trans;
3503 struct btrfs_balance_item *item;
3504 struct btrfs_disk_balance_args disk_bargs;
3505 struct btrfs_path *path;
3506 struct extent_buffer *leaf;
3507 struct btrfs_key key;
3508 int ret, err;
3509
3510 path = btrfs_alloc_path();
3511 if (!path)
3512 return -ENOMEM;
3513
3514 trans = btrfs_start_transaction(root, 0);
3515 if (IS_ERR(trans)) {
3516 btrfs_free_path(path);
3517 return PTR_ERR(trans);
3518 }
3519
3520 key.objectid = BTRFS_BALANCE_OBJECTID;
3521 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3522 key.offset = 0;
3523
3524 ret = btrfs_insert_empty_item(trans, root, path, &key,
3525 sizeof(*item));
3526 if (ret)
3527 goto out;
3528
3529 leaf = path->nodes[0];
3530 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3531
3532 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3533
3534 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3535 btrfs_set_balance_data(leaf, item, &disk_bargs);
3536 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3537 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3538 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3539 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3540
3541 btrfs_set_balance_flags(leaf, item, bctl->flags);
3542
3543 btrfs_mark_buffer_dirty(trans, leaf);
3544 out:
3545 btrfs_free_path(path);
3546 err = btrfs_commit_transaction(trans);
3547 if (err && !ret)
3548 ret = err;
3549 return ret;
3550 }
3551
del_balance_item(struct btrfs_fs_info * fs_info)3552 static int del_balance_item(struct btrfs_fs_info *fs_info)
3553 {
3554 struct btrfs_root *root = fs_info->tree_root;
3555 struct btrfs_trans_handle *trans;
3556 struct btrfs_path *path;
3557 struct btrfs_key key;
3558 int ret, err;
3559
3560 path = btrfs_alloc_path();
3561 if (!path)
3562 return -ENOMEM;
3563
3564 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3565 if (IS_ERR(trans)) {
3566 btrfs_free_path(path);
3567 return PTR_ERR(trans);
3568 }
3569
3570 key.objectid = BTRFS_BALANCE_OBJECTID;
3571 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3572 key.offset = 0;
3573
3574 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3575 if (ret < 0)
3576 goto out;
3577 if (ret > 0) {
3578 ret = -ENOENT;
3579 goto out;
3580 }
3581
3582 ret = btrfs_del_item(trans, root, path);
3583 out:
3584 btrfs_free_path(path);
3585 err = btrfs_commit_transaction(trans);
3586 if (err && !ret)
3587 ret = err;
3588 return ret;
3589 }
3590
3591 /*
3592 * This is a heuristic used to reduce the number of chunks balanced on
3593 * resume after balance was interrupted.
3594 */
update_balance_args(struct btrfs_balance_control * bctl)3595 static void update_balance_args(struct btrfs_balance_control *bctl)
3596 {
3597 /*
3598 * Turn on soft mode for chunk types that were being converted.
3599 */
3600 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3601 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3602 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3603 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3604 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3605 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3606
3607 /*
3608 * Turn on usage filter if is not already used. The idea is
3609 * that chunks that we have already balanced should be
3610 * reasonably full. Don't do it for chunks that are being
3611 * converted - that will keep us from relocating unconverted
3612 * (albeit full) chunks.
3613 */
3614 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3615 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3616 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3617 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3618 bctl->data.usage = 90;
3619 }
3620 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3621 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3622 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3623 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3624 bctl->sys.usage = 90;
3625 }
3626 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3627 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3628 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3629 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3630 bctl->meta.usage = 90;
3631 }
3632 }
3633
3634 /*
3635 * Clear the balance status in fs_info and delete the balance item from disk.
3636 */
reset_balance_state(struct btrfs_fs_info * fs_info)3637 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3638 {
3639 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3640 int ret;
3641
3642 BUG_ON(!fs_info->balance_ctl);
3643
3644 spin_lock(&fs_info->balance_lock);
3645 fs_info->balance_ctl = NULL;
3646 spin_unlock(&fs_info->balance_lock);
3647
3648 kfree(bctl);
3649 ret = del_balance_item(fs_info);
3650 if (ret)
3651 btrfs_handle_fs_error(fs_info, ret, NULL);
3652 }
3653
3654 /*
3655 * Balance filters. Return 1 if chunk should be filtered out
3656 * (should not be balanced).
3657 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3658 static int chunk_profiles_filter(u64 chunk_type,
3659 struct btrfs_balance_args *bargs)
3660 {
3661 chunk_type = chunk_to_extended(chunk_type) &
3662 BTRFS_EXTENDED_PROFILE_MASK;
3663
3664 if (bargs->profiles & chunk_type)
3665 return 0;
3666
3667 return 1;
3668 }
3669
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3670 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3671 struct btrfs_balance_args *bargs)
3672 {
3673 struct btrfs_block_group *cache;
3674 u64 chunk_used;
3675 u64 user_thresh_min;
3676 u64 user_thresh_max;
3677 int ret = 1;
3678
3679 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3680 chunk_used = cache->used;
3681
3682 if (bargs->usage_min == 0)
3683 user_thresh_min = 0;
3684 else
3685 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3686
3687 if (bargs->usage_max == 0)
3688 user_thresh_max = 1;
3689 else if (bargs->usage_max > 100)
3690 user_thresh_max = cache->length;
3691 else
3692 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3693
3694 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3695 ret = 0;
3696
3697 btrfs_put_block_group(cache);
3698 return ret;
3699 }
3700
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3701 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3702 u64 chunk_offset, struct btrfs_balance_args *bargs)
3703 {
3704 struct btrfs_block_group *cache;
3705 u64 chunk_used, user_thresh;
3706 int ret = 1;
3707
3708 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3709 chunk_used = cache->used;
3710
3711 if (bargs->usage_min == 0)
3712 user_thresh = 1;
3713 else if (bargs->usage > 100)
3714 user_thresh = cache->length;
3715 else
3716 user_thresh = mult_perc(cache->length, bargs->usage);
3717
3718 if (chunk_used < user_thresh)
3719 ret = 0;
3720
3721 btrfs_put_block_group(cache);
3722 return ret;
3723 }
3724
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3725 static int chunk_devid_filter(struct extent_buffer *leaf,
3726 struct btrfs_chunk *chunk,
3727 struct btrfs_balance_args *bargs)
3728 {
3729 struct btrfs_stripe *stripe;
3730 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3731 int i;
3732
3733 for (i = 0; i < num_stripes; i++) {
3734 stripe = btrfs_stripe_nr(chunk, i);
3735 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3736 return 0;
3737 }
3738
3739 return 1;
3740 }
3741
calc_data_stripes(u64 type,int num_stripes)3742 static u64 calc_data_stripes(u64 type, int num_stripes)
3743 {
3744 const int index = btrfs_bg_flags_to_raid_index(type);
3745 const int ncopies = btrfs_raid_array[index].ncopies;
3746 const int nparity = btrfs_raid_array[index].nparity;
3747
3748 return (num_stripes - nparity) / ncopies;
3749 }
3750
3751 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3752 static int chunk_drange_filter(struct extent_buffer *leaf,
3753 struct btrfs_chunk *chunk,
3754 struct btrfs_balance_args *bargs)
3755 {
3756 struct btrfs_stripe *stripe;
3757 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3758 u64 stripe_offset;
3759 u64 stripe_length;
3760 u64 type;
3761 int factor;
3762 int i;
3763
3764 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3765 return 0;
3766
3767 type = btrfs_chunk_type(leaf, chunk);
3768 factor = calc_data_stripes(type, num_stripes);
3769
3770 for (i = 0; i < num_stripes; i++) {
3771 stripe = btrfs_stripe_nr(chunk, i);
3772 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3773 continue;
3774
3775 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3776 stripe_length = btrfs_chunk_length(leaf, chunk);
3777 stripe_length = div_u64(stripe_length, factor);
3778
3779 if (stripe_offset < bargs->pend &&
3780 stripe_offset + stripe_length > bargs->pstart)
3781 return 0;
3782 }
3783
3784 return 1;
3785 }
3786
3787 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3788 static int chunk_vrange_filter(struct extent_buffer *leaf,
3789 struct btrfs_chunk *chunk,
3790 u64 chunk_offset,
3791 struct btrfs_balance_args *bargs)
3792 {
3793 if (chunk_offset < bargs->vend &&
3794 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3795 /* at least part of the chunk is inside this vrange */
3796 return 0;
3797
3798 return 1;
3799 }
3800
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3801 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3802 struct btrfs_chunk *chunk,
3803 struct btrfs_balance_args *bargs)
3804 {
3805 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3806
3807 if (bargs->stripes_min <= num_stripes
3808 && num_stripes <= bargs->stripes_max)
3809 return 0;
3810
3811 return 1;
3812 }
3813
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3814 static int chunk_soft_convert_filter(u64 chunk_type,
3815 struct btrfs_balance_args *bargs)
3816 {
3817 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3818 return 0;
3819
3820 chunk_type = chunk_to_extended(chunk_type) &
3821 BTRFS_EXTENDED_PROFILE_MASK;
3822
3823 if (bargs->target == chunk_type)
3824 return 1;
3825
3826 return 0;
3827 }
3828
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3829 static int should_balance_chunk(struct extent_buffer *leaf,
3830 struct btrfs_chunk *chunk, u64 chunk_offset)
3831 {
3832 struct btrfs_fs_info *fs_info = leaf->fs_info;
3833 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3834 struct btrfs_balance_args *bargs = NULL;
3835 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3836
3837 /* type filter */
3838 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3839 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3840 return 0;
3841 }
3842
3843 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3844 bargs = &bctl->data;
3845 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3846 bargs = &bctl->sys;
3847 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3848 bargs = &bctl->meta;
3849
3850 /* profiles filter */
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3852 chunk_profiles_filter(chunk_type, bargs)) {
3853 return 0;
3854 }
3855
3856 /* usage filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3858 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3859 return 0;
3860 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3861 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3862 return 0;
3863 }
3864
3865 /* devid filter */
3866 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3867 chunk_devid_filter(leaf, chunk, bargs)) {
3868 return 0;
3869 }
3870
3871 /* drange filter, makes sense only with devid filter */
3872 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3873 chunk_drange_filter(leaf, chunk, bargs)) {
3874 return 0;
3875 }
3876
3877 /* vrange filter */
3878 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3879 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3880 return 0;
3881 }
3882
3883 /* stripes filter */
3884 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3885 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3886 return 0;
3887 }
3888
3889 /* soft profile changing mode */
3890 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3891 chunk_soft_convert_filter(chunk_type, bargs)) {
3892 return 0;
3893 }
3894
3895 /*
3896 * limited by count, must be the last filter
3897 */
3898 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3899 if (bargs->limit == 0)
3900 return 0;
3901 else
3902 bargs->limit--;
3903 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3904 /*
3905 * Same logic as the 'limit' filter; the minimum cannot be
3906 * determined here because we do not have the global information
3907 * about the count of all chunks that satisfy the filters.
3908 */
3909 if (bargs->limit_max == 0)
3910 return 0;
3911 else
3912 bargs->limit_max--;
3913 }
3914
3915 return 1;
3916 }
3917
__btrfs_balance(struct btrfs_fs_info * fs_info)3918 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3919 {
3920 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921 struct btrfs_root *chunk_root = fs_info->chunk_root;
3922 u64 chunk_type;
3923 struct btrfs_chunk *chunk;
3924 struct btrfs_path *path = NULL;
3925 struct btrfs_key key;
3926 struct btrfs_key found_key;
3927 struct extent_buffer *leaf;
3928 int slot;
3929 int ret;
3930 int enospc_errors = 0;
3931 bool counting = true;
3932 /* The single value limit and min/max limits use the same bytes in the */
3933 u64 limit_data = bctl->data.limit;
3934 u64 limit_meta = bctl->meta.limit;
3935 u64 limit_sys = bctl->sys.limit;
3936 u32 count_data = 0;
3937 u32 count_meta = 0;
3938 u32 count_sys = 0;
3939 int chunk_reserved = 0;
3940
3941 path = btrfs_alloc_path();
3942 if (!path) {
3943 ret = -ENOMEM;
3944 goto error;
3945 }
3946
3947 /* zero out stat counters */
3948 spin_lock(&fs_info->balance_lock);
3949 memset(&bctl->stat, 0, sizeof(bctl->stat));
3950 spin_unlock(&fs_info->balance_lock);
3951 again:
3952 if (!counting) {
3953 /*
3954 * The single value limit and min/max limits use the same bytes
3955 * in the
3956 */
3957 bctl->data.limit = limit_data;
3958 bctl->meta.limit = limit_meta;
3959 bctl->sys.limit = limit_sys;
3960 }
3961 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3962 key.offset = (u64)-1;
3963 key.type = BTRFS_CHUNK_ITEM_KEY;
3964
3965 while (1) {
3966 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3967 atomic_read(&fs_info->balance_cancel_req)) {
3968 ret = -ECANCELED;
3969 goto error;
3970 }
3971
3972 mutex_lock(&fs_info->reclaim_bgs_lock);
3973 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3974 if (ret < 0) {
3975 mutex_unlock(&fs_info->reclaim_bgs_lock);
3976 goto error;
3977 }
3978
3979 /*
3980 * this shouldn't happen, it means the last relocate
3981 * failed
3982 */
3983 if (ret == 0)
3984 BUG(); /* FIXME break ? */
3985
3986 ret = btrfs_previous_item(chunk_root, path, 0,
3987 BTRFS_CHUNK_ITEM_KEY);
3988 if (ret) {
3989 mutex_unlock(&fs_info->reclaim_bgs_lock);
3990 ret = 0;
3991 break;
3992 }
3993
3994 leaf = path->nodes[0];
3995 slot = path->slots[0];
3996 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3997
3998 if (found_key.objectid != key.objectid) {
3999 mutex_unlock(&fs_info->reclaim_bgs_lock);
4000 break;
4001 }
4002
4003 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4004 chunk_type = btrfs_chunk_type(leaf, chunk);
4005
4006 if (!counting) {
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.considered++;
4009 spin_unlock(&fs_info->balance_lock);
4010 }
4011
4012 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4013
4014 btrfs_release_path(path);
4015 if (!ret) {
4016 mutex_unlock(&fs_info->reclaim_bgs_lock);
4017 goto loop;
4018 }
4019
4020 if (counting) {
4021 mutex_unlock(&fs_info->reclaim_bgs_lock);
4022 spin_lock(&fs_info->balance_lock);
4023 bctl->stat.expected++;
4024 spin_unlock(&fs_info->balance_lock);
4025
4026 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4027 count_data++;
4028 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4029 count_sys++;
4030 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4031 count_meta++;
4032
4033 goto loop;
4034 }
4035
4036 /*
4037 * Apply limit_min filter, no need to check if the LIMITS
4038 * filter is used, limit_min is 0 by default
4039 */
4040 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4041 count_data < bctl->data.limit_min)
4042 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4043 count_meta < bctl->meta.limit_min)
4044 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4045 count_sys < bctl->sys.limit_min)) {
4046 mutex_unlock(&fs_info->reclaim_bgs_lock);
4047 goto loop;
4048 }
4049
4050 if (!chunk_reserved) {
4051 /*
4052 * We may be relocating the only data chunk we have,
4053 * which could potentially end up with losing data's
4054 * raid profile, so lets allocate an empty one in
4055 * advance.
4056 */
4057 ret = btrfs_may_alloc_data_chunk(fs_info,
4058 found_key.offset);
4059 if (ret < 0) {
4060 mutex_unlock(&fs_info->reclaim_bgs_lock);
4061 goto error;
4062 } else if (ret == 1) {
4063 chunk_reserved = 1;
4064 }
4065 }
4066
4067 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4068 mutex_unlock(&fs_info->reclaim_bgs_lock);
4069 if (ret == -ENOSPC) {
4070 enospc_errors++;
4071 } else if (ret == -ETXTBSY) {
4072 btrfs_info(fs_info,
4073 "skipping relocation of block group %llu due to active swapfile",
4074 found_key.offset);
4075 ret = 0;
4076 } else if (ret) {
4077 goto error;
4078 } else {
4079 spin_lock(&fs_info->balance_lock);
4080 bctl->stat.completed++;
4081 spin_unlock(&fs_info->balance_lock);
4082 }
4083 loop:
4084 if (found_key.offset == 0)
4085 break;
4086 key.offset = found_key.offset - 1;
4087 }
4088
4089 if (counting) {
4090 btrfs_release_path(path);
4091 counting = false;
4092 goto again;
4093 }
4094 error:
4095 btrfs_free_path(path);
4096 if (enospc_errors) {
4097 btrfs_info(fs_info, "%d enospc errors during balance",
4098 enospc_errors);
4099 if (!ret)
4100 ret = -ENOSPC;
4101 }
4102
4103 return ret;
4104 }
4105
4106 /*
4107 * See if a given profile is valid and reduced.
4108 *
4109 * @flags: profile to validate
4110 * @extended: if true @flags is treated as an extended profile
4111 */
alloc_profile_is_valid(u64 flags,int extended)4112 static int alloc_profile_is_valid(u64 flags, int extended)
4113 {
4114 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4115 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4116
4117 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4118
4119 /* 1) check that all other bits are zeroed */
4120 if (flags & ~mask)
4121 return 0;
4122
4123 /* 2) see if profile is reduced */
4124 if (flags == 0)
4125 return !extended; /* "0" is valid for usual profiles */
4126
4127 return has_single_bit_set(flags);
4128 }
4129
4130 /*
4131 * Validate target profile against allowed profiles and return true if it's OK.
4132 * Otherwise print the error message and return false.
4133 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4134 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4135 const struct btrfs_balance_args *bargs,
4136 u64 allowed, const char *type)
4137 {
4138 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4139 return true;
4140
4141 /* Profile is valid and does not have bits outside of the allowed set */
4142 if (alloc_profile_is_valid(bargs->target, 1) &&
4143 (bargs->target & ~allowed) == 0)
4144 return true;
4145
4146 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4147 type, btrfs_bg_type_to_raid_name(bargs->target));
4148 return false;
4149 }
4150
4151 /*
4152 * Fill @buf with textual description of balance filter flags @bargs, up to
4153 * @size_buf including the terminating null. The output may be trimmed if it
4154 * does not fit into the provided buffer.
4155 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4156 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4157 u32 size_buf)
4158 {
4159 int ret;
4160 u32 size_bp = size_buf;
4161 char *bp = buf;
4162 u64 flags = bargs->flags;
4163 char tmp_buf[128] = {'\0'};
4164
4165 if (!flags)
4166 return;
4167
4168 #define CHECK_APPEND_NOARG(a) \
4169 do { \
4170 ret = snprintf(bp, size_bp, (a)); \
4171 if (ret < 0 || ret >= size_bp) \
4172 goto out_overflow; \
4173 size_bp -= ret; \
4174 bp += ret; \
4175 } while (0)
4176
4177 #define CHECK_APPEND_1ARG(a, v1) \
4178 do { \
4179 ret = snprintf(bp, size_bp, (a), (v1)); \
4180 if (ret < 0 || ret >= size_bp) \
4181 goto out_overflow; \
4182 size_bp -= ret; \
4183 bp += ret; \
4184 } while (0)
4185
4186 #define CHECK_APPEND_2ARG(a, v1, v2) \
4187 do { \
4188 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4189 if (ret < 0 || ret >= size_bp) \
4190 goto out_overflow; \
4191 size_bp -= ret; \
4192 bp += ret; \
4193 } while (0)
4194
4195 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4196 CHECK_APPEND_1ARG("convert=%s,",
4197 btrfs_bg_type_to_raid_name(bargs->target));
4198
4199 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4200 CHECK_APPEND_NOARG("soft,");
4201
4202 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4203 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4204 sizeof(tmp_buf));
4205 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4206 }
4207
4208 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4209 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4210
4211 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4212 CHECK_APPEND_2ARG("usage=%u..%u,",
4213 bargs->usage_min, bargs->usage_max);
4214
4215 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4216 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4217
4218 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4219 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4220 bargs->pstart, bargs->pend);
4221
4222 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4223 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4224 bargs->vstart, bargs->vend);
4225
4226 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4227 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4228
4229 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4230 CHECK_APPEND_2ARG("limit=%u..%u,",
4231 bargs->limit_min, bargs->limit_max);
4232
4233 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4234 CHECK_APPEND_2ARG("stripes=%u..%u,",
4235 bargs->stripes_min, bargs->stripes_max);
4236
4237 #undef CHECK_APPEND_2ARG
4238 #undef CHECK_APPEND_1ARG
4239 #undef CHECK_APPEND_NOARG
4240
4241 out_overflow:
4242
4243 if (size_bp < size_buf)
4244 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4245 else
4246 buf[0] = '\0';
4247 }
4248
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4249 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4250 {
4251 u32 size_buf = 1024;
4252 char tmp_buf[192] = {'\0'};
4253 char *buf;
4254 char *bp;
4255 u32 size_bp = size_buf;
4256 int ret;
4257 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4258
4259 buf = kzalloc(size_buf, GFP_KERNEL);
4260 if (!buf)
4261 return;
4262
4263 bp = buf;
4264
4265 #define CHECK_APPEND_1ARG(a, v1) \
4266 do { \
4267 ret = snprintf(bp, size_bp, (a), (v1)); \
4268 if (ret < 0 || ret >= size_bp) \
4269 goto out_overflow; \
4270 size_bp -= ret; \
4271 bp += ret; \
4272 } while (0)
4273
4274 if (bctl->flags & BTRFS_BALANCE_FORCE)
4275 CHECK_APPEND_1ARG("%s", "-f ");
4276
4277 if (bctl->flags & BTRFS_BALANCE_DATA) {
4278 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4279 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4280 }
4281
4282 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4283 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4284 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4285 }
4286
4287 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4288 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4289 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4290 }
4291
4292 #undef CHECK_APPEND_1ARG
4293
4294 out_overflow:
4295
4296 if (size_bp < size_buf)
4297 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4298 btrfs_info(fs_info, "balance: %s %s",
4299 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4300 "resume" : "start", buf);
4301
4302 kfree(buf);
4303 }
4304
4305 /*
4306 * Should be called with balance mutexe held
4307 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4308 int btrfs_balance(struct btrfs_fs_info *fs_info,
4309 struct btrfs_balance_control *bctl,
4310 struct btrfs_ioctl_balance_args *bargs)
4311 {
4312 u64 meta_target, data_target;
4313 u64 allowed;
4314 int mixed = 0;
4315 int ret;
4316 u64 num_devices;
4317 unsigned seq;
4318 bool reducing_redundancy;
4319 bool paused = false;
4320 int i;
4321
4322 if (btrfs_fs_closing(fs_info) ||
4323 atomic_read(&fs_info->balance_pause_req) ||
4324 btrfs_should_cancel_balance(fs_info)) {
4325 ret = -EINVAL;
4326 goto out;
4327 }
4328
4329 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4330 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4331 mixed = 1;
4332
4333 /*
4334 * In case of mixed groups both data and meta should be picked,
4335 * and identical options should be given for both of them.
4336 */
4337 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4338 if (mixed && (bctl->flags & allowed)) {
4339 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4340 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4341 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4342 btrfs_err(fs_info,
4343 "balance: mixed groups data and metadata options must be the same");
4344 ret = -EINVAL;
4345 goto out;
4346 }
4347 }
4348
4349 /*
4350 * rw_devices will not change at the moment, device add/delete/replace
4351 * are exclusive
4352 */
4353 num_devices = fs_info->fs_devices->rw_devices;
4354
4355 /*
4356 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4357 * special bit for it, to make it easier to distinguish. Thus we need
4358 * to set it manually, or balance would refuse the profile.
4359 */
4360 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4361 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4362 if (num_devices >= btrfs_raid_array[i].devs_min)
4363 allowed |= btrfs_raid_array[i].bg_flag;
4364
4365 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4366 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4367 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4368 ret = -EINVAL;
4369 goto out;
4370 }
4371
4372 /*
4373 * Allow to reduce metadata or system integrity only if force set for
4374 * profiles with redundancy (copies, parity)
4375 */
4376 allowed = 0;
4377 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4378 if (btrfs_raid_array[i].ncopies >= 2 ||
4379 btrfs_raid_array[i].tolerated_failures >= 1)
4380 allowed |= btrfs_raid_array[i].bg_flag;
4381 }
4382 do {
4383 seq = read_seqbegin(&fs_info->profiles_lock);
4384
4385 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4386 (fs_info->avail_system_alloc_bits & allowed) &&
4387 !(bctl->sys.target & allowed)) ||
4388 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4389 (fs_info->avail_metadata_alloc_bits & allowed) &&
4390 !(bctl->meta.target & allowed)))
4391 reducing_redundancy = true;
4392 else
4393 reducing_redundancy = false;
4394
4395 /* if we're not converting, the target field is uninitialized */
4396 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4397 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4398 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4399 bctl->data.target : fs_info->avail_data_alloc_bits;
4400 } while (read_seqretry(&fs_info->profiles_lock, seq));
4401
4402 if (reducing_redundancy) {
4403 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4404 btrfs_info(fs_info,
4405 "balance: force reducing metadata redundancy");
4406 } else {
4407 btrfs_err(fs_info,
4408 "balance: reduces metadata redundancy, use --force if you want this");
4409 ret = -EINVAL;
4410 goto out;
4411 }
4412 }
4413
4414 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4415 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4416 btrfs_warn(fs_info,
4417 "balance: metadata profile %s has lower redundancy than data profile %s",
4418 btrfs_bg_type_to_raid_name(meta_target),
4419 btrfs_bg_type_to_raid_name(data_target));
4420 }
4421
4422 ret = insert_balance_item(fs_info, bctl);
4423 if (ret && ret != -EEXIST)
4424 goto out;
4425
4426 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4427 BUG_ON(ret == -EEXIST);
4428 BUG_ON(fs_info->balance_ctl);
4429 spin_lock(&fs_info->balance_lock);
4430 fs_info->balance_ctl = bctl;
4431 spin_unlock(&fs_info->balance_lock);
4432 } else {
4433 BUG_ON(ret != -EEXIST);
4434 spin_lock(&fs_info->balance_lock);
4435 update_balance_args(bctl);
4436 spin_unlock(&fs_info->balance_lock);
4437 }
4438
4439 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4440 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4441 describe_balance_start_or_resume(fs_info);
4442 mutex_unlock(&fs_info->balance_mutex);
4443
4444 ret = __btrfs_balance(fs_info);
4445
4446 mutex_lock(&fs_info->balance_mutex);
4447 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4448 btrfs_info(fs_info, "balance: paused");
4449 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4450 paused = true;
4451 }
4452 /*
4453 * Balance can be canceled by:
4454 *
4455 * - Regular cancel request
4456 * Then ret == -ECANCELED and balance_cancel_req > 0
4457 *
4458 * - Fatal signal to "btrfs" process
4459 * Either the signal caught by wait_reserve_ticket() and callers
4460 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4461 * got -ECANCELED.
4462 * Either way, in this case balance_cancel_req = 0, and
4463 * ret == -EINTR or ret == -ECANCELED.
4464 *
4465 * So here we only check the return value to catch canceled balance.
4466 */
4467 else if (ret == -ECANCELED || ret == -EINTR)
4468 btrfs_info(fs_info, "balance: canceled");
4469 else
4470 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4471
4472 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4473
4474 if (bargs) {
4475 memset(bargs, 0, sizeof(*bargs));
4476 btrfs_update_ioctl_balance_args(fs_info, bargs);
4477 }
4478
4479 /* We didn't pause, we can clean everything up. */
4480 if (!paused) {
4481 reset_balance_state(fs_info);
4482 btrfs_exclop_finish(fs_info);
4483 }
4484
4485 wake_up(&fs_info->balance_wait_q);
4486
4487 return ret;
4488 out:
4489 if (bctl->flags & BTRFS_BALANCE_RESUME)
4490 reset_balance_state(fs_info);
4491 else
4492 kfree(bctl);
4493 btrfs_exclop_finish(fs_info);
4494
4495 return ret;
4496 }
4497
balance_kthread(void * data)4498 static int balance_kthread(void *data)
4499 {
4500 struct btrfs_fs_info *fs_info = data;
4501 int ret = 0;
4502
4503 sb_start_write(fs_info->sb);
4504 mutex_lock(&fs_info->balance_mutex);
4505 if (fs_info->balance_ctl)
4506 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4507 mutex_unlock(&fs_info->balance_mutex);
4508 sb_end_write(fs_info->sb);
4509
4510 return ret;
4511 }
4512
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4513 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4514 {
4515 struct task_struct *tsk;
4516
4517 mutex_lock(&fs_info->balance_mutex);
4518 if (!fs_info->balance_ctl) {
4519 mutex_unlock(&fs_info->balance_mutex);
4520 return 0;
4521 }
4522 mutex_unlock(&fs_info->balance_mutex);
4523
4524 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4525 btrfs_info(fs_info, "balance: resume skipped");
4526 return 0;
4527 }
4528
4529 spin_lock(&fs_info->super_lock);
4530 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4531 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4532 spin_unlock(&fs_info->super_lock);
4533 /*
4534 * A ro->rw remount sequence should continue with the paused balance
4535 * regardless of who pauses it, system or the user as of now, so set
4536 * the resume flag.
4537 */
4538 spin_lock(&fs_info->balance_lock);
4539 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4540 spin_unlock(&fs_info->balance_lock);
4541
4542 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4543 return PTR_ERR_OR_ZERO(tsk);
4544 }
4545
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4546 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4547 {
4548 struct btrfs_balance_control *bctl;
4549 struct btrfs_balance_item *item;
4550 struct btrfs_disk_balance_args disk_bargs;
4551 struct btrfs_path *path;
4552 struct extent_buffer *leaf;
4553 struct btrfs_key key;
4554 int ret;
4555
4556 path = btrfs_alloc_path();
4557 if (!path)
4558 return -ENOMEM;
4559
4560 key.objectid = BTRFS_BALANCE_OBJECTID;
4561 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4562 key.offset = 0;
4563
4564 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4565 if (ret < 0)
4566 goto out;
4567 if (ret > 0) { /* ret = -ENOENT; */
4568 ret = 0;
4569 goto out;
4570 }
4571
4572 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4573 if (!bctl) {
4574 ret = -ENOMEM;
4575 goto out;
4576 }
4577
4578 leaf = path->nodes[0];
4579 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4580
4581 bctl->flags = btrfs_balance_flags(leaf, item);
4582 bctl->flags |= BTRFS_BALANCE_RESUME;
4583
4584 btrfs_balance_data(leaf, item, &disk_bargs);
4585 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4586 btrfs_balance_meta(leaf, item, &disk_bargs);
4587 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4588 btrfs_balance_sys(leaf, item, &disk_bargs);
4589 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4590
4591 /*
4592 * This should never happen, as the paused balance state is recovered
4593 * during mount without any chance of other exclusive ops to collide.
4594 *
4595 * This gives the exclusive op status to balance and keeps in paused
4596 * state until user intervention (cancel or umount). If the ownership
4597 * cannot be assigned, show a message but do not fail. The balance
4598 * is in a paused state and must have fs_info::balance_ctl properly
4599 * set up.
4600 */
4601 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4602 btrfs_warn(fs_info,
4603 "balance: cannot set exclusive op status, resume manually");
4604
4605 btrfs_release_path(path);
4606
4607 mutex_lock(&fs_info->balance_mutex);
4608 BUG_ON(fs_info->balance_ctl);
4609 spin_lock(&fs_info->balance_lock);
4610 fs_info->balance_ctl = bctl;
4611 spin_unlock(&fs_info->balance_lock);
4612 mutex_unlock(&fs_info->balance_mutex);
4613 out:
4614 btrfs_free_path(path);
4615 return ret;
4616 }
4617
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4618 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4619 {
4620 int ret = 0;
4621
4622 mutex_lock(&fs_info->balance_mutex);
4623 if (!fs_info->balance_ctl) {
4624 mutex_unlock(&fs_info->balance_mutex);
4625 return -ENOTCONN;
4626 }
4627
4628 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4629 atomic_inc(&fs_info->balance_pause_req);
4630 mutex_unlock(&fs_info->balance_mutex);
4631
4632 wait_event(fs_info->balance_wait_q,
4633 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4634
4635 mutex_lock(&fs_info->balance_mutex);
4636 /* we are good with balance_ctl ripped off from under us */
4637 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4638 atomic_dec(&fs_info->balance_pause_req);
4639 } else {
4640 ret = -ENOTCONN;
4641 }
4642
4643 mutex_unlock(&fs_info->balance_mutex);
4644 return ret;
4645 }
4646
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4647 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4648 {
4649 mutex_lock(&fs_info->balance_mutex);
4650 if (!fs_info->balance_ctl) {
4651 mutex_unlock(&fs_info->balance_mutex);
4652 return -ENOTCONN;
4653 }
4654
4655 /*
4656 * A paused balance with the item stored on disk can be resumed at
4657 * mount time if the mount is read-write. Otherwise it's still paused
4658 * and we must not allow cancelling as it deletes the item.
4659 */
4660 if (sb_rdonly(fs_info->sb)) {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 return -EROFS;
4663 }
4664
4665 atomic_inc(&fs_info->balance_cancel_req);
4666 /*
4667 * if we are running just wait and return, balance item is
4668 * deleted in btrfs_balance in this case
4669 */
4670 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4671 mutex_unlock(&fs_info->balance_mutex);
4672 wait_event(fs_info->balance_wait_q,
4673 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4674 mutex_lock(&fs_info->balance_mutex);
4675 } else {
4676 mutex_unlock(&fs_info->balance_mutex);
4677 /*
4678 * Lock released to allow other waiters to continue, we'll
4679 * reexamine the status again.
4680 */
4681 mutex_lock(&fs_info->balance_mutex);
4682
4683 if (fs_info->balance_ctl) {
4684 reset_balance_state(fs_info);
4685 btrfs_exclop_finish(fs_info);
4686 btrfs_info(fs_info, "balance: canceled");
4687 }
4688 }
4689
4690 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4691 atomic_dec(&fs_info->balance_cancel_req);
4692 mutex_unlock(&fs_info->balance_mutex);
4693 return 0;
4694 }
4695
btrfs_uuid_scan_kthread(void * data)4696 int btrfs_uuid_scan_kthread(void *data)
4697 {
4698 struct btrfs_fs_info *fs_info = data;
4699 struct btrfs_root *root = fs_info->tree_root;
4700 struct btrfs_key key;
4701 struct btrfs_path *path = NULL;
4702 int ret = 0;
4703 struct extent_buffer *eb;
4704 int slot;
4705 struct btrfs_root_item root_item;
4706 u32 item_size;
4707 struct btrfs_trans_handle *trans = NULL;
4708 bool closing = false;
4709
4710 path = btrfs_alloc_path();
4711 if (!path) {
4712 ret = -ENOMEM;
4713 goto out;
4714 }
4715
4716 key.objectid = 0;
4717 key.type = BTRFS_ROOT_ITEM_KEY;
4718 key.offset = 0;
4719
4720 while (1) {
4721 if (btrfs_fs_closing(fs_info)) {
4722 closing = true;
4723 break;
4724 }
4725 ret = btrfs_search_forward(root, &key, path,
4726 BTRFS_OLDEST_GENERATION);
4727 if (ret) {
4728 if (ret > 0)
4729 ret = 0;
4730 break;
4731 }
4732
4733 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4734 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4735 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4736 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4737 goto skip;
4738
4739 eb = path->nodes[0];
4740 slot = path->slots[0];
4741 item_size = btrfs_item_size(eb, slot);
4742 if (item_size < sizeof(root_item))
4743 goto skip;
4744
4745 read_extent_buffer(eb, &root_item,
4746 btrfs_item_ptr_offset(eb, slot),
4747 (int)sizeof(root_item));
4748 if (btrfs_root_refs(&root_item) == 0)
4749 goto skip;
4750
4751 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4752 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4753 if (trans)
4754 goto update_tree;
4755
4756 btrfs_release_path(path);
4757 /*
4758 * 1 - subvol uuid item
4759 * 1 - received_subvol uuid item
4760 */
4761 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4762 if (IS_ERR(trans)) {
4763 ret = PTR_ERR(trans);
4764 break;
4765 }
4766 continue;
4767 } else {
4768 goto skip;
4769 }
4770 update_tree:
4771 btrfs_release_path(path);
4772 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4773 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4774 BTRFS_UUID_KEY_SUBVOL,
4775 key.objectid);
4776 if (ret < 0) {
4777 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4778 ret);
4779 break;
4780 }
4781 }
4782
4783 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4784 ret = btrfs_uuid_tree_add(trans,
4785 root_item.received_uuid,
4786 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4787 key.objectid);
4788 if (ret < 0) {
4789 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4790 ret);
4791 break;
4792 }
4793 }
4794
4795 skip:
4796 btrfs_release_path(path);
4797 if (trans) {
4798 ret = btrfs_end_transaction(trans);
4799 trans = NULL;
4800 if (ret)
4801 break;
4802 }
4803
4804 if (key.offset < (u64)-1) {
4805 key.offset++;
4806 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4807 key.offset = 0;
4808 key.type = BTRFS_ROOT_ITEM_KEY;
4809 } else if (key.objectid < (u64)-1) {
4810 key.offset = 0;
4811 key.type = BTRFS_ROOT_ITEM_KEY;
4812 key.objectid++;
4813 } else {
4814 break;
4815 }
4816 cond_resched();
4817 }
4818
4819 out:
4820 btrfs_free_path(path);
4821 if (trans && !IS_ERR(trans))
4822 btrfs_end_transaction(trans);
4823 if (ret)
4824 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4825 else if (!closing)
4826 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4827 up(&fs_info->uuid_tree_rescan_sem);
4828 return 0;
4829 }
4830
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4831 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4832 {
4833 struct btrfs_trans_handle *trans;
4834 struct btrfs_root *tree_root = fs_info->tree_root;
4835 struct btrfs_root *uuid_root;
4836 struct task_struct *task;
4837 int ret;
4838
4839 /*
4840 * 1 - root node
4841 * 1 - root item
4842 */
4843 trans = btrfs_start_transaction(tree_root, 2);
4844 if (IS_ERR(trans))
4845 return PTR_ERR(trans);
4846
4847 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4848 if (IS_ERR(uuid_root)) {
4849 ret = PTR_ERR(uuid_root);
4850 btrfs_abort_transaction(trans, ret);
4851 btrfs_end_transaction(trans);
4852 return ret;
4853 }
4854
4855 fs_info->uuid_root = uuid_root;
4856
4857 ret = btrfs_commit_transaction(trans);
4858 if (ret)
4859 return ret;
4860
4861 down(&fs_info->uuid_tree_rescan_sem);
4862 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4863 if (IS_ERR(task)) {
4864 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4865 btrfs_warn(fs_info, "failed to start uuid_scan task");
4866 up(&fs_info->uuid_tree_rescan_sem);
4867 return PTR_ERR(task);
4868 }
4869
4870 return 0;
4871 }
4872
4873 /*
4874 * shrinking a device means finding all of the device extents past
4875 * the new size, and then following the back refs to the chunks.
4876 * The chunk relocation code actually frees the device extent
4877 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4878 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4879 {
4880 struct btrfs_fs_info *fs_info = device->fs_info;
4881 struct btrfs_root *root = fs_info->dev_root;
4882 struct btrfs_trans_handle *trans;
4883 struct btrfs_dev_extent *dev_extent = NULL;
4884 struct btrfs_path *path;
4885 u64 length;
4886 u64 chunk_offset;
4887 int ret;
4888 int slot;
4889 int failed = 0;
4890 bool retried = false;
4891 struct extent_buffer *l;
4892 struct btrfs_key key;
4893 struct btrfs_super_block *super_copy = fs_info->super_copy;
4894 u64 old_total = btrfs_super_total_bytes(super_copy);
4895 u64 old_size = btrfs_device_get_total_bytes(device);
4896 u64 diff;
4897 u64 start;
4898
4899 new_size = round_down(new_size, fs_info->sectorsize);
4900 start = new_size;
4901 diff = round_down(old_size - new_size, fs_info->sectorsize);
4902
4903 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4904 return -EINVAL;
4905
4906 path = btrfs_alloc_path();
4907 if (!path)
4908 return -ENOMEM;
4909
4910 path->reada = READA_BACK;
4911
4912 trans = btrfs_start_transaction(root, 0);
4913 if (IS_ERR(trans)) {
4914 btrfs_free_path(path);
4915 return PTR_ERR(trans);
4916 }
4917
4918 mutex_lock(&fs_info->chunk_mutex);
4919
4920 btrfs_device_set_total_bytes(device, new_size);
4921 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4922 device->fs_devices->total_rw_bytes -= diff;
4923 atomic64_sub(diff, &fs_info->free_chunk_space);
4924 }
4925
4926 /*
4927 * Once the device's size has been set to the new size, ensure all
4928 * in-memory chunks are synced to disk so that the loop below sees them
4929 * and relocates them accordingly.
4930 */
4931 if (contains_pending_extent(device, &start, diff)) {
4932 mutex_unlock(&fs_info->chunk_mutex);
4933 ret = btrfs_commit_transaction(trans);
4934 if (ret)
4935 goto done;
4936 } else {
4937 mutex_unlock(&fs_info->chunk_mutex);
4938 btrfs_end_transaction(trans);
4939 }
4940
4941 again:
4942 key.objectid = device->devid;
4943 key.offset = (u64)-1;
4944 key.type = BTRFS_DEV_EXTENT_KEY;
4945
4946 do {
4947 mutex_lock(&fs_info->reclaim_bgs_lock);
4948 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4949 if (ret < 0) {
4950 mutex_unlock(&fs_info->reclaim_bgs_lock);
4951 goto done;
4952 }
4953
4954 ret = btrfs_previous_item(root, path, 0, key.type);
4955 if (ret) {
4956 mutex_unlock(&fs_info->reclaim_bgs_lock);
4957 if (ret < 0)
4958 goto done;
4959 ret = 0;
4960 btrfs_release_path(path);
4961 break;
4962 }
4963
4964 l = path->nodes[0];
4965 slot = path->slots[0];
4966 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4967
4968 if (key.objectid != device->devid) {
4969 mutex_unlock(&fs_info->reclaim_bgs_lock);
4970 btrfs_release_path(path);
4971 break;
4972 }
4973
4974 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4975 length = btrfs_dev_extent_length(l, dev_extent);
4976
4977 if (key.offset + length <= new_size) {
4978 mutex_unlock(&fs_info->reclaim_bgs_lock);
4979 btrfs_release_path(path);
4980 break;
4981 }
4982
4983 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4984 btrfs_release_path(path);
4985
4986 /*
4987 * We may be relocating the only data chunk we have,
4988 * which could potentially end up with losing data's
4989 * raid profile, so lets allocate an empty one in
4990 * advance.
4991 */
4992 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4993 if (ret < 0) {
4994 mutex_unlock(&fs_info->reclaim_bgs_lock);
4995 goto done;
4996 }
4997
4998 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4999 mutex_unlock(&fs_info->reclaim_bgs_lock);
5000 if (ret == -ENOSPC) {
5001 failed++;
5002 } else if (ret) {
5003 if (ret == -ETXTBSY) {
5004 btrfs_warn(fs_info,
5005 "could not shrink block group %llu due to active swapfile",
5006 chunk_offset);
5007 }
5008 goto done;
5009 }
5010 } while (key.offset-- > 0);
5011
5012 if (failed && !retried) {
5013 failed = 0;
5014 retried = true;
5015 goto again;
5016 } else if (failed && retried) {
5017 ret = -ENOSPC;
5018 goto done;
5019 }
5020
5021 /* Shrinking succeeded, else we would be at "done". */
5022 trans = btrfs_start_transaction(root, 0);
5023 if (IS_ERR(trans)) {
5024 ret = PTR_ERR(trans);
5025 goto done;
5026 }
5027
5028 mutex_lock(&fs_info->chunk_mutex);
5029 /* Clear all state bits beyond the shrunk device size */
5030 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5031 CHUNK_STATE_MASK);
5032
5033 btrfs_device_set_disk_total_bytes(device, new_size);
5034 if (list_empty(&device->post_commit_list))
5035 list_add_tail(&device->post_commit_list,
5036 &trans->transaction->dev_update_list);
5037
5038 WARN_ON(diff > old_total);
5039 btrfs_set_super_total_bytes(super_copy,
5040 round_down(old_total - diff, fs_info->sectorsize));
5041 mutex_unlock(&fs_info->chunk_mutex);
5042
5043 btrfs_reserve_chunk_metadata(trans, false);
5044 /* Now btrfs_update_device() will change the on-disk size. */
5045 ret = btrfs_update_device(trans, device);
5046 btrfs_trans_release_chunk_metadata(trans);
5047 if (ret < 0) {
5048 btrfs_abort_transaction(trans, ret);
5049 btrfs_end_transaction(trans);
5050 } else {
5051 ret = btrfs_commit_transaction(trans);
5052 }
5053 done:
5054 btrfs_free_path(path);
5055 if (ret) {
5056 mutex_lock(&fs_info->chunk_mutex);
5057 btrfs_device_set_total_bytes(device, old_size);
5058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5059 device->fs_devices->total_rw_bytes += diff;
5060 atomic64_add(diff, &fs_info->free_chunk_space);
5061 mutex_unlock(&fs_info->chunk_mutex);
5062 }
5063 return ret;
5064 }
5065
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5066 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5067 struct btrfs_key *key,
5068 struct btrfs_chunk *chunk, int item_size)
5069 {
5070 struct btrfs_super_block *super_copy = fs_info->super_copy;
5071 struct btrfs_disk_key disk_key;
5072 u32 array_size;
5073 u8 *ptr;
5074
5075 lockdep_assert_held(&fs_info->chunk_mutex);
5076
5077 array_size = btrfs_super_sys_array_size(super_copy);
5078 if (array_size + item_size + sizeof(disk_key)
5079 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5080 return -EFBIG;
5081
5082 ptr = super_copy->sys_chunk_array + array_size;
5083 btrfs_cpu_key_to_disk(&disk_key, key);
5084 memcpy(ptr, &disk_key, sizeof(disk_key));
5085 ptr += sizeof(disk_key);
5086 memcpy(ptr, chunk, item_size);
5087 item_size += sizeof(disk_key);
5088 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5089
5090 return 0;
5091 }
5092
5093 /*
5094 * sort the devices in descending order by max_avail, total_avail
5095 */
btrfs_cmp_device_info(const void * a,const void * b)5096 static int btrfs_cmp_device_info(const void *a, const void *b)
5097 {
5098 const struct btrfs_device_info *di_a = a;
5099 const struct btrfs_device_info *di_b = b;
5100
5101 if (di_a->max_avail > di_b->max_avail)
5102 return -1;
5103 if (di_a->max_avail < di_b->max_avail)
5104 return 1;
5105 if (di_a->total_avail > di_b->total_avail)
5106 return -1;
5107 if (di_a->total_avail < di_b->total_avail)
5108 return 1;
5109 return 0;
5110 }
5111
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5112 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5113 {
5114 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5115 return;
5116
5117 btrfs_set_fs_incompat(info, RAID56);
5118 }
5119
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5120 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5121 {
5122 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5123 return;
5124
5125 btrfs_set_fs_incompat(info, RAID1C34);
5126 }
5127
5128 /*
5129 * Structure used internally for btrfs_create_chunk() function.
5130 * Wraps needed parameters.
5131 */
5132 struct alloc_chunk_ctl {
5133 u64 start;
5134 u64 type;
5135 /* Total number of stripes to allocate */
5136 int num_stripes;
5137 /* sub_stripes info for map */
5138 int sub_stripes;
5139 /* Stripes per device */
5140 int dev_stripes;
5141 /* Maximum number of devices to use */
5142 int devs_max;
5143 /* Minimum number of devices to use */
5144 int devs_min;
5145 /* ndevs has to be a multiple of this */
5146 int devs_increment;
5147 /* Number of copies */
5148 int ncopies;
5149 /* Number of stripes worth of bytes to store parity information */
5150 int nparity;
5151 u64 max_stripe_size;
5152 u64 max_chunk_size;
5153 u64 dev_extent_min;
5154 u64 stripe_size;
5155 u64 chunk_size;
5156 int ndevs;
5157 };
5158
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5159 static void init_alloc_chunk_ctl_policy_regular(
5160 struct btrfs_fs_devices *fs_devices,
5161 struct alloc_chunk_ctl *ctl)
5162 {
5163 struct btrfs_space_info *space_info;
5164
5165 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5166 ASSERT(space_info);
5167
5168 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5169 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5170
5171 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5172 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5173
5174 /* We don't want a chunk larger than 10% of writable space */
5175 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5176 ctl->max_chunk_size);
5177 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5178 }
5179
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5180 static void init_alloc_chunk_ctl_policy_zoned(
5181 struct btrfs_fs_devices *fs_devices,
5182 struct alloc_chunk_ctl *ctl)
5183 {
5184 u64 zone_size = fs_devices->fs_info->zone_size;
5185 u64 limit;
5186 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5187 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5188 u64 min_chunk_size = min_data_stripes * zone_size;
5189 u64 type = ctl->type;
5190
5191 ctl->max_stripe_size = zone_size;
5192 if (type & BTRFS_BLOCK_GROUP_DATA) {
5193 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5194 zone_size);
5195 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5196 ctl->max_chunk_size = ctl->max_stripe_size;
5197 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5198 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5199 ctl->devs_max = min_t(int, ctl->devs_max,
5200 BTRFS_MAX_DEVS_SYS_CHUNK);
5201 } else {
5202 BUG();
5203 }
5204
5205 /* We don't want a chunk larger than 10% of writable space */
5206 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5207 zone_size),
5208 min_chunk_size);
5209 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5210 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5211 }
5212
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5213 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5214 struct alloc_chunk_ctl *ctl)
5215 {
5216 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5217
5218 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5219 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5220 ctl->devs_max = btrfs_raid_array[index].devs_max;
5221 if (!ctl->devs_max)
5222 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5223 ctl->devs_min = btrfs_raid_array[index].devs_min;
5224 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5225 ctl->ncopies = btrfs_raid_array[index].ncopies;
5226 ctl->nparity = btrfs_raid_array[index].nparity;
5227 ctl->ndevs = 0;
5228
5229 switch (fs_devices->chunk_alloc_policy) {
5230 case BTRFS_CHUNK_ALLOC_REGULAR:
5231 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5232 break;
5233 case BTRFS_CHUNK_ALLOC_ZONED:
5234 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5235 break;
5236 default:
5237 BUG();
5238 }
5239 }
5240
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5241 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5242 struct alloc_chunk_ctl *ctl,
5243 struct btrfs_device_info *devices_info)
5244 {
5245 struct btrfs_fs_info *info = fs_devices->fs_info;
5246 struct btrfs_device *device;
5247 u64 total_avail;
5248 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5249 int ret;
5250 int ndevs = 0;
5251 u64 max_avail;
5252 u64 dev_offset;
5253
5254 /*
5255 * in the first pass through the devices list, we gather information
5256 * about the available holes on each device.
5257 */
5258 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5259 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5260 WARN(1, KERN_ERR
5261 "BTRFS: read-only device in alloc_list\n");
5262 continue;
5263 }
5264
5265 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5266 &device->dev_state) ||
5267 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5268 continue;
5269
5270 if (device->total_bytes > device->bytes_used)
5271 total_avail = device->total_bytes - device->bytes_used;
5272 else
5273 total_avail = 0;
5274
5275 /* If there is no space on this device, skip it. */
5276 if (total_avail < ctl->dev_extent_min)
5277 continue;
5278
5279 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5280 &max_avail);
5281 if (ret && ret != -ENOSPC)
5282 return ret;
5283
5284 if (ret == 0)
5285 max_avail = dev_extent_want;
5286
5287 if (max_avail < ctl->dev_extent_min) {
5288 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5289 btrfs_debug(info,
5290 "%s: devid %llu has no free space, have=%llu want=%llu",
5291 __func__, device->devid, max_avail,
5292 ctl->dev_extent_min);
5293 continue;
5294 }
5295
5296 if (ndevs == fs_devices->rw_devices) {
5297 WARN(1, "%s: found more than %llu devices\n",
5298 __func__, fs_devices->rw_devices);
5299 break;
5300 }
5301 devices_info[ndevs].dev_offset = dev_offset;
5302 devices_info[ndevs].max_avail = max_avail;
5303 devices_info[ndevs].total_avail = total_avail;
5304 devices_info[ndevs].dev = device;
5305 ++ndevs;
5306 }
5307 ctl->ndevs = ndevs;
5308
5309 /*
5310 * now sort the devices by hole size / available space
5311 */
5312 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5313 btrfs_cmp_device_info, NULL);
5314
5315 return 0;
5316 }
5317
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5318 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5319 struct btrfs_device_info *devices_info)
5320 {
5321 /* Number of stripes that count for block group size */
5322 int data_stripes;
5323
5324 /*
5325 * The primary goal is to maximize the number of stripes, so use as
5326 * many devices as possible, even if the stripes are not maximum sized.
5327 *
5328 * The DUP profile stores more than one stripe per device, the
5329 * max_avail is the total size so we have to adjust.
5330 */
5331 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5332 ctl->dev_stripes);
5333 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5334
5335 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5336 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5337
5338 /*
5339 * Use the number of data stripes to figure out how big this chunk is
5340 * really going to be in terms of logical address space, and compare
5341 * that answer with the max chunk size. If it's higher, we try to
5342 * reduce stripe_size.
5343 */
5344 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5345 /*
5346 * Reduce stripe_size, round it up to a 16MB boundary again and
5347 * then use it, unless it ends up being even bigger than the
5348 * previous value we had already.
5349 */
5350 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5351 data_stripes), SZ_16M),
5352 ctl->stripe_size);
5353 }
5354
5355 /* Stripe size should not go beyond 1G. */
5356 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5357
5358 /* Align to BTRFS_STRIPE_LEN */
5359 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5360 ctl->chunk_size = ctl->stripe_size * data_stripes;
5361
5362 return 0;
5363 }
5364
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5365 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5366 struct btrfs_device_info *devices_info)
5367 {
5368 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5369 /* Number of stripes that count for block group size */
5370 int data_stripes;
5371
5372 /*
5373 * It should hold because:
5374 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5375 */
5376 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5377
5378 ctl->stripe_size = zone_size;
5379 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5380 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5381
5382 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5383 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5384 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5385 ctl->stripe_size) + ctl->nparity,
5386 ctl->dev_stripes);
5387 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5389 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5390 }
5391
5392 ctl->chunk_size = ctl->stripe_size * data_stripes;
5393
5394 return 0;
5395 }
5396
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5397 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5398 struct alloc_chunk_ctl *ctl,
5399 struct btrfs_device_info *devices_info)
5400 {
5401 struct btrfs_fs_info *info = fs_devices->fs_info;
5402
5403 /*
5404 * Round down to number of usable stripes, devs_increment can be any
5405 * number so we can't use round_down() that requires power of 2, while
5406 * rounddown is safe.
5407 */
5408 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5409
5410 if (ctl->ndevs < ctl->devs_min) {
5411 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5412 btrfs_debug(info,
5413 "%s: not enough devices with free space: have=%d minimum required=%d",
5414 __func__, ctl->ndevs, ctl->devs_min);
5415 }
5416 return -ENOSPC;
5417 }
5418
5419 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5420
5421 switch (fs_devices->chunk_alloc_policy) {
5422 case BTRFS_CHUNK_ALLOC_REGULAR:
5423 return decide_stripe_size_regular(ctl, devices_info);
5424 case BTRFS_CHUNK_ALLOC_ZONED:
5425 return decide_stripe_size_zoned(ctl, devices_info);
5426 default:
5427 BUG();
5428 }
5429 }
5430
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5431 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5432 struct alloc_chunk_ctl *ctl,
5433 struct btrfs_device_info *devices_info)
5434 {
5435 struct btrfs_fs_info *info = trans->fs_info;
5436 struct map_lookup *map = NULL;
5437 struct extent_map_tree *em_tree;
5438 struct btrfs_block_group *block_group;
5439 struct extent_map *em;
5440 u64 start = ctl->start;
5441 u64 type = ctl->type;
5442 int ret;
5443 int i;
5444 int j;
5445
5446 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5447 if (!map)
5448 return ERR_PTR(-ENOMEM);
5449 map->num_stripes = ctl->num_stripes;
5450
5451 for (i = 0; i < ctl->ndevs; ++i) {
5452 for (j = 0; j < ctl->dev_stripes; ++j) {
5453 int s = i * ctl->dev_stripes + j;
5454 map->stripes[s].dev = devices_info[i].dev;
5455 map->stripes[s].physical = devices_info[i].dev_offset +
5456 j * ctl->stripe_size;
5457 }
5458 }
5459 map->io_align = BTRFS_STRIPE_LEN;
5460 map->io_width = BTRFS_STRIPE_LEN;
5461 map->type = type;
5462 map->sub_stripes = ctl->sub_stripes;
5463
5464 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5465
5466 em = alloc_extent_map();
5467 if (!em) {
5468 kfree(map);
5469 return ERR_PTR(-ENOMEM);
5470 }
5471 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5472 em->map_lookup = map;
5473 em->start = start;
5474 em->len = ctl->chunk_size;
5475 em->block_start = 0;
5476 em->block_len = em->len;
5477 em->orig_block_len = ctl->stripe_size;
5478
5479 em_tree = &info->mapping_tree;
5480 write_lock(&em_tree->lock);
5481 ret = add_extent_mapping(em_tree, em, 0);
5482 if (ret) {
5483 write_unlock(&em_tree->lock);
5484 free_extent_map(em);
5485 return ERR_PTR(ret);
5486 }
5487 write_unlock(&em_tree->lock);
5488
5489 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5490 if (IS_ERR(block_group))
5491 goto error_del_extent;
5492
5493 for (i = 0; i < map->num_stripes; i++) {
5494 struct btrfs_device *dev = map->stripes[i].dev;
5495
5496 btrfs_device_set_bytes_used(dev,
5497 dev->bytes_used + ctl->stripe_size);
5498 if (list_empty(&dev->post_commit_list))
5499 list_add_tail(&dev->post_commit_list,
5500 &trans->transaction->dev_update_list);
5501 }
5502
5503 atomic64_sub(ctl->stripe_size * map->num_stripes,
5504 &info->free_chunk_space);
5505
5506 free_extent_map(em);
5507 check_raid56_incompat_flag(info, type);
5508 check_raid1c34_incompat_flag(info, type);
5509
5510 return block_group;
5511
5512 error_del_extent:
5513 write_lock(&em_tree->lock);
5514 remove_extent_mapping(em_tree, em);
5515 write_unlock(&em_tree->lock);
5516
5517 /* One for our allocation */
5518 free_extent_map(em);
5519 /* One for the tree reference */
5520 free_extent_map(em);
5521
5522 return block_group;
5523 }
5524
btrfs_create_chunk(struct btrfs_trans_handle * trans,u64 type)5525 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5526 u64 type)
5527 {
5528 struct btrfs_fs_info *info = trans->fs_info;
5529 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5530 struct btrfs_device_info *devices_info = NULL;
5531 struct alloc_chunk_ctl ctl;
5532 struct btrfs_block_group *block_group;
5533 int ret;
5534
5535 lockdep_assert_held(&info->chunk_mutex);
5536
5537 if (!alloc_profile_is_valid(type, 0)) {
5538 ASSERT(0);
5539 return ERR_PTR(-EINVAL);
5540 }
5541
5542 if (list_empty(&fs_devices->alloc_list)) {
5543 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5544 btrfs_debug(info, "%s: no writable device", __func__);
5545 return ERR_PTR(-ENOSPC);
5546 }
5547
5548 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5549 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5550 ASSERT(0);
5551 return ERR_PTR(-EINVAL);
5552 }
5553
5554 ctl.start = find_next_chunk(info);
5555 ctl.type = type;
5556 init_alloc_chunk_ctl(fs_devices, &ctl);
5557
5558 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5559 GFP_NOFS);
5560 if (!devices_info)
5561 return ERR_PTR(-ENOMEM);
5562
5563 ret = gather_device_info(fs_devices, &ctl, devices_info);
5564 if (ret < 0) {
5565 block_group = ERR_PTR(ret);
5566 goto out;
5567 }
5568
5569 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5570 if (ret < 0) {
5571 block_group = ERR_PTR(ret);
5572 goto out;
5573 }
5574
5575 block_group = create_chunk(trans, &ctl, devices_info);
5576
5577 out:
5578 kfree(devices_info);
5579 return block_group;
5580 }
5581
5582 /*
5583 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5584 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5585 * chunks.
5586 *
5587 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5588 * phases.
5589 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5590 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5591 struct btrfs_block_group *bg)
5592 {
5593 struct btrfs_fs_info *fs_info = trans->fs_info;
5594 struct btrfs_root *chunk_root = fs_info->chunk_root;
5595 struct btrfs_key key;
5596 struct btrfs_chunk *chunk;
5597 struct btrfs_stripe *stripe;
5598 struct extent_map *em;
5599 struct map_lookup *map;
5600 size_t item_size;
5601 int i;
5602 int ret;
5603
5604 /*
5605 * We take the chunk_mutex for 2 reasons:
5606 *
5607 * 1) Updates and insertions in the chunk btree must be done while holding
5608 * the chunk_mutex, as well as updating the system chunk array in the
5609 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5610 * details;
5611 *
5612 * 2) To prevent races with the final phase of a device replace operation
5613 * that replaces the device object associated with the map's stripes,
5614 * because the device object's id can change at any time during that
5615 * final phase of the device replace operation
5616 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5617 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5618 * which would cause a failure when updating the device item, which does
5619 * not exists, or persisting a stripe of the chunk item with such ID.
5620 * Here we can't use the device_list_mutex because our caller already
5621 * has locked the chunk_mutex, and the final phase of device replace
5622 * acquires both mutexes - first the device_list_mutex and then the
5623 * chunk_mutex. Using any of those two mutexes protects us from a
5624 * concurrent device replace.
5625 */
5626 lockdep_assert_held(&fs_info->chunk_mutex);
5627
5628 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5629 if (IS_ERR(em)) {
5630 ret = PTR_ERR(em);
5631 btrfs_abort_transaction(trans, ret);
5632 return ret;
5633 }
5634
5635 map = em->map_lookup;
5636 item_size = btrfs_chunk_item_size(map->num_stripes);
5637
5638 chunk = kzalloc(item_size, GFP_NOFS);
5639 if (!chunk) {
5640 ret = -ENOMEM;
5641 btrfs_abort_transaction(trans, ret);
5642 goto out;
5643 }
5644
5645 for (i = 0; i < map->num_stripes; i++) {
5646 struct btrfs_device *device = map->stripes[i].dev;
5647
5648 ret = btrfs_update_device(trans, device);
5649 if (ret)
5650 goto out;
5651 }
5652
5653 stripe = &chunk->stripe;
5654 for (i = 0; i < map->num_stripes; i++) {
5655 struct btrfs_device *device = map->stripes[i].dev;
5656 const u64 dev_offset = map->stripes[i].physical;
5657
5658 btrfs_set_stack_stripe_devid(stripe, device->devid);
5659 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5660 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5661 stripe++;
5662 }
5663
5664 btrfs_set_stack_chunk_length(chunk, bg->length);
5665 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5666 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5667 btrfs_set_stack_chunk_type(chunk, map->type);
5668 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5669 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5670 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5671 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5672 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5673
5674 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5675 key.type = BTRFS_CHUNK_ITEM_KEY;
5676 key.offset = bg->start;
5677
5678 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5679 if (ret)
5680 goto out;
5681
5682 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5683
5684 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5685 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5686 if (ret)
5687 goto out;
5688 }
5689
5690 out:
5691 kfree(chunk);
5692 free_extent_map(em);
5693 return ret;
5694 }
5695
init_first_rw_device(struct btrfs_trans_handle * trans)5696 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5697 {
5698 struct btrfs_fs_info *fs_info = trans->fs_info;
5699 u64 alloc_profile;
5700 struct btrfs_block_group *meta_bg;
5701 struct btrfs_block_group *sys_bg;
5702
5703 /*
5704 * When adding a new device for sprouting, the seed device is read-only
5705 * so we must first allocate a metadata and a system chunk. But before
5706 * adding the block group items to the extent, device and chunk btrees,
5707 * we must first:
5708 *
5709 * 1) Create both chunks without doing any changes to the btrees, as
5710 * otherwise we would get -ENOSPC since the block groups from the
5711 * seed device are read-only;
5712 *
5713 * 2) Add the device item for the new sprout device - finishing the setup
5714 * of a new block group requires updating the device item in the chunk
5715 * btree, so it must exist when we attempt to do it. The previous step
5716 * ensures this does not fail with -ENOSPC.
5717 *
5718 * After that we can add the block group items to their btrees:
5719 * update existing device item in the chunk btree, add a new block group
5720 * item to the extent btree, add a new chunk item to the chunk btree and
5721 * finally add the new device extent items to the devices btree.
5722 */
5723
5724 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5725 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5726 if (IS_ERR(meta_bg))
5727 return PTR_ERR(meta_bg);
5728
5729 alloc_profile = btrfs_system_alloc_profile(fs_info);
5730 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5731 if (IS_ERR(sys_bg))
5732 return PTR_ERR(sys_bg);
5733
5734 return 0;
5735 }
5736
btrfs_chunk_max_errors(struct map_lookup * map)5737 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5738 {
5739 const int index = btrfs_bg_flags_to_raid_index(map->type);
5740
5741 return btrfs_raid_array[index].tolerated_failures;
5742 }
5743
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5744 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5745 {
5746 struct extent_map *em;
5747 struct map_lookup *map;
5748 int miss_ndevs = 0;
5749 int i;
5750 bool ret = true;
5751
5752 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5753 if (IS_ERR(em))
5754 return false;
5755
5756 map = em->map_lookup;
5757 for (i = 0; i < map->num_stripes; i++) {
5758 if (test_bit(BTRFS_DEV_STATE_MISSING,
5759 &map->stripes[i].dev->dev_state)) {
5760 miss_ndevs++;
5761 continue;
5762 }
5763 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5764 &map->stripes[i].dev->dev_state)) {
5765 ret = false;
5766 goto end;
5767 }
5768 }
5769
5770 /*
5771 * If the number of missing devices is larger than max errors, we can
5772 * not write the data into that chunk successfully.
5773 */
5774 if (miss_ndevs > btrfs_chunk_max_errors(map))
5775 ret = false;
5776 end:
5777 free_extent_map(em);
5778 return ret;
5779 }
5780
btrfs_mapping_tree_free(struct extent_map_tree * tree)5781 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5782 {
5783 struct extent_map *em;
5784
5785 while (1) {
5786 write_lock(&tree->lock);
5787 em = lookup_extent_mapping(tree, 0, (u64)-1);
5788 if (em)
5789 remove_extent_mapping(tree, em);
5790 write_unlock(&tree->lock);
5791 if (!em)
5792 break;
5793 /* once for us */
5794 free_extent_map(em);
5795 /* once for the tree */
5796 free_extent_map(em);
5797 }
5798 }
5799
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5800 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5801 {
5802 struct extent_map *em;
5803 struct map_lookup *map;
5804 enum btrfs_raid_types index;
5805 int ret = 1;
5806
5807 em = btrfs_get_chunk_map(fs_info, logical, len);
5808 if (IS_ERR(em))
5809 /*
5810 * We could return errors for these cases, but that could get
5811 * ugly and we'd probably do the same thing which is just not do
5812 * anything else and exit, so return 1 so the callers don't try
5813 * to use other copies.
5814 */
5815 return 1;
5816
5817 map = em->map_lookup;
5818 index = btrfs_bg_flags_to_raid_index(map->type);
5819
5820 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5821 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5822 ret = btrfs_raid_array[index].ncopies;
5823 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5824 ret = 2;
5825 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5826 /*
5827 * There could be two corrupted data stripes, we need
5828 * to loop retry in order to rebuild the correct data.
5829 *
5830 * Fail a stripe at a time on every retry except the
5831 * stripe under reconstruction.
5832 */
5833 ret = map->num_stripes;
5834 free_extent_map(em);
5835 return ret;
5836 }
5837
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5838 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5839 u64 logical)
5840 {
5841 struct extent_map *em;
5842 struct map_lookup *map;
5843 unsigned long len = fs_info->sectorsize;
5844
5845 if (!btrfs_fs_incompat(fs_info, RAID56))
5846 return len;
5847
5848 em = btrfs_get_chunk_map(fs_info, logical, len);
5849
5850 if (!WARN_ON(IS_ERR(em))) {
5851 map = em->map_lookup;
5852 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5853 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5854 free_extent_map(em);
5855 }
5856 return len;
5857 }
5858
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5859 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5860 {
5861 struct extent_map *em;
5862 struct map_lookup *map;
5863 int ret = 0;
5864
5865 if (!btrfs_fs_incompat(fs_info, RAID56))
5866 return 0;
5867
5868 em = btrfs_get_chunk_map(fs_info, logical, len);
5869
5870 if(!WARN_ON(IS_ERR(em))) {
5871 map = em->map_lookup;
5872 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5873 ret = 1;
5874 free_extent_map(em);
5875 }
5876 return ret;
5877 }
5878
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5879 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5880 struct map_lookup *map, int first,
5881 int dev_replace_is_ongoing)
5882 {
5883 int i;
5884 int num_stripes;
5885 int preferred_mirror;
5886 int tolerance;
5887 struct btrfs_device *srcdev;
5888
5889 ASSERT((map->type &
5890 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5891
5892 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5893 num_stripes = map->sub_stripes;
5894 else
5895 num_stripes = map->num_stripes;
5896
5897 switch (fs_info->fs_devices->read_policy) {
5898 default:
5899 /* Shouldn't happen, just warn and use pid instead of failing */
5900 btrfs_warn_rl(fs_info,
5901 "unknown read_policy type %u, reset to pid",
5902 fs_info->fs_devices->read_policy);
5903 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5904 fallthrough;
5905 case BTRFS_READ_POLICY_PID:
5906 preferred_mirror = first + (current->pid % num_stripes);
5907 break;
5908 }
5909
5910 if (dev_replace_is_ongoing &&
5911 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5912 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5913 srcdev = fs_info->dev_replace.srcdev;
5914 else
5915 srcdev = NULL;
5916
5917 /*
5918 * try to avoid the drive that is the source drive for a
5919 * dev-replace procedure, only choose it if no other non-missing
5920 * mirror is available
5921 */
5922 for (tolerance = 0; tolerance < 2; tolerance++) {
5923 if (map->stripes[preferred_mirror].dev->bdev &&
5924 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5925 return preferred_mirror;
5926 for (i = first; i < first + num_stripes; i++) {
5927 if (map->stripes[i].dev->bdev &&
5928 (tolerance || map->stripes[i].dev != srcdev))
5929 return i;
5930 }
5931 }
5932
5933 /* we couldn't find one that doesn't fail. Just return something
5934 * and the io error handling code will clean up eventually
5935 */
5936 return preferred_mirror;
5937 }
5938
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u16 total_stripes)5939 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5940 u16 total_stripes)
5941 {
5942 struct btrfs_io_context *bioc;
5943
5944 bioc = kzalloc(
5945 /* The size of btrfs_io_context */
5946 sizeof(struct btrfs_io_context) +
5947 /* Plus the variable array for the stripes */
5948 sizeof(struct btrfs_io_stripe) * (total_stripes),
5949 GFP_NOFS);
5950
5951 if (!bioc)
5952 return NULL;
5953
5954 refcount_set(&bioc->refs, 1);
5955
5956 bioc->fs_info = fs_info;
5957 bioc->replace_stripe_src = -1;
5958 bioc->full_stripe_logical = (u64)-1;
5959
5960 return bioc;
5961 }
5962
btrfs_get_bioc(struct btrfs_io_context * bioc)5963 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5964 {
5965 WARN_ON(!refcount_read(&bioc->refs));
5966 refcount_inc(&bioc->refs);
5967 }
5968
btrfs_put_bioc(struct btrfs_io_context * bioc)5969 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5970 {
5971 if (!bioc)
5972 return;
5973 if (refcount_dec_and_test(&bioc->refs))
5974 kfree(bioc);
5975 }
5976
5977 /*
5978 * Please note that, discard won't be sent to target device of device
5979 * replace.
5980 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)5981 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5982 u64 logical, u64 *length_ret,
5983 u32 *num_stripes)
5984 {
5985 struct extent_map *em;
5986 struct map_lookup *map;
5987 struct btrfs_discard_stripe *stripes;
5988 u64 length = *length_ret;
5989 u64 offset;
5990 u32 stripe_nr;
5991 u32 stripe_nr_end;
5992 u32 stripe_cnt;
5993 u64 stripe_end_offset;
5994 u64 stripe_offset;
5995 u32 stripe_index;
5996 u32 factor = 0;
5997 u32 sub_stripes = 0;
5998 u32 stripes_per_dev = 0;
5999 u32 remaining_stripes = 0;
6000 u32 last_stripe = 0;
6001 int ret;
6002 int i;
6003
6004 em = btrfs_get_chunk_map(fs_info, logical, length);
6005 if (IS_ERR(em))
6006 return ERR_CAST(em);
6007
6008 map = em->map_lookup;
6009
6010 /* we don't discard raid56 yet */
6011 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6012 ret = -EOPNOTSUPP;
6013 goto out_free_map;
6014 }
6015
6016 offset = logical - em->start;
6017 length = min_t(u64, em->start + em->len - logical, length);
6018 *length_ret = length;
6019
6020 /*
6021 * stripe_nr counts the total number of stripes we have to stride
6022 * to get to this block
6023 */
6024 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6025
6026 /* stripe_offset is the offset of this block in its stripe */
6027 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6028
6029 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6030 BTRFS_STRIPE_LEN_SHIFT;
6031 stripe_cnt = stripe_nr_end - stripe_nr;
6032 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6033 (offset + length);
6034 /*
6035 * after this, stripe_nr is the number of stripes on this
6036 * device we have to walk to find the data, and stripe_index is
6037 * the number of our device in the stripe array
6038 */
6039 *num_stripes = 1;
6040 stripe_index = 0;
6041 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6042 BTRFS_BLOCK_GROUP_RAID10)) {
6043 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6044 sub_stripes = 1;
6045 else
6046 sub_stripes = map->sub_stripes;
6047
6048 factor = map->num_stripes / sub_stripes;
6049 *num_stripes = min_t(u64, map->num_stripes,
6050 sub_stripes * stripe_cnt);
6051 stripe_index = stripe_nr % factor;
6052 stripe_nr /= factor;
6053 stripe_index *= sub_stripes;
6054
6055 remaining_stripes = stripe_cnt % factor;
6056 stripes_per_dev = stripe_cnt / factor;
6057 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6058 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6059 BTRFS_BLOCK_GROUP_DUP)) {
6060 *num_stripes = map->num_stripes;
6061 } else {
6062 stripe_index = stripe_nr % map->num_stripes;
6063 stripe_nr /= map->num_stripes;
6064 }
6065
6066 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6067 if (!stripes) {
6068 ret = -ENOMEM;
6069 goto out_free_map;
6070 }
6071
6072 for (i = 0; i < *num_stripes; i++) {
6073 stripes[i].physical =
6074 map->stripes[stripe_index].physical +
6075 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6076 stripes[i].dev = map->stripes[stripe_index].dev;
6077
6078 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6079 BTRFS_BLOCK_GROUP_RAID10)) {
6080 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6081
6082 if (i / sub_stripes < remaining_stripes)
6083 stripes[i].length += BTRFS_STRIPE_LEN;
6084
6085 /*
6086 * Special for the first stripe and
6087 * the last stripe:
6088 *
6089 * |-------|...|-------|
6090 * |----------|
6091 * off end_off
6092 */
6093 if (i < sub_stripes)
6094 stripes[i].length -= stripe_offset;
6095
6096 if (stripe_index >= last_stripe &&
6097 stripe_index <= (last_stripe +
6098 sub_stripes - 1))
6099 stripes[i].length -= stripe_end_offset;
6100
6101 if (i == sub_stripes - 1)
6102 stripe_offset = 0;
6103 } else {
6104 stripes[i].length = length;
6105 }
6106
6107 stripe_index++;
6108 if (stripe_index == map->num_stripes) {
6109 stripe_index = 0;
6110 stripe_nr++;
6111 }
6112 }
6113
6114 free_extent_map(em);
6115 return stripes;
6116 out_free_map:
6117 free_extent_map(em);
6118 return ERR_PTR(ret);
6119 }
6120
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6121 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6122 {
6123 struct btrfs_block_group *cache;
6124 bool ret;
6125
6126 /* Non zoned filesystem does not use "to_copy" flag */
6127 if (!btrfs_is_zoned(fs_info))
6128 return false;
6129
6130 cache = btrfs_lookup_block_group(fs_info, logical);
6131
6132 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6133
6134 btrfs_put_block_group(cache);
6135 return ret;
6136 }
6137
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,int * num_stripes_ret,int * max_errors_ret)6138 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6139 struct btrfs_io_context *bioc,
6140 struct btrfs_dev_replace *dev_replace,
6141 u64 logical,
6142 int *num_stripes_ret, int *max_errors_ret)
6143 {
6144 u64 srcdev_devid = dev_replace->srcdev->devid;
6145 /*
6146 * At this stage, num_stripes is still the real number of stripes,
6147 * excluding the duplicated stripes.
6148 */
6149 int num_stripes = *num_stripes_ret;
6150 int nr_extra_stripes = 0;
6151 int max_errors = *max_errors_ret;
6152 int i;
6153
6154 /*
6155 * A block group which has "to_copy" set will eventually be copied by
6156 * the dev-replace process. We can avoid cloning IO here.
6157 */
6158 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6159 return;
6160
6161 /*
6162 * Duplicate the write operations while the dev-replace procedure is
6163 * running. Since the copying of the old disk to the new disk takes
6164 * place at run time while the filesystem is mounted writable, the
6165 * regular write operations to the old disk have to be duplicated to go
6166 * to the new disk as well.
6167 *
6168 * Note that device->missing is handled by the caller, and that the
6169 * write to the old disk is already set up in the stripes array.
6170 */
6171 for (i = 0; i < num_stripes; i++) {
6172 struct btrfs_io_stripe *old = &bioc->stripes[i];
6173 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6174
6175 if (old->dev->devid != srcdev_devid)
6176 continue;
6177
6178 new->physical = old->physical;
6179 new->dev = dev_replace->tgtdev;
6180 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6181 bioc->replace_stripe_src = i;
6182 nr_extra_stripes++;
6183 }
6184
6185 /* We can only have at most 2 extra nr_stripes (for DUP). */
6186 ASSERT(nr_extra_stripes <= 2);
6187 /*
6188 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6189 * replace.
6190 * If we have 2 extra stripes, only choose the one with smaller physical.
6191 */
6192 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6193 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6194 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6195
6196 /* Only DUP can have two extra stripes. */
6197 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6198
6199 /*
6200 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6201 * The extra stripe would still be there, but won't be accessed.
6202 */
6203 if (first->physical > second->physical) {
6204 swap(second->physical, first->physical);
6205 swap(second->dev, first->dev);
6206 nr_extra_stripes--;
6207 }
6208 }
6209
6210 *num_stripes_ret = num_stripes + nr_extra_stripes;
6211 *max_errors_ret = max_errors + nr_extra_stripes;
6212 bioc->replace_nr_stripes = nr_extra_stripes;
6213 }
6214
btrfs_max_io_len(struct map_lookup * map,enum btrfs_map_op op,u64 offset,u32 * stripe_nr,u64 * stripe_offset,u64 * full_stripe_start)6215 static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6216 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6217 u64 *full_stripe_start)
6218 {
6219 /*
6220 * Stripe_nr is the stripe where this block falls. stripe_offset is
6221 * the offset of this block in its stripe.
6222 */
6223 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6224 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6225 ASSERT(*stripe_offset < U32_MAX);
6226
6227 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6228 unsigned long full_stripe_len =
6229 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6230
6231 /*
6232 * For full stripe start, we use previously calculated
6233 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6234 * STRIPE_LEN.
6235 *
6236 * By this we can avoid u64 division completely. And we have
6237 * to go rounddown(), not round_down(), as nr_data_stripes is
6238 * not ensured to be power of 2.
6239 */
6240 *full_stripe_start =
6241 btrfs_stripe_nr_to_offset(
6242 rounddown(*stripe_nr, nr_data_stripes(map)));
6243
6244 ASSERT(*full_stripe_start + full_stripe_len > offset);
6245 ASSERT(*full_stripe_start <= offset);
6246 /*
6247 * For writes to RAID56, allow to write a full stripe set, but
6248 * no straddling of stripe sets.
6249 */
6250 if (op == BTRFS_MAP_WRITE)
6251 return full_stripe_len - (offset - *full_stripe_start);
6252 }
6253
6254 /*
6255 * For other RAID types and for RAID56 reads, allow a single stripe (on
6256 * a single disk).
6257 */
6258 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6259 return BTRFS_STRIPE_LEN - *stripe_offset;
6260 return U64_MAX;
6261 }
6262
set_io_stripe(struct btrfs_io_stripe * dst,const struct map_lookup * map,u32 stripe_index,u64 stripe_offset,u32 stripe_nr)6263 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6264 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
6265 {
6266 dst->dev = map->stripes[stripe_index].dev;
6267 dst->physical = map->stripes[stripe_index].physical +
6268 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6269 }
6270
6271 /*
6272 * Map one logical range to one or more physical ranges.
6273 *
6274 * @length: (Mandatory) mapped length of this run.
6275 * One logical range can be split into different segments
6276 * due to factors like zones and RAID0/5/6/10 stripe
6277 * boundaries.
6278 *
6279 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6280 * which has one or more physical ranges (btrfs_io_stripe)
6281 * recorded inside.
6282 * Caller should call btrfs_put_bioc() to free it after use.
6283 *
6284 * @smap: (Optional) single physical range optimization.
6285 * If the map request can be fulfilled by one single
6286 * physical range, and this is parameter is not NULL,
6287 * then @bioc_ret would be NULL, and @smap would be
6288 * updated.
6289 *
6290 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6291 * value is 0.
6292 *
6293 * Mirror number 0 means to choose any live mirrors.
6294 *
6295 * For non-RAID56 profiles, non-zero mirror_num means
6296 * the Nth mirror. (e.g. mirror_num 1 means the first
6297 * copy).
6298 *
6299 * For RAID56 profile, mirror 1 means rebuild from P and
6300 * the remaining data stripes.
6301 *
6302 * For RAID6 profile, mirror > 2 means mark another
6303 * data/P stripe error and rebuild from the remaining
6304 * stripes..
6305 *
6306 * @need_raid_map: (Used only for integrity checker) whether the map wants
6307 * a full stripe map (including all data and P/Q stripes)
6308 * for RAID56. Should always be 1 except integrity checker.
6309 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret,int need_raid_map)6310 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6311 u64 logical, u64 *length,
6312 struct btrfs_io_context **bioc_ret,
6313 struct btrfs_io_stripe *smap, int *mirror_num_ret,
6314 int need_raid_map)
6315 {
6316 struct extent_map *em;
6317 struct map_lookup *map;
6318 u64 map_offset;
6319 u64 stripe_offset;
6320 u32 stripe_nr;
6321 u32 stripe_index;
6322 int data_stripes;
6323 int i;
6324 int ret = 0;
6325 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6326 int num_stripes;
6327 int num_copies;
6328 int max_errors = 0;
6329 struct btrfs_io_context *bioc = NULL;
6330 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6331 int dev_replace_is_ongoing = 0;
6332 u16 num_alloc_stripes;
6333 u64 raid56_full_stripe_start = (u64)-1;
6334 u64 max_len;
6335
6336 ASSERT(bioc_ret);
6337
6338 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6339 if (mirror_num > num_copies)
6340 return -EINVAL;
6341
6342 em = btrfs_get_chunk_map(fs_info, logical, *length);
6343 if (IS_ERR(em))
6344 return PTR_ERR(em);
6345
6346 map = em->map_lookup;
6347 data_stripes = nr_data_stripes(map);
6348
6349 map_offset = logical - em->start;
6350 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6351 &stripe_offset, &raid56_full_stripe_start);
6352 *length = min_t(u64, em->len - map_offset, max_len);
6353
6354 if (dev_replace->replace_task != current)
6355 down_read(&dev_replace->rwsem);
6356
6357 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6358 /*
6359 * Hold the semaphore for read during the whole operation, write is
6360 * requested at commit time but must wait.
6361 */
6362 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6363 up_read(&dev_replace->rwsem);
6364
6365 num_stripes = 1;
6366 stripe_index = 0;
6367 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6368 stripe_index = stripe_nr % map->num_stripes;
6369 stripe_nr /= map->num_stripes;
6370 if (op == BTRFS_MAP_READ)
6371 mirror_num = 1;
6372 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6373 if (op != BTRFS_MAP_READ) {
6374 num_stripes = map->num_stripes;
6375 } else if (mirror_num) {
6376 stripe_index = mirror_num - 1;
6377 } else {
6378 stripe_index = find_live_mirror(fs_info, map, 0,
6379 dev_replace_is_ongoing);
6380 mirror_num = stripe_index + 1;
6381 }
6382
6383 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6384 if (op != BTRFS_MAP_READ) {
6385 num_stripes = map->num_stripes;
6386 } else if (mirror_num) {
6387 stripe_index = mirror_num - 1;
6388 } else {
6389 mirror_num = 1;
6390 }
6391
6392 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6393 u32 factor = map->num_stripes / map->sub_stripes;
6394
6395 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6396 stripe_nr /= factor;
6397
6398 if (op != BTRFS_MAP_READ)
6399 num_stripes = map->sub_stripes;
6400 else if (mirror_num)
6401 stripe_index += mirror_num - 1;
6402 else {
6403 int old_stripe_index = stripe_index;
6404 stripe_index = find_live_mirror(fs_info, map,
6405 stripe_index,
6406 dev_replace_is_ongoing);
6407 mirror_num = stripe_index - old_stripe_index + 1;
6408 }
6409
6410 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6411 if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) {
6412 /*
6413 * Push stripe_nr back to the start of the full stripe
6414 * For those cases needing a full stripe, @stripe_nr
6415 * is the full stripe number.
6416 *
6417 * Originally we go raid56_full_stripe_start / full_stripe_len,
6418 * but that can be expensive. Here we just divide
6419 * @stripe_nr with @data_stripes.
6420 */
6421 stripe_nr /= data_stripes;
6422
6423 /* RAID[56] write or recovery. Return all stripes */
6424 num_stripes = map->num_stripes;
6425 max_errors = btrfs_chunk_max_errors(map);
6426
6427 /* Return the length to the full stripe end */
6428 *length = min(logical + *length,
6429 raid56_full_stripe_start + em->start +
6430 btrfs_stripe_nr_to_offset(data_stripes)) -
6431 logical;
6432 stripe_index = 0;
6433 stripe_offset = 0;
6434 } else {
6435 /*
6436 * Mirror #0 or #1 means the original data block.
6437 * Mirror #2 is RAID5 parity block.
6438 * Mirror #3 is RAID6 Q block.
6439 */
6440 stripe_index = stripe_nr % data_stripes;
6441 stripe_nr /= data_stripes;
6442 if (mirror_num > 1)
6443 stripe_index = data_stripes + mirror_num - 2;
6444
6445 /* We distribute the parity blocks across stripes */
6446 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6447 if (op == BTRFS_MAP_READ && mirror_num <= 1)
6448 mirror_num = 1;
6449 }
6450 } else {
6451 /*
6452 * After this, stripe_nr is the number of stripes on this
6453 * device we have to walk to find the data, and stripe_index is
6454 * the number of our device in the stripe array
6455 */
6456 stripe_index = stripe_nr % map->num_stripes;
6457 stripe_nr /= map->num_stripes;
6458 mirror_num = stripe_index + 1;
6459 }
6460 if (stripe_index >= map->num_stripes) {
6461 btrfs_crit(fs_info,
6462 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6463 stripe_index, map->num_stripes);
6464 ret = -EINVAL;
6465 goto out;
6466 }
6467
6468 num_alloc_stripes = num_stripes;
6469 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6470 op != BTRFS_MAP_READ)
6471 /*
6472 * For replace case, we need to add extra stripes for extra
6473 * duplicated stripes.
6474 *
6475 * For both WRITE and GET_READ_MIRRORS, we may have at most
6476 * 2 more stripes (DUP types, otherwise 1).
6477 */
6478 num_alloc_stripes += 2;
6479
6480 /*
6481 * If this I/O maps to a single device, try to return the device and
6482 * physical block information on the stack instead of allocating an
6483 * I/O context structure.
6484 */
6485 if (smap && num_alloc_stripes == 1 &&
6486 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6487 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
6488 if (mirror_num_ret)
6489 *mirror_num_ret = mirror_num;
6490 *bioc_ret = NULL;
6491 ret = 0;
6492 goto out;
6493 }
6494
6495 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
6496 if (!bioc) {
6497 ret = -ENOMEM;
6498 goto out;
6499 }
6500 bioc->map_type = map->type;
6501
6502 /*
6503 * For RAID56 full map, we need to make sure the stripes[] follows the
6504 * rule that data stripes are all ordered, then followed with P and Q
6505 * (if we have).
6506 *
6507 * It's still mostly the same as other profiles, just with extra rotation.
6508 */
6509 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6510 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6511 /*
6512 * For RAID56 @stripe_nr is already the number of full stripes
6513 * before us, which is also the rotation value (needs to modulo
6514 * with num_stripes).
6515 *
6516 * In this case, we just add @stripe_nr with @i, then do the
6517 * modulo, to reduce one modulo call.
6518 */
6519 bioc->full_stripe_logical = em->start +
6520 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
6521 for (i = 0; i < num_stripes; i++)
6522 set_io_stripe(&bioc->stripes[i], map,
6523 (i + stripe_nr) % num_stripes,
6524 stripe_offset, stripe_nr);
6525 } else {
6526 /*
6527 * For all other non-RAID56 profiles, just copy the target
6528 * stripe into the bioc.
6529 */
6530 for (i = 0; i < num_stripes; i++) {
6531 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6532 stripe_offset, stripe_nr);
6533 stripe_index++;
6534 }
6535 }
6536
6537 if (op != BTRFS_MAP_READ)
6538 max_errors = btrfs_chunk_max_errors(map);
6539
6540 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6541 op != BTRFS_MAP_READ) {
6542 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6543 &num_stripes, &max_errors);
6544 }
6545
6546 *bioc_ret = bioc;
6547 bioc->num_stripes = num_stripes;
6548 bioc->max_errors = max_errors;
6549 bioc->mirror_num = mirror_num;
6550
6551 out:
6552 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6553 lockdep_assert_held(&dev_replace->rwsem);
6554 /* Unlock and let waiting writers proceed */
6555 up_read(&dev_replace->rwsem);
6556 }
6557 free_extent_map(em);
6558 return ret;
6559 }
6560
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6561 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6562 const struct btrfs_fs_devices *fs_devices)
6563 {
6564 if (args->fsid == NULL)
6565 return true;
6566 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6567 return true;
6568 return false;
6569 }
6570
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6571 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6572 const struct btrfs_device *device)
6573 {
6574 if (args->missing) {
6575 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6576 !device->bdev)
6577 return true;
6578 return false;
6579 }
6580
6581 if (device->devid != args->devid)
6582 return false;
6583 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6584 return false;
6585 return true;
6586 }
6587
6588 /*
6589 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6590 * return NULL.
6591 *
6592 * If devid and uuid are both specified, the match must be exact, otherwise
6593 * only devid is used.
6594 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6595 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6596 const struct btrfs_dev_lookup_args *args)
6597 {
6598 struct btrfs_device *device;
6599 struct btrfs_fs_devices *seed_devs;
6600
6601 if (dev_args_match_fs_devices(args, fs_devices)) {
6602 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6603 if (dev_args_match_device(args, device))
6604 return device;
6605 }
6606 }
6607
6608 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6609 if (!dev_args_match_fs_devices(args, seed_devs))
6610 continue;
6611 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6612 if (dev_args_match_device(args, device))
6613 return device;
6614 }
6615 }
6616
6617 return NULL;
6618 }
6619
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6620 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6621 u64 devid, u8 *dev_uuid)
6622 {
6623 struct btrfs_device *device;
6624 unsigned int nofs_flag;
6625
6626 /*
6627 * We call this under the chunk_mutex, so we want to use NOFS for this
6628 * allocation, however we don't want to change btrfs_alloc_device() to
6629 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6630 * places.
6631 */
6632
6633 nofs_flag = memalloc_nofs_save();
6634 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6635 memalloc_nofs_restore(nofs_flag);
6636 if (IS_ERR(device))
6637 return device;
6638
6639 list_add(&device->dev_list, &fs_devices->devices);
6640 device->fs_devices = fs_devices;
6641 fs_devices->num_devices++;
6642
6643 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6644 fs_devices->missing_devices++;
6645
6646 return device;
6647 }
6648
6649 /*
6650 * Allocate new device struct, set up devid and UUID.
6651 *
6652 * @fs_info: used only for generating a new devid, can be NULL if
6653 * devid is provided (i.e. @devid != NULL).
6654 * @devid: a pointer to devid for this device. If NULL a new devid
6655 * is generated.
6656 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6657 * is generated.
6658 * @path: a pointer to device path if available, NULL otherwise.
6659 *
6660 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6661 * on error. Returned struct is not linked onto any lists and must be
6662 * destroyed with btrfs_free_device.
6663 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6664 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6665 const u64 *devid, const u8 *uuid,
6666 const char *path)
6667 {
6668 struct btrfs_device *dev;
6669 u64 tmp;
6670
6671 if (WARN_ON(!devid && !fs_info))
6672 return ERR_PTR(-EINVAL);
6673
6674 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6675 if (!dev)
6676 return ERR_PTR(-ENOMEM);
6677
6678 INIT_LIST_HEAD(&dev->dev_list);
6679 INIT_LIST_HEAD(&dev->dev_alloc_list);
6680 INIT_LIST_HEAD(&dev->post_commit_list);
6681
6682 atomic_set(&dev->dev_stats_ccnt, 0);
6683 btrfs_device_data_ordered_init(dev);
6684 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6685
6686 if (devid)
6687 tmp = *devid;
6688 else {
6689 int ret;
6690
6691 ret = find_next_devid(fs_info, &tmp);
6692 if (ret) {
6693 btrfs_free_device(dev);
6694 return ERR_PTR(ret);
6695 }
6696 }
6697 dev->devid = tmp;
6698
6699 if (uuid)
6700 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6701 else
6702 generate_random_uuid(dev->uuid);
6703
6704 if (path) {
6705 struct rcu_string *name;
6706
6707 name = rcu_string_strdup(path, GFP_KERNEL);
6708 if (!name) {
6709 btrfs_free_device(dev);
6710 return ERR_PTR(-ENOMEM);
6711 }
6712 rcu_assign_pointer(dev->name, name);
6713 }
6714
6715 return dev;
6716 }
6717
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6718 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6719 u64 devid, u8 *uuid, bool error)
6720 {
6721 if (error)
6722 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6723 devid, uuid);
6724 else
6725 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6726 devid, uuid);
6727 }
6728
btrfs_calc_stripe_length(const struct extent_map * em)6729 u64 btrfs_calc_stripe_length(const struct extent_map *em)
6730 {
6731 const struct map_lookup *map = em->map_lookup;
6732 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6733
6734 return div_u64(em->len, data_stripes);
6735 }
6736
6737 #if BITS_PER_LONG == 32
6738 /*
6739 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6740 * can't be accessed on 32bit systems.
6741 *
6742 * This function do mount time check to reject the fs if it already has
6743 * metadata chunk beyond that limit.
6744 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6745 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6746 u64 logical, u64 length, u64 type)
6747 {
6748 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6749 return 0;
6750
6751 if (logical + length < MAX_LFS_FILESIZE)
6752 return 0;
6753
6754 btrfs_err_32bit_limit(fs_info);
6755 return -EOVERFLOW;
6756 }
6757
6758 /*
6759 * This is to give early warning for any metadata chunk reaching
6760 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6761 * Although we can still access the metadata, it's not going to be possible
6762 * once the limit is reached.
6763 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6764 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6765 u64 logical, u64 length, u64 type)
6766 {
6767 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6768 return;
6769
6770 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6771 return;
6772
6773 btrfs_warn_32bit_limit(fs_info);
6774 }
6775 #endif
6776
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)6777 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6778 u64 devid, u8 *uuid)
6779 {
6780 struct btrfs_device *dev;
6781
6782 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6783 btrfs_report_missing_device(fs_info, devid, uuid, true);
6784 return ERR_PTR(-ENOENT);
6785 }
6786
6787 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6788 if (IS_ERR(dev)) {
6789 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6790 devid, PTR_ERR(dev));
6791 return dev;
6792 }
6793 btrfs_report_missing_device(fs_info, devid, uuid, false);
6794
6795 return dev;
6796 }
6797
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6798 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6799 struct btrfs_chunk *chunk)
6800 {
6801 BTRFS_DEV_LOOKUP_ARGS(args);
6802 struct btrfs_fs_info *fs_info = leaf->fs_info;
6803 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6804 struct map_lookup *map;
6805 struct extent_map *em;
6806 u64 logical;
6807 u64 length;
6808 u64 devid;
6809 u64 type;
6810 u8 uuid[BTRFS_UUID_SIZE];
6811 int index;
6812 int num_stripes;
6813 int ret;
6814 int i;
6815
6816 logical = key->offset;
6817 length = btrfs_chunk_length(leaf, chunk);
6818 type = btrfs_chunk_type(leaf, chunk);
6819 index = btrfs_bg_flags_to_raid_index(type);
6820 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6821
6822 #if BITS_PER_LONG == 32
6823 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6824 if (ret < 0)
6825 return ret;
6826 warn_32bit_meta_chunk(fs_info, logical, length, type);
6827 #endif
6828
6829 /*
6830 * Only need to verify chunk item if we're reading from sys chunk array,
6831 * as chunk item in tree block is already verified by tree-checker.
6832 */
6833 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6834 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6835 if (ret)
6836 return ret;
6837 }
6838
6839 read_lock(&map_tree->lock);
6840 em = lookup_extent_mapping(map_tree, logical, 1);
6841 read_unlock(&map_tree->lock);
6842
6843 /* already mapped? */
6844 if (em && em->start <= logical && em->start + em->len > logical) {
6845 free_extent_map(em);
6846 return 0;
6847 } else if (em) {
6848 free_extent_map(em);
6849 }
6850
6851 em = alloc_extent_map();
6852 if (!em)
6853 return -ENOMEM;
6854 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6855 if (!map) {
6856 free_extent_map(em);
6857 return -ENOMEM;
6858 }
6859
6860 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6861 em->map_lookup = map;
6862 em->start = logical;
6863 em->len = length;
6864 em->orig_start = 0;
6865 em->block_start = 0;
6866 em->block_len = em->len;
6867
6868 map->num_stripes = num_stripes;
6869 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6870 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6871 map->type = type;
6872 /*
6873 * We can't use the sub_stripes value, as for profiles other than
6874 * RAID10, they may have 0 as sub_stripes for filesystems created by
6875 * older mkfs (<v5.4).
6876 * In that case, it can cause divide-by-zero errors later.
6877 * Since currently sub_stripes is fixed for each profile, let's
6878 * use the trusted value instead.
6879 */
6880 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6881 map->verified_stripes = 0;
6882 em->orig_block_len = btrfs_calc_stripe_length(em);
6883 for (i = 0; i < num_stripes; i++) {
6884 map->stripes[i].physical =
6885 btrfs_stripe_offset_nr(leaf, chunk, i);
6886 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6887 args.devid = devid;
6888 read_extent_buffer(leaf, uuid, (unsigned long)
6889 btrfs_stripe_dev_uuid_nr(chunk, i),
6890 BTRFS_UUID_SIZE);
6891 args.uuid = uuid;
6892 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6893 if (!map->stripes[i].dev) {
6894 map->stripes[i].dev = handle_missing_device(fs_info,
6895 devid, uuid);
6896 if (IS_ERR(map->stripes[i].dev)) {
6897 ret = PTR_ERR(map->stripes[i].dev);
6898 free_extent_map(em);
6899 return ret;
6900 }
6901 }
6902
6903 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6904 &(map->stripes[i].dev->dev_state));
6905 }
6906
6907 write_lock(&map_tree->lock);
6908 ret = add_extent_mapping(map_tree, em, 0);
6909 write_unlock(&map_tree->lock);
6910 if (ret < 0) {
6911 btrfs_err(fs_info,
6912 "failed to add chunk map, start=%llu len=%llu: %d",
6913 em->start, em->len, ret);
6914 }
6915 free_extent_map(em);
6916
6917 return ret;
6918 }
6919
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6920 static void fill_device_from_item(struct extent_buffer *leaf,
6921 struct btrfs_dev_item *dev_item,
6922 struct btrfs_device *device)
6923 {
6924 unsigned long ptr;
6925
6926 device->devid = btrfs_device_id(leaf, dev_item);
6927 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6928 device->total_bytes = device->disk_total_bytes;
6929 device->commit_total_bytes = device->disk_total_bytes;
6930 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6931 device->commit_bytes_used = device->bytes_used;
6932 device->type = btrfs_device_type(leaf, dev_item);
6933 device->io_align = btrfs_device_io_align(leaf, dev_item);
6934 device->io_width = btrfs_device_io_width(leaf, dev_item);
6935 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6936 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6937 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6938
6939 ptr = btrfs_device_uuid(dev_item);
6940 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6941 }
6942
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6943 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6944 u8 *fsid)
6945 {
6946 struct btrfs_fs_devices *fs_devices;
6947 int ret;
6948
6949 lockdep_assert_held(&uuid_mutex);
6950 ASSERT(fsid);
6951
6952 /* This will match only for multi-device seed fs */
6953 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6954 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6955 return fs_devices;
6956
6957
6958 fs_devices = find_fsid(fsid, NULL);
6959 if (!fs_devices) {
6960 if (!btrfs_test_opt(fs_info, DEGRADED))
6961 return ERR_PTR(-ENOENT);
6962
6963 fs_devices = alloc_fs_devices(fsid, NULL);
6964 if (IS_ERR(fs_devices))
6965 return fs_devices;
6966
6967 fs_devices->seeding = true;
6968 fs_devices->opened = 1;
6969 return fs_devices;
6970 }
6971
6972 /*
6973 * Upon first call for a seed fs fsid, just create a private copy of the
6974 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6975 */
6976 fs_devices = clone_fs_devices(fs_devices);
6977 if (IS_ERR(fs_devices))
6978 return fs_devices;
6979
6980 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
6981 if (ret) {
6982 free_fs_devices(fs_devices);
6983 return ERR_PTR(ret);
6984 }
6985
6986 if (!fs_devices->seeding) {
6987 close_fs_devices(fs_devices);
6988 free_fs_devices(fs_devices);
6989 return ERR_PTR(-EINVAL);
6990 }
6991
6992 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6993
6994 return fs_devices;
6995 }
6996
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6997 static int read_one_dev(struct extent_buffer *leaf,
6998 struct btrfs_dev_item *dev_item)
6999 {
7000 BTRFS_DEV_LOOKUP_ARGS(args);
7001 struct btrfs_fs_info *fs_info = leaf->fs_info;
7002 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7003 struct btrfs_device *device;
7004 u64 devid;
7005 int ret;
7006 u8 fs_uuid[BTRFS_FSID_SIZE];
7007 u8 dev_uuid[BTRFS_UUID_SIZE];
7008
7009 devid = btrfs_device_id(leaf, dev_item);
7010 args.devid = devid;
7011 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7012 BTRFS_UUID_SIZE);
7013 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7014 BTRFS_FSID_SIZE);
7015 args.uuid = dev_uuid;
7016 args.fsid = fs_uuid;
7017
7018 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7019 fs_devices = open_seed_devices(fs_info, fs_uuid);
7020 if (IS_ERR(fs_devices))
7021 return PTR_ERR(fs_devices);
7022 }
7023
7024 device = btrfs_find_device(fs_info->fs_devices, &args);
7025 if (!device) {
7026 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7027 btrfs_report_missing_device(fs_info, devid,
7028 dev_uuid, true);
7029 return -ENOENT;
7030 }
7031
7032 device = add_missing_dev(fs_devices, devid, dev_uuid);
7033 if (IS_ERR(device)) {
7034 btrfs_err(fs_info,
7035 "failed to add missing dev %llu: %ld",
7036 devid, PTR_ERR(device));
7037 return PTR_ERR(device);
7038 }
7039 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7040 } else {
7041 if (!device->bdev) {
7042 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7043 btrfs_report_missing_device(fs_info,
7044 devid, dev_uuid, true);
7045 return -ENOENT;
7046 }
7047 btrfs_report_missing_device(fs_info, devid,
7048 dev_uuid, false);
7049 }
7050
7051 if (!device->bdev &&
7052 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7053 /*
7054 * this happens when a device that was properly setup
7055 * in the device info lists suddenly goes bad.
7056 * device->bdev is NULL, and so we have to set
7057 * device->missing to one here
7058 */
7059 device->fs_devices->missing_devices++;
7060 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7061 }
7062
7063 /* Move the device to its own fs_devices */
7064 if (device->fs_devices != fs_devices) {
7065 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7066 &device->dev_state));
7067
7068 list_move(&device->dev_list, &fs_devices->devices);
7069 device->fs_devices->num_devices--;
7070 fs_devices->num_devices++;
7071
7072 device->fs_devices->missing_devices--;
7073 fs_devices->missing_devices++;
7074
7075 device->fs_devices = fs_devices;
7076 }
7077 }
7078
7079 if (device->fs_devices != fs_info->fs_devices) {
7080 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7081 if (device->generation !=
7082 btrfs_device_generation(leaf, dev_item))
7083 return -EINVAL;
7084 }
7085
7086 fill_device_from_item(leaf, dev_item, device);
7087 if (device->bdev) {
7088 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7089
7090 if (device->total_bytes > max_total_bytes) {
7091 btrfs_err(fs_info,
7092 "device total_bytes should be at most %llu but found %llu",
7093 max_total_bytes, device->total_bytes);
7094 return -EINVAL;
7095 }
7096 }
7097 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7099 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7100 device->fs_devices->total_rw_bytes += device->total_bytes;
7101 atomic64_add(device->total_bytes - device->bytes_used,
7102 &fs_info->free_chunk_space);
7103 }
7104 ret = 0;
7105 return ret;
7106 }
7107
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7108 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7109 {
7110 struct btrfs_super_block *super_copy = fs_info->super_copy;
7111 struct extent_buffer *sb;
7112 struct btrfs_disk_key *disk_key;
7113 struct btrfs_chunk *chunk;
7114 u8 *array_ptr;
7115 unsigned long sb_array_offset;
7116 int ret = 0;
7117 u32 num_stripes;
7118 u32 array_size;
7119 u32 len = 0;
7120 u32 cur_offset;
7121 u64 type;
7122 struct btrfs_key key;
7123
7124 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7125
7126 /*
7127 * We allocated a dummy extent, just to use extent buffer accessors.
7128 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7129 * that's fine, we will not go beyond system chunk array anyway.
7130 */
7131 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7132 if (!sb)
7133 return -ENOMEM;
7134 set_extent_buffer_uptodate(sb);
7135
7136 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7137 array_size = btrfs_super_sys_array_size(super_copy);
7138
7139 array_ptr = super_copy->sys_chunk_array;
7140 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7141 cur_offset = 0;
7142
7143 while (cur_offset < array_size) {
7144 disk_key = (struct btrfs_disk_key *)array_ptr;
7145 len = sizeof(*disk_key);
7146 if (cur_offset + len > array_size)
7147 goto out_short_read;
7148
7149 btrfs_disk_key_to_cpu(&key, disk_key);
7150
7151 array_ptr += len;
7152 sb_array_offset += len;
7153 cur_offset += len;
7154
7155 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7156 btrfs_err(fs_info,
7157 "unexpected item type %u in sys_array at offset %u",
7158 (u32)key.type, cur_offset);
7159 ret = -EIO;
7160 break;
7161 }
7162
7163 chunk = (struct btrfs_chunk *)sb_array_offset;
7164 /*
7165 * At least one btrfs_chunk with one stripe must be present,
7166 * exact stripe count check comes afterwards
7167 */
7168 len = btrfs_chunk_item_size(1);
7169 if (cur_offset + len > array_size)
7170 goto out_short_read;
7171
7172 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7173 if (!num_stripes) {
7174 btrfs_err(fs_info,
7175 "invalid number of stripes %u in sys_array at offset %u",
7176 num_stripes, cur_offset);
7177 ret = -EIO;
7178 break;
7179 }
7180
7181 type = btrfs_chunk_type(sb, chunk);
7182 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7183 btrfs_err(fs_info,
7184 "invalid chunk type %llu in sys_array at offset %u",
7185 type, cur_offset);
7186 ret = -EIO;
7187 break;
7188 }
7189
7190 len = btrfs_chunk_item_size(num_stripes);
7191 if (cur_offset + len > array_size)
7192 goto out_short_read;
7193
7194 ret = read_one_chunk(&key, sb, chunk);
7195 if (ret)
7196 break;
7197
7198 array_ptr += len;
7199 sb_array_offset += len;
7200 cur_offset += len;
7201 }
7202 clear_extent_buffer_uptodate(sb);
7203 free_extent_buffer_stale(sb);
7204 return ret;
7205
7206 out_short_read:
7207 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7208 len, cur_offset);
7209 clear_extent_buffer_uptodate(sb);
7210 free_extent_buffer_stale(sb);
7211 return -EIO;
7212 }
7213
7214 /*
7215 * Check if all chunks in the fs are OK for read-write degraded mount
7216 *
7217 * If the @failing_dev is specified, it's accounted as missing.
7218 *
7219 * Return true if all chunks meet the minimal RW mount requirements.
7220 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7221 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7222 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7223 struct btrfs_device *failing_dev)
7224 {
7225 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7226 struct extent_map *em;
7227 u64 next_start = 0;
7228 bool ret = true;
7229
7230 read_lock(&map_tree->lock);
7231 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7232 read_unlock(&map_tree->lock);
7233 /* No chunk at all? Return false anyway */
7234 if (!em) {
7235 ret = false;
7236 goto out;
7237 }
7238 while (em) {
7239 struct map_lookup *map;
7240 int missing = 0;
7241 int max_tolerated;
7242 int i;
7243
7244 map = em->map_lookup;
7245 max_tolerated =
7246 btrfs_get_num_tolerated_disk_barrier_failures(
7247 map->type);
7248 for (i = 0; i < map->num_stripes; i++) {
7249 struct btrfs_device *dev = map->stripes[i].dev;
7250
7251 if (!dev || !dev->bdev ||
7252 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7253 dev->last_flush_error)
7254 missing++;
7255 else if (failing_dev && failing_dev == dev)
7256 missing++;
7257 }
7258 if (missing > max_tolerated) {
7259 if (!failing_dev)
7260 btrfs_warn(fs_info,
7261 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7262 em->start, missing, max_tolerated);
7263 free_extent_map(em);
7264 ret = false;
7265 goto out;
7266 }
7267 next_start = extent_map_end(em);
7268 free_extent_map(em);
7269
7270 read_lock(&map_tree->lock);
7271 em = lookup_extent_mapping(map_tree, next_start,
7272 (u64)(-1) - next_start);
7273 read_unlock(&map_tree->lock);
7274 }
7275 out:
7276 return ret;
7277 }
7278
readahead_tree_node_children(struct extent_buffer * node)7279 static void readahead_tree_node_children(struct extent_buffer *node)
7280 {
7281 int i;
7282 const int nr_items = btrfs_header_nritems(node);
7283
7284 for (i = 0; i < nr_items; i++)
7285 btrfs_readahead_node_child(node, i);
7286 }
7287
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7288 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7289 {
7290 struct btrfs_root *root = fs_info->chunk_root;
7291 struct btrfs_path *path;
7292 struct extent_buffer *leaf;
7293 struct btrfs_key key;
7294 struct btrfs_key found_key;
7295 int ret;
7296 int slot;
7297 int iter_ret = 0;
7298 u64 total_dev = 0;
7299 u64 last_ra_node = 0;
7300
7301 path = btrfs_alloc_path();
7302 if (!path)
7303 return -ENOMEM;
7304
7305 /*
7306 * uuid_mutex is needed only if we are mounting a sprout FS
7307 * otherwise we don't need it.
7308 */
7309 mutex_lock(&uuid_mutex);
7310
7311 /*
7312 * It is possible for mount and umount to race in such a way that
7313 * we execute this code path, but open_fs_devices failed to clear
7314 * total_rw_bytes. We certainly want it cleared before reading the
7315 * device items, so clear it here.
7316 */
7317 fs_info->fs_devices->total_rw_bytes = 0;
7318
7319 /*
7320 * Lockdep complains about possible circular locking dependency between
7321 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7322 * used for freeze procection of a fs (struct super_block.s_writers),
7323 * which we take when starting a transaction, and extent buffers of the
7324 * chunk tree if we call read_one_dev() while holding a lock on an
7325 * extent buffer of the chunk tree. Since we are mounting the filesystem
7326 * and at this point there can't be any concurrent task modifying the
7327 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7328 */
7329 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7330 path->skip_locking = 1;
7331
7332 /*
7333 * Read all device items, and then all the chunk items. All
7334 * device items are found before any chunk item (their object id
7335 * is smaller than the lowest possible object id for a chunk
7336 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7337 */
7338 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7339 key.offset = 0;
7340 key.type = 0;
7341 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7342 struct extent_buffer *node = path->nodes[1];
7343
7344 leaf = path->nodes[0];
7345 slot = path->slots[0];
7346
7347 if (node) {
7348 if (last_ra_node != node->start) {
7349 readahead_tree_node_children(node);
7350 last_ra_node = node->start;
7351 }
7352 }
7353 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7354 struct btrfs_dev_item *dev_item;
7355 dev_item = btrfs_item_ptr(leaf, slot,
7356 struct btrfs_dev_item);
7357 ret = read_one_dev(leaf, dev_item);
7358 if (ret)
7359 goto error;
7360 total_dev++;
7361 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7362 struct btrfs_chunk *chunk;
7363
7364 /*
7365 * We are only called at mount time, so no need to take
7366 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7367 * we always lock first fs_info->chunk_mutex before
7368 * acquiring any locks on the chunk tree. This is a
7369 * requirement for chunk allocation, see the comment on
7370 * top of btrfs_chunk_alloc() for details.
7371 */
7372 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7373 ret = read_one_chunk(&found_key, leaf, chunk);
7374 if (ret)
7375 goto error;
7376 }
7377 }
7378 /* Catch error found during iteration */
7379 if (iter_ret < 0) {
7380 ret = iter_ret;
7381 goto error;
7382 }
7383
7384 /*
7385 * After loading chunk tree, we've got all device information,
7386 * do another round of validation checks.
7387 */
7388 if (total_dev != fs_info->fs_devices->total_devices) {
7389 btrfs_warn(fs_info,
7390 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7391 btrfs_super_num_devices(fs_info->super_copy),
7392 total_dev);
7393 fs_info->fs_devices->total_devices = total_dev;
7394 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7395 }
7396 if (btrfs_super_total_bytes(fs_info->super_copy) <
7397 fs_info->fs_devices->total_rw_bytes) {
7398 btrfs_err(fs_info,
7399 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7400 btrfs_super_total_bytes(fs_info->super_copy),
7401 fs_info->fs_devices->total_rw_bytes);
7402 ret = -EINVAL;
7403 goto error;
7404 }
7405 ret = 0;
7406 error:
7407 mutex_unlock(&uuid_mutex);
7408
7409 btrfs_free_path(path);
7410 return ret;
7411 }
7412
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7413 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7414 {
7415 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7416 struct btrfs_device *device;
7417 int ret = 0;
7418
7419 fs_devices->fs_info = fs_info;
7420
7421 mutex_lock(&fs_devices->device_list_mutex);
7422 list_for_each_entry(device, &fs_devices->devices, dev_list)
7423 device->fs_info = fs_info;
7424
7425 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7426 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7427 device->fs_info = fs_info;
7428 ret = btrfs_get_dev_zone_info(device, false);
7429 if (ret)
7430 break;
7431 }
7432
7433 seed_devs->fs_info = fs_info;
7434 }
7435 mutex_unlock(&fs_devices->device_list_mutex);
7436
7437 return ret;
7438 }
7439
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7440 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7441 const struct btrfs_dev_stats_item *ptr,
7442 int index)
7443 {
7444 u64 val;
7445
7446 read_extent_buffer(eb, &val,
7447 offsetof(struct btrfs_dev_stats_item, values) +
7448 ((unsigned long)ptr) + (index * sizeof(u64)),
7449 sizeof(val));
7450 return val;
7451 }
7452
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7453 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7454 struct btrfs_dev_stats_item *ptr,
7455 int index, u64 val)
7456 {
7457 write_extent_buffer(eb, &val,
7458 offsetof(struct btrfs_dev_stats_item, values) +
7459 ((unsigned long)ptr) + (index * sizeof(u64)),
7460 sizeof(val));
7461 }
7462
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7463 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7464 struct btrfs_path *path)
7465 {
7466 struct btrfs_dev_stats_item *ptr;
7467 struct extent_buffer *eb;
7468 struct btrfs_key key;
7469 int item_size;
7470 int i, ret, slot;
7471
7472 if (!device->fs_info->dev_root)
7473 return 0;
7474
7475 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7476 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7477 key.offset = device->devid;
7478 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7479 if (ret) {
7480 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7481 btrfs_dev_stat_set(device, i, 0);
7482 device->dev_stats_valid = 1;
7483 btrfs_release_path(path);
7484 return ret < 0 ? ret : 0;
7485 }
7486 slot = path->slots[0];
7487 eb = path->nodes[0];
7488 item_size = btrfs_item_size(eb, slot);
7489
7490 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7491
7492 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7493 if (item_size >= (1 + i) * sizeof(__le64))
7494 btrfs_dev_stat_set(device, i,
7495 btrfs_dev_stats_value(eb, ptr, i));
7496 else
7497 btrfs_dev_stat_set(device, i, 0);
7498 }
7499
7500 device->dev_stats_valid = 1;
7501 btrfs_dev_stat_print_on_load(device);
7502 btrfs_release_path(path);
7503
7504 return 0;
7505 }
7506
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7507 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7508 {
7509 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7510 struct btrfs_device *device;
7511 struct btrfs_path *path = NULL;
7512 int ret = 0;
7513
7514 path = btrfs_alloc_path();
7515 if (!path)
7516 return -ENOMEM;
7517
7518 mutex_lock(&fs_devices->device_list_mutex);
7519 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7520 ret = btrfs_device_init_dev_stats(device, path);
7521 if (ret)
7522 goto out;
7523 }
7524 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7525 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7526 ret = btrfs_device_init_dev_stats(device, path);
7527 if (ret)
7528 goto out;
7529 }
7530 }
7531 out:
7532 mutex_unlock(&fs_devices->device_list_mutex);
7533
7534 btrfs_free_path(path);
7535 return ret;
7536 }
7537
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7538 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7539 struct btrfs_device *device)
7540 {
7541 struct btrfs_fs_info *fs_info = trans->fs_info;
7542 struct btrfs_root *dev_root = fs_info->dev_root;
7543 struct btrfs_path *path;
7544 struct btrfs_key key;
7545 struct extent_buffer *eb;
7546 struct btrfs_dev_stats_item *ptr;
7547 int ret;
7548 int i;
7549
7550 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7551 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7552 key.offset = device->devid;
7553
7554 path = btrfs_alloc_path();
7555 if (!path)
7556 return -ENOMEM;
7557 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7558 if (ret < 0) {
7559 btrfs_warn_in_rcu(fs_info,
7560 "error %d while searching for dev_stats item for device %s",
7561 ret, btrfs_dev_name(device));
7562 goto out;
7563 }
7564
7565 if (ret == 0 &&
7566 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7567 /* need to delete old one and insert a new one */
7568 ret = btrfs_del_item(trans, dev_root, path);
7569 if (ret != 0) {
7570 btrfs_warn_in_rcu(fs_info,
7571 "delete too small dev_stats item for device %s failed %d",
7572 btrfs_dev_name(device), ret);
7573 goto out;
7574 }
7575 ret = 1;
7576 }
7577
7578 if (ret == 1) {
7579 /* need to insert a new item */
7580 btrfs_release_path(path);
7581 ret = btrfs_insert_empty_item(trans, dev_root, path,
7582 &key, sizeof(*ptr));
7583 if (ret < 0) {
7584 btrfs_warn_in_rcu(fs_info,
7585 "insert dev_stats item for device %s failed %d",
7586 btrfs_dev_name(device), ret);
7587 goto out;
7588 }
7589 }
7590
7591 eb = path->nodes[0];
7592 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7593 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7594 btrfs_set_dev_stats_value(eb, ptr, i,
7595 btrfs_dev_stat_read(device, i));
7596 btrfs_mark_buffer_dirty(trans, eb);
7597
7598 out:
7599 btrfs_free_path(path);
7600 return ret;
7601 }
7602
7603 /*
7604 * called from commit_transaction. Writes all changed device stats to disk.
7605 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7606 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7607 {
7608 struct btrfs_fs_info *fs_info = trans->fs_info;
7609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7610 struct btrfs_device *device;
7611 int stats_cnt;
7612 int ret = 0;
7613
7614 mutex_lock(&fs_devices->device_list_mutex);
7615 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7616 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7617 if (!device->dev_stats_valid || stats_cnt == 0)
7618 continue;
7619
7620
7621 /*
7622 * There is a LOAD-LOAD control dependency between the value of
7623 * dev_stats_ccnt and updating the on-disk values which requires
7624 * reading the in-memory counters. Such control dependencies
7625 * require explicit read memory barriers.
7626 *
7627 * This memory barriers pairs with smp_mb__before_atomic in
7628 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7629 * barrier implied by atomic_xchg in
7630 * btrfs_dev_stats_read_and_reset
7631 */
7632 smp_rmb();
7633
7634 ret = update_dev_stat_item(trans, device);
7635 if (!ret)
7636 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7637 }
7638 mutex_unlock(&fs_devices->device_list_mutex);
7639
7640 return ret;
7641 }
7642
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7643 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7644 {
7645 btrfs_dev_stat_inc(dev, index);
7646
7647 if (!dev->dev_stats_valid)
7648 return;
7649 btrfs_err_rl_in_rcu(dev->fs_info,
7650 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7651 btrfs_dev_name(dev),
7652 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7653 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7654 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7655 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7656 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7657 }
7658
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7659 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7660 {
7661 int i;
7662
7663 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7664 if (btrfs_dev_stat_read(dev, i) != 0)
7665 break;
7666 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7667 return; /* all values == 0, suppress message */
7668
7669 btrfs_info_in_rcu(dev->fs_info,
7670 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7671 btrfs_dev_name(dev),
7672 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7673 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7674 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7675 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7676 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7677 }
7678
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7679 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7680 struct btrfs_ioctl_get_dev_stats *stats)
7681 {
7682 BTRFS_DEV_LOOKUP_ARGS(args);
7683 struct btrfs_device *dev;
7684 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7685 int i;
7686
7687 mutex_lock(&fs_devices->device_list_mutex);
7688 args.devid = stats->devid;
7689 dev = btrfs_find_device(fs_info->fs_devices, &args);
7690 mutex_unlock(&fs_devices->device_list_mutex);
7691
7692 if (!dev) {
7693 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7694 return -ENODEV;
7695 } else if (!dev->dev_stats_valid) {
7696 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7697 return -ENODEV;
7698 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7699 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7700 if (stats->nr_items > i)
7701 stats->values[i] =
7702 btrfs_dev_stat_read_and_reset(dev, i);
7703 else
7704 btrfs_dev_stat_set(dev, i, 0);
7705 }
7706 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7707 current->comm, task_pid_nr(current));
7708 } else {
7709 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7710 if (stats->nr_items > i)
7711 stats->values[i] = btrfs_dev_stat_read(dev, i);
7712 }
7713 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7714 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7715 return 0;
7716 }
7717
7718 /*
7719 * Update the size and bytes used for each device where it changed. This is
7720 * delayed since we would otherwise get errors while writing out the
7721 * superblocks.
7722 *
7723 * Must be invoked during transaction commit.
7724 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7725 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7726 {
7727 struct btrfs_device *curr, *next;
7728
7729 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7730
7731 if (list_empty(&trans->dev_update_list))
7732 return;
7733
7734 /*
7735 * We don't need the device_list_mutex here. This list is owned by the
7736 * transaction and the transaction must complete before the device is
7737 * released.
7738 */
7739 mutex_lock(&trans->fs_info->chunk_mutex);
7740 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7741 post_commit_list) {
7742 list_del_init(&curr->post_commit_list);
7743 curr->commit_total_bytes = curr->disk_total_bytes;
7744 curr->commit_bytes_used = curr->bytes_used;
7745 }
7746 mutex_unlock(&trans->fs_info->chunk_mutex);
7747 }
7748
7749 /*
7750 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7751 */
btrfs_bg_type_to_factor(u64 flags)7752 int btrfs_bg_type_to_factor(u64 flags)
7753 {
7754 const int index = btrfs_bg_flags_to_raid_index(flags);
7755
7756 return btrfs_raid_array[index].ncopies;
7757 }
7758
7759
7760
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7761 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7762 u64 chunk_offset, u64 devid,
7763 u64 physical_offset, u64 physical_len)
7764 {
7765 struct btrfs_dev_lookup_args args = { .devid = devid };
7766 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7767 struct extent_map *em;
7768 struct map_lookup *map;
7769 struct btrfs_device *dev;
7770 u64 stripe_len;
7771 bool found = false;
7772 int ret = 0;
7773 int i;
7774
7775 read_lock(&em_tree->lock);
7776 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7777 read_unlock(&em_tree->lock);
7778
7779 if (!em) {
7780 btrfs_err(fs_info,
7781 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7782 physical_offset, devid);
7783 ret = -EUCLEAN;
7784 goto out;
7785 }
7786
7787 map = em->map_lookup;
7788 stripe_len = btrfs_calc_stripe_length(em);
7789 if (physical_len != stripe_len) {
7790 btrfs_err(fs_info,
7791 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7792 physical_offset, devid, em->start, physical_len,
7793 stripe_len);
7794 ret = -EUCLEAN;
7795 goto out;
7796 }
7797
7798 /*
7799 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7800 * space. Although kernel can handle it without problem, better to warn
7801 * the users.
7802 */
7803 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7804 btrfs_warn(fs_info,
7805 "devid %llu physical %llu len %llu inside the reserved space",
7806 devid, physical_offset, physical_len);
7807
7808 for (i = 0; i < map->num_stripes; i++) {
7809 if (map->stripes[i].dev->devid == devid &&
7810 map->stripes[i].physical == physical_offset) {
7811 found = true;
7812 if (map->verified_stripes >= map->num_stripes) {
7813 btrfs_err(fs_info,
7814 "too many dev extents for chunk %llu found",
7815 em->start);
7816 ret = -EUCLEAN;
7817 goto out;
7818 }
7819 map->verified_stripes++;
7820 break;
7821 }
7822 }
7823 if (!found) {
7824 btrfs_err(fs_info,
7825 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7826 physical_offset, devid);
7827 ret = -EUCLEAN;
7828 }
7829
7830 /* Make sure no dev extent is beyond device boundary */
7831 dev = btrfs_find_device(fs_info->fs_devices, &args);
7832 if (!dev) {
7833 btrfs_err(fs_info, "failed to find devid %llu", devid);
7834 ret = -EUCLEAN;
7835 goto out;
7836 }
7837
7838 if (physical_offset + physical_len > dev->disk_total_bytes) {
7839 btrfs_err(fs_info,
7840 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7841 devid, physical_offset, physical_len,
7842 dev->disk_total_bytes);
7843 ret = -EUCLEAN;
7844 goto out;
7845 }
7846
7847 if (dev->zone_info) {
7848 u64 zone_size = dev->zone_info->zone_size;
7849
7850 if (!IS_ALIGNED(physical_offset, zone_size) ||
7851 !IS_ALIGNED(physical_len, zone_size)) {
7852 btrfs_err(fs_info,
7853 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7854 devid, physical_offset, physical_len);
7855 ret = -EUCLEAN;
7856 goto out;
7857 }
7858 }
7859
7860 out:
7861 free_extent_map(em);
7862 return ret;
7863 }
7864
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7865 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7866 {
7867 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7868 struct extent_map *em;
7869 struct rb_node *node;
7870 int ret = 0;
7871
7872 read_lock(&em_tree->lock);
7873 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7874 em = rb_entry(node, struct extent_map, rb_node);
7875 if (em->map_lookup->num_stripes !=
7876 em->map_lookup->verified_stripes) {
7877 btrfs_err(fs_info,
7878 "chunk %llu has missing dev extent, have %d expect %d",
7879 em->start, em->map_lookup->verified_stripes,
7880 em->map_lookup->num_stripes);
7881 ret = -EUCLEAN;
7882 goto out;
7883 }
7884 }
7885 out:
7886 read_unlock(&em_tree->lock);
7887 return ret;
7888 }
7889
7890 /*
7891 * Ensure that all dev extents are mapped to correct chunk, otherwise
7892 * later chunk allocation/free would cause unexpected behavior.
7893 *
7894 * NOTE: This will iterate through the whole device tree, which should be of
7895 * the same size level as the chunk tree. This slightly increases mount time.
7896 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7897 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7898 {
7899 struct btrfs_path *path;
7900 struct btrfs_root *root = fs_info->dev_root;
7901 struct btrfs_key key;
7902 u64 prev_devid = 0;
7903 u64 prev_dev_ext_end = 0;
7904 int ret = 0;
7905
7906 /*
7907 * We don't have a dev_root because we mounted with ignorebadroots and
7908 * failed to load the root, so we want to skip the verification in this
7909 * case for sure.
7910 *
7911 * However if the dev root is fine, but the tree itself is corrupted
7912 * we'd still fail to mount. This verification is only to make sure
7913 * writes can happen safely, so instead just bypass this check
7914 * completely in the case of IGNOREBADROOTS.
7915 */
7916 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7917 return 0;
7918
7919 key.objectid = 1;
7920 key.type = BTRFS_DEV_EXTENT_KEY;
7921 key.offset = 0;
7922
7923 path = btrfs_alloc_path();
7924 if (!path)
7925 return -ENOMEM;
7926
7927 path->reada = READA_FORWARD;
7928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7929 if (ret < 0)
7930 goto out;
7931
7932 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7933 ret = btrfs_next_leaf(root, path);
7934 if (ret < 0)
7935 goto out;
7936 /* No dev extents at all? Not good */
7937 if (ret > 0) {
7938 ret = -EUCLEAN;
7939 goto out;
7940 }
7941 }
7942 while (1) {
7943 struct extent_buffer *leaf = path->nodes[0];
7944 struct btrfs_dev_extent *dext;
7945 int slot = path->slots[0];
7946 u64 chunk_offset;
7947 u64 physical_offset;
7948 u64 physical_len;
7949 u64 devid;
7950
7951 btrfs_item_key_to_cpu(leaf, &key, slot);
7952 if (key.type != BTRFS_DEV_EXTENT_KEY)
7953 break;
7954 devid = key.objectid;
7955 physical_offset = key.offset;
7956
7957 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7958 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7959 physical_len = btrfs_dev_extent_length(leaf, dext);
7960
7961 /* Check if this dev extent overlaps with the previous one */
7962 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7963 btrfs_err(fs_info,
7964 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7965 devid, physical_offset, prev_dev_ext_end);
7966 ret = -EUCLEAN;
7967 goto out;
7968 }
7969
7970 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7971 physical_offset, physical_len);
7972 if (ret < 0)
7973 goto out;
7974 prev_devid = devid;
7975 prev_dev_ext_end = physical_offset + physical_len;
7976
7977 ret = btrfs_next_item(root, path);
7978 if (ret < 0)
7979 goto out;
7980 if (ret > 0) {
7981 ret = 0;
7982 break;
7983 }
7984 }
7985
7986 /* Ensure all chunks have corresponding dev extents */
7987 ret = verify_chunk_dev_extent_mapping(fs_info);
7988 out:
7989 btrfs_free_path(path);
7990 return ret;
7991 }
7992
7993 /*
7994 * Check whether the given block group or device is pinned by any inode being
7995 * used as a swapfile.
7996 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7997 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7998 {
7999 struct btrfs_swapfile_pin *sp;
8000 struct rb_node *node;
8001
8002 spin_lock(&fs_info->swapfile_pins_lock);
8003 node = fs_info->swapfile_pins.rb_node;
8004 while (node) {
8005 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8006 if (ptr < sp->ptr)
8007 node = node->rb_left;
8008 else if (ptr > sp->ptr)
8009 node = node->rb_right;
8010 else
8011 break;
8012 }
8013 spin_unlock(&fs_info->swapfile_pins_lock);
8014 return node != NULL;
8015 }
8016
relocating_repair_kthread(void * data)8017 static int relocating_repair_kthread(void *data)
8018 {
8019 struct btrfs_block_group *cache = data;
8020 struct btrfs_fs_info *fs_info = cache->fs_info;
8021 u64 target;
8022 int ret = 0;
8023
8024 target = cache->start;
8025 btrfs_put_block_group(cache);
8026
8027 sb_start_write(fs_info->sb);
8028 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8029 btrfs_info(fs_info,
8030 "zoned: skip relocating block group %llu to repair: EBUSY",
8031 target);
8032 sb_end_write(fs_info->sb);
8033 return -EBUSY;
8034 }
8035
8036 mutex_lock(&fs_info->reclaim_bgs_lock);
8037
8038 /* Ensure block group still exists */
8039 cache = btrfs_lookup_block_group(fs_info, target);
8040 if (!cache)
8041 goto out;
8042
8043 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8044 goto out;
8045
8046 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8047 if (ret < 0)
8048 goto out;
8049
8050 btrfs_info(fs_info,
8051 "zoned: relocating block group %llu to repair IO failure",
8052 target);
8053 ret = btrfs_relocate_chunk(fs_info, target);
8054
8055 out:
8056 if (cache)
8057 btrfs_put_block_group(cache);
8058 mutex_unlock(&fs_info->reclaim_bgs_lock);
8059 btrfs_exclop_finish(fs_info);
8060 sb_end_write(fs_info->sb);
8061
8062 return ret;
8063 }
8064
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8065 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8066 {
8067 struct btrfs_block_group *cache;
8068
8069 if (!btrfs_is_zoned(fs_info))
8070 return false;
8071
8072 /* Do not attempt to repair in degraded state */
8073 if (btrfs_test_opt(fs_info, DEGRADED))
8074 return true;
8075
8076 cache = btrfs_lookup_block_group(fs_info, logical);
8077 if (!cache)
8078 return true;
8079
8080 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8081 btrfs_put_block_group(cache);
8082 return true;
8083 }
8084
8085 kthread_run(relocating_repair_kthread, cache,
8086 "btrfs-relocating-repair");
8087
8088 return true;
8089 }
8090
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8091 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8092 struct btrfs_io_stripe *smap,
8093 u64 logical)
8094 {
8095 int data_stripes = nr_bioc_data_stripes(bioc);
8096 int i;
8097
8098 for (i = 0; i < data_stripes; i++) {
8099 u64 stripe_start = bioc->full_stripe_logical +
8100 btrfs_stripe_nr_to_offset(i);
8101
8102 if (logical >= stripe_start &&
8103 logical < stripe_start + BTRFS_STRIPE_LEN)
8104 break;
8105 }
8106 ASSERT(i < data_stripes);
8107 smap->dev = bioc->stripes[i].dev;
8108 smap->physical = bioc->stripes[i].physical +
8109 ((logical - bioc->full_stripe_logical) &
8110 BTRFS_STRIPE_LEN_MASK);
8111 }
8112
8113 /*
8114 * Map a repair write into a single device.
8115 *
8116 * A repair write is triggered by read time repair or scrub, which would only
8117 * update the contents of a single device.
8118 * Not update any other mirrors nor go through RMW path.
8119 *
8120 * Callers should ensure:
8121 *
8122 * - Call btrfs_bio_counter_inc_blocked() first
8123 * - The range does not cross stripe boundary
8124 * - Has a valid @mirror_num passed in.
8125 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8126 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8127 struct btrfs_io_stripe *smap, u64 logical,
8128 u32 length, int mirror_num)
8129 {
8130 struct btrfs_io_context *bioc = NULL;
8131 u64 map_length = length;
8132 int mirror_ret = mirror_num;
8133 int ret;
8134
8135 ASSERT(mirror_num > 0);
8136
8137 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8138 &bioc, smap, &mirror_ret, true);
8139 if (ret < 0)
8140 return ret;
8141
8142 /* The map range should not cross stripe boundary. */
8143 ASSERT(map_length >= length);
8144
8145 /* Already mapped to single stripe. */
8146 if (!bioc)
8147 goto out;
8148
8149 /* Map the RAID56 multi-stripe writes to a single one. */
8150 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8151 map_raid56_repair_block(bioc, smap, logical);
8152 goto out;
8153 }
8154
8155 ASSERT(mirror_num <= bioc->num_stripes);
8156 smap->dev = bioc->stripes[mirror_num - 1].dev;
8157 smap->physical = bioc->stripes[mirror_num - 1].physical;
8158 out:
8159 btrfs_put_bioc(bioc);
8160 ASSERT(smap->dev);
8161 return 0;
8162 }
8163