xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision f379c3f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22 
23 #define BTRFS_DELAYED_WRITEBACK		512
24 #define BTRFS_DELAYED_BACKGROUND	128
25 #define BTRFS_DELAYED_BATCH		16
26 
27 static struct kmem_cache *delayed_node_cache;
28 
btrfs_delayed_inode_init(void)29 int __init btrfs_delayed_inode_init(void)
30 {
31 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 					sizeof(struct btrfs_delayed_node),
33 					0,
34 					SLAB_MEM_SPREAD,
35 					NULL);
36 	if (!delayed_node_cache)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
btrfs_delayed_inode_exit(void)41 void __cold btrfs_delayed_inode_exit(void)
42 {
43 	kmem_cache_destroy(delayed_node_cache);
44 }
45 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)46 static inline void btrfs_init_delayed_node(
47 				struct btrfs_delayed_node *delayed_node,
48 				struct btrfs_root *root, u64 inode_id)
49 {
50 	delayed_node->root = root;
51 	delayed_node->inode_id = inode_id;
52 	refcount_set(&delayed_node->refs, 0);
53 	delayed_node->ins_root = RB_ROOT_CACHED;
54 	delayed_node->del_root = RB_ROOT_CACHED;
55 	mutex_init(&delayed_node->mutex);
56 	INIT_LIST_HEAD(&delayed_node->n_list);
57 	INIT_LIST_HEAD(&delayed_node->p_list);
58 }
59 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)60 static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 		struct btrfs_inode *btrfs_inode)
62 {
63 	struct btrfs_root *root = btrfs_inode->root;
64 	u64 ino = btrfs_ino(btrfs_inode);
65 	struct btrfs_delayed_node *node;
66 
67 	node = READ_ONCE(btrfs_inode->delayed_node);
68 	if (node) {
69 		refcount_inc(&node->refs);
70 		return node;
71 	}
72 
73 	spin_lock(&root->inode_lock);
74 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75 
76 	if (node) {
77 		if (btrfs_inode->delayed_node) {
78 			refcount_inc(&node->refs);	/* can be accessed */
79 			BUG_ON(btrfs_inode->delayed_node != node);
80 			spin_unlock(&root->inode_lock);
81 			return node;
82 		}
83 
84 		/*
85 		 * It's possible that we're racing into the middle of removing
86 		 * this node from the radix tree.  In this case, the refcount
87 		 * was zero and it should never go back to one.  Just return
88 		 * NULL like it was never in the radix at all; our release
89 		 * function is in the process of removing it.
90 		 *
91 		 * Some implementations of refcount_inc refuse to bump the
92 		 * refcount once it has hit zero.  If we don't do this dance
93 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 		 * of actually bumping the refcount.
95 		 *
96 		 * If this node is properly in the radix, we want to bump the
97 		 * refcount twice, once for the inode and once for this get
98 		 * operation.
99 		 */
100 		if (refcount_inc_not_zero(&node->refs)) {
101 			refcount_inc(&node->refs);
102 			btrfs_inode->delayed_node = node;
103 		} else {
104 			node = NULL;
105 		}
106 
107 		spin_unlock(&root->inode_lock);
108 		return node;
109 	}
110 	spin_unlock(&root->inode_lock);
111 
112 	return NULL;
113 }
114 
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 		struct btrfs_inode *btrfs_inode)
118 {
119 	struct btrfs_delayed_node *node;
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(btrfs_inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(btrfs_inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	refcount_set(&node->refs, 2);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		refcount_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		refcount_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	refcount_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
btrfs_next_delayed_node(struct btrfs_delayed_node * node)218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	refcount_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (refcount_dec_and_test(&delayed_node->refs)) {
264 		struct btrfs_root *root = delayed_node->root;
265 
266 		spin_lock(&root->inode_lock);
267 		/*
268 		 * Once our refcount goes to zero, nobody is allowed to bump it
269 		 * back up.  We can delete it now.
270 		 */
271 		ASSERT(refcount_read(&delayed_node->refs) == 0);
272 		radix_tree_delete(&root->delayed_nodes_tree,
273 				  delayed_node->inode_id);
274 		spin_unlock(&root->inode_lock);
275 		kmem_cache_free(delayed_node_cache, delayed_node);
276 	}
277 }
278 
btrfs_release_delayed_node(struct btrfs_delayed_node * node)279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	refcount_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
btrfs_alloc_delayed_item(u16 data_len,struct btrfs_delayed_node * node,enum btrfs_delayed_item_type type)310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 					   struct btrfs_delayed_node *node,
312 					   enum btrfs_delayed_item_type type)
313 {
314 	struct btrfs_delayed_item *item;
315 
316 	item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
317 	if (item) {
318 		item->data_len = data_len;
319 		item->type = type;
320 		item->bytes_reserved = 0;
321 		item->delayed_node = node;
322 		RB_CLEAR_NODE(&item->rb_node);
323 		INIT_LIST_HEAD(&item->log_list);
324 		item->logged = false;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * __btrfs_lookup_delayed_item - look up the delayed item by key
332  * @delayed_node: pointer to the delayed node
333  * @index:	  the dir index value to lookup (offset of a dir index key)
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
__btrfs_lookup_delayed_item(struct rb_root * root,u64 index)338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 				struct rb_root *root,
340 				u64 index)
341 {
342 	struct rb_node *node = root->rb_node;
343 	struct btrfs_delayed_item *delayed_item = NULL;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		if (delayed_item->index < index)
349 			node = node->rb_right;
350 		else if (delayed_item->index > index)
351 			node = node->rb_left;
352 		else
353 			return delayed_item;
354 	}
355 
356 	return NULL;
357 }
358 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins)359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 				    struct btrfs_delayed_item *ins)
361 {
362 	struct rb_node **p, *node;
363 	struct rb_node *parent_node = NULL;
364 	struct rb_root_cached *root;
365 	struct btrfs_delayed_item *item;
366 	bool leftmost = true;
367 
368 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 		root = &delayed_node->ins_root;
370 	else
371 		root = &delayed_node->del_root;
372 
373 	p = &root->rb_root.rb_node;
374 	node = &ins->rb_node;
375 
376 	while (*p) {
377 		parent_node = *p;
378 		item = rb_entry(parent_node, struct btrfs_delayed_item,
379 				 rb_node);
380 
381 		if (item->index < ins->index) {
382 			p = &(*p)->rb_right;
383 			leftmost = false;
384 		} else if (item->index > ins->index) {
385 			p = &(*p)->rb_left;
386 		} else {
387 			return -EEXIST;
388 		}
389 	}
390 
391 	rb_link_node(node, parent_node, p);
392 	rb_insert_color_cached(node, root, leftmost);
393 
394 	if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 	    ins->index >= delayed_node->index_cnt)
396 		delayed_node->index_cnt = ins->index + 1;
397 
398 	delayed_node->count++;
399 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 	return 0;
401 }
402 
finish_one_item(struct btrfs_delayed_root * delayed_root)403 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404 {
405 	int seq = atomic_inc_return(&delayed_root->items_seq);
406 
407 	/* atomic_dec_return implies a barrier */
408 	if ((atomic_dec_return(&delayed_root->items) <
409 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 		cond_wake_up_nomb(&delayed_root->wait);
411 }
412 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414 {
415 	struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
416 	struct rb_root_cached *root;
417 	struct btrfs_delayed_root *delayed_root;
418 
419 	/* Not inserted, ignore it. */
420 	if (RB_EMPTY_NODE(&delayed_item->rb_node))
421 		return;
422 
423 	/* If it's in a rbtree, then we need to have delayed node locked. */
424 	lockdep_assert_held(&delayed_node->mutex);
425 
426 	delayed_root = delayed_node->root->fs_info->delayed_root;
427 
428 	if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
429 		root = &delayed_node->ins_root;
430 	else
431 		root = &delayed_node->del_root;
432 
433 	rb_erase_cached(&delayed_item->rb_node, root);
434 	RB_CLEAR_NODE(&delayed_item->rb_node);
435 	delayed_node->count--;
436 
437 	finish_one_item(delayed_root);
438 }
439 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)440 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
441 {
442 	if (item) {
443 		__btrfs_remove_delayed_item(item);
444 		if (refcount_dec_and_test(&item->refs))
445 			kfree(item);
446 	}
447 }
448 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)449 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
450 					struct btrfs_delayed_node *delayed_node)
451 {
452 	struct rb_node *p;
453 	struct btrfs_delayed_item *item = NULL;
454 
455 	p = rb_first_cached(&delayed_node->ins_root);
456 	if (p)
457 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
458 
459 	return item;
460 }
461 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)462 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
463 					struct btrfs_delayed_node *delayed_node)
464 {
465 	struct rb_node *p;
466 	struct btrfs_delayed_item *item = NULL;
467 
468 	p = rb_first_cached(&delayed_node->del_root);
469 	if (p)
470 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
471 
472 	return item;
473 }
474 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)475 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
476 						struct btrfs_delayed_item *item)
477 {
478 	struct rb_node *p;
479 	struct btrfs_delayed_item *next = NULL;
480 
481 	p = rb_next(&item->rb_node);
482 	if (p)
483 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
484 
485 	return next;
486 }
487 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_delayed_item * item)488 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
489 					       struct btrfs_delayed_item *item)
490 {
491 	struct btrfs_block_rsv *src_rsv;
492 	struct btrfs_block_rsv *dst_rsv;
493 	struct btrfs_fs_info *fs_info = trans->fs_info;
494 	u64 num_bytes;
495 	int ret;
496 
497 	if (!trans->bytes_reserved)
498 		return 0;
499 
500 	src_rsv = trans->block_rsv;
501 	dst_rsv = &fs_info->delayed_block_rsv;
502 
503 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
504 
505 	/*
506 	 * Here we migrate space rsv from transaction rsv, since have already
507 	 * reserved space when starting a transaction.  So no need to reserve
508 	 * qgroup space here.
509 	 */
510 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
511 	if (!ret) {
512 		trace_btrfs_space_reservation(fs_info, "delayed_item",
513 					      item->delayed_node->inode_id,
514 					      num_bytes, 1);
515 		/*
516 		 * For insertions we track reserved metadata space by accounting
517 		 * for the number of leaves that will be used, based on the delayed
518 		 * node's index_items_size field.
519 		 */
520 		if (item->type == BTRFS_DELAYED_DELETION_ITEM)
521 			item->bytes_reserved = num_bytes;
522 	}
523 
524 	return ret;
525 }
526 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)527 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
528 						struct btrfs_delayed_item *item)
529 {
530 	struct btrfs_block_rsv *rsv;
531 	struct btrfs_fs_info *fs_info = root->fs_info;
532 
533 	if (!item->bytes_reserved)
534 		return;
535 
536 	rsv = &fs_info->delayed_block_rsv;
537 	/*
538 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
539 	 * to release/reserve qgroup space.
540 	 */
541 	trace_btrfs_space_reservation(fs_info, "delayed_item",
542 				      item->delayed_node->inode_id,
543 				      item->bytes_reserved, 0);
544 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
545 }
546 
btrfs_delayed_item_release_leaves(struct btrfs_delayed_node * node,unsigned int num_leaves)547 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
548 					      unsigned int num_leaves)
549 {
550 	struct btrfs_fs_info *fs_info = node->root->fs_info;
551 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
552 
553 	/* There are no space reservations during log replay, bail out. */
554 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
555 		return;
556 
557 	trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
558 				      bytes, 0);
559 	btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
560 }
561 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_node * node)562 static int btrfs_delayed_inode_reserve_metadata(
563 					struct btrfs_trans_handle *trans,
564 					struct btrfs_root *root,
565 					struct btrfs_delayed_node *node)
566 {
567 	struct btrfs_fs_info *fs_info = root->fs_info;
568 	struct btrfs_block_rsv *src_rsv;
569 	struct btrfs_block_rsv *dst_rsv;
570 	u64 num_bytes;
571 	int ret;
572 
573 	src_rsv = trans->block_rsv;
574 	dst_rsv = &fs_info->delayed_block_rsv;
575 
576 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
577 
578 	/*
579 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
580 	 * which doesn't reserve space for speed.  This is a problem since we
581 	 * still need to reserve space for this update, so try to reserve the
582 	 * space.
583 	 *
584 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
585 	 * we always reserve enough to update the inode item.
586 	 */
587 	if (!src_rsv || (!trans->bytes_reserved &&
588 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
589 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
590 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
591 		if (ret < 0)
592 			return ret;
593 		ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
594 					  BTRFS_RESERVE_NO_FLUSH);
595 		/* NO_FLUSH could only fail with -ENOSPC */
596 		ASSERT(ret == 0 || ret == -ENOSPC);
597 		if (ret)
598 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
599 	} else {
600 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
601 	}
602 
603 	if (!ret) {
604 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
605 					      node->inode_id, num_bytes, 1);
606 		node->bytes_reserved = num_bytes;
607 	}
608 
609 	return ret;
610 }
611 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)612 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
613 						struct btrfs_delayed_node *node,
614 						bool qgroup_free)
615 {
616 	struct btrfs_block_rsv *rsv;
617 
618 	if (!node->bytes_reserved)
619 		return;
620 
621 	rsv = &fs_info->delayed_block_rsv;
622 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
623 				      node->inode_id, node->bytes_reserved, 0);
624 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
625 	if (qgroup_free)
626 		btrfs_qgroup_free_meta_prealloc(node->root,
627 				node->bytes_reserved);
628 	else
629 		btrfs_qgroup_convert_reserved_meta(node->root,
630 				node->bytes_reserved);
631 	node->bytes_reserved = 0;
632 }
633 
634 /*
635  * Insert a single delayed item or a batch of delayed items, as many as possible
636  * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
637  * in the rbtree, and if there's a gap between two consecutive dir index items,
638  * then it means at some point we had delayed dir indexes to add but they got
639  * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
640  * into the subvolume tree. Dir index keys also have their offsets coming from a
641  * monotonically increasing counter, so we can't get new keys with an offset that
642  * fits within a gap between delayed dir index items.
643  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * first_item)644 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
645 				     struct btrfs_root *root,
646 				     struct btrfs_path *path,
647 				     struct btrfs_delayed_item *first_item)
648 {
649 	struct btrfs_fs_info *fs_info = root->fs_info;
650 	struct btrfs_delayed_node *node = first_item->delayed_node;
651 	LIST_HEAD(item_list);
652 	struct btrfs_delayed_item *curr;
653 	struct btrfs_delayed_item *next;
654 	const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
655 	struct btrfs_item_batch batch;
656 	struct btrfs_key first_key;
657 	const u32 first_data_size = first_item->data_len;
658 	int total_size;
659 	char *ins_data = NULL;
660 	int ret;
661 	bool continuous_keys_only = false;
662 
663 	lockdep_assert_held(&node->mutex);
664 
665 	/*
666 	 * During normal operation the delayed index offset is continuously
667 	 * increasing, so we can batch insert all items as there will not be any
668 	 * overlapping keys in the tree.
669 	 *
670 	 * The exception to this is log replay, where we may have interleaved
671 	 * offsets in the tree, so our batch needs to be continuous keys only in
672 	 * order to ensure we do not end up with out of order items in our leaf.
673 	 */
674 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
675 		continuous_keys_only = true;
676 
677 	/*
678 	 * For delayed items to insert, we track reserved metadata bytes based
679 	 * on the number of leaves that we will use.
680 	 * See btrfs_insert_delayed_dir_index() and
681 	 * btrfs_delayed_item_reserve_metadata()).
682 	 */
683 	ASSERT(first_item->bytes_reserved == 0);
684 
685 	list_add_tail(&first_item->tree_list, &item_list);
686 	batch.total_data_size = first_data_size;
687 	batch.nr = 1;
688 	total_size = first_data_size + sizeof(struct btrfs_item);
689 	curr = first_item;
690 
691 	while (true) {
692 		int next_size;
693 
694 		next = __btrfs_next_delayed_item(curr);
695 		if (!next)
696 			break;
697 
698 		/*
699 		 * We cannot allow gaps in the key space if we're doing log
700 		 * replay.
701 		 */
702 		if (continuous_keys_only && (next->index != curr->index + 1))
703 			break;
704 
705 		ASSERT(next->bytes_reserved == 0);
706 
707 		next_size = next->data_len + sizeof(struct btrfs_item);
708 		if (total_size + next_size > max_size)
709 			break;
710 
711 		list_add_tail(&next->tree_list, &item_list);
712 		batch.nr++;
713 		total_size += next_size;
714 		batch.total_data_size += next->data_len;
715 		curr = next;
716 	}
717 
718 	if (batch.nr == 1) {
719 		first_key.objectid = node->inode_id;
720 		first_key.type = BTRFS_DIR_INDEX_KEY;
721 		first_key.offset = first_item->index;
722 		batch.keys = &first_key;
723 		batch.data_sizes = &first_data_size;
724 	} else {
725 		struct btrfs_key *ins_keys;
726 		u32 *ins_sizes;
727 		int i = 0;
728 
729 		ins_data = kmalloc(batch.nr * sizeof(u32) +
730 				   batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
731 		if (!ins_data) {
732 			ret = -ENOMEM;
733 			goto out;
734 		}
735 		ins_sizes = (u32 *)ins_data;
736 		ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
737 		batch.keys = ins_keys;
738 		batch.data_sizes = ins_sizes;
739 		list_for_each_entry(curr, &item_list, tree_list) {
740 			ins_keys[i].objectid = node->inode_id;
741 			ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
742 			ins_keys[i].offset = curr->index;
743 			ins_sizes[i] = curr->data_len;
744 			i++;
745 		}
746 	}
747 
748 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
749 	if (ret)
750 		goto out;
751 
752 	list_for_each_entry(curr, &item_list, tree_list) {
753 		char *data_ptr;
754 
755 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
756 		write_extent_buffer(path->nodes[0], &curr->data,
757 				    (unsigned long)data_ptr, curr->data_len);
758 		path->slots[0]++;
759 	}
760 
761 	/*
762 	 * Now release our path before releasing the delayed items and their
763 	 * metadata reservations, so that we don't block other tasks for more
764 	 * time than needed.
765 	 */
766 	btrfs_release_path(path);
767 
768 	ASSERT(node->index_item_leaves > 0);
769 
770 	/*
771 	 * For normal operations we will batch an entire leaf's worth of delayed
772 	 * items, so if there are more items to process we can decrement
773 	 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
774 	 *
775 	 * However for log replay we may not have inserted an entire leaf's
776 	 * worth of items, we may have not had continuous items, so decrementing
777 	 * here would mess up the index_item_leaves accounting.  For this case
778 	 * only clean up the accounting when there are no items left.
779 	 */
780 	if (next && !continuous_keys_only) {
781 		/*
782 		 * We inserted one batch of items into a leaf a there are more
783 		 * items to flush in a future batch, now release one unit of
784 		 * metadata space from the delayed block reserve, corresponding
785 		 * the leaf we just flushed to.
786 		 */
787 		btrfs_delayed_item_release_leaves(node, 1);
788 		node->index_item_leaves--;
789 	} else if (!next) {
790 		/*
791 		 * There are no more items to insert. We can have a number of
792 		 * reserved leaves > 1 here - this happens when many dir index
793 		 * items are added and then removed before they are flushed (file
794 		 * names with a very short life, never span a transaction). So
795 		 * release all remaining leaves.
796 		 */
797 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
798 		node->index_item_leaves = 0;
799 	}
800 
801 	list_for_each_entry_safe(curr, next, &item_list, tree_list) {
802 		list_del(&curr->tree_list);
803 		btrfs_release_delayed_item(curr);
804 	}
805 out:
806 	kfree(ins_data);
807 	return ret;
808 }
809 
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)810 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
811 				      struct btrfs_path *path,
812 				      struct btrfs_root *root,
813 				      struct btrfs_delayed_node *node)
814 {
815 	int ret = 0;
816 
817 	while (ret == 0) {
818 		struct btrfs_delayed_item *curr;
819 
820 		mutex_lock(&node->mutex);
821 		curr = __btrfs_first_delayed_insertion_item(node);
822 		if (!curr) {
823 			mutex_unlock(&node->mutex);
824 			break;
825 		}
826 		ret = btrfs_insert_delayed_item(trans, root, path, curr);
827 		mutex_unlock(&node->mutex);
828 	}
829 
830 	return ret;
831 }
832 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)833 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
834 				    struct btrfs_root *root,
835 				    struct btrfs_path *path,
836 				    struct btrfs_delayed_item *item)
837 {
838 	const u64 ino = item->delayed_node->inode_id;
839 	struct btrfs_fs_info *fs_info = root->fs_info;
840 	struct btrfs_delayed_item *curr, *next;
841 	struct extent_buffer *leaf = path->nodes[0];
842 	LIST_HEAD(batch_list);
843 	int nitems, slot, last_slot;
844 	int ret;
845 	u64 total_reserved_size = item->bytes_reserved;
846 
847 	ASSERT(leaf != NULL);
848 
849 	slot = path->slots[0];
850 	last_slot = btrfs_header_nritems(leaf) - 1;
851 	/*
852 	 * Our caller always gives us a path pointing to an existing item, so
853 	 * this can not happen.
854 	 */
855 	ASSERT(slot <= last_slot);
856 	if (WARN_ON(slot > last_slot))
857 		return -ENOENT;
858 
859 	nitems = 1;
860 	curr = item;
861 	list_add_tail(&curr->tree_list, &batch_list);
862 
863 	/*
864 	 * Keep checking if the next delayed item matches the next item in the
865 	 * leaf - if so, we can add it to the batch of items to delete from the
866 	 * leaf.
867 	 */
868 	while (slot < last_slot) {
869 		struct btrfs_key key;
870 
871 		next = __btrfs_next_delayed_item(curr);
872 		if (!next)
873 			break;
874 
875 		slot++;
876 		btrfs_item_key_to_cpu(leaf, &key, slot);
877 		if (key.objectid != ino ||
878 		    key.type != BTRFS_DIR_INDEX_KEY ||
879 		    key.offset != next->index)
880 			break;
881 		nitems++;
882 		curr = next;
883 		list_add_tail(&curr->tree_list, &batch_list);
884 		total_reserved_size += curr->bytes_reserved;
885 	}
886 
887 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
888 	if (ret)
889 		return ret;
890 
891 	/* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
892 	if (total_reserved_size > 0) {
893 		/*
894 		 * Check btrfs_delayed_item_reserve_metadata() to see why we
895 		 * don't need to release/reserve qgroup space.
896 		 */
897 		trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
898 					      total_reserved_size, 0);
899 		btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
900 					total_reserved_size, NULL);
901 	}
902 
903 	list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
904 		list_del(&curr->tree_list);
905 		btrfs_release_delayed_item(curr);
906 	}
907 
908 	return 0;
909 }
910 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)911 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
912 				      struct btrfs_path *path,
913 				      struct btrfs_root *root,
914 				      struct btrfs_delayed_node *node)
915 {
916 	struct btrfs_key key;
917 	int ret = 0;
918 
919 	key.objectid = node->inode_id;
920 	key.type = BTRFS_DIR_INDEX_KEY;
921 
922 	while (ret == 0) {
923 		struct btrfs_delayed_item *item;
924 
925 		mutex_lock(&node->mutex);
926 		item = __btrfs_first_delayed_deletion_item(node);
927 		if (!item) {
928 			mutex_unlock(&node->mutex);
929 			break;
930 		}
931 
932 		key.offset = item->index;
933 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
934 		if (ret > 0) {
935 			/*
936 			 * There's no matching item in the leaf. This means we
937 			 * have already deleted this item in a past run of the
938 			 * delayed items. We ignore errors when running delayed
939 			 * items from an async context, through a work queue job
940 			 * running btrfs_async_run_delayed_root(), and don't
941 			 * release delayed items that failed to complete. This
942 			 * is because we will retry later, and at transaction
943 			 * commit time we always run delayed items and will
944 			 * then deal with errors if they fail to run again.
945 			 *
946 			 * So just release delayed items for which we can't find
947 			 * an item in the tree, and move to the next item.
948 			 */
949 			btrfs_release_path(path);
950 			btrfs_release_delayed_item(item);
951 			ret = 0;
952 		} else if (ret == 0) {
953 			ret = btrfs_batch_delete_items(trans, root, path, item);
954 			btrfs_release_path(path);
955 		}
956 
957 		/*
958 		 * We unlock and relock on each iteration, this is to prevent
959 		 * blocking other tasks for too long while we are being run from
960 		 * the async context (work queue job). Those tasks are typically
961 		 * running system calls like creat/mkdir/rename/unlink/etc which
962 		 * need to add delayed items to this delayed node.
963 		 */
964 		mutex_unlock(&node->mutex);
965 	}
966 
967 	return ret;
968 }
969 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)970 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
971 {
972 	struct btrfs_delayed_root *delayed_root;
973 
974 	if (delayed_node &&
975 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
976 		ASSERT(delayed_node->root);
977 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
978 		delayed_node->count--;
979 
980 		delayed_root = delayed_node->root->fs_info->delayed_root;
981 		finish_one_item(delayed_root);
982 	}
983 }
984 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)985 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
986 {
987 
988 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
989 		struct btrfs_delayed_root *delayed_root;
990 
991 		ASSERT(delayed_node->root);
992 		delayed_node->count--;
993 
994 		delayed_root = delayed_node->root->fs_info->delayed_root;
995 		finish_one_item(delayed_root);
996 	}
997 }
998 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)999 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1000 					struct btrfs_root *root,
1001 					struct btrfs_path *path,
1002 					struct btrfs_delayed_node *node)
1003 {
1004 	struct btrfs_fs_info *fs_info = root->fs_info;
1005 	struct btrfs_key key;
1006 	struct btrfs_inode_item *inode_item;
1007 	struct extent_buffer *leaf;
1008 	int mod;
1009 	int ret;
1010 
1011 	key.objectid = node->inode_id;
1012 	key.type = BTRFS_INODE_ITEM_KEY;
1013 	key.offset = 0;
1014 
1015 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1016 		mod = -1;
1017 	else
1018 		mod = 1;
1019 
1020 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1021 	if (ret > 0)
1022 		ret = -ENOENT;
1023 	if (ret < 0)
1024 		goto out;
1025 
1026 	leaf = path->nodes[0];
1027 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1028 				    struct btrfs_inode_item);
1029 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1030 			    sizeof(struct btrfs_inode_item));
1031 	btrfs_mark_buffer_dirty(trans, leaf);
1032 
1033 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1034 		goto out;
1035 
1036 	path->slots[0]++;
1037 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1038 		goto search;
1039 again:
1040 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1041 	if (key.objectid != node->inode_id)
1042 		goto out;
1043 
1044 	if (key.type != BTRFS_INODE_REF_KEY &&
1045 	    key.type != BTRFS_INODE_EXTREF_KEY)
1046 		goto out;
1047 
1048 	/*
1049 	 * Delayed iref deletion is for the inode who has only one link,
1050 	 * so there is only one iref. The case that several irefs are
1051 	 * in the same item doesn't exist.
1052 	 */
1053 	ret = btrfs_del_item(trans, root, path);
1054 out:
1055 	btrfs_release_delayed_iref(node);
1056 	btrfs_release_path(path);
1057 err_out:
1058 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1059 	btrfs_release_delayed_inode(node);
1060 
1061 	/*
1062 	 * If we fail to update the delayed inode we need to abort the
1063 	 * transaction, because we could leave the inode with the improper
1064 	 * counts behind.
1065 	 */
1066 	if (ret && ret != -ENOENT)
1067 		btrfs_abort_transaction(trans, ret);
1068 
1069 	return ret;
1070 
1071 search:
1072 	btrfs_release_path(path);
1073 
1074 	key.type = BTRFS_INODE_EXTREF_KEY;
1075 	key.offset = -1;
1076 
1077 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 	if (ret < 0)
1079 		goto err_out;
1080 	ASSERT(ret);
1081 
1082 	ret = 0;
1083 	leaf = path->nodes[0];
1084 	path->slots[0]--;
1085 	goto again;
1086 }
1087 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 					     struct btrfs_root *root,
1090 					     struct btrfs_path *path,
1091 					     struct btrfs_delayed_node *node)
1092 {
1093 	int ret;
1094 
1095 	mutex_lock(&node->mutex);
1096 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 		mutex_unlock(&node->mutex);
1098 		return 0;
1099 	}
1100 
1101 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 	mutex_unlock(&node->mutex);
1103 	return ret;
1104 }
1105 
1106 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 				   struct btrfs_path *path,
1109 				   struct btrfs_delayed_node *node)
1110 {
1111 	int ret;
1112 
1113 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 	if (ret)
1115 		return ret;
1116 
1117 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = btrfs_record_root_in_trans(trans, node->root);
1122 	if (ret)
1123 		return ret;
1124 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Called when committing the transaction.
1130  * Returns 0 on success.
1131  * Returns < 0 on error and returns with an aborted transaction with any
1132  * outstanding delayed items cleaned up.
1133  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1135 {
1136 	struct btrfs_fs_info *fs_info = trans->fs_info;
1137 	struct btrfs_delayed_root *delayed_root;
1138 	struct btrfs_delayed_node *curr_node, *prev_node;
1139 	struct btrfs_path *path;
1140 	struct btrfs_block_rsv *block_rsv;
1141 	int ret = 0;
1142 	bool count = (nr > 0);
1143 
1144 	if (TRANS_ABORTED(trans))
1145 		return -EIO;
1146 
1147 	path = btrfs_alloc_path();
1148 	if (!path)
1149 		return -ENOMEM;
1150 
1151 	block_rsv = trans->block_rsv;
1152 	trans->block_rsv = &fs_info->delayed_block_rsv;
1153 
1154 	delayed_root = fs_info->delayed_root;
1155 
1156 	curr_node = btrfs_first_delayed_node(delayed_root);
1157 	while (curr_node && (!count || nr--)) {
1158 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1159 							 curr_node);
1160 		if (ret) {
1161 			btrfs_abort_transaction(trans, ret);
1162 			break;
1163 		}
1164 
1165 		prev_node = curr_node;
1166 		curr_node = btrfs_next_delayed_node(curr_node);
1167 		/*
1168 		 * See the comment below about releasing path before releasing
1169 		 * node. If the commit of delayed items was successful the path
1170 		 * should always be released, but in case of an error, it may
1171 		 * point to locked extent buffers (a leaf at the very least).
1172 		 */
1173 		ASSERT(path->nodes[0] == NULL);
1174 		btrfs_release_delayed_node(prev_node);
1175 	}
1176 
1177 	/*
1178 	 * Release the path to avoid a potential deadlock and lockdep splat when
1179 	 * releasing the delayed node, as that requires taking the delayed node's
1180 	 * mutex. If another task starts running delayed items before we take
1181 	 * the mutex, it will first lock the mutex and then it may try to lock
1182 	 * the same btree path (leaf).
1183 	 */
1184 	btrfs_free_path(path);
1185 
1186 	if (curr_node)
1187 		btrfs_release_delayed_node(curr_node);
1188 	trans->block_rsv = block_rsv;
1189 
1190 	return ret;
1191 }
1192 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1193 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1194 {
1195 	return __btrfs_run_delayed_items(trans, -1);
1196 }
1197 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1198 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1199 {
1200 	return __btrfs_run_delayed_items(trans, nr);
1201 }
1202 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1203 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1204 				     struct btrfs_inode *inode)
1205 {
1206 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1207 	struct btrfs_path *path;
1208 	struct btrfs_block_rsv *block_rsv;
1209 	int ret;
1210 
1211 	if (!delayed_node)
1212 		return 0;
1213 
1214 	mutex_lock(&delayed_node->mutex);
1215 	if (!delayed_node->count) {
1216 		mutex_unlock(&delayed_node->mutex);
1217 		btrfs_release_delayed_node(delayed_node);
1218 		return 0;
1219 	}
1220 	mutex_unlock(&delayed_node->mutex);
1221 
1222 	path = btrfs_alloc_path();
1223 	if (!path) {
1224 		btrfs_release_delayed_node(delayed_node);
1225 		return -ENOMEM;
1226 	}
1227 
1228 	block_rsv = trans->block_rsv;
1229 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230 
1231 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1232 
1233 	btrfs_release_delayed_node(delayed_node);
1234 	btrfs_free_path(path);
1235 	trans->block_rsv = block_rsv;
1236 
1237 	return ret;
1238 }
1239 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1240 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1241 {
1242 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 	struct btrfs_trans_handle *trans;
1244 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1245 	struct btrfs_path *path;
1246 	struct btrfs_block_rsv *block_rsv;
1247 	int ret;
1248 
1249 	if (!delayed_node)
1250 		return 0;
1251 
1252 	mutex_lock(&delayed_node->mutex);
1253 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1254 		mutex_unlock(&delayed_node->mutex);
1255 		btrfs_release_delayed_node(delayed_node);
1256 		return 0;
1257 	}
1258 	mutex_unlock(&delayed_node->mutex);
1259 
1260 	trans = btrfs_join_transaction(delayed_node->root);
1261 	if (IS_ERR(trans)) {
1262 		ret = PTR_ERR(trans);
1263 		goto out;
1264 	}
1265 
1266 	path = btrfs_alloc_path();
1267 	if (!path) {
1268 		ret = -ENOMEM;
1269 		goto trans_out;
1270 	}
1271 
1272 	block_rsv = trans->block_rsv;
1273 	trans->block_rsv = &fs_info->delayed_block_rsv;
1274 
1275 	mutex_lock(&delayed_node->mutex);
1276 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1277 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1278 						   path, delayed_node);
1279 	else
1280 		ret = 0;
1281 	mutex_unlock(&delayed_node->mutex);
1282 
1283 	btrfs_free_path(path);
1284 	trans->block_rsv = block_rsv;
1285 trans_out:
1286 	btrfs_end_transaction(trans);
1287 	btrfs_btree_balance_dirty(fs_info);
1288 out:
1289 	btrfs_release_delayed_node(delayed_node);
1290 
1291 	return ret;
1292 }
1293 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1294 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1295 {
1296 	struct btrfs_delayed_node *delayed_node;
1297 
1298 	delayed_node = READ_ONCE(inode->delayed_node);
1299 	if (!delayed_node)
1300 		return;
1301 
1302 	inode->delayed_node = NULL;
1303 	btrfs_release_delayed_node(delayed_node);
1304 }
1305 
1306 struct btrfs_async_delayed_work {
1307 	struct btrfs_delayed_root *delayed_root;
1308 	int nr;
1309 	struct btrfs_work work;
1310 };
1311 
btrfs_async_run_delayed_root(struct btrfs_work * work)1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1313 {
1314 	struct btrfs_async_delayed_work *async_work;
1315 	struct btrfs_delayed_root *delayed_root;
1316 	struct btrfs_trans_handle *trans;
1317 	struct btrfs_path *path;
1318 	struct btrfs_delayed_node *delayed_node = NULL;
1319 	struct btrfs_root *root;
1320 	struct btrfs_block_rsv *block_rsv;
1321 	int total_done = 0;
1322 
1323 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324 	delayed_root = async_work->delayed_root;
1325 
1326 	path = btrfs_alloc_path();
1327 	if (!path)
1328 		goto out;
1329 
1330 	do {
1331 		if (atomic_read(&delayed_root->items) <
1332 		    BTRFS_DELAYED_BACKGROUND / 2)
1333 			break;
1334 
1335 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1336 		if (!delayed_node)
1337 			break;
1338 
1339 		root = delayed_node->root;
1340 
1341 		trans = btrfs_join_transaction(root);
1342 		if (IS_ERR(trans)) {
1343 			btrfs_release_path(path);
1344 			btrfs_release_prepared_delayed_node(delayed_node);
1345 			total_done++;
1346 			continue;
1347 		}
1348 
1349 		block_rsv = trans->block_rsv;
1350 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351 
1352 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353 
1354 		trans->block_rsv = block_rsv;
1355 		btrfs_end_transaction(trans);
1356 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357 
1358 		btrfs_release_path(path);
1359 		btrfs_release_prepared_delayed_node(delayed_node);
1360 		total_done++;
1361 
1362 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 		 || total_done < async_work->nr);
1364 
1365 	btrfs_free_path(path);
1366 out:
1367 	wake_up(&delayed_root->wait);
1368 	kfree(async_work);
1369 }
1370 
1371 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 				     struct btrfs_fs_info *fs_info, int nr)
1374 {
1375 	struct btrfs_async_delayed_work *async_work;
1376 
1377 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 	if (!async_work)
1379 		return -ENOMEM;
1380 
1381 	async_work->delayed_root = delayed_root;
1382 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383 			NULL);
1384 	async_work->nr = nr;
1385 
1386 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 	return 0;
1388 }
1389 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391 {
1392 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393 }
1394 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396 {
1397 	int val = atomic_read(&delayed_root->items_seq);
1398 
1399 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 		return 1;
1401 
1402 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 		return 1;
1404 
1405 	return 0;
1406 }
1407 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1408 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409 {
1410 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411 
1412 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414 		return;
1415 
1416 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417 		int seq;
1418 		int ret;
1419 
1420 		seq = atomic_read(&delayed_root->items_seq);
1421 
1422 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423 		if (ret)
1424 			return;
1425 
1426 		wait_event_interruptible(delayed_root->wait,
1427 					 could_end_wait(delayed_root, seq));
1428 		return;
1429 	}
1430 
1431 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432 }
1433 
btrfs_release_dir_index_item_space(struct btrfs_trans_handle * trans)1434 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1435 {
1436 	struct btrfs_fs_info *fs_info = trans->fs_info;
1437 	const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1438 
1439 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1440 		return;
1441 
1442 	/*
1443 	 * Adding the new dir index item does not require touching another
1444 	 * leaf, so we can release 1 unit of metadata that was previously
1445 	 * reserved when starting the transaction. This applies only to
1446 	 * the case where we had a transaction start and excludes the
1447 	 * transaction join case (when replaying log trees).
1448 	 */
1449 	trace_btrfs_space_reservation(fs_info, "transaction",
1450 				      trans->transid, bytes, 0);
1451 	btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1452 	ASSERT(trans->bytes_reserved >= bytes);
1453 	trans->bytes_reserved -= bytes;
1454 }
1455 
1456 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 flags,u64 index)1457 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1458 				   const char *name, int name_len,
1459 				   struct btrfs_inode *dir,
1460 				   struct btrfs_disk_key *disk_key, u8 flags,
1461 				   u64 index)
1462 {
1463 	struct btrfs_fs_info *fs_info = trans->fs_info;
1464 	const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1465 	struct btrfs_delayed_node *delayed_node;
1466 	struct btrfs_delayed_item *delayed_item;
1467 	struct btrfs_dir_item *dir_item;
1468 	bool reserve_leaf_space;
1469 	u32 data_len;
1470 	int ret;
1471 
1472 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1473 	if (IS_ERR(delayed_node))
1474 		return PTR_ERR(delayed_node);
1475 
1476 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1477 						delayed_node,
1478 						BTRFS_DELAYED_INSERTION_ITEM);
1479 	if (!delayed_item) {
1480 		ret = -ENOMEM;
1481 		goto release_node;
1482 	}
1483 
1484 	delayed_item->index = index;
1485 
1486 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1487 	dir_item->location = *disk_key;
1488 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1489 	btrfs_set_stack_dir_data_len(dir_item, 0);
1490 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1491 	btrfs_set_stack_dir_flags(dir_item, flags);
1492 	memcpy((char *)(dir_item + 1), name, name_len);
1493 
1494 	data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1495 
1496 	mutex_lock(&delayed_node->mutex);
1497 
1498 	/*
1499 	 * First attempt to insert the delayed item. This is to make the error
1500 	 * handling path simpler in case we fail (-EEXIST). There's no risk of
1501 	 * any other task coming in and running the delayed item before we do
1502 	 * the metadata space reservation below, because we are holding the
1503 	 * delayed node's mutex and that mutex must also be locked before the
1504 	 * node's delayed items can be run.
1505 	 */
1506 	ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1507 	if (unlikely(ret)) {
1508 		btrfs_err(trans->fs_info,
1509 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1510 			  name_len, name, index, btrfs_root_id(delayed_node->root),
1511 			  delayed_node->inode_id, dir->index_cnt,
1512 			  delayed_node->index_cnt, ret);
1513 		btrfs_release_delayed_item(delayed_item);
1514 		btrfs_release_dir_index_item_space(trans);
1515 		mutex_unlock(&delayed_node->mutex);
1516 		goto release_node;
1517 	}
1518 
1519 	if (delayed_node->index_item_leaves == 0 ||
1520 	    delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1521 		delayed_node->curr_index_batch_size = data_len;
1522 		reserve_leaf_space = true;
1523 	} else {
1524 		delayed_node->curr_index_batch_size += data_len;
1525 		reserve_leaf_space = false;
1526 	}
1527 
1528 	if (reserve_leaf_space) {
1529 		ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1530 		/*
1531 		 * Space was reserved for a dir index item insertion when we
1532 		 * started the transaction, so getting a failure here should be
1533 		 * impossible.
1534 		 */
1535 		if (WARN_ON(ret)) {
1536 			btrfs_release_delayed_item(delayed_item);
1537 			mutex_unlock(&delayed_node->mutex);
1538 			goto release_node;
1539 		}
1540 
1541 		delayed_node->index_item_leaves++;
1542 	} else {
1543 		btrfs_release_dir_index_item_space(trans);
1544 	}
1545 	mutex_unlock(&delayed_node->mutex);
1546 
1547 release_node:
1548 	btrfs_release_delayed_node(delayed_node);
1549 	return ret;
1550 }
1551 
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,u64 index)1552 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1553 					       struct btrfs_delayed_node *node,
1554 					       u64 index)
1555 {
1556 	struct btrfs_delayed_item *item;
1557 
1558 	mutex_lock(&node->mutex);
1559 	item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1560 	if (!item) {
1561 		mutex_unlock(&node->mutex);
1562 		return 1;
1563 	}
1564 
1565 	/*
1566 	 * For delayed items to insert, we track reserved metadata bytes based
1567 	 * on the number of leaves that we will use.
1568 	 * See btrfs_insert_delayed_dir_index() and
1569 	 * btrfs_delayed_item_reserve_metadata()).
1570 	 */
1571 	ASSERT(item->bytes_reserved == 0);
1572 	ASSERT(node->index_item_leaves > 0);
1573 
1574 	/*
1575 	 * If there's only one leaf reserved, we can decrement this item from the
1576 	 * current batch, otherwise we can not because we don't know which leaf
1577 	 * it belongs to. With the current limit on delayed items, we rarely
1578 	 * accumulate enough dir index items to fill more than one leaf (even
1579 	 * when using a leaf size of 4K).
1580 	 */
1581 	if (node->index_item_leaves == 1) {
1582 		const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1583 
1584 		ASSERT(node->curr_index_batch_size >= data_len);
1585 		node->curr_index_batch_size -= data_len;
1586 	}
1587 
1588 	btrfs_release_delayed_item(item);
1589 
1590 	/* If we now have no more dir index items, we can release all leaves. */
1591 	if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1592 		btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1593 		node->index_item_leaves = 0;
1594 	}
1595 
1596 	mutex_unlock(&node->mutex);
1597 	return 0;
1598 }
1599 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1600 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1601 				   struct btrfs_inode *dir, u64 index)
1602 {
1603 	struct btrfs_delayed_node *node;
1604 	struct btrfs_delayed_item *item;
1605 	int ret;
1606 
1607 	node = btrfs_get_or_create_delayed_node(dir);
1608 	if (IS_ERR(node))
1609 		return PTR_ERR(node);
1610 
1611 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1612 	if (!ret)
1613 		goto end;
1614 
1615 	item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1616 	if (!item) {
1617 		ret = -ENOMEM;
1618 		goto end;
1619 	}
1620 
1621 	item->index = index;
1622 
1623 	ret = btrfs_delayed_item_reserve_metadata(trans, item);
1624 	/*
1625 	 * we have reserved enough space when we start a new transaction,
1626 	 * so reserving metadata failure is impossible.
1627 	 */
1628 	if (ret < 0) {
1629 		btrfs_err(trans->fs_info,
1630 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1631 		btrfs_release_delayed_item(item);
1632 		goto end;
1633 	}
1634 
1635 	mutex_lock(&node->mutex);
1636 	ret = __btrfs_add_delayed_item(node, item);
1637 	if (unlikely(ret)) {
1638 		btrfs_err(trans->fs_info,
1639 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1640 			  index, node->root->root_key.objectid,
1641 			  node->inode_id, ret);
1642 		btrfs_delayed_item_release_metadata(dir->root, item);
1643 		btrfs_release_delayed_item(item);
1644 	}
1645 	mutex_unlock(&node->mutex);
1646 end:
1647 	btrfs_release_delayed_node(node);
1648 	return ret;
1649 }
1650 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1651 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1652 {
1653 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1654 
1655 	if (!delayed_node)
1656 		return -ENOENT;
1657 
1658 	/*
1659 	 * Since we have held i_mutex of this directory, it is impossible that
1660 	 * a new directory index is added into the delayed node and index_cnt
1661 	 * is updated now. So we needn't lock the delayed node.
1662 	 */
1663 	if (!delayed_node->index_cnt) {
1664 		btrfs_release_delayed_node(delayed_node);
1665 		return -EINVAL;
1666 	}
1667 
1668 	inode->index_cnt = delayed_node->index_cnt;
1669 	btrfs_release_delayed_node(delayed_node);
1670 	return 0;
1671 }
1672 
btrfs_readdir_get_delayed_items(struct inode * inode,u64 last_index,struct list_head * ins_list,struct list_head * del_list)1673 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1674 				     u64 last_index,
1675 				     struct list_head *ins_list,
1676 				     struct list_head *del_list)
1677 {
1678 	struct btrfs_delayed_node *delayed_node;
1679 	struct btrfs_delayed_item *item;
1680 
1681 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1682 	if (!delayed_node)
1683 		return false;
1684 
1685 	/*
1686 	 * We can only do one readdir with delayed items at a time because of
1687 	 * item->readdir_list.
1688 	 */
1689 	btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1690 	btrfs_inode_lock(BTRFS_I(inode), 0);
1691 
1692 	mutex_lock(&delayed_node->mutex);
1693 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1694 	while (item && item->index <= last_index) {
1695 		refcount_inc(&item->refs);
1696 		list_add_tail(&item->readdir_list, ins_list);
1697 		item = __btrfs_next_delayed_item(item);
1698 	}
1699 
1700 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1701 	while (item && item->index <= last_index) {
1702 		refcount_inc(&item->refs);
1703 		list_add_tail(&item->readdir_list, del_list);
1704 		item = __btrfs_next_delayed_item(item);
1705 	}
1706 	mutex_unlock(&delayed_node->mutex);
1707 	/*
1708 	 * This delayed node is still cached in the btrfs inode, so refs
1709 	 * must be > 1 now, and we needn't check it is going to be freed
1710 	 * or not.
1711 	 *
1712 	 * Besides that, this function is used to read dir, we do not
1713 	 * insert/delete delayed items in this period. So we also needn't
1714 	 * requeue or dequeue this delayed node.
1715 	 */
1716 	refcount_dec(&delayed_node->refs);
1717 
1718 	return true;
1719 }
1720 
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1721 void btrfs_readdir_put_delayed_items(struct inode *inode,
1722 				     struct list_head *ins_list,
1723 				     struct list_head *del_list)
1724 {
1725 	struct btrfs_delayed_item *curr, *next;
1726 
1727 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1728 		list_del(&curr->readdir_list);
1729 		if (refcount_dec_and_test(&curr->refs))
1730 			kfree(curr);
1731 	}
1732 
1733 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1734 		list_del(&curr->readdir_list);
1735 		if (refcount_dec_and_test(&curr->refs))
1736 			kfree(curr);
1737 	}
1738 
1739 	/*
1740 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1741 	 * read lock.
1742 	 */
1743 	downgrade_write(&inode->i_rwsem);
1744 }
1745 
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1746 int btrfs_should_delete_dir_index(struct list_head *del_list,
1747 				  u64 index)
1748 {
1749 	struct btrfs_delayed_item *curr;
1750 	int ret = 0;
1751 
1752 	list_for_each_entry(curr, del_list, readdir_list) {
1753 		if (curr->index > index)
1754 			break;
1755 		if (curr->index == index) {
1756 			ret = 1;
1757 			break;
1758 		}
1759 	}
1760 	return ret;
1761 }
1762 
1763 /*
1764  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1765  *
1766  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1767 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1768 				    struct list_head *ins_list)
1769 {
1770 	struct btrfs_dir_item *di;
1771 	struct btrfs_delayed_item *curr, *next;
1772 	struct btrfs_key location;
1773 	char *name;
1774 	int name_len;
1775 	int over = 0;
1776 	unsigned char d_type;
1777 
1778 	/*
1779 	 * Changing the data of the delayed item is impossible. So
1780 	 * we needn't lock them. And we have held i_mutex of the
1781 	 * directory, nobody can delete any directory indexes now.
1782 	 */
1783 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1784 		list_del(&curr->readdir_list);
1785 
1786 		if (curr->index < ctx->pos) {
1787 			if (refcount_dec_and_test(&curr->refs))
1788 				kfree(curr);
1789 			continue;
1790 		}
1791 
1792 		ctx->pos = curr->index;
1793 
1794 		di = (struct btrfs_dir_item *)curr->data;
1795 		name = (char *)(di + 1);
1796 		name_len = btrfs_stack_dir_name_len(di);
1797 
1798 		d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1799 		btrfs_disk_key_to_cpu(&location, &di->location);
1800 
1801 		over = !dir_emit(ctx, name, name_len,
1802 			       location.objectid, d_type);
1803 
1804 		if (refcount_dec_and_test(&curr->refs))
1805 			kfree(curr);
1806 
1807 		if (over)
1808 			return 1;
1809 		ctx->pos++;
1810 	}
1811 	return 0;
1812 }
1813 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1814 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1815 				  struct btrfs_inode_item *inode_item,
1816 				  struct inode *inode)
1817 {
1818 	u64 flags;
1819 
1820 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1821 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1822 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1823 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1824 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1825 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1826 	btrfs_set_stack_inode_generation(inode_item,
1827 					 BTRFS_I(inode)->generation);
1828 	btrfs_set_stack_inode_sequence(inode_item,
1829 				       inode_peek_iversion(inode));
1830 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1831 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1832 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1833 					  BTRFS_I(inode)->ro_flags);
1834 	btrfs_set_stack_inode_flags(inode_item, flags);
1835 	btrfs_set_stack_inode_block_group(inode_item, 0);
1836 
1837 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1838 				     inode->i_atime.tv_sec);
1839 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1840 				      inode->i_atime.tv_nsec);
1841 
1842 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1843 				     inode->i_mtime.tv_sec);
1844 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1845 				      inode->i_mtime.tv_nsec);
1846 
1847 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1848 				     inode_get_ctime(inode).tv_sec);
1849 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1850 				      inode_get_ctime(inode).tv_nsec);
1851 
1852 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1853 				     BTRFS_I(inode)->i_otime.tv_sec);
1854 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1855 				     BTRFS_I(inode)->i_otime.tv_nsec);
1856 }
1857 
btrfs_fill_inode(struct inode * inode,u32 * rdev)1858 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1859 {
1860 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1861 	struct btrfs_delayed_node *delayed_node;
1862 	struct btrfs_inode_item *inode_item;
1863 
1864 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1865 	if (!delayed_node)
1866 		return -ENOENT;
1867 
1868 	mutex_lock(&delayed_node->mutex);
1869 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1870 		mutex_unlock(&delayed_node->mutex);
1871 		btrfs_release_delayed_node(delayed_node);
1872 		return -ENOENT;
1873 	}
1874 
1875 	inode_item = &delayed_node->inode_item;
1876 
1877 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1878 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1879 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1880 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1881 			round_up(i_size_read(inode), fs_info->sectorsize));
1882 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1883 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1884 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1885 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1886         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1887 
1888 	inode_set_iversion_queried(inode,
1889 				   btrfs_stack_inode_sequence(inode_item));
1890 	inode->i_rdev = 0;
1891 	*rdev = btrfs_stack_inode_rdev(inode_item);
1892 	btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1893 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1894 
1895 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1896 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1897 
1898 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1899 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1900 
1901 	inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1902 			btrfs_stack_timespec_nsec(&inode_item->ctime));
1903 
1904 	BTRFS_I(inode)->i_otime.tv_sec =
1905 		btrfs_stack_timespec_sec(&inode_item->otime);
1906 	BTRFS_I(inode)->i_otime.tv_nsec =
1907 		btrfs_stack_timespec_nsec(&inode_item->otime);
1908 
1909 	inode->i_generation = BTRFS_I(inode)->generation;
1910 	BTRFS_I(inode)->index_cnt = (u64)-1;
1911 
1912 	mutex_unlock(&delayed_node->mutex);
1913 	btrfs_release_delayed_node(delayed_node);
1914 	return 0;
1915 }
1916 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode)1917 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1918 			       struct btrfs_root *root,
1919 			       struct btrfs_inode *inode)
1920 {
1921 	struct btrfs_delayed_node *delayed_node;
1922 	int ret = 0;
1923 
1924 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1925 	if (IS_ERR(delayed_node))
1926 		return PTR_ERR(delayed_node);
1927 
1928 	mutex_lock(&delayed_node->mutex);
1929 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1931 				      &inode->vfs_inode);
1932 		goto release_node;
1933 	}
1934 
1935 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1936 	if (ret)
1937 		goto release_node;
1938 
1939 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1940 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1941 	delayed_node->count++;
1942 	atomic_inc(&root->fs_info->delayed_root->items);
1943 release_node:
1944 	mutex_unlock(&delayed_node->mutex);
1945 	btrfs_release_delayed_node(delayed_node);
1946 	return ret;
1947 }
1948 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1949 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1950 {
1951 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1952 	struct btrfs_delayed_node *delayed_node;
1953 
1954 	/*
1955 	 * we don't do delayed inode updates during log recovery because it
1956 	 * leads to enospc problems.  This means we also can't do
1957 	 * delayed inode refs
1958 	 */
1959 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1960 		return -EAGAIN;
1961 
1962 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1963 	if (IS_ERR(delayed_node))
1964 		return PTR_ERR(delayed_node);
1965 
1966 	/*
1967 	 * We don't reserve space for inode ref deletion is because:
1968 	 * - We ONLY do async inode ref deletion for the inode who has only
1969 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1970 	 *   And in most case, the inode ref and the inode item are in the
1971 	 *   same leaf, and we will deal with them at the same time.
1972 	 *   Since we are sure we will reserve the space for the inode item,
1973 	 *   it is unnecessary to reserve space for inode ref deletion.
1974 	 * - If the inode ref and the inode item are not in the same leaf,
1975 	 *   We also needn't worry about enospc problem, because we reserve
1976 	 *   much more space for the inode update than it needs.
1977 	 * - At the worst, we can steal some space from the global reservation.
1978 	 *   It is very rare.
1979 	 */
1980 	mutex_lock(&delayed_node->mutex);
1981 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1982 		goto release_node;
1983 
1984 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1985 	delayed_node->count++;
1986 	atomic_inc(&fs_info->delayed_root->items);
1987 release_node:
1988 	mutex_unlock(&delayed_node->mutex);
1989 	btrfs_release_delayed_node(delayed_node);
1990 	return 0;
1991 }
1992 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1993 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1994 {
1995 	struct btrfs_root *root = delayed_node->root;
1996 	struct btrfs_fs_info *fs_info = root->fs_info;
1997 	struct btrfs_delayed_item *curr_item, *prev_item;
1998 
1999 	mutex_lock(&delayed_node->mutex);
2000 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2001 	while (curr_item) {
2002 		prev_item = curr_item;
2003 		curr_item = __btrfs_next_delayed_item(prev_item);
2004 		btrfs_release_delayed_item(prev_item);
2005 	}
2006 
2007 	if (delayed_node->index_item_leaves > 0) {
2008 		btrfs_delayed_item_release_leaves(delayed_node,
2009 					  delayed_node->index_item_leaves);
2010 		delayed_node->index_item_leaves = 0;
2011 	}
2012 
2013 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2014 	while (curr_item) {
2015 		btrfs_delayed_item_release_metadata(root, curr_item);
2016 		prev_item = curr_item;
2017 		curr_item = __btrfs_next_delayed_item(prev_item);
2018 		btrfs_release_delayed_item(prev_item);
2019 	}
2020 
2021 	btrfs_release_delayed_iref(delayed_node);
2022 
2023 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2024 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2025 		btrfs_release_delayed_inode(delayed_node);
2026 	}
2027 	mutex_unlock(&delayed_node->mutex);
2028 }
2029 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)2030 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2031 {
2032 	struct btrfs_delayed_node *delayed_node;
2033 
2034 	delayed_node = btrfs_get_delayed_node(inode);
2035 	if (!delayed_node)
2036 		return;
2037 
2038 	__btrfs_kill_delayed_node(delayed_node);
2039 	btrfs_release_delayed_node(delayed_node);
2040 }
2041 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)2042 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2043 {
2044 	u64 inode_id = 0;
2045 	struct btrfs_delayed_node *delayed_nodes[8];
2046 	int i, n;
2047 
2048 	while (1) {
2049 		spin_lock(&root->inode_lock);
2050 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2051 					   (void **)delayed_nodes, inode_id,
2052 					   ARRAY_SIZE(delayed_nodes));
2053 		if (!n) {
2054 			spin_unlock(&root->inode_lock);
2055 			break;
2056 		}
2057 
2058 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
2059 		for (i = 0; i < n; i++) {
2060 			/*
2061 			 * Don't increase refs in case the node is dead and
2062 			 * about to be removed from the tree in the loop below
2063 			 */
2064 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2065 				delayed_nodes[i] = NULL;
2066 		}
2067 		spin_unlock(&root->inode_lock);
2068 
2069 		for (i = 0; i < n; i++) {
2070 			if (!delayed_nodes[i])
2071 				continue;
2072 			__btrfs_kill_delayed_node(delayed_nodes[i]);
2073 			btrfs_release_delayed_node(delayed_nodes[i]);
2074 		}
2075 	}
2076 }
2077 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2078 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2079 {
2080 	struct btrfs_delayed_node *curr_node, *prev_node;
2081 
2082 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2083 	while (curr_node) {
2084 		__btrfs_kill_delayed_node(curr_node);
2085 
2086 		prev_node = curr_node;
2087 		curr_node = btrfs_next_delayed_node(curr_node);
2088 		btrfs_release_delayed_node(prev_node);
2089 	}
2090 }
2091 
btrfs_log_get_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2092 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2093 				 struct list_head *ins_list,
2094 				 struct list_head *del_list)
2095 {
2096 	struct btrfs_delayed_node *node;
2097 	struct btrfs_delayed_item *item;
2098 
2099 	node = btrfs_get_delayed_node(inode);
2100 	if (!node)
2101 		return;
2102 
2103 	mutex_lock(&node->mutex);
2104 	item = __btrfs_first_delayed_insertion_item(node);
2105 	while (item) {
2106 		/*
2107 		 * It's possible that the item is already in a log list. This
2108 		 * can happen in case two tasks are trying to log the same
2109 		 * directory. For example if we have tasks A and task B:
2110 		 *
2111 		 * Task A collected the delayed items into a log list while
2112 		 * under the inode's log_mutex (at btrfs_log_inode()), but it
2113 		 * only releases the items after logging the inodes they point
2114 		 * to (if they are new inodes), which happens after unlocking
2115 		 * the log mutex;
2116 		 *
2117 		 * Task B enters btrfs_log_inode() and acquires the log_mutex
2118 		 * of the same directory inode, before task B releases the
2119 		 * delayed items. This can happen for example when logging some
2120 		 * inode we need to trigger logging of its parent directory, so
2121 		 * logging two files that have the same parent directory can
2122 		 * lead to this.
2123 		 *
2124 		 * If this happens, just ignore delayed items already in a log
2125 		 * list. All the tasks logging the directory are under a log
2126 		 * transaction and whichever finishes first can not sync the log
2127 		 * before the other completes and leaves the log transaction.
2128 		 */
2129 		if (!item->logged && list_empty(&item->log_list)) {
2130 			refcount_inc(&item->refs);
2131 			list_add_tail(&item->log_list, ins_list);
2132 		}
2133 		item = __btrfs_next_delayed_item(item);
2134 	}
2135 
2136 	item = __btrfs_first_delayed_deletion_item(node);
2137 	while (item) {
2138 		/* It may be non-empty, for the same reason mentioned above. */
2139 		if (!item->logged && list_empty(&item->log_list)) {
2140 			refcount_inc(&item->refs);
2141 			list_add_tail(&item->log_list, del_list);
2142 		}
2143 		item = __btrfs_next_delayed_item(item);
2144 	}
2145 	mutex_unlock(&node->mutex);
2146 
2147 	/*
2148 	 * We are called during inode logging, which means the inode is in use
2149 	 * and can not be evicted before we finish logging the inode. So we never
2150 	 * have the last reference on the delayed inode.
2151 	 * Also, we don't use btrfs_release_delayed_node() because that would
2152 	 * requeue the delayed inode (change its order in the list of prepared
2153 	 * nodes) and we don't want to do such change because we don't create or
2154 	 * delete delayed items.
2155 	 */
2156 	ASSERT(refcount_read(&node->refs) > 1);
2157 	refcount_dec(&node->refs);
2158 }
2159 
btrfs_log_put_delayed_items(struct btrfs_inode * inode,struct list_head * ins_list,struct list_head * del_list)2160 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2161 				 struct list_head *ins_list,
2162 				 struct list_head *del_list)
2163 {
2164 	struct btrfs_delayed_node *node;
2165 	struct btrfs_delayed_item *item;
2166 	struct btrfs_delayed_item *next;
2167 
2168 	node = btrfs_get_delayed_node(inode);
2169 	if (!node)
2170 		return;
2171 
2172 	mutex_lock(&node->mutex);
2173 
2174 	list_for_each_entry_safe(item, next, ins_list, log_list) {
2175 		item->logged = true;
2176 		list_del_init(&item->log_list);
2177 		if (refcount_dec_and_test(&item->refs))
2178 			kfree(item);
2179 	}
2180 
2181 	list_for_each_entry_safe(item, next, del_list, log_list) {
2182 		item->logged = true;
2183 		list_del_init(&item->log_list);
2184 		if (refcount_dec_and_test(&item->refs))
2185 			kfree(item);
2186 	}
2187 
2188 	mutex_unlock(&node->mutex);
2189 
2190 	/*
2191 	 * We are called during inode logging, which means the inode is in use
2192 	 * and can not be evicted before we finish logging the inode. So we never
2193 	 * have the last reference on the delayed inode.
2194 	 * Also, we don't use btrfs_release_delayed_node() because that would
2195 	 * requeue the delayed inode (change its order in the list of prepared
2196 	 * nodes) and we don't want to do such change because we don't create or
2197 	 * delete delayed items.
2198 	 */
2199 	ASSERT(refcount_read(&node->refs) > 1);
2200 	refcount_dec(&node->refs);
2201 }
2202