xref: /openbmc/u-boot/fs/btrfs/ctree.h (revision e8f80a5a)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * From linux/fs/btrfs/ctree.h
4  *   Copyright (C) 2007,2008 Oracle.  All rights reserved.
5  *
6  * Modified in 2017 by Marek Behun, CZ.NIC, marek.behun@nic.cz
7  */
8 
9 #ifndef __BTRFS_CTREE_H__
10 #define __BTRFS_CTREE_H__
11 
12 #include <common.h>
13 #include <compiler.h>
14 #include "btrfs_tree.h"
15 
16 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
17 
18 #define BTRFS_MAX_MIRRORS 3
19 
20 #define BTRFS_MAX_LEVEL 8
21 
22 #define BTRFS_COMPAT_EXTENT_TREE_V0
23 
24 /*
25  * the max metadata block size.  This limit is somewhat artificial,
26  * but the memmove costs go through the roof for larger blocks.
27  */
28 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
29 
30 /*
31  * we can actually store much bigger names, but lets not confuse the rest
32  * of linux
33  */
34 #define BTRFS_NAME_LEN 255
35 
36 /*
37  * Theoretical limit is larger, but we keep this down to a sane
38  * value. That should limit greatly the possibility of collisions on
39  * inode ref items.
40  */
41 #define BTRFS_LINK_MAX 65535U
42 
43 static const int btrfs_csum_sizes[] = { 4 };
44 
45 /* four bytes for CRC32 */
46 #define BTRFS_EMPTY_DIR_SIZE 0
47 
48 /* ioprio of readahead is set to idle */
49 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
50 
51 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
52 
53 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
54 
55 /*
56  * File system states
57  */
58 #define BTRFS_FS_STATE_ERROR		0
59 #define BTRFS_FS_STATE_REMOUNTING	1
60 #define BTRFS_FS_STATE_TRANS_ABORTED	2
61 #define BTRFS_FS_STATE_DEV_REPLACING	3
62 #define BTRFS_FS_STATE_DUMMY_FS_INFO	4
63 
64 #define BTRFS_BACKREF_REV_MAX		256
65 #define BTRFS_BACKREF_REV_SHIFT		56
66 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
67 					 BTRFS_BACKREF_REV_SHIFT)
68 
69 #define BTRFS_OLD_BACKREF_REV		0
70 #define BTRFS_MIXED_BACKREF_REV		1
71 
72 /*
73  * every tree block (leaf or node) starts with this header.
74  */
75 struct btrfs_header {
76 	/* these first four must match the super block */
77 	__u8 csum[BTRFS_CSUM_SIZE];
78 	__u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
79 	__u64 bytenr; /* which block this node is supposed to live in */
80 	__u64 flags;
81 
82 	/* allowed to be different from the super from here on down */
83 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
84 	__u64 generation;
85 	__u64 owner;
86 	__u32 nritems;
87 	__u8 level;
88 } __attribute__ ((__packed__));
89 
90 /*
91  * this is a very generous portion of the super block, giving us
92  * room to translate 14 chunks with 3 stripes each.
93  */
94 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
95 
96 /*
97  * just in case we somehow lose the roots and are not able to mount,
98  * we store an array of the roots from previous transactions
99  * in the super.
100  */
101 #define BTRFS_NUM_BACKUP_ROOTS 4
102 struct btrfs_root_backup {
103 	__u64 tree_root;
104 	__u64 tree_root_gen;
105 
106 	__u64 chunk_root;
107 	__u64 chunk_root_gen;
108 
109 	__u64 extent_root;
110 	__u64 extent_root_gen;
111 
112 	__u64 fs_root;
113 	__u64 fs_root_gen;
114 
115 	__u64 dev_root;
116 	__u64 dev_root_gen;
117 
118 	__u64 csum_root;
119 	__u64 csum_root_gen;
120 
121 	__u64 total_bytes;
122 	__u64 bytes_used;
123 	__u64 num_devices;
124 	/* future */
125 	__u64 unused_64[4];
126 
127 	__u8 tree_root_level;
128 	__u8 chunk_root_level;
129 	__u8 extent_root_level;
130 	__u8 fs_root_level;
131 	__u8 dev_root_level;
132 	__u8 csum_root_level;
133 	/* future and to align */
134 	__u8 unused_8[10];
135 } __attribute__ ((__packed__));
136 
137 /*
138  * the super block basically lists the main trees of the FS
139  * it currently lacks any block count etc etc
140  */
141 struct btrfs_super_block {
142 	__u8 csum[BTRFS_CSUM_SIZE];
143 	/* the first 4 fields must match struct btrfs_header */
144 	__u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
145 	__u64 bytenr; /* this block number */
146 	__u64 flags;
147 
148 	/* allowed to be different from the btrfs_header from here own down */
149 	__u64 magic;
150 	__u64 generation;
151 	__u64 root;
152 	__u64 chunk_root;
153 	__u64 log_root;
154 
155 	/* this will help find the new super based on the log root */
156 	__u64 log_root_transid;
157 	__u64 total_bytes;
158 	__u64 bytes_used;
159 	__u64 root_dir_objectid;
160 	__u64 num_devices;
161 	__u32 sectorsize;
162 	__u32 nodesize;
163 	__u32 __unused_leafsize;
164 	__u32 stripesize;
165 	__u32 sys_chunk_array_size;
166 	__u64 chunk_root_generation;
167 	__u64 compat_flags;
168 	__u64 compat_ro_flags;
169 	__u64 incompat_flags;
170 	__u16 csum_type;
171 	__u8 root_level;
172 	__u8 chunk_root_level;
173 	__u8 log_root_level;
174 	struct btrfs_dev_item dev_item;
175 
176 	char label[BTRFS_LABEL_SIZE];
177 
178 	__u64 cache_generation;
179 	__u64 uuid_tree_generation;
180 
181 	/* future expansion */
182 	__u64 reserved[30];
183 	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
184 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
185 } __attribute__ ((__packed__));
186 
187 /*
188  * Compat flags that we support.  If any incompat flags are set other than the
189  * ones specified below then we will fail to mount
190  */
191 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
192 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
193 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
194 
195 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
196 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
197 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
198 
199 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
200 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
201 
202 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
203 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
204 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
205 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
206 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
207 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
208 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
209 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
210 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
211 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
212 
213 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
214 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
215 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
216 
217 /*
218  * A leaf is full of items. offset and size tell us where to find
219  * the item in the leaf (relative to the start of the data area)
220  */
221 struct btrfs_item {
222 	struct btrfs_key key;
223 	__u32 offset;
224 	__u32 size;
225 } __attribute__ ((__packed__));
226 
227 /*
228  * leaves have an item area and a data area:
229  * [item0, item1....itemN] [free space] [dataN...data1, data0]
230  *
231  * The data is separate from the items to get the keys closer together
232  * during searches.
233  */
234 struct btrfs_leaf {
235 	struct btrfs_header header;
236 	struct btrfs_item items[];
237 } __attribute__ ((__packed__));
238 
239 /*
240  * all non-leaf blocks are nodes, they hold only keys and pointers to
241  * other blocks
242  */
243 struct btrfs_key_ptr {
244 	struct btrfs_key key;
245 	__u64 blockptr;
246 	__u64 generation;
247 } __attribute__ ((__packed__));
248 
249 struct btrfs_node {
250 	struct btrfs_header header;
251 	struct btrfs_key_ptr ptrs[];
252 } __attribute__ ((__packed__));
253 
254 union btrfs_tree_node {
255 	struct btrfs_header header;
256 	struct btrfs_leaf leaf;
257 	struct btrfs_node node;
258 };
259 
260 typedef __u8 u8;
261 typedef __u16 u16;
262 typedef __u32 u32;
263 typedef __u64 u64;
264 
265 struct btrfs_path {
266 	union btrfs_tree_node *nodes[BTRFS_MAX_LEVEL];
267 	u32 slots[BTRFS_MAX_LEVEL];
268 };
269 
270 struct btrfs_root {
271 	u64 objectid;
272 	u64 bytenr;
273 	u64 root_dirid;
274 };
275 
276 int btrfs_comp_keys(struct btrfs_key *, struct btrfs_key *);
277 int btrfs_comp_keys_type(struct btrfs_key *, struct btrfs_key *);
278 int btrfs_bin_search(union btrfs_tree_node *, struct btrfs_key *, int *);
279 void btrfs_free_path(struct btrfs_path *);
280 int btrfs_search_tree(const struct btrfs_root *, struct btrfs_key *,
281 		      struct btrfs_path *);
282 int btrfs_prev_slot(struct btrfs_path *);
283 int btrfs_next_slot(struct btrfs_path *);
284 
btrfs_path_leaf_key(struct btrfs_path * p)285 static inline struct btrfs_key *btrfs_path_leaf_key(struct btrfs_path *p) {
286 	return &p->nodes[0]->leaf.items[p->slots[0]].key;
287 }
288 
289 static inline struct btrfs_key *
btrfs_search_tree_key_type(const struct btrfs_root * root,u64 objectid,u8 type,struct btrfs_path * path)290 btrfs_search_tree_key_type(const struct btrfs_root *root, u64 objectid,
291 			   u8 type, struct btrfs_path *path)
292 {
293 	struct btrfs_key key, *res;
294 
295 	key.objectid = objectid;
296 	key.type = type;
297 	key.offset = 0;
298 
299 	if (btrfs_search_tree(root, &key, path))
300 		return NULL;
301 
302 	res = btrfs_path_leaf_key(path);
303 	if (btrfs_comp_keys_type(&key, res)) {
304 		btrfs_free_path(path);
305 		return NULL;
306 	}
307 
308 	return res;
309 }
310 
btrfs_path_item_size(struct btrfs_path * p)311 static inline u32 btrfs_path_item_size(struct btrfs_path *p)
312 {
313 	return p->nodes[0]->leaf.items[p->slots[0]].size;
314 }
315 
btrfs_leaf_data(struct btrfs_leaf * leaf,u32 slot)316 static inline void *btrfs_leaf_data(struct btrfs_leaf *leaf, u32 slot)
317 {
318 	return ((u8 *) leaf) + sizeof(struct btrfs_header)
319 	       + leaf->items[slot].offset;
320 }
321 
btrfs_path_leaf_data(struct btrfs_path * p)322 static inline void *btrfs_path_leaf_data(struct btrfs_path *p)
323 {
324 	return btrfs_leaf_data(&p->nodes[0]->leaf, p->slots[0]);
325 }
326 
327 #define btrfs_item_ptr(l,s,t)			\
328 	((t *) btrfs_leaf_data((l),(s)))
329 
330 #define btrfs_path_item_ptr(p,t)		\
331 	((t *) btrfs_path_leaf_data((p)))
332 
333 #endif /* __BTRFS_CTREE_H__ */
334