1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45
46 #undef SCRAMBLE_DELAYED_REFS
47
48
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
66
block_group_bits(struct btrfs_block_group * cache,u64 bits)67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 return (cache->flags & bits) == bits;
70 }
71
72 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 int ret;
77 struct btrfs_key key;
78 struct btrfs_path *path;
79
80 path = btrfs_alloc_path();
81 if (!path)
82 return -ENOMEM;
83
84 key.objectid = start;
85 key.offset = len;
86 key.type = BTRFS_EXTENT_ITEM_KEY;
87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 btrfs_free_path(path);
89 return ret;
90 }
91
92 /*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 struct btrfs_fs_info *fs_info, u64 bytenr,
103 u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 struct btrfs_root *extent_root;
106 struct btrfs_delayed_ref_head *head;
107 struct btrfs_delayed_ref_root *delayed_refs;
108 struct btrfs_path *path;
109 struct btrfs_extent_item *ei;
110 struct extent_buffer *leaf;
111 struct btrfs_key key;
112 u32 item_size;
113 u64 num_refs;
114 u64 extent_flags;
115 int ret;
116
117 /*
118 * If we don't have skinny metadata, don't bother doing anything
119 * different
120 */
121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 offset = fs_info->nodesize;
123 metadata = 0;
124 }
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 if (!trans) {
131 path->skip_locking = 1;
132 path->search_commit_root = 1;
133 }
134
135 search_again:
136 key.objectid = bytenr;
137 key.offset = offset;
138 if (metadata)
139 key.type = BTRFS_METADATA_ITEM_KEY;
140 else
141 key.type = BTRFS_EXTENT_ITEM_KEY;
142
143 extent_root = btrfs_extent_root(fs_info, bytenr);
144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 if (ret < 0)
146 goto out_free;
147
148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 if (path->slots[0]) {
150 path->slots[0]--;
151 btrfs_item_key_to_cpu(path->nodes[0], &key,
152 path->slots[0]);
153 if (key.objectid == bytenr &&
154 key.type == BTRFS_EXTENT_ITEM_KEY &&
155 key.offset == fs_info->nodesize)
156 ret = 0;
157 }
158 }
159
160 if (ret == 0) {
161 leaf = path->nodes[0];
162 item_size = btrfs_item_size(leaf, path->slots[0]);
163 if (item_size >= sizeof(*ei)) {
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 if (unlikely(num_refs == 0)) {
168 ret = -EUCLEAN;
169 btrfs_err(fs_info,
170 "unexpected zero reference count for extent item (%llu %u %llu)",
171 key.objectid, key.type, key.offset);
172 btrfs_abort_transaction(trans, ret);
173 goto out_free;
174 }
175 extent_flags = btrfs_extent_flags(leaf, ei);
176 } else {
177 ret = -EUCLEAN;
178 btrfs_err(fs_info,
179 "unexpected extent item size, has %u expect >= %zu",
180 item_size, sizeof(*ei));
181 if (trans)
182 btrfs_abort_transaction(trans, ret);
183 else
184 btrfs_handle_fs_error(fs_info, ret, NULL);
185
186 goto out_free;
187 }
188 } else {
189 num_refs = 0;
190 extent_flags = 0;
191 ret = 0;
192 }
193
194 if (!trans)
195 goto out;
196
197 delayed_refs = &trans->transaction->delayed_refs;
198 spin_lock(&delayed_refs->lock);
199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
200 if (head) {
201 if (!mutex_trylock(&head->mutex)) {
202 refcount_inc(&head->refs);
203 spin_unlock(&delayed_refs->lock);
204
205 btrfs_release_path(path);
206
207 /*
208 * Mutex was contended, block until it's released and try
209 * again
210 */
211 mutex_lock(&head->mutex);
212 mutex_unlock(&head->mutex);
213 btrfs_put_delayed_ref_head(head);
214 goto search_again;
215 }
216 spin_lock(&head->lock);
217 if (head->extent_op && head->extent_op->update_flags) {
218 extent_flags |= head->extent_op->flags_to_set;
219 } else if (unlikely(num_refs == 0)) {
220 spin_unlock(&head->lock);
221 mutex_unlock(&head->mutex);
222 spin_unlock(&delayed_refs->lock);
223 ret = -EUCLEAN;
224 btrfs_err(fs_info,
225 "unexpected zero reference count for extent %llu (%s)",
226 bytenr, metadata ? "metadata" : "data");
227 btrfs_abort_transaction(trans, ret);
228 goto out_free;
229 }
230
231 num_refs += head->ref_mod;
232 spin_unlock(&head->lock);
233 mutex_unlock(&head->mutex);
234 }
235 spin_unlock(&delayed_refs->lock);
236 out:
237 WARN_ON(num_refs == 0);
238 if (refs)
239 *refs = num_refs;
240 if (flags)
241 *flags = extent_flags;
242 out_free:
243 btrfs_free_path(path);
244 return ret;
245 }
246
247 /*
248 * Back reference rules. Back refs have three main goals:
249 *
250 * 1) differentiate between all holders of references to an extent so that
251 * when a reference is dropped we can make sure it was a valid reference
252 * before freeing the extent.
253 *
254 * 2) Provide enough information to quickly find the holders of an extent
255 * if we notice a given block is corrupted or bad.
256 *
257 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
258 * maintenance. This is actually the same as #2, but with a slightly
259 * different use case.
260 *
261 * There are two kinds of back refs. The implicit back refs is optimized
262 * for pointers in non-shared tree blocks. For a given pointer in a block,
263 * back refs of this kind provide information about the block's owner tree
264 * and the pointer's key. These information allow us to find the block by
265 * b-tree searching. The full back refs is for pointers in tree blocks not
266 * referenced by their owner trees. The location of tree block is recorded
267 * in the back refs. Actually the full back refs is generic, and can be
268 * used in all cases the implicit back refs is used. The major shortcoming
269 * of the full back refs is its overhead. Every time a tree block gets
270 * COWed, we have to update back refs entry for all pointers in it.
271 *
272 * For a newly allocated tree block, we use implicit back refs for
273 * pointers in it. This means most tree related operations only involve
274 * implicit back refs. For a tree block created in old transaction, the
275 * only way to drop a reference to it is COW it. So we can detect the
276 * event that tree block loses its owner tree's reference and do the
277 * back refs conversion.
278 *
279 * When a tree block is COWed through a tree, there are four cases:
280 *
281 * The reference count of the block is one and the tree is the block's
282 * owner tree. Nothing to do in this case.
283 *
284 * The reference count of the block is one and the tree is not the
285 * block's owner tree. In this case, full back refs is used for pointers
286 * in the block. Remove these full back refs, add implicit back refs for
287 * every pointers in the new block.
288 *
289 * The reference count of the block is greater than one and the tree is
290 * the block's owner tree. In this case, implicit back refs is used for
291 * pointers in the block. Add full back refs for every pointers in the
292 * block, increase lower level extents' reference counts. The original
293 * implicit back refs are entailed to the new block.
294 *
295 * The reference count of the block is greater than one and the tree is
296 * not the block's owner tree. Add implicit back refs for every pointer in
297 * the new block, increase lower level extents' reference count.
298 *
299 * Back Reference Key composing:
300 *
301 * The key objectid corresponds to the first byte in the extent,
302 * The key type is used to differentiate between types of back refs.
303 * There are different meanings of the key offset for different types
304 * of back refs.
305 *
306 * File extents can be referenced by:
307 *
308 * - multiple snapshots, subvolumes, or different generations in one subvol
309 * - different files inside a single subvolume
310 * - different offsets inside a file (bookend extents in file.c)
311 *
312 * The extent ref structure for the implicit back refs has fields for:
313 *
314 * - Objectid of the subvolume root
315 * - objectid of the file holding the reference
316 * - original offset in the file
317 * - how many bookend extents
318 *
319 * The key offset for the implicit back refs is hash of the first
320 * three fields.
321 *
322 * The extent ref structure for the full back refs has field for:
323 *
324 * - number of pointers in the tree leaf
325 *
326 * The key offset for the implicit back refs is the first byte of
327 * the tree leaf
328 *
329 * When a file extent is allocated, The implicit back refs is used.
330 * the fields are filled in:
331 *
332 * (root_key.objectid, inode objectid, offset in file, 1)
333 *
334 * When a file extent is removed file truncation, we find the
335 * corresponding implicit back refs and check the following fields:
336 *
337 * (btrfs_header_owner(leaf), inode objectid, offset in file)
338 *
339 * Btree extents can be referenced by:
340 *
341 * - Different subvolumes
342 *
343 * Both the implicit back refs and the full back refs for tree blocks
344 * only consist of key. The key offset for the implicit back refs is
345 * objectid of block's owner tree. The key offset for the full back refs
346 * is the first byte of parent block.
347 *
348 * When implicit back refs is used, information about the lowest key and
349 * level of the tree block are required. These information are stored in
350 * tree block info structure.
351 */
352
353 /*
354 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
355 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
356 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
357 */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)358 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
359 struct btrfs_extent_inline_ref *iref,
360 enum btrfs_inline_ref_type is_data)
361 {
362 int type = btrfs_extent_inline_ref_type(eb, iref);
363 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
364
365 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
366 type == BTRFS_SHARED_BLOCK_REF_KEY ||
367 type == BTRFS_SHARED_DATA_REF_KEY ||
368 type == BTRFS_EXTENT_DATA_REF_KEY) {
369 if (is_data == BTRFS_REF_TYPE_BLOCK) {
370 if (type == BTRFS_TREE_BLOCK_REF_KEY)
371 return type;
372 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
373 ASSERT(eb->fs_info);
374 /*
375 * Every shared one has parent tree block,
376 * which must be aligned to sector size.
377 */
378 if (offset &&
379 IS_ALIGNED(offset, eb->fs_info->sectorsize))
380 return type;
381 }
382 } else if (is_data == BTRFS_REF_TYPE_DATA) {
383 if (type == BTRFS_EXTENT_DATA_REF_KEY)
384 return type;
385 if (type == BTRFS_SHARED_DATA_REF_KEY) {
386 ASSERT(eb->fs_info);
387 /*
388 * Every shared one has parent tree block,
389 * which must be aligned to sector size.
390 */
391 if (offset &&
392 IS_ALIGNED(offset, eb->fs_info->sectorsize))
393 return type;
394 }
395 } else {
396 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
397 return type;
398 }
399 }
400
401 WARN_ON(1);
402 btrfs_print_leaf(eb);
403 btrfs_err(eb->fs_info,
404 "eb %llu iref 0x%lx invalid extent inline ref type %d",
405 eb->start, (unsigned long)iref, type);
406
407 return BTRFS_REF_TYPE_INVALID;
408 }
409
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)410 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
411 {
412 u32 high_crc = ~(u32)0;
413 u32 low_crc = ~(u32)0;
414 __le64 lenum;
415
416 lenum = cpu_to_le64(root_objectid);
417 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
418 lenum = cpu_to_le64(owner);
419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 lenum = cpu_to_le64(offset);
421 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
422
423 return ((u64)high_crc << 31) ^ (u64)low_crc;
424 }
425
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)426 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
427 struct btrfs_extent_data_ref *ref)
428 {
429 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
430 btrfs_extent_data_ref_objectid(leaf, ref),
431 btrfs_extent_data_ref_offset(leaf, ref));
432 }
433
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)434 static int match_extent_data_ref(struct extent_buffer *leaf,
435 struct btrfs_extent_data_ref *ref,
436 u64 root_objectid, u64 owner, u64 offset)
437 {
438 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
439 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
440 btrfs_extent_data_ref_offset(leaf, ref) != offset)
441 return 0;
442 return 1;
443 }
444
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)445 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
446 struct btrfs_path *path,
447 u64 bytenr, u64 parent,
448 u64 root_objectid,
449 u64 owner, u64 offset)
450 {
451 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
452 struct btrfs_key key;
453 struct btrfs_extent_data_ref *ref;
454 struct extent_buffer *leaf;
455 u32 nritems;
456 int ret;
457 int recow;
458 int err = -ENOENT;
459
460 key.objectid = bytenr;
461 if (parent) {
462 key.type = BTRFS_SHARED_DATA_REF_KEY;
463 key.offset = parent;
464 } else {
465 key.type = BTRFS_EXTENT_DATA_REF_KEY;
466 key.offset = hash_extent_data_ref(root_objectid,
467 owner, offset);
468 }
469 again:
470 recow = 0;
471 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
472 if (ret < 0) {
473 err = ret;
474 goto fail;
475 }
476
477 if (parent) {
478 if (!ret)
479 return 0;
480 goto fail;
481 }
482
483 leaf = path->nodes[0];
484 nritems = btrfs_header_nritems(leaf);
485 while (1) {
486 if (path->slots[0] >= nritems) {
487 ret = btrfs_next_leaf(root, path);
488 if (ret < 0)
489 err = ret;
490 if (ret)
491 goto fail;
492
493 leaf = path->nodes[0];
494 nritems = btrfs_header_nritems(leaf);
495 recow = 1;
496 }
497
498 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
499 if (key.objectid != bytenr ||
500 key.type != BTRFS_EXTENT_DATA_REF_KEY)
501 goto fail;
502
503 ref = btrfs_item_ptr(leaf, path->slots[0],
504 struct btrfs_extent_data_ref);
505
506 if (match_extent_data_ref(leaf, ref, root_objectid,
507 owner, offset)) {
508 if (recow) {
509 btrfs_release_path(path);
510 goto again;
511 }
512 err = 0;
513 break;
514 }
515 path->slots[0]++;
516 }
517 fail:
518 return err;
519 }
520
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)521 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
522 struct btrfs_path *path,
523 u64 bytenr, u64 parent,
524 u64 root_objectid, u64 owner,
525 u64 offset, int refs_to_add)
526 {
527 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
528 struct btrfs_key key;
529 struct extent_buffer *leaf;
530 u32 size;
531 u32 num_refs;
532 int ret;
533
534 key.objectid = bytenr;
535 if (parent) {
536 key.type = BTRFS_SHARED_DATA_REF_KEY;
537 key.offset = parent;
538 size = sizeof(struct btrfs_shared_data_ref);
539 } else {
540 key.type = BTRFS_EXTENT_DATA_REF_KEY;
541 key.offset = hash_extent_data_ref(root_objectid,
542 owner, offset);
543 size = sizeof(struct btrfs_extent_data_ref);
544 }
545
546 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
547 if (ret && ret != -EEXIST)
548 goto fail;
549
550 leaf = path->nodes[0];
551 if (parent) {
552 struct btrfs_shared_data_ref *ref;
553 ref = btrfs_item_ptr(leaf, path->slots[0],
554 struct btrfs_shared_data_ref);
555 if (ret == 0) {
556 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
557 } else {
558 num_refs = btrfs_shared_data_ref_count(leaf, ref);
559 num_refs += refs_to_add;
560 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
561 }
562 } else {
563 struct btrfs_extent_data_ref *ref;
564 while (ret == -EEXIST) {
565 ref = btrfs_item_ptr(leaf, path->slots[0],
566 struct btrfs_extent_data_ref);
567 if (match_extent_data_ref(leaf, ref, root_objectid,
568 owner, offset))
569 break;
570 btrfs_release_path(path);
571 key.offset++;
572 ret = btrfs_insert_empty_item(trans, root, path, &key,
573 size);
574 if (ret && ret != -EEXIST)
575 goto fail;
576
577 leaf = path->nodes[0];
578 }
579 ref = btrfs_item_ptr(leaf, path->slots[0],
580 struct btrfs_extent_data_ref);
581 if (ret == 0) {
582 btrfs_set_extent_data_ref_root(leaf, ref,
583 root_objectid);
584 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
585 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
586 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
587 } else {
588 num_refs = btrfs_extent_data_ref_count(leaf, ref);
589 num_refs += refs_to_add;
590 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
591 }
592 }
593 btrfs_mark_buffer_dirty(trans, leaf);
594 ret = 0;
595 fail:
596 btrfs_release_path(path);
597 return ret;
598 }
599
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)600 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
601 struct btrfs_root *root,
602 struct btrfs_path *path,
603 int refs_to_drop)
604 {
605 struct btrfs_key key;
606 struct btrfs_extent_data_ref *ref1 = NULL;
607 struct btrfs_shared_data_ref *ref2 = NULL;
608 struct extent_buffer *leaf;
609 u32 num_refs = 0;
610 int ret = 0;
611
612 leaf = path->nodes[0];
613 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
614
615 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
616 ref1 = btrfs_item_ptr(leaf, path->slots[0],
617 struct btrfs_extent_data_ref);
618 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
619 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
620 ref2 = btrfs_item_ptr(leaf, path->slots[0],
621 struct btrfs_shared_data_ref);
622 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
623 } else {
624 btrfs_err(trans->fs_info,
625 "unrecognized backref key (%llu %u %llu)",
626 key.objectid, key.type, key.offset);
627 btrfs_abort_transaction(trans, -EUCLEAN);
628 return -EUCLEAN;
629 }
630
631 BUG_ON(num_refs < refs_to_drop);
632 num_refs -= refs_to_drop;
633
634 if (num_refs == 0) {
635 ret = btrfs_del_item(trans, root, path);
636 } else {
637 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
638 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
639 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
640 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
641 btrfs_mark_buffer_dirty(trans, leaf);
642 }
643 return ret;
644 }
645
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)646 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
647 struct btrfs_extent_inline_ref *iref)
648 {
649 struct btrfs_key key;
650 struct extent_buffer *leaf;
651 struct btrfs_extent_data_ref *ref1;
652 struct btrfs_shared_data_ref *ref2;
653 u32 num_refs = 0;
654 int type;
655
656 leaf = path->nodes[0];
657 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
658
659 if (iref) {
660 /*
661 * If type is invalid, we should have bailed out earlier than
662 * this call.
663 */
664 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
665 ASSERT(type != BTRFS_REF_TYPE_INVALID);
666 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
667 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
668 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
669 } else {
670 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
671 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
672 }
673 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
674 ref1 = btrfs_item_ptr(leaf, path->slots[0],
675 struct btrfs_extent_data_ref);
676 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
677 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
678 ref2 = btrfs_item_ptr(leaf, path->slots[0],
679 struct btrfs_shared_data_ref);
680 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
681 } else {
682 WARN_ON(1);
683 }
684 return num_refs;
685 }
686
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)687 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
688 struct btrfs_path *path,
689 u64 bytenr, u64 parent,
690 u64 root_objectid)
691 {
692 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
693 struct btrfs_key key;
694 int ret;
695
696 key.objectid = bytenr;
697 if (parent) {
698 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
699 key.offset = parent;
700 } else {
701 key.type = BTRFS_TREE_BLOCK_REF_KEY;
702 key.offset = root_objectid;
703 }
704
705 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
706 if (ret > 0)
707 ret = -ENOENT;
708 return ret;
709 }
710
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)711 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
712 struct btrfs_path *path,
713 u64 bytenr, u64 parent,
714 u64 root_objectid)
715 {
716 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
717 struct btrfs_key key;
718 int ret;
719
720 key.objectid = bytenr;
721 if (parent) {
722 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
723 key.offset = parent;
724 } else {
725 key.type = BTRFS_TREE_BLOCK_REF_KEY;
726 key.offset = root_objectid;
727 }
728
729 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
730 btrfs_release_path(path);
731 return ret;
732 }
733
extent_ref_type(u64 parent,u64 owner)734 static inline int extent_ref_type(u64 parent, u64 owner)
735 {
736 int type;
737 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
738 if (parent > 0)
739 type = BTRFS_SHARED_BLOCK_REF_KEY;
740 else
741 type = BTRFS_TREE_BLOCK_REF_KEY;
742 } else {
743 if (parent > 0)
744 type = BTRFS_SHARED_DATA_REF_KEY;
745 else
746 type = BTRFS_EXTENT_DATA_REF_KEY;
747 }
748 return type;
749 }
750
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)751 static int find_next_key(struct btrfs_path *path, int level,
752 struct btrfs_key *key)
753
754 {
755 for (; level < BTRFS_MAX_LEVEL; level++) {
756 if (!path->nodes[level])
757 break;
758 if (path->slots[level] + 1 >=
759 btrfs_header_nritems(path->nodes[level]))
760 continue;
761 if (level == 0)
762 btrfs_item_key_to_cpu(path->nodes[level], key,
763 path->slots[level] + 1);
764 else
765 btrfs_node_key_to_cpu(path->nodes[level], key,
766 path->slots[level] + 1);
767 return 0;
768 }
769 return 1;
770 }
771
772 /*
773 * look for inline back ref. if back ref is found, *ref_ret is set
774 * to the address of inline back ref, and 0 is returned.
775 *
776 * if back ref isn't found, *ref_ret is set to the address where it
777 * should be inserted, and -ENOENT is returned.
778 *
779 * if insert is true and there are too many inline back refs, the path
780 * points to the extent item, and -EAGAIN is returned.
781 *
782 * NOTE: inline back refs are ordered in the same way that back ref
783 * items in the tree are ordered.
784 */
785 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)786 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
787 struct btrfs_path *path,
788 struct btrfs_extent_inline_ref **ref_ret,
789 u64 bytenr, u64 num_bytes,
790 u64 parent, u64 root_objectid,
791 u64 owner, u64 offset, int insert)
792 {
793 struct btrfs_fs_info *fs_info = trans->fs_info;
794 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
795 struct btrfs_key key;
796 struct extent_buffer *leaf;
797 struct btrfs_extent_item *ei;
798 struct btrfs_extent_inline_ref *iref;
799 u64 flags;
800 u64 item_size;
801 unsigned long ptr;
802 unsigned long end;
803 int extra_size;
804 int type;
805 int want;
806 int ret;
807 int err = 0;
808 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
809 int needed;
810
811 key.objectid = bytenr;
812 key.type = BTRFS_EXTENT_ITEM_KEY;
813 key.offset = num_bytes;
814
815 want = extent_ref_type(parent, owner);
816 if (insert) {
817 extra_size = btrfs_extent_inline_ref_size(want);
818 path->search_for_extension = 1;
819 path->keep_locks = 1;
820 } else
821 extra_size = -1;
822
823 /*
824 * Owner is our level, so we can just add one to get the level for the
825 * block we are interested in.
826 */
827 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
828 key.type = BTRFS_METADATA_ITEM_KEY;
829 key.offset = owner;
830 }
831
832 again:
833 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
834 if (ret < 0) {
835 err = ret;
836 goto out;
837 }
838
839 /*
840 * We may be a newly converted file system which still has the old fat
841 * extent entries for metadata, so try and see if we have one of those.
842 */
843 if (ret > 0 && skinny_metadata) {
844 skinny_metadata = false;
845 if (path->slots[0]) {
846 path->slots[0]--;
847 btrfs_item_key_to_cpu(path->nodes[0], &key,
848 path->slots[0]);
849 if (key.objectid == bytenr &&
850 key.type == BTRFS_EXTENT_ITEM_KEY &&
851 key.offset == num_bytes)
852 ret = 0;
853 }
854 if (ret) {
855 key.objectid = bytenr;
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857 key.offset = num_bytes;
858 btrfs_release_path(path);
859 goto again;
860 }
861 }
862
863 if (ret && !insert) {
864 err = -ENOENT;
865 goto out;
866 } else if (WARN_ON(ret)) {
867 btrfs_print_leaf(path->nodes[0]);
868 btrfs_err(fs_info,
869 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
870 bytenr, num_bytes, parent, root_objectid, owner,
871 offset);
872 err = -EIO;
873 goto out;
874 }
875
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size(leaf, path->slots[0]);
878 if (unlikely(item_size < sizeof(*ei))) {
879 err = -EUCLEAN;
880 btrfs_err(fs_info,
881 "unexpected extent item size, has %llu expect >= %zu",
882 item_size, sizeof(*ei));
883 btrfs_abort_transaction(trans, err);
884 goto out;
885 }
886
887 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
888 flags = btrfs_extent_flags(leaf, ei);
889
890 ptr = (unsigned long)(ei + 1);
891 end = (unsigned long)ei + item_size;
892
893 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
894 ptr += sizeof(struct btrfs_tree_block_info);
895 BUG_ON(ptr > end);
896 }
897
898 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
899 needed = BTRFS_REF_TYPE_DATA;
900 else
901 needed = BTRFS_REF_TYPE_BLOCK;
902
903 err = -ENOENT;
904 while (1) {
905 if (ptr >= end) {
906 if (ptr > end) {
907 err = -EUCLEAN;
908 btrfs_print_leaf(path->nodes[0]);
909 btrfs_crit(fs_info,
910 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
911 path->slots[0], root_objectid, owner, offset, parent);
912 }
913 break;
914 }
915 iref = (struct btrfs_extent_inline_ref *)ptr;
916 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
917 if (type == BTRFS_REF_TYPE_INVALID) {
918 err = -EUCLEAN;
919 goto out;
920 }
921
922 if (want < type)
923 break;
924 if (want > type) {
925 ptr += btrfs_extent_inline_ref_size(type);
926 continue;
927 }
928
929 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
930 struct btrfs_extent_data_ref *dref;
931 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
932 if (match_extent_data_ref(leaf, dref, root_objectid,
933 owner, offset)) {
934 err = 0;
935 break;
936 }
937 if (hash_extent_data_ref_item(leaf, dref) <
938 hash_extent_data_ref(root_objectid, owner, offset))
939 break;
940 } else {
941 u64 ref_offset;
942 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
943 if (parent > 0) {
944 if (parent == ref_offset) {
945 err = 0;
946 break;
947 }
948 if (ref_offset < parent)
949 break;
950 } else {
951 if (root_objectid == ref_offset) {
952 err = 0;
953 break;
954 }
955 if (ref_offset < root_objectid)
956 break;
957 }
958 }
959 ptr += btrfs_extent_inline_ref_size(type);
960 }
961 if (err == -ENOENT && insert) {
962 if (item_size + extra_size >=
963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
964 err = -EAGAIN;
965 goto out;
966 }
967 /*
968 * To add new inline back ref, we have to make sure
969 * there is no corresponding back ref item.
970 * For simplicity, we just do not add new inline back
971 * ref if there is any kind of item for this block
972 */
973 if (find_next_key(path, 0, &key) == 0 &&
974 key.objectid == bytenr &&
975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 err = -EAGAIN;
977 goto out;
978 }
979 }
980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981 out:
982 if (insert) {
983 path->keep_locks = 0;
984 path->search_for_extension = 0;
985 btrfs_unlock_up_safe(path, 1);
986 }
987 return err;
988 }
989
990 /*
991 * helper to add new inline back ref
992 */
993 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 struct btrfs_path *path,
996 struct btrfs_extent_inline_ref *iref,
997 u64 parent, u64 root_objectid,
998 u64 owner, u64 offset, int refs_to_add,
999 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 struct extent_buffer *leaf;
1002 struct btrfs_extent_item *ei;
1003 unsigned long ptr;
1004 unsigned long end;
1005 unsigned long item_offset;
1006 u64 refs;
1007 int size;
1008 int type;
1009
1010 leaf = path->nodes[0];
1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 item_offset = (unsigned long)iref - (unsigned long)ei;
1013
1014 type = extent_ref_type(parent, owner);
1015 size = btrfs_extent_inline_ref_size(type);
1016
1017 btrfs_extend_item(trans, path, size);
1018
1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 refs = btrfs_extent_refs(leaf, ei);
1021 refs += refs_to_add;
1022 btrfs_set_extent_refs(leaf, ei, refs);
1023 if (extent_op)
1024 __run_delayed_extent_op(extent_op, leaf, ei);
1025
1026 ptr = (unsigned long)ei + item_offset;
1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 if (ptr < end - size)
1029 memmove_extent_buffer(leaf, ptr + size, ptr,
1030 end - size - ptr);
1031
1032 iref = (struct btrfs_extent_inline_ref *)ptr;
1033 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 struct btrfs_extent_data_ref *dref;
1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 struct btrfs_shared_data_ref *sref;
1043 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 } else {
1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 }
1051 btrfs_mark_buffer_dirty(trans, leaf);
1052 }
1053
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055 struct btrfs_path *path,
1056 struct btrfs_extent_inline_ref **ref_ret,
1057 u64 bytenr, u64 num_bytes, u64 parent,
1058 u64 root_objectid, u64 owner, u64 offset)
1059 {
1060 int ret;
1061
1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063 num_bytes, parent, root_objectid,
1064 owner, offset, 0);
1065 if (ret != -ENOENT)
1066 return ret;
1067
1068 btrfs_release_path(path);
1069 *ref_ret = NULL;
1070
1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 root_objectid);
1074 } else {
1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076 root_objectid, owner, offset);
1077 }
1078 return ret;
1079 }
1080
1081 /*
1082 * helper to update/remove inline back ref
1083 */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1084 static noinline_for_stack int update_inline_extent_backref(
1085 struct btrfs_trans_handle *trans,
1086 struct btrfs_path *path,
1087 struct btrfs_extent_inline_ref *iref,
1088 int refs_to_mod,
1089 struct btrfs_delayed_extent_op *extent_op)
1090 {
1091 struct extent_buffer *leaf = path->nodes[0];
1092 struct btrfs_fs_info *fs_info = leaf->fs_info;
1093 struct btrfs_extent_item *ei;
1094 struct btrfs_extent_data_ref *dref = NULL;
1095 struct btrfs_shared_data_ref *sref = NULL;
1096 unsigned long ptr;
1097 unsigned long end;
1098 u32 item_size;
1099 int size;
1100 int type;
1101 u64 refs;
1102
1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 refs = btrfs_extent_refs(leaf, ei);
1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106 struct btrfs_key key;
1107 u32 extent_size;
1108
1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110 if (key.type == BTRFS_METADATA_ITEM_KEY)
1111 extent_size = fs_info->nodesize;
1112 else
1113 extent_size = key.offset;
1114 btrfs_print_leaf(leaf);
1115 btrfs_err(fs_info,
1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117 key.objectid, extent_size, refs_to_mod, refs);
1118 return -EUCLEAN;
1119 }
1120 refs += refs_to_mod;
1121 btrfs_set_extent_refs(leaf, ei, refs);
1122 if (extent_op)
1123 __run_delayed_extent_op(extent_op, leaf, ei);
1124
1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126 /*
1127 * Function btrfs_get_extent_inline_ref_type() has already printed
1128 * error messages.
1129 */
1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131 return -EUCLEAN;
1132
1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 refs = btrfs_extent_data_ref_count(leaf, dref);
1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 refs = btrfs_shared_data_ref_count(leaf, sref);
1139 } else {
1140 refs = 1;
1141 /*
1142 * For tree blocks we can only drop one ref for it, and tree
1143 * blocks should not have refs > 1.
1144 *
1145 * Furthermore if we're inserting a new inline backref, we
1146 * won't reach this path either. That would be
1147 * setup_inline_extent_backref().
1148 */
1149 if (unlikely(refs_to_mod != -1)) {
1150 struct btrfs_key key;
1151
1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153
1154 btrfs_print_leaf(leaf);
1155 btrfs_err(fs_info,
1156 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1157 key.objectid, refs_to_mod);
1158 return -EUCLEAN;
1159 }
1160 }
1161
1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163 struct btrfs_key key;
1164 u32 extent_size;
1165
1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 if (key.type == BTRFS_METADATA_ITEM_KEY)
1168 extent_size = fs_info->nodesize;
1169 else
1170 extent_size = key.offset;
1171 btrfs_print_leaf(leaf);
1172 btrfs_err(fs_info,
1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174 (unsigned long)iref, key.objectid, extent_size,
1175 refs_to_mod, refs);
1176 return -EUCLEAN;
1177 }
1178 refs += refs_to_mod;
1179
1180 if (refs > 0) {
1181 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183 else
1184 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185 } else {
1186 size = btrfs_extent_inline_ref_size(type);
1187 item_size = btrfs_item_size(leaf, path->slots[0]);
1188 ptr = (unsigned long)iref;
1189 end = (unsigned long)ei + item_size;
1190 if (ptr + size < end)
1191 memmove_extent_buffer(leaf, ptr, ptr + size,
1192 end - ptr - size);
1193 item_size -= size;
1194 btrfs_truncate_item(trans, path, item_size, 1);
1195 }
1196 btrfs_mark_buffer_dirty(trans, leaf);
1197 return 0;
1198 }
1199
1200 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202 struct btrfs_path *path,
1203 u64 bytenr, u64 num_bytes, u64 parent,
1204 u64 root_objectid, u64 owner,
1205 u64 offset, int refs_to_add,
1206 struct btrfs_delayed_extent_op *extent_op)
1207 {
1208 struct btrfs_extent_inline_ref *iref;
1209 int ret;
1210
1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212 num_bytes, parent, root_objectid,
1213 owner, offset, 1);
1214 if (ret == 0) {
1215 /*
1216 * We're adding refs to a tree block we already own, this
1217 * should not happen at all.
1218 */
1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220 btrfs_print_leaf(path->nodes[0]);
1221 btrfs_crit(trans->fs_info,
1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223 bytenr, num_bytes, root_objectid, path->slots[0]);
1224 return -EUCLEAN;
1225 }
1226 ret = update_inline_extent_backref(trans, path, iref,
1227 refs_to_add, extent_op);
1228 } else if (ret == -ENOENT) {
1229 setup_inline_extent_backref(trans, path, iref, parent,
1230 root_objectid, owner, offset,
1231 refs_to_add, extent_op);
1232 ret = 0;
1233 }
1234 return ret;
1235 }
1236
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1237 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct btrfs_path *path,
1240 struct btrfs_extent_inline_ref *iref,
1241 int refs_to_drop, int is_data)
1242 {
1243 int ret = 0;
1244
1245 BUG_ON(!is_data && refs_to_drop != 1);
1246 if (iref)
1247 ret = update_inline_extent_backref(trans, path, iref,
1248 -refs_to_drop, NULL);
1249 else if (is_data)
1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251 else
1252 ret = btrfs_del_item(trans, root, path);
1253 return ret;
1254 }
1255
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257 u64 *discarded_bytes)
1258 {
1259 int j, ret = 0;
1260 u64 bytes_left, end;
1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262
1263 /* Adjust the range to be aligned to 512B sectors if necessary. */
1264 if (start != aligned_start) {
1265 len -= aligned_start - start;
1266 len = round_down(len, 1 << SECTOR_SHIFT);
1267 start = aligned_start;
1268 }
1269
1270 *discarded_bytes = 0;
1271
1272 if (!len)
1273 return 0;
1274
1275 end = start + len;
1276 bytes_left = len;
1277
1278 /* Skip any superblocks on this device. */
1279 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1280 u64 sb_start = btrfs_sb_offset(j);
1281 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1282 u64 size = sb_start - start;
1283
1284 if (!in_range(sb_start, start, bytes_left) &&
1285 !in_range(sb_end, start, bytes_left) &&
1286 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1287 continue;
1288
1289 /*
1290 * Superblock spans beginning of range. Adjust start and
1291 * try again.
1292 */
1293 if (sb_start <= start) {
1294 start += sb_end - start;
1295 if (start > end) {
1296 bytes_left = 0;
1297 break;
1298 }
1299 bytes_left = end - start;
1300 continue;
1301 }
1302
1303 if (size) {
1304 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305 size >> SECTOR_SHIFT,
1306 GFP_NOFS);
1307 if (!ret)
1308 *discarded_bytes += size;
1309 else if (ret != -EOPNOTSUPP)
1310 return ret;
1311 }
1312
1313 start = sb_end;
1314 if (start > end) {
1315 bytes_left = 0;
1316 break;
1317 }
1318 bytes_left = end - start;
1319 }
1320
1321 while (bytes_left) {
1322 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1323
1324 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1325 bytes_to_discard >> SECTOR_SHIFT,
1326 GFP_NOFS);
1327
1328 if (ret) {
1329 if (ret != -EOPNOTSUPP)
1330 break;
1331 continue;
1332 }
1333
1334 start += bytes_to_discard;
1335 bytes_left -= bytes_to_discard;
1336 *discarded_bytes += bytes_to_discard;
1337
1338 if (btrfs_trim_interrupted()) {
1339 ret = -ERESTARTSYS;
1340 break;
1341 }
1342 }
1343
1344 return ret;
1345 }
1346
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1347 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1348 {
1349 struct btrfs_device *dev = stripe->dev;
1350 struct btrfs_fs_info *fs_info = dev->fs_info;
1351 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1352 u64 phys = stripe->physical;
1353 u64 len = stripe->length;
1354 u64 discarded = 0;
1355 int ret = 0;
1356
1357 /* Zone reset on a zoned filesystem */
1358 if (btrfs_can_zone_reset(dev, phys, len)) {
1359 u64 src_disc;
1360
1361 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1362 if (ret)
1363 goto out;
1364
1365 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1366 dev != dev_replace->srcdev)
1367 goto out;
1368
1369 src_disc = discarded;
1370
1371 /* Send to replace target as well */
1372 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1373 &discarded);
1374 discarded += src_disc;
1375 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1376 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1377 } else {
1378 ret = 0;
1379 *bytes = 0;
1380 }
1381
1382 out:
1383 *bytes = discarded;
1384 return ret;
1385 }
1386
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1387 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1388 u64 num_bytes, u64 *actual_bytes)
1389 {
1390 int ret = 0;
1391 u64 discarded_bytes = 0;
1392 u64 end = bytenr + num_bytes;
1393 u64 cur = bytenr;
1394
1395 /*
1396 * Avoid races with device replace and make sure the devices in the
1397 * stripes don't go away while we are discarding.
1398 */
1399 btrfs_bio_counter_inc_blocked(fs_info);
1400 while (cur < end) {
1401 struct btrfs_discard_stripe *stripes;
1402 unsigned int num_stripes;
1403 int i;
1404
1405 num_bytes = end - cur;
1406 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1407 if (IS_ERR(stripes)) {
1408 ret = PTR_ERR(stripes);
1409 if (ret == -EOPNOTSUPP)
1410 ret = 0;
1411 break;
1412 }
1413
1414 for (i = 0; i < num_stripes; i++) {
1415 struct btrfs_discard_stripe *stripe = stripes + i;
1416 u64 bytes;
1417
1418 if (!stripe->dev->bdev) {
1419 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1420 continue;
1421 }
1422
1423 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1424 &stripe->dev->dev_state))
1425 continue;
1426
1427 ret = do_discard_extent(stripe, &bytes);
1428 if (ret) {
1429 /*
1430 * Keep going if discard is not supported by the
1431 * device.
1432 */
1433 if (ret != -EOPNOTSUPP)
1434 break;
1435 ret = 0;
1436 } else {
1437 discarded_bytes += bytes;
1438 }
1439 }
1440 kfree(stripes);
1441 if (ret)
1442 break;
1443 cur += num_bytes;
1444 }
1445 btrfs_bio_counter_dec(fs_info);
1446 if (actual_bytes)
1447 *actual_bytes = discarded_bytes;
1448 return ret;
1449 }
1450
1451 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1452 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1453 struct btrfs_ref *generic_ref)
1454 {
1455 struct btrfs_fs_info *fs_info = trans->fs_info;
1456 int ret;
1457
1458 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1459 generic_ref->action);
1460 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1461 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1462
1463 if (generic_ref->type == BTRFS_REF_METADATA)
1464 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1465 else
1466 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1467
1468 btrfs_ref_tree_mod(fs_info, generic_ref);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * __btrfs_inc_extent_ref - insert backreference for a given extent
1475 *
1476 * The counterpart is in __btrfs_free_extent(), with examples and more details
1477 * how it works.
1478 *
1479 * @trans: Handle of transaction
1480 *
1481 * @node: The delayed ref node used to get the bytenr/length for
1482 * extent whose references are incremented.
1483 *
1484 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1485 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1486 * bytenr of the parent block. Since new extents are always
1487 * created with indirect references, this will only be the case
1488 * when relocating a shared extent. In that case, root_objectid
1489 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1490 * be 0
1491 *
1492 * @root_objectid: The id of the root where this modification has originated,
1493 * this can be either one of the well-known metadata trees or
1494 * the subvolume id which references this extent.
1495 *
1496 * @owner: For data extents it is the inode number of the owning file.
1497 * For metadata extents this parameter holds the level in the
1498 * tree of the extent.
1499 *
1500 * @offset: For metadata extents the offset is ignored and is currently
1501 * always passed as 0. For data extents it is the fileoffset
1502 * this extent belongs to.
1503 *
1504 * @refs_to_add Number of references to add
1505 *
1506 * @extent_op Pointer to a structure, holding information necessary when
1507 * updating a tree block's flags
1508 *
1509 */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1510 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1511 struct btrfs_delayed_ref_node *node,
1512 u64 parent, u64 root_objectid,
1513 u64 owner, u64 offset, int refs_to_add,
1514 struct btrfs_delayed_extent_op *extent_op)
1515 {
1516 struct btrfs_path *path;
1517 struct extent_buffer *leaf;
1518 struct btrfs_extent_item *item;
1519 struct btrfs_key key;
1520 u64 bytenr = node->bytenr;
1521 u64 num_bytes = node->num_bytes;
1522 u64 refs;
1523 int ret;
1524
1525 path = btrfs_alloc_path();
1526 if (!path)
1527 return -ENOMEM;
1528
1529 /* this will setup the path even if it fails to insert the back ref */
1530 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1531 parent, root_objectid, owner,
1532 offset, refs_to_add, extent_op);
1533 if ((ret < 0 && ret != -EAGAIN) || !ret)
1534 goto out;
1535
1536 /*
1537 * Ok we had -EAGAIN which means we didn't have space to insert and
1538 * inline extent ref, so just update the reference count and add a
1539 * normal backref.
1540 */
1541 leaf = path->nodes[0];
1542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1543 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1544 refs = btrfs_extent_refs(leaf, item);
1545 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1546 if (extent_op)
1547 __run_delayed_extent_op(extent_op, leaf, item);
1548
1549 btrfs_mark_buffer_dirty(trans, leaf);
1550 btrfs_release_path(path);
1551
1552 /* now insert the actual backref */
1553 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1554 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1555 root_objectid);
1556 else
1557 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1558 root_objectid, owner, offset,
1559 refs_to_add);
1560
1561 if (ret)
1562 btrfs_abort_transaction(trans, ret);
1563 out:
1564 btrfs_free_path(path);
1565 return ret;
1566 }
1567
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1568 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1569 struct btrfs_delayed_ref_node *node,
1570 struct btrfs_delayed_extent_op *extent_op,
1571 bool insert_reserved)
1572 {
1573 int ret = 0;
1574 struct btrfs_delayed_data_ref *ref;
1575 struct btrfs_key ins;
1576 u64 parent = 0;
1577 u64 ref_root = 0;
1578 u64 flags = 0;
1579
1580 ins.objectid = node->bytenr;
1581 ins.offset = node->num_bytes;
1582 ins.type = BTRFS_EXTENT_ITEM_KEY;
1583
1584 ref = btrfs_delayed_node_to_data_ref(node);
1585 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1586
1587 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1588 parent = ref->parent;
1589 ref_root = ref->root;
1590
1591 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1592 if (extent_op)
1593 flags |= extent_op->flags_to_set;
1594 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1595 flags, ref->objectid,
1596 ref->offset, &ins,
1597 node->ref_mod);
1598 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1599 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1600 ref->objectid, ref->offset,
1601 node->ref_mod, extent_op);
1602 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1603 ret = __btrfs_free_extent(trans, node, parent,
1604 ref_root, ref->objectid,
1605 ref->offset, node->ref_mod,
1606 extent_op);
1607 } else {
1608 BUG();
1609 }
1610 return ret;
1611 }
1612
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1613 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1614 struct extent_buffer *leaf,
1615 struct btrfs_extent_item *ei)
1616 {
1617 u64 flags = btrfs_extent_flags(leaf, ei);
1618 if (extent_op->update_flags) {
1619 flags |= extent_op->flags_to_set;
1620 btrfs_set_extent_flags(leaf, ei, flags);
1621 }
1622
1623 if (extent_op->update_key) {
1624 struct btrfs_tree_block_info *bi;
1625 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1626 bi = (struct btrfs_tree_block_info *)(ei + 1);
1627 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1628 }
1629 }
1630
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1631 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1632 struct btrfs_delayed_ref_head *head,
1633 struct btrfs_delayed_extent_op *extent_op)
1634 {
1635 struct btrfs_fs_info *fs_info = trans->fs_info;
1636 struct btrfs_root *root;
1637 struct btrfs_key key;
1638 struct btrfs_path *path;
1639 struct btrfs_extent_item *ei;
1640 struct extent_buffer *leaf;
1641 u32 item_size;
1642 int ret;
1643 int err = 0;
1644 int metadata = 1;
1645
1646 if (TRANS_ABORTED(trans))
1647 return 0;
1648
1649 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1650 metadata = 0;
1651
1652 path = btrfs_alloc_path();
1653 if (!path)
1654 return -ENOMEM;
1655
1656 key.objectid = head->bytenr;
1657
1658 if (metadata) {
1659 key.type = BTRFS_METADATA_ITEM_KEY;
1660 key.offset = extent_op->level;
1661 } else {
1662 key.type = BTRFS_EXTENT_ITEM_KEY;
1663 key.offset = head->num_bytes;
1664 }
1665
1666 root = btrfs_extent_root(fs_info, key.objectid);
1667 again:
1668 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1669 if (ret < 0) {
1670 err = ret;
1671 goto out;
1672 }
1673 if (ret > 0) {
1674 if (metadata) {
1675 if (path->slots[0] > 0) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == head->bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == head->num_bytes)
1682 ret = 0;
1683 }
1684 if (ret > 0) {
1685 btrfs_release_path(path);
1686 metadata = 0;
1687
1688 key.objectid = head->bytenr;
1689 key.offset = head->num_bytes;
1690 key.type = BTRFS_EXTENT_ITEM_KEY;
1691 goto again;
1692 }
1693 } else {
1694 err = -EUCLEAN;
1695 btrfs_err(fs_info,
1696 "missing extent item for extent %llu num_bytes %llu level %d",
1697 head->bytenr, head->num_bytes, extent_op->level);
1698 goto out;
1699 }
1700 }
1701
1702 leaf = path->nodes[0];
1703 item_size = btrfs_item_size(leaf, path->slots[0]);
1704
1705 if (unlikely(item_size < sizeof(*ei))) {
1706 err = -EUCLEAN;
1707 btrfs_err(fs_info,
1708 "unexpected extent item size, has %u expect >= %zu",
1709 item_size, sizeof(*ei));
1710 btrfs_abort_transaction(trans, err);
1711 goto out;
1712 }
1713
1714 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1715 __run_delayed_extent_op(extent_op, leaf, ei);
1716
1717 btrfs_mark_buffer_dirty(trans, leaf);
1718 out:
1719 btrfs_free_path(path);
1720 return err;
1721 }
1722
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1723 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1724 struct btrfs_delayed_ref_node *node,
1725 struct btrfs_delayed_extent_op *extent_op,
1726 bool insert_reserved)
1727 {
1728 int ret = 0;
1729 struct btrfs_delayed_tree_ref *ref;
1730 u64 parent = 0;
1731 u64 ref_root = 0;
1732
1733 ref = btrfs_delayed_node_to_tree_ref(node);
1734 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1735
1736 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1737 parent = ref->parent;
1738 ref_root = ref->root;
1739
1740 if (unlikely(node->ref_mod != 1)) {
1741 btrfs_err(trans->fs_info,
1742 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1743 node->bytenr, node->ref_mod, node->action, ref_root,
1744 parent);
1745 return -EUCLEAN;
1746 }
1747 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1748 BUG_ON(!extent_op || !extent_op->update_flags);
1749 ret = alloc_reserved_tree_block(trans, node, extent_op);
1750 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1751 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1752 ref->level, 0, 1, extent_op);
1753 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1754 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1755 ref->level, 0, 1, extent_op);
1756 } else {
1757 BUG();
1758 }
1759 return ret;
1760 }
1761
1762 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1763 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1764 struct btrfs_delayed_ref_node *node,
1765 struct btrfs_delayed_extent_op *extent_op,
1766 bool insert_reserved)
1767 {
1768 int ret = 0;
1769
1770 if (TRANS_ABORTED(trans)) {
1771 if (insert_reserved)
1772 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1773 return 0;
1774 }
1775
1776 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1777 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1778 ret = run_delayed_tree_ref(trans, node, extent_op,
1779 insert_reserved);
1780 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1781 node->type == BTRFS_SHARED_DATA_REF_KEY)
1782 ret = run_delayed_data_ref(trans, node, extent_op,
1783 insert_reserved);
1784 else
1785 BUG();
1786 if (ret && insert_reserved)
1787 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1788 if (ret < 0)
1789 btrfs_err(trans->fs_info,
1790 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1791 node->bytenr, node->num_bytes, node->type,
1792 node->action, node->ref_mod, ret);
1793 return ret;
1794 }
1795
1796 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1797 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1798 {
1799 struct btrfs_delayed_ref_node *ref;
1800
1801 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1802 return NULL;
1803
1804 /*
1805 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1806 * This is to prevent a ref count from going down to zero, which deletes
1807 * the extent item from the extent tree, when there still are references
1808 * to add, which would fail because they would not find the extent item.
1809 */
1810 if (!list_empty(&head->ref_add_list))
1811 return list_first_entry(&head->ref_add_list,
1812 struct btrfs_delayed_ref_node, add_list);
1813
1814 ref = rb_entry(rb_first_cached(&head->ref_tree),
1815 struct btrfs_delayed_ref_node, ref_node);
1816 ASSERT(list_empty(&ref->add_list));
1817 return ref;
1818 }
1819
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1820 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1821 struct btrfs_delayed_ref_head *head)
1822 {
1823 spin_lock(&delayed_refs->lock);
1824 head->processing = false;
1825 delayed_refs->num_heads_ready++;
1826 spin_unlock(&delayed_refs->lock);
1827 btrfs_delayed_ref_unlock(head);
1828 }
1829
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1830 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1831 struct btrfs_delayed_ref_head *head)
1832 {
1833 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1834
1835 if (!extent_op)
1836 return NULL;
1837
1838 if (head->must_insert_reserved) {
1839 head->extent_op = NULL;
1840 btrfs_free_delayed_extent_op(extent_op);
1841 return NULL;
1842 }
1843 return extent_op;
1844 }
1845
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1846 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1847 struct btrfs_delayed_ref_head *head)
1848 {
1849 struct btrfs_delayed_extent_op *extent_op;
1850 int ret;
1851
1852 extent_op = cleanup_extent_op(head);
1853 if (!extent_op)
1854 return 0;
1855 head->extent_op = NULL;
1856 spin_unlock(&head->lock);
1857 ret = run_delayed_extent_op(trans, head, extent_op);
1858 btrfs_free_delayed_extent_op(extent_op);
1859 return ret ? ret : 1;
1860 }
1861
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1862 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1863 struct btrfs_delayed_ref_root *delayed_refs,
1864 struct btrfs_delayed_ref_head *head)
1865 {
1866 int nr_items = 1; /* Dropping this ref head update. */
1867
1868 /*
1869 * We had csum deletions accounted for in our delayed refs rsv, we need
1870 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871 */
1872 if (head->total_ref_mod < 0 && head->is_data) {
1873 spin_lock(&delayed_refs->lock);
1874 delayed_refs->pending_csums -= head->num_bytes;
1875 spin_unlock(&delayed_refs->lock);
1876 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1877 }
1878
1879 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1880 }
1881
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1882 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1883 struct btrfs_delayed_ref_head *head)
1884 {
1885
1886 struct btrfs_fs_info *fs_info = trans->fs_info;
1887 struct btrfs_delayed_ref_root *delayed_refs;
1888 int ret;
1889
1890 delayed_refs = &trans->transaction->delayed_refs;
1891
1892 ret = run_and_cleanup_extent_op(trans, head);
1893 if (ret < 0) {
1894 unselect_delayed_ref_head(delayed_refs, head);
1895 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1896 return ret;
1897 } else if (ret) {
1898 return ret;
1899 }
1900
1901 /*
1902 * Need to drop our head ref lock and re-acquire the delayed ref lock
1903 * and then re-check to make sure nobody got added.
1904 */
1905 spin_unlock(&head->lock);
1906 spin_lock(&delayed_refs->lock);
1907 spin_lock(&head->lock);
1908 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1909 spin_unlock(&head->lock);
1910 spin_unlock(&delayed_refs->lock);
1911 return 1;
1912 }
1913 btrfs_delete_ref_head(delayed_refs, head);
1914 spin_unlock(&head->lock);
1915 spin_unlock(&delayed_refs->lock);
1916
1917 if (head->must_insert_reserved) {
1918 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1919 if (head->is_data) {
1920 struct btrfs_root *csum_root;
1921
1922 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1923 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1924 head->num_bytes);
1925 }
1926 }
1927
1928 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1929
1930 trace_run_delayed_ref_head(fs_info, head, 0);
1931 btrfs_delayed_ref_unlock(head);
1932 btrfs_put_delayed_ref_head(head);
1933 return ret;
1934 }
1935
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1936 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1937 struct btrfs_trans_handle *trans)
1938 {
1939 struct btrfs_delayed_ref_root *delayed_refs =
1940 &trans->transaction->delayed_refs;
1941 struct btrfs_delayed_ref_head *head = NULL;
1942 int ret;
1943
1944 spin_lock(&delayed_refs->lock);
1945 head = btrfs_select_ref_head(delayed_refs);
1946 if (!head) {
1947 spin_unlock(&delayed_refs->lock);
1948 return head;
1949 }
1950
1951 /*
1952 * Grab the lock that says we are going to process all the refs for
1953 * this head
1954 */
1955 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1956 spin_unlock(&delayed_refs->lock);
1957
1958 /*
1959 * We may have dropped the spin lock to get the head mutex lock, and
1960 * that might have given someone else time to free the head. If that's
1961 * true, it has been removed from our list and we can move on.
1962 */
1963 if (ret == -EAGAIN)
1964 head = ERR_PTR(-EAGAIN);
1965
1966 return head;
1967 }
1968
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref)1969 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1970 struct btrfs_delayed_ref_head *locked_ref)
1971 {
1972 struct btrfs_fs_info *fs_info = trans->fs_info;
1973 struct btrfs_delayed_ref_root *delayed_refs;
1974 struct btrfs_delayed_extent_op *extent_op;
1975 struct btrfs_delayed_ref_node *ref;
1976 bool must_insert_reserved;
1977 int ret;
1978
1979 delayed_refs = &trans->transaction->delayed_refs;
1980
1981 lockdep_assert_held(&locked_ref->mutex);
1982 lockdep_assert_held(&locked_ref->lock);
1983
1984 while ((ref = select_delayed_ref(locked_ref))) {
1985 if (ref->seq &&
1986 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1987 spin_unlock(&locked_ref->lock);
1988 unselect_delayed_ref_head(delayed_refs, locked_ref);
1989 return -EAGAIN;
1990 }
1991
1992 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1993 RB_CLEAR_NODE(&ref->ref_node);
1994 if (!list_empty(&ref->add_list))
1995 list_del(&ref->add_list);
1996 /*
1997 * When we play the delayed ref, also correct the ref_mod on
1998 * head
1999 */
2000 switch (ref->action) {
2001 case BTRFS_ADD_DELAYED_REF:
2002 case BTRFS_ADD_DELAYED_EXTENT:
2003 locked_ref->ref_mod -= ref->ref_mod;
2004 break;
2005 case BTRFS_DROP_DELAYED_REF:
2006 locked_ref->ref_mod += ref->ref_mod;
2007 break;
2008 default:
2009 WARN_ON(1);
2010 }
2011 atomic_dec(&delayed_refs->num_entries);
2012
2013 /*
2014 * Record the must_insert_reserved flag before we drop the
2015 * spin lock.
2016 */
2017 must_insert_reserved = locked_ref->must_insert_reserved;
2018 locked_ref->must_insert_reserved = false;
2019
2020 extent_op = locked_ref->extent_op;
2021 locked_ref->extent_op = NULL;
2022 spin_unlock(&locked_ref->lock);
2023
2024 ret = run_one_delayed_ref(trans, ref, extent_op,
2025 must_insert_reserved);
2026
2027 btrfs_free_delayed_extent_op(extent_op);
2028 if (ret) {
2029 unselect_delayed_ref_head(delayed_refs, locked_ref);
2030 btrfs_put_delayed_ref(ref);
2031 return ret;
2032 }
2033
2034 btrfs_put_delayed_ref(ref);
2035 cond_resched();
2036
2037 spin_lock(&locked_ref->lock);
2038 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2039 }
2040
2041 return 0;
2042 }
2043
2044 /*
2045 * Returns 0 on success or if called with an already aborted transaction.
2046 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2047 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2048 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2049 unsigned long nr)
2050 {
2051 struct btrfs_fs_info *fs_info = trans->fs_info;
2052 struct btrfs_delayed_ref_root *delayed_refs;
2053 struct btrfs_delayed_ref_head *locked_ref = NULL;
2054 int ret;
2055 unsigned long count = 0;
2056
2057 delayed_refs = &trans->transaction->delayed_refs;
2058 do {
2059 if (!locked_ref) {
2060 locked_ref = btrfs_obtain_ref_head(trans);
2061 if (IS_ERR_OR_NULL(locked_ref)) {
2062 if (PTR_ERR(locked_ref) == -EAGAIN) {
2063 continue;
2064 } else {
2065 break;
2066 }
2067 }
2068 count++;
2069 }
2070 /*
2071 * We need to try and merge add/drops of the same ref since we
2072 * can run into issues with relocate dropping the implicit ref
2073 * and then it being added back again before the drop can
2074 * finish. If we merged anything we need to re-loop so we can
2075 * get a good ref.
2076 * Or we can get node references of the same type that weren't
2077 * merged when created due to bumps in the tree mod seq, and
2078 * we need to merge them to prevent adding an inline extent
2079 * backref before dropping it (triggering a BUG_ON at
2080 * insert_inline_extent_backref()).
2081 */
2082 spin_lock(&locked_ref->lock);
2083 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2084
2085 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2086 if (ret < 0 && ret != -EAGAIN) {
2087 /*
2088 * Error, btrfs_run_delayed_refs_for_head already
2089 * unlocked everything so just bail out
2090 */
2091 return ret;
2092 } else if (!ret) {
2093 /*
2094 * Success, perform the usual cleanup of a processed
2095 * head
2096 */
2097 ret = cleanup_ref_head(trans, locked_ref);
2098 if (ret > 0 ) {
2099 /* We dropped our lock, we need to loop. */
2100 ret = 0;
2101 continue;
2102 } else if (ret) {
2103 return ret;
2104 }
2105 }
2106
2107 /*
2108 * Either success case or btrfs_run_delayed_refs_for_head
2109 * returned -EAGAIN, meaning we need to select another head
2110 */
2111
2112 locked_ref = NULL;
2113 cond_resched();
2114 } while ((nr != -1 && count < nr) || locked_ref);
2115
2116 return 0;
2117 }
2118
2119 #ifdef SCRAMBLE_DELAYED_REFS
2120 /*
2121 * Normally delayed refs get processed in ascending bytenr order. This
2122 * correlates in most cases to the order added. To expose dependencies on this
2123 * order, we start to process the tree in the middle instead of the beginning
2124 */
find_middle(struct rb_root * root)2125 static u64 find_middle(struct rb_root *root)
2126 {
2127 struct rb_node *n = root->rb_node;
2128 struct btrfs_delayed_ref_node *entry;
2129 int alt = 1;
2130 u64 middle;
2131 u64 first = 0, last = 0;
2132
2133 n = rb_first(root);
2134 if (n) {
2135 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2136 first = entry->bytenr;
2137 }
2138 n = rb_last(root);
2139 if (n) {
2140 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2141 last = entry->bytenr;
2142 }
2143 n = root->rb_node;
2144
2145 while (n) {
2146 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2147 WARN_ON(!entry->in_tree);
2148
2149 middle = entry->bytenr;
2150
2151 if (alt)
2152 n = n->rb_left;
2153 else
2154 n = n->rb_right;
2155
2156 alt = 1 - alt;
2157 }
2158 return middle;
2159 }
2160 #endif
2161
2162 /*
2163 * this starts processing the delayed reference count updates and
2164 * extent insertions we have queued up so far. count can be
2165 * 0, which means to process everything in the tree at the start
2166 * of the run (but not newly added entries), or it can be some target
2167 * number you'd like to process.
2168 *
2169 * Returns 0 on success or if called with an aborted transaction
2170 * Returns <0 on error and aborts the transaction
2171 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2172 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2173 unsigned long count)
2174 {
2175 struct btrfs_fs_info *fs_info = trans->fs_info;
2176 struct rb_node *node;
2177 struct btrfs_delayed_ref_root *delayed_refs;
2178 struct btrfs_delayed_ref_head *head;
2179 int ret;
2180 int run_all = count == (unsigned long)-1;
2181
2182 /* We'll clean this up in btrfs_cleanup_transaction */
2183 if (TRANS_ABORTED(trans))
2184 return 0;
2185
2186 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2187 return 0;
2188
2189 delayed_refs = &trans->transaction->delayed_refs;
2190 if (count == 0)
2191 count = delayed_refs->num_heads_ready;
2192
2193 again:
2194 #ifdef SCRAMBLE_DELAYED_REFS
2195 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2196 #endif
2197 ret = __btrfs_run_delayed_refs(trans, count);
2198 if (ret < 0) {
2199 btrfs_abort_transaction(trans, ret);
2200 return ret;
2201 }
2202
2203 if (run_all) {
2204 btrfs_create_pending_block_groups(trans);
2205
2206 spin_lock(&delayed_refs->lock);
2207 node = rb_first_cached(&delayed_refs->href_root);
2208 if (!node) {
2209 spin_unlock(&delayed_refs->lock);
2210 goto out;
2211 }
2212 head = rb_entry(node, struct btrfs_delayed_ref_head,
2213 href_node);
2214 refcount_inc(&head->refs);
2215 spin_unlock(&delayed_refs->lock);
2216
2217 /* Mutex was contended, block until it's released and retry. */
2218 mutex_lock(&head->mutex);
2219 mutex_unlock(&head->mutex);
2220
2221 btrfs_put_delayed_ref_head(head);
2222 cond_resched();
2223 goto again;
2224 }
2225 out:
2226 return 0;
2227 }
2228
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2229 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2230 struct extent_buffer *eb, u64 flags)
2231 {
2232 struct btrfs_delayed_extent_op *extent_op;
2233 int level = btrfs_header_level(eb);
2234 int ret;
2235
2236 extent_op = btrfs_alloc_delayed_extent_op();
2237 if (!extent_op)
2238 return -ENOMEM;
2239
2240 extent_op->flags_to_set = flags;
2241 extent_op->update_flags = true;
2242 extent_op->update_key = false;
2243 extent_op->level = level;
2244
2245 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2246 if (ret)
2247 btrfs_free_delayed_extent_op(extent_op);
2248 return ret;
2249 }
2250
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2251 static noinline int check_delayed_ref(struct btrfs_root *root,
2252 struct btrfs_path *path,
2253 u64 objectid, u64 offset, u64 bytenr)
2254 {
2255 struct btrfs_delayed_ref_head *head;
2256 struct btrfs_delayed_ref_node *ref;
2257 struct btrfs_delayed_data_ref *data_ref;
2258 struct btrfs_delayed_ref_root *delayed_refs;
2259 struct btrfs_transaction *cur_trans;
2260 struct rb_node *node;
2261 int ret = 0;
2262
2263 spin_lock(&root->fs_info->trans_lock);
2264 cur_trans = root->fs_info->running_transaction;
2265 if (cur_trans)
2266 refcount_inc(&cur_trans->use_count);
2267 spin_unlock(&root->fs_info->trans_lock);
2268 if (!cur_trans)
2269 return 0;
2270
2271 delayed_refs = &cur_trans->delayed_refs;
2272 spin_lock(&delayed_refs->lock);
2273 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2274 if (!head) {
2275 spin_unlock(&delayed_refs->lock);
2276 btrfs_put_transaction(cur_trans);
2277 return 0;
2278 }
2279
2280 if (!mutex_trylock(&head->mutex)) {
2281 if (path->nowait) {
2282 spin_unlock(&delayed_refs->lock);
2283 btrfs_put_transaction(cur_trans);
2284 return -EAGAIN;
2285 }
2286
2287 refcount_inc(&head->refs);
2288 spin_unlock(&delayed_refs->lock);
2289
2290 btrfs_release_path(path);
2291
2292 /*
2293 * Mutex was contended, block until it's released and let
2294 * caller try again
2295 */
2296 mutex_lock(&head->mutex);
2297 mutex_unlock(&head->mutex);
2298 btrfs_put_delayed_ref_head(head);
2299 btrfs_put_transaction(cur_trans);
2300 return -EAGAIN;
2301 }
2302 spin_unlock(&delayed_refs->lock);
2303
2304 spin_lock(&head->lock);
2305 /*
2306 * XXX: We should replace this with a proper search function in the
2307 * future.
2308 */
2309 for (node = rb_first_cached(&head->ref_tree); node;
2310 node = rb_next(node)) {
2311 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2312 /* If it's a shared ref we know a cross reference exists */
2313 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2314 ret = 1;
2315 break;
2316 }
2317
2318 data_ref = btrfs_delayed_node_to_data_ref(ref);
2319
2320 /*
2321 * If our ref doesn't match the one we're currently looking at
2322 * then we have a cross reference.
2323 */
2324 if (data_ref->root != root->root_key.objectid ||
2325 data_ref->objectid != objectid ||
2326 data_ref->offset != offset) {
2327 ret = 1;
2328 break;
2329 }
2330 }
2331 spin_unlock(&head->lock);
2332 mutex_unlock(&head->mutex);
2333 btrfs_put_transaction(cur_trans);
2334 return ret;
2335 }
2336
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2337 static noinline int check_committed_ref(struct btrfs_root *root,
2338 struct btrfs_path *path,
2339 u64 objectid, u64 offset, u64 bytenr,
2340 bool strict)
2341 {
2342 struct btrfs_fs_info *fs_info = root->fs_info;
2343 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2344 struct extent_buffer *leaf;
2345 struct btrfs_extent_data_ref *ref;
2346 struct btrfs_extent_inline_ref *iref;
2347 struct btrfs_extent_item *ei;
2348 struct btrfs_key key;
2349 u32 item_size;
2350 int type;
2351 int ret;
2352
2353 key.objectid = bytenr;
2354 key.offset = (u64)-1;
2355 key.type = BTRFS_EXTENT_ITEM_KEY;
2356
2357 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2358 if (ret < 0)
2359 goto out;
2360 BUG_ON(ret == 0); /* Corruption */
2361
2362 ret = -ENOENT;
2363 if (path->slots[0] == 0)
2364 goto out;
2365
2366 path->slots[0]--;
2367 leaf = path->nodes[0];
2368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2369
2370 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2371 goto out;
2372
2373 ret = 1;
2374 item_size = btrfs_item_size(leaf, path->slots[0]);
2375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2376
2377 /* If extent item has more than 1 inline ref then it's shared */
2378 if (item_size != sizeof(*ei) +
2379 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2380 goto out;
2381
2382 /*
2383 * If extent created before last snapshot => it's shared unless the
2384 * snapshot has been deleted. Use the heuristic if strict is false.
2385 */
2386 if (!strict &&
2387 (btrfs_extent_generation(leaf, ei) <=
2388 btrfs_root_last_snapshot(&root->root_item)))
2389 goto out;
2390
2391 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2392
2393 /* If this extent has SHARED_DATA_REF then it's shared */
2394 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2395 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2396 goto out;
2397
2398 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2399 if (btrfs_extent_refs(leaf, ei) !=
2400 btrfs_extent_data_ref_count(leaf, ref) ||
2401 btrfs_extent_data_ref_root(leaf, ref) !=
2402 root->root_key.objectid ||
2403 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2404 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2405 goto out;
2406
2407 ret = 0;
2408 out:
2409 return ret;
2410 }
2411
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2412 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2413 u64 bytenr, bool strict, struct btrfs_path *path)
2414 {
2415 int ret;
2416
2417 do {
2418 ret = check_committed_ref(root, path, objectid,
2419 offset, bytenr, strict);
2420 if (ret && ret != -ENOENT)
2421 goto out;
2422
2423 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2424 } while (ret == -EAGAIN && !path->nowait);
2425
2426 out:
2427 btrfs_release_path(path);
2428 if (btrfs_is_data_reloc_root(root))
2429 WARN_ON(ret > 0);
2430 return ret;
2431 }
2432
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2433 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2434 struct btrfs_root *root,
2435 struct extent_buffer *buf,
2436 int full_backref, int inc)
2437 {
2438 struct btrfs_fs_info *fs_info = root->fs_info;
2439 u64 bytenr;
2440 u64 num_bytes;
2441 u64 parent;
2442 u64 ref_root;
2443 u32 nritems;
2444 struct btrfs_key key;
2445 struct btrfs_file_extent_item *fi;
2446 struct btrfs_ref generic_ref = { 0 };
2447 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2448 int i;
2449 int action;
2450 int level;
2451 int ret = 0;
2452
2453 if (btrfs_is_testing(fs_info))
2454 return 0;
2455
2456 ref_root = btrfs_header_owner(buf);
2457 nritems = btrfs_header_nritems(buf);
2458 level = btrfs_header_level(buf);
2459
2460 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2461 return 0;
2462
2463 if (full_backref)
2464 parent = buf->start;
2465 else
2466 parent = 0;
2467 if (inc)
2468 action = BTRFS_ADD_DELAYED_REF;
2469 else
2470 action = BTRFS_DROP_DELAYED_REF;
2471
2472 for (i = 0; i < nritems; i++) {
2473 if (level == 0) {
2474 btrfs_item_key_to_cpu(buf, &key, i);
2475 if (key.type != BTRFS_EXTENT_DATA_KEY)
2476 continue;
2477 fi = btrfs_item_ptr(buf, i,
2478 struct btrfs_file_extent_item);
2479 if (btrfs_file_extent_type(buf, fi) ==
2480 BTRFS_FILE_EXTENT_INLINE)
2481 continue;
2482 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2483 if (bytenr == 0)
2484 continue;
2485
2486 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2487 key.offset -= btrfs_file_extent_offset(buf, fi);
2488 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2489 num_bytes, parent);
2490 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2491 key.offset, root->root_key.objectid,
2492 for_reloc);
2493 if (inc)
2494 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2495 else
2496 ret = btrfs_free_extent(trans, &generic_ref);
2497 if (ret)
2498 goto fail;
2499 } else {
2500 bytenr = btrfs_node_blockptr(buf, i);
2501 num_bytes = fs_info->nodesize;
2502 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2503 num_bytes, parent);
2504 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2505 root->root_key.objectid, for_reloc);
2506 if (inc)
2507 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2508 else
2509 ret = btrfs_free_extent(trans, &generic_ref);
2510 if (ret)
2511 goto fail;
2512 }
2513 }
2514 return 0;
2515 fail:
2516 return ret;
2517 }
2518
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2519 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2520 struct extent_buffer *buf, int full_backref)
2521 {
2522 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2523 }
2524
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2525 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2526 struct extent_buffer *buf, int full_backref)
2527 {
2528 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2529 }
2530
get_alloc_profile_by_root(struct btrfs_root * root,int data)2531 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2532 {
2533 struct btrfs_fs_info *fs_info = root->fs_info;
2534 u64 flags;
2535 u64 ret;
2536
2537 if (data)
2538 flags = BTRFS_BLOCK_GROUP_DATA;
2539 else if (root == fs_info->chunk_root)
2540 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2541 else
2542 flags = BTRFS_BLOCK_GROUP_METADATA;
2543
2544 ret = btrfs_get_alloc_profile(fs_info, flags);
2545 return ret;
2546 }
2547
first_logical_byte(struct btrfs_fs_info * fs_info)2548 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2549 {
2550 struct rb_node *leftmost;
2551 u64 bytenr = 0;
2552
2553 read_lock(&fs_info->block_group_cache_lock);
2554 /* Get the block group with the lowest logical start address. */
2555 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2556 if (leftmost) {
2557 struct btrfs_block_group *bg;
2558
2559 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2560 bytenr = bg->start;
2561 }
2562 read_unlock(&fs_info->block_group_cache_lock);
2563
2564 return bytenr;
2565 }
2566
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2567 static int pin_down_extent(struct btrfs_trans_handle *trans,
2568 struct btrfs_block_group *cache,
2569 u64 bytenr, u64 num_bytes, int reserved)
2570 {
2571 struct btrfs_fs_info *fs_info = cache->fs_info;
2572
2573 spin_lock(&cache->space_info->lock);
2574 spin_lock(&cache->lock);
2575 cache->pinned += num_bytes;
2576 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2577 num_bytes);
2578 if (reserved) {
2579 cache->reserved -= num_bytes;
2580 cache->space_info->bytes_reserved -= num_bytes;
2581 }
2582 spin_unlock(&cache->lock);
2583 spin_unlock(&cache->space_info->lock);
2584
2585 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2586 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2587 return 0;
2588 }
2589
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2590 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2591 u64 bytenr, u64 num_bytes, int reserved)
2592 {
2593 struct btrfs_block_group *cache;
2594
2595 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2596 BUG_ON(!cache); /* Logic error */
2597
2598 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2599
2600 btrfs_put_block_group(cache);
2601 return 0;
2602 }
2603
2604 /*
2605 * this function must be called within transaction
2606 */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2607 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2608 u64 bytenr, u64 num_bytes)
2609 {
2610 struct btrfs_block_group *cache;
2611 int ret;
2612
2613 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2614 if (!cache)
2615 return -EINVAL;
2616
2617 /*
2618 * Fully cache the free space first so that our pin removes the free space
2619 * from the cache.
2620 */
2621 ret = btrfs_cache_block_group(cache, true);
2622 if (ret)
2623 goto out;
2624
2625 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2626
2627 /* remove us from the free space cache (if we're there at all) */
2628 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2629 out:
2630 btrfs_put_block_group(cache);
2631 return ret;
2632 }
2633
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2634 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2635 u64 start, u64 num_bytes)
2636 {
2637 int ret;
2638 struct btrfs_block_group *block_group;
2639
2640 block_group = btrfs_lookup_block_group(fs_info, start);
2641 if (!block_group)
2642 return -EINVAL;
2643
2644 ret = btrfs_cache_block_group(block_group, true);
2645 if (ret)
2646 goto out;
2647
2648 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2649 out:
2650 btrfs_put_block_group(block_group);
2651 return ret;
2652 }
2653
btrfs_exclude_logged_extents(struct extent_buffer * eb)2654 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2655 {
2656 struct btrfs_fs_info *fs_info = eb->fs_info;
2657 struct btrfs_file_extent_item *item;
2658 struct btrfs_key key;
2659 int found_type;
2660 int i;
2661 int ret = 0;
2662
2663 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2664 return 0;
2665
2666 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2667 btrfs_item_key_to_cpu(eb, &key, i);
2668 if (key.type != BTRFS_EXTENT_DATA_KEY)
2669 continue;
2670 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2671 found_type = btrfs_file_extent_type(eb, item);
2672 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2673 continue;
2674 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2675 continue;
2676 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2677 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2678 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2679 if (ret)
2680 break;
2681 }
2682
2683 return ret;
2684 }
2685
2686 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2687 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2688 {
2689 atomic_inc(&bg->reservations);
2690 }
2691
2692 /*
2693 * Returns the free cluster for the given space info and sets empty_cluster to
2694 * what it should be based on the mount options.
2695 */
2696 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2697 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2698 struct btrfs_space_info *space_info, u64 *empty_cluster)
2699 {
2700 struct btrfs_free_cluster *ret = NULL;
2701
2702 *empty_cluster = 0;
2703 if (btrfs_mixed_space_info(space_info))
2704 return ret;
2705
2706 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2707 ret = &fs_info->meta_alloc_cluster;
2708 if (btrfs_test_opt(fs_info, SSD))
2709 *empty_cluster = SZ_2M;
2710 else
2711 *empty_cluster = SZ_64K;
2712 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2713 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2714 *empty_cluster = SZ_2M;
2715 ret = &fs_info->data_alloc_cluster;
2716 }
2717
2718 return ret;
2719 }
2720
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2721 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2722 u64 start, u64 end,
2723 const bool return_free_space)
2724 {
2725 struct btrfs_block_group *cache = NULL;
2726 struct btrfs_space_info *space_info;
2727 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2728 struct btrfs_free_cluster *cluster = NULL;
2729 u64 len;
2730 u64 total_unpinned = 0;
2731 u64 empty_cluster = 0;
2732 bool readonly;
2733
2734 while (start <= end) {
2735 readonly = false;
2736 if (!cache ||
2737 start >= cache->start + cache->length) {
2738 if (cache)
2739 btrfs_put_block_group(cache);
2740 total_unpinned = 0;
2741 cache = btrfs_lookup_block_group(fs_info, start);
2742 BUG_ON(!cache); /* Logic error */
2743
2744 cluster = fetch_cluster_info(fs_info,
2745 cache->space_info,
2746 &empty_cluster);
2747 empty_cluster <<= 1;
2748 }
2749
2750 len = cache->start + cache->length - start;
2751 len = min(len, end + 1 - start);
2752
2753 if (return_free_space)
2754 btrfs_add_free_space(cache, start, len);
2755
2756 start += len;
2757 total_unpinned += len;
2758 space_info = cache->space_info;
2759
2760 /*
2761 * If this space cluster has been marked as fragmented and we've
2762 * unpinned enough in this block group to potentially allow a
2763 * cluster to be created inside of it go ahead and clear the
2764 * fragmented check.
2765 */
2766 if (cluster && cluster->fragmented &&
2767 total_unpinned > empty_cluster) {
2768 spin_lock(&cluster->lock);
2769 cluster->fragmented = 0;
2770 spin_unlock(&cluster->lock);
2771 }
2772
2773 spin_lock(&space_info->lock);
2774 spin_lock(&cache->lock);
2775 cache->pinned -= len;
2776 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2777 space_info->max_extent_size = 0;
2778 if (cache->ro) {
2779 space_info->bytes_readonly += len;
2780 readonly = true;
2781 } else if (btrfs_is_zoned(fs_info)) {
2782 /* Need reset before reusing in a zoned block group */
2783 btrfs_space_info_update_bytes_zone_unusable(fs_info, space_info,
2784 len);
2785 readonly = true;
2786 }
2787 spin_unlock(&cache->lock);
2788 if (!readonly && return_free_space &&
2789 global_rsv->space_info == space_info) {
2790 spin_lock(&global_rsv->lock);
2791 if (!global_rsv->full) {
2792 u64 to_add = min(len, global_rsv->size -
2793 global_rsv->reserved);
2794
2795 global_rsv->reserved += to_add;
2796 btrfs_space_info_update_bytes_may_use(fs_info,
2797 space_info, to_add);
2798 if (global_rsv->reserved >= global_rsv->size)
2799 global_rsv->full = 1;
2800 len -= to_add;
2801 }
2802 spin_unlock(&global_rsv->lock);
2803 }
2804 /* Add to any tickets we may have */
2805 if (!readonly && return_free_space && len)
2806 btrfs_try_granting_tickets(fs_info, space_info);
2807 spin_unlock(&space_info->lock);
2808 }
2809
2810 if (cache)
2811 btrfs_put_block_group(cache);
2812 return 0;
2813 }
2814
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2815 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2816 {
2817 struct btrfs_fs_info *fs_info = trans->fs_info;
2818 struct btrfs_block_group *block_group, *tmp;
2819 struct list_head *deleted_bgs;
2820 struct extent_io_tree *unpin;
2821 u64 start;
2822 u64 end;
2823 int ret;
2824
2825 unpin = &trans->transaction->pinned_extents;
2826
2827 while (!TRANS_ABORTED(trans)) {
2828 struct extent_state *cached_state = NULL;
2829
2830 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2831 if (!find_first_extent_bit(unpin, 0, &start, &end,
2832 EXTENT_DIRTY, &cached_state)) {
2833 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2834 break;
2835 }
2836
2837 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2838 ret = btrfs_discard_extent(fs_info, start,
2839 end + 1 - start, NULL);
2840
2841 clear_extent_dirty(unpin, start, end, &cached_state);
2842 unpin_extent_range(fs_info, start, end, true);
2843 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2844 free_extent_state(cached_state);
2845 cond_resched();
2846 }
2847
2848 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2849 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2850 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2851 }
2852
2853 /*
2854 * Transaction is finished. We don't need the lock anymore. We
2855 * do need to clean up the block groups in case of a transaction
2856 * abort.
2857 */
2858 deleted_bgs = &trans->transaction->deleted_bgs;
2859 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2860 u64 trimmed = 0;
2861
2862 ret = -EROFS;
2863 if (!TRANS_ABORTED(trans))
2864 ret = btrfs_discard_extent(fs_info,
2865 block_group->start,
2866 block_group->length,
2867 &trimmed);
2868
2869 list_del_init(&block_group->bg_list);
2870 btrfs_unfreeze_block_group(block_group);
2871 btrfs_put_block_group(block_group);
2872
2873 if (ret) {
2874 const char *errstr = btrfs_decode_error(ret);
2875 btrfs_warn(fs_info,
2876 "discard failed while removing blockgroup: errno=%d %s",
2877 ret, errstr);
2878 }
2879 }
2880
2881 return 0;
2882 }
2883
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2884 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2885 u64 bytenr, u64 num_bytes, bool is_data)
2886 {
2887 int ret;
2888
2889 if (is_data) {
2890 struct btrfs_root *csum_root;
2891
2892 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2893 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2894 if (ret) {
2895 btrfs_abort_transaction(trans, ret);
2896 return ret;
2897 }
2898 }
2899
2900 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2901 if (ret) {
2902 btrfs_abort_transaction(trans, ret);
2903 return ret;
2904 }
2905
2906 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2907 if (ret)
2908 btrfs_abort_transaction(trans, ret);
2909
2910 return ret;
2911 }
2912
2913 #define abort_and_dump(trans, path, fmt, args...) \
2914 ({ \
2915 btrfs_abort_transaction(trans, -EUCLEAN); \
2916 btrfs_print_leaf(path->nodes[0]); \
2917 btrfs_crit(trans->fs_info, fmt, ##args); \
2918 })
2919
2920 /*
2921 * Drop one or more refs of @node.
2922 *
2923 * 1. Locate the extent refs.
2924 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2925 * Locate it, then reduce the refs number or remove the ref line completely.
2926 *
2927 * 2. Update the refs count in EXTENT/METADATA_ITEM
2928 *
2929 * Inline backref case:
2930 *
2931 * in extent tree we have:
2932 *
2933 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2934 * refs 2 gen 6 flags DATA
2935 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2936 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2937 *
2938 * This function gets called with:
2939 *
2940 * node->bytenr = 13631488
2941 * node->num_bytes = 1048576
2942 * root_objectid = FS_TREE
2943 * owner_objectid = 257
2944 * owner_offset = 0
2945 * refs_to_drop = 1
2946 *
2947 * Then we should get some like:
2948 *
2949 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2950 * refs 1 gen 6 flags DATA
2951 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2952 *
2953 * Keyed backref case:
2954 *
2955 * in extent tree we have:
2956 *
2957 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2958 * refs 754 gen 6 flags DATA
2959 * [...]
2960 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2961 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2962 *
2963 * This function get called with:
2964 *
2965 * node->bytenr = 13631488
2966 * node->num_bytes = 1048576
2967 * root_objectid = FS_TREE
2968 * owner_objectid = 866
2969 * owner_offset = 0
2970 * refs_to_drop = 1
2971 *
2972 * Then we should get some like:
2973 *
2974 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2975 * refs 753 gen 6 flags DATA
2976 *
2977 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2978 */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2979 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2980 struct btrfs_delayed_ref_node *node, u64 parent,
2981 u64 root_objectid, u64 owner_objectid,
2982 u64 owner_offset, int refs_to_drop,
2983 struct btrfs_delayed_extent_op *extent_op)
2984 {
2985 struct btrfs_fs_info *info = trans->fs_info;
2986 struct btrfs_key key;
2987 struct btrfs_path *path;
2988 struct btrfs_root *extent_root;
2989 struct extent_buffer *leaf;
2990 struct btrfs_extent_item *ei;
2991 struct btrfs_extent_inline_ref *iref;
2992 int ret;
2993 int is_data;
2994 int extent_slot = 0;
2995 int found_extent = 0;
2996 int num_to_del = 1;
2997 u32 item_size;
2998 u64 refs;
2999 u64 bytenr = node->bytenr;
3000 u64 num_bytes = node->num_bytes;
3001 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3002
3003 extent_root = btrfs_extent_root(info, bytenr);
3004 ASSERT(extent_root);
3005
3006 path = btrfs_alloc_path();
3007 if (!path)
3008 return -ENOMEM;
3009
3010 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3011
3012 if (!is_data && refs_to_drop != 1) {
3013 btrfs_crit(info,
3014 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3015 node->bytenr, refs_to_drop);
3016 ret = -EINVAL;
3017 btrfs_abort_transaction(trans, ret);
3018 goto out;
3019 }
3020
3021 if (is_data)
3022 skinny_metadata = false;
3023
3024 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3025 parent, root_objectid, owner_objectid,
3026 owner_offset);
3027 if (ret == 0) {
3028 /*
3029 * Either the inline backref or the SHARED_DATA_REF/
3030 * SHARED_BLOCK_REF is found
3031 *
3032 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3033 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3034 */
3035 extent_slot = path->slots[0];
3036 while (extent_slot >= 0) {
3037 btrfs_item_key_to_cpu(path->nodes[0], &key,
3038 extent_slot);
3039 if (key.objectid != bytenr)
3040 break;
3041 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3042 key.offset == num_bytes) {
3043 found_extent = 1;
3044 break;
3045 }
3046 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3047 key.offset == owner_objectid) {
3048 found_extent = 1;
3049 break;
3050 }
3051
3052 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3053 if (path->slots[0] - extent_slot > 5)
3054 break;
3055 extent_slot--;
3056 }
3057
3058 if (!found_extent) {
3059 if (iref) {
3060 abort_and_dump(trans, path,
3061 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3062 path->slots[0]);
3063 ret = -EUCLEAN;
3064 goto out;
3065 }
3066 /* Must be SHARED_* item, remove the backref first */
3067 ret = remove_extent_backref(trans, extent_root, path,
3068 NULL, refs_to_drop, is_data);
3069 if (ret) {
3070 btrfs_abort_transaction(trans, ret);
3071 goto out;
3072 }
3073 btrfs_release_path(path);
3074
3075 /* Slow path to locate EXTENT/METADATA_ITEM */
3076 key.objectid = bytenr;
3077 key.type = BTRFS_EXTENT_ITEM_KEY;
3078 key.offset = num_bytes;
3079
3080 if (!is_data && skinny_metadata) {
3081 key.type = BTRFS_METADATA_ITEM_KEY;
3082 key.offset = owner_objectid;
3083 }
3084
3085 ret = btrfs_search_slot(trans, extent_root,
3086 &key, path, -1, 1);
3087 if (ret > 0 && skinny_metadata && path->slots[0]) {
3088 /*
3089 * Couldn't find our skinny metadata item,
3090 * see if we have ye olde extent item.
3091 */
3092 path->slots[0]--;
3093 btrfs_item_key_to_cpu(path->nodes[0], &key,
3094 path->slots[0]);
3095 if (key.objectid == bytenr &&
3096 key.type == BTRFS_EXTENT_ITEM_KEY &&
3097 key.offset == num_bytes)
3098 ret = 0;
3099 }
3100
3101 if (ret > 0 && skinny_metadata) {
3102 skinny_metadata = false;
3103 key.objectid = bytenr;
3104 key.type = BTRFS_EXTENT_ITEM_KEY;
3105 key.offset = num_bytes;
3106 btrfs_release_path(path);
3107 ret = btrfs_search_slot(trans, extent_root,
3108 &key, path, -1, 1);
3109 }
3110
3111 if (ret) {
3112 if (ret > 0)
3113 btrfs_print_leaf(path->nodes[0]);
3114 btrfs_err(info,
3115 "umm, got %d back from search, was looking for %llu, slot %d",
3116 ret, bytenr, path->slots[0]);
3117 }
3118 if (ret < 0) {
3119 btrfs_abort_transaction(trans, ret);
3120 goto out;
3121 }
3122 extent_slot = path->slots[0];
3123 }
3124 } else if (WARN_ON(ret == -ENOENT)) {
3125 abort_and_dump(trans, path,
3126 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3127 bytenr, parent, root_objectid, owner_objectid,
3128 owner_offset, path->slots[0]);
3129 goto out;
3130 } else {
3131 btrfs_abort_transaction(trans, ret);
3132 goto out;
3133 }
3134
3135 leaf = path->nodes[0];
3136 item_size = btrfs_item_size(leaf, extent_slot);
3137 if (unlikely(item_size < sizeof(*ei))) {
3138 ret = -EUCLEAN;
3139 btrfs_err(trans->fs_info,
3140 "unexpected extent item size, has %u expect >= %zu",
3141 item_size, sizeof(*ei));
3142 btrfs_abort_transaction(trans, ret);
3143 goto out;
3144 }
3145 ei = btrfs_item_ptr(leaf, extent_slot,
3146 struct btrfs_extent_item);
3147 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3148 key.type == BTRFS_EXTENT_ITEM_KEY) {
3149 struct btrfs_tree_block_info *bi;
3150
3151 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3152 abort_and_dump(trans, path,
3153 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3154 key.objectid, key.type, key.offset,
3155 path->slots[0], owner_objectid, item_size,
3156 sizeof(*ei) + sizeof(*bi));
3157 ret = -EUCLEAN;
3158 goto out;
3159 }
3160 bi = (struct btrfs_tree_block_info *)(ei + 1);
3161 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3162 }
3163
3164 refs = btrfs_extent_refs(leaf, ei);
3165 if (refs < refs_to_drop) {
3166 abort_and_dump(trans, path,
3167 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3168 refs_to_drop, refs, bytenr, path->slots[0]);
3169 ret = -EUCLEAN;
3170 goto out;
3171 }
3172 refs -= refs_to_drop;
3173
3174 if (refs > 0) {
3175 if (extent_op)
3176 __run_delayed_extent_op(extent_op, leaf, ei);
3177 /*
3178 * In the case of inline back ref, reference count will
3179 * be updated by remove_extent_backref
3180 */
3181 if (iref) {
3182 if (!found_extent) {
3183 abort_and_dump(trans, path,
3184 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3185 path->slots[0]);
3186 ret = -EUCLEAN;
3187 goto out;
3188 }
3189 } else {
3190 btrfs_set_extent_refs(leaf, ei, refs);
3191 btrfs_mark_buffer_dirty(trans, leaf);
3192 }
3193 if (found_extent) {
3194 ret = remove_extent_backref(trans, extent_root, path,
3195 iref, refs_to_drop, is_data);
3196 if (ret) {
3197 btrfs_abort_transaction(trans, ret);
3198 goto out;
3199 }
3200 }
3201 } else {
3202 /* In this branch refs == 1 */
3203 if (found_extent) {
3204 if (is_data && refs_to_drop !=
3205 extent_data_ref_count(path, iref)) {
3206 abort_and_dump(trans, path,
3207 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3208 extent_data_ref_count(path, iref),
3209 refs_to_drop, path->slots[0]);
3210 ret = -EUCLEAN;
3211 goto out;
3212 }
3213 if (iref) {
3214 if (path->slots[0] != extent_slot) {
3215 abort_and_dump(trans, path,
3216 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3217 key.objectid, key.type,
3218 key.offset, path->slots[0]);
3219 ret = -EUCLEAN;
3220 goto out;
3221 }
3222 } else {
3223 /*
3224 * No inline ref, we must be at SHARED_* item,
3225 * And it's single ref, it must be:
3226 * | extent_slot ||extent_slot + 1|
3227 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3228 */
3229 if (path->slots[0] != extent_slot + 1) {
3230 abort_and_dump(trans, path,
3231 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3232 path->slots[0]);
3233 ret = -EUCLEAN;
3234 goto out;
3235 }
3236 path->slots[0] = extent_slot;
3237 num_to_del = 2;
3238 }
3239 }
3240
3241 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3242 num_to_del);
3243 if (ret) {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247 btrfs_release_path(path);
3248
3249 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3250 }
3251 btrfs_release_path(path);
3252
3253 out:
3254 btrfs_free_path(path);
3255 return ret;
3256 }
3257
3258 /*
3259 * when we free an block, it is possible (and likely) that we free the last
3260 * delayed ref for that extent as well. This searches the delayed ref tree for
3261 * a given extent, and if there are no other delayed refs to be processed, it
3262 * removes it from the tree.
3263 */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3264 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3265 u64 bytenr)
3266 {
3267 struct btrfs_delayed_ref_head *head;
3268 struct btrfs_delayed_ref_root *delayed_refs;
3269 int ret = 0;
3270
3271 delayed_refs = &trans->transaction->delayed_refs;
3272 spin_lock(&delayed_refs->lock);
3273 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3274 if (!head)
3275 goto out_delayed_unlock;
3276
3277 spin_lock(&head->lock);
3278 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3279 goto out;
3280
3281 if (cleanup_extent_op(head) != NULL)
3282 goto out;
3283
3284 /*
3285 * waiting for the lock here would deadlock. If someone else has it
3286 * locked they are already in the process of dropping it anyway
3287 */
3288 if (!mutex_trylock(&head->mutex))
3289 goto out;
3290
3291 btrfs_delete_ref_head(delayed_refs, head);
3292 head->processing = false;
3293
3294 spin_unlock(&head->lock);
3295 spin_unlock(&delayed_refs->lock);
3296
3297 BUG_ON(head->extent_op);
3298 if (head->must_insert_reserved)
3299 ret = 1;
3300
3301 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3302 mutex_unlock(&head->mutex);
3303 btrfs_put_delayed_ref_head(head);
3304 return ret;
3305 out:
3306 spin_unlock(&head->lock);
3307
3308 out_delayed_unlock:
3309 spin_unlock(&delayed_refs->lock);
3310 return 0;
3311 }
3312
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3313 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3314 u64 root_id,
3315 struct extent_buffer *buf,
3316 u64 parent, int last_ref)
3317 {
3318 struct btrfs_fs_info *fs_info = trans->fs_info;
3319 struct btrfs_ref generic_ref = { 0 };
3320 int ret;
3321
3322 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3323 buf->start, buf->len, parent);
3324 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3325 root_id, 0, false);
3326
3327 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3328 btrfs_ref_tree_mod(fs_info, &generic_ref);
3329 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3330 if (ret < 0)
3331 return ret;
3332 }
3333
3334 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3335 struct btrfs_block_group *cache;
3336 bool must_pin = false;
3337
3338 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3339 ret = check_ref_cleanup(trans, buf->start);
3340 if (!ret) {
3341 btrfs_redirty_list_add(trans->transaction, buf);
3342 goto out;
3343 }
3344 }
3345
3346 cache = btrfs_lookup_block_group(fs_info, buf->start);
3347
3348 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3349 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3350 btrfs_put_block_group(cache);
3351 goto out;
3352 }
3353
3354 /*
3355 * If there are tree mod log users we may have recorded mod log
3356 * operations for this node. If we re-allocate this node we
3357 * could replay operations on this node that happened when it
3358 * existed in a completely different root. For example if it
3359 * was part of root A, then was reallocated to root B, and we
3360 * are doing a btrfs_old_search_slot(root b), we could replay
3361 * operations that happened when the block was part of root A,
3362 * giving us an inconsistent view of the btree.
3363 *
3364 * We are safe from races here because at this point no other
3365 * node or root points to this extent buffer, so if after this
3366 * check a new tree mod log user joins we will not have an
3367 * existing log of operations on this node that we have to
3368 * contend with.
3369 */
3370 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3371 must_pin = true;
3372
3373 if (must_pin || btrfs_is_zoned(fs_info)) {
3374 btrfs_redirty_list_add(trans->transaction, buf);
3375 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3376 btrfs_put_block_group(cache);
3377 goto out;
3378 }
3379
3380 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3381
3382 btrfs_add_free_space(cache, buf->start, buf->len);
3383 btrfs_free_reserved_bytes(cache, buf->len, 0);
3384 btrfs_put_block_group(cache);
3385 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3386 }
3387 out:
3388 if (last_ref) {
3389 /*
3390 * Deleting the buffer, clear the corrupt flag since it doesn't
3391 * matter anymore.
3392 */
3393 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3394 }
3395 return 0;
3396 }
3397
3398 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3399 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3400 {
3401 struct btrfs_fs_info *fs_info = trans->fs_info;
3402 int ret;
3403
3404 if (btrfs_is_testing(fs_info))
3405 return 0;
3406
3407 /*
3408 * tree log blocks never actually go into the extent allocation
3409 * tree, just update pinning info and exit early.
3410 */
3411 if ((ref->type == BTRFS_REF_METADATA &&
3412 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3413 (ref->type == BTRFS_REF_DATA &&
3414 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3415 /* unlocks the pinned mutex */
3416 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3417 ret = 0;
3418 } else if (ref->type == BTRFS_REF_METADATA) {
3419 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3420 } else {
3421 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3422 }
3423
3424 if (!((ref->type == BTRFS_REF_METADATA &&
3425 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3426 (ref->type == BTRFS_REF_DATA &&
3427 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3428 btrfs_ref_tree_mod(fs_info, ref);
3429
3430 return ret;
3431 }
3432
3433 enum btrfs_loop_type {
3434 /*
3435 * Start caching block groups but do not wait for progress or for them
3436 * to be done.
3437 */
3438 LOOP_CACHING_NOWAIT,
3439
3440 /*
3441 * Wait for the block group free_space >= the space we're waiting for if
3442 * the block group isn't cached.
3443 */
3444 LOOP_CACHING_WAIT,
3445
3446 /*
3447 * Allow allocations to happen from block groups that do not yet have a
3448 * size classification.
3449 */
3450 LOOP_UNSET_SIZE_CLASS,
3451
3452 /*
3453 * Allocate a chunk and then retry the allocation.
3454 */
3455 LOOP_ALLOC_CHUNK,
3456
3457 /*
3458 * Ignore the size class restrictions for this allocation.
3459 */
3460 LOOP_WRONG_SIZE_CLASS,
3461
3462 /*
3463 * Ignore the empty size, only try to allocate the number of bytes
3464 * needed for this allocation.
3465 */
3466 LOOP_NO_EMPTY_SIZE,
3467 };
3468
3469 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3470 btrfs_lock_block_group(struct btrfs_block_group *cache,
3471 int delalloc)
3472 {
3473 if (delalloc)
3474 down_read(&cache->data_rwsem);
3475 }
3476
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3477 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3478 int delalloc)
3479 {
3480 btrfs_get_block_group(cache);
3481 if (delalloc)
3482 down_read(&cache->data_rwsem);
3483 }
3484
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3485 static struct btrfs_block_group *btrfs_lock_cluster(
3486 struct btrfs_block_group *block_group,
3487 struct btrfs_free_cluster *cluster,
3488 int delalloc)
3489 __acquires(&cluster->refill_lock)
3490 {
3491 struct btrfs_block_group *used_bg = NULL;
3492
3493 spin_lock(&cluster->refill_lock);
3494 while (1) {
3495 used_bg = cluster->block_group;
3496 if (!used_bg)
3497 return NULL;
3498
3499 if (used_bg == block_group)
3500 return used_bg;
3501
3502 btrfs_get_block_group(used_bg);
3503
3504 if (!delalloc)
3505 return used_bg;
3506
3507 if (down_read_trylock(&used_bg->data_rwsem))
3508 return used_bg;
3509
3510 spin_unlock(&cluster->refill_lock);
3511
3512 /* We should only have one-level nested. */
3513 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3514
3515 spin_lock(&cluster->refill_lock);
3516 if (used_bg == cluster->block_group)
3517 return used_bg;
3518
3519 up_read(&used_bg->data_rwsem);
3520 btrfs_put_block_group(used_bg);
3521 }
3522 }
3523
3524 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3525 btrfs_release_block_group(struct btrfs_block_group *cache,
3526 int delalloc)
3527 {
3528 if (delalloc)
3529 up_read(&cache->data_rwsem);
3530 btrfs_put_block_group(cache);
3531 }
3532
3533 /*
3534 * Helper function for find_free_extent().
3535 *
3536 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3537 * Return >0 to inform caller that we find nothing
3538 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3539 */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3540 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3541 struct find_free_extent_ctl *ffe_ctl,
3542 struct btrfs_block_group **cluster_bg_ret)
3543 {
3544 struct btrfs_block_group *cluster_bg;
3545 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3546 u64 aligned_cluster;
3547 u64 offset;
3548 int ret;
3549
3550 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3551 if (!cluster_bg)
3552 goto refill_cluster;
3553 if (cluster_bg != bg && (cluster_bg->ro ||
3554 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3555 goto release_cluster;
3556
3557 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3558 ffe_ctl->num_bytes, cluster_bg->start,
3559 &ffe_ctl->max_extent_size);
3560 if (offset) {
3561 /* We have a block, we're done */
3562 spin_unlock(&last_ptr->refill_lock);
3563 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3564 *cluster_bg_ret = cluster_bg;
3565 ffe_ctl->found_offset = offset;
3566 return 0;
3567 }
3568 WARN_ON(last_ptr->block_group != cluster_bg);
3569
3570 release_cluster:
3571 /*
3572 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3573 * lets just skip it and let the allocator find whatever block it can
3574 * find. If we reach this point, we will have tried the cluster
3575 * allocator plenty of times and not have found anything, so we are
3576 * likely way too fragmented for the clustering stuff to find anything.
3577 *
3578 * However, if the cluster is taken from the current block group,
3579 * release the cluster first, so that we stand a better chance of
3580 * succeeding in the unclustered allocation.
3581 */
3582 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3583 spin_unlock(&last_ptr->refill_lock);
3584 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3585 return -ENOENT;
3586 }
3587
3588 /* This cluster didn't work out, free it and start over */
3589 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590
3591 if (cluster_bg != bg)
3592 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3593
3594 refill_cluster:
3595 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3596 spin_unlock(&last_ptr->refill_lock);
3597 return -ENOENT;
3598 }
3599
3600 aligned_cluster = max_t(u64,
3601 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3602 bg->full_stripe_len);
3603 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3604 ffe_ctl->num_bytes, aligned_cluster);
3605 if (ret == 0) {
3606 /* Now pull our allocation out of this cluster */
3607 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3608 ffe_ctl->num_bytes, ffe_ctl->search_start,
3609 &ffe_ctl->max_extent_size);
3610 if (offset) {
3611 /* We found one, proceed */
3612 spin_unlock(&last_ptr->refill_lock);
3613 ffe_ctl->found_offset = offset;
3614 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3615 return 0;
3616 }
3617 }
3618 /*
3619 * At this point we either didn't find a cluster or we weren't able to
3620 * allocate a block from our cluster. Free the cluster we've been
3621 * trying to use, and go to the next block group.
3622 */
3623 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3624 spin_unlock(&last_ptr->refill_lock);
3625 return 1;
3626 }
3627
3628 /*
3629 * Return >0 to inform caller that we find nothing
3630 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3631 */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3632 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3633 struct find_free_extent_ctl *ffe_ctl)
3634 {
3635 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3636 u64 offset;
3637
3638 /*
3639 * We are doing an unclustered allocation, set the fragmented flag so
3640 * we don't bother trying to setup a cluster again until we get more
3641 * space.
3642 */
3643 if (unlikely(last_ptr)) {
3644 spin_lock(&last_ptr->lock);
3645 last_ptr->fragmented = 1;
3646 spin_unlock(&last_ptr->lock);
3647 }
3648 if (ffe_ctl->cached) {
3649 struct btrfs_free_space_ctl *free_space_ctl;
3650
3651 free_space_ctl = bg->free_space_ctl;
3652 spin_lock(&free_space_ctl->tree_lock);
3653 if (free_space_ctl->free_space <
3654 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3655 ffe_ctl->empty_size) {
3656 ffe_ctl->total_free_space = max_t(u64,
3657 ffe_ctl->total_free_space,
3658 free_space_ctl->free_space);
3659 spin_unlock(&free_space_ctl->tree_lock);
3660 return 1;
3661 }
3662 spin_unlock(&free_space_ctl->tree_lock);
3663 }
3664
3665 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3666 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3667 &ffe_ctl->max_extent_size);
3668 if (!offset)
3669 return 1;
3670 ffe_ctl->found_offset = offset;
3671 return 0;
3672 }
3673
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3674 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3675 struct find_free_extent_ctl *ffe_ctl,
3676 struct btrfs_block_group **bg_ret)
3677 {
3678 int ret;
3679
3680 /* We want to try and use the cluster allocator, so lets look there */
3681 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3682 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3683 if (ret >= 0)
3684 return ret;
3685 /* ret == -ENOENT case falls through */
3686 }
3687
3688 return find_free_extent_unclustered(block_group, ffe_ctl);
3689 }
3690
3691 /*
3692 * Tree-log block group locking
3693 * ============================
3694 *
3695 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3696 * indicates the starting address of a block group, which is reserved only
3697 * for tree-log metadata.
3698 *
3699 * Lock nesting
3700 * ============
3701 *
3702 * space_info::lock
3703 * block_group::lock
3704 * fs_info::treelog_bg_lock
3705 */
3706
3707 /*
3708 * Simple allocator for sequential-only block group. It only allows sequential
3709 * allocation. No need to play with trees. This function also reserves the
3710 * bytes as in btrfs_add_reserved_bytes.
3711 */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3712 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3713 struct find_free_extent_ctl *ffe_ctl,
3714 struct btrfs_block_group **bg_ret)
3715 {
3716 struct btrfs_fs_info *fs_info = block_group->fs_info;
3717 struct btrfs_space_info *space_info = block_group->space_info;
3718 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3719 u64 start = block_group->start;
3720 u64 num_bytes = ffe_ctl->num_bytes;
3721 u64 avail;
3722 u64 bytenr = block_group->start;
3723 u64 log_bytenr;
3724 u64 data_reloc_bytenr;
3725 int ret = 0;
3726 bool skip = false;
3727
3728 ASSERT(btrfs_is_zoned(block_group->fs_info));
3729
3730 /*
3731 * Do not allow non-tree-log blocks in the dedicated tree-log block
3732 * group, and vice versa.
3733 */
3734 spin_lock(&fs_info->treelog_bg_lock);
3735 log_bytenr = fs_info->treelog_bg;
3736 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3737 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3738 skip = true;
3739 spin_unlock(&fs_info->treelog_bg_lock);
3740 if (skip)
3741 return 1;
3742
3743 /*
3744 * Do not allow non-relocation blocks in the dedicated relocation block
3745 * group, and vice versa.
3746 */
3747 spin_lock(&fs_info->relocation_bg_lock);
3748 data_reloc_bytenr = fs_info->data_reloc_bg;
3749 if (data_reloc_bytenr &&
3750 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3751 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3752 skip = true;
3753 spin_unlock(&fs_info->relocation_bg_lock);
3754 if (skip)
3755 return 1;
3756
3757 /* Check RO and no space case before trying to activate it */
3758 spin_lock(&block_group->lock);
3759 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3760 ret = 1;
3761 /*
3762 * May need to clear fs_info->{treelog,data_reloc}_bg.
3763 * Return the error after taking the locks.
3764 */
3765 }
3766 spin_unlock(&block_group->lock);
3767
3768 /* Metadata block group is activated at write time. */
3769 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3770 !btrfs_zone_activate(block_group)) {
3771 ret = 1;
3772 /*
3773 * May need to clear fs_info->{treelog,data_reloc}_bg.
3774 * Return the error after taking the locks.
3775 */
3776 }
3777
3778 spin_lock(&space_info->lock);
3779 spin_lock(&block_group->lock);
3780 spin_lock(&fs_info->treelog_bg_lock);
3781 spin_lock(&fs_info->relocation_bg_lock);
3782
3783 if (ret)
3784 goto out;
3785
3786 ASSERT(!ffe_ctl->for_treelog ||
3787 block_group->start == fs_info->treelog_bg ||
3788 fs_info->treelog_bg == 0);
3789 ASSERT(!ffe_ctl->for_data_reloc ||
3790 block_group->start == fs_info->data_reloc_bg ||
3791 fs_info->data_reloc_bg == 0);
3792
3793 if (block_group->ro ||
3794 (!ffe_ctl->for_data_reloc &&
3795 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3796 ret = 1;
3797 goto out;
3798 }
3799
3800 /*
3801 * Do not allow currently using block group to be tree-log dedicated
3802 * block group.
3803 */
3804 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3805 (block_group->used || block_group->reserved)) {
3806 ret = 1;
3807 goto out;
3808 }
3809
3810 /*
3811 * Do not allow currently used block group to be the data relocation
3812 * dedicated block group.
3813 */
3814 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3815 (block_group->used || block_group->reserved)) {
3816 ret = 1;
3817 goto out;
3818 }
3819
3820 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3821 avail = block_group->zone_capacity - block_group->alloc_offset;
3822 if (avail < num_bytes) {
3823 if (ffe_ctl->max_extent_size < avail) {
3824 /*
3825 * With sequential allocator, free space is always
3826 * contiguous
3827 */
3828 ffe_ctl->max_extent_size = avail;
3829 ffe_ctl->total_free_space = avail;
3830 }
3831 ret = 1;
3832 goto out;
3833 }
3834
3835 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3836 fs_info->treelog_bg = block_group->start;
3837
3838 if (ffe_ctl->for_data_reloc) {
3839 if (!fs_info->data_reloc_bg)
3840 fs_info->data_reloc_bg = block_group->start;
3841 /*
3842 * Do not allow allocations from this block group, unless it is
3843 * for data relocation. Compared to increasing the ->ro, setting
3844 * the ->zoned_data_reloc_ongoing flag still allows nocow
3845 * writers to come in. See btrfs_inc_nocow_writers().
3846 *
3847 * We need to disable an allocation to avoid an allocation of
3848 * regular (non-relocation data) extent. With mix of relocation
3849 * extents and regular extents, we can dispatch WRITE commands
3850 * (for relocation extents) and ZONE APPEND commands (for
3851 * regular extents) at the same time to the same zone, which
3852 * easily break the write pointer.
3853 *
3854 * Also, this flag avoids this block group to be zone finished.
3855 */
3856 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3857 }
3858
3859 ffe_ctl->found_offset = start + block_group->alloc_offset;
3860 block_group->alloc_offset += num_bytes;
3861 spin_lock(&ctl->tree_lock);
3862 ctl->free_space -= num_bytes;
3863 spin_unlock(&ctl->tree_lock);
3864
3865 /*
3866 * We do not check if found_offset is aligned to stripesize. The
3867 * address is anyway rewritten when using zone append writing.
3868 */
3869
3870 ffe_ctl->search_start = ffe_ctl->found_offset;
3871
3872 out:
3873 if (ret && ffe_ctl->for_treelog)
3874 fs_info->treelog_bg = 0;
3875 if (ret && ffe_ctl->for_data_reloc)
3876 fs_info->data_reloc_bg = 0;
3877 spin_unlock(&fs_info->relocation_bg_lock);
3878 spin_unlock(&fs_info->treelog_bg_lock);
3879 spin_unlock(&block_group->lock);
3880 spin_unlock(&space_info->lock);
3881 return ret;
3882 }
3883
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3884 static int do_allocation(struct btrfs_block_group *block_group,
3885 struct find_free_extent_ctl *ffe_ctl,
3886 struct btrfs_block_group **bg_ret)
3887 {
3888 switch (ffe_ctl->policy) {
3889 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3890 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3891 case BTRFS_EXTENT_ALLOC_ZONED:
3892 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3893 default:
3894 BUG();
3895 }
3896 }
3897
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3898 static void release_block_group(struct btrfs_block_group *block_group,
3899 struct find_free_extent_ctl *ffe_ctl,
3900 int delalloc)
3901 {
3902 switch (ffe_ctl->policy) {
3903 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3904 ffe_ctl->retry_uncached = false;
3905 break;
3906 case BTRFS_EXTENT_ALLOC_ZONED:
3907 /* Nothing to do */
3908 break;
3909 default:
3910 BUG();
3911 }
3912
3913 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3914 ffe_ctl->index);
3915 btrfs_release_block_group(block_group, delalloc);
3916 }
3917
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3918 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3919 struct btrfs_key *ins)
3920 {
3921 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3922
3923 if (!ffe_ctl->use_cluster && last_ptr) {
3924 spin_lock(&last_ptr->lock);
3925 last_ptr->window_start = ins->objectid;
3926 spin_unlock(&last_ptr->lock);
3927 }
3928 }
3929
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3930 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3931 struct btrfs_key *ins)
3932 {
3933 switch (ffe_ctl->policy) {
3934 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3935 found_extent_clustered(ffe_ctl, ins);
3936 break;
3937 case BTRFS_EXTENT_ALLOC_ZONED:
3938 /* Nothing to do */
3939 break;
3940 default:
3941 BUG();
3942 }
3943 }
3944
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3945 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3946 struct find_free_extent_ctl *ffe_ctl)
3947 {
3948 /* Block group's activeness is not a requirement for METADATA block groups. */
3949 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3950 return 0;
3951
3952 /* If we can activate new zone, just allocate a chunk and use it */
3953 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3954 return 0;
3955
3956 /*
3957 * We already reached the max active zones. Try to finish one block
3958 * group to make a room for a new block group. This is only possible
3959 * for a data block group because btrfs_zone_finish() may need to wait
3960 * for a running transaction which can cause a deadlock for metadata
3961 * allocation.
3962 */
3963 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3964 int ret = btrfs_zone_finish_one_bg(fs_info);
3965
3966 if (ret == 1)
3967 return 0;
3968 else if (ret < 0)
3969 return ret;
3970 }
3971
3972 /*
3973 * If we have enough free space left in an already active block group
3974 * and we can't activate any other zone now, do not allow allocating a
3975 * new chunk and let find_free_extent() retry with a smaller size.
3976 */
3977 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3978 return -ENOSPC;
3979
3980 /*
3981 * Even min_alloc_size is not left in any block groups. Since we cannot
3982 * activate a new block group, allocating it may not help. Let's tell a
3983 * caller to try again and hope it progress something by writing some
3984 * parts of the region. That is only possible for data block groups,
3985 * where a part of the region can be written.
3986 */
3987 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3988 return -EAGAIN;
3989
3990 /*
3991 * We cannot activate a new block group and no enough space left in any
3992 * block groups. So, allocating a new block group may not help. But,
3993 * there is nothing to do anyway, so let's go with it.
3994 */
3995 return 0;
3996 }
3997
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3998 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3999 struct find_free_extent_ctl *ffe_ctl)
4000 {
4001 switch (ffe_ctl->policy) {
4002 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4003 return 0;
4004 case BTRFS_EXTENT_ALLOC_ZONED:
4005 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4006 default:
4007 BUG();
4008 }
4009 }
4010
4011 /*
4012 * Return >0 means caller needs to re-search for free extent
4013 * Return 0 means we have the needed free extent.
4014 * Return <0 means we failed to locate any free extent.
4015 */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)4016 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4017 struct btrfs_key *ins,
4018 struct find_free_extent_ctl *ffe_ctl,
4019 bool full_search)
4020 {
4021 struct btrfs_root *root = fs_info->chunk_root;
4022 int ret;
4023
4024 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4025 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4026 ffe_ctl->orig_have_caching_bg = true;
4027
4028 if (ins->objectid) {
4029 found_extent(ffe_ctl, ins);
4030 return 0;
4031 }
4032
4033 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4034 return 1;
4035
4036 ffe_ctl->index++;
4037 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4038 return 1;
4039
4040 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4041 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4042 ffe_ctl->index = 0;
4043 /*
4044 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4045 * any uncached bgs and we've already done a full search
4046 * through.
4047 */
4048 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4049 (!ffe_ctl->orig_have_caching_bg && full_search))
4050 ffe_ctl->loop++;
4051 ffe_ctl->loop++;
4052
4053 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4054 struct btrfs_trans_handle *trans;
4055 int exist = 0;
4056
4057 /* Check if allocation policy allows to create a new chunk */
4058 ret = can_allocate_chunk(fs_info, ffe_ctl);
4059 if (ret)
4060 return ret;
4061
4062 trans = current->journal_info;
4063 if (trans)
4064 exist = 1;
4065 else
4066 trans = btrfs_join_transaction(root);
4067
4068 if (IS_ERR(trans)) {
4069 ret = PTR_ERR(trans);
4070 return ret;
4071 }
4072
4073 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4074 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4075
4076 /* Do not bail out on ENOSPC since we can do more. */
4077 if (ret == -ENOSPC) {
4078 ret = 0;
4079 ffe_ctl->loop++;
4080 }
4081 else if (ret < 0)
4082 btrfs_abort_transaction(trans, ret);
4083 else
4084 ret = 0;
4085 if (!exist)
4086 btrfs_end_transaction(trans);
4087 if (ret)
4088 return ret;
4089 }
4090
4091 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4092 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4093 return -ENOSPC;
4094
4095 /*
4096 * Don't loop again if we already have no empty_size and
4097 * no empty_cluster.
4098 */
4099 if (ffe_ctl->empty_size == 0 &&
4100 ffe_ctl->empty_cluster == 0)
4101 return -ENOSPC;
4102 ffe_ctl->empty_size = 0;
4103 ffe_ctl->empty_cluster = 0;
4104 }
4105 return 1;
4106 }
4107 return -ENOSPC;
4108 }
4109
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4110 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4111 struct btrfs_block_group *bg)
4112 {
4113 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4114 return true;
4115 if (!btrfs_block_group_should_use_size_class(bg))
4116 return true;
4117 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4118 return true;
4119 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4120 bg->size_class == BTRFS_BG_SZ_NONE)
4121 return true;
4122 return ffe_ctl->size_class == bg->size_class;
4123 }
4124
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4125 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4126 struct find_free_extent_ctl *ffe_ctl,
4127 struct btrfs_space_info *space_info,
4128 struct btrfs_key *ins)
4129 {
4130 /*
4131 * If our free space is heavily fragmented we may not be able to make
4132 * big contiguous allocations, so instead of doing the expensive search
4133 * for free space, simply return ENOSPC with our max_extent_size so we
4134 * can go ahead and search for a more manageable chunk.
4135 *
4136 * If our max_extent_size is large enough for our allocation simply
4137 * disable clustering since we will likely not be able to find enough
4138 * space to create a cluster and induce latency trying.
4139 */
4140 if (space_info->max_extent_size) {
4141 spin_lock(&space_info->lock);
4142 if (space_info->max_extent_size &&
4143 ffe_ctl->num_bytes > space_info->max_extent_size) {
4144 ins->offset = space_info->max_extent_size;
4145 spin_unlock(&space_info->lock);
4146 return -ENOSPC;
4147 } else if (space_info->max_extent_size) {
4148 ffe_ctl->use_cluster = false;
4149 }
4150 spin_unlock(&space_info->lock);
4151 }
4152
4153 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4154 &ffe_ctl->empty_cluster);
4155 if (ffe_ctl->last_ptr) {
4156 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4157
4158 spin_lock(&last_ptr->lock);
4159 if (last_ptr->block_group)
4160 ffe_ctl->hint_byte = last_ptr->window_start;
4161 if (last_ptr->fragmented) {
4162 /*
4163 * We still set window_start so we can keep track of the
4164 * last place we found an allocation to try and save
4165 * some time.
4166 */
4167 ffe_ctl->hint_byte = last_ptr->window_start;
4168 ffe_ctl->use_cluster = false;
4169 }
4170 spin_unlock(&last_ptr->lock);
4171 }
4172
4173 return 0;
4174 }
4175
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4176 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4177 struct find_free_extent_ctl *ffe_ctl)
4178 {
4179 if (ffe_ctl->for_treelog) {
4180 spin_lock(&fs_info->treelog_bg_lock);
4181 if (fs_info->treelog_bg)
4182 ffe_ctl->hint_byte = fs_info->treelog_bg;
4183 spin_unlock(&fs_info->treelog_bg_lock);
4184 } else if (ffe_ctl->for_data_reloc) {
4185 spin_lock(&fs_info->relocation_bg_lock);
4186 if (fs_info->data_reloc_bg)
4187 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4188 spin_unlock(&fs_info->relocation_bg_lock);
4189 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4190 struct btrfs_block_group *block_group;
4191
4192 spin_lock(&fs_info->zone_active_bgs_lock);
4193 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4194 /*
4195 * No lock is OK here because avail is monotinically
4196 * decreasing, and this is just a hint.
4197 */
4198 u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4199
4200 if (block_group_bits(block_group, ffe_ctl->flags) &&
4201 avail >= ffe_ctl->num_bytes) {
4202 ffe_ctl->hint_byte = block_group->start;
4203 break;
4204 }
4205 }
4206 spin_unlock(&fs_info->zone_active_bgs_lock);
4207 }
4208
4209 return 0;
4210 }
4211
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4212 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4213 struct find_free_extent_ctl *ffe_ctl,
4214 struct btrfs_space_info *space_info,
4215 struct btrfs_key *ins)
4216 {
4217 switch (ffe_ctl->policy) {
4218 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4219 return prepare_allocation_clustered(fs_info, ffe_ctl,
4220 space_info, ins);
4221 case BTRFS_EXTENT_ALLOC_ZONED:
4222 return prepare_allocation_zoned(fs_info, ffe_ctl);
4223 default:
4224 BUG();
4225 }
4226 }
4227
4228 /*
4229 * walks the btree of allocated extents and find a hole of a given size.
4230 * The key ins is changed to record the hole:
4231 * ins->objectid == start position
4232 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4233 * ins->offset == the size of the hole.
4234 * Any available blocks before search_start are skipped.
4235 *
4236 * If there is no suitable free space, we will record the max size of
4237 * the free space extent currently.
4238 *
4239 * The overall logic and call chain:
4240 *
4241 * find_free_extent()
4242 * |- Iterate through all block groups
4243 * | |- Get a valid block group
4244 * | |- Try to do clustered allocation in that block group
4245 * | |- Try to do unclustered allocation in that block group
4246 * | |- Check if the result is valid
4247 * | | |- If valid, then exit
4248 * | |- Jump to next block group
4249 * |
4250 * |- Push harder to find free extents
4251 * |- If not found, re-iterate all block groups
4252 */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4253 static noinline int find_free_extent(struct btrfs_root *root,
4254 struct btrfs_key *ins,
4255 struct find_free_extent_ctl *ffe_ctl)
4256 {
4257 struct btrfs_fs_info *fs_info = root->fs_info;
4258 int ret = 0;
4259 int cache_block_group_error = 0;
4260 struct btrfs_block_group *block_group = NULL;
4261 struct btrfs_space_info *space_info;
4262 bool full_search = false;
4263
4264 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4265
4266 ffe_ctl->search_start = 0;
4267 /* For clustered allocation */
4268 ffe_ctl->empty_cluster = 0;
4269 ffe_ctl->last_ptr = NULL;
4270 ffe_ctl->use_cluster = true;
4271 ffe_ctl->have_caching_bg = false;
4272 ffe_ctl->orig_have_caching_bg = false;
4273 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4274 ffe_ctl->loop = 0;
4275 ffe_ctl->retry_uncached = false;
4276 ffe_ctl->cached = 0;
4277 ffe_ctl->max_extent_size = 0;
4278 ffe_ctl->total_free_space = 0;
4279 ffe_ctl->found_offset = 0;
4280 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4281 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4282
4283 if (btrfs_is_zoned(fs_info))
4284 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4285
4286 ins->type = BTRFS_EXTENT_ITEM_KEY;
4287 ins->objectid = 0;
4288 ins->offset = 0;
4289
4290 trace_find_free_extent(root, ffe_ctl);
4291
4292 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4293 if (!space_info) {
4294 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4295 return -ENOSPC;
4296 }
4297
4298 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4299 if (ret < 0)
4300 return ret;
4301
4302 ffe_ctl->search_start = max(ffe_ctl->search_start,
4303 first_logical_byte(fs_info));
4304 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4305 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4306 block_group = btrfs_lookup_block_group(fs_info,
4307 ffe_ctl->search_start);
4308 /*
4309 * we don't want to use the block group if it doesn't match our
4310 * allocation bits, or if its not cached.
4311 *
4312 * However if we are re-searching with an ideal block group
4313 * picked out then we don't care that the block group is cached.
4314 */
4315 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4316 block_group->cached != BTRFS_CACHE_NO) {
4317 down_read(&space_info->groups_sem);
4318 if (list_empty(&block_group->list) ||
4319 block_group->ro) {
4320 /*
4321 * someone is removing this block group,
4322 * we can't jump into the have_block_group
4323 * target because our list pointers are not
4324 * valid
4325 */
4326 btrfs_put_block_group(block_group);
4327 up_read(&space_info->groups_sem);
4328 } else {
4329 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4330 block_group->flags);
4331 btrfs_lock_block_group(block_group,
4332 ffe_ctl->delalloc);
4333 ffe_ctl->hinted = true;
4334 goto have_block_group;
4335 }
4336 } else if (block_group) {
4337 btrfs_put_block_group(block_group);
4338 }
4339 }
4340 search:
4341 trace_find_free_extent_search_loop(root, ffe_ctl);
4342 ffe_ctl->have_caching_bg = false;
4343 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4344 ffe_ctl->index == 0)
4345 full_search = true;
4346 down_read(&space_info->groups_sem);
4347 list_for_each_entry(block_group,
4348 &space_info->block_groups[ffe_ctl->index], list) {
4349 struct btrfs_block_group *bg_ret;
4350
4351 ffe_ctl->hinted = false;
4352 /* If the block group is read-only, we can skip it entirely. */
4353 if (unlikely(block_group->ro)) {
4354 if (ffe_ctl->for_treelog)
4355 btrfs_clear_treelog_bg(block_group);
4356 if (ffe_ctl->for_data_reloc)
4357 btrfs_clear_data_reloc_bg(block_group);
4358 continue;
4359 }
4360
4361 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4362 ffe_ctl->search_start = block_group->start;
4363
4364 /*
4365 * this can happen if we end up cycling through all the
4366 * raid types, but we want to make sure we only allocate
4367 * for the proper type.
4368 */
4369 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4370 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4371 BTRFS_BLOCK_GROUP_RAID1_MASK |
4372 BTRFS_BLOCK_GROUP_RAID56_MASK |
4373 BTRFS_BLOCK_GROUP_RAID10;
4374
4375 /*
4376 * if they asked for extra copies and this block group
4377 * doesn't provide them, bail. This does allow us to
4378 * fill raid0 from raid1.
4379 */
4380 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4381 goto loop;
4382
4383 /*
4384 * This block group has different flags than we want.
4385 * It's possible that we have MIXED_GROUP flag but no
4386 * block group is mixed. Just skip such block group.
4387 */
4388 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4389 continue;
4390 }
4391
4392 have_block_group:
4393 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4394 ffe_ctl->cached = btrfs_block_group_done(block_group);
4395 if (unlikely(!ffe_ctl->cached)) {
4396 ffe_ctl->have_caching_bg = true;
4397 ret = btrfs_cache_block_group(block_group, false);
4398
4399 /*
4400 * If we get ENOMEM here or something else we want to
4401 * try other block groups, because it may not be fatal.
4402 * However if we can't find anything else we need to
4403 * save our return here so that we return the actual
4404 * error that caused problems, not ENOSPC.
4405 */
4406 if (ret < 0) {
4407 if (!cache_block_group_error)
4408 cache_block_group_error = ret;
4409 ret = 0;
4410 goto loop;
4411 }
4412 ret = 0;
4413 }
4414
4415 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4416 if (!cache_block_group_error)
4417 cache_block_group_error = -EIO;
4418 goto loop;
4419 }
4420
4421 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4422 goto loop;
4423
4424 bg_ret = NULL;
4425 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4426 if (ret > 0)
4427 goto loop;
4428
4429 if (bg_ret && bg_ret != block_group) {
4430 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4431 block_group = bg_ret;
4432 }
4433
4434 /* Checks */
4435 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4436 fs_info->stripesize);
4437
4438 /* move on to the next group */
4439 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4440 block_group->start + block_group->length) {
4441 btrfs_add_free_space_unused(block_group,
4442 ffe_ctl->found_offset,
4443 ffe_ctl->num_bytes);
4444 goto loop;
4445 }
4446
4447 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4448 btrfs_add_free_space_unused(block_group,
4449 ffe_ctl->found_offset,
4450 ffe_ctl->search_start - ffe_ctl->found_offset);
4451
4452 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4453 ffe_ctl->num_bytes,
4454 ffe_ctl->delalloc,
4455 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4456 if (ret == -EAGAIN) {
4457 btrfs_add_free_space_unused(block_group,
4458 ffe_ctl->found_offset,
4459 ffe_ctl->num_bytes);
4460 goto loop;
4461 }
4462 btrfs_inc_block_group_reservations(block_group);
4463
4464 /* we are all good, lets return */
4465 ins->objectid = ffe_ctl->search_start;
4466 ins->offset = ffe_ctl->num_bytes;
4467
4468 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4469 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4470 break;
4471 loop:
4472 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4473 !ffe_ctl->retry_uncached) {
4474 ffe_ctl->retry_uncached = true;
4475 btrfs_wait_block_group_cache_progress(block_group,
4476 ffe_ctl->num_bytes +
4477 ffe_ctl->empty_cluster +
4478 ffe_ctl->empty_size);
4479 goto have_block_group;
4480 }
4481 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4482 cond_resched();
4483 }
4484 up_read(&space_info->groups_sem);
4485
4486 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4487 if (ret > 0)
4488 goto search;
4489
4490 if (ret == -ENOSPC && !cache_block_group_error) {
4491 /*
4492 * Use ffe_ctl->total_free_space as fallback if we can't find
4493 * any contiguous hole.
4494 */
4495 if (!ffe_ctl->max_extent_size)
4496 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4497 spin_lock(&space_info->lock);
4498 space_info->max_extent_size = ffe_ctl->max_extent_size;
4499 spin_unlock(&space_info->lock);
4500 ins->offset = ffe_ctl->max_extent_size;
4501 } else if (ret == -ENOSPC) {
4502 ret = cache_block_group_error;
4503 }
4504 return ret;
4505 }
4506
4507 /*
4508 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4509 * hole that is at least as big as @num_bytes.
4510 *
4511 * @root - The root that will contain this extent
4512 *
4513 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4514 * is used for accounting purposes. This value differs
4515 * from @num_bytes only in the case of compressed extents.
4516 *
4517 * @num_bytes - Number of bytes to allocate on-disk.
4518 *
4519 * @min_alloc_size - Indicates the minimum amount of space that the
4520 * allocator should try to satisfy. In some cases
4521 * @num_bytes may be larger than what is required and if
4522 * the filesystem is fragmented then allocation fails.
4523 * However, the presence of @min_alloc_size gives a
4524 * chance to try and satisfy the smaller allocation.
4525 *
4526 * @empty_size - A hint that you plan on doing more COW. This is the
4527 * size in bytes the allocator should try to find free
4528 * next to the block it returns. This is just a hint and
4529 * may be ignored by the allocator.
4530 *
4531 * @hint_byte - Hint to the allocator to start searching above the byte
4532 * address passed. It might be ignored.
4533 *
4534 * @ins - This key is modified to record the found hole. It will
4535 * have the following values:
4536 * ins->objectid == start position
4537 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4538 * ins->offset == the size of the hole.
4539 *
4540 * @is_data - Boolean flag indicating whether an extent is
4541 * allocated for data (true) or metadata (false)
4542 *
4543 * @delalloc - Boolean flag indicating whether this allocation is for
4544 * delalloc or not. If 'true' data_rwsem of block groups
4545 * is going to be acquired.
4546 *
4547 *
4548 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4549 * case -ENOSPC is returned then @ins->offset will contain the size of the
4550 * largest available hole the allocator managed to find.
4551 */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4552 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4553 u64 num_bytes, u64 min_alloc_size,
4554 u64 empty_size, u64 hint_byte,
4555 struct btrfs_key *ins, int is_data, int delalloc)
4556 {
4557 struct btrfs_fs_info *fs_info = root->fs_info;
4558 struct find_free_extent_ctl ffe_ctl = {};
4559 bool final_tried = num_bytes == min_alloc_size;
4560 u64 flags;
4561 int ret;
4562 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4563 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4564
4565 flags = get_alloc_profile_by_root(root, is_data);
4566 again:
4567 WARN_ON(num_bytes < fs_info->sectorsize);
4568
4569 ffe_ctl.ram_bytes = ram_bytes;
4570 ffe_ctl.num_bytes = num_bytes;
4571 ffe_ctl.min_alloc_size = min_alloc_size;
4572 ffe_ctl.empty_size = empty_size;
4573 ffe_ctl.flags = flags;
4574 ffe_ctl.delalloc = delalloc;
4575 ffe_ctl.hint_byte = hint_byte;
4576 ffe_ctl.for_treelog = for_treelog;
4577 ffe_ctl.for_data_reloc = for_data_reloc;
4578
4579 ret = find_free_extent(root, ins, &ffe_ctl);
4580 if (!ret && !is_data) {
4581 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4582 } else if (ret == -ENOSPC) {
4583 if (!final_tried && ins->offset) {
4584 num_bytes = min(num_bytes >> 1, ins->offset);
4585 num_bytes = round_down(num_bytes,
4586 fs_info->sectorsize);
4587 num_bytes = max(num_bytes, min_alloc_size);
4588 ram_bytes = num_bytes;
4589 if (num_bytes == min_alloc_size)
4590 final_tried = true;
4591 goto again;
4592 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4593 struct btrfs_space_info *sinfo;
4594
4595 sinfo = btrfs_find_space_info(fs_info, flags);
4596 btrfs_err(fs_info,
4597 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4598 flags, num_bytes, for_treelog, for_data_reloc);
4599 if (sinfo)
4600 btrfs_dump_space_info(fs_info, sinfo,
4601 num_bytes, 1);
4602 }
4603 }
4604
4605 return ret;
4606 }
4607
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4608 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4609 u64 start, u64 len, int delalloc)
4610 {
4611 struct btrfs_block_group *cache;
4612
4613 cache = btrfs_lookup_block_group(fs_info, start);
4614 if (!cache) {
4615 btrfs_err(fs_info, "Unable to find block group for %llu",
4616 start);
4617 return -ENOSPC;
4618 }
4619
4620 btrfs_add_free_space(cache, start, len);
4621 btrfs_free_reserved_bytes(cache, len, delalloc);
4622 trace_btrfs_reserved_extent_free(fs_info, start, len);
4623
4624 btrfs_put_block_group(cache);
4625 return 0;
4626 }
4627
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4628 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4629 u64 len)
4630 {
4631 struct btrfs_block_group *cache;
4632 int ret = 0;
4633
4634 cache = btrfs_lookup_block_group(trans->fs_info, start);
4635 if (!cache) {
4636 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4637 start);
4638 return -ENOSPC;
4639 }
4640
4641 ret = pin_down_extent(trans, cache, start, len, 1);
4642 btrfs_put_block_group(cache);
4643 return ret;
4644 }
4645
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4646 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4647 u64 num_bytes)
4648 {
4649 struct btrfs_fs_info *fs_info = trans->fs_info;
4650 int ret;
4651
4652 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4653 if (ret)
4654 return ret;
4655
4656 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4657 if (ret) {
4658 ASSERT(!ret);
4659 btrfs_err(fs_info, "update block group failed for %llu %llu",
4660 bytenr, num_bytes);
4661 return ret;
4662 }
4663
4664 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4665 return 0;
4666 }
4667
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4668 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4669 u64 parent, u64 root_objectid,
4670 u64 flags, u64 owner, u64 offset,
4671 struct btrfs_key *ins, int ref_mod)
4672 {
4673 struct btrfs_fs_info *fs_info = trans->fs_info;
4674 struct btrfs_root *extent_root;
4675 int ret;
4676 struct btrfs_extent_item *extent_item;
4677 struct btrfs_extent_inline_ref *iref;
4678 struct btrfs_path *path;
4679 struct extent_buffer *leaf;
4680 int type;
4681 u32 size;
4682
4683 if (parent > 0)
4684 type = BTRFS_SHARED_DATA_REF_KEY;
4685 else
4686 type = BTRFS_EXTENT_DATA_REF_KEY;
4687
4688 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4689
4690 path = btrfs_alloc_path();
4691 if (!path)
4692 return -ENOMEM;
4693
4694 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4695 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4696 if (ret) {
4697 btrfs_free_path(path);
4698 return ret;
4699 }
4700
4701 leaf = path->nodes[0];
4702 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4703 struct btrfs_extent_item);
4704 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4705 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4706 btrfs_set_extent_flags(leaf, extent_item,
4707 flags | BTRFS_EXTENT_FLAG_DATA);
4708
4709 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4710 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4711 if (parent > 0) {
4712 struct btrfs_shared_data_ref *ref;
4713 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4715 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4716 } else {
4717 struct btrfs_extent_data_ref *ref;
4718 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4719 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4720 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4721 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4722 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4723 }
4724
4725 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4726 btrfs_free_path(path);
4727
4728 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4729 }
4730
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4731 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4732 struct btrfs_delayed_ref_node *node,
4733 struct btrfs_delayed_extent_op *extent_op)
4734 {
4735 struct btrfs_fs_info *fs_info = trans->fs_info;
4736 struct btrfs_root *extent_root;
4737 int ret;
4738 struct btrfs_extent_item *extent_item;
4739 struct btrfs_key extent_key;
4740 struct btrfs_tree_block_info *block_info;
4741 struct btrfs_extent_inline_ref *iref;
4742 struct btrfs_path *path;
4743 struct extent_buffer *leaf;
4744 struct btrfs_delayed_tree_ref *ref;
4745 u32 size = sizeof(*extent_item) + sizeof(*iref);
4746 u64 flags = extent_op->flags_to_set;
4747 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4748
4749 ref = btrfs_delayed_node_to_tree_ref(node);
4750
4751 extent_key.objectid = node->bytenr;
4752 if (skinny_metadata) {
4753 extent_key.offset = ref->level;
4754 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4755 } else {
4756 extent_key.offset = node->num_bytes;
4757 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4758 size += sizeof(*block_info);
4759 }
4760
4761 path = btrfs_alloc_path();
4762 if (!path)
4763 return -ENOMEM;
4764
4765 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4766 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4767 size);
4768 if (ret) {
4769 btrfs_free_path(path);
4770 return ret;
4771 }
4772
4773 leaf = path->nodes[0];
4774 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4775 struct btrfs_extent_item);
4776 btrfs_set_extent_refs(leaf, extent_item, 1);
4777 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4778 btrfs_set_extent_flags(leaf, extent_item,
4779 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4780
4781 if (skinny_metadata) {
4782 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4783 } else {
4784 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4785 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4786 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4787 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4788 }
4789
4790 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4791 btrfs_set_extent_inline_ref_type(leaf, iref,
4792 BTRFS_SHARED_BLOCK_REF_KEY);
4793 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4794 } else {
4795 btrfs_set_extent_inline_ref_type(leaf, iref,
4796 BTRFS_TREE_BLOCK_REF_KEY);
4797 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4798 }
4799
4800 btrfs_mark_buffer_dirty(trans, leaf);
4801 btrfs_free_path(path);
4802
4803 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4804 }
4805
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4806 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4807 struct btrfs_root *root, u64 owner,
4808 u64 offset, u64 ram_bytes,
4809 struct btrfs_key *ins)
4810 {
4811 struct btrfs_ref generic_ref = { 0 };
4812
4813 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4814
4815 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4816 ins->objectid, ins->offset, 0);
4817 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4818 offset, 0, false);
4819 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4820
4821 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4822 }
4823
4824 /*
4825 * this is used by the tree logging recovery code. It records that
4826 * an extent has been allocated and makes sure to clear the free
4827 * space cache bits as well
4828 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4829 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4830 u64 root_objectid, u64 owner, u64 offset,
4831 struct btrfs_key *ins)
4832 {
4833 struct btrfs_fs_info *fs_info = trans->fs_info;
4834 int ret;
4835 struct btrfs_block_group *block_group;
4836 struct btrfs_space_info *space_info;
4837
4838 /*
4839 * Mixed block groups will exclude before processing the log so we only
4840 * need to do the exclude dance if this fs isn't mixed.
4841 */
4842 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4843 ret = __exclude_logged_extent(fs_info, ins->objectid,
4844 ins->offset);
4845 if (ret)
4846 return ret;
4847 }
4848
4849 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4850 if (!block_group)
4851 return -EINVAL;
4852
4853 space_info = block_group->space_info;
4854 spin_lock(&space_info->lock);
4855 spin_lock(&block_group->lock);
4856 space_info->bytes_reserved += ins->offset;
4857 block_group->reserved += ins->offset;
4858 spin_unlock(&block_group->lock);
4859 spin_unlock(&space_info->lock);
4860
4861 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4862 offset, ins, 1);
4863 if (ret)
4864 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4865 btrfs_put_block_group(block_group);
4866 return ret;
4867 }
4868
4869 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4870 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4871 u64 bytenr, int level, u64 owner,
4872 enum btrfs_lock_nesting nest)
4873 {
4874 struct btrfs_fs_info *fs_info = root->fs_info;
4875 struct extent_buffer *buf;
4876 u64 lockdep_owner = owner;
4877
4878 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4879 if (IS_ERR(buf))
4880 return buf;
4881
4882 /*
4883 * Extra safety check in case the extent tree is corrupted and extent
4884 * allocator chooses to use a tree block which is already used and
4885 * locked.
4886 */
4887 if (buf->lock_owner == current->pid) {
4888 btrfs_err_rl(fs_info,
4889 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4890 buf->start, btrfs_header_owner(buf), current->pid);
4891 free_extent_buffer(buf);
4892 return ERR_PTR(-EUCLEAN);
4893 }
4894
4895 /*
4896 * The reloc trees are just snapshots, so we need them to appear to be
4897 * just like any other fs tree WRT lockdep.
4898 *
4899 * The exception however is in replace_path() in relocation, where we
4900 * hold the lock on the original fs root and then search for the reloc
4901 * root. At that point we need to make sure any reloc root buffers are
4902 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4903 * lockdep happy.
4904 */
4905 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4906 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4907 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4908
4909 /* btrfs_clear_buffer_dirty() accesses generation field. */
4910 btrfs_set_header_generation(buf, trans->transid);
4911
4912 /*
4913 * This needs to stay, because we could allocate a freed block from an
4914 * old tree into a new tree, so we need to make sure this new block is
4915 * set to the appropriate level and owner.
4916 */
4917 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4918
4919 __btrfs_tree_lock(buf, nest);
4920 btrfs_clear_buffer_dirty(trans, buf);
4921 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4922 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4923
4924 set_extent_buffer_uptodate(buf);
4925
4926 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4927 btrfs_set_header_level(buf, level);
4928 btrfs_set_header_bytenr(buf, buf->start);
4929 btrfs_set_header_generation(buf, trans->transid);
4930 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4931 btrfs_set_header_owner(buf, owner);
4932 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4933 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4934 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4935 buf->log_index = root->log_transid % 2;
4936 /*
4937 * we allow two log transactions at a time, use different
4938 * EXTENT bit to differentiate dirty pages.
4939 */
4940 if (buf->log_index == 0)
4941 set_extent_bit(&root->dirty_log_pages, buf->start,
4942 buf->start + buf->len - 1,
4943 EXTENT_DIRTY, NULL);
4944 else
4945 set_extent_bit(&root->dirty_log_pages, buf->start,
4946 buf->start + buf->len - 1,
4947 EXTENT_NEW, NULL);
4948 } else {
4949 buf->log_index = -1;
4950 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4951 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4952 }
4953 /* this returns a buffer locked for blocking */
4954 return buf;
4955 }
4956
4957 /*
4958 * finds a free extent and does all the dirty work required for allocation
4959 * returns the tree buffer or an ERR_PTR on error.
4960 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4961 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4962 struct btrfs_root *root,
4963 u64 parent, u64 root_objectid,
4964 const struct btrfs_disk_key *key,
4965 int level, u64 hint,
4966 u64 empty_size,
4967 enum btrfs_lock_nesting nest)
4968 {
4969 struct btrfs_fs_info *fs_info = root->fs_info;
4970 struct btrfs_key ins;
4971 struct btrfs_block_rsv *block_rsv;
4972 struct extent_buffer *buf;
4973 struct btrfs_delayed_extent_op *extent_op;
4974 struct btrfs_ref generic_ref = { 0 };
4975 u64 flags = 0;
4976 int ret;
4977 u32 blocksize = fs_info->nodesize;
4978 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4979
4980 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4981 if (btrfs_is_testing(fs_info)) {
4982 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4983 level, root_objectid, nest);
4984 if (!IS_ERR(buf))
4985 root->alloc_bytenr += blocksize;
4986 return buf;
4987 }
4988 #endif
4989
4990 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4991 if (IS_ERR(block_rsv))
4992 return ERR_CAST(block_rsv);
4993
4994 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4995 empty_size, hint, &ins, 0, 0);
4996 if (ret)
4997 goto out_unuse;
4998
4999 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5000 root_objectid, nest);
5001 if (IS_ERR(buf)) {
5002 ret = PTR_ERR(buf);
5003 goto out_free_reserved;
5004 }
5005
5006 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5007 if (parent == 0)
5008 parent = ins.objectid;
5009 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5010 } else
5011 BUG_ON(parent > 0);
5012
5013 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5014 extent_op = btrfs_alloc_delayed_extent_op();
5015 if (!extent_op) {
5016 ret = -ENOMEM;
5017 goto out_free_buf;
5018 }
5019 if (key)
5020 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5021 else
5022 memset(&extent_op->key, 0, sizeof(extent_op->key));
5023 extent_op->flags_to_set = flags;
5024 extent_op->update_key = skinny_metadata ? false : true;
5025 extent_op->update_flags = true;
5026 extent_op->level = level;
5027
5028 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5029 ins.objectid, ins.offset, parent);
5030 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5031 root->root_key.objectid, false);
5032 btrfs_ref_tree_mod(fs_info, &generic_ref);
5033 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5034 if (ret)
5035 goto out_free_delayed;
5036 }
5037 return buf;
5038
5039 out_free_delayed:
5040 btrfs_free_delayed_extent_op(extent_op);
5041 out_free_buf:
5042 btrfs_tree_unlock(buf);
5043 free_extent_buffer(buf);
5044 out_free_reserved:
5045 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5046 out_unuse:
5047 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5048 return ERR_PTR(ret);
5049 }
5050
5051 struct walk_control {
5052 u64 refs[BTRFS_MAX_LEVEL];
5053 u64 flags[BTRFS_MAX_LEVEL];
5054 struct btrfs_key update_progress;
5055 struct btrfs_key drop_progress;
5056 int drop_level;
5057 int stage;
5058 int level;
5059 int shared_level;
5060 int update_ref;
5061 int keep_locks;
5062 int reada_slot;
5063 int reada_count;
5064 int restarted;
5065 };
5066
5067 #define DROP_REFERENCE 1
5068 #define UPDATE_BACKREF 2
5069
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5070 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5071 struct btrfs_root *root,
5072 struct walk_control *wc,
5073 struct btrfs_path *path)
5074 {
5075 struct btrfs_fs_info *fs_info = root->fs_info;
5076 u64 bytenr;
5077 u64 generation;
5078 u64 refs;
5079 u64 flags;
5080 u32 nritems;
5081 struct btrfs_key key;
5082 struct extent_buffer *eb;
5083 int ret;
5084 int slot;
5085 int nread = 0;
5086
5087 if (path->slots[wc->level] < wc->reada_slot) {
5088 wc->reada_count = wc->reada_count * 2 / 3;
5089 wc->reada_count = max(wc->reada_count, 2);
5090 } else {
5091 wc->reada_count = wc->reada_count * 3 / 2;
5092 wc->reada_count = min_t(int, wc->reada_count,
5093 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5094 }
5095
5096 eb = path->nodes[wc->level];
5097 nritems = btrfs_header_nritems(eb);
5098
5099 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5100 if (nread >= wc->reada_count)
5101 break;
5102
5103 cond_resched();
5104 bytenr = btrfs_node_blockptr(eb, slot);
5105 generation = btrfs_node_ptr_generation(eb, slot);
5106
5107 if (slot == path->slots[wc->level])
5108 goto reada;
5109
5110 if (wc->stage == UPDATE_BACKREF &&
5111 generation <= root->root_key.offset)
5112 continue;
5113
5114 /* We don't lock the tree block, it's OK to be racy here */
5115 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5116 wc->level - 1, 1, &refs,
5117 &flags);
5118 /* We don't care about errors in readahead. */
5119 if (ret < 0)
5120 continue;
5121
5122 /*
5123 * This could be racey, it's conceivable that we raced and end
5124 * up with a bogus refs count, if that's the case just skip, if
5125 * we are actually corrupt we will notice when we look up
5126 * everything again with our locks.
5127 */
5128 if (refs == 0)
5129 continue;
5130
5131 if (wc->stage == DROP_REFERENCE) {
5132 if (refs == 1)
5133 goto reada;
5134
5135 if (wc->level == 1 &&
5136 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5137 continue;
5138 if (!wc->update_ref ||
5139 generation <= root->root_key.offset)
5140 continue;
5141 btrfs_node_key_to_cpu(eb, &key, slot);
5142 ret = btrfs_comp_cpu_keys(&key,
5143 &wc->update_progress);
5144 if (ret < 0)
5145 continue;
5146 } else {
5147 if (wc->level == 1 &&
5148 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5149 continue;
5150 }
5151 reada:
5152 btrfs_readahead_node_child(eb, slot);
5153 nread++;
5154 }
5155 wc->reada_slot = slot;
5156 }
5157
5158 /*
5159 * helper to process tree block while walking down the tree.
5160 *
5161 * when wc->stage == UPDATE_BACKREF, this function updates
5162 * back refs for pointers in the block.
5163 *
5164 * NOTE: return value 1 means we should stop walking down.
5165 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5166 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5167 struct btrfs_root *root,
5168 struct btrfs_path *path,
5169 struct walk_control *wc, int lookup_info)
5170 {
5171 struct btrfs_fs_info *fs_info = root->fs_info;
5172 int level = wc->level;
5173 struct extent_buffer *eb = path->nodes[level];
5174 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5175 int ret;
5176
5177 if (wc->stage == UPDATE_BACKREF &&
5178 btrfs_header_owner(eb) != root->root_key.objectid)
5179 return 1;
5180
5181 /*
5182 * when reference count of tree block is 1, it won't increase
5183 * again. once full backref flag is set, we never clear it.
5184 */
5185 if (lookup_info &&
5186 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5187 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5188 ASSERT(path->locks[level]);
5189 ret = btrfs_lookup_extent_info(trans, fs_info,
5190 eb->start, level, 1,
5191 &wc->refs[level],
5192 &wc->flags[level]);
5193 if (ret)
5194 return ret;
5195 if (unlikely(wc->refs[level] == 0)) {
5196 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5197 eb->start);
5198 return -EUCLEAN;
5199 }
5200 }
5201
5202 if (wc->stage == DROP_REFERENCE) {
5203 if (wc->refs[level] > 1)
5204 return 1;
5205
5206 if (path->locks[level] && !wc->keep_locks) {
5207 btrfs_tree_unlock_rw(eb, path->locks[level]);
5208 path->locks[level] = 0;
5209 }
5210 return 0;
5211 }
5212
5213 /* wc->stage == UPDATE_BACKREF */
5214 if (!(wc->flags[level] & flag)) {
5215 ASSERT(path->locks[level]);
5216 ret = btrfs_inc_ref(trans, root, eb, 1);
5217 BUG_ON(ret); /* -ENOMEM */
5218 ret = btrfs_dec_ref(trans, root, eb, 0);
5219 BUG_ON(ret); /* -ENOMEM */
5220 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5221 BUG_ON(ret); /* -ENOMEM */
5222 wc->flags[level] |= flag;
5223 }
5224
5225 /*
5226 * the block is shared by multiple trees, so it's not good to
5227 * keep the tree lock
5228 */
5229 if (path->locks[level] && level > 0) {
5230 btrfs_tree_unlock_rw(eb, path->locks[level]);
5231 path->locks[level] = 0;
5232 }
5233 return 0;
5234 }
5235
5236 /*
5237 * This is used to verify a ref exists for this root to deal with a bug where we
5238 * would have a drop_progress key that hadn't been updated properly.
5239 */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5240 static int check_ref_exists(struct btrfs_trans_handle *trans,
5241 struct btrfs_root *root, u64 bytenr, u64 parent,
5242 int level)
5243 {
5244 struct btrfs_path *path;
5245 struct btrfs_extent_inline_ref *iref;
5246 int ret;
5247
5248 path = btrfs_alloc_path();
5249 if (!path)
5250 return -ENOMEM;
5251
5252 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5253 root->fs_info->nodesize, parent,
5254 root->root_key.objectid, level, 0);
5255 btrfs_free_path(path);
5256 if (ret == -ENOENT)
5257 return 0;
5258 if (ret < 0)
5259 return ret;
5260 return 1;
5261 }
5262
5263 /*
5264 * helper to process tree block pointer.
5265 *
5266 * when wc->stage == DROP_REFERENCE, this function checks
5267 * reference count of the block pointed to. if the block
5268 * is shared and we need update back refs for the subtree
5269 * rooted at the block, this function changes wc->stage to
5270 * UPDATE_BACKREF. if the block is shared and there is no
5271 * need to update back, this function drops the reference
5272 * to the block.
5273 *
5274 * NOTE: return value 1 means we should stop walking down.
5275 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5276 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5277 struct btrfs_root *root,
5278 struct btrfs_path *path,
5279 struct walk_control *wc, int *lookup_info)
5280 {
5281 struct btrfs_fs_info *fs_info = root->fs_info;
5282 u64 bytenr;
5283 u64 generation;
5284 u64 parent;
5285 struct btrfs_tree_parent_check check = { 0 };
5286 struct btrfs_key key;
5287 struct btrfs_ref ref = { 0 };
5288 struct extent_buffer *next;
5289 int level = wc->level;
5290 int reada = 0;
5291 int ret = 0;
5292 bool need_account = false;
5293
5294 generation = btrfs_node_ptr_generation(path->nodes[level],
5295 path->slots[level]);
5296 /*
5297 * if the lower level block was created before the snapshot
5298 * was created, we know there is no need to update back refs
5299 * for the subtree
5300 */
5301 if (wc->stage == UPDATE_BACKREF &&
5302 generation <= root->root_key.offset) {
5303 *lookup_info = 1;
5304 return 1;
5305 }
5306
5307 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5308
5309 check.level = level - 1;
5310 check.transid = generation;
5311 check.owner_root = root->root_key.objectid;
5312 check.has_first_key = true;
5313 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5314 path->slots[level]);
5315
5316 next = find_extent_buffer(fs_info, bytenr);
5317 if (!next) {
5318 next = btrfs_find_create_tree_block(fs_info, bytenr,
5319 root->root_key.objectid, level - 1);
5320 if (IS_ERR(next))
5321 return PTR_ERR(next);
5322 reada = 1;
5323 }
5324 btrfs_tree_lock(next);
5325
5326 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5327 &wc->refs[level - 1],
5328 &wc->flags[level - 1]);
5329 if (ret < 0)
5330 goto out_unlock;
5331
5332 if (unlikely(wc->refs[level - 1] == 0)) {
5333 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5334 bytenr);
5335 ret = -EUCLEAN;
5336 goto out_unlock;
5337 }
5338 *lookup_info = 0;
5339
5340 if (wc->stage == DROP_REFERENCE) {
5341 if (wc->refs[level - 1] > 1) {
5342 need_account = true;
5343 if (level == 1 &&
5344 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5345 goto skip;
5346
5347 if (!wc->update_ref ||
5348 generation <= root->root_key.offset)
5349 goto skip;
5350
5351 btrfs_node_key_to_cpu(path->nodes[level], &key,
5352 path->slots[level]);
5353 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5354 if (ret < 0)
5355 goto skip;
5356
5357 wc->stage = UPDATE_BACKREF;
5358 wc->shared_level = level - 1;
5359 }
5360 } else {
5361 if (level == 1 &&
5362 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5363 goto skip;
5364 }
5365
5366 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5367 btrfs_tree_unlock(next);
5368 free_extent_buffer(next);
5369 next = NULL;
5370 *lookup_info = 1;
5371 }
5372
5373 if (!next) {
5374 if (reada && level == 1)
5375 reada_walk_down(trans, root, wc, path);
5376 next = read_tree_block(fs_info, bytenr, &check);
5377 if (IS_ERR(next)) {
5378 return PTR_ERR(next);
5379 } else if (!extent_buffer_uptodate(next)) {
5380 free_extent_buffer(next);
5381 return -EIO;
5382 }
5383 btrfs_tree_lock(next);
5384 }
5385
5386 level--;
5387 ASSERT(level == btrfs_header_level(next));
5388 if (level != btrfs_header_level(next)) {
5389 btrfs_err(root->fs_info, "mismatched level");
5390 ret = -EIO;
5391 goto out_unlock;
5392 }
5393 path->nodes[level] = next;
5394 path->slots[level] = 0;
5395 path->locks[level] = BTRFS_WRITE_LOCK;
5396 wc->level = level;
5397 if (wc->level == 1)
5398 wc->reada_slot = 0;
5399 return 0;
5400 skip:
5401 wc->refs[level - 1] = 0;
5402 wc->flags[level - 1] = 0;
5403 if (wc->stage == DROP_REFERENCE) {
5404 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5405 parent = path->nodes[level]->start;
5406 } else {
5407 ASSERT(root->root_key.objectid ==
5408 btrfs_header_owner(path->nodes[level]));
5409 if (root->root_key.objectid !=
5410 btrfs_header_owner(path->nodes[level])) {
5411 btrfs_err(root->fs_info,
5412 "mismatched block owner");
5413 ret = -EIO;
5414 goto out_unlock;
5415 }
5416 parent = 0;
5417 }
5418
5419 /*
5420 * If we had a drop_progress we need to verify the refs are set
5421 * as expected. If we find our ref then we know that from here
5422 * on out everything should be correct, and we can clear the
5423 * ->restarted flag.
5424 */
5425 if (wc->restarted) {
5426 ret = check_ref_exists(trans, root, bytenr, parent,
5427 level - 1);
5428 if (ret < 0)
5429 goto out_unlock;
5430 if (ret == 0)
5431 goto no_delete;
5432 ret = 0;
5433 wc->restarted = 0;
5434 }
5435
5436 /*
5437 * Reloc tree doesn't contribute to qgroup numbers, and we have
5438 * already accounted them at merge time (replace_path),
5439 * thus we could skip expensive subtree trace here.
5440 */
5441 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5442 need_account) {
5443 ret = btrfs_qgroup_trace_subtree(trans, next,
5444 generation, level - 1);
5445 if (ret) {
5446 btrfs_err_rl(fs_info,
5447 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5448 ret);
5449 }
5450 }
5451
5452 /*
5453 * We need to update the next key in our walk control so we can
5454 * update the drop_progress key accordingly. We don't care if
5455 * find_next_key doesn't find a key because that means we're at
5456 * the end and are going to clean up now.
5457 */
5458 wc->drop_level = level;
5459 find_next_key(path, level, &wc->drop_progress);
5460
5461 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5462 fs_info->nodesize, parent);
5463 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5464 0, false);
5465 ret = btrfs_free_extent(trans, &ref);
5466 if (ret)
5467 goto out_unlock;
5468 }
5469 no_delete:
5470 *lookup_info = 1;
5471 ret = 1;
5472
5473 out_unlock:
5474 btrfs_tree_unlock(next);
5475 free_extent_buffer(next);
5476
5477 return ret;
5478 }
5479
5480 /*
5481 * helper to process tree block while walking up the tree.
5482 *
5483 * when wc->stage == DROP_REFERENCE, this function drops
5484 * reference count on the block.
5485 *
5486 * when wc->stage == UPDATE_BACKREF, this function changes
5487 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5488 * to UPDATE_BACKREF previously while processing the block.
5489 *
5490 * NOTE: return value 1 means we should stop walking up.
5491 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5492 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5493 struct btrfs_root *root,
5494 struct btrfs_path *path,
5495 struct walk_control *wc)
5496 {
5497 struct btrfs_fs_info *fs_info = root->fs_info;
5498 int ret = 0;
5499 int level = wc->level;
5500 struct extent_buffer *eb = path->nodes[level];
5501 u64 parent = 0;
5502
5503 if (wc->stage == UPDATE_BACKREF) {
5504 BUG_ON(wc->shared_level < level);
5505 if (level < wc->shared_level)
5506 goto out;
5507
5508 ret = find_next_key(path, level + 1, &wc->update_progress);
5509 if (ret > 0)
5510 wc->update_ref = 0;
5511
5512 wc->stage = DROP_REFERENCE;
5513 wc->shared_level = -1;
5514 path->slots[level] = 0;
5515
5516 /*
5517 * check reference count again if the block isn't locked.
5518 * we should start walking down the tree again if reference
5519 * count is one.
5520 */
5521 if (!path->locks[level]) {
5522 BUG_ON(level == 0);
5523 btrfs_tree_lock(eb);
5524 path->locks[level] = BTRFS_WRITE_LOCK;
5525
5526 ret = btrfs_lookup_extent_info(trans, fs_info,
5527 eb->start, level, 1,
5528 &wc->refs[level],
5529 &wc->flags[level]);
5530 if (ret < 0) {
5531 btrfs_tree_unlock_rw(eb, path->locks[level]);
5532 path->locks[level] = 0;
5533 return ret;
5534 }
5535 if (unlikely(wc->refs[level] == 0)) {
5536 btrfs_tree_unlock_rw(eb, path->locks[level]);
5537 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5538 eb->start);
5539 return -EUCLEAN;
5540 }
5541 if (wc->refs[level] == 1) {
5542 btrfs_tree_unlock_rw(eb, path->locks[level]);
5543 path->locks[level] = 0;
5544 return 1;
5545 }
5546 }
5547 }
5548
5549 /* wc->stage == DROP_REFERENCE */
5550 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5551
5552 if (wc->refs[level] == 1) {
5553 if (level == 0) {
5554 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5555 ret = btrfs_dec_ref(trans, root, eb, 1);
5556 else
5557 ret = btrfs_dec_ref(trans, root, eb, 0);
5558 if (ret) {
5559 btrfs_abort_transaction(trans, ret);
5560 return ret;
5561 }
5562 if (is_fstree(root->root_key.objectid)) {
5563 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5564 if (ret) {
5565 btrfs_err_rl(fs_info,
5566 "error %d accounting leaf items, quota is out of sync, rescan required",
5567 ret);
5568 }
5569 }
5570 }
5571 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5572 if (!path->locks[level]) {
5573 btrfs_tree_lock(eb);
5574 path->locks[level] = BTRFS_WRITE_LOCK;
5575 }
5576 btrfs_clear_buffer_dirty(trans, eb);
5577 }
5578
5579 if (eb == root->node) {
5580 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5581 parent = eb->start;
5582 else if (root->root_key.objectid != btrfs_header_owner(eb))
5583 goto owner_mismatch;
5584 } else {
5585 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5586 parent = path->nodes[level + 1]->start;
5587 else if (root->root_key.objectid !=
5588 btrfs_header_owner(path->nodes[level + 1]))
5589 goto owner_mismatch;
5590 }
5591
5592 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5593 wc->refs[level] == 1);
5594 if (ret < 0)
5595 btrfs_abort_transaction(trans, ret);
5596 out:
5597 wc->refs[level] = 0;
5598 wc->flags[level] = 0;
5599 return ret;
5600
5601 owner_mismatch:
5602 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5603 btrfs_header_owner(eb), root->root_key.objectid);
5604 return -EUCLEAN;
5605 }
5606
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5607 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5608 struct btrfs_root *root,
5609 struct btrfs_path *path,
5610 struct walk_control *wc)
5611 {
5612 int level = wc->level;
5613 int lookup_info = 1;
5614 int ret = 0;
5615
5616 while (level >= 0) {
5617 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5618 if (ret)
5619 break;
5620
5621 if (level == 0)
5622 break;
5623
5624 if (path->slots[level] >=
5625 btrfs_header_nritems(path->nodes[level]))
5626 break;
5627
5628 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5629 if (ret > 0) {
5630 path->slots[level]++;
5631 continue;
5632 } else if (ret < 0)
5633 break;
5634 level = wc->level;
5635 }
5636 return (ret == 1) ? 0 : ret;
5637 }
5638
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5639 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5640 struct btrfs_root *root,
5641 struct btrfs_path *path,
5642 struct walk_control *wc, int max_level)
5643 {
5644 int level = wc->level;
5645 int ret;
5646
5647 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5648 while (level < max_level && path->nodes[level]) {
5649 wc->level = level;
5650 if (path->slots[level] + 1 <
5651 btrfs_header_nritems(path->nodes[level])) {
5652 path->slots[level]++;
5653 return 0;
5654 } else {
5655 ret = walk_up_proc(trans, root, path, wc);
5656 if (ret > 0)
5657 return 0;
5658 if (ret < 0)
5659 return ret;
5660
5661 if (path->locks[level]) {
5662 btrfs_tree_unlock_rw(path->nodes[level],
5663 path->locks[level]);
5664 path->locks[level] = 0;
5665 }
5666 free_extent_buffer(path->nodes[level]);
5667 path->nodes[level] = NULL;
5668 level++;
5669 }
5670 }
5671 return 1;
5672 }
5673
5674 /*
5675 * drop a subvolume tree.
5676 *
5677 * this function traverses the tree freeing any blocks that only
5678 * referenced by the tree.
5679 *
5680 * when a shared tree block is found. this function decreases its
5681 * reference count by one. if update_ref is true, this function
5682 * also make sure backrefs for the shared block and all lower level
5683 * blocks are properly updated.
5684 *
5685 * If called with for_reloc == 0, may exit early with -EAGAIN
5686 */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5687 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5688 {
5689 const bool is_reloc_root = (root->root_key.objectid ==
5690 BTRFS_TREE_RELOC_OBJECTID);
5691 struct btrfs_fs_info *fs_info = root->fs_info;
5692 struct btrfs_path *path;
5693 struct btrfs_trans_handle *trans;
5694 struct btrfs_root *tree_root = fs_info->tree_root;
5695 struct btrfs_root_item *root_item = &root->root_item;
5696 struct walk_control *wc;
5697 struct btrfs_key key;
5698 int err = 0;
5699 int ret;
5700 int level;
5701 bool root_dropped = false;
5702 bool unfinished_drop = false;
5703
5704 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5705
5706 path = btrfs_alloc_path();
5707 if (!path) {
5708 err = -ENOMEM;
5709 goto out;
5710 }
5711
5712 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5713 if (!wc) {
5714 btrfs_free_path(path);
5715 err = -ENOMEM;
5716 goto out;
5717 }
5718
5719 /*
5720 * Use join to avoid potential EINTR from transaction start. See
5721 * wait_reserve_ticket and the whole reservation callchain.
5722 */
5723 if (for_reloc)
5724 trans = btrfs_join_transaction(tree_root);
5725 else
5726 trans = btrfs_start_transaction(tree_root, 0);
5727 if (IS_ERR(trans)) {
5728 err = PTR_ERR(trans);
5729 goto out_free;
5730 }
5731
5732 err = btrfs_run_delayed_items(trans);
5733 if (err)
5734 goto out_end_trans;
5735
5736 /*
5737 * This will help us catch people modifying the fs tree while we're
5738 * dropping it. It is unsafe to mess with the fs tree while it's being
5739 * dropped as we unlock the root node and parent nodes as we walk down
5740 * the tree, assuming nothing will change. If something does change
5741 * then we'll have stale information and drop references to blocks we've
5742 * already dropped.
5743 */
5744 set_bit(BTRFS_ROOT_DELETING, &root->state);
5745 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5746
5747 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5748 level = btrfs_header_level(root->node);
5749 path->nodes[level] = btrfs_lock_root_node(root);
5750 path->slots[level] = 0;
5751 path->locks[level] = BTRFS_WRITE_LOCK;
5752 memset(&wc->update_progress, 0,
5753 sizeof(wc->update_progress));
5754 } else {
5755 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5756 memcpy(&wc->update_progress, &key,
5757 sizeof(wc->update_progress));
5758
5759 level = btrfs_root_drop_level(root_item);
5760 BUG_ON(level == 0);
5761 path->lowest_level = level;
5762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5763 path->lowest_level = 0;
5764 if (ret < 0) {
5765 err = ret;
5766 goto out_end_trans;
5767 }
5768 WARN_ON(ret > 0);
5769
5770 /*
5771 * unlock our path, this is safe because only this
5772 * function is allowed to delete this snapshot
5773 */
5774 btrfs_unlock_up_safe(path, 0);
5775
5776 level = btrfs_header_level(root->node);
5777 while (1) {
5778 btrfs_tree_lock(path->nodes[level]);
5779 path->locks[level] = BTRFS_WRITE_LOCK;
5780
5781 ret = btrfs_lookup_extent_info(trans, fs_info,
5782 path->nodes[level]->start,
5783 level, 1, &wc->refs[level],
5784 &wc->flags[level]);
5785 if (ret < 0) {
5786 err = ret;
5787 goto out_end_trans;
5788 }
5789 BUG_ON(wc->refs[level] == 0);
5790
5791 if (level == btrfs_root_drop_level(root_item))
5792 break;
5793
5794 btrfs_tree_unlock(path->nodes[level]);
5795 path->locks[level] = 0;
5796 WARN_ON(wc->refs[level] != 1);
5797 level--;
5798 }
5799 }
5800
5801 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5802 wc->level = level;
5803 wc->shared_level = -1;
5804 wc->stage = DROP_REFERENCE;
5805 wc->update_ref = update_ref;
5806 wc->keep_locks = 0;
5807 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5808
5809 while (1) {
5810
5811 ret = walk_down_tree(trans, root, path, wc);
5812 if (ret < 0) {
5813 btrfs_abort_transaction(trans, ret);
5814 err = ret;
5815 break;
5816 }
5817
5818 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5819 if (ret < 0) {
5820 btrfs_abort_transaction(trans, ret);
5821 err = ret;
5822 break;
5823 }
5824
5825 if (ret > 0) {
5826 BUG_ON(wc->stage != DROP_REFERENCE);
5827 break;
5828 }
5829
5830 if (wc->stage == DROP_REFERENCE) {
5831 wc->drop_level = wc->level;
5832 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5833 &wc->drop_progress,
5834 path->slots[wc->drop_level]);
5835 }
5836 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5837 &wc->drop_progress);
5838 btrfs_set_root_drop_level(root_item, wc->drop_level);
5839
5840 BUG_ON(wc->level == 0);
5841 if (btrfs_should_end_transaction(trans) ||
5842 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5843 ret = btrfs_update_root(trans, tree_root,
5844 &root->root_key,
5845 root_item);
5846 if (ret) {
5847 btrfs_abort_transaction(trans, ret);
5848 err = ret;
5849 goto out_end_trans;
5850 }
5851
5852 if (!is_reloc_root)
5853 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5854
5855 btrfs_end_transaction_throttle(trans);
5856 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5857 btrfs_debug(fs_info,
5858 "drop snapshot early exit");
5859 err = -EAGAIN;
5860 goto out_free;
5861 }
5862
5863 /*
5864 * Use join to avoid potential EINTR from transaction
5865 * start. See wait_reserve_ticket and the whole
5866 * reservation callchain.
5867 */
5868 if (for_reloc)
5869 trans = btrfs_join_transaction(tree_root);
5870 else
5871 trans = btrfs_start_transaction(tree_root, 0);
5872 if (IS_ERR(trans)) {
5873 err = PTR_ERR(trans);
5874 goto out_free;
5875 }
5876 }
5877 }
5878 btrfs_release_path(path);
5879 if (err)
5880 goto out_end_trans;
5881
5882 ret = btrfs_del_root(trans, &root->root_key);
5883 if (ret) {
5884 btrfs_abort_transaction(trans, ret);
5885 err = ret;
5886 goto out_end_trans;
5887 }
5888
5889 if (!is_reloc_root) {
5890 ret = btrfs_find_root(tree_root, &root->root_key, path,
5891 NULL, NULL);
5892 if (ret < 0) {
5893 btrfs_abort_transaction(trans, ret);
5894 err = ret;
5895 goto out_end_trans;
5896 } else if (ret > 0) {
5897 /* if we fail to delete the orphan item this time
5898 * around, it'll get picked up the next time.
5899 *
5900 * The most common failure here is just -ENOENT.
5901 */
5902 btrfs_del_orphan_item(trans, tree_root,
5903 root->root_key.objectid);
5904 }
5905 }
5906
5907 /*
5908 * This subvolume is going to be completely dropped, and won't be
5909 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5910 * commit transaction time. So free it here manually.
5911 */
5912 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5913 btrfs_qgroup_free_meta_all_pertrans(root);
5914
5915 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5916 btrfs_add_dropped_root(trans, root);
5917 else
5918 btrfs_put_root(root);
5919 root_dropped = true;
5920 out_end_trans:
5921 if (!is_reloc_root)
5922 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5923
5924 btrfs_end_transaction_throttle(trans);
5925 out_free:
5926 kfree(wc);
5927 btrfs_free_path(path);
5928 out:
5929 /*
5930 * We were an unfinished drop root, check to see if there are any
5931 * pending, and if not clear and wake up any waiters.
5932 */
5933 if (!err && unfinished_drop)
5934 btrfs_maybe_wake_unfinished_drop(fs_info);
5935
5936 /*
5937 * So if we need to stop dropping the snapshot for whatever reason we
5938 * need to make sure to add it back to the dead root list so that we
5939 * keep trying to do the work later. This also cleans up roots if we
5940 * don't have it in the radix (like when we recover after a power fail
5941 * or unmount) so we don't leak memory.
5942 */
5943 if (!for_reloc && !root_dropped)
5944 btrfs_add_dead_root(root);
5945 return err;
5946 }
5947
5948 /*
5949 * drop subtree rooted at tree block 'node'.
5950 *
5951 * NOTE: this function will unlock and release tree block 'node'
5952 * only used by relocation code
5953 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5954 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5955 struct btrfs_root *root,
5956 struct extent_buffer *node,
5957 struct extent_buffer *parent)
5958 {
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct btrfs_path *path;
5961 struct walk_control *wc;
5962 int level;
5963 int parent_level;
5964 int ret = 0;
5965 int wret;
5966
5967 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5968
5969 path = btrfs_alloc_path();
5970 if (!path)
5971 return -ENOMEM;
5972
5973 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5974 if (!wc) {
5975 btrfs_free_path(path);
5976 return -ENOMEM;
5977 }
5978
5979 btrfs_assert_tree_write_locked(parent);
5980 parent_level = btrfs_header_level(parent);
5981 atomic_inc(&parent->refs);
5982 path->nodes[parent_level] = parent;
5983 path->slots[parent_level] = btrfs_header_nritems(parent);
5984
5985 btrfs_assert_tree_write_locked(node);
5986 level = btrfs_header_level(node);
5987 path->nodes[level] = node;
5988 path->slots[level] = 0;
5989 path->locks[level] = BTRFS_WRITE_LOCK;
5990
5991 wc->refs[parent_level] = 1;
5992 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5993 wc->level = level;
5994 wc->shared_level = -1;
5995 wc->stage = DROP_REFERENCE;
5996 wc->update_ref = 0;
5997 wc->keep_locks = 1;
5998 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5999
6000 while (1) {
6001 wret = walk_down_tree(trans, root, path, wc);
6002 if (wret < 0) {
6003 ret = wret;
6004 break;
6005 }
6006
6007 wret = walk_up_tree(trans, root, path, wc, parent_level);
6008 if (wret < 0)
6009 ret = wret;
6010 if (wret != 0)
6011 break;
6012 }
6013
6014 kfree(wc);
6015 btrfs_free_path(path);
6016 return ret;
6017 }
6018
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)6019 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6020 u64 start, u64 end)
6021 {
6022 return unpin_extent_range(fs_info, start, end, false);
6023 }
6024
6025 /*
6026 * It used to be that old block groups would be left around forever.
6027 * Iterating over them would be enough to trim unused space. Since we
6028 * now automatically remove them, we also need to iterate over unallocated
6029 * space.
6030 *
6031 * We don't want a transaction for this since the discard may take a
6032 * substantial amount of time. We don't require that a transaction be
6033 * running, but we do need to take a running transaction into account
6034 * to ensure that we're not discarding chunks that were released or
6035 * allocated in the current transaction.
6036 *
6037 * Holding the chunks lock will prevent other threads from allocating
6038 * or releasing chunks, but it won't prevent a running transaction
6039 * from committing and releasing the memory that the pending chunks
6040 * list head uses. For that, we need to take a reference to the
6041 * transaction and hold the commit root sem. We only need to hold
6042 * it while performing the free space search since we have already
6043 * held back allocations.
6044 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)6045 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6046 {
6047 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6048 int ret;
6049
6050 *trimmed = 0;
6051
6052 /* Discard not supported = nothing to do. */
6053 if (!bdev_max_discard_sectors(device->bdev))
6054 return 0;
6055
6056 /* Not writable = nothing to do. */
6057 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6058 return 0;
6059
6060 /* No free space = nothing to do. */
6061 if (device->total_bytes <= device->bytes_used)
6062 return 0;
6063
6064 ret = 0;
6065
6066 while (1) {
6067 struct btrfs_fs_info *fs_info = device->fs_info;
6068 u64 bytes;
6069
6070 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6071 if (ret)
6072 break;
6073
6074 find_first_clear_extent_bit(&device->alloc_state, start,
6075 &start, &end,
6076 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6077
6078 /* Check if there are any CHUNK_* bits left */
6079 if (start > device->total_bytes) {
6080 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6081 btrfs_warn_in_rcu(fs_info,
6082 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6083 start, end - start + 1,
6084 btrfs_dev_name(device),
6085 device->total_bytes);
6086 mutex_unlock(&fs_info->chunk_mutex);
6087 ret = 0;
6088 break;
6089 }
6090
6091 /* Ensure we skip the reserved space on each device. */
6092 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6093
6094 /*
6095 * If find_first_clear_extent_bit find a range that spans the
6096 * end of the device it will set end to -1, in this case it's up
6097 * to the caller to trim the value to the size of the device.
6098 */
6099 end = min(end, device->total_bytes - 1);
6100
6101 len = end - start + 1;
6102
6103 /* We didn't find any extents */
6104 if (!len) {
6105 mutex_unlock(&fs_info->chunk_mutex);
6106 ret = 0;
6107 break;
6108 }
6109
6110 ret = btrfs_issue_discard(device->bdev, start, len,
6111 &bytes);
6112 if (!ret)
6113 set_extent_bit(&device->alloc_state, start,
6114 start + bytes - 1, CHUNK_TRIMMED, NULL);
6115 mutex_unlock(&fs_info->chunk_mutex);
6116
6117 if (ret)
6118 break;
6119
6120 start += len;
6121 *trimmed += bytes;
6122
6123 if (btrfs_trim_interrupted()) {
6124 ret = -ERESTARTSYS;
6125 break;
6126 }
6127
6128 cond_resched();
6129 }
6130
6131 return ret;
6132 }
6133
6134 /*
6135 * Trim the whole filesystem by:
6136 * 1) trimming the free space in each block group
6137 * 2) trimming the unallocated space on each device
6138 *
6139 * This will also continue trimming even if a block group or device encounters
6140 * an error. The return value will be the last error, or 0 if nothing bad
6141 * happens.
6142 */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6143 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6144 {
6145 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6146 struct btrfs_block_group *cache = NULL;
6147 struct btrfs_device *device;
6148 u64 group_trimmed;
6149 u64 range_end = U64_MAX;
6150 u64 start;
6151 u64 end;
6152 u64 trimmed = 0;
6153 u64 bg_failed = 0;
6154 u64 dev_failed = 0;
6155 int bg_ret = 0;
6156 int dev_ret = 0;
6157 int ret = 0;
6158
6159 if (range->start == U64_MAX)
6160 return -EINVAL;
6161
6162 /*
6163 * Check range overflow if range->len is set.
6164 * The default range->len is U64_MAX.
6165 */
6166 if (range->len != U64_MAX &&
6167 check_add_overflow(range->start, range->len, &range_end))
6168 return -EINVAL;
6169
6170 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6171 for (; cache; cache = btrfs_next_block_group(cache)) {
6172 if (cache->start >= range_end) {
6173 btrfs_put_block_group(cache);
6174 break;
6175 }
6176
6177 start = max(range->start, cache->start);
6178 end = min(range_end, cache->start + cache->length);
6179
6180 if (end - start >= range->minlen) {
6181 if (!btrfs_block_group_done(cache)) {
6182 ret = btrfs_cache_block_group(cache, true);
6183 if (ret) {
6184 bg_failed++;
6185 bg_ret = ret;
6186 continue;
6187 }
6188 }
6189 ret = btrfs_trim_block_group(cache,
6190 &group_trimmed,
6191 start,
6192 end,
6193 range->minlen);
6194
6195 trimmed += group_trimmed;
6196 if (ret) {
6197 bg_failed++;
6198 bg_ret = ret;
6199 continue;
6200 }
6201 }
6202 }
6203
6204 if (bg_failed)
6205 btrfs_warn(fs_info,
6206 "failed to trim %llu block group(s), last error %d",
6207 bg_failed, bg_ret);
6208
6209 mutex_lock(&fs_devices->device_list_mutex);
6210 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6211 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6212 continue;
6213
6214 ret = btrfs_trim_free_extents(device, &group_trimmed);
6215
6216 trimmed += group_trimmed;
6217 if (ret) {
6218 dev_failed++;
6219 dev_ret = ret;
6220 break;
6221 }
6222 }
6223 mutex_unlock(&fs_devices->device_list_mutex);
6224
6225 if (dev_failed)
6226 btrfs_warn(fs_info,
6227 "failed to trim %llu device(s), last error %d",
6228 dev_failed, dev_ret);
6229 range->len = trimmed;
6230 if (bg_ret)
6231 return bg_ret;
6232 return dev_ret;
6233 }
6234