xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 46ac4e1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
block_group_bits(struct btrfs_block_group * cache,u64 bits)67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len)73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 	int ret;
77 	struct btrfs_key key;
78 	struct btrfs_path *path;
79 
80 	path = btrfs_alloc_path();
81 	if (!path)
82 		return -ENOMEM;
83 
84 	key.objectid = start;
85 	key.offset = len;
86 	key.type = BTRFS_EXTENT_ITEM_KEY;
87 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 	btrfs_free_path(path);
89 	return ret;
90 }
91 
92 /*
93  * helper function to lookup reference count and flags of a tree block.
94  *
95  * the head node for delayed ref is used to store the sum of all the
96  * reference count modifications queued up in the rbtree. the head
97  * node may also store the extent flags to set. This way you can check
98  * to see what the reference count and extent flags would be if all of
99  * the delayed refs are not processed.
100  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 			     struct btrfs_fs_info *fs_info, u64 bytenr,
103 			     u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 	struct btrfs_root *extent_root;
106 	struct btrfs_delayed_ref_head *head;
107 	struct btrfs_delayed_ref_root *delayed_refs;
108 	struct btrfs_path *path;
109 	struct btrfs_extent_item *ei;
110 	struct extent_buffer *leaf;
111 	struct btrfs_key key;
112 	u32 item_size;
113 	u64 num_refs;
114 	u64 extent_flags;
115 	int ret;
116 
117 	/*
118 	 * If we don't have skinny metadata, don't bother doing anything
119 	 * different
120 	 */
121 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 		offset = fs_info->nodesize;
123 		metadata = 0;
124 	}
125 
126 	path = btrfs_alloc_path();
127 	if (!path)
128 		return -ENOMEM;
129 
130 	if (!trans) {
131 		path->skip_locking = 1;
132 		path->search_commit_root = 1;
133 	}
134 
135 search_again:
136 	key.objectid = bytenr;
137 	key.offset = offset;
138 	if (metadata)
139 		key.type = BTRFS_METADATA_ITEM_KEY;
140 	else
141 		key.type = BTRFS_EXTENT_ITEM_KEY;
142 
143 	extent_root = btrfs_extent_root(fs_info, bytenr);
144 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 	if (ret < 0)
146 		goto out_free;
147 
148 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 		if (path->slots[0]) {
150 			path->slots[0]--;
151 			btrfs_item_key_to_cpu(path->nodes[0], &key,
152 					      path->slots[0]);
153 			if (key.objectid == bytenr &&
154 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
155 			    key.offset == fs_info->nodesize)
156 				ret = 0;
157 		}
158 	}
159 
160 	if (ret == 0) {
161 		leaf = path->nodes[0];
162 		item_size = btrfs_item_size(leaf, path->slots[0]);
163 		if (item_size >= sizeof(*ei)) {
164 			ei = btrfs_item_ptr(leaf, path->slots[0],
165 					    struct btrfs_extent_item);
166 			num_refs = btrfs_extent_refs(leaf, ei);
167 			extent_flags = btrfs_extent_flags(leaf, ei);
168 		} else {
169 			ret = -EUCLEAN;
170 			btrfs_err(fs_info,
171 			"unexpected extent item size, has %u expect >= %zu",
172 				  item_size, sizeof(*ei));
173 			if (trans)
174 				btrfs_abort_transaction(trans, ret);
175 			else
176 				btrfs_handle_fs_error(fs_info, ret, NULL);
177 
178 			goto out_free;
179 		}
180 
181 		BUG_ON(num_refs == 0);
182 	} else {
183 		num_refs = 0;
184 		extent_flags = 0;
185 		ret = 0;
186 	}
187 
188 	if (!trans)
189 		goto out;
190 
191 	delayed_refs = &trans->transaction->delayed_refs;
192 	spin_lock(&delayed_refs->lock);
193 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 	if (head) {
195 		if (!mutex_trylock(&head->mutex)) {
196 			refcount_inc(&head->refs);
197 			spin_unlock(&delayed_refs->lock);
198 
199 			btrfs_release_path(path);
200 
201 			/*
202 			 * Mutex was contended, block until it's released and try
203 			 * again
204 			 */
205 			mutex_lock(&head->mutex);
206 			mutex_unlock(&head->mutex);
207 			btrfs_put_delayed_ref_head(head);
208 			goto search_again;
209 		}
210 		spin_lock(&head->lock);
211 		if (head->extent_op && head->extent_op->update_flags)
212 			extent_flags |= head->extent_op->flags_to_set;
213 		else
214 			BUG_ON(num_refs == 0);
215 
216 		num_refs += head->ref_mod;
217 		spin_unlock(&head->lock);
218 		mutex_unlock(&head->mutex);
219 	}
220 	spin_unlock(&delayed_refs->lock);
221 out:
222 	WARN_ON(num_refs == 0);
223 	if (refs)
224 		*refs = num_refs;
225 	if (flags)
226 		*flags = extent_flags;
227 out_free:
228 	btrfs_free_path(path);
229 	return ret;
230 }
231 
232 /*
233  * Back reference rules.  Back refs have three main goals:
234  *
235  * 1) differentiate between all holders of references to an extent so that
236  *    when a reference is dropped we can make sure it was a valid reference
237  *    before freeing the extent.
238  *
239  * 2) Provide enough information to quickly find the holders of an extent
240  *    if we notice a given block is corrupted or bad.
241  *
242  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243  *    maintenance.  This is actually the same as #2, but with a slightly
244  *    different use case.
245  *
246  * There are two kinds of back refs. The implicit back refs is optimized
247  * for pointers in non-shared tree blocks. For a given pointer in a block,
248  * back refs of this kind provide information about the block's owner tree
249  * and the pointer's key. These information allow us to find the block by
250  * b-tree searching. The full back refs is for pointers in tree blocks not
251  * referenced by their owner trees. The location of tree block is recorded
252  * in the back refs. Actually the full back refs is generic, and can be
253  * used in all cases the implicit back refs is used. The major shortcoming
254  * of the full back refs is its overhead. Every time a tree block gets
255  * COWed, we have to update back refs entry for all pointers in it.
256  *
257  * For a newly allocated tree block, we use implicit back refs for
258  * pointers in it. This means most tree related operations only involve
259  * implicit back refs. For a tree block created in old transaction, the
260  * only way to drop a reference to it is COW it. So we can detect the
261  * event that tree block loses its owner tree's reference and do the
262  * back refs conversion.
263  *
264  * When a tree block is COWed through a tree, there are four cases:
265  *
266  * The reference count of the block is one and the tree is the block's
267  * owner tree. Nothing to do in this case.
268  *
269  * The reference count of the block is one and the tree is not the
270  * block's owner tree. In this case, full back refs is used for pointers
271  * in the block. Remove these full back refs, add implicit back refs for
272  * every pointers in the new block.
273  *
274  * The reference count of the block is greater than one and the tree is
275  * the block's owner tree. In this case, implicit back refs is used for
276  * pointers in the block. Add full back refs for every pointers in the
277  * block, increase lower level extents' reference counts. The original
278  * implicit back refs are entailed to the new block.
279  *
280  * The reference count of the block is greater than one and the tree is
281  * not the block's owner tree. Add implicit back refs for every pointer in
282  * the new block, increase lower level extents' reference count.
283  *
284  * Back Reference Key composing:
285  *
286  * The key objectid corresponds to the first byte in the extent,
287  * The key type is used to differentiate between types of back refs.
288  * There are different meanings of the key offset for different types
289  * of back refs.
290  *
291  * File extents can be referenced by:
292  *
293  * - multiple snapshots, subvolumes, or different generations in one subvol
294  * - different files inside a single subvolume
295  * - different offsets inside a file (bookend extents in file.c)
296  *
297  * The extent ref structure for the implicit back refs has fields for:
298  *
299  * - Objectid of the subvolume root
300  * - objectid of the file holding the reference
301  * - original offset in the file
302  * - how many bookend extents
303  *
304  * The key offset for the implicit back refs is hash of the first
305  * three fields.
306  *
307  * The extent ref structure for the full back refs has field for:
308  *
309  * - number of pointers in the tree leaf
310  *
311  * The key offset for the implicit back refs is the first byte of
312  * the tree leaf
313  *
314  * When a file extent is allocated, The implicit back refs is used.
315  * the fields are filled in:
316  *
317  *     (root_key.objectid, inode objectid, offset in file, 1)
318  *
319  * When a file extent is removed file truncation, we find the
320  * corresponding implicit back refs and check the following fields:
321  *
322  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
323  *
324  * Btree extents can be referenced by:
325  *
326  * - Different subvolumes
327  *
328  * Both the implicit back refs and the full back refs for tree blocks
329  * only consist of key. The key offset for the implicit back refs is
330  * objectid of block's owner tree. The key offset for the full back refs
331  * is the first byte of parent block.
332  *
333  * When implicit back refs is used, information about the lowest key and
334  * level of the tree block are required. These information are stored in
335  * tree block info structure.
336  */
337 
338 /*
339  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342  */
btrfs_get_extent_inline_ref_type(const struct extent_buffer * eb,struct btrfs_extent_inline_ref * iref,enum btrfs_inline_ref_type is_data)343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 				     struct btrfs_extent_inline_ref *iref,
345 				     enum btrfs_inline_ref_type is_data)
346 {
347 	int type = btrfs_extent_inline_ref_type(eb, iref);
348 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349 
350 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 	    type == BTRFS_SHARED_DATA_REF_KEY ||
353 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
354 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 				return type;
357 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 				ASSERT(eb->fs_info);
359 				/*
360 				 * Every shared one has parent tree block,
361 				 * which must be aligned to sector size.
362 				 */
363 				if (offset &&
364 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 					return type;
366 			}
367 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
368 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else {
381 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 			return type;
383 		}
384 	}
385 
386 	WARN_ON(1);
387 	btrfs_print_leaf(eb);
388 	btrfs_err(eb->fs_info,
389 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 		  eb->start, (unsigned long)iref, type);
391 
392 	return BTRFS_REF_TYPE_INVALID;
393 }
394 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 	u32 high_crc = ~(u32)0;
398 	u32 low_crc = ~(u32)0;
399 	__le64 lenum;
400 
401 	lenum = cpu_to_le64(root_objectid);
402 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 	lenum = cpu_to_le64(owner);
404 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 	lenum = cpu_to_le64(offset);
406 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407 
408 	return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 				     struct btrfs_extent_data_ref *ref)
413 {
414 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 				    btrfs_extent_data_ref_objectid(leaf, ref),
416 				    btrfs_extent_data_ref_offset(leaf, ref));
417 }
418 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 				 struct btrfs_extent_data_ref *ref,
421 				 u64 root_objectid, u64 owner, u64 offset)
422 {
423 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 		return 0;
427 	return 1;
428 }
429 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 					   struct btrfs_path *path,
432 					   u64 bytenr, u64 parent,
433 					   u64 root_objectid,
434 					   u64 owner, u64 offset)
435 {
436 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 	struct btrfs_key key;
438 	struct btrfs_extent_data_ref *ref;
439 	struct extent_buffer *leaf;
440 	u32 nritems;
441 	int ret;
442 	int recow;
443 	int err = -ENOENT;
444 
445 	key.objectid = bytenr;
446 	if (parent) {
447 		key.type = BTRFS_SHARED_DATA_REF_KEY;
448 		key.offset = parent;
449 	} else {
450 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 		key.offset = hash_extent_data_ref(root_objectid,
452 						  owner, offset);
453 	}
454 again:
455 	recow = 0;
456 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 	if (ret < 0) {
458 		err = ret;
459 		goto fail;
460 	}
461 
462 	if (parent) {
463 		if (!ret)
464 			return 0;
465 		goto fail;
466 	}
467 
468 	leaf = path->nodes[0];
469 	nritems = btrfs_header_nritems(leaf);
470 	while (1) {
471 		if (path->slots[0] >= nritems) {
472 			ret = btrfs_next_leaf(root, path);
473 			if (ret < 0)
474 				err = ret;
475 			if (ret)
476 				goto fail;
477 
478 			leaf = path->nodes[0];
479 			nritems = btrfs_header_nritems(leaf);
480 			recow = 1;
481 		}
482 
483 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 		if (key.objectid != bytenr ||
485 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 			goto fail;
487 
488 		ref = btrfs_item_ptr(leaf, path->slots[0],
489 				     struct btrfs_extent_data_ref);
490 
491 		if (match_extent_data_ref(leaf, ref, root_objectid,
492 					  owner, offset)) {
493 			if (recow) {
494 				btrfs_release_path(path);
495 				goto again;
496 			}
497 			err = 0;
498 			break;
499 		}
500 		path->slots[0]++;
501 	}
502 fail:
503 	return err;
504 }
505 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 					   struct btrfs_path *path,
508 					   u64 bytenr, u64 parent,
509 					   u64 root_objectid, u64 owner,
510 					   u64 offset, int refs_to_add)
511 {
512 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 	struct btrfs_key key;
514 	struct extent_buffer *leaf;
515 	u32 size;
516 	u32 num_refs;
517 	int ret;
518 
519 	key.objectid = bytenr;
520 	if (parent) {
521 		key.type = BTRFS_SHARED_DATA_REF_KEY;
522 		key.offset = parent;
523 		size = sizeof(struct btrfs_shared_data_ref);
524 	} else {
525 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 		key.offset = hash_extent_data_ref(root_objectid,
527 						  owner, offset);
528 		size = sizeof(struct btrfs_extent_data_ref);
529 	}
530 
531 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 	if (ret && ret != -EEXIST)
533 		goto fail;
534 
535 	leaf = path->nodes[0];
536 	if (parent) {
537 		struct btrfs_shared_data_ref *ref;
538 		ref = btrfs_item_ptr(leaf, path->slots[0],
539 				     struct btrfs_shared_data_ref);
540 		if (ret == 0) {
541 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 		} else {
543 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 			num_refs += refs_to_add;
545 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 		}
547 	} else {
548 		struct btrfs_extent_data_ref *ref;
549 		while (ret == -EEXIST) {
550 			ref = btrfs_item_ptr(leaf, path->slots[0],
551 					     struct btrfs_extent_data_ref);
552 			if (match_extent_data_ref(leaf, ref, root_objectid,
553 						  owner, offset))
554 				break;
555 			btrfs_release_path(path);
556 			key.offset++;
557 			ret = btrfs_insert_empty_item(trans, root, path, &key,
558 						      size);
559 			if (ret && ret != -EEXIST)
560 				goto fail;
561 
562 			leaf = path->nodes[0];
563 		}
564 		ref = btrfs_item_ptr(leaf, path->slots[0],
565 				     struct btrfs_extent_data_ref);
566 		if (ret == 0) {
567 			btrfs_set_extent_data_ref_root(leaf, ref,
568 						       root_objectid);
569 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 		} else {
573 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 			num_refs += refs_to_add;
575 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 		}
577 	}
578 	btrfs_mark_buffer_dirty(trans, leaf);
579 	ret = 0;
580 fail:
581 	btrfs_release_path(path);
582 	return ret;
583 }
584 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop)585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 					   struct btrfs_root *root,
587 					   struct btrfs_path *path,
588 					   int refs_to_drop)
589 {
590 	struct btrfs_key key;
591 	struct btrfs_extent_data_ref *ref1 = NULL;
592 	struct btrfs_shared_data_ref *ref2 = NULL;
593 	struct extent_buffer *leaf;
594 	u32 num_refs = 0;
595 	int ret = 0;
596 
597 	leaf = path->nodes[0];
598 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599 
600 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 				      struct btrfs_extent_data_ref);
603 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 				      struct btrfs_shared_data_ref);
607 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 	} else {
609 		btrfs_err(trans->fs_info,
610 			  "unrecognized backref key (%llu %u %llu)",
611 			  key.objectid, key.type, key.offset);
612 		btrfs_abort_transaction(trans, -EUCLEAN);
613 		return -EUCLEAN;
614 	}
615 
616 	BUG_ON(num_refs < refs_to_drop);
617 	num_refs -= refs_to_drop;
618 
619 	if (num_refs == 0) {
620 		ret = btrfs_del_item(trans, root, path);
621 	} else {
622 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 		btrfs_mark_buffer_dirty(trans, leaf);
627 	}
628 	return ret;
629 }
630 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 					  struct btrfs_extent_inline_ref *iref)
633 {
634 	struct btrfs_key key;
635 	struct extent_buffer *leaf;
636 	struct btrfs_extent_data_ref *ref1;
637 	struct btrfs_shared_data_ref *ref2;
638 	u32 num_refs = 0;
639 	int type;
640 
641 	leaf = path->nodes[0];
642 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643 
644 	if (iref) {
645 		/*
646 		 * If type is invalid, we should have bailed out earlier than
647 		 * this call.
648 		 */
649 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 		} else {
655 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 		}
658 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 				      struct btrfs_extent_data_ref);
661 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 				      struct btrfs_shared_data_ref);
665 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 	} else {
667 		WARN_ON(1);
668 	}
669 	return num_refs;
670 }
671 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 					  struct btrfs_path *path,
674 					  u64 bytenr, u64 parent,
675 					  u64 root_objectid)
676 {
677 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 	struct btrfs_key key;
679 	int ret;
680 
681 	key.objectid = bytenr;
682 	if (parent) {
683 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 		key.offset = parent;
685 	} else {
686 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 		key.offset = root_objectid;
688 	}
689 
690 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 	if (ret > 0)
692 		ret = -ENOENT;
693 	return ret;
694 }
695 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 					  struct btrfs_path *path,
698 					  u64 bytenr, u64 parent,
699 					  u64 root_objectid)
700 {
701 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 	struct btrfs_key key;
703 	int ret;
704 
705 	key.objectid = bytenr;
706 	if (parent) {
707 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 		key.offset = parent;
709 	} else {
710 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 		key.offset = root_objectid;
712 	}
713 
714 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 	btrfs_release_path(path);
716 	return ret;
717 }
718 
extent_ref_type(u64 parent,u64 owner)719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 	int type;
722 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 		if (parent > 0)
724 			type = BTRFS_SHARED_BLOCK_REF_KEY;
725 		else
726 			type = BTRFS_TREE_BLOCK_REF_KEY;
727 	} else {
728 		if (parent > 0)
729 			type = BTRFS_SHARED_DATA_REF_KEY;
730 		else
731 			type = BTRFS_EXTENT_DATA_REF_KEY;
732 	}
733 	return type;
734 }
735 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)736 static int find_next_key(struct btrfs_path *path, int level,
737 			 struct btrfs_key *key)
738 
739 {
740 	for (; level < BTRFS_MAX_LEVEL; level++) {
741 		if (!path->nodes[level])
742 			break;
743 		if (path->slots[level] + 1 >=
744 		    btrfs_header_nritems(path->nodes[level]))
745 			continue;
746 		if (level == 0)
747 			btrfs_item_key_to_cpu(path->nodes[level], key,
748 					      path->slots[level] + 1);
749 		else
750 			btrfs_node_key_to_cpu(path->nodes[level], key,
751 					      path->slots[level] + 1);
752 		return 0;
753 	}
754 	return 1;
755 }
756 
757 /*
758  * look for inline back ref. if back ref is found, *ref_ret is set
759  * to the address of inline back ref, and 0 is returned.
760  *
761  * if back ref isn't found, *ref_ret is set to the address where it
762  * should be inserted, and -ENOENT is returned.
763  *
764  * if insert is true and there are too many inline back refs, the path
765  * points to the extent item, and -EAGAIN is returned.
766  *
767  * NOTE: inline back refs are ordered in the same way that back ref
768  *	 items in the tree are ordered.
769  */
770 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 				 struct btrfs_path *path,
773 				 struct btrfs_extent_inline_ref **ref_ret,
774 				 u64 bytenr, u64 num_bytes,
775 				 u64 parent, u64 root_objectid,
776 				 u64 owner, u64 offset, int insert)
777 {
778 	struct btrfs_fs_info *fs_info = trans->fs_info;
779 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 	struct btrfs_key key;
781 	struct extent_buffer *leaf;
782 	struct btrfs_extent_item *ei;
783 	struct btrfs_extent_inline_ref *iref;
784 	u64 flags;
785 	u64 item_size;
786 	unsigned long ptr;
787 	unsigned long end;
788 	int extra_size;
789 	int type;
790 	int want;
791 	int ret;
792 	int err = 0;
793 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 	int needed;
795 
796 	key.objectid = bytenr;
797 	key.type = BTRFS_EXTENT_ITEM_KEY;
798 	key.offset = num_bytes;
799 
800 	want = extent_ref_type(parent, owner);
801 	if (insert) {
802 		extra_size = btrfs_extent_inline_ref_size(want);
803 		path->search_for_extension = 1;
804 		path->keep_locks = 1;
805 	} else
806 		extra_size = -1;
807 
808 	/*
809 	 * Owner is our level, so we can just add one to get the level for the
810 	 * block we are interested in.
811 	 */
812 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 		key.type = BTRFS_METADATA_ITEM_KEY;
814 		key.offset = owner;
815 	}
816 
817 again:
818 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 	if (ret < 0) {
820 		err = ret;
821 		goto out;
822 	}
823 
824 	/*
825 	 * We may be a newly converted file system which still has the old fat
826 	 * extent entries for metadata, so try and see if we have one of those.
827 	 */
828 	if (ret > 0 && skinny_metadata) {
829 		skinny_metadata = false;
830 		if (path->slots[0]) {
831 			path->slots[0]--;
832 			btrfs_item_key_to_cpu(path->nodes[0], &key,
833 					      path->slots[0]);
834 			if (key.objectid == bytenr &&
835 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
836 			    key.offset == num_bytes)
837 				ret = 0;
838 		}
839 		if (ret) {
840 			key.objectid = bytenr;
841 			key.type = BTRFS_EXTENT_ITEM_KEY;
842 			key.offset = num_bytes;
843 			btrfs_release_path(path);
844 			goto again;
845 		}
846 	}
847 
848 	if (ret && !insert) {
849 		err = -ENOENT;
850 		goto out;
851 	} else if (WARN_ON(ret)) {
852 		btrfs_print_leaf(path->nodes[0]);
853 		btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 			  bytenr, num_bytes, parent, root_objectid, owner,
856 			  offset);
857 		err = -EIO;
858 		goto out;
859 	}
860 
861 	leaf = path->nodes[0];
862 	item_size = btrfs_item_size(leaf, path->slots[0]);
863 	if (unlikely(item_size < sizeof(*ei))) {
864 		err = -EUCLEAN;
865 		btrfs_err(fs_info,
866 			  "unexpected extent item size, has %llu expect >= %zu",
867 			  item_size, sizeof(*ei));
868 		btrfs_abort_transaction(trans, err);
869 		goto out;
870 	}
871 
872 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 	flags = btrfs_extent_flags(leaf, ei);
874 
875 	ptr = (unsigned long)(ei + 1);
876 	end = (unsigned long)ei + item_size;
877 
878 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 		ptr += sizeof(struct btrfs_tree_block_info);
880 		BUG_ON(ptr > end);
881 	}
882 
883 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 		needed = BTRFS_REF_TYPE_DATA;
885 	else
886 		needed = BTRFS_REF_TYPE_BLOCK;
887 
888 	err = -ENOENT;
889 	while (1) {
890 		if (ptr >= end) {
891 			if (ptr > end) {
892 				err = -EUCLEAN;
893 				btrfs_print_leaf(path->nodes[0]);
894 				btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 					path->slots[0], root_objectid, owner, offset, parent);
897 			}
898 			break;
899 		}
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_REF_TYPE_INVALID) {
903 			err = -EUCLEAN;
904 			goto out;
905 		}
906 
907 		if (want < type)
908 			break;
909 		if (want > type) {
910 			ptr += btrfs_extent_inline_ref_size(type);
911 			continue;
912 		}
913 
914 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 			struct btrfs_extent_data_ref *dref;
916 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 			if (match_extent_data_ref(leaf, dref, root_objectid,
918 						  owner, offset)) {
919 				err = 0;
920 				break;
921 			}
922 			if (hash_extent_data_ref_item(leaf, dref) <
923 			    hash_extent_data_ref(root_objectid, owner, offset))
924 				break;
925 		} else {
926 			u64 ref_offset;
927 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 			if (parent > 0) {
929 				if (parent == ref_offset) {
930 					err = 0;
931 					break;
932 				}
933 				if (ref_offset < parent)
934 					break;
935 			} else {
936 				if (root_objectid == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < root_objectid)
941 					break;
942 			}
943 		}
944 		ptr += btrfs_extent_inline_ref_size(type);
945 	}
946 	if (err == -ENOENT && insert) {
947 		if (item_size + extra_size >=
948 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 			err = -EAGAIN;
950 			goto out;
951 		}
952 		/*
953 		 * To add new inline back ref, we have to make sure
954 		 * there is no corresponding back ref item.
955 		 * For simplicity, we just do not add new inline back
956 		 * ref if there is any kind of item for this block
957 		 */
958 		if (find_next_key(path, 0, &key) == 0 &&
959 		    key.objectid == bytenr &&
960 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 			err = -EAGAIN;
962 			goto out;
963 		}
964 	}
965 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 	if (insert) {
968 		path->keep_locks = 0;
969 		path->search_for_extension = 0;
970 		btrfs_unlock_up_safe(path, 1);
971 	}
972 	return err;
973 }
974 
975 /*
976  * helper to add new inline back ref
977  */
978 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)979 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
980 				 struct btrfs_path *path,
981 				 struct btrfs_extent_inline_ref *iref,
982 				 u64 parent, u64 root_objectid,
983 				 u64 owner, u64 offset, int refs_to_add,
984 				 struct btrfs_delayed_extent_op *extent_op)
985 {
986 	struct extent_buffer *leaf;
987 	struct btrfs_extent_item *ei;
988 	unsigned long ptr;
989 	unsigned long end;
990 	unsigned long item_offset;
991 	u64 refs;
992 	int size;
993 	int type;
994 
995 	leaf = path->nodes[0];
996 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 	item_offset = (unsigned long)iref - (unsigned long)ei;
998 
999 	type = extent_ref_type(parent, owner);
1000 	size = btrfs_extent_inline_ref_size(type);
1001 
1002 	btrfs_extend_item(trans, path, size);
1003 
1004 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 	refs = btrfs_extent_refs(leaf, ei);
1006 	refs += refs_to_add;
1007 	btrfs_set_extent_refs(leaf, ei, refs);
1008 	if (extent_op)
1009 		__run_delayed_extent_op(extent_op, leaf, ei);
1010 
1011 	ptr = (unsigned long)ei + item_offset;
1012 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 	if (ptr < end - size)
1014 		memmove_extent_buffer(leaf, ptr + size, ptr,
1015 				      end - size - ptr);
1016 
1017 	iref = (struct btrfs_extent_inline_ref *)ptr;
1018 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 		struct btrfs_extent_data_ref *dref;
1021 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 		struct btrfs_shared_data_ref *sref;
1028 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 	} else {
1034 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 	}
1036 	btrfs_mark_buffer_dirty(trans, leaf);
1037 }
1038 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 				 struct btrfs_path *path,
1041 				 struct btrfs_extent_inline_ref **ref_ret,
1042 				 u64 bytenr, u64 num_bytes, u64 parent,
1043 				 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 	int ret;
1046 
1047 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 					   num_bytes, parent, root_objectid,
1049 					   owner, offset, 0);
1050 	if (ret != -ENOENT)
1051 		return ret;
1052 
1053 	btrfs_release_path(path);
1054 	*ref_ret = NULL;
1055 
1056 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 					    root_objectid);
1059 	} else {
1060 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 					     root_objectid, owner, offset);
1062 	}
1063 	return ret;
1064 }
1065 
1066 /*
1067  * helper to update/remove inline back ref
1068  */
update_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op)1069 static noinline_for_stack int update_inline_extent_backref(
1070 				  struct btrfs_trans_handle *trans,
1071 				  struct btrfs_path *path,
1072 				  struct btrfs_extent_inline_ref *iref,
1073 				  int refs_to_mod,
1074 				  struct btrfs_delayed_extent_op *extent_op)
1075 {
1076 	struct extent_buffer *leaf = path->nodes[0];
1077 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1078 	struct btrfs_extent_item *ei;
1079 	struct btrfs_extent_data_ref *dref = NULL;
1080 	struct btrfs_shared_data_ref *sref = NULL;
1081 	unsigned long ptr;
1082 	unsigned long end;
1083 	u32 item_size;
1084 	int size;
1085 	int type;
1086 	u64 refs;
1087 
1088 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1089 	refs = btrfs_extent_refs(leaf, ei);
1090 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1091 		struct btrfs_key key;
1092 		u32 extent_size;
1093 
1094 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1095 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1096 			extent_size = fs_info->nodesize;
1097 		else
1098 			extent_size = key.offset;
1099 		btrfs_print_leaf(leaf);
1100 		btrfs_err(fs_info,
1101 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1102 			  key.objectid, extent_size, refs_to_mod, refs);
1103 		return -EUCLEAN;
1104 	}
1105 	refs += refs_to_mod;
1106 	btrfs_set_extent_refs(leaf, ei, refs);
1107 	if (extent_op)
1108 		__run_delayed_extent_op(extent_op, leaf, ei);
1109 
1110 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1111 	/*
1112 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1113 	 * error messages.
1114 	 */
1115 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1116 		return -EUCLEAN;
1117 
1118 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1119 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1120 		refs = btrfs_extent_data_ref_count(leaf, dref);
1121 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1122 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1123 		refs = btrfs_shared_data_ref_count(leaf, sref);
1124 	} else {
1125 		refs = 1;
1126 		/*
1127 		 * For tree blocks we can only drop one ref for it, and tree
1128 		 * blocks should not have refs > 1.
1129 		 *
1130 		 * Furthermore if we're inserting a new inline backref, we
1131 		 * won't reach this path either. That would be
1132 		 * setup_inline_extent_backref().
1133 		 */
1134 		if (unlikely(refs_to_mod != -1)) {
1135 			struct btrfs_key key;
1136 
1137 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1138 
1139 			btrfs_print_leaf(leaf);
1140 			btrfs_err(fs_info,
1141 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1142 				  key.objectid, refs_to_mod);
1143 			return -EUCLEAN;
1144 		}
1145 	}
1146 
1147 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1148 		struct btrfs_key key;
1149 		u32 extent_size;
1150 
1151 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1152 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1153 			extent_size = fs_info->nodesize;
1154 		else
1155 			extent_size = key.offset;
1156 		btrfs_print_leaf(leaf);
1157 		btrfs_err(fs_info,
1158 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1159 			  (unsigned long)iref, key.objectid, extent_size,
1160 			  refs_to_mod, refs);
1161 		return -EUCLEAN;
1162 	}
1163 	refs += refs_to_mod;
1164 
1165 	if (refs > 0) {
1166 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1167 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1168 		else
1169 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1170 	} else {
1171 		size =  btrfs_extent_inline_ref_size(type);
1172 		item_size = btrfs_item_size(leaf, path->slots[0]);
1173 		ptr = (unsigned long)iref;
1174 		end = (unsigned long)ei + item_size;
1175 		if (ptr + size < end)
1176 			memmove_extent_buffer(leaf, ptr, ptr + size,
1177 					      end - ptr - size);
1178 		item_size -= size;
1179 		btrfs_truncate_item(trans, path, item_size, 1);
1180 	}
1181 	btrfs_mark_buffer_dirty(trans, leaf);
1182 	return 0;
1183 }
1184 
1185 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1186 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1187 				 struct btrfs_path *path,
1188 				 u64 bytenr, u64 num_bytes, u64 parent,
1189 				 u64 root_objectid, u64 owner,
1190 				 u64 offset, int refs_to_add,
1191 				 struct btrfs_delayed_extent_op *extent_op)
1192 {
1193 	struct btrfs_extent_inline_ref *iref;
1194 	int ret;
1195 
1196 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1197 					   num_bytes, parent, root_objectid,
1198 					   owner, offset, 1);
1199 	if (ret == 0) {
1200 		/*
1201 		 * We're adding refs to a tree block we already own, this
1202 		 * should not happen at all.
1203 		 */
1204 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1205 			btrfs_print_leaf(path->nodes[0]);
1206 			btrfs_crit(trans->fs_info,
1207 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1208 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1209 			return -EUCLEAN;
1210 		}
1211 		ret = update_inline_extent_backref(trans, path, iref,
1212 						   refs_to_add, extent_op);
1213 	} else if (ret == -ENOENT) {
1214 		setup_inline_extent_backref(trans, path, iref, parent,
1215 					    root_objectid, owner, offset,
1216 					    refs_to_add, extent_op);
1217 		ret = 0;
1218 	}
1219 	return ret;
1220 }
1221 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data)1222 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1223 				 struct btrfs_root *root,
1224 				 struct btrfs_path *path,
1225 				 struct btrfs_extent_inline_ref *iref,
1226 				 int refs_to_drop, int is_data)
1227 {
1228 	int ret = 0;
1229 
1230 	BUG_ON(!is_data && refs_to_drop != 1);
1231 	if (iref)
1232 		ret = update_inline_extent_backref(trans, path, iref,
1233 						   -refs_to_drop, NULL);
1234 	else if (is_data)
1235 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1236 	else
1237 		ret = btrfs_del_item(trans, root, path);
1238 	return ret;
1239 }
1240 
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1241 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1242 			       u64 *discarded_bytes)
1243 {
1244 	int j, ret = 0;
1245 	u64 bytes_left, end;
1246 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1247 
1248 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1249 	if (start != aligned_start) {
1250 		len -= aligned_start - start;
1251 		len = round_down(len, 1 << SECTOR_SHIFT);
1252 		start = aligned_start;
1253 	}
1254 
1255 	*discarded_bytes = 0;
1256 
1257 	if (!len)
1258 		return 0;
1259 
1260 	end = start + len;
1261 	bytes_left = len;
1262 
1263 	/* Skip any superblocks on this device. */
1264 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1265 		u64 sb_start = btrfs_sb_offset(j);
1266 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1267 		u64 size = sb_start - start;
1268 
1269 		if (!in_range(sb_start, start, bytes_left) &&
1270 		    !in_range(sb_end, start, bytes_left) &&
1271 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1272 			continue;
1273 
1274 		/*
1275 		 * Superblock spans beginning of range.  Adjust start and
1276 		 * try again.
1277 		 */
1278 		if (sb_start <= start) {
1279 			start += sb_end - start;
1280 			if (start > end) {
1281 				bytes_left = 0;
1282 				break;
1283 			}
1284 			bytes_left = end - start;
1285 			continue;
1286 		}
1287 
1288 		if (size) {
1289 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1290 						   size >> SECTOR_SHIFT,
1291 						   GFP_NOFS);
1292 			if (!ret)
1293 				*discarded_bytes += size;
1294 			else if (ret != -EOPNOTSUPP)
1295 				return ret;
1296 		}
1297 
1298 		start = sb_end;
1299 		if (start > end) {
1300 			bytes_left = 0;
1301 			break;
1302 		}
1303 		bytes_left = end - start;
1304 	}
1305 
1306 	if (bytes_left) {
1307 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1308 					   bytes_left >> SECTOR_SHIFT,
1309 					   GFP_NOFS);
1310 		if (!ret)
1311 			*discarded_bytes += bytes_left;
1312 	}
1313 	return ret;
1314 }
1315 
do_discard_extent(struct btrfs_discard_stripe * stripe,u64 * bytes)1316 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1317 {
1318 	struct btrfs_device *dev = stripe->dev;
1319 	struct btrfs_fs_info *fs_info = dev->fs_info;
1320 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1321 	u64 phys = stripe->physical;
1322 	u64 len = stripe->length;
1323 	u64 discarded = 0;
1324 	int ret = 0;
1325 
1326 	/* Zone reset on a zoned filesystem */
1327 	if (btrfs_can_zone_reset(dev, phys, len)) {
1328 		u64 src_disc;
1329 
1330 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1331 		if (ret)
1332 			goto out;
1333 
1334 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1335 		    dev != dev_replace->srcdev)
1336 			goto out;
1337 
1338 		src_disc = discarded;
1339 
1340 		/* Send to replace target as well */
1341 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1342 					      &discarded);
1343 		discarded += src_disc;
1344 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1345 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1346 	} else {
1347 		ret = 0;
1348 		*bytes = 0;
1349 	}
1350 
1351 out:
1352 	*bytes = discarded;
1353 	return ret;
1354 }
1355 
btrfs_discard_extent(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes,u64 * actual_bytes)1356 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1357 			 u64 num_bytes, u64 *actual_bytes)
1358 {
1359 	int ret = 0;
1360 	u64 discarded_bytes = 0;
1361 	u64 end = bytenr + num_bytes;
1362 	u64 cur = bytenr;
1363 
1364 	/*
1365 	 * Avoid races with device replace and make sure the devices in the
1366 	 * stripes don't go away while we are discarding.
1367 	 */
1368 	btrfs_bio_counter_inc_blocked(fs_info);
1369 	while (cur < end) {
1370 		struct btrfs_discard_stripe *stripes;
1371 		unsigned int num_stripes;
1372 		int i;
1373 
1374 		num_bytes = end - cur;
1375 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1376 		if (IS_ERR(stripes)) {
1377 			ret = PTR_ERR(stripes);
1378 			if (ret == -EOPNOTSUPP)
1379 				ret = 0;
1380 			break;
1381 		}
1382 
1383 		for (i = 0; i < num_stripes; i++) {
1384 			struct btrfs_discard_stripe *stripe = stripes + i;
1385 			u64 bytes;
1386 
1387 			if (!stripe->dev->bdev) {
1388 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1389 				continue;
1390 			}
1391 
1392 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1393 					&stripe->dev->dev_state))
1394 				continue;
1395 
1396 			ret = do_discard_extent(stripe, &bytes);
1397 			if (ret) {
1398 				/*
1399 				 * Keep going if discard is not supported by the
1400 				 * device.
1401 				 */
1402 				if (ret != -EOPNOTSUPP)
1403 					break;
1404 				ret = 0;
1405 			} else {
1406 				discarded_bytes += bytes;
1407 			}
1408 		}
1409 		kfree(stripes);
1410 		if (ret)
1411 			break;
1412 		cur += num_bytes;
1413 	}
1414 	btrfs_bio_counter_dec(fs_info);
1415 	if (actual_bytes)
1416 		*actual_bytes = discarded_bytes;
1417 	return ret;
1418 }
1419 
1420 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_ref * generic_ref)1421 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1422 			 struct btrfs_ref *generic_ref)
1423 {
1424 	struct btrfs_fs_info *fs_info = trans->fs_info;
1425 	int ret;
1426 
1427 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1428 	       generic_ref->action);
1429 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1430 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1431 
1432 	if (generic_ref->type == BTRFS_REF_METADATA)
1433 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1434 	else
1435 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1436 
1437 	btrfs_ref_tree_mod(fs_info, generic_ref);
1438 
1439 	return ret;
1440 }
1441 
1442 /*
1443  * __btrfs_inc_extent_ref - insert backreference for a given extent
1444  *
1445  * The counterpart is in __btrfs_free_extent(), with examples and more details
1446  * how it works.
1447  *
1448  * @trans:	    Handle of transaction
1449  *
1450  * @node:	    The delayed ref node used to get the bytenr/length for
1451  *		    extent whose references are incremented.
1452  *
1453  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1454  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1455  *		    bytenr of the parent block. Since new extents are always
1456  *		    created with indirect references, this will only be the case
1457  *		    when relocating a shared extent. In that case, root_objectid
1458  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1459  *		    be 0
1460  *
1461  * @root_objectid:  The id of the root where this modification has originated,
1462  *		    this can be either one of the well-known metadata trees or
1463  *		    the subvolume id which references this extent.
1464  *
1465  * @owner:	    For data extents it is the inode number of the owning file.
1466  *		    For metadata extents this parameter holds the level in the
1467  *		    tree of the extent.
1468  *
1469  * @offset:	    For metadata extents the offset is ignored and is currently
1470  *		    always passed as 0. For data extents it is the fileoffset
1471  *		    this extent belongs to.
1472  *
1473  * @refs_to_add     Number of references to add
1474  *
1475  * @extent_op       Pointer to a structure, holding information necessary when
1476  *                  updating a tree block's flags
1477  *
1478  */
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1479 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1480 				  struct btrfs_delayed_ref_node *node,
1481 				  u64 parent, u64 root_objectid,
1482 				  u64 owner, u64 offset, int refs_to_add,
1483 				  struct btrfs_delayed_extent_op *extent_op)
1484 {
1485 	struct btrfs_path *path;
1486 	struct extent_buffer *leaf;
1487 	struct btrfs_extent_item *item;
1488 	struct btrfs_key key;
1489 	u64 bytenr = node->bytenr;
1490 	u64 num_bytes = node->num_bytes;
1491 	u64 refs;
1492 	int ret;
1493 
1494 	path = btrfs_alloc_path();
1495 	if (!path)
1496 		return -ENOMEM;
1497 
1498 	/* this will setup the path even if it fails to insert the back ref */
1499 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1500 					   parent, root_objectid, owner,
1501 					   offset, refs_to_add, extent_op);
1502 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1503 		goto out;
1504 
1505 	/*
1506 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1507 	 * inline extent ref, so just update the reference count and add a
1508 	 * normal backref.
1509 	 */
1510 	leaf = path->nodes[0];
1511 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1512 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1513 	refs = btrfs_extent_refs(leaf, item);
1514 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1515 	if (extent_op)
1516 		__run_delayed_extent_op(extent_op, leaf, item);
1517 
1518 	btrfs_mark_buffer_dirty(trans, leaf);
1519 	btrfs_release_path(path);
1520 
1521 	/* now insert the actual backref */
1522 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1523 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1524 					    root_objectid);
1525 	else
1526 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1527 					     root_objectid, owner, offset,
1528 					     refs_to_add);
1529 
1530 	if (ret)
1531 		btrfs_abort_transaction(trans, ret);
1532 out:
1533 	btrfs_free_path(path);
1534 	return ret;
1535 }
1536 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1537 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1538 				struct btrfs_delayed_ref_node *node,
1539 				struct btrfs_delayed_extent_op *extent_op,
1540 				bool insert_reserved)
1541 {
1542 	int ret = 0;
1543 	struct btrfs_delayed_data_ref *ref;
1544 	struct btrfs_key ins;
1545 	u64 parent = 0;
1546 	u64 ref_root = 0;
1547 	u64 flags = 0;
1548 
1549 	ins.objectid = node->bytenr;
1550 	ins.offset = node->num_bytes;
1551 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1552 
1553 	ref = btrfs_delayed_node_to_data_ref(node);
1554 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1555 
1556 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1557 		parent = ref->parent;
1558 	ref_root = ref->root;
1559 
1560 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1561 		if (extent_op)
1562 			flags |= extent_op->flags_to_set;
1563 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1564 						 flags, ref->objectid,
1565 						 ref->offset, &ins,
1566 						 node->ref_mod);
1567 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1568 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1569 					     ref->objectid, ref->offset,
1570 					     node->ref_mod, extent_op);
1571 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1572 		ret = __btrfs_free_extent(trans, node, parent,
1573 					  ref_root, ref->objectid,
1574 					  ref->offset, node->ref_mod,
1575 					  extent_op);
1576 	} else {
1577 		BUG();
1578 	}
1579 	return ret;
1580 }
1581 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)1582 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1583 				    struct extent_buffer *leaf,
1584 				    struct btrfs_extent_item *ei)
1585 {
1586 	u64 flags = btrfs_extent_flags(leaf, ei);
1587 	if (extent_op->update_flags) {
1588 		flags |= extent_op->flags_to_set;
1589 		btrfs_set_extent_flags(leaf, ei, flags);
1590 	}
1591 
1592 	if (extent_op->update_key) {
1593 		struct btrfs_tree_block_info *bi;
1594 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1595 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1596 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1597 	}
1598 }
1599 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head,struct btrfs_delayed_extent_op * extent_op)1600 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1601 				 struct btrfs_delayed_ref_head *head,
1602 				 struct btrfs_delayed_extent_op *extent_op)
1603 {
1604 	struct btrfs_fs_info *fs_info = trans->fs_info;
1605 	struct btrfs_root *root;
1606 	struct btrfs_key key;
1607 	struct btrfs_path *path;
1608 	struct btrfs_extent_item *ei;
1609 	struct extent_buffer *leaf;
1610 	u32 item_size;
1611 	int ret;
1612 	int err = 0;
1613 	int metadata = 1;
1614 
1615 	if (TRANS_ABORTED(trans))
1616 		return 0;
1617 
1618 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1619 		metadata = 0;
1620 
1621 	path = btrfs_alloc_path();
1622 	if (!path)
1623 		return -ENOMEM;
1624 
1625 	key.objectid = head->bytenr;
1626 
1627 	if (metadata) {
1628 		key.type = BTRFS_METADATA_ITEM_KEY;
1629 		key.offset = extent_op->level;
1630 	} else {
1631 		key.type = BTRFS_EXTENT_ITEM_KEY;
1632 		key.offset = head->num_bytes;
1633 	}
1634 
1635 	root = btrfs_extent_root(fs_info, key.objectid);
1636 again:
1637 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1638 	if (ret < 0) {
1639 		err = ret;
1640 		goto out;
1641 	}
1642 	if (ret > 0) {
1643 		if (metadata) {
1644 			if (path->slots[0] > 0) {
1645 				path->slots[0]--;
1646 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1647 						      path->slots[0]);
1648 				if (key.objectid == head->bytenr &&
1649 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1650 				    key.offset == head->num_bytes)
1651 					ret = 0;
1652 			}
1653 			if (ret > 0) {
1654 				btrfs_release_path(path);
1655 				metadata = 0;
1656 
1657 				key.objectid = head->bytenr;
1658 				key.offset = head->num_bytes;
1659 				key.type = BTRFS_EXTENT_ITEM_KEY;
1660 				goto again;
1661 			}
1662 		} else {
1663 			err = -EUCLEAN;
1664 			btrfs_err(fs_info,
1665 		  "missing extent item for extent %llu num_bytes %llu level %d",
1666 				  head->bytenr, head->num_bytes, extent_op->level);
1667 			goto out;
1668 		}
1669 	}
1670 
1671 	leaf = path->nodes[0];
1672 	item_size = btrfs_item_size(leaf, path->slots[0]);
1673 
1674 	if (unlikely(item_size < sizeof(*ei))) {
1675 		err = -EUCLEAN;
1676 		btrfs_err(fs_info,
1677 			  "unexpected extent item size, has %u expect >= %zu",
1678 			  item_size, sizeof(*ei));
1679 		btrfs_abort_transaction(trans, err);
1680 		goto out;
1681 	}
1682 
1683 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 	__run_delayed_extent_op(extent_op, leaf, ei);
1685 
1686 	btrfs_mark_buffer_dirty(trans, leaf);
1687 out:
1688 	btrfs_free_path(path);
1689 	return err;
1690 }
1691 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1692 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1693 				struct btrfs_delayed_ref_node *node,
1694 				struct btrfs_delayed_extent_op *extent_op,
1695 				bool insert_reserved)
1696 {
1697 	int ret = 0;
1698 	struct btrfs_delayed_tree_ref *ref;
1699 	u64 parent = 0;
1700 	u64 ref_root = 0;
1701 
1702 	ref = btrfs_delayed_node_to_tree_ref(node);
1703 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1704 
1705 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1706 		parent = ref->parent;
1707 	ref_root = ref->root;
1708 
1709 	if (unlikely(node->ref_mod != 1)) {
1710 		btrfs_err(trans->fs_info,
1711 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1712 			  node->bytenr, node->ref_mod, node->action, ref_root,
1713 			  parent);
1714 		return -EUCLEAN;
1715 	}
1716 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1717 		BUG_ON(!extent_op || !extent_op->update_flags);
1718 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1719 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1720 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1721 					     ref->level, 0, 1, extent_op);
1722 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1723 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1724 					  ref->level, 0, 1, extent_op);
1725 	} else {
1726 		BUG();
1727 	}
1728 	return ret;
1729 }
1730 
1731 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,bool insert_reserved)1732 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1733 			       struct btrfs_delayed_ref_node *node,
1734 			       struct btrfs_delayed_extent_op *extent_op,
1735 			       bool insert_reserved)
1736 {
1737 	int ret = 0;
1738 
1739 	if (TRANS_ABORTED(trans)) {
1740 		if (insert_reserved)
1741 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1742 		return 0;
1743 	}
1744 
1745 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1746 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1747 		ret = run_delayed_tree_ref(trans, node, extent_op,
1748 					   insert_reserved);
1749 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1750 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1751 		ret = run_delayed_data_ref(trans, node, extent_op,
1752 					   insert_reserved);
1753 	else
1754 		BUG();
1755 	if (ret && insert_reserved)
1756 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1757 	if (ret < 0)
1758 		btrfs_err(trans->fs_info,
1759 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1760 			  node->bytenr, node->num_bytes, node->type,
1761 			  node->action, node->ref_mod, ret);
1762 	return ret;
1763 }
1764 
1765 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)1766 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1767 {
1768 	struct btrfs_delayed_ref_node *ref;
1769 
1770 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1771 		return NULL;
1772 
1773 	/*
1774 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1775 	 * This is to prevent a ref count from going down to zero, which deletes
1776 	 * the extent item from the extent tree, when there still are references
1777 	 * to add, which would fail because they would not find the extent item.
1778 	 */
1779 	if (!list_empty(&head->ref_add_list))
1780 		return list_first_entry(&head->ref_add_list,
1781 				struct btrfs_delayed_ref_node, add_list);
1782 
1783 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1784 		       struct btrfs_delayed_ref_node, ref_node);
1785 	ASSERT(list_empty(&ref->add_list));
1786 	return ref;
1787 }
1788 
unselect_delayed_ref_head(struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1789 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1790 				      struct btrfs_delayed_ref_head *head)
1791 {
1792 	spin_lock(&delayed_refs->lock);
1793 	head->processing = false;
1794 	delayed_refs->num_heads_ready++;
1795 	spin_unlock(&delayed_refs->lock);
1796 	btrfs_delayed_ref_unlock(head);
1797 }
1798 
cleanup_extent_op(struct btrfs_delayed_ref_head * head)1799 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1800 				struct btrfs_delayed_ref_head *head)
1801 {
1802 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1803 
1804 	if (!extent_op)
1805 		return NULL;
1806 
1807 	if (head->must_insert_reserved) {
1808 		head->extent_op = NULL;
1809 		btrfs_free_delayed_extent_op(extent_op);
1810 		return NULL;
1811 	}
1812 	return extent_op;
1813 }
1814 
run_and_cleanup_extent_op(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1815 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1816 				     struct btrfs_delayed_ref_head *head)
1817 {
1818 	struct btrfs_delayed_extent_op *extent_op;
1819 	int ret;
1820 
1821 	extent_op = cleanup_extent_op(head);
1822 	if (!extent_op)
1823 		return 0;
1824 	head->extent_op = NULL;
1825 	spin_unlock(&head->lock);
1826 	ret = run_delayed_extent_op(trans, head, extent_op);
1827 	btrfs_free_delayed_extent_op(extent_op);
1828 	return ret ? ret : 1;
1829 }
1830 
btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_root * delayed_refs,struct btrfs_delayed_ref_head * head)1831 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1832 				  struct btrfs_delayed_ref_root *delayed_refs,
1833 				  struct btrfs_delayed_ref_head *head)
1834 {
1835 	int nr_items = 1;	/* Dropping this ref head update. */
1836 
1837 	/*
1838 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1839 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1840 	 */
1841 	if (head->total_ref_mod < 0 && head->is_data) {
1842 		spin_lock(&delayed_refs->lock);
1843 		delayed_refs->pending_csums -= head->num_bytes;
1844 		spin_unlock(&delayed_refs->lock);
1845 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1846 	}
1847 
1848 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1849 }
1850 
cleanup_ref_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * head)1851 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1852 			    struct btrfs_delayed_ref_head *head)
1853 {
1854 
1855 	struct btrfs_fs_info *fs_info = trans->fs_info;
1856 	struct btrfs_delayed_ref_root *delayed_refs;
1857 	int ret;
1858 
1859 	delayed_refs = &trans->transaction->delayed_refs;
1860 
1861 	ret = run_and_cleanup_extent_op(trans, head);
1862 	if (ret < 0) {
1863 		unselect_delayed_ref_head(delayed_refs, head);
1864 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1865 		return ret;
1866 	} else if (ret) {
1867 		return ret;
1868 	}
1869 
1870 	/*
1871 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1872 	 * and then re-check to make sure nobody got added.
1873 	 */
1874 	spin_unlock(&head->lock);
1875 	spin_lock(&delayed_refs->lock);
1876 	spin_lock(&head->lock);
1877 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1878 		spin_unlock(&head->lock);
1879 		spin_unlock(&delayed_refs->lock);
1880 		return 1;
1881 	}
1882 	btrfs_delete_ref_head(delayed_refs, head);
1883 	spin_unlock(&head->lock);
1884 	spin_unlock(&delayed_refs->lock);
1885 
1886 	if (head->must_insert_reserved) {
1887 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1888 		if (head->is_data) {
1889 			struct btrfs_root *csum_root;
1890 
1891 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1892 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1893 					      head->num_bytes);
1894 		}
1895 	}
1896 
1897 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1898 
1899 	trace_run_delayed_ref_head(fs_info, head, 0);
1900 	btrfs_delayed_ref_unlock(head);
1901 	btrfs_put_delayed_ref_head(head);
1902 	return ret;
1903 }
1904 
btrfs_obtain_ref_head(struct btrfs_trans_handle * trans)1905 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1906 					struct btrfs_trans_handle *trans)
1907 {
1908 	struct btrfs_delayed_ref_root *delayed_refs =
1909 		&trans->transaction->delayed_refs;
1910 	struct btrfs_delayed_ref_head *head = NULL;
1911 	int ret;
1912 
1913 	spin_lock(&delayed_refs->lock);
1914 	head = btrfs_select_ref_head(delayed_refs);
1915 	if (!head) {
1916 		spin_unlock(&delayed_refs->lock);
1917 		return head;
1918 	}
1919 
1920 	/*
1921 	 * Grab the lock that says we are going to process all the refs for
1922 	 * this head
1923 	 */
1924 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1925 	spin_unlock(&delayed_refs->lock);
1926 
1927 	/*
1928 	 * We may have dropped the spin lock to get the head mutex lock, and
1929 	 * that might have given someone else time to free the head.  If that's
1930 	 * true, it has been removed from our list and we can move on.
1931 	 */
1932 	if (ret == -EAGAIN)
1933 		head = ERR_PTR(-EAGAIN);
1934 
1935 	return head;
1936 }
1937 
btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_head * locked_ref)1938 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1939 					   struct btrfs_delayed_ref_head *locked_ref)
1940 {
1941 	struct btrfs_fs_info *fs_info = trans->fs_info;
1942 	struct btrfs_delayed_ref_root *delayed_refs;
1943 	struct btrfs_delayed_extent_op *extent_op;
1944 	struct btrfs_delayed_ref_node *ref;
1945 	bool must_insert_reserved;
1946 	int ret;
1947 
1948 	delayed_refs = &trans->transaction->delayed_refs;
1949 
1950 	lockdep_assert_held(&locked_ref->mutex);
1951 	lockdep_assert_held(&locked_ref->lock);
1952 
1953 	while ((ref = select_delayed_ref(locked_ref))) {
1954 		if (ref->seq &&
1955 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1956 			spin_unlock(&locked_ref->lock);
1957 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1958 			return -EAGAIN;
1959 		}
1960 
1961 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1962 		RB_CLEAR_NODE(&ref->ref_node);
1963 		if (!list_empty(&ref->add_list))
1964 			list_del(&ref->add_list);
1965 		/*
1966 		 * When we play the delayed ref, also correct the ref_mod on
1967 		 * head
1968 		 */
1969 		switch (ref->action) {
1970 		case BTRFS_ADD_DELAYED_REF:
1971 		case BTRFS_ADD_DELAYED_EXTENT:
1972 			locked_ref->ref_mod -= ref->ref_mod;
1973 			break;
1974 		case BTRFS_DROP_DELAYED_REF:
1975 			locked_ref->ref_mod += ref->ref_mod;
1976 			break;
1977 		default:
1978 			WARN_ON(1);
1979 		}
1980 		atomic_dec(&delayed_refs->num_entries);
1981 
1982 		/*
1983 		 * Record the must_insert_reserved flag before we drop the
1984 		 * spin lock.
1985 		 */
1986 		must_insert_reserved = locked_ref->must_insert_reserved;
1987 		locked_ref->must_insert_reserved = false;
1988 
1989 		extent_op = locked_ref->extent_op;
1990 		locked_ref->extent_op = NULL;
1991 		spin_unlock(&locked_ref->lock);
1992 
1993 		ret = run_one_delayed_ref(trans, ref, extent_op,
1994 					  must_insert_reserved);
1995 
1996 		btrfs_free_delayed_extent_op(extent_op);
1997 		if (ret) {
1998 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1999 			btrfs_put_delayed_ref(ref);
2000 			return ret;
2001 		}
2002 
2003 		btrfs_put_delayed_ref(ref);
2004 		cond_resched();
2005 
2006 		spin_lock(&locked_ref->lock);
2007 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * Returns 0 on success or if called with an already aborted transaction.
2015  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2016  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long nr)2017 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2018 					     unsigned long nr)
2019 {
2020 	struct btrfs_fs_info *fs_info = trans->fs_info;
2021 	struct btrfs_delayed_ref_root *delayed_refs;
2022 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2023 	int ret;
2024 	unsigned long count = 0;
2025 
2026 	delayed_refs = &trans->transaction->delayed_refs;
2027 	do {
2028 		if (!locked_ref) {
2029 			locked_ref = btrfs_obtain_ref_head(trans);
2030 			if (IS_ERR_OR_NULL(locked_ref)) {
2031 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2032 					continue;
2033 				} else {
2034 					break;
2035 				}
2036 			}
2037 			count++;
2038 		}
2039 		/*
2040 		 * We need to try and merge add/drops of the same ref since we
2041 		 * can run into issues with relocate dropping the implicit ref
2042 		 * and then it being added back again before the drop can
2043 		 * finish.  If we merged anything we need to re-loop so we can
2044 		 * get a good ref.
2045 		 * Or we can get node references of the same type that weren't
2046 		 * merged when created due to bumps in the tree mod seq, and
2047 		 * we need to merge them to prevent adding an inline extent
2048 		 * backref before dropping it (triggering a BUG_ON at
2049 		 * insert_inline_extent_backref()).
2050 		 */
2051 		spin_lock(&locked_ref->lock);
2052 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2053 
2054 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2055 		if (ret < 0 && ret != -EAGAIN) {
2056 			/*
2057 			 * Error, btrfs_run_delayed_refs_for_head already
2058 			 * unlocked everything so just bail out
2059 			 */
2060 			return ret;
2061 		} else if (!ret) {
2062 			/*
2063 			 * Success, perform the usual cleanup of a processed
2064 			 * head
2065 			 */
2066 			ret = cleanup_ref_head(trans, locked_ref);
2067 			if (ret > 0 ) {
2068 				/* We dropped our lock, we need to loop. */
2069 				ret = 0;
2070 				continue;
2071 			} else if (ret) {
2072 				return ret;
2073 			}
2074 		}
2075 
2076 		/*
2077 		 * Either success case or btrfs_run_delayed_refs_for_head
2078 		 * returned -EAGAIN, meaning we need to select another head
2079 		 */
2080 
2081 		locked_ref = NULL;
2082 		cond_resched();
2083 	} while ((nr != -1 && count < nr) || locked_ref);
2084 
2085 	return 0;
2086 }
2087 
2088 #ifdef SCRAMBLE_DELAYED_REFS
2089 /*
2090  * Normally delayed refs get processed in ascending bytenr order. This
2091  * correlates in most cases to the order added. To expose dependencies on this
2092  * order, we start to process the tree in the middle instead of the beginning
2093  */
find_middle(struct rb_root * root)2094 static u64 find_middle(struct rb_root *root)
2095 {
2096 	struct rb_node *n = root->rb_node;
2097 	struct btrfs_delayed_ref_node *entry;
2098 	int alt = 1;
2099 	u64 middle;
2100 	u64 first = 0, last = 0;
2101 
2102 	n = rb_first(root);
2103 	if (n) {
2104 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 		first = entry->bytenr;
2106 	}
2107 	n = rb_last(root);
2108 	if (n) {
2109 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2110 		last = entry->bytenr;
2111 	}
2112 	n = root->rb_node;
2113 
2114 	while (n) {
2115 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2116 		WARN_ON(!entry->in_tree);
2117 
2118 		middle = entry->bytenr;
2119 
2120 		if (alt)
2121 			n = n->rb_left;
2122 		else
2123 			n = n->rb_right;
2124 
2125 		alt = 1 - alt;
2126 	}
2127 	return middle;
2128 }
2129 #endif
2130 
2131 /*
2132  * this starts processing the delayed reference count updates and
2133  * extent insertions we have queued up so far.  count can be
2134  * 0, which means to process everything in the tree at the start
2135  * of the run (but not newly added entries), or it can be some target
2136  * number you'd like to process.
2137  *
2138  * Returns 0 on success or if called with an aborted transaction
2139  * Returns <0 on error and aborts the transaction
2140  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,unsigned long count)2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2142 			   unsigned long count)
2143 {
2144 	struct btrfs_fs_info *fs_info = trans->fs_info;
2145 	struct rb_node *node;
2146 	struct btrfs_delayed_ref_root *delayed_refs;
2147 	struct btrfs_delayed_ref_head *head;
2148 	int ret;
2149 	int run_all = count == (unsigned long)-1;
2150 
2151 	/* We'll clean this up in btrfs_cleanup_transaction */
2152 	if (TRANS_ABORTED(trans))
2153 		return 0;
2154 
2155 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2156 		return 0;
2157 
2158 	delayed_refs = &trans->transaction->delayed_refs;
2159 	if (count == 0)
2160 		count = delayed_refs->num_heads_ready;
2161 
2162 again:
2163 #ifdef SCRAMBLE_DELAYED_REFS
2164 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2165 #endif
2166 	ret = __btrfs_run_delayed_refs(trans, count);
2167 	if (ret < 0) {
2168 		btrfs_abort_transaction(trans, ret);
2169 		return ret;
2170 	}
2171 
2172 	if (run_all) {
2173 		btrfs_create_pending_block_groups(trans);
2174 
2175 		spin_lock(&delayed_refs->lock);
2176 		node = rb_first_cached(&delayed_refs->href_root);
2177 		if (!node) {
2178 			spin_unlock(&delayed_refs->lock);
2179 			goto out;
2180 		}
2181 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2182 				href_node);
2183 		refcount_inc(&head->refs);
2184 		spin_unlock(&delayed_refs->lock);
2185 
2186 		/* Mutex was contended, block until it's released and retry. */
2187 		mutex_lock(&head->mutex);
2188 		mutex_unlock(&head->mutex);
2189 
2190 		btrfs_put_delayed_ref_head(head);
2191 		cond_resched();
2192 		goto again;
2193 	}
2194 out:
2195 	return 0;
2196 }
2197 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct extent_buffer * eb,u64 flags)2198 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2199 				struct extent_buffer *eb, u64 flags)
2200 {
2201 	struct btrfs_delayed_extent_op *extent_op;
2202 	int level = btrfs_header_level(eb);
2203 	int ret;
2204 
2205 	extent_op = btrfs_alloc_delayed_extent_op();
2206 	if (!extent_op)
2207 		return -ENOMEM;
2208 
2209 	extent_op->flags_to_set = flags;
2210 	extent_op->update_flags = true;
2211 	extent_op->update_key = false;
2212 	extent_op->level = level;
2213 
2214 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2215 	if (ret)
2216 		btrfs_free_delayed_extent_op(extent_op);
2217 	return ret;
2218 }
2219 
check_delayed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)2220 static noinline int check_delayed_ref(struct btrfs_root *root,
2221 				      struct btrfs_path *path,
2222 				      u64 objectid, u64 offset, u64 bytenr)
2223 {
2224 	struct btrfs_delayed_ref_head *head;
2225 	struct btrfs_delayed_ref_node *ref;
2226 	struct btrfs_delayed_data_ref *data_ref;
2227 	struct btrfs_delayed_ref_root *delayed_refs;
2228 	struct btrfs_transaction *cur_trans;
2229 	struct rb_node *node;
2230 	int ret = 0;
2231 
2232 	spin_lock(&root->fs_info->trans_lock);
2233 	cur_trans = root->fs_info->running_transaction;
2234 	if (cur_trans)
2235 		refcount_inc(&cur_trans->use_count);
2236 	spin_unlock(&root->fs_info->trans_lock);
2237 	if (!cur_trans)
2238 		return 0;
2239 
2240 	delayed_refs = &cur_trans->delayed_refs;
2241 	spin_lock(&delayed_refs->lock);
2242 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2243 	if (!head) {
2244 		spin_unlock(&delayed_refs->lock);
2245 		btrfs_put_transaction(cur_trans);
2246 		return 0;
2247 	}
2248 
2249 	if (!mutex_trylock(&head->mutex)) {
2250 		if (path->nowait) {
2251 			spin_unlock(&delayed_refs->lock);
2252 			btrfs_put_transaction(cur_trans);
2253 			return -EAGAIN;
2254 		}
2255 
2256 		refcount_inc(&head->refs);
2257 		spin_unlock(&delayed_refs->lock);
2258 
2259 		btrfs_release_path(path);
2260 
2261 		/*
2262 		 * Mutex was contended, block until it's released and let
2263 		 * caller try again
2264 		 */
2265 		mutex_lock(&head->mutex);
2266 		mutex_unlock(&head->mutex);
2267 		btrfs_put_delayed_ref_head(head);
2268 		btrfs_put_transaction(cur_trans);
2269 		return -EAGAIN;
2270 	}
2271 	spin_unlock(&delayed_refs->lock);
2272 
2273 	spin_lock(&head->lock);
2274 	/*
2275 	 * XXX: We should replace this with a proper search function in the
2276 	 * future.
2277 	 */
2278 	for (node = rb_first_cached(&head->ref_tree); node;
2279 	     node = rb_next(node)) {
2280 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2281 		/* If it's a shared ref we know a cross reference exists */
2282 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2283 			ret = 1;
2284 			break;
2285 		}
2286 
2287 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2288 
2289 		/*
2290 		 * If our ref doesn't match the one we're currently looking at
2291 		 * then we have a cross reference.
2292 		 */
2293 		if (data_ref->root != root->root_key.objectid ||
2294 		    data_ref->objectid != objectid ||
2295 		    data_ref->offset != offset) {
2296 			ret = 1;
2297 			break;
2298 		}
2299 	}
2300 	spin_unlock(&head->lock);
2301 	mutex_unlock(&head->mutex);
2302 	btrfs_put_transaction(cur_trans);
2303 	return ret;
2304 }
2305 
check_committed_ref(struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr,bool strict)2306 static noinline int check_committed_ref(struct btrfs_root *root,
2307 					struct btrfs_path *path,
2308 					u64 objectid, u64 offset, u64 bytenr,
2309 					bool strict)
2310 {
2311 	struct btrfs_fs_info *fs_info = root->fs_info;
2312 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2313 	struct extent_buffer *leaf;
2314 	struct btrfs_extent_data_ref *ref;
2315 	struct btrfs_extent_inline_ref *iref;
2316 	struct btrfs_extent_item *ei;
2317 	struct btrfs_key key;
2318 	u32 item_size;
2319 	int type;
2320 	int ret;
2321 
2322 	key.objectid = bytenr;
2323 	key.offset = (u64)-1;
2324 	key.type = BTRFS_EXTENT_ITEM_KEY;
2325 
2326 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2327 	if (ret < 0)
2328 		goto out;
2329 	BUG_ON(ret == 0); /* Corruption */
2330 
2331 	ret = -ENOENT;
2332 	if (path->slots[0] == 0)
2333 		goto out;
2334 
2335 	path->slots[0]--;
2336 	leaf = path->nodes[0];
2337 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2338 
2339 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2340 		goto out;
2341 
2342 	ret = 1;
2343 	item_size = btrfs_item_size(leaf, path->slots[0]);
2344 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2345 
2346 	/* If extent item has more than 1 inline ref then it's shared */
2347 	if (item_size != sizeof(*ei) +
2348 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2349 		goto out;
2350 
2351 	/*
2352 	 * If extent created before last snapshot => it's shared unless the
2353 	 * snapshot has been deleted. Use the heuristic if strict is false.
2354 	 */
2355 	if (!strict &&
2356 	    (btrfs_extent_generation(leaf, ei) <=
2357 	     btrfs_root_last_snapshot(&root->root_item)))
2358 		goto out;
2359 
2360 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2361 
2362 	/* If this extent has SHARED_DATA_REF then it's shared */
2363 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2364 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2365 		goto out;
2366 
2367 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2368 	if (btrfs_extent_refs(leaf, ei) !=
2369 	    btrfs_extent_data_ref_count(leaf, ref) ||
2370 	    btrfs_extent_data_ref_root(leaf, ref) !=
2371 	    root->root_key.objectid ||
2372 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2373 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2374 		goto out;
2375 
2376 	ret = 0;
2377 out:
2378 	return ret;
2379 }
2380 
btrfs_cross_ref_exist(struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr,bool strict,struct btrfs_path * path)2381 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2382 			  u64 bytenr, bool strict, struct btrfs_path *path)
2383 {
2384 	int ret;
2385 
2386 	do {
2387 		ret = check_committed_ref(root, path, objectid,
2388 					  offset, bytenr, strict);
2389 		if (ret && ret != -ENOENT)
2390 			goto out;
2391 
2392 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2393 	} while (ret == -EAGAIN);
2394 
2395 out:
2396 	btrfs_release_path(path);
2397 	if (btrfs_is_data_reloc_root(root))
2398 		WARN_ON(ret > 0);
2399 	return ret;
2400 }
2401 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)2402 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2403 			   struct btrfs_root *root,
2404 			   struct extent_buffer *buf,
2405 			   int full_backref, int inc)
2406 {
2407 	struct btrfs_fs_info *fs_info = root->fs_info;
2408 	u64 bytenr;
2409 	u64 num_bytes;
2410 	u64 parent;
2411 	u64 ref_root;
2412 	u32 nritems;
2413 	struct btrfs_key key;
2414 	struct btrfs_file_extent_item *fi;
2415 	struct btrfs_ref generic_ref = { 0 };
2416 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2417 	int i;
2418 	int action;
2419 	int level;
2420 	int ret = 0;
2421 
2422 	if (btrfs_is_testing(fs_info))
2423 		return 0;
2424 
2425 	ref_root = btrfs_header_owner(buf);
2426 	nritems = btrfs_header_nritems(buf);
2427 	level = btrfs_header_level(buf);
2428 
2429 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2430 		return 0;
2431 
2432 	if (full_backref)
2433 		parent = buf->start;
2434 	else
2435 		parent = 0;
2436 	if (inc)
2437 		action = BTRFS_ADD_DELAYED_REF;
2438 	else
2439 		action = BTRFS_DROP_DELAYED_REF;
2440 
2441 	for (i = 0; i < nritems; i++) {
2442 		if (level == 0) {
2443 			btrfs_item_key_to_cpu(buf, &key, i);
2444 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2445 				continue;
2446 			fi = btrfs_item_ptr(buf, i,
2447 					    struct btrfs_file_extent_item);
2448 			if (btrfs_file_extent_type(buf, fi) ==
2449 			    BTRFS_FILE_EXTENT_INLINE)
2450 				continue;
2451 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2452 			if (bytenr == 0)
2453 				continue;
2454 
2455 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2456 			key.offset -= btrfs_file_extent_offset(buf, fi);
2457 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2458 					       num_bytes, parent);
2459 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2460 					    key.offset, root->root_key.objectid,
2461 					    for_reloc);
2462 			if (inc)
2463 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2464 			else
2465 				ret = btrfs_free_extent(trans, &generic_ref);
2466 			if (ret)
2467 				goto fail;
2468 		} else {
2469 			bytenr = btrfs_node_blockptr(buf, i);
2470 			num_bytes = fs_info->nodesize;
2471 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2472 					       num_bytes, parent);
2473 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2474 					    root->root_key.objectid, for_reloc);
2475 			if (inc)
2476 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2477 			else
2478 				ret = btrfs_free_extent(trans, &generic_ref);
2479 			if (ret)
2480 				goto fail;
2481 		}
2482 	}
2483 	return 0;
2484 fail:
2485 	return ret;
2486 }
2487 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2488 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2489 		  struct extent_buffer *buf, int full_backref)
2490 {
2491 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2492 }
2493 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)2494 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2495 		  struct extent_buffer *buf, int full_backref)
2496 {
2497 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2498 }
2499 
get_alloc_profile_by_root(struct btrfs_root * root,int data)2500 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2501 {
2502 	struct btrfs_fs_info *fs_info = root->fs_info;
2503 	u64 flags;
2504 	u64 ret;
2505 
2506 	if (data)
2507 		flags = BTRFS_BLOCK_GROUP_DATA;
2508 	else if (root == fs_info->chunk_root)
2509 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2510 	else
2511 		flags = BTRFS_BLOCK_GROUP_METADATA;
2512 
2513 	ret = btrfs_get_alloc_profile(fs_info, flags);
2514 	return ret;
2515 }
2516 
first_logical_byte(struct btrfs_fs_info * fs_info)2517 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2518 {
2519 	struct rb_node *leftmost;
2520 	u64 bytenr = 0;
2521 
2522 	read_lock(&fs_info->block_group_cache_lock);
2523 	/* Get the block group with the lowest logical start address. */
2524 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2525 	if (leftmost) {
2526 		struct btrfs_block_group *bg;
2527 
2528 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2529 		bytenr = bg->start;
2530 	}
2531 	read_unlock(&fs_info->block_group_cache_lock);
2532 
2533 	return bytenr;
2534 }
2535 
pin_down_extent(struct btrfs_trans_handle * trans,struct btrfs_block_group * cache,u64 bytenr,u64 num_bytes,int reserved)2536 static int pin_down_extent(struct btrfs_trans_handle *trans,
2537 			   struct btrfs_block_group *cache,
2538 			   u64 bytenr, u64 num_bytes, int reserved)
2539 {
2540 	struct btrfs_fs_info *fs_info = cache->fs_info;
2541 
2542 	spin_lock(&cache->space_info->lock);
2543 	spin_lock(&cache->lock);
2544 	cache->pinned += num_bytes;
2545 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2546 					     num_bytes);
2547 	if (reserved) {
2548 		cache->reserved -= num_bytes;
2549 		cache->space_info->bytes_reserved -= num_bytes;
2550 	}
2551 	spin_unlock(&cache->lock);
2552 	spin_unlock(&cache->space_info->lock);
2553 
2554 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2555 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2556 	return 0;
2557 }
2558 
btrfs_pin_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int reserved)2559 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2560 		     u64 bytenr, u64 num_bytes, int reserved)
2561 {
2562 	struct btrfs_block_group *cache;
2563 
2564 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2565 	BUG_ON(!cache); /* Logic error */
2566 
2567 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2568 
2569 	btrfs_put_block_group(cache);
2570 	return 0;
2571 }
2572 
2573 /*
2574  * this function must be called within transaction
2575  */
btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)2576 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2577 				    u64 bytenr, u64 num_bytes)
2578 {
2579 	struct btrfs_block_group *cache;
2580 	int ret;
2581 
2582 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2583 	if (!cache)
2584 		return -EINVAL;
2585 
2586 	/*
2587 	 * Fully cache the free space first so that our pin removes the free space
2588 	 * from the cache.
2589 	 */
2590 	ret = btrfs_cache_block_group(cache, true);
2591 	if (ret)
2592 		goto out;
2593 
2594 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2595 
2596 	/* remove us from the free space cache (if we're there at all) */
2597 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2598 out:
2599 	btrfs_put_block_group(cache);
2600 	return ret;
2601 }
2602 
__exclude_logged_extent(struct btrfs_fs_info * fs_info,u64 start,u64 num_bytes)2603 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2604 				   u64 start, u64 num_bytes)
2605 {
2606 	int ret;
2607 	struct btrfs_block_group *block_group;
2608 
2609 	block_group = btrfs_lookup_block_group(fs_info, start);
2610 	if (!block_group)
2611 		return -EINVAL;
2612 
2613 	ret = btrfs_cache_block_group(block_group, true);
2614 	if (ret)
2615 		goto out;
2616 
2617 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2618 out:
2619 	btrfs_put_block_group(block_group);
2620 	return ret;
2621 }
2622 
btrfs_exclude_logged_extents(struct extent_buffer * eb)2623 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2624 {
2625 	struct btrfs_fs_info *fs_info = eb->fs_info;
2626 	struct btrfs_file_extent_item *item;
2627 	struct btrfs_key key;
2628 	int found_type;
2629 	int i;
2630 	int ret = 0;
2631 
2632 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2633 		return 0;
2634 
2635 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2636 		btrfs_item_key_to_cpu(eb, &key, i);
2637 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2638 			continue;
2639 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2640 		found_type = btrfs_file_extent_type(eb, item);
2641 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2642 			continue;
2643 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2644 			continue;
2645 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2646 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2647 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2648 		if (ret)
2649 			break;
2650 	}
2651 
2652 	return ret;
2653 }
2654 
2655 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group * bg)2656 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2657 {
2658 	atomic_inc(&bg->reservations);
2659 }
2660 
2661 /*
2662  * Returns the free cluster for the given space info and sets empty_cluster to
2663  * what it should be based on the mount options.
2664  */
2665 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 * empty_cluster)2666 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2667 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2668 {
2669 	struct btrfs_free_cluster *ret = NULL;
2670 
2671 	*empty_cluster = 0;
2672 	if (btrfs_mixed_space_info(space_info))
2673 		return ret;
2674 
2675 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2676 		ret = &fs_info->meta_alloc_cluster;
2677 		if (btrfs_test_opt(fs_info, SSD))
2678 			*empty_cluster = SZ_2M;
2679 		else
2680 			*empty_cluster = SZ_64K;
2681 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2682 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2683 		*empty_cluster = SZ_2M;
2684 		ret = &fs_info->data_alloc_cluster;
2685 	}
2686 
2687 	return ret;
2688 }
2689 
unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end,const bool return_free_space)2690 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2691 			      u64 start, u64 end,
2692 			      const bool return_free_space)
2693 {
2694 	struct btrfs_block_group *cache = NULL;
2695 	struct btrfs_space_info *space_info;
2696 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2697 	struct btrfs_free_cluster *cluster = NULL;
2698 	u64 len;
2699 	u64 total_unpinned = 0;
2700 	u64 empty_cluster = 0;
2701 	bool readonly;
2702 
2703 	while (start <= end) {
2704 		readonly = false;
2705 		if (!cache ||
2706 		    start >= cache->start + cache->length) {
2707 			if (cache)
2708 				btrfs_put_block_group(cache);
2709 			total_unpinned = 0;
2710 			cache = btrfs_lookup_block_group(fs_info, start);
2711 			BUG_ON(!cache); /* Logic error */
2712 
2713 			cluster = fetch_cluster_info(fs_info,
2714 						     cache->space_info,
2715 						     &empty_cluster);
2716 			empty_cluster <<= 1;
2717 		}
2718 
2719 		len = cache->start + cache->length - start;
2720 		len = min(len, end + 1 - start);
2721 
2722 		if (return_free_space)
2723 			btrfs_add_free_space(cache, start, len);
2724 
2725 		start += len;
2726 		total_unpinned += len;
2727 		space_info = cache->space_info;
2728 
2729 		/*
2730 		 * If this space cluster has been marked as fragmented and we've
2731 		 * unpinned enough in this block group to potentially allow a
2732 		 * cluster to be created inside of it go ahead and clear the
2733 		 * fragmented check.
2734 		 */
2735 		if (cluster && cluster->fragmented &&
2736 		    total_unpinned > empty_cluster) {
2737 			spin_lock(&cluster->lock);
2738 			cluster->fragmented = 0;
2739 			spin_unlock(&cluster->lock);
2740 		}
2741 
2742 		spin_lock(&space_info->lock);
2743 		spin_lock(&cache->lock);
2744 		cache->pinned -= len;
2745 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2746 		space_info->max_extent_size = 0;
2747 		if (cache->ro) {
2748 			space_info->bytes_readonly += len;
2749 			readonly = true;
2750 		} else if (btrfs_is_zoned(fs_info)) {
2751 			/* Need reset before reusing in a zoned block group */
2752 			space_info->bytes_zone_unusable += len;
2753 			readonly = true;
2754 		}
2755 		spin_unlock(&cache->lock);
2756 		if (!readonly && return_free_space &&
2757 		    global_rsv->space_info == space_info) {
2758 			spin_lock(&global_rsv->lock);
2759 			if (!global_rsv->full) {
2760 				u64 to_add = min(len, global_rsv->size -
2761 						      global_rsv->reserved);
2762 
2763 				global_rsv->reserved += to_add;
2764 				btrfs_space_info_update_bytes_may_use(fs_info,
2765 						space_info, to_add);
2766 				if (global_rsv->reserved >= global_rsv->size)
2767 					global_rsv->full = 1;
2768 				len -= to_add;
2769 			}
2770 			spin_unlock(&global_rsv->lock);
2771 		}
2772 		/* Add to any tickets we may have */
2773 		if (!readonly && return_free_space && len)
2774 			btrfs_try_granting_tickets(fs_info, space_info);
2775 		spin_unlock(&space_info->lock);
2776 	}
2777 
2778 	if (cache)
2779 		btrfs_put_block_group(cache);
2780 	return 0;
2781 }
2782 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans)2783 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2784 {
2785 	struct btrfs_fs_info *fs_info = trans->fs_info;
2786 	struct btrfs_block_group *block_group, *tmp;
2787 	struct list_head *deleted_bgs;
2788 	struct extent_io_tree *unpin;
2789 	u64 start;
2790 	u64 end;
2791 	int ret;
2792 
2793 	unpin = &trans->transaction->pinned_extents;
2794 
2795 	while (!TRANS_ABORTED(trans)) {
2796 		struct extent_state *cached_state = NULL;
2797 
2798 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2799 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2800 					   EXTENT_DIRTY, &cached_state)) {
2801 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2802 			break;
2803 		}
2804 
2805 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2806 			ret = btrfs_discard_extent(fs_info, start,
2807 						   end + 1 - start, NULL);
2808 
2809 		clear_extent_dirty(unpin, start, end, &cached_state);
2810 		unpin_extent_range(fs_info, start, end, true);
2811 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2812 		free_extent_state(cached_state);
2813 		cond_resched();
2814 	}
2815 
2816 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2817 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2818 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2819 	}
2820 
2821 	/*
2822 	 * Transaction is finished.  We don't need the lock anymore.  We
2823 	 * do need to clean up the block groups in case of a transaction
2824 	 * abort.
2825 	 */
2826 	deleted_bgs = &trans->transaction->deleted_bgs;
2827 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2828 		u64 trimmed = 0;
2829 
2830 		ret = -EROFS;
2831 		if (!TRANS_ABORTED(trans))
2832 			ret = btrfs_discard_extent(fs_info,
2833 						   block_group->start,
2834 						   block_group->length,
2835 						   &trimmed);
2836 
2837 		list_del_init(&block_group->bg_list);
2838 		btrfs_unfreeze_block_group(block_group);
2839 		btrfs_put_block_group(block_group);
2840 
2841 		if (ret) {
2842 			const char *errstr = btrfs_decode_error(ret);
2843 			btrfs_warn(fs_info,
2844 			   "discard failed while removing blockgroup: errno=%d %s",
2845 				   ret, errstr);
2846 		}
2847 	}
2848 
2849 	return 0;
2850 }
2851 
do_free_extent_accounting(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,bool is_data)2852 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2853 				     u64 bytenr, u64 num_bytes, bool is_data)
2854 {
2855 	int ret;
2856 
2857 	if (is_data) {
2858 		struct btrfs_root *csum_root;
2859 
2860 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2861 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2862 		if (ret) {
2863 			btrfs_abort_transaction(trans, ret);
2864 			return ret;
2865 		}
2866 	}
2867 
2868 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2869 	if (ret) {
2870 		btrfs_abort_transaction(trans, ret);
2871 		return ret;
2872 	}
2873 
2874 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2875 	if (ret)
2876 		btrfs_abort_transaction(trans, ret);
2877 
2878 	return ret;
2879 }
2880 
2881 #define abort_and_dump(trans, path, fmt, args...)	\
2882 ({							\
2883 	btrfs_abort_transaction(trans, -EUCLEAN);	\
2884 	btrfs_print_leaf(path->nodes[0]);		\
2885 	btrfs_crit(trans->fs_info, fmt, ##args);	\
2886 })
2887 
2888 /*
2889  * Drop one or more refs of @node.
2890  *
2891  * 1. Locate the extent refs.
2892  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2893  *    Locate it, then reduce the refs number or remove the ref line completely.
2894  *
2895  * 2. Update the refs count in EXTENT/METADATA_ITEM
2896  *
2897  * Inline backref case:
2898  *
2899  * in extent tree we have:
2900  *
2901  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2902  *		refs 2 gen 6 flags DATA
2903  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2904  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2905  *
2906  * This function gets called with:
2907  *
2908  *    node->bytenr = 13631488
2909  *    node->num_bytes = 1048576
2910  *    root_objectid = FS_TREE
2911  *    owner_objectid = 257
2912  *    owner_offset = 0
2913  *    refs_to_drop = 1
2914  *
2915  * Then we should get some like:
2916  *
2917  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2918  *		refs 1 gen 6 flags DATA
2919  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2920  *
2921  * Keyed backref case:
2922  *
2923  * in extent tree we have:
2924  *
2925  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2926  *		refs 754 gen 6 flags DATA
2927  *	[...]
2928  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2929  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2930  *
2931  * This function get called with:
2932  *
2933  *    node->bytenr = 13631488
2934  *    node->num_bytes = 1048576
2935  *    root_objectid = FS_TREE
2936  *    owner_objectid = 866
2937  *    owner_offset = 0
2938  *    refs_to_drop = 1
2939  *
2940  * Then we should get some like:
2941  *
2942  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2943  *		refs 753 gen 6 flags DATA
2944  *
2945  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2946  */
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)2947 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2948 			       struct btrfs_delayed_ref_node *node, u64 parent,
2949 			       u64 root_objectid, u64 owner_objectid,
2950 			       u64 owner_offset, int refs_to_drop,
2951 			       struct btrfs_delayed_extent_op *extent_op)
2952 {
2953 	struct btrfs_fs_info *info = trans->fs_info;
2954 	struct btrfs_key key;
2955 	struct btrfs_path *path;
2956 	struct btrfs_root *extent_root;
2957 	struct extent_buffer *leaf;
2958 	struct btrfs_extent_item *ei;
2959 	struct btrfs_extent_inline_ref *iref;
2960 	int ret;
2961 	int is_data;
2962 	int extent_slot = 0;
2963 	int found_extent = 0;
2964 	int num_to_del = 1;
2965 	u32 item_size;
2966 	u64 refs;
2967 	u64 bytenr = node->bytenr;
2968 	u64 num_bytes = node->num_bytes;
2969 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2970 
2971 	extent_root = btrfs_extent_root(info, bytenr);
2972 	ASSERT(extent_root);
2973 
2974 	path = btrfs_alloc_path();
2975 	if (!path)
2976 		return -ENOMEM;
2977 
2978 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2979 
2980 	if (!is_data && refs_to_drop != 1) {
2981 		btrfs_crit(info,
2982 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2983 			   node->bytenr, refs_to_drop);
2984 		ret = -EINVAL;
2985 		btrfs_abort_transaction(trans, ret);
2986 		goto out;
2987 	}
2988 
2989 	if (is_data)
2990 		skinny_metadata = false;
2991 
2992 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2993 				    parent, root_objectid, owner_objectid,
2994 				    owner_offset);
2995 	if (ret == 0) {
2996 		/*
2997 		 * Either the inline backref or the SHARED_DATA_REF/
2998 		 * SHARED_BLOCK_REF is found
2999 		 *
3000 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3001 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3002 		 */
3003 		extent_slot = path->slots[0];
3004 		while (extent_slot >= 0) {
3005 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3006 					      extent_slot);
3007 			if (key.objectid != bytenr)
3008 				break;
3009 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3010 			    key.offset == num_bytes) {
3011 				found_extent = 1;
3012 				break;
3013 			}
3014 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3015 			    key.offset == owner_objectid) {
3016 				found_extent = 1;
3017 				break;
3018 			}
3019 
3020 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3021 			if (path->slots[0] - extent_slot > 5)
3022 				break;
3023 			extent_slot--;
3024 		}
3025 
3026 		if (!found_extent) {
3027 			if (iref) {
3028 				abort_and_dump(trans, path,
3029 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3030 					   path->slots[0]);
3031 				ret = -EUCLEAN;
3032 				goto out;
3033 			}
3034 			/* Must be SHARED_* item, remove the backref first */
3035 			ret = remove_extent_backref(trans, extent_root, path,
3036 						    NULL, refs_to_drop, is_data);
3037 			if (ret) {
3038 				btrfs_abort_transaction(trans, ret);
3039 				goto out;
3040 			}
3041 			btrfs_release_path(path);
3042 
3043 			/* Slow path to locate EXTENT/METADATA_ITEM */
3044 			key.objectid = bytenr;
3045 			key.type = BTRFS_EXTENT_ITEM_KEY;
3046 			key.offset = num_bytes;
3047 
3048 			if (!is_data && skinny_metadata) {
3049 				key.type = BTRFS_METADATA_ITEM_KEY;
3050 				key.offset = owner_objectid;
3051 			}
3052 
3053 			ret = btrfs_search_slot(trans, extent_root,
3054 						&key, path, -1, 1);
3055 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3056 				/*
3057 				 * Couldn't find our skinny metadata item,
3058 				 * see if we have ye olde extent item.
3059 				 */
3060 				path->slots[0]--;
3061 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3062 						      path->slots[0]);
3063 				if (key.objectid == bytenr &&
3064 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3065 				    key.offset == num_bytes)
3066 					ret = 0;
3067 			}
3068 
3069 			if (ret > 0 && skinny_metadata) {
3070 				skinny_metadata = false;
3071 				key.objectid = bytenr;
3072 				key.type = BTRFS_EXTENT_ITEM_KEY;
3073 				key.offset = num_bytes;
3074 				btrfs_release_path(path);
3075 				ret = btrfs_search_slot(trans, extent_root,
3076 							&key, path, -1, 1);
3077 			}
3078 
3079 			if (ret) {
3080 				if (ret > 0)
3081 					btrfs_print_leaf(path->nodes[0]);
3082 				btrfs_err(info,
3083 			"umm, got %d back from search, was looking for %llu, slot %d",
3084 					  ret, bytenr, path->slots[0]);
3085 			}
3086 			if (ret < 0) {
3087 				btrfs_abort_transaction(trans, ret);
3088 				goto out;
3089 			}
3090 			extent_slot = path->slots[0];
3091 		}
3092 	} else if (WARN_ON(ret == -ENOENT)) {
3093 		abort_and_dump(trans, path,
3094 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3095 			       bytenr, parent, root_objectid, owner_objectid,
3096 			       owner_offset, path->slots[0]);
3097 		goto out;
3098 	} else {
3099 		btrfs_abort_transaction(trans, ret);
3100 		goto out;
3101 	}
3102 
3103 	leaf = path->nodes[0];
3104 	item_size = btrfs_item_size(leaf, extent_slot);
3105 	if (unlikely(item_size < sizeof(*ei))) {
3106 		ret = -EUCLEAN;
3107 		btrfs_err(trans->fs_info,
3108 			  "unexpected extent item size, has %u expect >= %zu",
3109 			  item_size, sizeof(*ei));
3110 		btrfs_abort_transaction(trans, ret);
3111 		goto out;
3112 	}
3113 	ei = btrfs_item_ptr(leaf, extent_slot,
3114 			    struct btrfs_extent_item);
3115 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3116 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3117 		struct btrfs_tree_block_info *bi;
3118 
3119 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3120 			abort_and_dump(trans, path,
3121 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3122 				       key.objectid, key.type, key.offset,
3123 				       path->slots[0], owner_objectid, item_size,
3124 				       sizeof(*ei) + sizeof(*bi));
3125 			ret = -EUCLEAN;
3126 			goto out;
3127 		}
3128 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3129 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3130 	}
3131 
3132 	refs = btrfs_extent_refs(leaf, ei);
3133 	if (refs < refs_to_drop) {
3134 		abort_and_dump(trans, path,
3135 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3136 			       refs_to_drop, refs, bytenr, path->slots[0]);
3137 		ret = -EUCLEAN;
3138 		goto out;
3139 	}
3140 	refs -= refs_to_drop;
3141 
3142 	if (refs > 0) {
3143 		if (extent_op)
3144 			__run_delayed_extent_op(extent_op, leaf, ei);
3145 		/*
3146 		 * In the case of inline back ref, reference count will
3147 		 * be updated by remove_extent_backref
3148 		 */
3149 		if (iref) {
3150 			if (!found_extent) {
3151 				abort_and_dump(trans, path,
3152 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3153 					       path->slots[0]);
3154 				ret = -EUCLEAN;
3155 				goto out;
3156 			}
3157 		} else {
3158 			btrfs_set_extent_refs(leaf, ei, refs);
3159 			btrfs_mark_buffer_dirty(trans, leaf);
3160 		}
3161 		if (found_extent) {
3162 			ret = remove_extent_backref(trans, extent_root, path,
3163 						    iref, refs_to_drop, is_data);
3164 			if (ret) {
3165 				btrfs_abort_transaction(trans, ret);
3166 				goto out;
3167 			}
3168 		}
3169 	} else {
3170 		/* In this branch refs == 1 */
3171 		if (found_extent) {
3172 			if (is_data && refs_to_drop !=
3173 			    extent_data_ref_count(path, iref)) {
3174 				abort_and_dump(trans, path,
3175 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3176 					       extent_data_ref_count(path, iref),
3177 					       refs_to_drop, path->slots[0]);
3178 				ret = -EUCLEAN;
3179 				goto out;
3180 			}
3181 			if (iref) {
3182 				if (path->slots[0] != extent_slot) {
3183 					abort_and_dump(trans, path,
3184 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3185 						       key.objectid, key.type,
3186 						       key.offset, path->slots[0]);
3187 					ret = -EUCLEAN;
3188 					goto out;
3189 				}
3190 			} else {
3191 				/*
3192 				 * No inline ref, we must be at SHARED_* item,
3193 				 * And it's single ref, it must be:
3194 				 * |	extent_slot	  ||extent_slot + 1|
3195 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3196 				 */
3197 				if (path->slots[0] != extent_slot + 1) {
3198 					abort_and_dump(trans, path,
3199 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3200 						       path->slots[0]);
3201 					ret = -EUCLEAN;
3202 					goto out;
3203 				}
3204 				path->slots[0] = extent_slot;
3205 				num_to_del = 2;
3206 			}
3207 		}
3208 
3209 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3210 				      num_to_del);
3211 		if (ret) {
3212 			btrfs_abort_transaction(trans, ret);
3213 			goto out;
3214 		}
3215 		btrfs_release_path(path);
3216 
3217 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3218 	}
3219 	btrfs_release_path(path);
3220 
3221 out:
3222 	btrfs_free_path(path);
3223 	return ret;
3224 }
3225 
3226 /*
3227  * when we free an block, it is possible (and likely) that we free the last
3228  * delayed ref for that extent as well.  This searches the delayed ref tree for
3229  * a given extent, and if there are no other delayed refs to be processed, it
3230  * removes it from the tree.
3231  */
check_ref_cleanup(struct btrfs_trans_handle * trans,u64 bytenr)3232 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3233 				      u64 bytenr)
3234 {
3235 	struct btrfs_delayed_ref_head *head;
3236 	struct btrfs_delayed_ref_root *delayed_refs;
3237 	int ret = 0;
3238 
3239 	delayed_refs = &trans->transaction->delayed_refs;
3240 	spin_lock(&delayed_refs->lock);
3241 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3242 	if (!head)
3243 		goto out_delayed_unlock;
3244 
3245 	spin_lock(&head->lock);
3246 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3247 		goto out;
3248 
3249 	if (cleanup_extent_op(head) != NULL)
3250 		goto out;
3251 
3252 	/*
3253 	 * waiting for the lock here would deadlock.  If someone else has it
3254 	 * locked they are already in the process of dropping it anyway
3255 	 */
3256 	if (!mutex_trylock(&head->mutex))
3257 		goto out;
3258 
3259 	btrfs_delete_ref_head(delayed_refs, head);
3260 	head->processing = false;
3261 
3262 	spin_unlock(&head->lock);
3263 	spin_unlock(&delayed_refs->lock);
3264 
3265 	BUG_ON(head->extent_op);
3266 	if (head->must_insert_reserved)
3267 		ret = 1;
3268 
3269 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3270 	mutex_unlock(&head->mutex);
3271 	btrfs_put_delayed_ref_head(head);
3272 	return ret;
3273 out:
3274 	spin_unlock(&head->lock);
3275 
3276 out_delayed_unlock:
3277 	spin_unlock(&delayed_refs->lock);
3278 	return 0;
3279 }
3280 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,u64 root_id,struct extent_buffer * buf,u64 parent,int last_ref)3281 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3282 			   u64 root_id,
3283 			   struct extent_buffer *buf,
3284 			   u64 parent, int last_ref)
3285 {
3286 	struct btrfs_fs_info *fs_info = trans->fs_info;
3287 	struct btrfs_ref generic_ref = { 0 };
3288 	int ret;
3289 
3290 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3291 			       buf->start, buf->len, parent);
3292 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3293 			    root_id, 0, false);
3294 
3295 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3296 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3297 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3298 		BUG_ON(ret); /* -ENOMEM */
3299 	}
3300 
3301 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3302 		struct btrfs_block_group *cache;
3303 		bool must_pin = false;
3304 
3305 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3306 			ret = check_ref_cleanup(trans, buf->start);
3307 			if (!ret) {
3308 				btrfs_redirty_list_add(trans->transaction, buf);
3309 				goto out;
3310 			}
3311 		}
3312 
3313 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3314 
3315 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3316 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3317 			btrfs_put_block_group(cache);
3318 			goto out;
3319 		}
3320 
3321 		/*
3322 		 * If there are tree mod log users we may have recorded mod log
3323 		 * operations for this node.  If we re-allocate this node we
3324 		 * could replay operations on this node that happened when it
3325 		 * existed in a completely different root.  For example if it
3326 		 * was part of root A, then was reallocated to root B, and we
3327 		 * are doing a btrfs_old_search_slot(root b), we could replay
3328 		 * operations that happened when the block was part of root A,
3329 		 * giving us an inconsistent view of the btree.
3330 		 *
3331 		 * We are safe from races here because at this point no other
3332 		 * node or root points to this extent buffer, so if after this
3333 		 * check a new tree mod log user joins we will not have an
3334 		 * existing log of operations on this node that we have to
3335 		 * contend with.
3336 		 */
3337 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3338 			must_pin = true;
3339 
3340 		if (must_pin || btrfs_is_zoned(fs_info)) {
3341 			btrfs_redirty_list_add(trans->transaction, buf);
3342 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3343 			btrfs_put_block_group(cache);
3344 			goto out;
3345 		}
3346 
3347 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3348 
3349 		btrfs_add_free_space(cache, buf->start, buf->len);
3350 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3351 		btrfs_put_block_group(cache);
3352 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3353 	}
3354 out:
3355 	if (last_ref) {
3356 		/*
3357 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3358 		 * matter anymore.
3359 		 */
3360 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3361 	}
3362 }
3363 
3364 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_ref * ref)3365 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3366 {
3367 	struct btrfs_fs_info *fs_info = trans->fs_info;
3368 	int ret;
3369 
3370 	if (btrfs_is_testing(fs_info))
3371 		return 0;
3372 
3373 	/*
3374 	 * tree log blocks never actually go into the extent allocation
3375 	 * tree, just update pinning info and exit early.
3376 	 */
3377 	if ((ref->type == BTRFS_REF_METADATA &&
3378 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3379 	    (ref->type == BTRFS_REF_DATA &&
3380 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3381 		/* unlocks the pinned mutex */
3382 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3383 		ret = 0;
3384 	} else if (ref->type == BTRFS_REF_METADATA) {
3385 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3386 	} else {
3387 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3388 	}
3389 
3390 	if (!((ref->type == BTRFS_REF_METADATA &&
3391 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3392 	      (ref->type == BTRFS_REF_DATA &&
3393 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3394 		btrfs_ref_tree_mod(fs_info, ref);
3395 
3396 	return ret;
3397 }
3398 
3399 enum btrfs_loop_type {
3400 	/*
3401 	 * Start caching block groups but do not wait for progress or for them
3402 	 * to be done.
3403 	 */
3404 	LOOP_CACHING_NOWAIT,
3405 
3406 	/*
3407 	 * Wait for the block group free_space >= the space we're waiting for if
3408 	 * the block group isn't cached.
3409 	 */
3410 	LOOP_CACHING_WAIT,
3411 
3412 	/*
3413 	 * Allow allocations to happen from block groups that do not yet have a
3414 	 * size classification.
3415 	 */
3416 	LOOP_UNSET_SIZE_CLASS,
3417 
3418 	/*
3419 	 * Allocate a chunk and then retry the allocation.
3420 	 */
3421 	LOOP_ALLOC_CHUNK,
3422 
3423 	/*
3424 	 * Ignore the size class restrictions for this allocation.
3425 	 */
3426 	LOOP_WRONG_SIZE_CLASS,
3427 
3428 	/*
3429 	 * Ignore the empty size, only try to allocate the number of bytes
3430 	 * needed for this allocation.
3431 	 */
3432 	LOOP_NO_EMPTY_SIZE,
3433 };
3434 
3435 static inline void
btrfs_lock_block_group(struct btrfs_block_group * cache,int delalloc)3436 btrfs_lock_block_group(struct btrfs_block_group *cache,
3437 		       int delalloc)
3438 {
3439 	if (delalloc)
3440 		down_read(&cache->data_rwsem);
3441 }
3442 
btrfs_grab_block_group(struct btrfs_block_group * cache,int delalloc)3443 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3444 		       int delalloc)
3445 {
3446 	btrfs_get_block_group(cache);
3447 	if (delalloc)
3448 		down_read(&cache->data_rwsem);
3449 }
3450 
btrfs_lock_cluster(struct btrfs_block_group * block_group,struct btrfs_free_cluster * cluster,int delalloc)3451 static struct btrfs_block_group *btrfs_lock_cluster(
3452 		   struct btrfs_block_group *block_group,
3453 		   struct btrfs_free_cluster *cluster,
3454 		   int delalloc)
3455 	__acquires(&cluster->refill_lock)
3456 {
3457 	struct btrfs_block_group *used_bg = NULL;
3458 
3459 	spin_lock(&cluster->refill_lock);
3460 	while (1) {
3461 		used_bg = cluster->block_group;
3462 		if (!used_bg)
3463 			return NULL;
3464 
3465 		if (used_bg == block_group)
3466 			return used_bg;
3467 
3468 		btrfs_get_block_group(used_bg);
3469 
3470 		if (!delalloc)
3471 			return used_bg;
3472 
3473 		if (down_read_trylock(&used_bg->data_rwsem))
3474 			return used_bg;
3475 
3476 		spin_unlock(&cluster->refill_lock);
3477 
3478 		/* We should only have one-level nested. */
3479 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3480 
3481 		spin_lock(&cluster->refill_lock);
3482 		if (used_bg == cluster->block_group)
3483 			return used_bg;
3484 
3485 		up_read(&used_bg->data_rwsem);
3486 		btrfs_put_block_group(used_bg);
3487 	}
3488 }
3489 
3490 static inline void
btrfs_release_block_group(struct btrfs_block_group * cache,int delalloc)3491 btrfs_release_block_group(struct btrfs_block_group *cache,
3492 			 int delalloc)
3493 {
3494 	if (delalloc)
3495 		up_read(&cache->data_rwsem);
3496 	btrfs_put_block_group(cache);
3497 }
3498 
3499 /*
3500  * Helper function for find_free_extent().
3501  *
3502  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3503  * Return >0 to inform caller that we find nothing
3504  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3505  */
find_free_extent_clustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** cluster_bg_ret)3506 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3507 				      struct find_free_extent_ctl *ffe_ctl,
3508 				      struct btrfs_block_group **cluster_bg_ret)
3509 {
3510 	struct btrfs_block_group *cluster_bg;
3511 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3512 	u64 aligned_cluster;
3513 	u64 offset;
3514 	int ret;
3515 
3516 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3517 	if (!cluster_bg)
3518 		goto refill_cluster;
3519 	if (cluster_bg != bg && (cluster_bg->ro ||
3520 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3521 		goto release_cluster;
3522 
3523 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3524 			ffe_ctl->num_bytes, cluster_bg->start,
3525 			&ffe_ctl->max_extent_size);
3526 	if (offset) {
3527 		/* We have a block, we're done */
3528 		spin_unlock(&last_ptr->refill_lock);
3529 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3530 		*cluster_bg_ret = cluster_bg;
3531 		ffe_ctl->found_offset = offset;
3532 		return 0;
3533 	}
3534 	WARN_ON(last_ptr->block_group != cluster_bg);
3535 
3536 release_cluster:
3537 	/*
3538 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3539 	 * lets just skip it and let the allocator find whatever block it can
3540 	 * find. If we reach this point, we will have tried the cluster
3541 	 * allocator plenty of times and not have found anything, so we are
3542 	 * likely way too fragmented for the clustering stuff to find anything.
3543 	 *
3544 	 * However, if the cluster is taken from the current block group,
3545 	 * release the cluster first, so that we stand a better chance of
3546 	 * succeeding in the unclustered allocation.
3547 	 */
3548 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3549 		spin_unlock(&last_ptr->refill_lock);
3550 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3551 		return -ENOENT;
3552 	}
3553 
3554 	/* This cluster didn't work out, free it and start over */
3555 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3556 
3557 	if (cluster_bg != bg)
3558 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3559 
3560 refill_cluster:
3561 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3562 		spin_unlock(&last_ptr->refill_lock);
3563 		return -ENOENT;
3564 	}
3565 
3566 	aligned_cluster = max_t(u64,
3567 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3568 			bg->full_stripe_len);
3569 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3570 			ffe_ctl->num_bytes, aligned_cluster);
3571 	if (ret == 0) {
3572 		/* Now pull our allocation out of this cluster */
3573 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3574 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3575 				&ffe_ctl->max_extent_size);
3576 		if (offset) {
3577 			/* We found one, proceed */
3578 			spin_unlock(&last_ptr->refill_lock);
3579 			ffe_ctl->found_offset = offset;
3580 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3581 			return 0;
3582 		}
3583 	}
3584 	/*
3585 	 * At this point we either didn't find a cluster or we weren't able to
3586 	 * allocate a block from our cluster.  Free the cluster we've been
3587 	 * trying to use, and go to the next block group.
3588 	 */
3589 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590 	spin_unlock(&last_ptr->refill_lock);
3591 	return 1;
3592 }
3593 
3594 /*
3595  * Return >0 to inform caller that we find nothing
3596  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3597  */
find_free_extent_unclustered(struct btrfs_block_group * bg,struct find_free_extent_ctl * ffe_ctl)3598 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3599 					struct find_free_extent_ctl *ffe_ctl)
3600 {
3601 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3602 	u64 offset;
3603 
3604 	/*
3605 	 * We are doing an unclustered allocation, set the fragmented flag so
3606 	 * we don't bother trying to setup a cluster again until we get more
3607 	 * space.
3608 	 */
3609 	if (unlikely(last_ptr)) {
3610 		spin_lock(&last_ptr->lock);
3611 		last_ptr->fragmented = 1;
3612 		spin_unlock(&last_ptr->lock);
3613 	}
3614 	if (ffe_ctl->cached) {
3615 		struct btrfs_free_space_ctl *free_space_ctl;
3616 
3617 		free_space_ctl = bg->free_space_ctl;
3618 		spin_lock(&free_space_ctl->tree_lock);
3619 		if (free_space_ctl->free_space <
3620 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3621 		    ffe_ctl->empty_size) {
3622 			ffe_ctl->total_free_space = max_t(u64,
3623 					ffe_ctl->total_free_space,
3624 					free_space_ctl->free_space);
3625 			spin_unlock(&free_space_ctl->tree_lock);
3626 			return 1;
3627 		}
3628 		spin_unlock(&free_space_ctl->tree_lock);
3629 	}
3630 
3631 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3632 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3633 			&ffe_ctl->max_extent_size);
3634 	if (!offset)
3635 		return 1;
3636 	ffe_ctl->found_offset = offset;
3637 	return 0;
3638 }
3639 
do_allocation_clustered(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3640 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3641 				   struct find_free_extent_ctl *ffe_ctl,
3642 				   struct btrfs_block_group **bg_ret)
3643 {
3644 	int ret;
3645 
3646 	/* We want to try and use the cluster allocator, so lets look there */
3647 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3648 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3649 		if (ret >= 0)
3650 			return ret;
3651 		/* ret == -ENOENT case falls through */
3652 	}
3653 
3654 	return find_free_extent_unclustered(block_group, ffe_ctl);
3655 }
3656 
3657 /*
3658  * Tree-log block group locking
3659  * ============================
3660  *
3661  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3662  * indicates the starting address of a block group, which is reserved only
3663  * for tree-log metadata.
3664  *
3665  * Lock nesting
3666  * ============
3667  *
3668  * space_info::lock
3669  *   block_group::lock
3670  *     fs_info::treelog_bg_lock
3671  */
3672 
3673 /*
3674  * Simple allocator for sequential-only block group. It only allows sequential
3675  * allocation. No need to play with trees. This function also reserves the
3676  * bytes as in btrfs_add_reserved_bytes.
3677  */
do_allocation_zoned(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3678 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3679 			       struct find_free_extent_ctl *ffe_ctl,
3680 			       struct btrfs_block_group **bg_ret)
3681 {
3682 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3683 	struct btrfs_space_info *space_info = block_group->space_info;
3684 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3685 	u64 start = block_group->start;
3686 	u64 num_bytes = ffe_ctl->num_bytes;
3687 	u64 avail;
3688 	u64 bytenr = block_group->start;
3689 	u64 log_bytenr;
3690 	u64 data_reloc_bytenr;
3691 	int ret = 0;
3692 	bool skip = false;
3693 
3694 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3695 
3696 	/*
3697 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3698 	 * group, and vice versa.
3699 	 */
3700 	spin_lock(&fs_info->treelog_bg_lock);
3701 	log_bytenr = fs_info->treelog_bg;
3702 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3703 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3704 		skip = true;
3705 	spin_unlock(&fs_info->treelog_bg_lock);
3706 	if (skip)
3707 		return 1;
3708 
3709 	/*
3710 	 * Do not allow non-relocation blocks in the dedicated relocation block
3711 	 * group, and vice versa.
3712 	 */
3713 	spin_lock(&fs_info->relocation_bg_lock);
3714 	data_reloc_bytenr = fs_info->data_reloc_bg;
3715 	if (data_reloc_bytenr &&
3716 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3717 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3718 		skip = true;
3719 	spin_unlock(&fs_info->relocation_bg_lock);
3720 	if (skip)
3721 		return 1;
3722 
3723 	/* Check RO and no space case before trying to activate it */
3724 	spin_lock(&block_group->lock);
3725 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3726 		ret = 1;
3727 		/*
3728 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3729 		 * Return the error after taking the locks.
3730 		 */
3731 	}
3732 	spin_unlock(&block_group->lock);
3733 
3734 	/* Metadata block group is activated at write time. */
3735 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3736 	    !btrfs_zone_activate(block_group)) {
3737 		ret = 1;
3738 		/*
3739 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3740 		 * Return the error after taking the locks.
3741 		 */
3742 	}
3743 
3744 	spin_lock(&space_info->lock);
3745 	spin_lock(&block_group->lock);
3746 	spin_lock(&fs_info->treelog_bg_lock);
3747 	spin_lock(&fs_info->relocation_bg_lock);
3748 
3749 	if (ret)
3750 		goto out;
3751 
3752 	ASSERT(!ffe_ctl->for_treelog ||
3753 	       block_group->start == fs_info->treelog_bg ||
3754 	       fs_info->treelog_bg == 0);
3755 	ASSERT(!ffe_ctl->for_data_reloc ||
3756 	       block_group->start == fs_info->data_reloc_bg ||
3757 	       fs_info->data_reloc_bg == 0);
3758 
3759 	if (block_group->ro ||
3760 	    (!ffe_ctl->for_data_reloc &&
3761 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3762 		ret = 1;
3763 		goto out;
3764 	}
3765 
3766 	/*
3767 	 * Do not allow currently using block group to be tree-log dedicated
3768 	 * block group.
3769 	 */
3770 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3771 	    (block_group->used || block_group->reserved)) {
3772 		ret = 1;
3773 		goto out;
3774 	}
3775 
3776 	/*
3777 	 * Do not allow currently used block group to be the data relocation
3778 	 * dedicated block group.
3779 	 */
3780 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3781 	    (block_group->used || block_group->reserved)) {
3782 		ret = 1;
3783 		goto out;
3784 	}
3785 
3786 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3787 	avail = block_group->zone_capacity - block_group->alloc_offset;
3788 	if (avail < num_bytes) {
3789 		if (ffe_ctl->max_extent_size < avail) {
3790 			/*
3791 			 * With sequential allocator, free space is always
3792 			 * contiguous
3793 			 */
3794 			ffe_ctl->max_extent_size = avail;
3795 			ffe_ctl->total_free_space = avail;
3796 		}
3797 		ret = 1;
3798 		goto out;
3799 	}
3800 
3801 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3802 		fs_info->treelog_bg = block_group->start;
3803 
3804 	if (ffe_ctl->for_data_reloc) {
3805 		if (!fs_info->data_reloc_bg)
3806 			fs_info->data_reloc_bg = block_group->start;
3807 		/*
3808 		 * Do not allow allocations from this block group, unless it is
3809 		 * for data relocation. Compared to increasing the ->ro, setting
3810 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3811 		 * writers to come in. See btrfs_inc_nocow_writers().
3812 		 *
3813 		 * We need to disable an allocation to avoid an allocation of
3814 		 * regular (non-relocation data) extent. With mix of relocation
3815 		 * extents and regular extents, we can dispatch WRITE commands
3816 		 * (for relocation extents) and ZONE APPEND commands (for
3817 		 * regular extents) at the same time to the same zone, which
3818 		 * easily break the write pointer.
3819 		 *
3820 		 * Also, this flag avoids this block group to be zone finished.
3821 		 */
3822 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3823 	}
3824 
3825 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3826 	block_group->alloc_offset += num_bytes;
3827 	spin_lock(&ctl->tree_lock);
3828 	ctl->free_space -= num_bytes;
3829 	spin_unlock(&ctl->tree_lock);
3830 
3831 	/*
3832 	 * We do not check if found_offset is aligned to stripesize. The
3833 	 * address is anyway rewritten when using zone append writing.
3834 	 */
3835 
3836 	ffe_ctl->search_start = ffe_ctl->found_offset;
3837 
3838 out:
3839 	if (ret && ffe_ctl->for_treelog)
3840 		fs_info->treelog_bg = 0;
3841 	if (ret && ffe_ctl->for_data_reloc)
3842 		fs_info->data_reloc_bg = 0;
3843 	spin_unlock(&fs_info->relocation_bg_lock);
3844 	spin_unlock(&fs_info->treelog_bg_lock);
3845 	spin_unlock(&block_group->lock);
3846 	spin_unlock(&space_info->lock);
3847 	return ret;
3848 }
3849 
do_allocation(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group ** bg_ret)3850 static int do_allocation(struct btrfs_block_group *block_group,
3851 			 struct find_free_extent_ctl *ffe_ctl,
3852 			 struct btrfs_block_group **bg_ret)
3853 {
3854 	switch (ffe_ctl->policy) {
3855 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3856 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3857 	case BTRFS_EXTENT_ALLOC_ZONED:
3858 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3859 	default:
3860 		BUG();
3861 	}
3862 }
3863 
release_block_group(struct btrfs_block_group * block_group,struct find_free_extent_ctl * ffe_ctl,int delalloc)3864 static void release_block_group(struct btrfs_block_group *block_group,
3865 				struct find_free_extent_ctl *ffe_ctl,
3866 				int delalloc)
3867 {
3868 	switch (ffe_ctl->policy) {
3869 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3870 		ffe_ctl->retry_uncached = false;
3871 		break;
3872 	case BTRFS_EXTENT_ALLOC_ZONED:
3873 		/* Nothing to do */
3874 		break;
3875 	default:
3876 		BUG();
3877 	}
3878 
3879 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3880 	       ffe_ctl->index);
3881 	btrfs_release_block_group(block_group, delalloc);
3882 }
3883 
found_extent_clustered(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3884 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3885 				   struct btrfs_key *ins)
3886 {
3887 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3888 
3889 	if (!ffe_ctl->use_cluster && last_ptr) {
3890 		spin_lock(&last_ptr->lock);
3891 		last_ptr->window_start = ins->objectid;
3892 		spin_unlock(&last_ptr->lock);
3893 	}
3894 }
3895 
found_extent(struct find_free_extent_ctl * ffe_ctl,struct btrfs_key * ins)3896 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3897 			 struct btrfs_key *ins)
3898 {
3899 	switch (ffe_ctl->policy) {
3900 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3901 		found_extent_clustered(ffe_ctl, ins);
3902 		break;
3903 	case BTRFS_EXTENT_ALLOC_ZONED:
3904 		/* Nothing to do */
3905 		break;
3906 	default:
3907 		BUG();
3908 	}
3909 }
3910 
can_allocate_chunk_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3911 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3912 				    struct find_free_extent_ctl *ffe_ctl)
3913 {
3914 	/* Block group's activeness is not a requirement for METADATA block groups. */
3915 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3916 		return 0;
3917 
3918 	/* If we can activate new zone, just allocate a chunk and use it */
3919 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3920 		return 0;
3921 
3922 	/*
3923 	 * We already reached the max active zones. Try to finish one block
3924 	 * group to make a room for a new block group. This is only possible
3925 	 * for a data block group because btrfs_zone_finish() may need to wait
3926 	 * for a running transaction which can cause a deadlock for metadata
3927 	 * allocation.
3928 	 */
3929 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3930 		int ret = btrfs_zone_finish_one_bg(fs_info);
3931 
3932 		if (ret == 1)
3933 			return 0;
3934 		else if (ret < 0)
3935 			return ret;
3936 	}
3937 
3938 	/*
3939 	 * If we have enough free space left in an already active block group
3940 	 * and we can't activate any other zone now, do not allow allocating a
3941 	 * new chunk and let find_free_extent() retry with a smaller size.
3942 	 */
3943 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3944 		return -ENOSPC;
3945 
3946 	/*
3947 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3948 	 * activate a new block group, allocating it may not help. Let's tell a
3949 	 * caller to try again and hope it progress something by writing some
3950 	 * parts of the region. That is only possible for data block groups,
3951 	 * where a part of the region can be written.
3952 	 */
3953 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3954 		return -EAGAIN;
3955 
3956 	/*
3957 	 * We cannot activate a new block group and no enough space left in any
3958 	 * block groups. So, allocating a new block group may not help. But,
3959 	 * there is nothing to do anyway, so let's go with it.
3960 	 */
3961 	return 0;
3962 }
3963 
can_allocate_chunk(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)3964 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3965 			      struct find_free_extent_ctl *ffe_ctl)
3966 {
3967 	switch (ffe_ctl->policy) {
3968 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3969 		return 0;
3970 	case BTRFS_EXTENT_ALLOC_ZONED:
3971 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3972 	default:
3973 		BUG();
3974 	}
3975 }
3976 
3977 /*
3978  * Return >0 means caller needs to re-search for free extent
3979  * Return 0 means we have the needed free extent.
3980  * Return <0 means we failed to locate any free extent.
3981  */
find_free_extent_update_loop(struct btrfs_fs_info * fs_info,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl,bool full_search)3982 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3983 					struct btrfs_key *ins,
3984 					struct find_free_extent_ctl *ffe_ctl,
3985 					bool full_search)
3986 {
3987 	struct btrfs_root *root = fs_info->chunk_root;
3988 	int ret;
3989 
3990 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3991 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3992 		ffe_ctl->orig_have_caching_bg = true;
3993 
3994 	if (ins->objectid) {
3995 		found_extent(ffe_ctl, ins);
3996 		return 0;
3997 	}
3998 
3999 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4000 		return 1;
4001 
4002 	ffe_ctl->index++;
4003 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4004 		return 1;
4005 
4006 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4007 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4008 		ffe_ctl->index = 0;
4009 		/*
4010 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4011 		 * any uncached bgs and we've already done a full search
4012 		 * through.
4013 		 */
4014 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4015 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4016 			ffe_ctl->loop++;
4017 		ffe_ctl->loop++;
4018 
4019 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4020 			struct btrfs_trans_handle *trans;
4021 			int exist = 0;
4022 
4023 			/* Check if allocation policy allows to create a new chunk */
4024 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4025 			if (ret)
4026 				return ret;
4027 
4028 			trans = current->journal_info;
4029 			if (trans)
4030 				exist = 1;
4031 			else
4032 				trans = btrfs_join_transaction(root);
4033 
4034 			if (IS_ERR(trans)) {
4035 				ret = PTR_ERR(trans);
4036 				return ret;
4037 			}
4038 
4039 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4040 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4041 
4042 			/* Do not bail out on ENOSPC since we can do more. */
4043 			if (ret == -ENOSPC) {
4044 				ret = 0;
4045 				ffe_ctl->loop++;
4046 			}
4047 			else if (ret < 0)
4048 				btrfs_abort_transaction(trans, ret);
4049 			else
4050 				ret = 0;
4051 			if (!exist)
4052 				btrfs_end_transaction(trans);
4053 			if (ret)
4054 				return ret;
4055 		}
4056 
4057 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4058 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4059 				return -ENOSPC;
4060 
4061 			/*
4062 			 * Don't loop again if we already have no empty_size and
4063 			 * no empty_cluster.
4064 			 */
4065 			if (ffe_ctl->empty_size == 0 &&
4066 			    ffe_ctl->empty_cluster == 0)
4067 				return -ENOSPC;
4068 			ffe_ctl->empty_size = 0;
4069 			ffe_ctl->empty_cluster = 0;
4070 		}
4071 		return 1;
4072 	}
4073 	return -ENOSPC;
4074 }
4075 
find_free_extent_check_size_class(struct find_free_extent_ctl * ffe_ctl,struct btrfs_block_group * bg)4076 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4077 					      struct btrfs_block_group *bg)
4078 {
4079 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4080 		return true;
4081 	if (!btrfs_block_group_should_use_size_class(bg))
4082 		return true;
4083 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4084 		return true;
4085 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4086 	    bg->size_class == BTRFS_BG_SZ_NONE)
4087 		return true;
4088 	return ffe_ctl->size_class == bg->size_class;
4089 }
4090 
prepare_allocation_clustered(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4091 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4092 					struct find_free_extent_ctl *ffe_ctl,
4093 					struct btrfs_space_info *space_info,
4094 					struct btrfs_key *ins)
4095 {
4096 	/*
4097 	 * If our free space is heavily fragmented we may not be able to make
4098 	 * big contiguous allocations, so instead of doing the expensive search
4099 	 * for free space, simply return ENOSPC with our max_extent_size so we
4100 	 * can go ahead and search for a more manageable chunk.
4101 	 *
4102 	 * If our max_extent_size is large enough for our allocation simply
4103 	 * disable clustering since we will likely not be able to find enough
4104 	 * space to create a cluster and induce latency trying.
4105 	 */
4106 	if (space_info->max_extent_size) {
4107 		spin_lock(&space_info->lock);
4108 		if (space_info->max_extent_size &&
4109 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4110 			ins->offset = space_info->max_extent_size;
4111 			spin_unlock(&space_info->lock);
4112 			return -ENOSPC;
4113 		} else if (space_info->max_extent_size) {
4114 			ffe_ctl->use_cluster = false;
4115 		}
4116 		spin_unlock(&space_info->lock);
4117 	}
4118 
4119 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4120 					       &ffe_ctl->empty_cluster);
4121 	if (ffe_ctl->last_ptr) {
4122 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4123 
4124 		spin_lock(&last_ptr->lock);
4125 		if (last_ptr->block_group)
4126 			ffe_ctl->hint_byte = last_ptr->window_start;
4127 		if (last_ptr->fragmented) {
4128 			/*
4129 			 * We still set window_start so we can keep track of the
4130 			 * last place we found an allocation to try and save
4131 			 * some time.
4132 			 */
4133 			ffe_ctl->hint_byte = last_ptr->window_start;
4134 			ffe_ctl->use_cluster = false;
4135 		}
4136 		spin_unlock(&last_ptr->lock);
4137 	}
4138 
4139 	return 0;
4140 }
4141 
prepare_allocation_zoned(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl)4142 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4143 				    struct find_free_extent_ctl *ffe_ctl)
4144 {
4145 	if (ffe_ctl->for_treelog) {
4146 		spin_lock(&fs_info->treelog_bg_lock);
4147 		if (fs_info->treelog_bg)
4148 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4149 		spin_unlock(&fs_info->treelog_bg_lock);
4150 	} else if (ffe_ctl->for_data_reloc) {
4151 		spin_lock(&fs_info->relocation_bg_lock);
4152 		if (fs_info->data_reloc_bg)
4153 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4154 		spin_unlock(&fs_info->relocation_bg_lock);
4155 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4156 		struct btrfs_block_group *block_group;
4157 
4158 		spin_lock(&fs_info->zone_active_bgs_lock);
4159 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4160 			/*
4161 			 * No lock is OK here because avail is monotinically
4162 			 * decreasing, and this is just a hint.
4163 			 */
4164 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4165 
4166 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4167 			    avail >= ffe_ctl->num_bytes) {
4168 				ffe_ctl->hint_byte = block_group->start;
4169 				break;
4170 			}
4171 		}
4172 		spin_unlock(&fs_info->zone_active_bgs_lock);
4173 	}
4174 
4175 	return 0;
4176 }
4177 
prepare_allocation(struct btrfs_fs_info * fs_info,struct find_free_extent_ctl * ffe_ctl,struct btrfs_space_info * space_info,struct btrfs_key * ins)4178 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4179 			      struct find_free_extent_ctl *ffe_ctl,
4180 			      struct btrfs_space_info *space_info,
4181 			      struct btrfs_key *ins)
4182 {
4183 	switch (ffe_ctl->policy) {
4184 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4185 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4186 						    space_info, ins);
4187 	case BTRFS_EXTENT_ALLOC_ZONED:
4188 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4189 	default:
4190 		BUG();
4191 	}
4192 }
4193 
4194 /*
4195  * walks the btree of allocated extents and find a hole of a given size.
4196  * The key ins is changed to record the hole:
4197  * ins->objectid == start position
4198  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4199  * ins->offset == the size of the hole.
4200  * Any available blocks before search_start are skipped.
4201  *
4202  * If there is no suitable free space, we will record the max size of
4203  * the free space extent currently.
4204  *
4205  * The overall logic and call chain:
4206  *
4207  * find_free_extent()
4208  * |- Iterate through all block groups
4209  * |  |- Get a valid block group
4210  * |  |- Try to do clustered allocation in that block group
4211  * |  |- Try to do unclustered allocation in that block group
4212  * |  |- Check if the result is valid
4213  * |  |  |- If valid, then exit
4214  * |  |- Jump to next block group
4215  * |
4216  * |- Push harder to find free extents
4217  *    |- If not found, re-iterate all block groups
4218  */
find_free_extent(struct btrfs_root * root,struct btrfs_key * ins,struct find_free_extent_ctl * ffe_ctl)4219 static noinline int find_free_extent(struct btrfs_root *root,
4220 				     struct btrfs_key *ins,
4221 				     struct find_free_extent_ctl *ffe_ctl)
4222 {
4223 	struct btrfs_fs_info *fs_info = root->fs_info;
4224 	int ret = 0;
4225 	int cache_block_group_error = 0;
4226 	struct btrfs_block_group *block_group = NULL;
4227 	struct btrfs_space_info *space_info;
4228 	bool full_search = false;
4229 
4230 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4231 
4232 	ffe_ctl->search_start = 0;
4233 	/* For clustered allocation */
4234 	ffe_ctl->empty_cluster = 0;
4235 	ffe_ctl->last_ptr = NULL;
4236 	ffe_ctl->use_cluster = true;
4237 	ffe_ctl->have_caching_bg = false;
4238 	ffe_ctl->orig_have_caching_bg = false;
4239 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4240 	ffe_ctl->loop = 0;
4241 	ffe_ctl->retry_uncached = false;
4242 	ffe_ctl->cached = 0;
4243 	ffe_ctl->max_extent_size = 0;
4244 	ffe_ctl->total_free_space = 0;
4245 	ffe_ctl->found_offset = 0;
4246 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4247 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4248 
4249 	if (btrfs_is_zoned(fs_info))
4250 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4251 
4252 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4253 	ins->objectid = 0;
4254 	ins->offset = 0;
4255 
4256 	trace_find_free_extent(root, ffe_ctl);
4257 
4258 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4259 	if (!space_info) {
4260 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4261 		return -ENOSPC;
4262 	}
4263 
4264 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4265 	if (ret < 0)
4266 		return ret;
4267 
4268 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4269 				    first_logical_byte(fs_info));
4270 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4271 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4272 		block_group = btrfs_lookup_block_group(fs_info,
4273 						       ffe_ctl->search_start);
4274 		/*
4275 		 * we don't want to use the block group if it doesn't match our
4276 		 * allocation bits, or if its not cached.
4277 		 *
4278 		 * However if we are re-searching with an ideal block group
4279 		 * picked out then we don't care that the block group is cached.
4280 		 */
4281 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4282 		    block_group->cached != BTRFS_CACHE_NO) {
4283 			down_read(&space_info->groups_sem);
4284 			if (list_empty(&block_group->list) ||
4285 			    block_group->ro) {
4286 				/*
4287 				 * someone is removing this block group,
4288 				 * we can't jump into the have_block_group
4289 				 * target because our list pointers are not
4290 				 * valid
4291 				 */
4292 				btrfs_put_block_group(block_group);
4293 				up_read(&space_info->groups_sem);
4294 			} else {
4295 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4296 							block_group->flags);
4297 				btrfs_lock_block_group(block_group,
4298 						       ffe_ctl->delalloc);
4299 				ffe_ctl->hinted = true;
4300 				goto have_block_group;
4301 			}
4302 		} else if (block_group) {
4303 			btrfs_put_block_group(block_group);
4304 		}
4305 	}
4306 search:
4307 	trace_find_free_extent_search_loop(root, ffe_ctl);
4308 	ffe_ctl->have_caching_bg = false;
4309 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4310 	    ffe_ctl->index == 0)
4311 		full_search = true;
4312 	down_read(&space_info->groups_sem);
4313 	list_for_each_entry(block_group,
4314 			    &space_info->block_groups[ffe_ctl->index], list) {
4315 		struct btrfs_block_group *bg_ret;
4316 
4317 		ffe_ctl->hinted = false;
4318 		/* If the block group is read-only, we can skip it entirely. */
4319 		if (unlikely(block_group->ro)) {
4320 			if (ffe_ctl->for_treelog)
4321 				btrfs_clear_treelog_bg(block_group);
4322 			if (ffe_ctl->for_data_reloc)
4323 				btrfs_clear_data_reloc_bg(block_group);
4324 			continue;
4325 		}
4326 
4327 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4328 		ffe_ctl->search_start = block_group->start;
4329 
4330 		/*
4331 		 * this can happen if we end up cycling through all the
4332 		 * raid types, but we want to make sure we only allocate
4333 		 * for the proper type.
4334 		 */
4335 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4336 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4337 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4338 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4339 				BTRFS_BLOCK_GROUP_RAID10;
4340 
4341 			/*
4342 			 * if they asked for extra copies and this block group
4343 			 * doesn't provide them, bail.  This does allow us to
4344 			 * fill raid0 from raid1.
4345 			 */
4346 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4347 				goto loop;
4348 
4349 			/*
4350 			 * This block group has different flags than we want.
4351 			 * It's possible that we have MIXED_GROUP flag but no
4352 			 * block group is mixed.  Just skip such block group.
4353 			 */
4354 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4355 			continue;
4356 		}
4357 
4358 have_block_group:
4359 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4360 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4361 		if (unlikely(!ffe_ctl->cached)) {
4362 			ffe_ctl->have_caching_bg = true;
4363 			ret = btrfs_cache_block_group(block_group, false);
4364 
4365 			/*
4366 			 * If we get ENOMEM here or something else we want to
4367 			 * try other block groups, because it may not be fatal.
4368 			 * However if we can't find anything else we need to
4369 			 * save our return here so that we return the actual
4370 			 * error that caused problems, not ENOSPC.
4371 			 */
4372 			if (ret < 0) {
4373 				if (!cache_block_group_error)
4374 					cache_block_group_error = ret;
4375 				ret = 0;
4376 				goto loop;
4377 			}
4378 			ret = 0;
4379 		}
4380 
4381 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4382 			if (!cache_block_group_error)
4383 				cache_block_group_error = -EIO;
4384 			goto loop;
4385 		}
4386 
4387 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4388 			goto loop;
4389 
4390 		bg_ret = NULL;
4391 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4392 		if (ret > 0)
4393 			goto loop;
4394 
4395 		if (bg_ret && bg_ret != block_group) {
4396 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4397 			block_group = bg_ret;
4398 		}
4399 
4400 		/* Checks */
4401 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4402 						 fs_info->stripesize);
4403 
4404 		/* move on to the next group */
4405 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4406 		    block_group->start + block_group->length) {
4407 			btrfs_add_free_space_unused(block_group,
4408 					    ffe_ctl->found_offset,
4409 					    ffe_ctl->num_bytes);
4410 			goto loop;
4411 		}
4412 
4413 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4414 			btrfs_add_free_space_unused(block_group,
4415 					ffe_ctl->found_offset,
4416 					ffe_ctl->search_start - ffe_ctl->found_offset);
4417 
4418 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4419 					       ffe_ctl->num_bytes,
4420 					       ffe_ctl->delalloc,
4421 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4422 		if (ret == -EAGAIN) {
4423 			btrfs_add_free_space_unused(block_group,
4424 					ffe_ctl->found_offset,
4425 					ffe_ctl->num_bytes);
4426 			goto loop;
4427 		}
4428 		btrfs_inc_block_group_reservations(block_group);
4429 
4430 		/* we are all good, lets return */
4431 		ins->objectid = ffe_ctl->search_start;
4432 		ins->offset = ffe_ctl->num_bytes;
4433 
4434 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4435 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4436 		break;
4437 loop:
4438 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4439 		    !ffe_ctl->retry_uncached) {
4440 			ffe_ctl->retry_uncached = true;
4441 			btrfs_wait_block_group_cache_progress(block_group,
4442 						ffe_ctl->num_bytes +
4443 						ffe_ctl->empty_cluster +
4444 						ffe_ctl->empty_size);
4445 			goto have_block_group;
4446 		}
4447 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4448 		cond_resched();
4449 	}
4450 	up_read(&space_info->groups_sem);
4451 
4452 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4453 	if (ret > 0)
4454 		goto search;
4455 
4456 	if (ret == -ENOSPC && !cache_block_group_error) {
4457 		/*
4458 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4459 		 * any contiguous hole.
4460 		 */
4461 		if (!ffe_ctl->max_extent_size)
4462 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4463 		spin_lock(&space_info->lock);
4464 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4465 		spin_unlock(&space_info->lock);
4466 		ins->offset = ffe_ctl->max_extent_size;
4467 	} else if (ret == -ENOSPC) {
4468 		ret = cache_block_group_error;
4469 	}
4470 	return ret;
4471 }
4472 
4473 /*
4474  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4475  *			  hole that is at least as big as @num_bytes.
4476  *
4477  * @root           -	The root that will contain this extent
4478  *
4479  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4480  *			is used for accounting purposes. This value differs
4481  *			from @num_bytes only in the case of compressed extents.
4482  *
4483  * @num_bytes      -	Number of bytes to allocate on-disk.
4484  *
4485  * @min_alloc_size -	Indicates the minimum amount of space that the
4486  *			allocator should try to satisfy. In some cases
4487  *			@num_bytes may be larger than what is required and if
4488  *			the filesystem is fragmented then allocation fails.
4489  *			However, the presence of @min_alloc_size gives a
4490  *			chance to try and satisfy the smaller allocation.
4491  *
4492  * @empty_size     -	A hint that you plan on doing more COW. This is the
4493  *			size in bytes the allocator should try to find free
4494  *			next to the block it returns.  This is just a hint and
4495  *			may be ignored by the allocator.
4496  *
4497  * @hint_byte      -	Hint to the allocator to start searching above the byte
4498  *			address passed. It might be ignored.
4499  *
4500  * @ins            -	This key is modified to record the found hole. It will
4501  *			have the following values:
4502  *			ins->objectid == start position
4503  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4504  *			ins->offset == the size of the hole.
4505  *
4506  * @is_data        -	Boolean flag indicating whether an extent is
4507  *			allocated for data (true) or metadata (false)
4508  *
4509  * @delalloc       -	Boolean flag indicating whether this allocation is for
4510  *			delalloc or not. If 'true' data_rwsem of block groups
4511  *			is going to be acquired.
4512  *
4513  *
4514  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4515  * case -ENOSPC is returned then @ins->offset will contain the size of the
4516  * largest available hole the allocator managed to find.
4517  */
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)4518 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4519 			 u64 num_bytes, u64 min_alloc_size,
4520 			 u64 empty_size, u64 hint_byte,
4521 			 struct btrfs_key *ins, int is_data, int delalloc)
4522 {
4523 	struct btrfs_fs_info *fs_info = root->fs_info;
4524 	struct find_free_extent_ctl ffe_ctl = {};
4525 	bool final_tried = num_bytes == min_alloc_size;
4526 	u64 flags;
4527 	int ret;
4528 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4529 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4530 
4531 	flags = get_alloc_profile_by_root(root, is_data);
4532 again:
4533 	WARN_ON(num_bytes < fs_info->sectorsize);
4534 
4535 	ffe_ctl.ram_bytes = ram_bytes;
4536 	ffe_ctl.num_bytes = num_bytes;
4537 	ffe_ctl.min_alloc_size = min_alloc_size;
4538 	ffe_ctl.empty_size = empty_size;
4539 	ffe_ctl.flags = flags;
4540 	ffe_ctl.delalloc = delalloc;
4541 	ffe_ctl.hint_byte = hint_byte;
4542 	ffe_ctl.for_treelog = for_treelog;
4543 	ffe_ctl.for_data_reloc = for_data_reloc;
4544 
4545 	ret = find_free_extent(root, ins, &ffe_ctl);
4546 	if (!ret && !is_data) {
4547 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4548 	} else if (ret == -ENOSPC) {
4549 		if (!final_tried && ins->offset) {
4550 			num_bytes = min(num_bytes >> 1, ins->offset);
4551 			num_bytes = round_down(num_bytes,
4552 					       fs_info->sectorsize);
4553 			num_bytes = max(num_bytes, min_alloc_size);
4554 			ram_bytes = num_bytes;
4555 			if (num_bytes == min_alloc_size)
4556 				final_tried = true;
4557 			goto again;
4558 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 			struct btrfs_space_info *sinfo;
4560 
4561 			sinfo = btrfs_find_space_info(fs_info, flags);
4562 			btrfs_err(fs_info,
4563 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4564 				  flags, num_bytes, for_treelog, for_data_reloc);
4565 			if (sinfo)
4566 				btrfs_dump_space_info(fs_info, sinfo,
4567 						      num_bytes, 1);
4568 		}
4569 	}
4570 
4571 	return ret;
4572 }
4573 
btrfs_free_reserved_extent(struct btrfs_fs_info * fs_info,u64 start,u64 len,int delalloc)4574 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4575 			       u64 start, u64 len, int delalloc)
4576 {
4577 	struct btrfs_block_group *cache;
4578 
4579 	cache = btrfs_lookup_block_group(fs_info, start);
4580 	if (!cache) {
4581 		btrfs_err(fs_info, "Unable to find block group for %llu",
4582 			  start);
4583 		return -ENOSPC;
4584 	}
4585 
4586 	btrfs_add_free_space(cache, start, len);
4587 	btrfs_free_reserved_bytes(cache, len, delalloc);
4588 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4589 
4590 	btrfs_put_block_group(cache);
4591 	return 0;
4592 }
4593 
btrfs_pin_reserved_extent(struct btrfs_trans_handle * trans,u64 start,u64 len)4594 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4595 			      u64 len)
4596 {
4597 	struct btrfs_block_group *cache;
4598 	int ret = 0;
4599 
4600 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4601 	if (!cache) {
4602 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4603 			  start);
4604 		return -ENOSPC;
4605 	}
4606 
4607 	ret = pin_down_extent(trans, cache, start, len, 1);
4608 	btrfs_put_block_group(cache);
4609 	return ret;
4610 }
4611 
alloc_reserved_extent(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes)4612 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4613 				 u64 num_bytes)
4614 {
4615 	struct btrfs_fs_info *fs_info = trans->fs_info;
4616 	int ret;
4617 
4618 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4619 	if (ret)
4620 		return ret;
4621 
4622 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4623 	if (ret) {
4624 		ASSERT(!ret);
4625 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4626 			  bytenr, num_bytes);
4627 		return ret;
4628 	}
4629 
4630 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4631 	return 0;
4632 }
4633 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)4634 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4635 				      u64 parent, u64 root_objectid,
4636 				      u64 flags, u64 owner, u64 offset,
4637 				      struct btrfs_key *ins, int ref_mod)
4638 {
4639 	struct btrfs_fs_info *fs_info = trans->fs_info;
4640 	struct btrfs_root *extent_root;
4641 	int ret;
4642 	struct btrfs_extent_item *extent_item;
4643 	struct btrfs_extent_inline_ref *iref;
4644 	struct btrfs_path *path;
4645 	struct extent_buffer *leaf;
4646 	int type;
4647 	u32 size;
4648 
4649 	if (parent > 0)
4650 		type = BTRFS_SHARED_DATA_REF_KEY;
4651 	else
4652 		type = BTRFS_EXTENT_DATA_REF_KEY;
4653 
4654 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4655 
4656 	path = btrfs_alloc_path();
4657 	if (!path)
4658 		return -ENOMEM;
4659 
4660 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4661 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4662 	if (ret) {
4663 		btrfs_free_path(path);
4664 		return ret;
4665 	}
4666 
4667 	leaf = path->nodes[0];
4668 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4669 				     struct btrfs_extent_item);
4670 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4671 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4672 	btrfs_set_extent_flags(leaf, extent_item,
4673 			       flags | BTRFS_EXTENT_FLAG_DATA);
4674 
4675 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4676 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4677 	if (parent > 0) {
4678 		struct btrfs_shared_data_ref *ref;
4679 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4680 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4681 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4682 	} else {
4683 		struct btrfs_extent_data_ref *ref;
4684 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4685 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4686 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4687 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4688 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4689 	}
4690 
4691 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4692 	btrfs_free_path(path);
4693 
4694 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4695 }
4696 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)4697 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4698 				     struct btrfs_delayed_ref_node *node,
4699 				     struct btrfs_delayed_extent_op *extent_op)
4700 {
4701 	struct btrfs_fs_info *fs_info = trans->fs_info;
4702 	struct btrfs_root *extent_root;
4703 	int ret;
4704 	struct btrfs_extent_item *extent_item;
4705 	struct btrfs_key extent_key;
4706 	struct btrfs_tree_block_info *block_info;
4707 	struct btrfs_extent_inline_ref *iref;
4708 	struct btrfs_path *path;
4709 	struct extent_buffer *leaf;
4710 	struct btrfs_delayed_tree_ref *ref;
4711 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4712 	u64 flags = extent_op->flags_to_set;
4713 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4714 
4715 	ref = btrfs_delayed_node_to_tree_ref(node);
4716 
4717 	extent_key.objectid = node->bytenr;
4718 	if (skinny_metadata) {
4719 		extent_key.offset = ref->level;
4720 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4721 	} else {
4722 		extent_key.offset = node->num_bytes;
4723 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4724 		size += sizeof(*block_info);
4725 	}
4726 
4727 	path = btrfs_alloc_path();
4728 	if (!path)
4729 		return -ENOMEM;
4730 
4731 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4732 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4733 				      size);
4734 	if (ret) {
4735 		btrfs_free_path(path);
4736 		return ret;
4737 	}
4738 
4739 	leaf = path->nodes[0];
4740 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4741 				     struct btrfs_extent_item);
4742 	btrfs_set_extent_refs(leaf, extent_item, 1);
4743 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4744 	btrfs_set_extent_flags(leaf, extent_item,
4745 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4746 
4747 	if (skinny_metadata) {
4748 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4749 	} else {
4750 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4751 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4752 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4753 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4754 	}
4755 
4756 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4757 		btrfs_set_extent_inline_ref_type(leaf, iref,
4758 						 BTRFS_SHARED_BLOCK_REF_KEY);
4759 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4760 	} else {
4761 		btrfs_set_extent_inline_ref_type(leaf, iref,
4762 						 BTRFS_TREE_BLOCK_REF_KEY);
4763 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4764 	}
4765 
4766 	btrfs_mark_buffer_dirty(trans, leaf);
4767 	btrfs_free_path(path);
4768 
4769 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4770 }
4771 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)4772 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4773 				     struct btrfs_root *root, u64 owner,
4774 				     u64 offset, u64 ram_bytes,
4775 				     struct btrfs_key *ins)
4776 {
4777 	struct btrfs_ref generic_ref = { 0 };
4778 
4779 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4780 
4781 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4782 			       ins->objectid, ins->offset, 0);
4783 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4784 			    offset, 0, false);
4785 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4786 
4787 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4788 }
4789 
4790 /*
4791  * this is used by the tree logging recovery code.  It records that
4792  * an extent has been allocated and makes sure to clear the free
4793  * space cache bits as well
4794  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)4795 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4796 				   u64 root_objectid, u64 owner, u64 offset,
4797 				   struct btrfs_key *ins)
4798 {
4799 	struct btrfs_fs_info *fs_info = trans->fs_info;
4800 	int ret;
4801 	struct btrfs_block_group *block_group;
4802 	struct btrfs_space_info *space_info;
4803 
4804 	/*
4805 	 * Mixed block groups will exclude before processing the log so we only
4806 	 * need to do the exclude dance if this fs isn't mixed.
4807 	 */
4808 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4809 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4810 					      ins->offset);
4811 		if (ret)
4812 			return ret;
4813 	}
4814 
4815 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4816 	if (!block_group)
4817 		return -EINVAL;
4818 
4819 	space_info = block_group->space_info;
4820 	spin_lock(&space_info->lock);
4821 	spin_lock(&block_group->lock);
4822 	space_info->bytes_reserved += ins->offset;
4823 	block_group->reserved += ins->offset;
4824 	spin_unlock(&block_group->lock);
4825 	spin_unlock(&space_info->lock);
4826 
4827 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4828 					 offset, ins, 1);
4829 	if (ret)
4830 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4831 	btrfs_put_block_group(block_group);
4832 	return ret;
4833 }
4834 
4835 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level,u64 owner,enum btrfs_lock_nesting nest)4836 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4837 		      u64 bytenr, int level, u64 owner,
4838 		      enum btrfs_lock_nesting nest)
4839 {
4840 	struct btrfs_fs_info *fs_info = root->fs_info;
4841 	struct extent_buffer *buf;
4842 	u64 lockdep_owner = owner;
4843 
4844 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4845 	if (IS_ERR(buf))
4846 		return buf;
4847 
4848 	/*
4849 	 * Extra safety check in case the extent tree is corrupted and extent
4850 	 * allocator chooses to use a tree block which is already used and
4851 	 * locked.
4852 	 */
4853 	if (buf->lock_owner == current->pid) {
4854 		btrfs_err_rl(fs_info,
4855 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4856 			buf->start, btrfs_header_owner(buf), current->pid);
4857 		free_extent_buffer(buf);
4858 		return ERR_PTR(-EUCLEAN);
4859 	}
4860 
4861 	/*
4862 	 * The reloc trees are just snapshots, so we need them to appear to be
4863 	 * just like any other fs tree WRT lockdep.
4864 	 *
4865 	 * The exception however is in replace_path() in relocation, where we
4866 	 * hold the lock on the original fs root and then search for the reloc
4867 	 * root.  At that point we need to make sure any reloc root buffers are
4868 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4869 	 * lockdep happy.
4870 	 */
4871 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4872 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4873 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4874 
4875 	/* btrfs_clear_buffer_dirty() accesses generation field. */
4876 	btrfs_set_header_generation(buf, trans->transid);
4877 
4878 	/*
4879 	 * This needs to stay, because we could allocate a freed block from an
4880 	 * old tree into a new tree, so we need to make sure this new block is
4881 	 * set to the appropriate level and owner.
4882 	 */
4883 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4884 
4885 	__btrfs_tree_lock(buf, nest);
4886 	btrfs_clear_buffer_dirty(trans, buf);
4887 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4888 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4889 
4890 	set_extent_buffer_uptodate(buf);
4891 
4892 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4893 	btrfs_set_header_level(buf, level);
4894 	btrfs_set_header_bytenr(buf, buf->start);
4895 	btrfs_set_header_generation(buf, trans->transid);
4896 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4897 	btrfs_set_header_owner(buf, owner);
4898 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4899 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4900 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4901 		buf->log_index = root->log_transid % 2;
4902 		/*
4903 		 * we allow two log transactions at a time, use different
4904 		 * EXTENT bit to differentiate dirty pages.
4905 		 */
4906 		if (buf->log_index == 0)
4907 			set_extent_bit(&root->dirty_log_pages, buf->start,
4908 				       buf->start + buf->len - 1,
4909 				       EXTENT_DIRTY, NULL);
4910 		else
4911 			set_extent_bit(&root->dirty_log_pages, buf->start,
4912 				       buf->start + buf->len - 1,
4913 				       EXTENT_NEW, NULL);
4914 	} else {
4915 		buf->log_index = -1;
4916 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4917 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4918 	}
4919 	/* this returns a buffer locked for blocking */
4920 	return buf;
4921 }
4922 
4923 /*
4924  * finds a free extent and does all the dirty work required for allocation
4925  * returns the tree buffer or an ERR_PTR on error.
4926  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,const struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size,enum btrfs_lock_nesting nest)4927 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4928 					     struct btrfs_root *root,
4929 					     u64 parent, u64 root_objectid,
4930 					     const struct btrfs_disk_key *key,
4931 					     int level, u64 hint,
4932 					     u64 empty_size,
4933 					     enum btrfs_lock_nesting nest)
4934 {
4935 	struct btrfs_fs_info *fs_info = root->fs_info;
4936 	struct btrfs_key ins;
4937 	struct btrfs_block_rsv *block_rsv;
4938 	struct extent_buffer *buf;
4939 	struct btrfs_delayed_extent_op *extent_op;
4940 	struct btrfs_ref generic_ref = { 0 };
4941 	u64 flags = 0;
4942 	int ret;
4943 	u32 blocksize = fs_info->nodesize;
4944 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4945 
4946 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4947 	if (btrfs_is_testing(fs_info)) {
4948 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4949 					    level, root_objectid, nest);
4950 		if (!IS_ERR(buf))
4951 			root->alloc_bytenr += blocksize;
4952 		return buf;
4953 	}
4954 #endif
4955 
4956 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4957 	if (IS_ERR(block_rsv))
4958 		return ERR_CAST(block_rsv);
4959 
4960 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4961 				   empty_size, hint, &ins, 0, 0);
4962 	if (ret)
4963 		goto out_unuse;
4964 
4965 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4966 				    root_objectid, nest);
4967 	if (IS_ERR(buf)) {
4968 		ret = PTR_ERR(buf);
4969 		goto out_free_reserved;
4970 	}
4971 
4972 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4973 		if (parent == 0)
4974 			parent = ins.objectid;
4975 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4976 	} else
4977 		BUG_ON(parent > 0);
4978 
4979 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4980 		extent_op = btrfs_alloc_delayed_extent_op();
4981 		if (!extent_op) {
4982 			ret = -ENOMEM;
4983 			goto out_free_buf;
4984 		}
4985 		if (key)
4986 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4987 		else
4988 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4989 		extent_op->flags_to_set = flags;
4990 		extent_op->update_key = skinny_metadata ? false : true;
4991 		extent_op->update_flags = true;
4992 		extent_op->level = level;
4993 
4994 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4995 				       ins.objectid, ins.offset, parent);
4996 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4997 				    root->root_key.objectid, false);
4998 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4999 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5000 		if (ret)
5001 			goto out_free_delayed;
5002 	}
5003 	return buf;
5004 
5005 out_free_delayed:
5006 	btrfs_free_delayed_extent_op(extent_op);
5007 out_free_buf:
5008 	btrfs_tree_unlock(buf);
5009 	free_extent_buffer(buf);
5010 out_free_reserved:
5011 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5012 out_unuse:
5013 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5014 	return ERR_PTR(ret);
5015 }
5016 
5017 struct walk_control {
5018 	u64 refs[BTRFS_MAX_LEVEL];
5019 	u64 flags[BTRFS_MAX_LEVEL];
5020 	struct btrfs_key update_progress;
5021 	struct btrfs_key drop_progress;
5022 	int drop_level;
5023 	int stage;
5024 	int level;
5025 	int shared_level;
5026 	int update_ref;
5027 	int keep_locks;
5028 	int reada_slot;
5029 	int reada_count;
5030 	int restarted;
5031 };
5032 
5033 #define DROP_REFERENCE	1
5034 #define UPDATE_BACKREF	2
5035 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)5036 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5037 				     struct btrfs_root *root,
5038 				     struct walk_control *wc,
5039 				     struct btrfs_path *path)
5040 {
5041 	struct btrfs_fs_info *fs_info = root->fs_info;
5042 	u64 bytenr;
5043 	u64 generation;
5044 	u64 refs;
5045 	u64 flags;
5046 	u32 nritems;
5047 	struct btrfs_key key;
5048 	struct extent_buffer *eb;
5049 	int ret;
5050 	int slot;
5051 	int nread = 0;
5052 
5053 	if (path->slots[wc->level] < wc->reada_slot) {
5054 		wc->reada_count = wc->reada_count * 2 / 3;
5055 		wc->reada_count = max(wc->reada_count, 2);
5056 	} else {
5057 		wc->reada_count = wc->reada_count * 3 / 2;
5058 		wc->reada_count = min_t(int, wc->reada_count,
5059 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5060 	}
5061 
5062 	eb = path->nodes[wc->level];
5063 	nritems = btrfs_header_nritems(eb);
5064 
5065 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5066 		if (nread >= wc->reada_count)
5067 			break;
5068 
5069 		cond_resched();
5070 		bytenr = btrfs_node_blockptr(eb, slot);
5071 		generation = btrfs_node_ptr_generation(eb, slot);
5072 
5073 		if (slot == path->slots[wc->level])
5074 			goto reada;
5075 
5076 		if (wc->stage == UPDATE_BACKREF &&
5077 		    generation <= root->root_key.offset)
5078 			continue;
5079 
5080 		/* We don't lock the tree block, it's OK to be racy here */
5081 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5082 					       wc->level - 1, 1, &refs,
5083 					       &flags);
5084 		/* We don't care about errors in readahead. */
5085 		if (ret < 0)
5086 			continue;
5087 		BUG_ON(refs == 0);
5088 
5089 		if (wc->stage == DROP_REFERENCE) {
5090 			if (refs == 1)
5091 				goto reada;
5092 
5093 			if (wc->level == 1 &&
5094 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5095 				continue;
5096 			if (!wc->update_ref ||
5097 			    generation <= root->root_key.offset)
5098 				continue;
5099 			btrfs_node_key_to_cpu(eb, &key, slot);
5100 			ret = btrfs_comp_cpu_keys(&key,
5101 						  &wc->update_progress);
5102 			if (ret < 0)
5103 				continue;
5104 		} else {
5105 			if (wc->level == 1 &&
5106 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5107 				continue;
5108 		}
5109 reada:
5110 		btrfs_readahead_node_child(eb, slot);
5111 		nread++;
5112 	}
5113 	wc->reada_slot = slot;
5114 }
5115 
5116 /*
5117  * helper to process tree block while walking down the tree.
5118  *
5119  * when wc->stage == UPDATE_BACKREF, this function updates
5120  * back refs for pointers in the block.
5121  *
5122  * NOTE: return value 1 means we should stop walking down.
5123  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)5124 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5125 				   struct btrfs_root *root,
5126 				   struct btrfs_path *path,
5127 				   struct walk_control *wc, int lookup_info)
5128 {
5129 	struct btrfs_fs_info *fs_info = root->fs_info;
5130 	int level = wc->level;
5131 	struct extent_buffer *eb = path->nodes[level];
5132 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5133 	int ret;
5134 
5135 	if (wc->stage == UPDATE_BACKREF &&
5136 	    btrfs_header_owner(eb) != root->root_key.objectid)
5137 		return 1;
5138 
5139 	/*
5140 	 * when reference count of tree block is 1, it won't increase
5141 	 * again. once full backref flag is set, we never clear it.
5142 	 */
5143 	if (lookup_info &&
5144 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5145 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5146 		BUG_ON(!path->locks[level]);
5147 		ret = btrfs_lookup_extent_info(trans, fs_info,
5148 					       eb->start, level, 1,
5149 					       &wc->refs[level],
5150 					       &wc->flags[level]);
5151 		BUG_ON(ret == -ENOMEM);
5152 		if (ret)
5153 			return ret;
5154 		BUG_ON(wc->refs[level] == 0);
5155 	}
5156 
5157 	if (wc->stage == DROP_REFERENCE) {
5158 		if (wc->refs[level] > 1)
5159 			return 1;
5160 
5161 		if (path->locks[level] && !wc->keep_locks) {
5162 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5163 			path->locks[level] = 0;
5164 		}
5165 		return 0;
5166 	}
5167 
5168 	/* wc->stage == UPDATE_BACKREF */
5169 	if (!(wc->flags[level] & flag)) {
5170 		BUG_ON(!path->locks[level]);
5171 		ret = btrfs_inc_ref(trans, root, eb, 1);
5172 		BUG_ON(ret); /* -ENOMEM */
5173 		ret = btrfs_dec_ref(trans, root, eb, 0);
5174 		BUG_ON(ret); /* -ENOMEM */
5175 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5176 		BUG_ON(ret); /* -ENOMEM */
5177 		wc->flags[level] |= flag;
5178 	}
5179 
5180 	/*
5181 	 * the block is shared by multiple trees, so it's not good to
5182 	 * keep the tree lock
5183 	 */
5184 	if (path->locks[level] && level > 0) {
5185 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5186 		path->locks[level] = 0;
5187 	}
5188 	return 0;
5189 }
5190 
5191 /*
5192  * This is used to verify a ref exists for this root to deal with a bug where we
5193  * would have a drop_progress key that hadn't been updated properly.
5194  */
check_ref_exists(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 parent,int level)5195 static int check_ref_exists(struct btrfs_trans_handle *trans,
5196 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5197 			    int level)
5198 {
5199 	struct btrfs_path *path;
5200 	struct btrfs_extent_inline_ref *iref;
5201 	int ret;
5202 
5203 	path = btrfs_alloc_path();
5204 	if (!path)
5205 		return -ENOMEM;
5206 
5207 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5208 				    root->fs_info->nodesize, parent,
5209 				    root->root_key.objectid, level, 0);
5210 	btrfs_free_path(path);
5211 	if (ret == -ENOENT)
5212 		return 0;
5213 	if (ret < 0)
5214 		return ret;
5215 	return 1;
5216 }
5217 
5218 /*
5219  * helper to process tree block pointer.
5220  *
5221  * when wc->stage == DROP_REFERENCE, this function checks
5222  * reference count of the block pointed to. if the block
5223  * is shared and we need update back refs for the subtree
5224  * rooted at the block, this function changes wc->stage to
5225  * UPDATE_BACKREF. if the block is shared and there is no
5226  * need to update back, this function drops the reference
5227  * to the block.
5228  *
5229  * NOTE: return value 1 means we should stop walking down.
5230  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)5231 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5232 				 struct btrfs_root *root,
5233 				 struct btrfs_path *path,
5234 				 struct walk_control *wc, int *lookup_info)
5235 {
5236 	struct btrfs_fs_info *fs_info = root->fs_info;
5237 	u64 bytenr;
5238 	u64 generation;
5239 	u64 parent;
5240 	struct btrfs_tree_parent_check check = { 0 };
5241 	struct btrfs_key key;
5242 	struct btrfs_ref ref = { 0 };
5243 	struct extent_buffer *next;
5244 	int level = wc->level;
5245 	int reada = 0;
5246 	int ret = 0;
5247 	bool need_account = false;
5248 
5249 	generation = btrfs_node_ptr_generation(path->nodes[level],
5250 					       path->slots[level]);
5251 	/*
5252 	 * if the lower level block was created before the snapshot
5253 	 * was created, we know there is no need to update back refs
5254 	 * for the subtree
5255 	 */
5256 	if (wc->stage == UPDATE_BACKREF &&
5257 	    generation <= root->root_key.offset) {
5258 		*lookup_info = 1;
5259 		return 1;
5260 	}
5261 
5262 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5263 
5264 	check.level = level - 1;
5265 	check.transid = generation;
5266 	check.owner_root = root->root_key.objectid;
5267 	check.has_first_key = true;
5268 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5269 			      path->slots[level]);
5270 
5271 	next = find_extent_buffer(fs_info, bytenr);
5272 	if (!next) {
5273 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5274 				root->root_key.objectid, level - 1);
5275 		if (IS_ERR(next))
5276 			return PTR_ERR(next);
5277 		reada = 1;
5278 	}
5279 	btrfs_tree_lock(next);
5280 
5281 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5282 				       &wc->refs[level - 1],
5283 				       &wc->flags[level - 1]);
5284 	if (ret < 0)
5285 		goto out_unlock;
5286 
5287 	if (unlikely(wc->refs[level - 1] == 0)) {
5288 		btrfs_err(fs_info, "Missing references.");
5289 		ret = -EIO;
5290 		goto out_unlock;
5291 	}
5292 	*lookup_info = 0;
5293 
5294 	if (wc->stage == DROP_REFERENCE) {
5295 		if (wc->refs[level - 1] > 1) {
5296 			need_account = true;
5297 			if (level == 1 &&
5298 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5299 				goto skip;
5300 
5301 			if (!wc->update_ref ||
5302 			    generation <= root->root_key.offset)
5303 				goto skip;
5304 
5305 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5306 					      path->slots[level]);
5307 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5308 			if (ret < 0)
5309 				goto skip;
5310 
5311 			wc->stage = UPDATE_BACKREF;
5312 			wc->shared_level = level - 1;
5313 		}
5314 	} else {
5315 		if (level == 1 &&
5316 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5317 			goto skip;
5318 	}
5319 
5320 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5321 		btrfs_tree_unlock(next);
5322 		free_extent_buffer(next);
5323 		next = NULL;
5324 		*lookup_info = 1;
5325 	}
5326 
5327 	if (!next) {
5328 		if (reada && level == 1)
5329 			reada_walk_down(trans, root, wc, path);
5330 		next = read_tree_block(fs_info, bytenr, &check);
5331 		if (IS_ERR(next)) {
5332 			return PTR_ERR(next);
5333 		} else if (!extent_buffer_uptodate(next)) {
5334 			free_extent_buffer(next);
5335 			return -EIO;
5336 		}
5337 		btrfs_tree_lock(next);
5338 	}
5339 
5340 	level--;
5341 	ASSERT(level == btrfs_header_level(next));
5342 	if (level != btrfs_header_level(next)) {
5343 		btrfs_err(root->fs_info, "mismatched level");
5344 		ret = -EIO;
5345 		goto out_unlock;
5346 	}
5347 	path->nodes[level] = next;
5348 	path->slots[level] = 0;
5349 	path->locks[level] = BTRFS_WRITE_LOCK;
5350 	wc->level = level;
5351 	if (wc->level == 1)
5352 		wc->reada_slot = 0;
5353 	return 0;
5354 skip:
5355 	wc->refs[level - 1] = 0;
5356 	wc->flags[level - 1] = 0;
5357 	if (wc->stage == DROP_REFERENCE) {
5358 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5359 			parent = path->nodes[level]->start;
5360 		} else {
5361 			ASSERT(root->root_key.objectid ==
5362 			       btrfs_header_owner(path->nodes[level]));
5363 			if (root->root_key.objectid !=
5364 			    btrfs_header_owner(path->nodes[level])) {
5365 				btrfs_err(root->fs_info,
5366 						"mismatched block owner");
5367 				ret = -EIO;
5368 				goto out_unlock;
5369 			}
5370 			parent = 0;
5371 		}
5372 
5373 		/*
5374 		 * If we had a drop_progress we need to verify the refs are set
5375 		 * as expected.  If we find our ref then we know that from here
5376 		 * on out everything should be correct, and we can clear the
5377 		 * ->restarted flag.
5378 		 */
5379 		if (wc->restarted) {
5380 			ret = check_ref_exists(trans, root, bytenr, parent,
5381 					       level - 1);
5382 			if (ret < 0)
5383 				goto out_unlock;
5384 			if (ret == 0)
5385 				goto no_delete;
5386 			ret = 0;
5387 			wc->restarted = 0;
5388 		}
5389 
5390 		/*
5391 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5392 		 * already accounted them at merge time (replace_path),
5393 		 * thus we could skip expensive subtree trace here.
5394 		 */
5395 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5396 		    need_account) {
5397 			ret = btrfs_qgroup_trace_subtree(trans, next,
5398 							 generation, level - 1);
5399 			if (ret) {
5400 				btrfs_err_rl(fs_info,
5401 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5402 					     ret);
5403 			}
5404 		}
5405 
5406 		/*
5407 		 * We need to update the next key in our walk control so we can
5408 		 * update the drop_progress key accordingly.  We don't care if
5409 		 * find_next_key doesn't find a key because that means we're at
5410 		 * the end and are going to clean up now.
5411 		 */
5412 		wc->drop_level = level;
5413 		find_next_key(path, level, &wc->drop_progress);
5414 
5415 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5416 				       fs_info->nodesize, parent);
5417 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5418 				    0, false);
5419 		ret = btrfs_free_extent(trans, &ref);
5420 		if (ret)
5421 			goto out_unlock;
5422 	}
5423 no_delete:
5424 	*lookup_info = 1;
5425 	ret = 1;
5426 
5427 out_unlock:
5428 	btrfs_tree_unlock(next);
5429 	free_extent_buffer(next);
5430 
5431 	return ret;
5432 }
5433 
5434 /*
5435  * helper to process tree block while walking up the tree.
5436  *
5437  * when wc->stage == DROP_REFERENCE, this function drops
5438  * reference count on the block.
5439  *
5440  * when wc->stage == UPDATE_BACKREF, this function changes
5441  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5442  * to UPDATE_BACKREF previously while processing the block.
5443  *
5444  * NOTE: return value 1 means we should stop walking up.
5445  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5446 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5447 				 struct btrfs_root *root,
5448 				 struct btrfs_path *path,
5449 				 struct walk_control *wc)
5450 {
5451 	struct btrfs_fs_info *fs_info = root->fs_info;
5452 	int ret;
5453 	int level = wc->level;
5454 	struct extent_buffer *eb = path->nodes[level];
5455 	u64 parent = 0;
5456 
5457 	if (wc->stage == UPDATE_BACKREF) {
5458 		BUG_ON(wc->shared_level < level);
5459 		if (level < wc->shared_level)
5460 			goto out;
5461 
5462 		ret = find_next_key(path, level + 1, &wc->update_progress);
5463 		if (ret > 0)
5464 			wc->update_ref = 0;
5465 
5466 		wc->stage = DROP_REFERENCE;
5467 		wc->shared_level = -1;
5468 		path->slots[level] = 0;
5469 
5470 		/*
5471 		 * check reference count again if the block isn't locked.
5472 		 * we should start walking down the tree again if reference
5473 		 * count is one.
5474 		 */
5475 		if (!path->locks[level]) {
5476 			BUG_ON(level == 0);
5477 			btrfs_tree_lock(eb);
5478 			path->locks[level] = BTRFS_WRITE_LOCK;
5479 
5480 			ret = btrfs_lookup_extent_info(trans, fs_info,
5481 						       eb->start, level, 1,
5482 						       &wc->refs[level],
5483 						       &wc->flags[level]);
5484 			if (ret < 0) {
5485 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5486 				path->locks[level] = 0;
5487 				return ret;
5488 			}
5489 			BUG_ON(wc->refs[level] == 0);
5490 			if (wc->refs[level] == 1) {
5491 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5492 				path->locks[level] = 0;
5493 				return 1;
5494 			}
5495 		}
5496 	}
5497 
5498 	/* wc->stage == DROP_REFERENCE */
5499 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5500 
5501 	if (wc->refs[level] == 1) {
5502 		if (level == 0) {
5503 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5504 				ret = btrfs_dec_ref(trans, root, eb, 1);
5505 			else
5506 				ret = btrfs_dec_ref(trans, root, eb, 0);
5507 			BUG_ON(ret); /* -ENOMEM */
5508 			if (is_fstree(root->root_key.objectid)) {
5509 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5510 				if (ret) {
5511 					btrfs_err_rl(fs_info,
5512 	"error %d accounting leaf items, quota is out of sync, rescan required",
5513 					     ret);
5514 				}
5515 			}
5516 		}
5517 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5518 		if (!path->locks[level]) {
5519 			btrfs_tree_lock(eb);
5520 			path->locks[level] = BTRFS_WRITE_LOCK;
5521 		}
5522 		btrfs_clear_buffer_dirty(trans, eb);
5523 	}
5524 
5525 	if (eb == root->node) {
5526 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5527 			parent = eb->start;
5528 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5529 			goto owner_mismatch;
5530 	} else {
5531 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5532 			parent = path->nodes[level + 1]->start;
5533 		else if (root->root_key.objectid !=
5534 			 btrfs_header_owner(path->nodes[level + 1]))
5535 			goto owner_mismatch;
5536 	}
5537 
5538 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5539 			      wc->refs[level] == 1);
5540 out:
5541 	wc->refs[level] = 0;
5542 	wc->flags[level] = 0;
5543 	return 0;
5544 
5545 owner_mismatch:
5546 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5547 		     btrfs_header_owner(eb), root->root_key.objectid);
5548 	return -EUCLEAN;
5549 }
5550 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)5551 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5552 				   struct btrfs_root *root,
5553 				   struct btrfs_path *path,
5554 				   struct walk_control *wc)
5555 {
5556 	int level = wc->level;
5557 	int lookup_info = 1;
5558 	int ret = 0;
5559 
5560 	while (level >= 0) {
5561 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5562 		if (ret)
5563 			break;
5564 
5565 		if (level == 0)
5566 			break;
5567 
5568 		if (path->slots[level] >=
5569 		    btrfs_header_nritems(path->nodes[level]))
5570 			break;
5571 
5572 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5573 		if (ret > 0) {
5574 			path->slots[level]++;
5575 			continue;
5576 		} else if (ret < 0)
5577 			break;
5578 		level = wc->level;
5579 	}
5580 	return (ret == 1) ? 0 : ret;
5581 }
5582 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)5583 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5584 				 struct btrfs_root *root,
5585 				 struct btrfs_path *path,
5586 				 struct walk_control *wc, int max_level)
5587 {
5588 	int level = wc->level;
5589 	int ret;
5590 
5591 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5592 	while (level < max_level && path->nodes[level]) {
5593 		wc->level = level;
5594 		if (path->slots[level] + 1 <
5595 		    btrfs_header_nritems(path->nodes[level])) {
5596 			path->slots[level]++;
5597 			return 0;
5598 		} else {
5599 			ret = walk_up_proc(trans, root, path, wc);
5600 			if (ret > 0)
5601 				return 0;
5602 			if (ret < 0)
5603 				return ret;
5604 
5605 			if (path->locks[level]) {
5606 				btrfs_tree_unlock_rw(path->nodes[level],
5607 						     path->locks[level]);
5608 				path->locks[level] = 0;
5609 			}
5610 			free_extent_buffer(path->nodes[level]);
5611 			path->nodes[level] = NULL;
5612 			level++;
5613 		}
5614 	}
5615 	return 1;
5616 }
5617 
5618 /*
5619  * drop a subvolume tree.
5620  *
5621  * this function traverses the tree freeing any blocks that only
5622  * referenced by the tree.
5623  *
5624  * when a shared tree block is found. this function decreases its
5625  * reference count by one. if update_ref is true, this function
5626  * also make sure backrefs for the shared block and all lower level
5627  * blocks are properly updated.
5628  *
5629  * If called with for_reloc == 0, may exit early with -EAGAIN
5630  */
btrfs_drop_snapshot(struct btrfs_root * root,int update_ref,int for_reloc)5631 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5632 {
5633 	const bool is_reloc_root = (root->root_key.objectid ==
5634 				    BTRFS_TREE_RELOC_OBJECTID);
5635 	struct btrfs_fs_info *fs_info = root->fs_info;
5636 	struct btrfs_path *path;
5637 	struct btrfs_trans_handle *trans;
5638 	struct btrfs_root *tree_root = fs_info->tree_root;
5639 	struct btrfs_root_item *root_item = &root->root_item;
5640 	struct walk_control *wc;
5641 	struct btrfs_key key;
5642 	int err = 0;
5643 	int ret;
5644 	int level;
5645 	bool root_dropped = false;
5646 	bool unfinished_drop = false;
5647 
5648 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5649 
5650 	path = btrfs_alloc_path();
5651 	if (!path) {
5652 		err = -ENOMEM;
5653 		goto out;
5654 	}
5655 
5656 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5657 	if (!wc) {
5658 		btrfs_free_path(path);
5659 		err = -ENOMEM;
5660 		goto out;
5661 	}
5662 
5663 	/*
5664 	 * Use join to avoid potential EINTR from transaction start. See
5665 	 * wait_reserve_ticket and the whole reservation callchain.
5666 	 */
5667 	if (for_reloc)
5668 		trans = btrfs_join_transaction(tree_root);
5669 	else
5670 		trans = btrfs_start_transaction(tree_root, 0);
5671 	if (IS_ERR(trans)) {
5672 		err = PTR_ERR(trans);
5673 		goto out_free;
5674 	}
5675 
5676 	err = btrfs_run_delayed_items(trans);
5677 	if (err)
5678 		goto out_end_trans;
5679 
5680 	/*
5681 	 * This will help us catch people modifying the fs tree while we're
5682 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5683 	 * dropped as we unlock the root node and parent nodes as we walk down
5684 	 * the tree, assuming nothing will change.  If something does change
5685 	 * then we'll have stale information and drop references to blocks we've
5686 	 * already dropped.
5687 	 */
5688 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5689 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5690 
5691 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5692 		level = btrfs_header_level(root->node);
5693 		path->nodes[level] = btrfs_lock_root_node(root);
5694 		path->slots[level] = 0;
5695 		path->locks[level] = BTRFS_WRITE_LOCK;
5696 		memset(&wc->update_progress, 0,
5697 		       sizeof(wc->update_progress));
5698 	} else {
5699 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5700 		memcpy(&wc->update_progress, &key,
5701 		       sizeof(wc->update_progress));
5702 
5703 		level = btrfs_root_drop_level(root_item);
5704 		BUG_ON(level == 0);
5705 		path->lowest_level = level;
5706 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5707 		path->lowest_level = 0;
5708 		if (ret < 0) {
5709 			err = ret;
5710 			goto out_end_trans;
5711 		}
5712 		WARN_ON(ret > 0);
5713 
5714 		/*
5715 		 * unlock our path, this is safe because only this
5716 		 * function is allowed to delete this snapshot
5717 		 */
5718 		btrfs_unlock_up_safe(path, 0);
5719 
5720 		level = btrfs_header_level(root->node);
5721 		while (1) {
5722 			btrfs_tree_lock(path->nodes[level]);
5723 			path->locks[level] = BTRFS_WRITE_LOCK;
5724 
5725 			ret = btrfs_lookup_extent_info(trans, fs_info,
5726 						path->nodes[level]->start,
5727 						level, 1, &wc->refs[level],
5728 						&wc->flags[level]);
5729 			if (ret < 0) {
5730 				err = ret;
5731 				goto out_end_trans;
5732 			}
5733 			BUG_ON(wc->refs[level] == 0);
5734 
5735 			if (level == btrfs_root_drop_level(root_item))
5736 				break;
5737 
5738 			btrfs_tree_unlock(path->nodes[level]);
5739 			path->locks[level] = 0;
5740 			WARN_ON(wc->refs[level] != 1);
5741 			level--;
5742 		}
5743 	}
5744 
5745 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5746 	wc->level = level;
5747 	wc->shared_level = -1;
5748 	wc->stage = DROP_REFERENCE;
5749 	wc->update_ref = update_ref;
5750 	wc->keep_locks = 0;
5751 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5752 
5753 	while (1) {
5754 
5755 		ret = walk_down_tree(trans, root, path, wc);
5756 		if (ret < 0) {
5757 			btrfs_abort_transaction(trans, ret);
5758 			err = ret;
5759 			break;
5760 		}
5761 
5762 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5763 		if (ret < 0) {
5764 			btrfs_abort_transaction(trans, ret);
5765 			err = ret;
5766 			break;
5767 		}
5768 
5769 		if (ret > 0) {
5770 			BUG_ON(wc->stage != DROP_REFERENCE);
5771 			break;
5772 		}
5773 
5774 		if (wc->stage == DROP_REFERENCE) {
5775 			wc->drop_level = wc->level;
5776 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5777 					      &wc->drop_progress,
5778 					      path->slots[wc->drop_level]);
5779 		}
5780 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5781 				      &wc->drop_progress);
5782 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5783 
5784 		BUG_ON(wc->level == 0);
5785 		if (btrfs_should_end_transaction(trans) ||
5786 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5787 			ret = btrfs_update_root(trans, tree_root,
5788 						&root->root_key,
5789 						root_item);
5790 			if (ret) {
5791 				btrfs_abort_transaction(trans, ret);
5792 				err = ret;
5793 				goto out_end_trans;
5794 			}
5795 
5796 			if (!is_reloc_root)
5797 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5798 
5799 			btrfs_end_transaction_throttle(trans);
5800 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5801 				btrfs_debug(fs_info,
5802 					    "drop snapshot early exit");
5803 				err = -EAGAIN;
5804 				goto out_free;
5805 			}
5806 
5807 		       /*
5808 			* Use join to avoid potential EINTR from transaction
5809 			* start. See wait_reserve_ticket and the whole
5810 			* reservation callchain.
5811 			*/
5812 			if (for_reloc)
5813 				trans = btrfs_join_transaction(tree_root);
5814 			else
5815 				trans = btrfs_start_transaction(tree_root, 0);
5816 			if (IS_ERR(trans)) {
5817 				err = PTR_ERR(trans);
5818 				goto out_free;
5819 			}
5820 		}
5821 	}
5822 	btrfs_release_path(path);
5823 	if (err)
5824 		goto out_end_trans;
5825 
5826 	ret = btrfs_del_root(trans, &root->root_key);
5827 	if (ret) {
5828 		btrfs_abort_transaction(trans, ret);
5829 		err = ret;
5830 		goto out_end_trans;
5831 	}
5832 
5833 	if (!is_reloc_root) {
5834 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5835 				      NULL, NULL);
5836 		if (ret < 0) {
5837 			btrfs_abort_transaction(trans, ret);
5838 			err = ret;
5839 			goto out_end_trans;
5840 		} else if (ret > 0) {
5841 			/* if we fail to delete the orphan item this time
5842 			 * around, it'll get picked up the next time.
5843 			 *
5844 			 * The most common failure here is just -ENOENT.
5845 			 */
5846 			btrfs_del_orphan_item(trans, tree_root,
5847 					      root->root_key.objectid);
5848 		}
5849 	}
5850 
5851 	/*
5852 	 * This subvolume is going to be completely dropped, and won't be
5853 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5854 	 * commit transaction time.  So free it here manually.
5855 	 */
5856 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5857 	btrfs_qgroup_free_meta_all_pertrans(root);
5858 
5859 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5860 		btrfs_add_dropped_root(trans, root);
5861 	else
5862 		btrfs_put_root(root);
5863 	root_dropped = true;
5864 out_end_trans:
5865 	if (!is_reloc_root)
5866 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5867 
5868 	btrfs_end_transaction_throttle(trans);
5869 out_free:
5870 	kfree(wc);
5871 	btrfs_free_path(path);
5872 out:
5873 	/*
5874 	 * We were an unfinished drop root, check to see if there are any
5875 	 * pending, and if not clear and wake up any waiters.
5876 	 */
5877 	if (!err && unfinished_drop)
5878 		btrfs_maybe_wake_unfinished_drop(fs_info);
5879 
5880 	/*
5881 	 * So if we need to stop dropping the snapshot for whatever reason we
5882 	 * need to make sure to add it back to the dead root list so that we
5883 	 * keep trying to do the work later.  This also cleans up roots if we
5884 	 * don't have it in the radix (like when we recover after a power fail
5885 	 * or unmount) so we don't leak memory.
5886 	 */
5887 	if (!for_reloc && !root_dropped)
5888 		btrfs_add_dead_root(root);
5889 	return err;
5890 }
5891 
5892 /*
5893  * drop subtree rooted at tree block 'node'.
5894  *
5895  * NOTE: this function will unlock and release tree block 'node'
5896  * only used by relocation code
5897  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)5898 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5899 			struct btrfs_root *root,
5900 			struct extent_buffer *node,
5901 			struct extent_buffer *parent)
5902 {
5903 	struct btrfs_fs_info *fs_info = root->fs_info;
5904 	struct btrfs_path *path;
5905 	struct walk_control *wc;
5906 	int level;
5907 	int parent_level;
5908 	int ret = 0;
5909 	int wret;
5910 
5911 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5912 
5913 	path = btrfs_alloc_path();
5914 	if (!path)
5915 		return -ENOMEM;
5916 
5917 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5918 	if (!wc) {
5919 		btrfs_free_path(path);
5920 		return -ENOMEM;
5921 	}
5922 
5923 	btrfs_assert_tree_write_locked(parent);
5924 	parent_level = btrfs_header_level(parent);
5925 	atomic_inc(&parent->refs);
5926 	path->nodes[parent_level] = parent;
5927 	path->slots[parent_level] = btrfs_header_nritems(parent);
5928 
5929 	btrfs_assert_tree_write_locked(node);
5930 	level = btrfs_header_level(node);
5931 	path->nodes[level] = node;
5932 	path->slots[level] = 0;
5933 	path->locks[level] = BTRFS_WRITE_LOCK;
5934 
5935 	wc->refs[parent_level] = 1;
5936 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5937 	wc->level = level;
5938 	wc->shared_level = -1;
5939 	wc->stage = DROP_REFERENCE;
5940 	wc->update_ref = 0;
5941 	wc->keep_locks = 1;
5942 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5943 
5944 	while (1) {
5945 		wret = walk_down_tree(trans, root, path, wc);
5946 		if (wret < 0) {
5947 			ret = wret;
5948 			break;
5949 		}
5950 
5951 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5952 		if (wret < 0)
5953 			ret = wret;
5954 		if (wret != 0)
5955 			break;
5956 	}
5957 
5958 	kfree(wc);
5959 	btrfs_free_path(path);
5960 	return ret;
5961 }
5962 
btrfs_error_unpin_extent_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)5963 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5964 				   u64 start, u64 end)
5965 {
5966 	return unpin_extent_range(fs_info, start, end, false);
5967 }
5968 
5969 /*
5970  * It used to be that old block groups would be left around forever.
5971  * Iterating over them would be enough to trim unused space.  Since we
5972  * now automatically remove them, we also need to iterate over unallocated
5973  * space.
5974  *
5975  * We don't want a transaction for this since the discard may take a
5976  * substantial amount of time.  We don't require that a transaction be
5977  * running, but we do need to take a running transaction into account
5978  * to ensure that we're not discarding chunks that were released or
5979  * allocated in the current transaction.
5980  *
5981  * Holding the chunks lock will prevent other threads from allocating
5982  * or releasing chunks, but it won't prevent a running transaction
5983  * from committing and releasing the memory that the pending chunks
5984  * list head uses.  For that, we need to take a reference to the
5985  * transaction and hold the commit root sem.  We only need to hold
5986  * it while performing the free space search since we have already
5987  * held back allocations.
5988  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 * trimmed)5989 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5990 {
5991 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5992 	int ret;
5993 
5994 	*trimmed = 0;
5995 
5996 	/* Discard not supported = nothing to do. */
5997 	if (!bdev_max_discard_sectors(device->bdev))
5998 		return 0;
5999 
6000 	/* Not writable = nothing to do. */
6001 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6002 		return 0;
6003 
6004 	/* No free space = nothing to do. */
6005 	if (device->total_bytes <= device->bytes_used)
6006 		return 0;
6007 
6008 	ret = 0;
6009 
6010 	while (1) {
6011 		struct btrfs_fs_info *fs_info = device->fs_info;
6012 		u64 bytes;
6013 
6014 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6015 		if (ret)
6016 			break;
6017 
6018 		find_first_clear_extent_bit(&device->alloc_state, start,
6019 					    &start, &end,
6020 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6021 
6022 		/* Check if there are any CHUNK_* bits left */
6023 		if (start > device->total_bytes) {
6024 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6025 			btrfs_warn_in_rcu(fs_info,
6026 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6027 					  start, end - start + 1,
6028 					  btrfs_dev_name(device),
6029 					  device->total_bytes);
6030 			mutex_unlock(&fs_info->chunk_mutex);
6031 			ret = 0;
6032 			break;
6033 		}
6034 
6035 		/* Ensure we skip the reserved space on each device. */
6036 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6037 
6038 		/*
6039 		 * If find_first_clear_extent_bit find a range that spans the
6040 		 * end of the device it will set end to -1, in this case it's up
6041 		 * to the caller to trim the value to the size of the device.
6042 		 */
6043 		end = min(end, device->total_bytes - 1);
6044 
6045 		len = end - start + 1;
6046 
6047 		/* We didn't find any extents */
6048 		if (!len) {
6049 			mutex_unlock(&fs_info->chunk_mutex);
6050 			ret = 0;
6051 			break;
6052 		}
6053 
6054 		ret = btrfs_issue_discard(device->bdev, start, len,
6055 					  &bytes);
6056 		if (!ret)
6057 			set_extent_bit(&device->alloc_state, start,
6058 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6059 		mutex_unlock(&fs_info->chunk_mutex);
6060 
6061 		if (ret)
6062 			break;
6063 
6064 		start += len;
6065 		*trimmed += bytes;
6066 
6067 		if (fatal_signal_pending(current)) {
6068 			ret = -ERESTARTSYS;
6069 			break;
6070 		}
6071 
6072 		cond_resched();
6073 	}
6074 
6075 	return ret;
6076 }
6077 
6078 /*
6079  * Trim the whole filesystem by:
6080  * 1) trimming the free space in each block group
6081  * 2) trimming the unallocated space on each device
6082  *
6083  * This will also continue trimming even if a block group or device encounters
6084  * an error.  The return value will be the last error, or 0 if nothing bad
6085  * happens.
6086  */
btrfs_trim_fs(struct btrfs_fs_info * fs_info,struct fstrim_range * range)6087 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6088 {
6089 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6090 	struct btrfs_block_group *cache = NULL;
6091 	struct btrfs_device *device;
6092 	u64 group_trimmed;
6093 	u64 range_end = U64_MAX;
6094 	u64 start;
6095 	u64 end;
6096 	u64 trimmed = 0;
6097 	u64 bg_failed = 0;
6098 	u64 dev_failed = 0;
6099 	int bg_ret = 0;
6100 	int dev_ret = 0;
6101 	int ret = 0;
6102 
6103 	if (range->start == U64_MAX)
6104 		return -EINVAL;
6105 
6106 	/*
6107 	 * Check range overflow if range->len is set.
6108 	 * The default range->len is U64_MAX.
6109 	 */
6110 	if (range->len != U64_MAX &&
6111 	    check_add_overflow(range->start, range->len, &range_end))
6112 		return -EINVAL;
6113 
6114 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6115 	for (; cache; cache = btrfs_next_block_group(cache)) {
6116 		if (cache->start >= range_end) {
6117 			btrfs_put_block_group(cache);
6118 			break;
6119 		}
6120 
6121 		start = max(range->start, cache->start);
6122 		end = min(range_end, cache->start + cache->length);
6123 
6124 		if (end - start >= range->minlen) {
6125 			if (!btrfs_block_group_done(cache)) {
6126 				ret = btrfs_cache_block_group(cache, true);
6127 				if (ret) {
6128 					bg_failed++;
6129 					bg_ret = ret;
6130 					continue;
6131 				}
6132 			}
6133 			ret = btrfs_trim_block_group(cache,
6134 						     &group_trimmed,
6135 						     start,
6136 						     end,
6137 						     range->minlen);
6138 
6139 			trimmed += group_trimmed;
6140 			if (ret) {
6141 				bg_failed++;
6142 				bg_ret = ret;
6143 				continue;
6144 			}
6145 		}
6146 	}
6147 
6148 	if (bg_failed)
6149 		btrfs_warn(fs_info,
6150 			"failed to trim %llu block group(s), last error %d",
6151 			bg_failed, bg_ret);
6152 
6153 	mutex_lock(&fs_devices->device_list_mutex);
6154 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6155 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6156 			continue;
6157 
6158 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6159 		if (ret) {
6160 			dev_failed++;
6161 			dev_ret = ret;
6162 			break;
6163 		}
6164 
6165 		trimmed += group_trimmed;
6166 	}
6167 	mutex_unlock(&fs_devices->device_list_mutex);
6168 
6169 	if (dev_failed)
6170 		btrfs_warn(fs_info,
6171 			"failed to trim %llu device(s), last error %d",
6172 			dev_failed, dev_ret);
6173 	range->len = trimmed;
6174 	if (bg_ret)
6175 		return bg_ret;
6176 	return dev_ret;
6177 }
6178