1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "volumes.h"
28 #include "qgroup.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
31 #include "reflink.h"
32 #include "subpage.h"
33 #include "fs.h"
34 #include "accessors.h"
35 #include "extent-tree.h"
36 #include "file-item.h"
37 #include "ioctl.h"
38 #include "file.h"
39 #include "super.h"
40
41 /* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct page **prepared_pages,
46 struct iov_iter *i)
47 {
48 size_t copied = 0;
49 size_t total_copied = 0;
50 int pg = 0;
51 int offset = offset_in_page(pos);
52
53 while (write_bytes > 0) {
54 size_t count = min_t(size_t,
55 PAGE_SIZE - offset, write_bytes);
56 struct page *page = prepared_pages[pg];
57 /*
58 * Copy data from userspace to the current page
59 */
60 copied = copy_page_from_iter_atomic(page, offset, count, i);
61
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
82
83 write_bytes -= copied;
84 total_copied += copied;
85 offset += copied;
86 if (offset == PAGE_SIZE) {
87 pg++;
88 offset = 0;
89 }
90 }
91 return total_copied;
92 }
93
94 /*
95 * unlocks pages after btrfs_file_write is done with them
96 */
btrfs_drop_pages(struct btrfs_fs_info * fs_info,struct page ** pages,size_t num_pages,u64 pos,u64 copied)97 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
100 {
101 size_t i;
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
106 for (i = 0; i < num_pages; i++) {
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
112 */
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
115 unlock_page(pages[i]);
116 put_page(pages[i]);
117 }
118 }
119
120 /*
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
126 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached,bool noreserve)127 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
128 size_t num_pages, loff_t pos, size_t write_bytes,
129 struct extent_state **cached, bool noreserve)
130 {
131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
132 int err = 0;
133 int i;
134 u64 num_bytes;
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
138 loff_t isize = i_size_read(&inode->vfs_inode);
139 unsigned int extra_bits = 0;
140
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
147 start_pos = round_down(pos, fs_info->sectorsize);
148 num_bytes = round_up(write_bytes + pos - start_pos,
149 fs_info->sectorsize);
150 ASSERT(num_bytes <= U32_MAX);
151
152 end_of_last_block = start_pos + num_bytes - 1;
153
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
160 cached);
161
162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
163 extra_bits, cached);
164 if (err)
165 return err;
166
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
173 }
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
181 i_size_write(&inode->vfs_inode, end_pos);
182 return 0;
183 }
184
185 /*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
199 */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_drop_extents_args * args)200 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
203 {
204 struct btrfs_fs_info *fs_info = root->fs_info;
205 struct extent_buffer *leaf;
206 struct btrfs_file_extent_item *fi;
207 struct btrfs_ref ref = { 0 };
208 struct btrfs_key key;
209 struct btrfs_key new_key;
210 u64 ino = btrfs_ino(inode);
211 u64 search_start = args->start;
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
216 u64 last_end = args->start;
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
220 int recow;
221 int ret;
222 int modify_tree = -1;
223 int update_refs;
224 int found = 0;
225 struct btrfs_path *path = args->path;
226
227 args->bytes_found = 0;
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
240
241 if (args->drop_cache)
242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
243
244 if (args->start >= inode->disk_i_size && !args->replace_extent)
245 modify_tree = 0;
246
247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
248 while (1) {
249 recow = 0;
250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
251 search_start, modify_tree);
252 if (ret < 0)
253 break;
254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
257 if (key.objectid == ino &&
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
260 }
261 ret = 0;
262 next_slot:
263 leaf = path->nodes[0];
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
272 }
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
303 btrfs_file_extent_ram_bytes(leaf, fi);
304 } else {
305 /* can't happen */
306 BUG();
307 }
308
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
320 goto delete_extent_item;
321 }
322
323 if (extent_end <= search_start) {
324 path->slots[0]++;
325 goto next_slot;
326 }
327
328 found = 1;
329 search_start = max(key.offset, args->start);
330 if (recow || !modify_tree) {
331 modify_tree = -1;
332 btrfs_release_path(path);
333 continue;
334 }
335
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
340 if (args->start > key.offset && args->end < extent_end) {
341 BUG_ON(del_nr > 0);
342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
343 ret = -EOPNOTSUPP;
344 break;
345 }
346
347 memcpy(&new_key, &key, sizeof(new_key));
348 new_key.offset = args->start;
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
352 btrfs_release_path(path);
353 continue;
354 }
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
362 args->start - key.offset);
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
367 extent_offset += args->start - key.offset;
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
370 extent_end - args->start);
371 btrfs_mark_buffer_dirty(trans, leaf);
372
373 if (update_refs && disk_bytenr > 0) {
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
378 root->root_key.objectid,
379 new_key.objectid,
380 args->start - extent_offset,
381 0, false);
382 ret = btrfs_inc_extent_ref(trans, &ref);
383 if (ret) {
384 btrfs_abort_transaction(trans, ret);
385 break;
386 }
387 }
388 key.offset = args->start;
389 }
390 /*
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
393 */
394 last_end = extent_end;
395
396 /*
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
399 */
400 if (args->start <= key.offset && args->end < extent_end) {
401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
402 ret = -EOPNOTSUPP;
403 break;
404 }
405
406 memcpy(&new_key, &key, sizeof(new_key));
407 new_key.offset = args->end;
408 btrfs_set_item_key_safe(trans, path, &new_key);
409
410 extent_offset += args->end - key.offset;
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
413 extent_end - args->end);
414 btrfs_mark_buffer_dirty(trans, leaf);
415 if (update_refs && disk_bytenr > 0)
416 args->bytes_found += args->end - key.offset;
417 break;
418 }
419
420 search_start = extent_end;
421 /*
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
424 */
425 if (args->start > key.offset && args->end >= extent_end) {
426 BUG_ON(del_nr > 0);
427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
428 ret = -EOPNOTSUPP;
429 break;
430 }
431
432 btrfs_set_file_extent_num_bytes(leaf, fi,
433 args->start - key.offset);
434 btrfs_mark_buffer_dirty(trans, leaf);
435 if (update_refs && disk_bytenr > 0)
436 args->bytes_found += extent_end - args->start;
437 if (args->end == extent_end)
438 break;
439
440 path->slots[0]++;
441 goto next_slot;
442 }
443
444 /*
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
447 */
448 if (args->start <= key.offset && args->end >= extent_end) {
449 delete_extent_item:
450 if (del_nr == 0) {
451 del_slot = path->slots[0];
452 del_nr = 1;
453 } else {
454 BUG_ON(del_slot + del_nr != path->slots[0]);
455 del_nr++;
456 }
457
458 if (update_refs &&
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
460 args->bytes_found += extent_end - key.offset;
461 extent_end = ALIGN(extent_end,
462 fs_info->sectorsize);
463 } else if (update_refs && disk_bytenr > 0) {
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
468 root->root_key.objectid,
469 key.objectid,
470 key.offset - extent_offset, 0,
471 false);
472 ret = btrfs_free_extent(trans, &ref);
473 if (ret) {
474 btrfs_abort_transaction(trans, ret);
475 break;
476 }
477 args->bytes_found += extent_end - key.offset;
478 }
479
480 if (args->end == extent_end)
481 break;
482
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 path->slots[0]++;
485 goto next_slot;
486 }
487
488 ret = btrfs_del_items(trans, root, path, del_slot,
489 del_nr);
490 if (ret) {
491 btrfs_abort_transaction(trans, ret);
492 break;
493 }
494
495 del_nr = 0;
496 del_slot = 0;
497
498 btrfs_release_path(path);
499 continue;
500 }
501
502 BUG();
503 }
504
505 if (!ret && del_nr > 0) {
506 /*
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
510 * path->slots[0] for our insertion (if args->replace_extent).
511 */
512 path->slots[0] = del_slot;
513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
514 if (ret)
515 btrfs_abort_transaction(trans, ret);
516 }
517
518 leaf = path->nodes[0];
519 /*
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
522 * write lock.
523 */
524 if (!ret && args->replace_extent &&
525 path->locks[0] == BTRFS_WRITE_LOCK &&
526 btrfs_leaf_free_space(leaf) >=
527 sizeof(struct btrfs_item) + args->extent_item_size) {
528
529 key.objectid = ino;
530 key.type = BTRFS_EXTENT_DATA_KEY;
531 key.offset = args->start;
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
534
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 path->slots[0]++;
538 }
539 btrfs_setup_item_for_insert(trans, root, path, &key,
540 args->extent_item_size);
541 args->extent_inserted = true;
542 }
543
544 if (!args->path)
545 btrfs_free_path(path);
546 else if (!args->extent_inserted)
547 btrfs_release_path(path);
548 out:
549 args->drop_end = found ? min(args->end, last_end) : args->end;
550
551 return ret;
552 }
553
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)554 static int extent_mergeable(struct extent_buffer *leaf, int slot,
555 u64 objectid, u64 bytenr, u64 orig_offset,
556 u64 *start, u64 *end)
557 {
558 struct btrfs_file_extent_item *fi;
559 struct btrfs_key key;
560 u64 extent_end;
561
562 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
563 return 0;
564
565 btrfs_item_key_to_cpu(leaf, &key, slot);
566 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
567 return 0;
568
569 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
570 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
571 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
572 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
573 btrfs_file_extent_compression(leaf, fi) ||
574 btrfs_file_extent_encryption(leaf, fi) ||
575 btrfs_file_extent_other_encoding(leaf, fi))
576 return 0;
577
578 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
579 if ((*start && *start != key.offset) || (*end && *end != extent_end))
580 return 0;
581
582 *start = key.offset;
583 *end = extent_end;
584 return 1;
585 }
586
587 /*
588 * Mark extent in the range start - end as written.
589 *
590 * This changes extent type from 'pre-allocated' to 'regular'. If only
591 * part of extent is marked as written, the extent will be split into
592 * two or three.
593 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)594 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
595 struct btrfs_inode *inode, u64 start, u64 end)
596 {
597 struct btrfs_root *root = inode->root;
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
601 struct btrfs_ref ref = { 0 };
602 struct btrfs_key key;
603 struct btrfs_key new_key;
604 u64 bytenr;
605 u64 num_bytes;
606 u64 extent_end;
607 u64 orig_offset;
608 u64 other_start;
609 u64 other_end;
610 u64 split;
611 int del_nr = 0;
612 int del_slot = 0;
613 int recow;
614 int ret = 0;
615 u64 ino = btrfs_ino(inode);
616
617 path = btrfs_alloc_path();
618 if (!path)
619 return -ENOMEM;
620 again:
621 recow = 0;
622 split = start;
623 key.objectid = ino;
624 key.type = BTRFS_EXTENT_DATA_KEY;
625 key.offset = split;
626
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
628 if (ret < 0)
629 goto out;
630 if (ret > 0 && path->slots[0] > 0)
631 path->slots[0]--;
632
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
637 ret = -EINVAL;
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
649 if (key.offset > start || extent_end < end) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
654
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
658 memcpy(&new_key, &key, sizeof(new_key));
659
660 if (start == key.offset && end < extent_end) {
661 other_start = 0;
662 other_end = start;
663 if (extent_mergeable(leaf, path->slots[0] - 1,
664 ino, bytenr, orig_offset,
665 &other_start, &other_end)) {
666 new_key.offset = end;
667 btrfs_set_item_key_safe(trans, path, &new_key);
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
670 btrfs_set_file_extent_generation(leaf, fi,
671 trans->transid);
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - end);
674 btrfs_set_file_extent_offset(leaf, fi,
675 end - orig_offset);
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
678 btrfs_set_file_extent_generation(leaf, fi,
679 trans->transid);
680 btrfs_set_file_extent_num_bytes(leaf, fi,
681 end - other_start);
682 btrfs_mark_buffer_dirty(trans, leaf);
683 goto out;
684 }
685 }
686
687 if (start > key.offset && end == extent_end) {
688 other_start = end;
689 other_end = 0;
690 if (extent_mergeable(leaf, path->slots[0] + 1,
691 ino, bytenr, orig_offset,
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 start - key.offset);
697 btrfs_set_file_extent_generation(leaf, fi,
698 trans->transid);
699 path->slots[0]++;
700 new_key.offset = start;
701 btrfs_set_item_key_safe(trans, path, &new_key);
702
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
705 btrfs_set_file_extent_generation(leaf, fi,
706 trans->transid);
707 btrfs_set_file_extent_num_bytes(leaf, fi,
708 other_end - start);
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(trans, leaf);
712 goto out;
713 }
714 }
715
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
718 split = end;
719
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
723 btrfs_release_path(path);
724 goto again;
725 }
726 if (ret < 0) {
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
733 struct btrfs_file_extent_item);
734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
735 btrfs_set_file_extent_num_bytes(leaf, fi,
736 split - key.offset);
737
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740
741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
744 extent_end - split);
745 btrfs_mark_buffer_dirty(trans, leaf);
746
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 num_bytes, 0);
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
750 orig_offset, 0, false);
751 ret = btrfs_inc_extent_ref(trans, &ref);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 if (split == start) {
758 key.offset = start;
759 } else {
760 if (start != key.offset) {
761 ret = -EINVAL;
762 btrfs_abort_transaction(trans, ret);
763 goto out;
764 }
765 path->slots[0]--;
766 extent_end = end;
767 }
768 recow = 1;
769 }
770
771 other_start = end;
772 other_end = 0;
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 num_bytes, 0);
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 0, false);
777 if (extent_mergeable(leaf, path->slots[0] + 1,
778 ino, bytenr, orig_offset,
779 &other_start, &other_end)) {
780 if (recow) {
781 btrfs_release_path(path);
782 goto again;
783 }
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
786 del_nr++;
787 ret = btrfs_free_extent(trans, &ref);
788 if (ret) {
789 btrfs_abort_transaction(trans, ret);
790 goto out;
791 }
792 }
793 other_start = 0;
794 other_end = start;
795 if (extent_mergeable(leaf, path->slots[0] - 1,
796 ino, bytenr, orig_offset,
797 &other_start, &other_end)) {
798 if (recow) {
799 btrfs_release_path(path);
800 goto again;
801 }
802 key.offset = other_start;
803 del_slot = path->slots[0];
804 del_nr++;
805 ret = btrfs_free_extent(trans, &ref);
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 goto out;
809 }
810 }
811 if (del_nr == 0) {
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
817 btrfs_mark_buffer_dirty(trans, leaf);
818 } else {
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(trans, leaf);
827
828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
829 if (ret < 0) {
830 btrfs_abort_transaction(trans, ret);
831 goto out;
832 }
833 }
834 out:
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 /*
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
842 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)843 static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
845 bool force_uptodate)
846 {
847 struct folio *folio = page_folio(page);
848 int ret = 0;
849
850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
851 !PageUptodate(page)) {
852 ret = btrfs_read_folio(NULL, folio);
853 if (ret)
854 return ret;
855 lock_page(page);
856 if (!PageUptodate(page)) {
857 unlock_page(page);
858 return -EIO;
859 }
860
861 /*
862 * Since btrfs_read_folio() will unlock the folio before it
863 * returns, there is a window where btrfs_release_folio() can be
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
866 * released.
867 *
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
870 */
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
872 unlock_page(page);
873 return -EAGAIN;
874 }
875 }
876 return 0;
877 }
878
get_prepare_fgp_flags(bool nowait)879 static fgf_t get_prepare_fgp_flags(bool nowait)
880 {
881 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882
883 if (nowait)
884 fgp_flags |= FGP_NOWAIT;
885
886 return fgp_flags;
887 }
888
get_prepare_gfp_flags(struct inode * inode,bool nowait)889 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890 {
891 gfp_t gfp;
892
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 if (nowait) {
895 gfp &= ~__GFP_DIRECT_RECLAIM;
896 gfp |= GFP_NOWAIT;
897 }
898
899 return gfp;
900 }
901
902 /*
903 * this just gets pages into the page cache and locks them down.
904 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate,bool nowait)905 static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
907 size_t write_bytes, bool force_uptodate,
908 bool nowait)
909 {
910 int i;
911 unsigned long index = pos >> PAGE_SHIFT;
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
914 int err = 0;
915 int faili;
916
917 for (i = 0; i < num_pages; i++) {
918 again:
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
921 if (!pages[i]) {
922 faili = i - 1;
923 if (nowait)
924 err = -EAGAIN;
925 else
926 err = -ENOMEM;
927 goto fail;
928 }
929
930 err = set_page_extent_mapped(pages[i]);
931 if (err < 0) {
932 faili = i;
933 goto fail;
934 }
935
936 if (i == 0)
937 err = prepare_uptodate_page(inode, pages[i], pos,
938 force_uptodate);
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
941 pos + write_bytes, false);
942 if (err) {
943 put_page(pages[i]);
944 if (!nowait && err == -EAGAIN) {
945 err = 0;
946 goto again;
947 }
948 faili = i - 1;
949 goto fail;
950 }
951 wait_on_page_writeback(pages[i]);
952 }
953
954 return 0;
955 fail:
956 while (faili >= 0) {
957 unlock_page(pages[faili]);
958 put_page(pages[faili]);
959 faili--;
960 }
961 return err;
962
963 }
964
965 /*
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
968 *
969 * The return value:
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
974 */
975 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,bool nowait,struct extent_state ** cached_state)976 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
977 size_t num_pages, loff_t pos,
978 size_t write_bytes,
979 u64 *lockstart, u64 *lockend, bool nowait,
980 struct extent_state **cached_state)
981 {
982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 u64 start_pos;
984 u64 last_pos;
985 int i;
986 int ret = 0;
987
988 start_pos = round_down(pos, fs_info->sectorsize);
989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
990
991 if (start_pos < inode->vfs_inode.i_size) {
992 struct btrfs_ordered_extent *ordered;
993
994 if (nowait) {
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 cached_state)) {
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
999 put_page(pages[i]);
1000 pages[i] = NULL;
1001 }
1002
1003 return -EAGAIN;
1004 }
1005 } else {
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 }
1008
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
1011 if (ordered &&
1012 ordered->file_offset + ordered->num_bytes > start_pos &&
1013 ordered->file_offset <= last_pos) {
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 cached_state);
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
1018 put_page(pages[i]);
1019 }
1020 btrfs_start_ordered_extent(ordered);
1021 btrfs_put_ordered_extent(ordered);
1022 return -EAGAIN;
1023 }
1024 if (ordered)
1025 btrfs_put_ordered_extent(ordered);
1026
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1029 ret = 1;
1030 }
1031
1032 /*
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
1035 */
1036 for (i = 0; i < num_pages; i++)
1037 WARN_ON(!PageLocked(pages[i]));
1038
1039 return ret;
1040 }
1041
1042 /*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 * range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1061 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1062 size_t *write_bytes, bool nowait)
1063 {
1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 struct btrfs_root *root = inode->root;
1066 struct extent_state *cached_state = NULL;
1067 u64 lockstart, lockend;
1068 u64 num_bytes;
1069 int ret;
1070
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 return 0;
1073
1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1075 return -EAGAIN;
1076
1077 lockstart = round_down(pos, fs_info->sectorsize);
1078 lockend = round_up(pos + *write_bytes,
1079 fs_info->sectorsize) - 1;
1080 num_bytes = lockend - lockstart + 1;
1081
1082 if (nowait) {
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 &cached_state)) {
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1086 return -EAGAIN;
1087 }
1088 } else {
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 &cached_state);
1091 }
1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1093 NULL, NULL, NULL, nowait, false);
1094 if (ret <= 0)
1095 btrfs_drew_write_unlock(&root->snapshot_lock);
1096 else
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1100
1101 return ret;
1102 }
1103
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1104 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105 {
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107 }
1108
update_time_for_write(struct inode * inode)1109 static void update_time_for_write(struct inode *inode)
1110 {
1111 struct timespec64 now, ctime;
1112
1113 if (IS_NOCMTIME(inode))
1114 return;
1115
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1119
1120 ctime = inode_get_ctime(inode);
1121 if (!timespec64_equal(&ctime, &now))
1122 inode_set_ctime_to_ts(inode, now);
1123
1124 if (IS_I_VERSION(inode))
1125 inode_inc_iversion(inode);
1126 }
1127
btrfs_write_check(struct kiocb * iocb,struct iov_iter * from,size_t count)1128 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1129 size_t count)
1130 {
1131 struct file *file = iocb->ki_filp;
1132 struct inode *inode = file_inode(file);
1133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1134 loff_t pos = iocb->ki_pos;
1135 int ret;
1136 loff_t oldsize;
1137 loff_t start_pos;
1138
1139 /*
1140 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1141 * prealloc flags, as without those flags we always have to COW. We will
1142 * later check if we can really COW into the target range (using
1143 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1144 */
1145 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1146 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1147 return -EAGAIN;
1148
1149 ret = file_remove_privs(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * We reserve space for updating the inode when we reserve space for the
1155 * extent we are going to write, so we will enospc out there. We don't
1156 * need to start yet another transaction to update the inode as we will
1157 * update the inode when we finish writing whatever data we write.
1158 */
1159 update_time_for_write(inode);
1160
1161 start_pos = round_down(pos, fs_info->sectorsize);
1162 oldsize = i_size_read(inode);
1163 if (start_pos > oldsize) {
1164 /* Expand hole size to cover write data, preventing empty gap */
1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166
1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1175 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1176 struct iov_iter *i)
1177 {
1178 struct file *file = iocb->ki_filp;
1179 loff_t pos;
1180 struct inode *inode = file_inode(file);
1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 struct page **pages = NULL;
1183 struct extent_changeset *data_reserved = NULL;
1184 u64 release_bytes = 0;
1185 u64 lockstart;
1186 u64 lockend;
1187 size_t num_written = 0;
1188 int nrptrs;
1189 ssize_t ret;
1190 bool only_release_metadata = false;
1191 bool force_page_uptodate = false;
1192 loff_t old_isize = i_size_read(inode);
1193 unsigned int ilock_flags = 0;
1194 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1195 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1196
1197 if (nowait)
1198 ilock_flags |= BTRFS_ILOCK_TRY;
1199
1200 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1201 if (ret < 0)
1202 return ret;
1203
1204 ret = generic_write_checks(iocb, i);
1205 if (ret <= 0)
1206 goto out;
1207
1208 ret = btrfs_write_check(iocb, i, ret);
1209 if (ret < 0)
1210 goto out;
1211
1212 pos = iocb->ki_pos;
1213 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1214 PAGE_SIZE / (sizeof(struct page *)));
1215 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1216 nrptrs = max(nrptrs, 8);
1217 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1218 if (!pages) {
1219 ret = -ENOMEM;
1220 goto out;
1221 }
1222
1223 while (iov_iter_count(i) > 0) {
1224 struct extent_state *cached_state = NULL;
1225 size_t offset = offset_in_page(pos);
1226 size_t sector_offset;
1227 size_t write_bytes = min(iov_iter_count(i),
1228 nrptrs * (size_t)PAGE_SIZE -
1229 offset);
1230 size_t num_pages;
1231 size_t reserve_bytes;
1232 size_t dirty_pages;
1233 size_t copied;
1234 size_t dirty_sectors;
1235 size_t num_sectors;
1236 int extents_locked;
1237
1238 /*
1239 * Fault pages before locking them in prepare_pages
1240 * to avoid recursive lock
1241 */
1242 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1243 ret = -EFAULT;
1244 break;
1245 }
1246
1247 only_release_metadata = false;
1248 sector_offset = pos & (fs_info->sectorsize - 1);
1249
1250 extent_changeset_release(data_reserved);
1251 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1252 &data_reserved, pos,
1253 write_bytes, nowait);
1254 if (ret < 0) {
1255 int can_nocow;
1256
1257 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1258 ret = -EAGAIN;
1259 break;
1260 }
1261
1262 /*
1263 * If we don't have to COW at the offset, reserve
1264 * metadata only. write_bytes may get smaller than
1265 * requested here.
1266 */
1267 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1268 &write_bytes, nowait);
1269 if (can_nocow < 0)
1270 ret = can_nocow;
1271 if (can_nocow > 0)
1272 ret = 0;
1273 if (ret)
1274 break;
1275 only_release_metadata = true;
1276 }
1277
1278 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1279 WARN_ON(num_pages > nrptrs);
1280 reserve_bytes = round_up(write_bytes + sector_offset,
1281 fs_info->sectorsize);
1282 WARN_ON(reserve_bytes == 0);
1283 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1284 reserve_bytes,
1285 reserve_bytes, nowait);
1286 if (ret) {
1287 if (!only_release_metadata)
1288 btrfs_free_reserved_data_space(BTRFS_I(inode),
1289 data_reserved, pos,
1290 write_bytes);
1291 else
1292 btrfs_check_nocow_unlock(BTRFS_I(inode));
1293
1294 if (nowait && ret == -ENOSPC)
1295 ret = -EAGAIN;
1296 break;
1297 }
1298
1299 release_bytes = reserve_bytes;
1300 again:
1301 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1302 if (ret) {
1303 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 break;
1305 }
1306
1307 /*
1308 * This is going to setup the pages array with the number of
1309 * pages we want, so we don't really need to worry about the
1310 * contents of pages from loop to loop
1311 */
1312 ret = prepare_pages(inode, pages, num_pages,
1313 pos, write_bytes, force_page_uptodate, false);
1314 if (ret) {
1315 btrfs_delalloc_release_extents(BTRFS_I(inode),
1316 reserve_bytes);
1317 break;
1318 }
1319
1320 extents_locked = lock_and_cleanup_extent_if_need(
1321 BTRFS_I(inode), pages,
1322 num_pages, pos, write_bytes, &lockstart,
1323 &lockend, nowait, &cached_state);
1324 if (extents_locked < 0) {
1325 if (!nowait && extents_locked == -EAGAIN)
1326 goto again;
1327
1328 btrfs_delalloc_release_extents(BTRFS_I(inode),
1329 reserve_bytes);
1330 ret = extents_locked;
1331 break;
1332 }
1333
1334 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1335
1336 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1337 dirty_sectors = round_up(copied + sector_offset,
1338 fs_info->sectorsize);
1339 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1340
1341 /*
1342 * if we have trouble faulting in the pages, fall
1343 * back to one page at a time
1344 */
1345 if (copied < write_bytes)
1346 nrptrs = 1;
1347
1348 if (copied == 0) {
1349 force_page_uptodate = true;
1350 dirty_sectors = 0;
1351 dirty_pages = 0;
1352 } else {
1353 force_page_uptodate = false;
1354 dirty_pages = DIV_ROUND_UP(copied + offset,
1355 PAGE_SIZE);
1356 }
1357
1358 if (num_sectors > dirty_sectors) {
1359 /* release everything except the sectors we dirtied */
1360 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1361 if (only_release_metadata) {
1362 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1363 release_bytes, true);
1364 } else {
1365 u64 __pos;
1366
1367 __pos = round_down(pos,
1368 fs_info->sectorsize) +
1369 (dirty_pages << PAGE_SHIFT);
1370 btrfs_delalloc_release_space(BTRFS_I(inode),
1371 data_reserved, __pos,
1372 release_bytes, true);
1373 }
1374 }
1375
1376 release_bytes = round_up(copied + sector_offset,
1377 fs_info->sectorsize);
1378
1379 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1380 dirty_pages, pos, copied,
1381 &cached_state, only_release_metadata);
1382
1383 /*
1384 * If we have not locked the extent range, because the range's
1385 * start offset is >= i_size, we might still have a non-NULL
1386 * cached extent state, acquired while marking the extent range
1387 * as delalloc through btrfs_dirty_pages(). Therefore free any
1388 * possible cached extent state to avoid a memory leak.
1389 */
1390 if (extents_locked)
1391 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1392 lockend, &cached_state);
1393 else
1394 free_extent_state(cached_state);
1395
1396 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1397 if (ret) {
1398 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1399 break;
1400 }
1401
1402 release_bytes = 0;
1403 if (only_release_metadata)
1404 btrfs_check_nocow_unlock(BTRFS_I(inode));
1405
1406 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1407
1408 cond_resched();
1409
1410 pos += copied;
1411 num_written += copied;
1412 }
1413
1414 kfree(pages);
1415
1416 if (release_bytes) {
1417 if (only_release_metadata) {
1418 btrfs_check_nocow_unlock(BTRFS_I(inode));
1419 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1420 release_bytes, true);
1421 } else {
1422 btrfs_delalloc_release_space(BTRFS_I(inode),
1423 data_reserved,
1424 round_down(pos, fs_info->sectorsize),
1425 release_bytes, true);
1426 }
1427 }
1428
1429 extent_changeset_free(data_reserved);
1430 if (num_written > 0) {
1431 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1432 iocb->ki_pos += num_written;
1433 }
1434 out:
1435 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1436 return num_written ? num_written : ret;
1437 }
1438
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)1439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1440 const struct iov_iter *iter, loff_t offset)
1441 {
1442 const u32 blocksize_mask = fs_info->sectorsize - 1;
1443
1444 if (offset & blocksize_mask)
1445 return -EINVAL;
1446
1447 if (iov_iter_alignment(iter) & blocksize_mask)
1448 return -EINVAL;
1449
1450 return 0;
1451 }
1452
btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1453 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1454 {
1455 struct file *file = iocb->ki_filp;
1456 struct inode *inode = file_inode(file);
1457 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1458 loff_t pos;
1459 ssize_t written = 0;
1460 ssize_t written_buffered;
1461 size_t prev_left = 0;
1462 loff_t endbyte;
1463 ssize_t err;
1464 unsigned int ilock_flags = 0;
1465 struct iomap_dio *dio;
1466
1467 if (iocb->ki_flags & IOCB_NOWAIT)
1468 ilock_flags |= BTRFS_ILOCK_TRY;
1469
1470 /*
1471 * If the write DIO is within EOF, use a shared lock and also only if
1472 * security bits will likely not be dropped by file_remove_privs() called
1473 * from btrfs_write_check(). Either will need to be rechecked after the
1474 * lock was acquired.
1475 */
1476 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1477 ilock_flags |= BTRFS_ILOCK_SHARED;
1478
1479 relock:
1480 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1481 if (err < 0)
1482 return err;
1483
1484 /* Shared lock cannot be used with security bits set. */
1485 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1486 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1487 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1488 goto relock;
1489 }
1490
1491 err = generic_write_checks(iocb, from);
1492 if (err <= 0) {
1493 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1494 return err;
1495 }
1496
1497 err = btrfs_write_check(iocb, from, err);
1498 if (err < 0) {
1499 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1500 goto out;
1501 }
1502
1503 pos = iocb->ki_pos;
1504 /*
1505 * Re-check since file size may have changed just before taking the
1506 * lock or pos may have changed because of O_APPEND in generic_write_check()
1507 */
1508 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1509 pos + iov_iter_count(from) > i_size_read(inode)) {
1510 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1511 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1512 goto relock;
1513 }
1514
1515 if (check_direct_IO(fs_info, from, pos)) {
1516 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1517 goto buffered;
1518 }
1519
1520 /*
1521 * The iov_iter can be mapped to the same file range we are writing to.
1522 * If that's the case, then we will deadlock in the iomap code, because
1523 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1524 * an ordered extent, and after that it will fault in the pages that the
1525 * iov_iter refers to. During the fault in we end up in the readahead
1526 * pages code (starting at btrfs_readahead()), which will lock the range,
1527 * find that ordered extent and then wait for it to complete (at
1528 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1529 * obviously the ordered extent can never complete as we didn't submit
1530 * yet the respective bio(s). This always happens when the buffer is
1531 * memory mapped to the same file range, since the iomap DIO code always
1532 * invalidates pages in the target file range (after starting and waiting
1533 * for any writeback).
1534 *
1535 * So here we disable page faults in the iov_iter and then retry if we
1536 * got -EFAULT, faulting in the pages before the retry.
1537 */
1538 again:
1539 from->nofault = true;
1540 dio = btrfs_dio_write(iocb, from, written);
1541 from->nofault = false;
1542
1543 if (IS_ERR_OR_NULL(dio)) {
1544 err = PTR_ERR_OR_ZERO(dio);
1545 } else {
1546 /*
1547 * If we have a synchoronous write, we must make sure the fsync
1548 * triggered by the iomap_dio_complete() call below doesn't
1549 * deadlock on the inode lock - we are already holding it and we
1550 * can't call it after unlocking because we may need to complete
1551 * partial writes due to the input buffer (or parts of it) not
1552 * being already faulted in.
1553 */
1554 ASSERT(current->journal_info == NULL);
1555 current->journal_info = BTRFS_TRANS_DIO_WRITE_STUB;
1556 err = iomap_dio_complete(dio);
1557 current->journal_info = NULL;
1558 }
1559
1560 /* No increment (+=) because iomap returns a cumulative value. */
1561 if (err > 0)
1562 written = err;
1563
1564 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1565 const size_t left = iov_iter_count(from);
1566 /*
1567 * We have more data left to write. Try to fault in as many as
1568 * possible of the remainder pages and retry. We do this without
1569 * releasing and locking again the inode, to prevent races with
1570 * truncate.
1571 *
1572 * Also, in case the iov refers to pages in the file range of the
1573 * file we want to write to (due to a mmap), we could enter an
1574 * infinite loop if we retry after faulting the pages in, since
1575 * iomap will invalidate any pages in the range early on, before
1576 * it tries to fault in the pages of the iov. So we keep track of
1577 * how much was left of iov in the previous EFAULT and fallback
1578 * to buffered IO in case we haven't made any progress.
1579 */
1580 if (left == prev_left) {
1581 err = -ENOTBLK;
1582 } else {
1583 fault_in_iov_iter_readable(from, left);
1584 prev_left = left;
1585 goto again;
1586 }
1587 }
1588
1589 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1590
1591 /*
1592 * If 'err' is -ENOTBLK or we have not written all data, then it means
1593 * we must fallback to buffered IO.
1594 */
1595 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1596 goto out;
1597
1598 buffered:
1599 /*
1600 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1601 * it must retry the operation in a context where blocking is acceptable,
1602 * because even if we end up not blocking during the buffered IO attempt
1603 * below, we will block when flushing and waiting for the IO.
1604 */
1605 if (iocb->ki_flags & IOCB_NOWAIT) {
1606 err = -EAGAIN;
1607 goto out;
1608 }
1609
1610 pos = iocb->ki_pos;
1611 written_buffered = btrfs_buffered_write(iocb, from);
1612 if (written_buffered < 0) {
1613 err = written_buffered;
1614 goto out;
1615 }
1616 /*
1617 * Ensure all data is persisted. We want the next direct IO read to be
1618 * able to read what was just written.
1619 */
1620 endbyte = pos + written_buffered - 1;
1621 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1622 if (err)
1623 goto out;
1624 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1625 if (err)
1626 goto out;
1627 written += written_buffered;
1628 iocb->ki_pos = pos + written_buffered;
1629 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1630 endbyte >> PAGE_SHIFT);
1631 out:
1632 return err < 0 ? err : written;
1633 }
1634
btrfs_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1635 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1636 const struct btrfs_ioctl_encoded_io_args *encoded)
1637 {
1638 struct file *file = iocb->ki_filp;
1639 struct inode *inode = file_inode(file);
1640 loff_t count;
1641 ssize_t ret;
1642
1643 btrfs_inode_lock(BTRFS_I(inode), 0);
1644 count = encoded->len;
1645 ret = generic_write_checks_count(iocb, &count);
1646 if (ret == 0 && count != encoded->len) {
1647 /*
1648 * The write got truncated by generic_write_checks_count(). We
1649 * can't do a partial encoded write.
1650 */
1651 ret = -EFBIG;
1652 }
1653 if (ret || encoded->len == 0)
1654 goto out;
1655
1656 ret = btrfs_write_check(iocb, from, encoded->len);
1657 if (ret < 0)
1658 goto out;
1659
1660 ret = btrfs_do_encoded_write(iocb, from, encoded);
1661 out:
1662 btrfs_inode_unlock(BTRFS_I(inode), 0);
1663 return ret;
1664 }
1665
btrfs_do_write_iter(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)1666 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1667 const struct btrfs_ioctl_encoded_io_args *encoded)
1668 {
1669 struct file *file = iocb->ki_filp;
1670 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1671 ssize_t num_written, num_sync;
1672
1673 /*
1674 * If the fs flips readonly due to some impossible error, although we
1675 * have opened a file as writable, we have to stop this write operation
1676 * to ensure consistency.
1677 */
1678 if (BTRFS_FS_ERROR(inode->root->fs_info))
1679 return -EROFS;
1680
1681 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1682 return -EOPNOTSUPP;
1683
1684 if (encoded) {
1685 num_written = btrfs_encoded_write(iocb, from, encoded);
1686 num_sync = encoded->len;
1687 } else if (iocb->ki_flags & IOCB_DIRECT) {
1688 num_written = btrfs_direct_write(iocb, from);
1689 num_sync = num_written;
1690 } else {
1691 num_written = btrfs_buffered_write(iocb, from);
1692 num_sync = num_written;
1693 }
1694
1695 btrfs_set_inode_last_sub_trans(inode);
1696
1697 if (num_sync > 0) {
1698 num_sync = generic_write_sync(iocb, num_sync);
1699 if (num_sync < 0)
1700 num_written = num_sync;
1701 }
1702
1703 return num_written;
1704 }
1705
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1706 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1707 {
1708 return btrfs_do_write_iter(iocb, from, NULL);
1709 }
1710
btrfs_release_file(struct inode * inode,struct file * filp)1711 int btrfs_release_file(struct inode *inode, struct file *filp)
1712 {
1713 struct btrfs_file_private *private = filp->private_data;
1714
1715 if (private) {
1716 kfree(private->filldir_buf);
1717 free_extent_state(private->llseek_cached_state);
1718 kfree(private);
1719 filp->private_data = NULL;
1720 }
1721
1722 /*
1723 * Set by setattr when we are about to truncate a file from a non-zero
1724 * size to a zero size. This tries to flush down new bytes that may
1725 * have been written if the application were using truncate to replace
1726 * a file in place.
1727 */
1728 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1729 &BTRFS_I(inode)->runtime_flags))
1730 filemap_flush(inode->i_mapping);
1731 return 0;
1732 }
1733
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1734 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1735 {
1736 int ret;
1737 struct blk_plug plug;
1738
1739 /*
1740 * This is only called in fsync, which would do synchronous writes, so
1741 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1742 * multiple disks using raid profile, a large IO can be split to
1743 * several segments of stripe length (currently 64K).
1744 */
1745 blk_start_plug(&plug);
1746 ret = btrfs_fdatawrite_range(inode, start, end);
1747 blk_finish_plug(&plug);
1748
1749 return ret;
1750 }
1751
skip_inode_logging(const struct btrfs_log_ctx * ctx)1752 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1753 {
1754 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1755 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1756
1757 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1758 list_empty(&ctx->ordered_extents))
1759 return true;
1760
1761 /*
1762 * If we are doing a fast fsync we can not bail out if the inode's
1763 * last_trans is <= then the last committed transaction, because we only
1764 * update the last_trans of the inode during ordered extent completion,
1765 * and for a fast fsync we don't wait for that, we only wait for the
1766 * writeback to complete.
1767 */
1768 if (inode->last_trans <= fs_info->last_trans_committed &&
1769 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1770 list_empty(&ctx->ordered_extents)))
1771 return true;
1772
1773 return false;
1774 }
1775
1776 /*
1777 * fsync call for both files and directories. This logs the inode into
1778 * the tree log instead of forcing full commits whenever possible.
1779 *
1780 * It needs to call filemap_fdatawait so that all ordered extent updates are
1781 * in the metadata btree are up to date for copying to the log.
1782 *
1783 * It drops the inode mutex before doing the tree log commit. This is an
1784 * important optimization for directories because holding the mutex prevents
1785 * new operations on the dir while we write to disk.
1786 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1787 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1788 {
1789 struct dentry *dentry = file_dentry(file);
1790 struct inode *inode = d_inode(dentry);
1791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1792 struct btrfs_root *root = BTRFS_I(inode)->root;
1793 struct btrfs_trans_handle *trans;
1794 struct btrfs_log_ctx ctx;
1795 int ret = 0, err;
1796 u64 len;
1797 bool full_sync;
1798 bool skip_ilock = false;
1799
1800 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1801 skip_ilock = true;
1802 current->journal_info = NULL;
1803 lockdep_assert_held(&inode->i_rwsem);
1804 }
1805
1806 trace_btrfs_sync_file(file, datasync);
1807
1808 btrfs_init_log_ctx(&ctx, inode);
1809
1810 /*
1811 * Always set the range to a full range, otherwise we can get into
1812 * several problems, from missing file extent items to represent holes
1813 * when not using the NO_HOLES feature, to log tree corruption due to
1814 * races between hole detection during logging and completion of ordered
1815 * extents outside the range, to missing checksums due to ordered extents
1816 * for which we flushed only a subset of their pages.
1817 */
1818 start = 0;
1819 end = LLONG_MAX;
1820 len = (u64)LLONG_MAX + 1;
1821
1822 /*
1823 * We write the dirty pages in the range and wait until they complete
1824 * out of the ->i_mutex. If so, we can flush the dirty pages by
1825 * multi-task, and make the performance up. See
1826 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1827 */
1828 ret = start_ordered_ops(inode, start, end);
1829 if (ret)
1830 goto out;
1831
1832 if (skip_ilock)
1833 down_write(&BTRFS_I(inode)->i_mmap_lock);
1834 else
1835 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1836
1837 atomic_inc(&root->log_batch);
1838
1839 /*
1840 * Before we acquired the inode's lock and the mmap lock, someone may
1841 * have dirtied more pages in the target range. We need to make sure
1842 * that writeback for any such pages does not start while we are logging
1843 * the inode, because if it does, any of the following might happen when
1844 * we are not doing a full inode sync:
1845 *
1846 * 1) We log an extent after its writeback finishes but before its
1847 * checksums are added to the csum tree, leading to -EIO errors
1848 * when attempting to read the extent after a log replay.
1849 *
1850 * 2) We can end up logging an extent before its writeback finishes.
1851 * Therefore after the log replay we will have a file extent item
1852 * pointing to an unwritten extent (and no data checksums as well).
1853 *
1854 * So trigger writeback for any eventual new dirty pages and then we
1855 * wait for all ordered extents to complete below.
1856 */
1857 ret = start_ordered_ops(inode, start, end);
1858 if (ret) {
1859 if (skip_ilock)
1860 up_write(&BTRFS_I(inode)->i_mmap_lock);
1861 else
1862 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1863 goto out;
1864 }
1865
1866 /*
1867 * Always check for the full sync flag while holding the inode's lock,
1868 * to avoid races with other tasks. The flag must be either set all the
1869 * time during logging or always off all the time while logging.
1870 * We check the flag here after starting delalloc above, because when
1871 * running delalloc the full sync flag may be set if we need to drop
1872 * extra extent map ranges due to temporary memory allocation failures.
1873 */
1874 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1875 &BTRFS_I(inode)->runtime_flags);
1876
1877 /*
1878 * We have to do this here to avoid the priority inversion of waiting on
1879 * IO of a lower priority task while holding a transaction open.
1880 *
1881 * For a full fsync we wait for the ordered extents to complete while
1882 * for a fast fsync we wait just for writeback to complete, and then
1883 * attach the ordered extents to the transaction so that a transaction
1884 * commit waits for their completion, to avoid data loss if we fsync,
1885 * the current transaction commits before the ordered extents complete
1886 * and a power failure happens right after that.
1887 *
1888 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1889 * logical address recorded in the ordered extent may change. We need
1890 * to wait for the IO to stabilize the logical address.
1891 */
1892 if (full_sync || btrfs_is_zoned(fs_info)) {
1893 ret = btrfs_wait_ordered_range(inode, start, len);
1894 } else {
1895 /*
1896 * Get our ordered extents as soon as possible to avoid doing
1897 * checksum lookups in the csum tree, and use instead the
1898 * checksums attached to the ordered extents.
1899 */
1900 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1901 &ctx.ordered_extents);
1902 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1903 }
1904
1905 if (ret)
1906 goto out_release_extents;
1907
1908 atomic_inc(&root->log_batch);
1909
1910 smp_mb();
1911 if (skip_inode_logging(&ctx)) {
1912 /*
1913 * We've had everything committed since the last time we were
1914 * modified so clear this flag in case it was set for whatever
1915 * reason, it's no longer relevant.
1916 */
1917 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1918 &BTRFS_I(inode)->runtime_flags);
1919 /*
1920 * An ordered extent might have started before and completed
1921 * already with io errors, in which case the inode was not
1922 * updated and we end up here. So check the inode's mapping
1923 * for any errors that might have happened since we last
1924 * checked called fsync.
1925 */
1926 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1927 goto out_release_extents;
1928 }
1929
1930 /*
1931 * We use start here because we will need to wait on the IO to complete
1932 * in btrfs_sync_log, which could require joining a transaction (for
1933 * example checking cross references in the nocow path). If we use join
1934 * here we could get into a situation where we're waiting on IO to
1935 * happen that is blocked on a transaction trying to commit. With start
1936 * we inc the extwriter counter, so we wait for all extwriters to exit
1937 * before we start blocking joiners. This comment is to keep somebody
1938 * from thinking they are super smart and changing this to
1939 * btrfs_join_transaction *cough*Josef*cough*.
1940 */
1941 trans = btrfs_start_transaction(root, 0);
1942 if (IS_ERR(trans)) {
1943 ret = PTR_ERR(trans);
1944 goto out_release_extents;
1945 }
1946 trans->in_fsync = true;
1947
1948 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1949 btrfs_release_log_ctx_extents(&ctx);
1950 if (ret < 0) {
1951 /* Fallthrough and commit/free transaction. */
1952 ret = BTRFS_LOG_FORCE_COMMIT;
1953 }
1954
1955 /* we've logged all the items and now have a consistent
1956 * version of the file in the log. It is possible that
1957 * someone will come in and modify the file, but that's
1958 * fine because the log is consistent on disk, and we
1959 * have references to all of the file's extents
1960 *
1961 * It is possible that someone will come in and log the
1962 * file again, but that will end up using the synchronization
1963 * inside btrfs_sync_log to keep things safe.
1964 */
1965 if (skip_ilock)
1966 up_write(&BTRFS_I(inode)->i_mmap_lock);
1967 else
1968 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1969
1970 if (ret == BTRFS_NO_LOG_SYNC) {
1971 ret = btrfs_end_transaction(trans);
1972 goto out;
1973 }
1974
1975 /* We successfully logged the inode, attempt to sync the log. */
1976 if (!ret) {
1977 ret = btrfs_sync_log(trans, root, &ctx);
1978 if (!ret) {
1979 ret = btrfs_end_transaction(trans);
1980 goto out;
1981 }
1982 }
1983
1984 /*
1985 * At this point we need to commit the transaction because we had
1986 * btrfs_need_log_full_commit() or some other error.
1987 *
1988 * If we didn't do a full sync we have to stop the trans handle, wait on
1989 * the ordered extents, start it again and commit the transaction. If
1990 * we attempt to wait on the ordered extents here we could deadlock with
1991 * something like fallocate() that is holding the extent lock trying to
1992 * start a transaction while some other thread is trying to commit the
1993 * transaction while we (fsync) are currently holding the transaction
1994 * open.
1995 */
1996 if (!full_sync) {
1997 ret = btrfs_end_transaction(trans);
1998 if (ret)
1999 goto out;
2000 ret = btrfs_wait_ordered_range(inode, start, len);
2001 if (ret)
2002 goto out;
2003
2004 /*
2005 * This is safe to use here because we're only interested in
2006 * making sure the transaction that had the ordered extents is
2007 * committed. We aren't waiting on anything past this point,
2008 * we're purely getting the transaction and committing it.
2009 */
2010 trans = btrfs_attach_transaction_barrier(root);
2011 if (IS_ERR(trans)) {
2012 ret = PTR_ERR(trans);
2013
2014 /*
2015 * We committed the transaction and there's no currently
2016 * running transaction, this means everything we care
2017 * about made it to disk and we are done.
2018 */
2019 if (ret == -ENOENT)
2020 ret = 0;
2021 goto out;
2022 }
2023 }
2024
2025 ret = btrfs_commit_transaction(trans);
2026 out:
2027 ASSERT(list_empty(&ctx.list));
2028 ASSERT(list_empty(&ctx.conflict_inodes));
2029 err = file_check_and_advance_wb_err(file);
2030 if (!ret)
2031 ret = err;
2032 return ret > 0 ? -EIO : ret;
2033
2034 out_release_extents:
2035 btrfs_release_log_ctx_extents(&ctx);
2036 if (skip_ilock)
2037 up_write(&BTRFS_I(inode)->i_mmap_lock);
2038 else
2039 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2040 goto out;
2041 }
2042
2043 static const struct vm_operations_struct btrfs_file_vm_ops = {
2044 .fault = filemap_fault,
2045 .map_pages = filemap_map_pages,
2046 .page_mkwrite = btrfs_page_mkwrite,
2047 };
2048
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2049 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2050 {
2051 struct address_space *mapping = filp->f_mapping;
2052
2053 if (!mapping->a_ops->read_folio)
2054 return -ENOEXEC;
2055
2056 file_accessed(filp);
2057 vma->vm_ops = &btrfs_file_vm_ops;
2058
2059 return 0;
2060 }
2061
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2062 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2063 int slot, u64 start, u64 end)
2064 {
2065 struct btrfs_file_extent_item *fi;
2066 struct btrfs_key key;
2067
2068 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2069 return 0;
2070
2071 btrfs_item_key_to_cpu(leaf, &key, slot);
2072 if (key.objectid != btrfs_ino(inode) ||
2073 key.type != BTRFS_EXTENT_DATA_KEY)
2074 return 0;
2075
2076 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2077
2078 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2079 return 0;
2080
2081 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2082 return 0;
2083
2084 if (key.offset == end)
2085 return 1;
2086 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2087 return 1;
2088 return 0;
2089 }
2090
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2091 static int fill_holes(struct btrfs_trans_handle *trans,
2092 struct btrfs_inode *inode,
2093 struct btrfs_path *path, u64 offset, u64 end)
2094 {
2095 struct btrfs_fs_info *fs_info = trans->fs_info;
2096 struct btrfs_root *root = inode->root;
2097 struct extent_buffer *leaf;
2098 struct btrfs_file_extent_item *fi;
2099 struct extent_map *hole_em;
2100 struct btrfs_key key;
2101 int ret;
2102
2103 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2104 goto out;
2105
2106 key.objectid = btrfs_ino(inode);
2107 key.type = BTRFS_EXTENT_DATA_KEY;
2108 key.offset = offset;
2109
2110 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2111 if (ret <= 0) {
2112 /*
2113 * We should have dropped this offset, so if we find it then
2114 * something has gone horribly wrong.
2115 */
2116 if (ret == 0)
2117 ret = -EINVAL;
2118 return ret;
2119 }
2120
2121 leaf = path->nodes[0];
2122 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2123 u64 num_bytes;
2124
2125 path->slots[0]--;
2126 fi = btrfs_item_ptr(leaf, path->slots[0],
2127 struct btrfs_file_extent_item);
2128 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2129 end - offset;
2130 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2131 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2132 btrfs_set_file_extent_offset(leaf, fi, 0);
2133 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2134 btrfs_mark_buffer_dirty(trans, leaf);
2135 goto out;
2136 }
2137
2138 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2139 u64 num_bytes;
2140
2141 key.offset = offset;
2142 btrfs_set_item_key_safe(trans, path, &key);
2143 fi = btrfs_item_ptr(leaf, path->slots[0],
2144 struct btrfs_file_extent_item);
2145 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2146 offset;
2147 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2148 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2149 btrfs_set_file_extent_offset(leaf, fi, 0);
2150 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2151 btrfs_mark_buffer_dirty(trans, leaf);
2152 goto out;
2153 }
2154 btrfs_release_path(path);
2155
2156 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2157 end - offset);
2158 if (ret)
2159 return ret;
2160
2161 out:
2162 btrfs_release_path(path);
2163
2164 hole_em = alloc_extent_map();
2165 if (!hole_em) {
2166 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2167 btrfs_set_inode_full_sync(inode);
2168 } else {
2169 hole_em->start = offset;
2170 hole_em->len = end - offset;
2171 hole_em->ram_bytes = hole_em->len;
2172 hole_em->orig_start = offset;
2173
2174 hole_em->block_start = EXTENT_MAP_HOLE;
2175 hole_em->block_len = 0;
2176 hole_em->orig_block_len = 0;
2177 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2178 hole_em->generation = trans->transid;
2179
2180 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2181 free_extent_map(hole_em);
2182 if (ret)
2183 btrfs_set_inode_full_sync(inode);
2184 }
2185
2186 return 0;
2187 }
2188
2189 /*
2190 * Find a hole extent on given inode and change start/len to the end of hole
2191 * extent.(hole/vacuum extent whose em->start <= start &&
2192 * em->start + em->len > start)
2193 * When a hole extent is found, return 1 and modify start/len.
2194 */
find_first_non_hole(struct btrfs_inode * inode,u64 * start,u64 * len)2195 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2196 {
2197 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2198 struct extent_map *em;
2199 int ret = 0;
2200
2201 em = btrfs_get_extent(inode, NULL, 0,
2202 round_down(*start, fs_info->sectorsize),
2203 round_up(*len, fs_info->sectorsize));
2204 if (IS_ERR(em))
2205 return PTR_ERR(em);
2206
2207 /* Hole or vacuum extent(only exists in no-hole mode) */
2208 if (em->block_start == EXTENT_MAP_HOLE) {
2209 ret = 1;
2210 *len = em->start + em->len > *start + *len ?
2211 0 : *start + *len - em->start - em->len;
2212 *start = em->start + em->len;
2213 }
2214 free_extent_map(em);
2215 return ret;
2216 }
2217
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2218 static void btrfs_punch_hole_lock_range(struct inode *inode,
2219 const u64 lockstart,
2220 const u64 lockend,
2221 struct extent_state **cached_state)
2222 {
2223 /*
2224 * For subpage case, if the range is not at page boundary, we could
2225 * have pages at the leading/tailing part of the range.
2226 * This could lead to dead loop since filemap_range_has_page()
2227 * will always return true.
2228 * So here we need to do extra page alignment for
2229 * filemap_range_has_page().
2230 */
2231 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2232 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2233
2234 while (1) {
2235 truncate_pagecache_range(inode, lockstart, lockend);
2236
2237 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2238 cached_state);
2239 /*
2240 * We can't have ordered extents in the range, nor dirty/writeback
2241 * pages, because we have locked the inode's VFS lock in exclusive
2242 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2243 * we have flushed all delalloc in the range and we have waited
2244 * for any ordered extents in the range to complete.
2245 * We can race with anyone reading pages from this range, so after
2246 * locking the range check if we have pages in the range, and if
2247 * we do, unlock the range and retry.
2248 */
2249 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2250 page_lockend))
2251 break;
2252
2253 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2254 cached_state);
2255 }
2256
2257 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2258 }
2259
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len,const u64 bytes_to_drop)2260 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2261 struct btrfs_inode *inode,
2262 struct btrfs_path *path,
2263 struct btrfs_replace_extent_info *extent_info,
2264 const u64 replace_len,
2265 const u64 bytes_to_drop)
2266 {
2267 struct btrfs_fs_info *fs_info = trans->fs_info;
2268 struct btrfs_root *root = inode->root;
2269 struct btrfs_file_extent_item *extent;
2270 struct extent_buffer *leaf;
2271 struct btrfs_key key;
2272 int slot;
2273 struct btrfs_ref ref = { 0 };
2274 int ret;
2275
2276 if (replace_len == 0)
2277 return 0;
2278
2279 if (extent_info->disk_offset == 0 &&
2280 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2281 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2282 return 0;
2283 }
2284
2285 key.objectid = btrfs_ino(inode);
2286 key.type = BTRFS_EXTENT_DATA_KEY;
2287 key.offset = extent_info->file_offset;
2288 ret = btrfs_insert_empty_item(trans, root, path, &key,
2289 sizeof(struct btrfs_file_extent_item));
2290 if (ret)
2291 return ret;
2292 leaf = path->nodes[0];
2293 slot = path->slots[0];
2294 write_extent_buffer(leaf, extent_info->extent_buf,
2295 btrfs_item_ptr_offset(leaf, slot),
2296 sizeof(struct btrfs_file_extent_item));
2297 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2298 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2299 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2300 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2301 if (extent_info->is_new_extent)
2302 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2303 btrfs_mark_buffer_dirty(trans, leaf);
2304 btrfs_release_path(path);
2305
2306 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2307 replace_len);
2308 if (ret)
2309 return ret;
2310
2311 /* If it's a hole, nothing more needs to be done. */
2312 if (extent_info->disk_offset == 0) {
2313 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2314 return 0;
2315 }
2316
2317 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2318
2319 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2320 key.objectid = extent_info->disk_offset;
2321 key.type = BTRFS_EXTENT_ITEM_KEY;
2322 key.offset = extent_info->disk_len;
2323 ret = btrfs_alloc_reserved_file_extent(trans, root,
2324 btrfs_ino(inode),
2325 extent_info->file_offset,
2326 extent_info->qgroup_reserved,
2327 &key);
2328 } else {
2329 u64 ref_offset;
2330
2331 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2332 extent_info->disk_offset,
2333 extent_info->disk_len, 0);
2334 ref_offset = extent_info->file_offset - extent_info->data_offset;
2335 btrfs_init_data_ref(&ref, root->root_key.objectid,
2336 btrfs_ino(inode), ref_offset, 0, false);
2337 ret = btrfs_inc_extent_ref(trans, &ref);
2338 }
2339
2340 extent_info->insertions++;
2341
2342 return ret;
2343 }
2344
2345 /*
2346 * The respective range must have been previously locked, as well as the inode.
2347 * The end offset is inclusive (last byte of the range).
2348 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2349 * the file range with an extent.
2350 * When not punching a hole, we don't want to end up in a state where we dropped
2351 * extents without inserting a new one, so we must abort the transaction to avoid
2352 * a corruption.
2353 */
btrfs_replace_file_extents(struct btrfs_inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2354 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2355 struct btrfs_path *path, const u64 start,
2356 const u64 end,
2357 struct btrfs_replace_extent_info *extent_info,
2358 struct btrfs_trans_handle **trans_out)
2359 {
2360 struct btrfs_drop_extents_args drop_args = { 0 };
2361 struct btrfs_root *root = inode->root;
2362 struct btrfs_fs_info *fs_info = root->fs_info;
2363 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2364 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2365 struct btrfs_trans_handle *trans = NULL;
2366 struct btrfs_block_rsv *rsv;
2367 unsigned int rsv_count;
2368 u64 cur_offset;
2369 u64 len = end - start;
2370 int ret = 0;
2371
2372 if (end <= start)
2373 return -EINVAL;
2374
2375 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2376 if (!rsv) {
2377 ret = -ENOMEM;
2378 goto out;
2379 }
2380 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2381 rsv->failfast = true;
2382
2383 /*
2384 * 1 - update the inode
2385 * 1 - removing the extents in the range
2386 * 1 - adding the hole extent if no_holes isn't set or if we are
2387 * replacing the range with a new extent
2388 */
2389 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2390 rsv_count = 3;
2391 else
2392 rsv_count = 2;
2393
2394 trans = btrfs_start_transaction(root, rsv_count);
2395 if (IS_ERR(trans)) {
2396 ret = PTR_ERR(trans);
2397 trans = NULL;
2398 goto out_free;
2399 }
2400
2401 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2402 min_size, false);
2403 if (WARN_ON(ret))
2404 goto out_trans;
2405 trans->block_rsv = rsv;
2406
2407 cur_offset = start;
2408 drop_args.path = path;
2409 drop_args.end = end + 1;
2410 drop_args.drop_cache = true;
2411 while (cur_offset < end) {
2412 drop_args.start = cur_offset;
2413 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2414 /* If we are punching a hole decrement the inode's byte count */
2415 if (!extent_info)
2416 btrfs_update_inode_bytes(inode, 0,
2417 drop_args.bytes_found);
2418 if (ret != -ENOSPC) {
2419 /*
2420 * The only time we don't want to abort is if we are
2421 * attempting to clone a partial inline extent, in which
2422 * case we'll get EOPNOTSUPP. However if we aren't
2423 * clone we need to abort no matter what, because if we
2424 * got EOPNOTSUPP via prealloc then we messed up and
2425 * need to abort.
2426 */
2427 if (ret &&
2428 (ret != -EOPNOTSUPP ||
2429 (extent_info && extent_info->is_new_extent)))
2430 btrfs_abort_transaction(trans, ret);
2431 break;
2432 }
2433
2434 trans->block_rsv = &fs_info->trans_block_rsv;
2435
2436 if (!extent_info && cur_offset < drop_args.drop_end &&
2437 cur_offset < ino_size) {
2438 ret = fill_holes(trans, inode, path, cur_offset,
2439 drop_args.drop_end);
2440 if (ret) {
2441 /*
2442 * If we failed then we didn't insert our hole
2443 * entries for the area we dropped, so now the
2444 * fs is corrupted, so we must abort the
2445 * transaction.
2446 */
2447 btrfs_abort_transaction(trans, ret);
2448 break;
2449 }
2450 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2451 /*
2452 * We are past the i_size here, but since we didn't
2453 * insert holes we need to clear the mapped area so we
2454 * know to not set disk_i_size in this area until a new
2455 * file extent is inserted here.
2456 */
2457 ret = btrfs_inode_clear_file_extent_range(inode,
2458 cur_offset,
2459 drop_args.drop_end - cur_offset);
2460 if (ret) {
2461 /*
2462 * We couldn't clear our area, so we could
2463 * presumably adjust up and corrupt the fs, so
2464 * we need to abort.
2465 */
2466 btrfs_abort_transaction(trans, ret);
2467 break;
2468 }
2469 }
2470
2471 if (extent_info &&
2472 drop_args.drop_end > extent_info->file_offset) {
2473 u64 replace_len = drop_args.drop_end -
2474 extent_info->file_offset;
2475
2476 ret = btrfs_insert_replace_extent(trans, inode, path,
2477 extent_info, replace_len,
2478 drop_args.bytes_found);
2479 if (ret) {
2480 btrfs_abort_transaction(trans, ret);
2481 break;
2482 }
2483 extent_info->data_len -= replace_len;
2484 extent_info->data_offset += replace_len;
2485 extent_info->file_offset += replace_len;
2486 }
2487
2488 /*
2489 * We are releasing our handle on the transaction, balance the
2490 * dirty pages of the btree inode and flush delayed items, and
2491 * then get a new transaction handle, which may now point to a
2492 * new transaction in case someone else may have committed the
2493 * transaction we used to replace/drop file extent items. So
2494 * bump the inode's iversion and update mtime and ctime except
2495 * if we are called from a dedupe context. This is because a
2496 * power failure/crash may happen after the transaction is
2497 * committed and before we finish replacing/dropping all the
2498 * file extent items we need.
2499 */
2500 inode_inc_iversion(&inode->vfs_inode);
2501
2502 if (!extent_info || extent_info->update_times)
2503 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2504
2505 ret = btrfs_update_inode(trans, root, inode);
2506 if (ret)
2507 break;
2508
2509 btrfs_end_transaction(trans);
2510 btrfs_btree_balance_dirty(fs_info);
2511
2512 trans = btrfs_start_transaction(root, rsv_count);
2513 if (IS_ERR(trans)) {
2514 ret = PTR_ERR(trans);
2515 trans = NULL;
2516 break;
2517 }
2518
2519 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2520 rsv, min_size, false);
2521 if (WARN_ON(ret))
2522 break;
2523 trans->block_rsv = rsv;
2524
2525 cur_offset = drop_args.drop_end;
2526 len = end - cur_offset;
2527 if (!extent_info && len) {
2528 ret = find_first_non_hole(inode, &cur_offset, &len);
2529 if (unlikely(ret < 0))
2530 break;
2531 if (ret && !len) {
2532 ret = 0;
2533 break;
2534 }
2535 }
2536 }
2537
2538 /*
2539 * If we were cloning, force the next fsync to be a full one since we
2540 * we replaced (or just dropped in the case of cloning holes when
2541 * NO_HOLES is enabled) file extent items and did not setup new extent
2542 * maps for the replacement extents (or holes).
2543 */
2544 if (extent_info && !extent_info->is_new_extent)
2545 btrfs_set_inode_full_sync(inode);
2546
2547 if (ret)
2548 goto out_trans;
2549
2550 trans->block_rsv = &fs_info->trans_block_rsv;
2551 /*
2552 * If we are using the NO_HOLES feature we might have had already an
2553 * hole that overlaps a part of the region [lockstart, lockend] and
2554 * ends at (or beyond) lockend. Since we have no file extent items to
2555 * represent holes, drop_end can be less than lockend and so we must
2556 * make sure we have an extent map representing the existing hole (the
2557 * call to __btrfs_drop_extents() might have dropped the existing extent
2558 * map representing the existing hole), otherwise the fast fsync path
2559 * will not record the existence of the hole region
2560 * [existing_hole_start, lockend].
2561 */
2562 if (drop_args.drop_end <= end)
2563 drop_args.drop_end = end + 1;
2564 /*
2565 * Don't insert file hole extent item if it's for a range beyond eof
2566 * (because it's useless) or if it represents a 0 bytes range (when
2567 * cur_offset == drop_end).
2568 */
2569 if (!extent_info && cur_offset < ino_size &&
2570 cur_offset < drop_args.drop_end) {
2571 ret = fill_holes(trans, inode, path, cur_offset,
2572 drop_args.drop_end);
2573 if (ret) {
2574 /* Same comment as above. */
2575 btrfs_abort_transaction(trans, ret);
2576 goto out_trans;
2577 }
2578 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2579 /* See the comment in the loop above for the reasoning here. */
2580 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2581 drop_args.drop_end - cur_offset);
2582 if (ret) {
2583 btrfs_abort_transaction(trans, ret);
2584 goto out_trans;
2585 }
2586
2587 }
2588 if (extent_info) {
2589 ret = btrfs_insert_replace_extent(trans, inode, path,
2590 extent_info, extent_info->data_len,
2591 drop_args.bytes_found);
2592 if (ret) {
2593 btrfs_abort_transaction(trans, ret);
2594 goto out_trans;
2595 }
2596 }
2597
2598 out_trans:
2599 if (!trans)
2600 goto out_free;
2601
2602 trans->block_rsv = &fs_info->trans_block_rsv;
2603 if (ret)
2604 btrfs_end_transaction(trans);
2605 else
2606 *trans_out = trans;
2607 out_free:
2608 btrfs_free_block_rsv(fs_info, rsv);
2609 out:
2610 return ret;
2611 }
2612
btrfs_punch_hole(struct file * file,loff_t offset,loff_t len)2613 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2614 {
2615 struct inode *inode = file_inode(file);
2616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2617 struct btrfs_root *root = BTRFS_I(inode)->root;
2618 struct extent_state *cached_state = NULL;
2619 struct btrfs_path *path;
2620 struct btrfs_trans_handle *trans = NULL;
2621 u64 lockstart;
2622 u64 lockend;
2623 u64 tail_start;
2624 u64 tail_len;
2625 u64 orig_start = offset;
2626 int ret = 0;
2627 bool same_block;
2628 u64 ino_size;
2629 bool truncated_block = false;
2630 bool updated_inode = false;
2631
2632 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2633
2634 ret = btrfs_wait_ordered_range(inode, offset, len);
2635 if (ret)
2636 goto out_only_mutex;
2637
2638 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2639 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2640 if (ret < 0)
2641 goto out_only_mutex;
2642 if (ret && !len) {
2643 /* Already in a large hole */
2644 ret = 0;
2645 goto out_only_mutex;
2646 }
2647
2648 ret = file_modified(file);
2649 if (ret)
2650 goto out_only_mutex;
2651
2652 lockstart = round_up(offset, fs_info->sectorsize);
2653 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2654 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2655 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2656 /*
2657 * We needn't truncate any block which is beyond the end of the file
2658 * because we are sure there is no data there.
2659 */
2660 /*
2661 * Only do this if we are in the same block and we aren't doing the
2662 * entire block.
2663 */
2664 if (same_block && len < fs_info->sectorsize) {
2665 if (offset < ino_size) {
2666 truncated_block = true;
2667 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2668 0);
2669 } else {
2670 ret = 0;
2671 }
2672 goto out_only_mutex;
2673 }
2674
2675 /* zero back part of the first block */
2676 if (offset < ino_size) {
2677 truncated_block = true;
2678 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2679 if (ret) {
2680 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2681 return ret;
2682 }
2683 }
2684
2685 /* Check the aligned pages after the first unaligned page,
2686 * if offset != orig_start, which means the first unaligned page
2687 * including several following pages are already in holes,
2688 * the extra check can be skipped */
2689 if (offset == orig_start) {
2690 /* after truncate page, check hole again */
2691 len = offset + len - lockstart;
2692 offset = lockstart;
2693 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2694 if (ret < 0)
2695 goto out_only_mutex;
2696 if (ret && !len) {
2697 ret = 0;
2698 goto out_only_mutex;
2699 }
2700 lockstart = offset;
2701 }
2702
2703 /* Check the tail unaligned part is in a hole */
2704 tail_start = lockend + 1;
2705 tail_len = offset + len - tail_start;
2706 if (tail_len) {
2707 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2708 if (unlikely(ret < 0))
2709 goto out_only_mutex;
2710 if (!ret) {
2711 /* zero the front end of the last page */
2712 if (tail_start + tail_len < ino_size) {
2713 truncated_block = true;
2714 ret = btrfs_truncate_block(BTRFS_I(inode),
2715 tail_start + tail_len,
2716 0, 1);
2717 if (ret)
2718 goto out_only_mutex;
2719 }
2720 }
2721 }
2722
2723 if (lockend < lockstart) {
2724 ret = 0;
2725 goto out_only_mutex;
2726 }
2727
2728 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2729
2730 path = btrfs_alloc_path();
2731 if (!path) {
2732 ret = -ENOMEM;
2733 goto out;
2734 }
2735
2736 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2737 lockend, NULL, &trans);
2738 btrfs_free_path(path);
2739 if (ret)
2740 goto out;
2741
2742 ASSERT(trans != NULL);
2743 inode_inc_iversion(inode);
2744 inode->i_mtime = inode_set_ctime_current(inode);
2745 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2746 updated_inode = true;
2747 btrfs_end_transaction(trans);
2748 btrfs_btree_balance_dirty(fs_info);
2749 out:
2750 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2751 &cached_state);
2752 out_only_mutex:
2753 if (!updated_inode && truncated_block && !ret) {
2754 /*
2755 * If we only end up zeroing part of a page, we still need to
2756 * update the inode item, so that all the time fields are
2757 * updated as well as the necessary btrfs inode in memory fields
2758 * for detecting, at fsync time, if the inode isn't yet in the
2759 * log tree or it's there but not up to date.
2760 */
2761 struct timespec64 now = inode_set_ctime_current(inode);
2762
2763 inode_inc_iversion(inode);
2764 inode->i_mtime = now;
2765 trans = btrfs_start_transaction(root, 1);
2766 if (IS_ERR(trans)) {
2767 ret = PTR_ERR(trans);
2768 } else {
2769 int ret2;
2770
2771 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2772 ret2 = btrfs_end_transaction(trans);
2773 if (!ret)
2774 ret = ret2;
2775 }
2776 }
2777 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2778 return ret;
2779 }
2780
2781 /* Helper structure to record which range is already reserved */
2782 struct falloc_range {
2783 struct list_head list;
2784 u64 start;
2785 u64 len;
2786 };
2787
2788 /*
2789 * Helper function to add falloc range
2790 *
2791 * Caller should have locked the larger range of extent containing
2792 * [start, len)
2793 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2794 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2795 {
2796 struct falloc_range *range = NULL;
2797
2798 if (!list_empty(head)) {
2799 /*
2800 * As fallocate iterates by bytenr order, we only need to check
2801 * the last range.
2802 */
2803 range = list_last_entry(head, struct falloc_range, list);
2804 if (range->start + range->len == start) {
2805 range->len += len;
2806 return 0;
2807 }
2808 }
2809
2810 range = kmalloc(sizeof(*range), GFP_KERNEL);
2811 if (!range)
2812 return -ENOMEM;
2813 range->start = start;
2814 range->len = len;
2815 list_add_tail(&range->list, head);
2816 return 0;
2817 }
2818
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)2819 static int btrfs_fallocate_update_isize(struct inode *inode,
2820 const u64 end,
2821 const int mode)
2822 {
2823 struct btrfs_trans_handle *trans;
2824 struct btrfs_root *root = BTRFS_I(inode)->root;
2825 int ret;
2826 int ret2;
2827
2828 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2829 return 0;
2830
2831 trans = btrfs_start_transaction(root, 1);
2832 if (IS_ERR(trans))
2833 return PTR_ERR(trans);
2834
2835 inode_set_ctime_current(inode);
2836 i_size_write(inode, end);
2837 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2838 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2839 ret2 = btrfs_end_transaction(trans);
2840
2841 return ret ? ret : ret2;
2842 }
2843
2844 enum {
2845 RANGE_BOUNDARY_WRITTEN_EXTENT,
2846 RANGE_BOUNDARY_PREALLOC_EXTENT,
2847 RANGE_BOUNDARY_HOLE,
2848 };
2849
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)2850 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2851 u64 offset)
2852 {
2853 const u64 sectorsize = inode->root->fs_info->sectorsize;
2854 struct extent_map *em;
2855 int ret;
2856
2857 offset = round_down(offset, sectorsize);
2858 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2859 if (IS_ERR(em))
2860 return PTR_ERR(em);
2861
2862 if (em->block_start == EXTENT_MAP_HOLE)
2863 ret = RANGE_BOUNDARY_HOLE;
2864 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2865 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2866 else
2867 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2868
2869 free_extent_map(em);
2870 return ret;
2871 }
2872
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)2873 static int btrfs_zero_range(struct inode *inode,
2874 loff_t offset,
2875 loff_t len,
2876 const int mode)
2877 {
2878 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2879 struct extent_map *em;
2880 struct extent_changeset *data_reserved = NULL;
2881 int ret;
2882 u64 alloc_hint = 0;
2883 const u64 sectorsize = fs_info->sectorsize;
2884 u64 alloc_start = round_down(offset, sectorsize);
2885 u64 alloc_end = round_up(offset + len, sectorsize);
2886 u64 bytes_to_reserve = 0;
2887 bool space_reserved = false;
2888
2889 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2890 alloc_end - alloc_start);
2891 if (IS_ERR(em)) {
2892 ret = PTR_ERR(em);
2893 goto out;
2894 }
2895
2896 /*
2897 * Avoid hole punching and extent allocation for some cases. More cases
2898 * could be considered, but these are unlikely common and we keep things
2899 * as simple as possible for now. Also, intentionally, if the target
2900 * range contains one or more prealloc extents together with regular
2901 * extents and holes, we drop all the existing extents and allocate a
2902 * new prealloc extent, so that we get a larger contiguous disk extent.
2903 */
2904 if (em->start <= alloc_start &&
2905 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2906 const u64 em_end = em->start + em->len;
2907
2908 if (em_end >= offset + len) {
2909 /*
2910 * The whole range is already a prealloc extent,
2911 * do nothing except updating the inode's i_size if
2912 * needed.
2913 */
2914 free_extent_map(em);
2915 ret = btrfs_fallocate_update_isize(inode, offset + len,
2916 mode);
2917 goto out;
2918 }
2919 /*
2920 * Part of the range is already a prealloc extent, so operate
2921 * only on the remaining part of the range.
2922 */
2923 alloc_start = em_end;
2924 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2925 len = offset + len - alloc_start;
2926 offset = alloc_start;
2927 alloc_hint = em->block_start + em->len;
2928 }
2929 free_extent_map(em);
2930
2931 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2932 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2933 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2934 sectorsize);
2935 if (IS_ERR(em)) {
2936 ret = PTR_ERR(em);
2937 goto out;
2938 }
2939
2940 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2941 free_extent_map(em);
2942 ret = btrfs_fallocate_update_isize(inode, offset + len,
2943 mode);
2944 goto out;
2945 }
2946 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2947 free_extent_map(em);
2948 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2949 0);
2950 if (!ret)
2951 ret = btrfs_fallocate_update_isize(inode,
2952 offset + len,
2953 mode);
2954 return ret;
2955 }
2956 free_extent_map(em);
2957 alloc_start = round_down(offset, sectorsize);
2958 alloc_end = alloc_start + sectorsize;
2959 goto reserve_space;
2960 }
2961
2962 alloc_start = round_up(offset, sectorsize);
2963 alloc_end = round_down(offset + len, sectorsize);
2964
2965 /*
2966 * For unaligned ranges, check the pages at the boundaries, they might
2967 * map to an extent, in which case we need to partially zero them, or
2968 * they might map to a hole, in which case we need our allocation range
2969 * to cover them.
2970 */
2971 if (!IS_ALIGNED(offset, sectorsize)) {
2972 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2973 offset);
2974 if (ret < 0)
2975 goto out;
2976 if (ret == RANGE_BOUNDARY_HOLE) {
2977 alloc_start = round_down(offset, sectorsize);
2978 ret = 0;
2979 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2980 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2981 if (ret)
2982 goto out;
2983 } else {
2984 ret = 0;
2985 }
2986 }
2987
2988 if (!IS_ALIGNED(offset + len, sectorsize)) {
2989 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2990 offset + len);
2991 if (ret < 0)
2992 goto out;
2993 if (ret == RANGE_BOUNDARY_HOLE) {
2994 alloc_end = round_up(offset + len, sectorsize);
2995 ret = 0;
2996 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2997 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2998 0, 1);
2999 if (ret)
3000 goto out;
3001 } else {
3002 ret = 0;
3003 }
3004 }
3005
3006 reserve_space:
3007 if (alloc_start < alloc_end) {
3008 struct extent_state *cached_state = NULL;
3009 const u64 lockstart = alloc_start;
3010 const u64 lockend = alloc_end - 1;
3011
3012 bytes_to_reserve = alloc_end - alloc_start;
3013 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3014 bytes_to_reserve);
3015 if (ret < 0)
3016 goto out;
3017 space_reserved = true;
3018 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3019 &cached_state);
3020 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3021 alloc_start, bytes_to_reserve);
3022 if (ret) {
3023 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3024 lockend, &cached_state);
3025 goto out;
3026 }
3027 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3028 alloc_end - alloc_start,
3029 i_blocksize(inode),
3030 offset + len, &alloc_hint);
3031 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3032 &cached_state);
3033 /* btrfs_prealloc_file_range releases reserved space on error */
3034 if (ret) {
3035 space_reserved = false;
3036 goto out;
3037 }
3038 }
3039 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3040 out:
3041 if (ret && space_reserved)
3042 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3043 alloc_start, bytes_to_reserve);
3044 extent_changeset_free(data_reserved);
3045
3046 return ret;
3047 }
3048
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3049 static long btrfs_fallocate(struct file *file, int mode,
3050 loff_t offset, loff_t len)
3051 {
3052 struct inode *inode = file_inode(file);
3053 struct extent_state *cached_state = NULL;
3054 struct extent_changeset *data_reserved = NULL;
3055 struct falloc_range *range;
3056 struct falloc_range *tmp;
3057 LIST_HEAD(reserve_list);
3058 u64 cur_offset;
3059 u64 last_byte;
3060 u64 alloc_start;
3061 u64 alloc_end;
3062 u64 alloc_hint = 0;
3063 u64 locked_end;
3064 u64 actual_end = 0;
3065 u64 data_space_needed = 0;
3066 u64 data_space_reserved = 0;
3067 u64 qgroup_reserved = 0;
3068 struct extent_map *em;
3069 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3070 int ret;
3071
3072 /* Do not allow fallocate in ZONED mode */
3073 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3074 return -EOPNOTSUPP;
3075
3076 alloc_start = round_down(offset, blocksize);
3077 alloc_end = round_up(offset + len, blocksize);
3078 cur_offset = alloc_start;
3079
3080 /* Make sure we aren't being give some crap mode */
3081 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3082 FALLOC_FL_ZERO_RANGE))
3083 return -EOPNOTSUPP;
3084
3085 if (mode & FALLOC_FL_PUNCH_HOLE)
3086 return btrfs_punch_hole(file, offset, len);
3087
3088 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3089
3090 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3091 ret = inode_newsize_ok(inode, offset + len);
3092 if (ret)
3093 goto out;
3094 }
3095
3096 ret = file_modified(file);
3097 if (ret)
3098 goto out;
3099
3100 /*
3101 * TODO: Move these two operations after we have checked
3102 * accurate reserved space, or fallocate can still fail but
3103 * with page truncated or size expanded.
3104 *
3105 * But that's a minor problem and won't do much harm BTW.
3106 */
3107 if (alloc_start > inode->i_size) {
3108 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3109 alloc_start);
3110 if (ret)
3111 goto out;
3112 } else if (offset + len > inode->i_size) {
3113 /*
3114 * If we are fallocating from the end of the file onward we
3115 * need to zero out the end of the block if i_size lands in the
3116 * middle of a block.
3117 */
3118 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3119 if (ret)
3120 goto out;
3121 }
3122
3123 /*
3124 * We have locked the inode at the VFS level (in exclusive mode) and we
3125 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3126 * locking the file range, flush all dealloc in the range and wait for
3127 * all ordered extents in the range to complete. After this we can lock
3128 * the file range and, due to the previous locking we did, we know there
3129 * can't be more delalloc or ordered extents in the range.
3130 */
3131 ret = btrfs_wait_ordered_range(inode, alloc_start,
3132 alloc_end - alloc_start);
3133 if (ret)
3134 goto out;
3135
3136 if (mode & FALLOC_FL_ZERO_RANGE) {
3137 ret = btrfs_zero_range(inode, offset, len, mode);
3138 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3139 return ret;
3140 }
3141
3142 locked_end = alloc_end - 1;
3143 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3144 &cached_state);
3145
3146 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3147
3148 /* First, check if we exceed the qgroup limit */
3149 while (cur_offset < alloc_end) {
3150 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3151 alloc_end - cur_offset);
3152 if (IS_ERR(em)) {
3153 ret = PTR_ERR(em);
3154 break;
3155 }
3156 last_byte = min(extent_map_end(em), alloc_end);
3157 actual_end = min_t(u64, extent_map_end(em), offset + len);
3158 last_byte = ALIGN(last_byte, blocksize);
3159 if (em->block_start == EXTENT_MAP_HOLE ||
3160 (cur_offset >= inode->i_size &&
3161 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3162 const u64 range_len = last_byte - cur_offset;
3163
3164 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3165 if (ret < 0) {
3166 free_extent_map(em);
3167 break;
3168 }
3169 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3170 &data_reserved, cur_offset, range_len);
3171 if (ret < 0) {
3172 free_extent_map(em);
3173 break;
3174 }
3175 qgroup_reserved += range_len;
3176 data_space_needed += range_len;
3177 }
3178 free_extent_map(em);
3179 cur_offset = last_byte;
3180 }
3181
3182 if (!ret && data_space_needed > 0) {
3183 /*
3184 * We are safe to reserve space here as we can't have delalloc
3185 * in the range, see above.
3186 */
3187 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3188 data_space_needed);
3189 if (!ret)
3190 data_space_reserved = data_space_needed;
3191 }
3192
3193 /*
3194 * If ret is still 0, means we're OK to fallocate.
3195 * Or just cleanup the list and exit.
3196 */
3197 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3198 if (!ret) {
3199 ret = btrfs_prealloc_file_range(inode, mode,
3200 range->start,
3201 range->len, i_blocksize(inode),
3202 offset + len, &alloc_hint);
3203 /*
3204 * btrfs_prealloc_file_range() releases space even
3205 * if it returns an error.
3206 */
3207 data_space_reserved -= range->len;
3208 qgroup_reserved -= range->len;
3209 } else if (data_space_reserved > 0) {
3210 btrfs_free_reserved_data_space(BTRFS_I(inode),
3211 data_reserved, range->start,
3212 range->len);
3213 data_space_reserved -= range->len;
3214 qgroup_reserved -= range->len;
3215 } else if (qgroup_reserved > 0) {
3216 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3217 range->start, range->len, NULL);
3218 qgroup_reserved -= range->len;
3219 }
3220 list_del(&range->list);
3221 kfree(range);
3222 }
3223 if (ret < 0)
3224 goto out_unlock;
3225
3226 /*
3227 * We didn't need to allocate any more space, but we still extended the
3228 * size of the file so we need to update i_size and the inode item.
3229 */
3230 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3231 out_unlock:
3232 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3233 &cached_state);
3234 out:
3235 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3236 extent_changeset_free(data_reserved);
3237 return ret;
3238 }
3239
3240 /*
3241 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3242 * that has unflushed and/or flushing delalloc. There might be other adjacent
3243 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3244 * looping while it gets adjacent subranges, and merging them together.
3245 */
find_delalloc_subrange(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,bool * search_io_tree,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3246 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3247 struct extent_state **cached_state,
3248 bool *search_io_tree,
3249 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3250 {
3251 u64 len = end + 1 - start;
3252 u64 delalloc_len = 0;
3253 struct btrfs_ordered_extent *oe;
3254 u64 oe_start;
3255 u64 oe_end;
3256
3257 /*
3258 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3259 * means we have delalloc (dirty pages) for which writeback has not
3260 * started yet.
3261 */
3262 if (*search_io_tree) {
3263 spin_lock(&inode->lock);
3264 if (inode->delalloc_bytes > 0) {
3265 spin_unlock(&inode->lock);
3266 *delalloc_start_ret = start;
3267 delalloc_len = count_range_bits(&inode->io_tree,
3268 delalloc_start_ret, end,
3269 len, EXTENT_DELALLOC, 1,
3270 cached_state);
3271 } else {
3272 spin_unlock(&inode->lock);
3273 }
3274 }
3275
3276 if (delalloc_len > 0) {
3277 /*
3278 * If delalloc was found then *delalloc_start_ret has a sector size
3279 * aligned value (rounded down).
3280 */
3281 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3282
3283 if (*delalloc_start_ret == start) {
3284 /* Delalloc for the whole range, nothing more to do. */
3285 if (*delalloc_end_ret == end)
3286 return true;
3287 /* Else trim our search range for ordered extents. */
3288 start = *delalloc_end_ret + 1;
3289 len = end + 1 - start;
3290 }
3291 } else {
3292 /* No delalloc, future calls don't need to search again. */
3293 *search_io_tree = false;
3294 }
3295
3296 /*
3297 * Now also check if there's any ordered extent in the range.
3298 * We do this because:
3299 *
3300 * 1) When delalloc is flushed, the file range is locked, we clear the
3301 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3302 * an ordered extent for the write. So we might just have been called
3303 * after delalloc is flushed and before the ordered extent completes
3304 * and inserts the new file extent item in the subvolume's btree;
3305 *
3306 * 2) We may have an ordered extent created by flushing delalloc for a
3307 * subrange that starts before the subrange we found marked with
3308 * EXTENT_DELALLOC in the io tree.
3309 *
3310 * We could also use the extent map tree to find such delalloc that is
3311 * being flushed, but using the ordered extents tree is more efficient
3312 * because it's usually much smaller as ordered extents are removed from
3313 * the tree once they complete. With the extent maps, we mau have them
3314 * in the extent map tree for a very long time, and they were either
3315 * created by previous writes or loaded by read operations.
3316 */
3317 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3318 if (!oe)
3319 return (delalloc_len > 0);
3320
3321 /* The ordered extent may span beyond our search range. */
3322 oe_start = max(oe->file_offset, start);
3323 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3324
3325 btrfs_put_ordered_extent(oe);
3326
3327 /* Don't have unflushed delalloc, return the ordered extent range. */
3328 if (delalloc_len == 0) {
3329 *delalloc_start_ret = oe_start;
3330 *delalloc_end_ret = oe_end;
3331 return true;
3332 }
3333
3334 /*
3335 * We have both unflushed delalloc (io_tree) and an ordered extent.
3336 * If the ranges are adjacent returned a combined range, otherwise
3337 * return the leftmost range.
3338 */
3339 if (oe_start < *delalloc_start_ret) {
3340 if (oe_end < *delalloc_start_ret)
3341 *delalloc_end_ret = oe_end;
3342 *delalloc_start_ret = oe_start;
3343 } else if (*delalloc_end_ret + 1 == oe_start) {
3344 *delalloc_end_ret = oe_end;
3345 }
3346
3347 return true;
3348 }
3349
3350 /*
3351 * Check if there's delalloc in a given range.
3352 *
3353 * @inode: The inode.
3354 * @start: The start offset of the range. It does not need to be
3355 * sector size aligned.
3356 * @end: The end offset (inclusive value) of the search range.
3357 * It does not need to be sector size aligned.
3358 * @cached_state: Extent state record used for speeding up delalloc
3359 * searches in the inode's io_tree. Can be NULL.
3360 * @delalloc_start_ret: Output argument, set to the start offset of the
3361 * subrange found with delalloc (may not be sector size
3362 * aligned).
3363 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3364 * of the subrange found with delalloc.
3365 *
3366 * Returns true if a subrange with delalloc is found within the given range, and
3367 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3368 * end offsets of the subrange.
3369 */
btrfs_find_delalloc_in_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state,u64 * delalloc_start_ret,u64 * delalloc_end_ret)3370 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3371 struct extent_state **cached_state,
3372 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3373 {
3374 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3375 u64 prev_delalloc_end = 0;
3376 bool search_io_tree = true;
3377 bool ret = false;
3378
3379 while (cur_offset <= end) {
3380 u64 delalloc_start;
3381 u64 delalloc_end;
3382 bool delalloc;
3383
3384 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3385 cached_state, &search_io_tree,
3386 &delalloc_start,
3387 &delalloc_end);
3388 if (!delalloc)
3389 break;
3390
3391 if (prev_delalloc_end == 0) {
3392 /* First subrange found. */
3393 *delalloc_start_ret = max(delalloc_start, start);
3394 *delalloc_end_ret = delalloc_end;
3395 ret = true;
3396 } else if (delalloc_start == prev_delalloc_end + 1) {
3397 /* Subrange adjacent to the previous one, merge them. */
3398 *delalloc_end_ret = delalloc_end;
3399 } else {
3400 /* Subrange not adjacent to the previous one, exit. */
3401 break;
3402 }
3403
3404 prev_delalloc_end = delalloc_end;
3405 cur_offset = delalloc_end + 1;
3406 cond_resched();
3407 }
3408
3409 return ret;
3410 }
3411
3412 /*
3413 * Check if there's a hole or delalloc range in a range representing a hole (or
3414 * prealloc extent) found in the inode's subvolume btree.
3415 *
3416 * @inode: The inode.
3417 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3418 * @start: Start offset of the hole region. It does not need to be sector
3419 * size aligned.
3420 * @end: End offset (inclusive value) of the hole region. It does not
3421 * need to be sector size aligned.
3422 * @start_ret: Return parameter, used to set the start of the subrange in the
3423 * hole that matches the search criteria (seek mode), if such
3424 * subrange is found (return value of the function is true).
3425 * The value returned here may not be sector size aligned.
3426 *
3427 * Returns true if a subrange matching the given seek mode is found, and if one
3428 * is found, it updates @start_ret with the start of the subrange.
3429 */
find_desired_extent_in_hole(struct btrfs_inode * inode,int whence,struct extent_state ** cached_state,u64 start,u64 end,u64 * start_ret)3430 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3431 struct extent_state **cached_state,
3432 u64 start, u64 end, u64 *start_ret)
3433 {
3434 u64 delalloc_start;
3435 u64 delalloc_end;
3436 bool delalloc;
3437
3438 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3439 &delalloc_start, &delalloc_end);
3440 if (delalloc && whence == SEEK_DATA) {
3441 *start_ret = delalloc_start;
3442 return true;
3443 }
3444
3445 if (delalloc && whence == SEEK_HOLE) {
3446 /*
3447 * We found delalloc but it starts after out start offset. So we
3448 * have a hole between our start offset and the delalloc start.
3449 */
3450 if (start < delalloc_start) {
3451 *start_ret = start;
3452 return true;
3453 }
3454 /*
3455 * Delalloc range starts at our start offset.
3456 * If the delalloc range's length is smaller than our range,
3457 * then it means we have a hole that starts where the delalloc
3458 * subrange ends.
3459 */
3460 if (delalloc_end < end) {
3461 *start_ret = delalloc_end + 1;
3462 return true;
3463 }
3464
3465 /* There's delalloc for the whole range. */
3466 return false;
3467 }
3468
3469 if (!delalloc && whence == SEEK_HOLE) {
3470 *start_ret = start;
3471 return true;
3472 }
3473
3474 /*
3475 * No delalloc in the range and we are seeking for data. The caller has
3476 * to iterate to the next extent item in the subvolume btree.
3477 */
3478 return false;
3479 }
3480
find_desired_extent(struct file * file,loff_t offset,int whence)3481 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3482 {
3483 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3484 struct btrfs_file_private *private;
3485 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3486 struct extent_state *cached_state = NULL;
3487 struct extent_state **delalloc_cached_state;
3488 const loff_t i_size = i_size_read(&inode->vfs_inode);
3489 const u64 ino = btrfs_ino(inode);
3490 struct btrfs_root *root = inode->root;
3491 struct btrfs_path *path;
3492 struct btrfs_key key;
3493 u64 last_extent_end;
3494 u64 lockstart;
3495 u64 lockend;
3496 u64 start;
3497 int ret;
3498 bool found = false;
3499
3500 if (i_size == 0 || offset >= i_size)
3501 return -ENXIO;
3502
3503 /*
3504 * Quick path. If the inode has no prealloc extents and its number of
3505 * bytes used matches its i_size, then it can not have holes.
3506 */
3507 if (whence == SEEK_HOLE &&
3508 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3509 inode_get_bytes(&inode->vfs_inode) == i_size)
3510 return i_size;
3511
3512 spin_lock(&inode->lock);
3513 private = file->private_data;
3514 spin_unlock(&inode->lock);
3515
3516 if (private && private->owner_task != current) {
3517 /*
3518 * Not allocated by us, don't use it as its cached state is used
3519 * by the task that allocated it and we don't want neither to
3520 * mess with it nor get incorrect results because it reflects an
3521 * invalid state for the current task.
3522 */
3523 private = NULL;
3524 } else if (!private) {
3525 private = kzalloc(sizeof(*private), GFP_KERNEL);
3526 /*
3527 * No worries if memory allocation failed.
3528 * The private structure is used only for speeding up multiple
3529 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3530 * so everything will still be correct.
3531 */
3532 if (private) {
3533 bool free = false;
3534
3535 private->owner_task = current;
3536
3537 spin_lock(&inode->lock);
3538 if (file->private_data)
3539 free = true;
3540 else
3541 file->private_data = private;
3542 spin_unlock(&inode->lock);
3543
3544 if (free) {
3545 kfree(private);
3546 private = NULL;
3547 }
3548 }
3549 }
3550
3551 if (private)
3552 delalloc_cached_state = &private->llseek_cached_state;
3553 else
3554 delalloc_cached_state = NULL;
3555
3556 /*
3557 * offset can be negative, in this case we start finding DATA/HOLE from
3558 * the very start of the file.
3559 */
3560 start = max_t(loff_t, 0, offset);
3561
3562 lockstart = round_down(start, fs_info->sectorsize);
3563 lockend = round_up(i_size, fs_info->sectorsize);
3564 if (lockend <= lockstart)
3565 lockend = lockstart + fs_info->sectorsize;
3566 lockend--;
3567
3568 path = btrfs_alloc_path();
3569 if (!path)
3570 return -ENOMEM;
3571 path->reada = READA_FORWARD;
3572
3573 key.objectid = ino;
3574 key.type = BTRFS_EXTENT_DATA_KEY;
3575 key.offset = start;
3576
3577 last_extent_end = lockstart;
3578
3579 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3580
3581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3582 if (ret < 0) {
3583 goto out;
3584 } else if (ret > 0 && path->slots[0] > 0) {
3585 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3586 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3587 path->slots[0]--;
3588 }
3589
3590 while (start < i_size) {
3591 struct extent_buffer *leaf = path->nodes[0];
3592 struct btrfs_file_extent_item *extent;
3593 u64 extent_end;
3594 u8 type;
3595
3596 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3597 ret = btrfs_next_leaf(root, path);
3598 if (ret < 0)
3599 goto out;
3600 else if (ret > 0)
3601 break;
3602
3603 leaf = path->nodes[0];
3604 }
3605
3606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3607 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3608 break;
3609
3610 extent_end = btrfs_file_extent_end(path);
3611
3612 /*
3613 * In the first iteration we may have a slot that points to an
3614 * extent that ends before our start offset, so skip it.
3615 */
3616 if (extent_end <= start) {
3617 path->slots[0]++;
3618 continue;
3619 }
3620
3621 /* We have an implicit hole, NO_HOLES feature is likely set. */
3622 if (last_extent_end < key.offset) {
3623 u64 search_start = last_extent_end;
3624 u64 found_start;
3625
3626 /*
3627 * First iteration, @start matches @offset and it's
3628 * within the hole.
3629 */
3630 if (start == offset)
3631 search_start = offset;
3632
3633 found = find_desired_extent_in_hole(inode, whence,
3634 delalloc_cached_state,
3635 search_start,
3636 key.offset - 1,
3637 &found_start);
3638 if (found) {
3639 start = found_start;
3640 break;
3641 }
3642 /*
3643 * Didn't find data or a hole (due to delalloc) in the
3644 * implicit hole range, so need to analyze the extent.
3645 */
3646 }
3647
3648 extent = btrfs_item_ptr(leaf, path->slots[0],
3649 struct btrfs_file_extent_item);
3650 type = btrfs_file_extent_type(leaf, extent);
3651
3652 /*
3653 * Can't access the extent's disk_bytenr field if this is an
3654 * inline extent, since at that offset, it's where the extent
3655 * data starts.
3656 */
3657 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3658 (type == BTRFS_FILE_EXTENT_REG &&
3659 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3660 /*
3661 * Explicit hole or prealloc extent, search for delalloc.
3662 * A prealloc extent is treated like a hole.
3663 */
3664 u64 search_start = key.offset;
3665 u64 found_start;
3666
3667 /*
3668 * First iteration, @start matches @offset and it's
3669 * within the hole.
3670 */
3671 if (start == offset)
3672 search_start = offset;
3673
3674 found = find_desired_extent_in_hole(inode, whence,
3675 delalloc_cached_state,
3676 search_start,
3677 extent_end - 1,
3678 &found_start);
3679 if (found) {
3680 start = found_start;
3681 break;
3682 }
3683 /*
3684 * Didn't find data or a hole (due to delalloc) in the
3685 * implicit hole range, so need to analyze the next
3686 * extent item.
3687 */
3688 } else {
3689 /*
3690 * Found a regular or inline extent.
3691 * If we are seeking for data, adjust the start offset
3692 * and stop, we're done.
3693 */
3694 if (whence == SEEK_DATA) {
3695 start = max_t(u64, key.offset, offset);
3696 found = true;
3697 break;
3698 }
3699 /*
3700 * Else, we are seeking for a hole, check the next file
3701 * extent item.
3702 */
3703 }
3704
3705 start = extent_end;
3706 last_extent_end = extent_end;
3707 path->slots[0]++;
3708 if (fatal_signal_pending(current)) {
3709 ret = -EINTR;
3710 goto out;
3711 }
3712 cond_resched();
3713 }
3714
3715 /* We have an implicit hole from the last extent found up to i_size. */
3716 if (!found && start < i_size) {
3717 found = find_desired_extent_in_hole(inode, whence,
3718 delalloc_cached_state, start,
3719 i_size - 1, &start);
3720 if (!found)
3721 start = i_size;
3722 }
3723
3724 out:
3725 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3726 btrfs_free_path(path);
3727
3728 if (ret < 0)
3729 return ret;
3730
3731 if (whence == SEEK_DATA && start >= i_size)
3732 return -ENXIO;
3733
3734 return min_t(loff_t, start, i_size);
3735 }
3736
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3737 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3738 {
3739 struct inode *inode = file->f_mapping->host;
3740
3741 switch (whence) {
3742 default:
3743 return generic_file_llseek(file, offset, whence);
3744 case SEEK_DATA:
3745 case SEEK_HOLE:
3746 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3747 offset = find_desired_extent(file, offset, whence);
3748 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3749 break;
3750 }
3751
3752 if (offset < 0)
3753 return offset;
3754
3755 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3756 }
3757
btrfs_file_open(struct inode * inode,struct file * filp)3758 static int btrfs_file_open(struct inode *inode, struct file *filp)
3759 {
3760 int ret;
3761
3762 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3763 FMODE_CAN_ODIRECT;
3764
3765 ret = fsverity_file_open(inode, filp);
3766 if (ret)
3767 return ret;
3768 return generic_file_open(inode, filp);
3769 }
3770
check_direct_read(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)3771 static int check_direct_read(struct btrfs_fs_info *fs_info,
3772 const struct iov_iter *iter, loff_t offset)
3773 {
3774 int ret;
3775 int i, seg;
3776
3777 ret = check_direct_IO(fs_info, iter, offset);
3778 if (ret < 0)
3779 return ret;
3780
3781 if (!iter_is_iovec(iter))
3782 return 0;
3783
3784 for (seg = 0; seg < iter->nr_segs; seg++) {
3785 for (i = seg + 1; i < iter->nr_segs; i++) {
3786 const struct iovec *iov1 = iter_iov(iter) + seg;
3787 const struct iovec *iov2 = iter_iov(iter) + i;
3788
3789 if (iov1->iov_base == iov2->iov_base)
3790 return -EINVAL;
3791 }
3792 }
3793 return 0;
3794 }
3795
btrfs_direct_read(struct kiocb * iocb,struct iov_iter * to)3796 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3797 {
3798 struct inode *inode = file_inode(iocb->ki_filp);
3799 size_t prev_left = 0;
3800 ssize_t read = 0;
3801 ssize_t ret;
3802
3803 if (fsverity_active(inode))
3804 return 0;
3805
3806 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3807 return 0;
3808
3809 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3810 again:
3811 /*
3812 * This is similar to what we do for direct IO writes, see the comment
3813 * at btrfs_direct_write(), but we also disable page faults in addition
3814 * to disabling them only at the iov_iter level. This is because when
3815 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3816 * which can still trigger page fault ins despite having set ->nofault
3817 * to true of our 'to' iov_iter.
3818 *
3819 * The difference to direct IO writes is that we deadlock when trying
3820 * to lock the extent range in the inode's tree during he page reads
3821 * triggered by the fault in (while for writes it is due to waiting for
3822 * our own ordered extent). This is because for direct IO reads,
3823 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3824 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3825 */
3826 pagefault_disable();
3827 to->nofault = true;
3828 ret = btrfs_dio_read(iocb, to, read);
3829 to->nofault = false;
3830 pagefault_enable();
3831
3832 /* No increment (+=) because iomap returns a cumulative value. */
3833 if (ret > 0)
3834 read = ret;
3835
3836 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3837 const size_t left = iov_iter_count(to);
3838
3839 if (left == prev_left) {
3840 /*
3841 * We didn't make any progress since the last attempt,
3842 * fallback to a buffered read for the remainder of the
3843 * range. This is just to avoid any possibility of looping
3844 * for too long.
3845 */
3846 ret = read;
3847 } else {
3848 /*
3849 * We made some progress since the last retry or this is
3850 * the first time we are retrying. Fault in as many pages
3851 * as possible and retry.
3852 */
3853 fault_in_iov_iter_writeable(to, left);
3854 prev_left = left;
3855 goto again;
3856 }
3857 }
3858 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3859 return ret < 0 ? ret : read;
3860 }
3861
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3862 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3863 {
3864 ssize_t ret = 0;
3865
3866 if (iocb->ki_flags & IOCB_DIRECT) {
3867 ret = btrfs_direct_read(iocb, to);
3868 if (ret < 0 || !iov_iter_count(to) ||
3869 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3870 return ret;
3871 }
3872
3873 return filemap_read(iocb, to, ret);
3874 }
3875
3876 const struct file_operations btrfs_file_operations = {
3877 .llseek = btrfs_file_llseek,
3878 .read_iter = btrfs_file_read_iter,
3879 .splice_read = filemap_splice_read,
3880 .write_iter = btrfs_file_write_iter,
3881 .splice_write = iter_file_splice_write,
3882 .mmap = btrfs_file_mmap,
3883 .open = btrfs_file_open,
3884 .release = btrfs_release_file,
3885 .get_unmapped_area = thp_get_unmapped_area,
3886 .fsync = btrfs_sync_file,
3887 .fallocate = btrfs_fallocate,
3888 .unlocked_ioctl = btrfs_ioctl,
3889 #ifdef CONFIG_COMPAT
3890 .compat_ioctl = btrfs_compat_ioctl,
3891 #endif
3892 .remap_file_range = btrfs_remap_file_range,
3893 };
3894
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3895 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3896 {
3897 int ret;
3898
3899 /*
3900 * So with compression we will find and lock a dirty page and clear the
3901 * first one as dirty, setup an async extent, and immediately return
3902 * with the entire range locked but with nobody actually marked with
3903 * writeback. So we can't just filemap_write_and_wait_range() and
3904 * expect it to work since it will just kick off a thread to do the
3905 * actual work. So we need to call filemap_fdatawrite_range _again_
3906 * since it will wait on the page lock, which won't be unlocked until
3907 * after the pages have been marked as writeback and so we're good to go
3908 * from there. We have to do this otherwise we'll miss the ordered
3909 * extents and that results in badness. Please Josef, do not think you
3910 * know better and pull this out at some point in the future, it is
3911 * right and you are wrong.
3912 */
3913 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3914 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3915 &BTRFS_I(inode)->runtime_flags))
3916 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3917
3918 return ret;
3919 }
3920