1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Handle firewalling
4  *	Linux ethernet bridge
5  *
6  *	Authors:
7  *	Lennert Buytenhek		<buytenh@gnu.org>
8  *	Bart De Schuymer		<bdschuym@pandora.be>
9  *
10  *	Lennert dedicates this file to Kerstin Wurdinger.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/ip.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/if_ether.h>
21 #include <linux/if_vlan.h>
22 #include <linux/if_pppox.h>
23 #include <linux/ppp_defs.h>
24 #include <linux/netfilter_bridge.h>
25 #include <uapi/linux/netfilter_bridge.h>
26 #include <linux/netfilter_ipv4.h>
27 #include <linux/netfilter_ipv6.h>
28 #include <linux/netfilter_arp.h>
29 #include <linux/in_route.h>
30 #include <linux/rculist.h>
31 #include <linux/inetdevice.h>
32 
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/addrconf.h>
36 #include <net/route.h>
37 #include <net/netfilter/br_netfilter.h>
38 #include <net/netns/generic.h>
39 
40 #include <linux/uaccess.h>
41 #include "br_private.h"
42 #ifdef CONFIG_SYSCTL
43 #include <linux/sysctl.h>
44 #endif
45 
46 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
47 #include <net/netfilter/nf_conntrack_core.h>
48 #endif
49 
50 static unsigned int brnf_net_id __read_mostly;
51 
52 struct brnf_net {
53 	bool enabled;
54 
55 #ifdef CONFIG_SYSCTL
56 	struct ctl_table_header *ctl_hdr;
57 #endif
58 
59 	/* default value is 1 */
60 	int call_iptables;
61 	int call_ip6tables;
62 	int call_arptables;
63 
64 	/* default value is 0 */
65 	int filter_vlan_tagged;
66 	int filter_pppoe_tagged;
67 	int pass_vlan_indev;
68 };
69 
70 #define IS_IP(skb) \
71 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
72 
73 #define IS_IPV6(skb) \
74 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
75 
76 #define IS_ARP(skb) \
77 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
78 
vlan_proto(const struct sk_buff * skb)79 static inline __be16 vlan_proto(const struct sk_buff *skb)
80 {
81 	if (skb_vlan_tag_present(skb))
82 		return skb->protocol;
83 	else if (skb->protocol == htons(ETH_P_8021Q))
84 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
85 	else
86 		return 0;
87 }
88 
is_vlan_ip(const struct sk_buff * skb,const struct net * net)89 static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net)
90 {
91 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
92 
93 	return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged;
94 }
95 
is_vlan_ipv6(const struct sk_buff * skb,const struct net * net)96 static inline bool is_vlan_ipv6(const struct sk_buff *skb,
97 				const struct net *net)
98 {
99 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
100 
101 	return vlan_proto(skb) == htons(ETH_P_IPV6) &&
102 	       brnet->filter_vlan_tagged;
103 }
104 
is_vlan_arp(const struct sk_buff * skb,const struct net * net)105 static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net)
106 {
107 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
108 
109 	return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged;
110 }
111 
pppoe_proto(const struct sk_buff * skb)112 static inline __be16 pppoe_proto(const struct sk_buff *skb)
113 {
114 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
115 			    sizeof(struct pppoe_hdr)));
116 }
117 
is_pppoe_ip(const struct sk_buff * skb,const struct net * net)118 static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net)
119 {
120 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
121 
122 	return skb->protocol == htons(ETH_P_PPP_SES) &&
123 	       pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged;
124 }
125 
is_pppoe_ipv6(const struct sk_buff * skb,const struct net * net)126 static inline bool is_pppoe_ipv6(const struct sk_buff *skb,
127 				 const struct net *net)
128 {
129 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
130 
131 	return skb->protocol == htons(ETH_P_PPP_SES) &&
132 	       pppoe_proto(skb) == htons(PPP_IPV6) &&
133 	       brnet->filter_pppoe_tagged;
134 }
135 
136 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
137 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
138 
139 struct brnf_frag_data {
140 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
141 	u8 encap_size;
142 	u8 size;
143 	u16 vlan_tci;
144 	__be16 vlan_proto;
145 };
146 
147 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
148 
nf_bridge_info_free(struct sk_buff * skb)149 static void nf_bridge_info_free(struct sk_buff *skb)
150 {
151 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
152 }
153 
bridge_parent(const struct net_device * dev)154 static inline struct net_device *bridge_parent(const struct net_device *dev)
155 {
156 	struct net_bridge_port *port;
157 
158 	port = br_port_get_rcu(dev);
159 	return port ? port->br->dev : NULL;
160 }
161 
nf_bridge_unshare(struct sk_buff * skb)162 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
163 {
164 	return skb_ext_add(skb, SKB_EXT_BRIDGE_NF);
165 }
166 
nf_bridge_encap_header_len(const struct sk_buff * skb)167 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
168 {
169 	switch (skb->protocol) {
170 	case __cpu_to_be16(ETH_P_8021Q):
171 		return VLAN_HLEN;
172 	case __cpu_to_be16(ETH_P_PPP_SES):
173 		return PPPOE_SES_HLEN;
174 	default:
175 		return 0;
176 	}
177 }
178 
nf_bridge_pull_encap_header(struct sk_buff * skb)179 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
180 {
181 	unsigned int len = nf_bridge_encap_header_len(skb);
182 
183 	skb_pull(skb, len);
184 	skb->network_header += len;
185 }
186 
nf_bridge_pull_encap_header_rcsum(struct sk_buff * skb)187 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
188 {
189 	unsigned int len = nf_bridge_encap_header_len(skb);
190 
191 	skb_pull_rcsum(skb, len);
192 	skb->network_header += len;
193 }
194 
195 /* When handing a packet over to the IP layer
196  * check whether we have a skb that is in the
197  * expected format
198  */
199 
br_validate_ipv4(struct net * net,struct sk_buff * skb)200 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
201 {
202 	const struct iphdr *iph;
203 	u32 len;
204 
205 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
206 		goto inhdr_error;
207 
208 	iph = ip_hdr(skb);
209 
210 	/* Basic sanity checks */
211 	if (iph->ihl < 5 || iph->version != 4)
212 		goto inhdr_error;
213 
214 	if (!pskb_may_pull(skb, iph->ihl*4))
215 		goto inhdr_error;
216 
217 	iph = ip_hdr(skb);
218 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
219 		goto csum_error;
220 
221 	len = skb_ip_totlen(skb);
222 	if (skb->len < len) {
223 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
224 		goto drop;
225 	} else if (len < (iph->ihl*4))
226 		goto inhdr_error;
227 
228 	if (pskb_trim_rcsum(skb, len)) {
229 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
230 		goto drop;
231 	}
232 
233 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
234 	/* We should really parse IP options here but until
235 	 * somebody who actually uses IP options complains to
236 	 * us we'll just silently ignore the options because
237 	 * we're lazy!
238 	 */
239 	return 0;
240 
241 csum_error:
242 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
243 inhdr_error:
244 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
245 drop:
246 	return -1;
247 }
248 
nf_bridge_update_protocol(struct sk_buff * skb)249 void nf_bridge_update_protocol(struct sk_buff *skb)
250 {
251 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
252 
253 	switch (nf_bridge->orig_proto) {
254 	case BRNF_PROTO_8021Q:
255 		skb->protocol = htons(ETH_P_8021Q);
256 		break;
257 	case BRNF_PROTO_PPPOE:
258 		skb->protocol = htons(ETH_P_PPP_SES);
259 		break;
260 	case BRNF_PROTO_UNCHANGED:
261 		break;
262 	}
263 }
264 
265 /* Obtain the correct destination MAC address, while preserving the original
266  * source MAC address. If we already know this address, we just copy it. If we
267  * don't, we use the neighbour framework to find out. In both cases, we make
268  * sure that br_handle_frame_finish() is called afterwards.
269  */
br_nf_pre_routing_finish_bridge(struct net * net,struct sock * sk,struct sk_buff * skb)270 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
271 {
272 	struct neighbour *neigh;
273 	struct dst_entry *dst;
274 
275 	skb->dev = bridge_parent(skb->dev);
276 	if (!skb->dev)
277 		goto free_skb;
278 	dst = skb_dst(skb);
279 	neigh = dst_neigh_lookup_skb(dst, skb);
280 	if (neigh) {
281 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
282 		int ret;
283 
284 		if ((READ_ONCE(neigh->nud_state) & NUD_CONNECTED) &&
285 		    READ_ONCE(neigh->hh.hh_len)) {
286 			struct net_device *br_indev;
287 
288 			br_indev = nf_bridge_get_physindev(skb, net);
289 			if (!br_indev) {
290 				neigh_release(neigh);
291 				goto free_skb;
292 			}
293 
294 			neigh_hh_bridge(&neigh->hh, skb);
295 			skb->dev = br_indev;
296 
297 			ret = br_handle_frame_finish(net, sk, skb);
298 		} else {
299 			/* the neighbour function below overwrites the complete
300 			 * MAC header, so we save the Ethernet source address and
301 			 * protocol number.
302 			 */
303 			skb_copy_from_linear_data_offset(skb,
304 							 -(ETH_HLEN-ETH_ALEN),
305 							 nf_bridge->neigh_header,
306 							 ETH_HLEN-ETH_ALEN);
307 			/* tell br_dev_xmit to continue with forwarding */
308 			nf_bridge->bridged_dnat = 1;
309 			/* FIXME Need to refragment */
310 			ret = READ_ONCE(neigh->output)(neigh, skb);
311 		}
312 		neigh_release(neigh);
313 		return ret;
314 	}
315 free_skb:
316 	kfree_skb(skb);
317 	return 0;
318 }
319 
320 static inline bool
br_nf_ipv4_daddr_was_changed(const struct sk_buff * skb,const struct nf_bridge_info * nf_bridge)321 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
322 			     const struct nf_bridge_info *nf_bridge)
323 {
324 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
325 }
326 
327 /* This requires some explaining. If DNAT has taken place,
328  * we will need to fix up the destination Ethernet address.
329  * This is also true when SNAT takes place (for the reply direction).
330  *
331  * There are two cases to consider:
332  * 1. The packet was DNAT'ed to a device in the same bridge
333  *    port group as it was received on. We can still bridge
334  *    the packet.
335  * 2. The packet was DNAT'ed to a different device, either
336  *    a non-bridged device or another bridge port group.
337  *    The packet will need to be routed.
338  *
339  * The correct way of distinguishing between these two cases is to
340  * call ip_route_input() and to look at skb->dst->dev, which is
341  * changed to the destination device if ip_route_input() succeeds.
342  *
343  * Let's first consider the case that ip_route_input() succeeds:
344  *
345  * If the output device equals the logical bridge device the packet
346  * came in on, we can consider this bridging. The corresponding MAC
347  * address will be obtained in br_nf_pre_routing_finish_bridge.
348  * Otherwise, the packet is considered to be routed and we just
349  * change the destination MAC address so that the packet will
350  * later be passed up to the IP stack to be routed. For a redirected
351  * packet, ip_route_input() will give back the localhost as output device,
352  * which differs from the bridge device.
353  *
354  * Let's now consider the case that ip_route_input() fails:
355  *
356  * This can be because the destination address is martian, in which case
357  * the packet will be dropped.
358  * If IP forwarding is disabled, ip_route_input() will fail, while
359  * ip_route_output_key() can return success. The source
360  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
361  * thinks we're handling a locally generated packet and won't care
362  * if IP forwarding is enabled. If the output device equals the logical bridge
363  * device, we proceed as if ip_route_input() succeeded. If it differs from the
364  * logical bridge port or if ip_route_output_key() fails we drop the packet.
365  */
br_nf_pre_routing_finish(struct net * net,struct sock * sk,struct sk_buff * skb)366 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
367 {
368 	struct net_device *dev = skb->dev, *br_indev;
369 	struct iphdr *iph = ip_hdr(skb);
370 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
371 	struct rtable *rt;
372 	int err;
373 
374 	br_indev = nf_bridge_get_physindev(skb, net);
375 	if (!br_indev) {
376 		kfree_skb(skb);
377 		return 0;
378 	}
379 
380 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
381 
382 	if (nf_bridge->pkt_otherhost) {
383 		skb->pkt_type = PACKET_OTHERHOST;
384 		nf_bridge->pkt_otherhost = false;
385 	}
386 	nf_bridge->in_prerouting = 0;
387 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
388 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
389 			struct in_device *in_dev = __in_dev_get_rcu(dev);
390 
391 			/* If err equals -EHOSTUNREACH the error is due to a
392 			 * martian destination or due to the fact that
393 			 * forwarding is disabled. For most martian packets,
394 			 * ip_route_output_key() will fail. It won't fail for 2 types of
395 			 * martian destinations: loopback destinations and destination
396 			 * 0.0.0.0. In both cases the packet will be dropped because the
397 			 * destination is the loopback device and not the bridge. */
398 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
399 				goto free_skb;
400 
401 			rt = ip_route_output(net, iph->daddr, 0,
402 					     RT_TOS(iph->tos), 0);
403 			if (!IS_ERR(rt)) {
404 				/* - Bridged-and-DNAT'ed traffic doesn't
405 				 *   require ip_forwarding. */
406 				if (rt->dst.dev == dev) {
407 					skb_dst_drop(skb);
408 					skb_dst_set(skb, &rt->dst);
409 					goto bridged_dnat;
410 				}
411 				ip_rt_put(rt);
412 			}
413 free_skb:
414 			kfree_skb(skb);
415 			return 0;
416 		} else {
417 			if (skb_dst(skb)->dev == dev) {
418 bridged_dnat:
419 				skb->dev = br_indev;
420 				nf_bridge_update_protocol(skb);
421 				nf_bridge_push_encap_header(skb);
422 				br_nf_hook_thresh(NF_BR_PRE_ROUTING,
423 						  net, sk, skb, skb->dev,
424 						  NULL,
425 						  br_nf_pre_routing_finish_bridge);
426 				return 0;
427 			}
428 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
429 			skb->pkt_type = PACKET_HOST;
430 		}
431 	} else {
432 		rt = bridge_parent_rtable(br_indev);
433 		if (!rt) {
434 			kfree_skb(skb);
435 			return 0;
436 		}
437 		skb_dst_drop(skb);
438 		skb_dst_set_noref(skb, &rt->dst);
439 	}
440 
441 	skb->dev = br_indev;
442 	nf_bridge_update_protocol(skb);
443 	nf_bridge_push_encap_header(skb);
444 	br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL,
445 			  br_handle_frame_finish);
446 	return 0;
447 }
448 
brnf_get_logical_dev(struct sk_buff * skb,const struct net_device * dev,const struct net * net)449 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb,
450 					       const struct net_device *dev,
451 					       const struct net *net)
452 {
453 	struct net_device *vlan, *br;
454 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
455 
456 	br = bridge_parent(dev);
457 
458 	if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
459 		return br;
460 
461 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
462 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
463 
464 	return vlan ? vlan : br;
465 }
466 
467 /* Some common code for IPv4/IPv6 */
setup_pre_routing(struct sk_buff * skb,const struct net * net)468 struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net)
469 {
470 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
471 
472 	if (skb->pkt_type == PACKET_OTHERHOST) {
473 		skb->pkt_type = PACKET_HOST;
474 		nf_bridge->pkt_otherhost = true;
475 	}
476 
477 	nf_bridge->in_prerouting = 1;
478 	nf_bridge->physinif = skb->dev->ifindex;
479 	skb->dev = brnf_get_logical_dev(skb, skb->dev, net);
480 
481 	if (skb->protocol == htons(ETH_P_8021Q))
482 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
483 	else if (skb->protocol == htons(ETH_P_PPP_SES))
484 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
485 
486 	/* Must drop socket now because of tproxy. */
487 	skb_orphan(skb);
488 	return skb->dev;
489 }
490 
491 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
492  * Replicate the checks that IPv4 does on packet reception.
493  * Set skb->dev to the bridge device (i.e. parent of the
494  * receiving device) to make netfilter happy, the REDIRECT
495  * target in particular.  Save the original destination IP
496  * address to be able to detect DNAT afterwards. */
br_nf_pre_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)497 static unsigned int br_nf_pre_routing(void *priv,
498 				      struct sk_buff *skb,
499 				      const struct nf_hook_state *state)
500 {
501 	struct nf_bridge_info *nf_bridge;
502 	struct net_bridge_port *p;
503 	struct net_bridge *br;
504 	__u32 len = nf_bridge_encap_header_len(skb);
505 	struct brnf_net *brnet;
506 
507 	if (unlikely(!pskb_may_pull(skb, len)))
508 		return NF_DROP;
509 
510 	p = br_port_get_rcu(state->in);
511 	if (p == NULL)
512 		return NF_DROP;
513 	br = p->br;
514 
515 	brnet = net_generic(state->net, brnf_net_id);
516 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
517 	    is_pppoe_ipv6(skb, state->net)) {
518 		if (!brnet->call_ip6tables &&
519 		    !br_opt_get(br, BROPT_NF_CALL_IP6TABLES))
520 			return NF_ACCEPT;
521 		if (!ipv6_mod_enabled()) {
522 			pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported.");
523 			return NF_DROP;
524 		}
525 
526 		nf_bridge_pull_encap_header_rcsum(skb);
527 		return br_nf_pre_routing_ipv6(priv, skb, state);
528 	}
529 
530 	if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES))
531 		return NF_ACCEPT;
532 
533 	if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) &&
534 	    !is_pppoe_ip(skb, state->net))
535 		return NF_ACCEPT;
536 
537 	nf_bridge_pull_encap_header_rcsum(skb);
538 
539 	if (br_validate_ipv4(state->net, skb))
540 		return NF_DROP;
541 
542 	if (!nf_bridge_alloc(skb))
543 		return NF_DROP;
544 	if (!setup_pre_routing(skb, state->net))
545 		return NF_DROP;
546 
547 	nf_bridge = nf_bridge_info_get(skb);
548 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
549 
550 	skb->protocol = htons(ETH_P_IP);
551 	skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4;
552 
553 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
554 		skb->dev, NULL,
555 		br_nf_pre_routing_finish);
556 
557 	return NF_STOLEN;
558 }
559 
560 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
561 /* conntracks' nf_confirm logic cannot handle cloned skbs referencing
562  * the same nf_conn entry, which will happen for multicast (broadcast)
563  * Frames on bridges.
564  *
565  * Example:
566  *      macvlan0
567  *      br0
568  *  ethX  ethY
569  *
570  * ethX (or Y) receives multicast or broadcast packet containing
571  * an IP packet, not yet in conntrack table.
572  *
573  * 1. skb passes through bridge and fake-ip (br_netfilter)Prerouting.
574  *    -> skb->_nfct now references a unconfirmed entry
575  * 2. skb is broad/mcast packet. bridge now passes clones out on each bridge
576  *    interface.
577  * 3. skb gets passed up the stack.
578  * 4. In macvlan case, macvlan driver retains clone(s) of the mcast skb
579  *    and schedules a work queue to send them out on the lower devices.
580  *
581  *    The clone skb->_nfct is not a copy, it is the same entry as the
582  *    original skb.  The macvlan rx handler then returns RX_HANDLER_PASS.
583  * 5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb.
584  *
585  * The Macvlan broadcast worker and normal confirm path will race.
586  *
587  * This race will not happen if step 2 already confirmed a clone. In that
588  * case later steps perform skb_clone() with skb->_nfct already confirmed (in
589  * hash table).  This works fine.
590  *
591  * But such confirmation won't happen when eb/ip/nftables rules dropped the
592  * packets before they reached the nf_confirm step in postrouting.
593  *
594  * Work around this problem by explicit confirmation of the entry at
595  * LOCAL_IN time, before upper layer has a chance to clone the unconfirmed
596  * entry.
597  *
598  */
br_nf_local_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)599 static unsigned int br_nf_local_in(void *priv,
600 				   struct sk_buff *skb,
601 				   const struct nf_hook_state *state)
602 {
603 	bool promisc = BR_INPUT_SKB_CB(skb)->promisc;
604 	struct nf_conntrack *nfct = skb_nfct(skb);
605 	const struct nf_ct_hook *ct_hook;
606 	struct nf_conn *ct;
607 	int ret;
608 
609 	if (promisc) {
610 		nf_reset_ct(skb);
611 		return NF_ACCEPT;
612 	}
613 
614 	if (!nfct || skb->pkt_type == PACKET_HOST)
615 		return NF_ACCEPT;
616 
617 	ct = container_of(nfct, struct nf_conn, ct_general);
618 	if (likely(nf_ct_is_confirmed(ct)))
619 		return NF_ACCEPT;
620 
621 	WARN_ON_ONCE(skb_shared(skb));
622 	WARN_ON_ONCE(refcount_read(&nfct->use) != 1);
623 
624 	/* We can't call nf_confirm here, it would create a dependency
625 	 * on nf_conntrack module.
626 	 */
627 	ct_hook = rcu_dereference(nf_ct_hook);
628 	if (!ct_hook) {
629 		skb->_nfct = 0ul;
630 		nf_conntrack_put(nfct);
631 		return NF_ACCEPT;
632 	}
633 
634 	nf_bridge_pull_encap_header(skb);
635 	ret = ct_hook->confirm(skb);
636 	switch (ret & NF_VERDICT_MASK) {
637 	case NF_STOLEN:
638 		return NF_STOLEN;
639 	default:
640 		nf_bridge_push_encap_header(skb);
641 		break;
642 	}
643 
644 	ct = container_of(nfct, struct nf_conn, ct_general);
645 	WARN_ON_ONCE(!nf_ct_is_confirmed(ct));
646 
647 	return ret;
648 }
649 #endif
650 
651 /* PF_BRIDGE/FORWARD *************************************************/
br_nf_forward_finish(struct net * net,struct sock * sk,struct sk_buff * skb)652 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
653 {
654 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
655 	struct net_device *in;
656 
657 	if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) {
658 
659 		if (skb->protocol == htons(ETH_P_IP))
660 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
661 
662 		if (skb->protocol == htons(ETH_P_IPV6))
663 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
664 
665 		in = nf_bridge_get_physindev(skb, net);
666 		if (!in) {
667 			kfree_skb(skb);
668 			return 0;
669 		}
670 		if (nf_bridge->pkt_otherhost) {
671 			skb->pkt_type = PACKET_OTHERHOST;
672 			nf_bridge->pkt_otherhost = false;
673 		}
674 		nf_bridge_update_protocol(skb);
675 	} else {
676 		in = *((struct net_device **)(skb->cb));
677 	}
678 	nf_bridge_push_encap_header(skb);
679 
680 	br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev,
681 			  br_forward_finish);
682 	return 0;
683 }
684 
685 
686 /* This is the 'purely bridged' case.  For IP, we pass the packet to
687  * netfilter with indev and outdev set to the bridge device,
688  * but we are still able to filter on the 'real' indev/outdev
689  * because of the physdev module. For ARP, indev and outdev are the
690  * bridge ports. */
br_nf_forward_ip(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)691 static unsigned int br_nf_forward_ip(void *priv,
692 				     struct sk_buff *skb,
693 				     const struct nf_hook_state *state)
694 {
695 	struct nf_bridge_info *nf_bridge;
696 	struct net_device *parent;
697 	u_int8_t pf;
698 
699 	nf_bridge = nf_bridge_info_get(skb);
700 	if (!nf_bridge)
701 		return NF_ACCEPT;
702 
703 	/* Need exclusive nf_bridge_info since we might have multiple
704 	 * different physoutdevs. */
705 	if (!nf_bridge_unshare(skb))
706 		return NF_DROP;
707 
708 	nf_bridge = nf_bridge_info_get(skb);
709 	if (!nf_bridge)
710 		return NF_DROP;
711 
712 	parent = bridge_parent(state->out);
713 	if (!parent)
714 		return NF_DROP;
715 
716 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
717 	    is_pppoe_ip(skb, state->net))
718 		pf = NFPROTO_IPV4;
719 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
720 		 is_pppoe_ipv6(skb, state->net))
721 		pf = NFPROTO_IPV6;
722 	else
723 		return NF_ACCEPT;
724 
725 	nf_bridge_pull_encap_header(skb);
726 
727 	if (skb->pkt_type == PACKET_OTHERHOST) {
728 		skb->pkt_type = PACKET_HOST;
729 		nf_bridge->pkt_otherhost = true;
730 	}
731 
732 	if (pf == NFPROTO_IPV4) {
733 		if (br_validate_ipv4(state->net, skb))
734 			return NF_DROP;
735 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
736 	}
737 
738 	if (pf == NFPROTO_IPV6) {
739 		if (br_validate_ipv6(state->net, skb))
740 			return NF_DROP;
741 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
742 	}
743 
744 	nf_bridge->physoutdev = skb->dev;
745 	if (pf == NFPROTO_IPV4)
746 		skb->protocol = htons(ETH_P_IP);
747 	else
748 		skb->protocol = htons(ETH_P_IPV6);
749 
750 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
751 		brnf_get_logical_dev(skb, state->in, state->net),
752 		parent,	br_nf_forward_finish);
753 
754 	return NF_STOLEN;
755 }
756 
br_nf_forward_arp(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)757 static unsigned int br_nf_forward_arp(void *priv,
758 				      struct sk_buff *skb,
759 				      const struct nf_hook_state *state)
760 {
761 	struct net_bridge_port *p;
762 	struct net_bridge *br;
763 	struct net_device **d = (struct net_device **)(skb->cb);
764 	struct brnf_net *brnet;
765 
766 	p = br_port_get_rcu(state->out);
767 	if (p == NULL)
768 		return NF_ACCEPT;
769 	br = p->br;
770 
771 	brnet = net_generic(state->net, brnf_net_id);
772 	if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES))
773 		return NF_ACCEPT;
774 
775 	if (!IS_ARP(skb)) {
776 		if (!is_vlan_arp(skb, state->net))
777 			return NF_ACCEPT;
778 		nf_bridge_pull_encap_header(skb);
779 	}
780 
781 	if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr))))
782 		return NF_DROP;
783 
784 	if (arp_hdr(skb)->ar_pln != 4) {
785 		if (is_vlan_arp(skb, state->net))
786 			nf_bridge_push_encap_header(skb);
787 		return NF_ACCEPT;
788 	}
789 	*d = state->in;
790 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
791 		state->in, state->out, br_nf_forward_finish);
792 
793 	return NF_STOLEN;
794 }
795 
br_nf_push_frag_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)796 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
797 {
798 	struct brnf_frag_data *data;
799 	int err;
800 
801 	data = this_cpu_ptr(&brnf_frag_data_storage);
802 	err = skb_cow_head(skb, data->size);
803 
804 	if (err) {
805 		kfree_skb(skb);
806 		return 0;
807 	}
808 
809 	if (data->vlan_proto)
810 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci);
811 
812 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
813 	__skb_push(skb, data->encap_size);
814 
815 	nf_bridge_info_free(skb);
816 	return br_dev_queue_push_xmit(net, sk, skb);
817 }
818 
819 static int
br_nf_ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))820 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
821 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
822 {
823 	unsigned int mtu = ip_skb_dst_mtu(sk, skb);
824 	struct iphdr *iph = ip_hdr(skb);
825 
826 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
827 		     (IPCB(skb)->frag_max_size &&
828 		      IPCB(skb)->frag_max_size > mtu))) {
829 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
830 		kfree_skb(skb);
831 		return -EMSGSIZE;
832 	}
833 
834 	return ip_do_fragment(net, sk, skb, output);
835 }
836 
nf_bridge_mtu_reduction(const struct sk_buff * skb)837 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
838 {
839 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
840 
841 	if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
842 		return PPPOE_SES_HLEN;
843 	return 0;
844 }
845 
br_nf_dev_queue_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)846 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
847 {
848 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
849 	unsigned int mtu, mtu_reserved;
850 
851 	mtu_reserved = nf_bridge_mtu_reduction(skb);
852 	mtu = skb->dev->mtu;
853 
854 	if (nf_bridge->pkt_otherhost) {
855 		skb->pkt_type = PACKET_OTHERHOST;
856 		nf_bridge->pkt_otherhost = false;
857 	}
858 
859 	if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu)
860 		mtu = nf_bridge->frag_max_size;
861 
862 	nf_bridge_update_protocol(skb);
863 	nf_bridge_push_encap_header(skb);
864 
865 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) {
866 		nf_bridge_info_free(skb);
867 		return br_dev_queue_push_xmit(net, sk, skb);
868 	}
869 
870 	/* This is wrong! We should preserve the original fragment
871 	 * boundaries by preserving frag_list rather than refragmenting.
872 	 */
873 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
874 	    skb->protocol == htons(ETH_P_IP)) {
875 		struct brnf_frag_data *data;
876 
877 		if (br_validate_ipv4(net, skb))
878 			goto drop;
879 
880 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
881 
882 		data = this_cpu_ptr(&brnf_frag_data_storage);
883 
884 		if (skb_vlan_tag_present(skb)) {
885 			data->vlan_tci = skb->vlan_tci;
886 			data->vlan_proto = skb->vlan_proto;
887 		} else {
888 			data->vlan_proto = 0;
889 		}
890 
891 		data->encap_size = nf_bridge_encap_header_len(skb);
892 		data->size = ETH_HLEN + data->encap_size;
893 
894 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
895 						 data->size);
896 
897 		return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
898 	}
899 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
900 	    skb->protocol == htons(ETH_P_IPV6)) {
901 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
902 		struct brnf_frag_data *data;
903 
904 		if (br_validate_ipv6(net, skb))
905 			goto drop;
906 
907 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
908 
909 		data = this_cpu_ptr(&brnf_frag_data_storage);
910 		data->encap_size = nf_bridge_encap_header_len(skb);
911 		data->size = ETH_HLEN + data->encap_size;
912 
913 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
914 						 data->size);
915 
916 		if (v6ops)
917 			return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
918 
919 		kfree_skb(skb);
920 		return -EMSGSIZE;
921 	}
922 	nf_bridge_info_free(skb);
923 	return br_dev_queue_push_xmit(net, sk, skb);
924  drop:
925 	kfree_skb(skb);
926 	return 0;
927 }
928 
929 /* PF_BRIDGE/POST_ROUTING ********************************************/
br_nf_post_routing(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)930 static unsigned int br_nf_post_routing(void *priv,
931 				       struct sk_buff *skb,
932 				       const struct nf_hook_state *state)
933 {
934 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
935 	struct net_device *realoutdev = bridge_parent(skb->dev);
936 	u_int8_t pf;
937 
938 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
939 	 * on a bridge, but was delivered locally and is now being routed:
940 	 *
941 	 * POST_ROUTING was already invoked from the ip stack.
942 	 */
943 	if (!nf_bridge || !nf_bridge->physoutdev)
944 		return NF_ACCEPT;
945 
946 	if (!realoutdev)
947 		return NF_DROP;
948 
949 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
950 	    is_pppoe_ip(skb, state->net))
951 		pf = NFPROTO_IPV4;
952 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
953 		 is_pppoe_ipv6(skb, state->net))
954 		pf = NFPROTO_IPV6;
955 	else
956 		return NF_ACCEPT;
957 
958 	if (skb->pkt_type == PACKET_OTHERHOST) {
959 		skb->pkt_type = PACKET_HOST;
960 		nf_bridge->pkt_otherhost = true;
961 	}
962 
963 	nf_bridge_pull_encap_header(skb);
964 	if (pf == NFPROTO_IPV4)
965 		skb->protocol = htons(ETH_P_IP);
966 	else
967 		skb->protocol = htons(ETH_P_IPV6);
968 
969 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
970 		NULL, realoutdev,
971 		br_nf_dev_queue_xmit);
972 
973 	return NF_STOLEN;
974 }
975 
976 /* IP/SABOTAGE *****************************************************/
977 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
978  * for the second time. */
ip_sabotage_in(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)979 static unsigned int ip_sabotage_in(void *priv,
980 				   struct sk_buff *skb,
981 				   const struct nf_hook_state *state)
982 {
983 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
984 
985 	if (nf_bridge) {
986 		if (nf_bridge->sabotage_in_done)
987 			return NF_ACCEPT;
988 
989 		if (!nf_bridge->in_prerouting &&
990 		    !netif_is_l3_master(skb->dev) &&
991 		    !netif_is_l3_slave(skb->dev)) {
992 			nf_bridge->sabotage_in_done = 1;
993 			state->okfn(state->net, state->sk, skb);
994 			return NF_STOLEN;
995 		}
996 	}
997 
998 	return NF_ACCEPT;
999 }
1000 
1001 /* This is called when br_netfilter has called into iptables/netfilter,
1002  * and DNAT has taken place on a bridge-forwarded packet.
1003  *
1004  * neigh->output has created a new MAC header, with local br0 MAC
1005  * as saddr.
1006  *
1007  * This restores the original MAC saddr of the bridged packet
1008  * before invoking bridge forward logic to transmit the packet.
1009  */
br_nf_pre_routing_finish_bridge_slow(struct sk_buff * skb)1010 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
1011 {
1012 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
1013 	struct net_device *br_indev;
1014 
1015 	br_indev = nf_bridge_get_physindev(skb, dev_net(skb->dev));
1016 	if (!br_indev) {
1017 		kfree_skb(skb);
1018 		return;
1019 	}
1020 
1021 	skb_pull(skb, ETH_HLEN);
1022 	nf_bridge->bridged_dnat = 0;
1023 
1024 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
1025 
1026 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
1027 				       nf_bridge->neigh_header,
1028 				       ETH_HLEN - ETH_ALEN);
1029 	skb->dev = br_indev;
1030 
1031 	nf_bridge->physoutdev = NULL;
1032 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
1033 }
1034 
br_nf_dev_xmit(struct sk_buff * skb)1035 static int br_nf_dev_xmit(struct sk_buff *skb)
1036 {
1037 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
1038 
1039 	if (nf_bridge && nf_bridge->bridged_dnat) {
1040 		br_nf_pre_routing_finish_bridge_slow(skb);
1041 		return 1;
1042 	}
1043 	return 0;
1044 }
1045 
1046 static const struct nf_br_ops br_ops = {
1047 	.br_dev_xmit_hook =	br_nf_dev_xmit,
1048 };
1049 
1050 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
1051  * br_dev_queue_push_xmit is called afterwards */
1052 static const struct nf_hook_ops br_nf_ops[] = {
1053 	{
1054 		.hook = br_nf_pre_routing,
1055 		.pf = NFPROTO_BRIDGE,
1056 		.hooknum = NF_BR_PRE_ROUTING,
1057 		.priority = NF_BR_PRI_BRNF,
1058 	},
1059 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1060 	{
1061 		.hook = br_nf_local_in,
1062 		.pf = NFPROTO_BRIDGE,
1063 		.hooknum = NF_BR_LOCAL_IN,
1064 		.priority = NF_BR_PRI_LAST,
1065 	},
1066 #endif
1067 	{
1068 		.hook = br_nf_forward_ip,
1069 		.pf = NFPROTO_BRIDGE,
1070 		.hooknum = NF_BR_FORWARD,
1071 		.priority = NF_BR_PRI_BRNF - 1,
1072 	},
1073 	{
1074 		.hook = br_nf_forward_arp,
1075 		.pf = NFPROTO_BRIDGE,
1076 		.hooknum = NF_BR_FORWARD,
1077 		.priority = NF_BR_PRI_BRNF,
1078 	},
1079 	{
1080 		.hook = br_nf_post_routing,
1081 		.pf = NFPROTO_BRIDGE,
1082 		.hooknum = NF_BR_POST_ROUTING,
1083 		.priority = NF_BR_PRI_LAST,
1084 	},
1085 	{
1086 		.hook = ip_sabotage_in,
1087 		.pf = NFPROTO_IPV4,
1088 		.hooknum = NF_INET_PRE_ROUTING,
1089 		.priority = NF_IP_PRI_FIRST,
1090 	},
1091 	{
1092 		.hook = ip_sabotage_in,
1093 		.pf = NFPROTO_IPV6,
1094 		.hooknum = NF_INET_PRE_ROUTING,
1095 		.priority = NF_IP6_PRI_FIRST,
1096 	},
1097 };
1098 
brnf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1099 static int brnf_device_event(struct notifier_block *unused, unsigned long event,
1100 			     void *ptr)
1101 {
1102 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1103 	struct brnf_net *brnet;
1104 	struct net *net;
1105 	int ret;
1106 
1107 	if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev))
1108 		return NOTIFY_DONE;
1109 
1110 	ASSERT_RTNL();
1111 
1112 	net = dev_net(dev);
1113 	brnet = net_generic(net, brnf_net_id);
1114 	if (brnet->enabled)
1115 		return NOTIFY_OK;
1116 
1117 	ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1118 	if (ret)
1119 		return NOTIFY_BAD;
1120 
1121 	brnet->enabled = true;
1122 	return NOTIFY_OK;
1123 }
1124 
1125 static struct notifier_block brnf_notifier __read_mostly = {
1126 	.notifier_call = brnf_device_event,
1127 };
1128 
1129 /* recursively invokes nf_hook_slow (again), skipping already-called
1130  * hooks (< NF_BR_PRI_BRNF).
1131  *
1132  * Called with rcu read lock held.
1133  */
br_nf_hook_thresh(unsigned int hook,struct net * net,struct sock * sk,struct sk_buff * skb,struct net_device * indev,struct net_device * outdev,int (* okfn)(struct net *,struct sock *,struct sk_buff *))1134 int br_nf_hook_thresh(unsigned int hook, struct net *net,
1135 		      struct sock *sk, struct sk_buff *skb,
1136 		      struct net_device *indev,
1137 		      struct net_device *outdev,
1138 		      int (*okfn)(struct net *, struct sock *,
1139 				  struct sk_buff *))
1140 {
1141 	const struct nf_hook_entries *e;
1142 	struct nf_hook_state state;
1143 	struct nf_hook_ops **ops;
1144 	unsigned int i;
1145 	int ret;
1146 
1147 	e = rcu_dereference(net->nf.hooks_bridge[hook]);
1148 	if (!e)
1149 		return okfn(net, sk, skb);
1150 
1151 	ops = nf_hook_entries_get_hook_ops(e);
1152 	for (i = 0; i < e->num_hook_entries; i++) {
1153 		/* These hooks have already been called */
1154 		if (ops[i]->priority < NF_BR_PRI_BRNF)
1155 			continue;
1156 
1157 		/* These hooks have not been called yet, run them. */
1158 		if (ops[i]->priority > NF_BR_PRI_BRNF)
1159 			break;
1160 
1161 		/* take a closer look at NF_BR_PRI_BRNF. */
1162 		if (ops[i]->hook == br_nf_pre_routing) {
1163 			/* This hook diverted the skb to this function,
1164 			 * hooks after this have not been run yet.
1165 			 */
1166 			i++;
1167 			break;
1168 		}
1169 	}
1170 
1171 	nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev,
1172 			   sk, net, okfn);
1173 
1174 	ret = nf_hook_slow(skb, &state, e, i);
1175 	if (ret == 1)
1176 		ret = okfn(net, sk, skb);
1177 
1178 	return ret;
1179 }
1180 
1181 #ifdef CONFIG_SYSCTL
1182 static
brnf_sysctl_call_tables(struct ctl_table * ctl,int write,void * buffer,size_t * lenp,loff_t * ppos)1183 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1184 			    void *buffer, size_t *lenp, loff_t *ppos)
1185 {
1186 	int ret;
1187 
1188 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1189 
1190 	if (write && *(int *)(ctl->data))
1191 		*(int *)(ctl->data) = 1;
1192 	return ret;
1193 }
1194 
1195 static struct ctl_table brnf_table[] = {
1196 	{
1197 		.procname	= "bridge-nf-call-arptables",
1198 		.maxlen		= sizeof(int),
1199 		.mode		= 0644,
1200 		.proc_handler	= brnf_sysctl_call_tables,
1201 	},
1202 	{
1203 		.procname	= "bridge-nf-call-iptables",
1204 		.maxlen		= sizeof(int),
1205 		.mode		= 0644,
1206 		.proc_handler	= brnf_sysctl_call_tables,
1207 	},
1208 	{
1209 		.procname	= "bridge-nf-call-ip6tables",
1210 		.maxlen		= sizeof(int),
1211 		.mode		= 0644,
1212 		.proc_handler	= brnf_sysctl_call_tables,
1213 	},
1214 	{
1215 		.procname	= "bridge-nf-filter-vlan-tagged",
1216 		.maxlen		= sizeof(int),
1217 		.mode		= 0644,
1218 		.proc_handler	= brnf_sysctl_call_tables,
1219 	},
1220 	{
1221 		.procname	= "bridge-nf-filter-pppoe-tagged",
1222 		.maxlen		= sizeof(int),
1223 		.mode		= 0644,
1224 		.proc_handler	= brnf_sysctl_call_tables,
1225 	},
1226 	{
1227 		.procname	= "bridge-nf-pass-vlan-input-dev",
1228 		.maxlen		= sizeof(int),
1229 		.mode		= 0644,
1230 		.proc_handler	= brnf_sysctl_call_tables,
1231 	},
1232 	{ }
1233 };
1234 
br_netfilter_sysctl_default(struct brnf_net * brnf)1235 static inline void br_netfilter_sysctl_default(struct brnf_net *brnf)
1236 {
1237 	brnf->call_iptables = 1;
1238 	brnf->call_ip6tables = 1;
1239 	brnf->call_arptables = 1;
1240 	brnf->filter_vlan_tagged = 0;
1241 	brnf->filter_pppoe_tagged = 0;
1242 	brnf->pass_vlan_indev = 0;
1243 }
1244 
br_netfilter_sysctl_init_net(struct net * net)1245 static int br_netfilter_sysctl_init_net(struct net *net)
1246 {
1247 	struct ctl_table *table = brnf_table;
1248 	struct brnf_net *brnet;
1249 
1250 	if (!net_eq(net, &init_net)) {
1251 		table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL);
1252 		if (!table)
1253 			return -ENOMEM;
1254 	}
1255 
1256 	brnet = net_generic(net, brnf_net_id);
1257 	table[0].data = &brnet->call_arptables;
1258 	table[1].data = &brnet->call_iptables;
1259 	table[2].data = &brnet->call_ip6tables;
1260 	table[3].data = &brnet->filter_vlan_tagged;
1261 	table[4].data = &brnet->filter_pppoe_tagged;
1262 	table[5].data = &brnet->pass_vlan_indev;
1263 
1264 	br_netfilter_sysctl_default(brnet);
1265 
1266 	brnet->ctl_hdr = register_net_sysctl_sz(net, "net/bridge", table,
1267 						ARRAY_SIZE(brnf_table));
1268 	if (!brnet->ctl_hdr) {
1269 		if (!net_eq(net, &init_net))
1270 			kfree(table);
1271 
1272 		return -ENOMEM;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
br_netfilter_sysctl_exit_net(struct net * net,struct brnf_net * brnet)1278 static void br_netfilter_sysctl_exit_net(struct net *net,
1279 					 struct brnf_net *brnet)
1280 {
1281 	struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg;
1282 
1283 	unregister_net_sysctl_table(brnet->ctl_hdr);
1284 	if (!net_eq(net, &init_net))
1285 		kfree(table);
1286 }
1287 
brnf_init_net(struct net * net)1288 static int __net_init brnf_init_net(struct net *net)
1289 {
1290 	return br_netfilter_sysctl_init_net(net);
1291 }
1292 #endif
1293 
brnf_exit_net(struct net * net)1294 static void __net_exit brnf_exit_net(struct net *net)
1295 {
1296 	struct brnf_net *brnet;
1297 
1298 	brnet = net_generic(net, brnf_net_id);
1299 	if (brnet->enabled) {
1300 		nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1301 		brnet->enabled = false;
1302 	}
1303 
1304 #ifdef CONFIG_SYSCTL
1305 	br_netfilter_sysctl_exit_net(net, brnet);
1306 #endif
1307 }
1308 
1309 static struct pernet_operations brnf_net_ops __read_mostly = {
1310 #ifdef CONFIG_SYSCTL
1311 	.init = brnf_init_net,
1312 #endif
1313 	.exit = brnf_exit_net,
1314 	.id   = &brnf_net_id,
1315 	.size = sizeof(struct brnf_net),
1316 };
1317 
br_netfilter_init(void)1318 static int __init br_netfilter_init(void)
1319 {
1320 	int ret;
1321 
1322 	ret = register_pernet_subsys(&brnf_net_ops);
1323 	if (ret < 0)
1324 		return ret;
1325 
1326 	ret = register_netdevice_notifier(&brnf_notifier);
1327 	if (ret < 0) {
1328 		unregister_pernet_subsys(&brnf_net_ops);
1329 		return ret;
1330 	}
1331 
1332 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1333 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1334 	return 0;
1335 }
1336 
br_netfilter_fini(void)1337 static void __exit br_netfilter_fini(void)
1338 {
1339 	RCU_INIT_POINTER(nf_br_ops, NULL);
1340 	unregister_netdevice_notifier(&brnf_notifier);
1341 	unregister_pernet_subsys(&brnf_net_ops);
1342 }
1343 
1344 module_init(br_netfilter_init);
1345 module_exit(br_netfilter_fini);
1346 
1347 MODULE_LICENSE("GPL");
1348 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1349 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1350 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1351