1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
__register_binfmt(struct linux_binfmt * fmt,int insert)86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 write_lock(&binfmt_lock);
89 insert ? list_add(&fmt->lh, &formats) :
90 list_add_tail(&fmt->lh, &formats);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
unregister_binfmt(struct linux_binfmt * fmt)96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 write_lock(&binfmt_lock);
99 list_del(&fmt->lh);
100 write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
put_binfmt(struct linux_binfmt * fmt)105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 module_put(fmt->module);
108 }
109
path_noexec(const struct path * path)110 bool path_noexec(const struct path *path)
111 {
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115
116 #ifdef CONFIG_USELIB
117 /*
118 * Note that a shared library must be both readable and executable due to
119 * security reasons.
120 *
121 * Also note that we take the address to load from the file itself.
122 */
SYSCALL_DEFINE1(uselib,const char __user *,library)123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 struct linux_binfmt *fmt;
126 struct file *file;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
134 };
135
136 if (IS_ERR(tmp))
137 goto out;
138
139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 putname(tmp);
141 error = PTR_ERR(file);
142 if (IS_ERR(file))
143 goto out;
144
145 /*
146 * Check do_open_execat() for an explanation.
147 */
148 error = -EACCES;
149 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
150 path_noexec(&file->f_path))
151 goto exit;
152
153 error = -ENOEXEC;
154
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
167 }
168 read_unlock(&binfmt_lock);
169 exit:
170 fput(file);
171 out:
172 return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175
176 #ifdef CONFIG_MMU
177 /*
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
182 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
187
188 if (!mm || !diff)
189 return;
190
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
197 {
198 struct page *page;
199 struct vm_area_struct *vma = bprm->vma;
200 struct mm_struct *mm = bprm->mm;
201 int ret;
202
203 /*
204 * Avoid relying on expanding the stack down in GUP (which
205 * does not work for STACK_GROWSUP anyway), and just do it
206 * by hand ahead of time.
207 */
208 if (write && pos < vma->vm_start) {
209 mmap_write_lock(mm);
210 ret = expand_downwards(vma, pos);
211 if (unlikely(ret < 0)) {
212 mmap_write_unlock(mm);
213 return NULL;
214 }
215 mmap_write_downgrade(mm);
216 } else
217 mmap_read_lock(mm);
218
219 /*
220 * We are doing an exec(). 'current' is the process
221 * doing the exec and 'mm' is the new process's mm.
222 */
223 ret = get_user_pages_remote(mm, pos, 1,
224 write ? FOLL_WRITE : 0,
225 &page, NULL);
226 mmap_read_unlock(mm);
227 if (ret <= 0)
228 return NULL;
229
230 if (write)
231 acct_arg_size(bprm, vma_pages(vma));
232
233 return page;
234 }
235
put_arg_page(struct page * page)236 static void put_arg_page(struct page *page)
237 {
238 put_page(page);
239 }
240
free_arg_pages(struct linux_binprm * bprm)241 static void free_arg_pages(struct linux_binprm *bprm)
242 {
243 }
244
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)245 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
246 struct page *page)
247 {
248 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 }
250
__bprm_mm_init(struct linux_binprm * bprm)251 static int __bprm_mm_init(struct linux_binprm *bprm)
252 {
253 int err;
254 struct vm_area_struct *vma = NULL;
255 struct mm_struct *mm = bprm->mm;
256
257 bprm->vma = vma = vm_area_alloc(mm);
258 if (!vma)
259 return -ENOMEM;
260 vma_set_anonymous(vma);
261
262 if (mmap_write_lock_killable(mm)) {
263 err = -EINTR;
264 goto err_free;
265 }
266
267 /*
268 * Place the stack at the largest stack address the architecture
269 * supports. Later, we'll move this to an appropriate place. We don't
270 * use STACK_TOP because that can depend on attributes which aren't
271 * configured yet.
272 */
273 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
274 vma->vm_end = STACK_TOP_MAX;
275 vma->vm_start = vma->vm_end - PAGE_SIZE;
276 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
277 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
278
279 err = insert_vm_struct(mm, vma);
280 if (err)
281 goto err;
282
283 mm->stack_vm = mm->total_vm = 1;
284 mmap_write_unlock(mm);
285 bprm->p = vma->vm_end - sizeof(void *);
286 return 0;
287 err:
288 mmap_write_unlock(mm);
289 err_free:
290 bprm->vma = NULL;
291 vm_area_free(vma);
292 return err;
293 }
294
valid_arg_len(struct linux_binprm * bprm,long len)295 static bool valid_arg_len(struct linux_binprm *bprm, long len)
296 {
297 return len <= MAX_ARG_STRLEN;
298 }
299
300 #else
301
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)302 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
303 {
304 }
305
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)306 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
307 int write)
308 {
309 struct page *page;
310
311 page = bprm->page[pos / PAGE_SIZE];
312 if (!page && write) {
313 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
314 if (!page)
315 return NULL;
316 bprm->page[pos / PAGE_SIZE] = page;
317 }
318
319 return page;
320 }
321
put_arg_page(struct page * page)322 static void put_arg_page(struct page *page)
323 {
324 }
325
free_arg_page(struct linux_binprm * bprm,int i)326 static void free_arg_page(struct linux_binprm *bprm, int i)
327 {
328 if (bprm->page[i]) {
329 __free_page(bprm->page[i]);
330 bprm->page[i] = NULL;
331 }
332 }
333
free_arg_pages(struct linux_binprm * bprm)334 static void free_arg_pages(struct linux_binprm *bprm)
335 {
336 int i;
337
338 for (i = 0; i < MAX_ARG_PAGES; i++)
339 free_arg_page(bprm, i);
340 }
341
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)342 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 struct page *page)
344 {
345 }
346
__bprm_mm_init(struct linux_binprm * bprm)347 static int __bprm_mm_init(struct linux_binprm *bprm)
348 {
349 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
350 return 0;
351 }
352
valid_arg_len(struct linux_binprm * bprm,long len)353 static bool valid_arg_len(struct linux_binprm *bprm, long len)
354 {
355 return len <= bprm->p;
356 }
357
358 #endif /* CONFIG_MMU */
359
360 /*
361 * Create a new mm_struct and populate it with a temporary stack
362 * vm_area_struct. We don't have enough context at this point to set the stack
363 * flags, permissions, and offset, so we use temporary values. We'll update
364 * them later in setup_arg_pages().
365 */
bprm_mm_init(struct linux_binprm * bprm)366 static int bprm_mm_init(struct linux_binprm *bprm)
367 {
368 int err;
369 struct mm_struct *mm = NULL;
370
371 bprm->mm = mm = mm_alloc();
372 err = -ENOMEM;
373 if (!mm)
374 goto err;
375
376 /* Save current stack limit for all calculations made during exec. */
377 task_lock(current->group_leader);
378 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
379 task_unlock(current->group_leader);
380
381 err = __bprm_mm_init(bprm);
382 if (err)
383 goto err;
384
385 return 0;
386
387 err:
388 if (mm) {
389 bprm->mm = NULL;
390 mmdrop(mm);
391 }
392
393 return err;
394 }
395
396 struct user_arg_ptr {
397 #ifdef CONFIG_COMPAT
398 bool is_compat;
399 #endif
400 union {
401 const char __user *const __user *native;
402 #ifdef CONFIG_COMPAT
403 const compat_uptr_t __user *compat;
404 #endif
405 } ptr;
406 };
407
get_user_arg_ptr(struct user_arg_ptr argv,int nr)408 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
409 {
410 const char __user *native;
411
412 #ifdef CONFIG_COMPAT
413 if (unlikely(argv.is_compat)) {
414 compat_uptr_t compat;
415
416 if (get_user(compat, argv.ptr.compat + nr))
417 return ERR_PTR(-EFAULT);
418
419 return compat_ptr(compat);
420 }
421 #endif
422
423 if (get_user(native, argv.ptr.native + nr))
424 return ERR_PTR(-EFAULT);
425
426 return native;
427 }
428
429 /*
430 * count() counts the number of strings in array ARGV.
431 */
count(struct user_arg_ptr argv,int max)432 static int count(struct user_arg_ptr argv, int max)
433 {
434 int i = 0;
435
436 if (argv.ptr.native != NULL) {
437 for (;;) {
438 const char __user *p = get_user_arg_ptr(argv, i);
439
440 if (!p)
441 break;
442
443 if (IS_ERR(p))
444 return -EFAULT;
445
446 if (i >= max)
447 return -E2BIG;
448 ++i;
449
450 if (fatal_signal_pending(current))
451 return -ERESTARTNOHAND;
452 cond_resched();
453 }
454 }
455 return i;
456 }
457
count_strings_kernel(const char * const * argv)458 static int count_strings_kernel(const char *const *argv)
459 {
460 int i;
461
462 if (!argv)
463 return 0;
464
465 for (i = 0; argv[i]; ++i) {
466 if (i >= MAX_ARG_STRINGS)
467 return -E2BIG;
468 if (fatal_signal_pending(current))
469 return -ERESTARTNOHAND;
470 cond_resched();
471 }
472 return i;
473 }
474
bprm_stack_limits(struct linux_binprm * bprm)475 static int bprm_stack_limits(struct linux_binprm *bprm)
476 {
477 unsigned long limit, ptr_size;
478
479 /*
480 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
481 * (whichever is smaller) for the argv+env strings.
482 * This ensures that:
483 * - the remaining binfmt code will not run out of stack space,
484 * - the program will have a reasonable amount of stack left
485 * to work from.
486 */
487 limit = _STK_LIM / 4 * 3;
488 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
489 /*
490 * We've historically supported up to 32 pages (ARG_MAX)
491 * of argument strings even with small stacks
492 */
493 limit = max_t(unsigned long, limit, ARG_MAX);
494 /*
495 * We must account for the size of all the argv and envp pointers to
496 * the argv and envp strings, since they will also take up space in
497 * the stack. They aren't stored until much later when we can't
498 * signal to the parent that the child has run out of stack space.
499 * Instead, calculate it here so it's possible to fail gracefully.
500 *
501 * In the case of argc = 0, make sure there is space for adding a
502 * empty string (which will bump argc to 1), to ensure confused
503 * userspace programs don't start processing from argv[1], thinking
504 * argc can never be 0, to keep them from walking envp by accident.
505 * See do_execveat_common().
506 */
507 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
508 if (limit <= ptr_size)
509 return -E2BIG;
510 limit -= ptr_size;
511
512 bprm->argmin = bprm->p - limit;
513 return 0;
514 }
515
516 /*
517 * 'copy_strings()' copies argument/environment strings from the old
518 * processes's memory to the new process's stack. The call to get_user_pages()
519 * ensures the destination page is created and not swapped out.
520 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)521 static int copy_strings(int argc, struct user_arg_ptr argv,
522 struct linux_binprm *bprm)
523 {
524 struct page *kmapped_page = NULL;
525 char *kaddr = NULL;
526 unsigned long kpos = 0;
527 int ret;
528
529 while (argc-- > 0) {
530 const char __user *str;
531 int len;
532 unsigned long pos;
533
534 ret = -EFAULT;
535 str = get_user_arg_ptr(argv, argc);
536 if (IS_ERR(str))
537 goto out;
538
539 len = strnlen_user(str, MAX_ARG_STRLEN);
540 if (!len)
541 goto out;
542
543 ret = -E2BIG;
544 if (!valid_arg_len(bprm, len))
545 goto out;
546
547 /* We're going to work our way backwards. */
548 pos = bprm->p;
549 str += len;
550 bprm->p -= len;
551 #ifdef CONFIG_MMU
552 if (bprm->p < bprm->argmin)
553 goto out;
554 #endif
555
556 while (len > 0) {
557 int offset, bytes_to_copy;
558
559 if (fatal_signal_pending(current)) {
560 ret = -ERESTARTNOHAND;
561 goto out;
562 }
563 cond_resched();
564
565 offset = pos % PAGE_SIZE;
566 if (offset == 0)
567 offset = PAGE_SIZE;
568
569 bytes_to_copy = offset;
570 if (bytes_to_copy > len)
571 bytes_to_copy = len;
572
573 offset -= bytes_to_copy;
574 pos -= bytes_to_copy;
575 str -= bytes_to_copy;
576 len -= bytes_to_copy;
577
578 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
579 struct page *page;
580
581 page = get_arg_page(bprm, pos, 1);
582 if (!page) {
583 ret = -E2BIG;
584 goto out;
585 }
586
587 if (kmapped_page) {
588 flush_dcache_page(kmapped_page);
589 kunmap_local(kaddr);
590 put_arg_page(kmapped_page);
591 }
592 kmapped_page = page;
593 kaddr = kmap_local_page(kmapped_page);
594 kpos = pos & PAGE_MASK;
595 flush_arg_page(bprm, kpos, kmapped_page);
596 }
597 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
598 ret = -EFAULT;
599 goto out;
600 }
601 }
602 }
603 ret = 0;
604 out:
605 if (kmapped_page) {
606 flush_dcache_page(kmapped_page);
607 kunmap_local(kaddr);
608 put_arg_page(kmapped_page);
609 }
610 return ret;
611 }
612
613 /*
614 * Copy and argument/environment string from the kernel to the processes stack.
615 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)616 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
617 {
618 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
619 unsigned long pos = bprm->p;
620
621 if (len == 0)
622 return -EFAULT;
623 if (!valid_arg_len(bprm, len))
624 return -E2BIG;
625
626 /* We're going to work our way backwards. */
627 arg += len;
628 bprm->p -= len;
629 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
630 return -E2BIG;
631
632 while (len > 0) {
633 unsigned int bytes_to_copy = min_t(unsigned int, len,
634 min_not_zero(offset_in_page(pos), PAGE_SIZE));
635 struct page *page;
636
637 pos -= bytes_to_copy;
638 arg -= bytes_to_copy;
639 len -= bytes_to_copy;
640
641 page = get_arg_page(bprm, pos, 1);
642 if (!page)
643 return -E2BIG;
644 flush_arg_page(bprm, pos & PAGE_MASK, page);
645 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
646 put_arg_page(page);
647 }
648
649 return 0;
650 }
651 EXPORT_SYMBOL(copy_string_kernel);
652
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)653 static int copy_strings_kernel(int argc, const char *const *argv,
654 struct linux_binprm *bprm)
655 {
656 while (argc-- > 0) {
657 int ret = copy_string_kernel(argv[argc], bprm);
658 if (ret < 0)
659 return ret;
660 if (fatal_signal_pending(current))
661 return -ERESTARTNOHAND;
662 cond_resched();
663 }
664 return 0;
665 }
666
667 #ifdef CONFIG_MMU
668
669 /*
670 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
671 * the binfmt code determines where the new stack should reside, we shift it to
672 * its final location. The process proceeds as follows:
673 *
674 * 1) Use shift to calculate the new vma endpoints.
675 * 2) Extend vma to cover both the old and new ranges. This ensures the
676 * arguments passed to subsequent functions are consistent.
677 * 3) Move vma's page tables to the new range.
678 * 4) Free up any cleared pgd range.
679 * 5) Shrink the vma to cover only the new range.
680 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)681 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
682 {
683 struct mm_struct *mm = vma->vm_mm;
684 unsigned long old_start = vma->vm_start;
685 unsigned long old_end = vma->vm_end;
686 unsigned long length = old_end - old_start;
687 unsigned long new_start = old_start - shift;
688 unsigned long new_end = old_end - shift;
689 VMA_ITERATOR(vmi, mm, new_start);
690 struct vm_area_struct *next;
691 struct mmu_gather tlb;
692
693 BUG_ON(new_start > new_end);
694
695 /*
696 * ensure there are no vmas between where we want to go
697 * and where we are
698 */
699 if (vma != vma_next(&vmi))
700 return -EFAULT;
701
702 vma_iter_prev_range(&vmi);
703 /*
704 * cover the whole range: [new_start, old_end)
705 */
706 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
707 return -ENOMEM;
708
709 /*
710 * move the page tables downwards, on failure we rely on
711 * process cleanup to remove whatever mess we made.
712 */
713 if (length != move_page_tables(vma, old_start,
714 vma, new_start, length, false))
715 return -ENOMEM;
716
717 lru_add_drain();
718 tlb_gather_mmu(&tlb, mm);
719 next = vma_next(&vmi);
720 if (new_end > old_start) {
721 /*
722 * when the old and new regions overlap clear from new_end.
723 */
724 free_pgd_range(&tlb, new_end, old_end, new_end,
725 next ? next->vm_start : USER_PGTABLES_CEILING);
726 } else {
727 /*
728 * otherwise, clean from old_start; this is done to not touch
729 * the address space in [new_end, old_start) some architectures
730 * have constraints on va-space that make this illegal (IA64) -
731 * for the others its just a little faster.
732 */
733 free_pgd_range(&tlb, old_start, old_end, new_end,
734 next ? next->vm_start : USER_PGTABLES_CEILING);
735 }
736 tlb_finish_mmu(&tlb);
737
738 vma_prev(&vmi);
739 /* Shrink the vma to just the new range */
740 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
741 }
742
743 /*
744 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745 * the stack is optionally relocated, and some extra space is added.
746 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)747 int setup_arg_pages(struct linux_binprm *bprm,
748 unsigned long stack_top,
749 int executable_stack)
750 {
751 unsigned long ret;
752 unsigned long stack_shift;
753 struct mm_struct *mm = current->mm;
754 struct vm_area_struct *vma = bprm->vma;
755 struct vm_area_struct *prev = NULL;
756 unsigned long vm_flags;
757 unsigned long stack_base;
758 unsigned long stack_size;
759 unsigned long stack_expand;
760 unsigned long rlim_stack;
761 struct mmu_gather tlb;
762 struct vma_iterator vmi;
763
764 #ifdef CONFIG_STACK_GROWSUP
765 /* Limit stack size */
766 stack_base = bprm->rlim_stack.rlim_max;
767
768 stack_base = calc_max_stack_size(stack_base);
769
770 /* Add space for stack randomization. */
771 if (current->flags & PF_RANDOMIZE)
772 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
773
774 /* Make sure we didn't let the argument array grow too large. */
775 if (vma->vm_end - vma->vm_start > stack_base)
776 return -ENOMEM;
777
778 stack_base = PAGE_ALIGN(stack_top - stack_base);
779
780 stack_shift = vma->vm_start - stack_base;
781 mm->arg_start = bprm->p - stack_shift;
782 bprm->p = vma->vm_end - stack_shift;
783 #else
784 stack_top = arch_align_stack(stack_top);
785 stack_top = PAGE_ALIGN(stack_top);
786
787 if (unlikely(stack_top < mmap_min_addr) ||
788 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
789 return -ENOMEM;
790
791 stack_shift = vma->vm_end - stack_top;
792
793 bprm->p -= stack_shift;
794 mm->arg_start = bprm->p;
795 #endif
796
797 if (bprm->loader)
798 bprm->loader -= stack_shift;
799 bprm->exec -= stack_shift;
800
801 if (mmap_write_lock_killable(mm))
802 return -EINTR;
803
804 vm_flags = VM_STACK_FLAGS;
805
806 /*
807 * Adjust stack execute permissions; explicitly enable for
808 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
809 * (arch default) otherwise.
810 */
811 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
812 vm_flags |= VM_EXEC;
813 else if (executable_stack == EXSTACK_DISABLE_X)
814 vm_flags &= ~VM_EXEC;
815 vm_flags |= mm->def_flags;
816 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
817
818 vma_iter_init(&vmi, mm, vma->vm_start);
819
820 tlb_gather_mmu(&tlb, mm);
821 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
822 vm_flags);
823 tlb_finish_mmu(&tlb);
824
825 if (ret)
826 goto out_unlock;
827 BUG_ON(prev != vma);
828
829 if (unlikely(vm_flags & VM_EXEC)) {
830 pr_warn_once("process '%pD4' started with executable stack\n",
831 bprm->file);
832 }
833
834 /* Move stack pages down in memory. */
835 if (stack_shift) {
836 ret = shift_arg_pages(vma, stack_shift);
837 if (ret)
838 goto out_unlock;
839 }
840
841 /* mprotect_fixup is overkill to remove the temporary stack flags */
842 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843
844 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 stack_size = vma->vm_end - vma->vm_start;
846 /*
847 * Align this down to a page boundary as expand_stack
848 * will align it up.
849 */
850 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851
852 stack_expand = min(rlim_stack, stack_size + stack_expand);
853
854 #ifdef CONFIG_STACK_GROWSUP
855 stack_base = vma->vm_start + stack_expand;
856 #else
857 stack_base = vma->vm_end - stack_expand;
858 #endif
859 current->mm->start_stack = bprm->p;
860 ret = expand_stack_locked(vma, stack_base);
861 if (ret)
862 ret = -EFAULT;
863
864 out_unlock:
865 mmap_write_unlock(mm);
866 return ret;
867 }
868 EXPORT_SYMBOL(setup_arg_pages);
869
870 #else
871
872 /*
873 * Transfer the program arguments and environment from the holding pages
874 * onto the stack. The provided stack pointer is adjusted accordingly.
875 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)876 int transfer_args_to_stack(struct linux_binprm *bprm,
877 unsigned long *sp_location)
878 {
879 unsigned long index, stop, sp;
880 int ret = 0;
881
882 stop = bprm->p >> PAGE_SHIFT;
883 sp = *sp_location;
884
885 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
886 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
887 char *src = kmap_local_page(bprm->page[index]) + offset;
888 sp -= PAGE_SIZE - offset;
889 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
890 ret = -EFAULT;
891 kunmap_local(src);
892 if (ret)
893 goto out;
894 }
895
896 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
897 *sp_location = sp;
898
899 out:
900 return ret;
901 }
902 EXPORT_SYMBOL(transfer_args_to_stack);
903
904 #endif /* CONFIG_MMU */
905
do_open_execat(int fd,struct filename * name,int flags)906 static struct file *do_open_execat(int fd, struct filename *name, int flags)
907 {
908 struct file *file;
909 int err;
910 struct open_flags open_exec_flags = {
911 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
912 .acc_mode = MAY_EXEC,
913 .intent = LOOKUP_OPEN,
914 .lookup_flags = LOOKUP_FOLLOW,
915 };
916
917 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
918 return ERR_PTR(-EINVAL);
919 if (flags & AT_SYMLINK_NOFOLLOW)
920 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
921 if (flags & AT_EMPTY_PATH)
922 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
923
924 file = do_filp_open(fd, name, &open_exec_flags);
925 if (IS_ERR(file))
926 return file;
927
928 /*
929 * In the past the regular type check was here. It moved to may_open() in
930 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
931 * an invariant that all non-regular files error out before we get here.
932 */
933 err = -EACCES;
934 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
935 path_noexec(&file->f_path))
936 goto exit;
937
938 err = deny_write_access(file);
939 if (err)
940 goto exit;
941
942 return file;
943
944 exit:
945 fput(file);
946 return ERR_PTR(err);
947 }
948
open_exec(const char * name)949 struct file *open_exec(const char *name)
950 {
951 struct filename *filename = getname_kernel(name);
952 struct file *f = ERR_CAST(filename);
953
954 if (!IS_ERR(filename)) {
955 f = do_open_execat(AT_FDCWD, filename, 0);
956 putname(filename);
957 }
958 return f;
959 }
960 EXPORT_SYMBOL(open_exec);
961
962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 if (res > 0)
967 flush_icache_user_range(addr, addr + len);
968 return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972
973 /*
974 * Maps the mm_struct mm into the current task struct.
975 * On success, this function returns with exec_update_lock
976 * held for writing.
977 */
exec_mmap(struct mm_struct * mm)978 static int exec_mmap(struct mm_struct *mm)
979 {
980 struct task_struct *tsk;
981 struct mm_struct *old_mm, *active_mm;
982 int ret;
983
984 /* Notify parent that we're no longer interested in the old VM */
985 tsk = current;
986 old_mm = current->mm;
987 exec_mm_release(tsk, old_mm);
988 if (old_mm)
989 sync_mm_rss(old_mm);
990
991 ret = down_write_killable(&tsk->signal->exec_update_lock);
992 if (ret)
993 return ret;
994
995 if (old_mm) {
996 /*
997 * If there is a pending fatal signal perhaps a signal
998 * whose default action is to create a coredump get
999 * out and die instead of going through with the exec.
1000 */
1001 ret = mmap_read_lock_killable(old_mm);
1002 if (ret) {
1003 up_write(&tsk->signal->exec_update_lock);
1004 return ret;
1005 }
1006 }
1007
1008 task_lock(tsk);
1009 membarrier_exec_mmap(mm);
1010
1011 local_irq_disable();
1012 active_mm = tsk->active_mm;
1013 tsk->active_mm = mm;
1014 tsk->mm = mm;
1015 mm_init_cid(mm);
1016 /*
1017 * This prevents preemption while active_mm is being loaded and
1018 * it and mm are being updated, which could cause problems for
1019 * lazy tlb mm refcounting when these are updated by context
1020 * switches. Not all architectures can handle irqs off over
1021 * activate_mm yet.
1022 */
1023 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 local_irq_enable();
1025 activate_mm(active_mm, mm);
1026 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 local_irq_enable();
1028 lru_gen_add_mm(mm);
1029 task_unlock(tsk);
1030 lru_gen_use_mm(mm);
1031 if (old_mm) {
1032 mmap_read_unlock(old_mm);
1033 BUG_ON(active_mm != old_mm);
1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1035 mm_update_next_owner(old_mm);
1036 mmput(old_mm);
1037 return 0;
1038 }
1039 mmdrop_lazy_tlb(active_mm);
1040 return 0;
1041 }
1042
de_thread(struct task_struct * tsk)1043 static int de_thread(struct task_struct *tsk)
1044 {
1045 struct signal_struct *sig = tsk->signal;
1046 struct sighand_struct *oldsighand = tsk->sighand;
1047 spinlock_t *lock = &oldsighand->siglock;
1048
1049 if (thread_group_empty(tsk))
1050 goto no_thread_group;
1051
1052 /*
1053 * Kill all other threads in the thread group.
1054 */
1055 spin_lock_irq(lock);
1056 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1057 /*
1058 * Another group action in progress, just
1059 * return so that the signal is processed.
1060 */
1061 spin_unlock_irq(lock);
1062 return -EAGAIN;
1063 }
1064
1065 sig->group_exec_task = tsk;
1066 sig->notify_count = zap_other_threads(tsk);
1067 if (!thread_group_leader(tsk))
1068 sig->notify_count--;
1069
1070 while (sig->notify_count) {
1071 __set_current_state(TASK_KILLABLE);
1072 spin_unlock_irq(lock);
1073 schedule();
1074 if (__fatal_signal_pending(tsk))
1075 goto killed;
1076 spin_lock_irq(lock);
1077 }
1078 spin_unlock_irq(lock);
1079
1080 /*
1081 * At this point all other threads have exited, all we have to
1082 * do is to wait for the thread group leader to become inactive,
1083 * and to assume its PID:
1084 */
1085 if (!thread_group_leader(tsk)) {
1086 struct task_struct *leader = tsk->group_leader;
1087
1088 for (;;) {
1089 cgroup_threadgroup_change_begin(tsk);
1090 write_lock_irq(&tasklist_lock);
1091 /*
1092 * Do this under tasklist_lock to ensure that
1093 * exit_notify() can't miss ->group_exec_task
1094 */
1095 sig->notify_count = -1;
1096 if (likely(leader->exit_state))
1097 break;
1098 __set_current_state(TASK_KILLABLE);
1099 write_unlock_irq(&tasklist_lock);
1100 cgroup_threadgroup_change_end(tsk);
1101 schedule();
1102 if (__fatal_signal_pending(tsk))
1103 goto killed;
1104 }
1105
1106 /*
1107 * The only record we have of the real-time age of a
1108 * process, regardless of execs it's done, is start_time.
1109 * All the past CPU time is accumulated in signal_struct
1110 * from sister threads now dead. But in this non-leader
1111 * exec, nothing survives from the original leader thread,
1112 * whose birth marks the true age of this process now.
1113 * When we take on its identity by switching to its PID, we
1114 * also take its birthdate (always earlier than our own).
1115 */
1116 tsk->start_time = leader->start_time;
1117 tsk->start_boottime = leader->start_boottime;
1118
1119 BUG_ON(!same_thread_group(leader, tsk));
1120 /*
1121 * An exec() starts a new thread group with the
1122 * TGID of the previous thread group. Rehash the
1123 * two threads with a switched PID, and release
1124 * the former thread group leader:
1125 */
1126
1127 /* Become a process group leader with the old leader's pid.
1128 * The old leader becomes a thread of the this thread group.
1129 */
1130 exchange_tids(tsk, leader);
1131 transfer_pid(leader, tsk, PIDTYPE_TGID);
1132 transfer_pid(leader, tsk, PIDTYPE_PGID);
1133 transfer_pid(leader, tsk, PIDTYPE_SID);
1134
1135 list_replace_rcu(&leader->tasks, &tsk->tasks);
1136 list_replace_init(&leader->sibling, &tsk->sibling);
1137
1138 tsk->group_leader = tsk;
1139 leader->group_leader = tsk;
1140
1141 tsk->exit_signal = SIGCHLD;
1142 leader->exit_signal = -1;
1143
1144 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145 leader->exit_state = EXIT_DEAD;
1146
1147 /*
1148 * We are going to release_task()->ptrace_unlink() silently,
1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 * the tracer won't block again waiting for this thread.
1151 */
1152 if (unlikely(leader->ptrace))
1153 __wake_up_parent(leader, leader->parent);
1154 write_unlock_irq(&tasklist_lock);
1155 cgroup_threadgroup_change_end(tsk);
1156
1157 release_task(leader);
1158 }
1159
1160 sig->group_exec_task = NULL;
1161 sig->notify_count = 0;
1162
1163 no_thread_group:
1164 /* we have changed execution domain */
1165 tsk->exit_signal = SIGCHLD;
1166
1167 BUG_ON(!thread_group_leader(tsk));
1168 return 0;
1169
1170 killed:
1171 /* protects against exit_notify() and __exit_signal() */
1172 read_lock(&tasklist_lock);
1173 sig->group_exec_task = NULL;
1174 sig->notify_count = 0;
1175 read_unlock(&tasklist_lock);
1176 return -EAGAIN;
1177 }
1178
1179
1180 /*
1181 * This function makes sure the current process has its own signal table,
1182 * so that flush_signal_handlers can later reset the handlers without
1183 * disturbing other processes. (Other processes might share the signal
1184 * table via the CLONE_SIGHAND option to clone().)
1185 */
unshare_sighand(struct task_struct * me)1186 static int unshare_sighand(struct task_struct *me)
1187 {
1188 struct sighand_struct *oldsighand = me->sighand;
1189
1190 if (refcount_read(&oldsighand->count) != 1) {
1191 struct sighand_struct *newsighand;
1192 /*
1193 * This ->sighand is shared with the CLONE_SIGHAND
1194 * but not CLONE_THREAD task, switch to the new one.
1195 */
1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 if (!newsighand)
1198 return -ENOMEM;
1199
1200 refcount_set(&newsighand->count, 1);
1201
1202 write_lock_irq(&tasklist_lock);
1203 spin_lock(&oldsighand->siglock);
1204 memcpy(newsighand->action, oldsighand->action,
1205 sizeof(newsighand->action));
1206 rcu_assign_pointer(me->sighand, newsighand);
1207 spin_unlock(&oldsighand->siglock);
1208 write_unlock_irq(&tasklist_lock);
1209
1210 __cleanup_sighand(oldsighand);
1211 }
1212 return 0;
1213 }
1214
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1215 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1216 {
1217 task_lock(tsk);
1218 /* Always NUL terminated and zero-padded */
1219 strscpy_pad(buf, tsk->comm, buf_size);
1220 task_unlock(tsk);
1221 return buf;
1222 }
1223 EXPORT_SYMBOL_GPL(__get_task_comm);
1224
1225 /*
1226 * These functions flushes out all traces of the currently running executable
1227 * so that a new one can be started
1228 */
1229
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231 {
1232 task_lock(tsk);
1233 trace_task_rename(tsk, buf);
1234 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1235 task_unlock(tsk);
1236 perf_event_comm(tsk, exec);
1237 }
1238
1239 /*
1240 * Calling this is the point of no return. None of the failures will be
1241 * seen by userspace since either the process is already taking a fatal
1242 * signal (via de_thread() or coredump), or will have SEGV raised
1243 * (after exec_mmap()) by search_binary_handler (see below).
1244 */
begin_new_exec(struct linux_binprm * bprm)1245 int begin_new_exec(struct linux_binprm * bprm)
1246 {
1247 struct task_struct *me = current;
1248 int retval;
1249
1250 /* Once we are committed compute the creds */
1251 retval = bprm_creds_from_file(bprm);
1252 if (retval)
1253 return retval;
1254
1255 /*
1256 * Ensure all future errors are fatal.
1257 */
1258 bprm->point_of_no_return = true;
1259
1260 /*
1261 * Make this the only thread in the thread group.
1262 */
1263 retval = de_thread(me);
1264 if (retval)
1265 goto out;
1266
1267 /*
1268 * Cancel any io_uring activity across execve
1269 */
1270 io_uring_task_cancel();
1271
1272 /* Ensure the files table is not shared. */
1273 retval = unshare_files();
1274 if (retval)
1275 goto out;
1276
1277 /*
1278 * Must be called _before_ exec_mmap() as bprm->mm is
1279 * not visible until then. Doing it here also ensures
1280 * we don't race against replace_mm_exe_file().
1281 */
1282 retval = set_mm_exe_file(bprm->mm, bprm->file);
1283 if (retval)
1284 goto out;
1285
1286 /* If the binary is not readable then enforce mm->dumpable=0 */
1287 would_dump(bprm, bprm->file);
1288 if (bprm->have_execfd)
1289 would_dump(bprm, bprm->executable);
1290
1291 /*
1292 * Release all of the old mmap stuff
1293 */
1294 acct_arg_size(bprm, 0);
1295 retval = exec_mmap(bprm->mm);
1296 if (retval)
1297 goto out;
1298
1299 bprm->mm = NULL;
1300
1301 retval = exec_task_namespaces();
1302 if (retval)
1303 goto out_unlock;
1304
1305 #ifdef CONFIG_POSIX_TIMERS
1306 spin_lock_irq(&me->sighand->siglock);
1307 posix_cpu_timers_exit(me);
1308 spin_unlock_irq(&me->sighand->siglock);
1309 exit_itimers(me);
1310 flush_itimer_signals();
1311 #endif
1312
1313 /*
1314 * Make the signal table private.
1315 */
1316 retval = unshare_sighand(me);
1317 if (retval)
1318 goto out_unlock;
1319
1320 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1321 PF_NOFREEZE | PF_NO_SETAFFINITY);
1322 flush_thread();
1323 me->personality &= ~bprm->per_clear;
1324
1325 clear_syscall_work_syscall_user_dispatch(me);
1326
1327 /*
1328 * We have to apply CLOEXEC before we change whether the process is
1329 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1330 * trying to access the should-be-closed file descriptors of a process
1331 * undergoing exec(2).
1332 */
1333 do_close_on_exec(me->files);
1334
1335 if (bprm->secureexec) {
1336 /* Make sure parent cannot signal privileged process. */
1337 me->pdeath_signal = 0;
1338
1339 /*
1340 * For secureexec, reset the stack limit to sane default to
1341 * avoid bad behavior from the prior rlimits. This has to
1342 * happen before arch_pick_mmap_layout(), which examines
1343 * RLIMIT_STACK, but after the point of no return to avoid
1344 * needing to clean up the change on failure.
1345 */
1346 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1347 bprm->rlim_stack.rlim_cur = _STK_LIM;
1348 }
1349
1350 me->sas_ss_sp = me->sas_ss_size = 0;
1351
1352 /*
1353 * Figure out dumpability. Note that this checking only of current
1354 * is wrong, but userspace depends on it. This should be testing
1355 * bprm->secureexec instead.
1356 */
1357 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1358 !(uid_eq(current_euid(), current_uid()) &&
1359 gid_eq(current_egid(), current_gid())))
1360 set_dumpable(current->mm, suid_dumpable);
1361 else
1362 set_dumpable(current->mm, SUID_DUMP_USER);
1363
1364 perf_event_exec();
1365 __set_task_comm(me, kbasename(bprm->filename), true);
1366
1367 /* An exec changes our domain. We are no longer part of the thread
1368 group */
1369 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1370 flush_signal_handlers(me, 0);
1371
1372 retval = set_cred_ucounts(bprm->cred);
1373 if (retval < 0)
1374 goto out_unlock;
1375
1376 /*
1377 * install the new credentials for this executable
1378 */
1379 security_bprm_committing_creds(bprm);
1380
1381 commit_creds(bprm->cred);
1382 bprm->cred = NULL;
1383
1384 /*
1385 * Disable monitoring for regular users
1386 * when executing setuid binaries. Must
1387 * wait until new credentials are committed
1388 * by commit_creds() above
1389 */
1390 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1391 perf_event_exit_task(me);
1392 /*
1393 * cred_guard_mutex must be held at least to this point to prevent
1394 * ptrace_attach() from altering our determination of the task's
1395 * credentials; any time after this it may be unlocked.
1396 */
1397 security_bprm_committed_creds(bprm);
1398
1399 /* Pass the opened binary to the interpreter. */
1400 if (bprm->have_execfd) {
1401 retval = get_unused_fd_flags(0);
1402 if (retval < 0)
1403 goto out_unlock;
1404 fd_install(retval, bprm->executable);
1405 bprm->executable = NULL;
1406 bprm->execfd = retval;
1407 }
1408 return 0;
1409
1410 out_unlock:
1411 up_write(&me->signal->exec_update_lock);
1412 if (!bprm->cred)
1413 mutex_unlock(&me->signal->cred_guard_mutex);
1414
1415 out:
1416 return retval;
1417 }
1418 EXPORT_SYMBOL(begin_new_exec);
1419
would_dump(struct linux_binprm * bprm,struct file * file)1420 void would_dump(struct linux_binprm *bprm, struct file *file)
1421 {
1422 struct inode *inode = file_inode(file);
1423 struct mnt_idmap *idmap = file_mnt_idmap(file);
1424 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1425 struct user_namespace *old, *user_ns;
1426 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1427
1428 /* Ensure mm->user_ns contains the executable */
1429 user_ns = old = bprm->mm->user_ns;
1430 while ((user_ns != &init_user_ns) &&
1431 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1432 user_ns = user_ns->parent;
1433
1434 if (old != user_ns) {
1435 bprm->mm->user_ns = get_user_ns(user_ns);
1436 put_user_ns(old);
1437 }
1438 }
1439 }
1440 EXPORT_SYMBOL(would_dump);
1441
setup_new_exec(struct linux_binprm * bprm)1442 void setup_new_exec(struct linux_binprm * bprm)
1443 {
1444 /* Setup things that can depend upon the personality */
1445 struct task_struct *me = current;
1446
1447 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1448
1449 arch_setup_new_exec();
1450
1451 /* Set the new mm task size. We have to do that late because it may
1452 * depend on TIF_32BIT which is only updated in flush_thread() on
1453 * some architectures like powerpc
1454 */
1455 me->mm->task_size = TASK_SIZE;
1456 up_write(&me->signal->exec_update_lock);
1457 mutex_unlock(&me->signal->cred_guard_mutex);
1458 }
1459 EXPORT_SYMBOL(setup_new_exec);
1460
1461 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1462 void finalize_exec(struct linux_binprm *bprm)
1463 {
1464 /* Store any stack rlimit changes before starting thread. */
1465 task_lock(current->group_leader);
1466 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1467 task_unlock(current->group_leader);
1468 }
1469 EXPORT_SYMBOL(finalize_exec);
1470
1471 /*
1472 * Prepare credentials and lock ->cred_guard_mutex.
1473 * setup_new_exec() commits the new creds and drops the lock.
1474 * Or, if exec fails before, free_bprm() should release ->cred
1475 * and unlock.
1476 */
prepare_bprm_creds(struct linux_binprm * bprm)1477 static int prepare_bprm_creds(struct linux_binprm *bprm)
1478 {
1479 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1480 return -ERESTARTNOINTR;
1481
1482 bprm->cred = prepare_exec_creds();
1483 if (likely(bprm->cred))
1484 return 0;
1485
1486 mutex_unlock(¤t->signal->cred_guard_mutex);
1487 return -ENOMEM;
1488 }
1489
free_bprm(struct linux_binprm * bprm)1490 static void free_bprm(struct linux_binprm *bprm)
1491 {
1492 if (bprm->mm) {
1493 acct_arg_size(bprm, 0);
1494 mmput(bprm->mm);
1495 }
1496 free_arg_pages(bprm);
1497 if (bprm->cred) {
1498 mutex_unlock(¤t->signal->cred_guard_mutex);
1499 abort_creds(bprm->cred);
1500 }
1501 if (bprm->file) {
1502 allow_write_access(bprm->file);
1503 fput(bprm->file);
1504 }
1505 if (bprm->executable)
1506 fput(bprm->executable);
1507 /* If a binfmt changed the interp, free it. */
1508 if (bprm->interp != bprm->filename)
1509 kfree(bprm->interp);
1510 kfree(bprm->fdpath);
1511 kfree(bprm);
1512 }
1513
alloc_bprm(int fd,struct filename * filename)1514 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1515 {
1516 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1517 int retval = -ENOMEM;
1518 if (!bprm)
1519 goto out;
1520
1521 if (fd == AT_FDCWD || filename->name[0] == '/') {
1522 bprm->filename = filename->name;
1523 } else {
1524 if (filename->name[0] == '\0')
1525 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1526 else
1527 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1528 fd, filename->name);
1529 if (!bprm->fdpath)
1530 goto out_free;
1531
1532 bprm->filename = bprm->fdpath;
1533 }
1534 bprm->interp = bprm->filename;
1535
1536 retval = bprm_mm_init(bprm);
1537 if (retval)
1538 goto out_free;
1539 return bprm;
1540
1541 out_free:
1542 free_bprm(bprm);
1543 out:
1544 return ERR_PTR(retval);
1545 }
1546
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1547 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1548 {
1549 /* If a binfmt changed the interp, free it first. */
1550 if (bprm->interp != bprm->filename)
1551 kfree(bprm->interp);
1552 bprm->interp = kstrdup(interp, GFP_KERNEL);
1553 if (!bprm->interp)
1554 return -ENOMEM;
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(bprm_change_interp);
1558
1559 /*
1560 * determine how safe it is to execute the proposed program
1561 * - the caller must hold ->cred_guard_mutex to protect against
1562 * PTRACE_ATTACH or seccomp thread-sync
1563 */
check_unsafe_exec(struct linux_binprm * bprm)1564 static void check_unsafe_exec(struct linux_binprm *bprm)
1565 {
1566 struct task_struct *p = current, *t;
1567 unsigned n_fs;
1568
1569 if (p->ptrace)
1570 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1571
1572 /*
1573 * This isn't strictly necessary, but it makes it harder for LSMs to
1574 * mess up.
1575 */
1576 if (task_no_new_privs(current))
1577 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1578
1579 /*
1580 * If another task is sharing our fs, we cannot safely
1581 * suid exec because the differently privileged task
1582 * will be able to manipulate the current directory, etc.
1583 * It would be nice to force an unshare instead...
1584 */
1585 t = p;
1586 n_fs = 1;
1587 spin_lock(&p->fs->lock);
1588 rcu_read_lock();
1589 while_each_thread(p, t) {
1590 if (t->fs == p->fs)
1591 n_fs++;
1592 }
1593 rcu_read_unlock();
1594
1595 if (p->fs->users > n_fs)
1596 bprm->unsafe |= LSM_UNSAFE_SHARE;
1597 else
1598 p->fs->in_exec = 1;
1599 spin_unlock(&p->fs->lock);
1600 }
1601
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1602 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1603 {
1604 /* Handle suid and sgid on files */
1605 struct mnt_idmap *idmap;
1606 struct inode *inode = file_inode(file);
1607 unsigned int mode;
1608 vfsuid_t vfsuid;
1609 vfsgid_t vfsgid;
1610 int err;
1611
1612 if (!mnt_may_suid(file->f_path.mnt))
1613 return;
1614
1615 if (task_no_new_privs(current))
1616 return;
1617
1618 mode = READ_ONCE(inode->i_mode);
1619 if (!(mode & (S_ISUID|S_ISGID)))
1620 return;
1621
1622 idmap = file_mnt_idmap(file);
1623
1624 /* Be careful if suid/sgid is set */
1625 inode_lock(inode);
1626
1627 /* Atomically reload and check mode/uid/gid now that lock held. */
1628 mode = inode->i_mode;
1629 vfsuid = i_uid_into_vfsuid(idmap, inode);
1630 vfsgid = i_gid_into_vfsgid(idmap, inode);
1631 err = inode_permission(idmap, inode, MAY_EXEC);
1632 inode_unlock(inode);
1633
1634 /* Did the exec bit vanish out from under us? Give up. */
1635 if (err)
1636 return;
1637
1638 /* We ignore suid/sgid if there are no mappings for them in the ns */
1639 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1640 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1641 return;
1642
1643 if (mode & S_ISUID) {
1644 bprm->per_clear |= PER_CLEAR_ON_SETID;
1645 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1646 }
1647
1648 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1649 bprm->per_clear |= PER_CLEAR_ON_SETID;
1650 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1651 }
1652 }
1653
1654 /*
1655 * Compute brpm->cred based upon the final binary.
1656 */
bprm_creds_from_file(struct linux_binprm * bprm)1657 static int bprm_creds_from_file(struct linux_binprm *bprm)
1658 {
1659 /* Compute creds based on which file? */
1660 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1661
1662 bprm_fill_uid(bprm, file);
1663 return security_bprm_creds_from_file(bprm, file);
1664 }
1665
1666 /*
1667 * Fill the binprm structure from the inode.
1668 * Read the first BINPRM_BUF_SIZE bytes
1669 *
1670 * This may be called multiple times for binary chains (scripts for example).
1671 */
prepare_binprm(struct linux_binprm * bprm)1672 static int prepare_binprm(struct linux_binprm *bprm)
1673 {
1674 loff_t pos = 0;
1675
1676 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1677 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1678 }
1679
1680 /*
1681 * Arguments are '\0' separated strings found at the location bprm->p
1682 * points to; chop off the first by relocating brpm->p to right after
1683 * the first '\0' encountered.
1684 */
remove_arg_zero(struct linux_binprm * bprm)1685 int remove_arg_zero(struct linux_binprm *bprm)
1686 {
1687 int ret = 0;
1688 unsigned long offset;
1689 char *kaddr;
1690 struct page *page;
1691
1692 if (!bprm->argc)
1693 return 0;
1694
1695 do {
1696 offset = bprm->p & ~PAGE_MASK;
1697 page = get_arg_page(bprm, bprm->p, 0);
1698 if (!page) {
1699 ret = -EFAULT;
1700 goto out;
1701 }
1702 kaddr = kmap_local_page(page);
1703
1704 for (; offset < PAGE_SIZE && kaddr[offset];
1705 offset++, bprm->p++)
1706 ;
1707
1708 kunmap_local(kaddr);
1709 put_arg_page(page);
1710 } while (offset == PAGE_SIZE);
1711
1712 bprm->p++;
1713 bprm->argc--;
1714 ret = 0;
1715
1716 out:
1717 return ret;
1718 }
1719 EXPORT_SYMBOL(remove_arg_zero);
1720
1721 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1722 /*
1723 * cycle the list of binary formats handler, until one recognizes the image
1724 */
search_binary_handler(struct linux_binprm * bprm)1725 static int search_binary_handler(struct linux_binprm *bprm)
1726 {
1727 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1728 struct linux_binfmt *fmt;
1729 int retval;
1730
1731 retval = prepare_binprm(bprm);
1732 if (retval < 0)
1733 return retval;
1734
1735 retval = security_bprm_check(bprm);
1736 if (retval)
1737 return retval;
1738
1739 retval = -ENOENT;
1740 retry:
1741 read_lock(&binfmt_lock);
1742 list_for_each_entry(fmt, &formats, lh) {
1743 if (!try_module_get(fmt->module))
1744 continue;
1745 read_unlock(&binfmt_lock);
1746
1747 retval = fmt->load_binary(bprm);
1748
1749 read_lock(&binfmt_lock);
1750 put_binfmt(fmt);
1751 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1752 read_unlock(&binfmt_lock);
1753 return retval;
1754 }
1755 }
1756 read_unlock(&binfmt_lock);
1757
1758 if (need_retry) {
1759 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1760 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1761 return retval;
1762 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1763 return retval;
1764 need_retry = false;
1765 goto retry;
1766 }
1767
1768 return retval;
1769 }
1770
1771 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1772 static int exec_binprm(struct linux_binprm *bprm)
1773 {
1774 pid_t old_pid, old_vpid;
1775 int ret, depth;
1776
1777 /* Need to fetch pid before load_binary changes it */
1778 old_pid = current->pid;
1779 rcu_read_lock();
1780 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1781 rcu_read_unlock();
1782
1783 /* This allows 4 levels of binfmt rewrites before failing hard. */
1784 for (depth = 0;; depth++) {
1785 struct file *exec;
1786 if (depth > 5)
1787 return -ELOOP;
1788
1789 ret = search_binary_handler(bprm);
1790 if (ret < 0)
1791 return ret;
1792 if (!bprm->interpreter)
1793 break;
1794
1795 exec = bprm->file;
1796 bprm->file = bprm->interpreter;
1797 bprm->interpreter = NULL;
1798
1799 allow_write_access(exec);
1800 if (unlikely(bprm->have_execfd)) {
1801 if (bprm->executable) {
1802 fput(exec);
1803 return -ENOEXEC;
1804 }
1805 bprm->executable = exec;
1806 } else
1807 fput(exec);
1808 }
1809
1810 audit_bprm(bprm);
1811 trace_sched_process_exec(current, old_pid, bprm);
1812 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1813 proc_exec_connector(current);
1814 return 0;
1815 }
1816
1817 /*
1818 * sys_execve() executes a new program.
1819 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1820 static int bprm_execve(struct linux_binprm *bprm,
1821 int fd, struct filename *filename, int flags)
1822 {
1823 struct file *file;
1824 int retval;
1825
1826 retval = prepare_bprm_creds(bprm);
1827 if (retval)
1828 return retval;
1829
1830 /*
1831 * Check for unsafe execution states before exec_binprm(), which
1832 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1833 * where setuid-ness is evaluated.
1834 */
1835 check_unsafe_exec(bprm);
1836 current->in_execve = 1;
1837 sched_mm_cid_before_execve(current);
1838
1839 file = do_open_execat(fd, filename, flags);
1840 retval = PTR_ERR(file);
1841 if (IS_ERR(file))
1842 goto out_unmark;
1843
1844 sched_exec();
1845
1846 bprm->file = file;
1847 /*
1848 * Record that a name derived from an O_CLOEXEC fd will be
1849 * inaccessible after exec. This allows the code in exec to
1850 * choose to fail when the executable is not mmaped into the
1851 * interpreter and an open file descriptor is not passed to
1852 * the interpreter. This makes for a better user experience
1853 * than having the interpreter start and then immediately fail
1854 * when it finds the executable is inaccessible.
1855 */
1856 if (bprm->fdpath && get_close_on_exec(fd))
1857 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1858
1859 /* Set the unchanging part of bprm->cred */
1860 retval = security_bprm_creds_for_exec(bprm);
1861 if (retval)
1862 goto out;
1863
1864 retval = exec_binprm(bprm);
1865 if (retval < 0)
1866 goto out;
1867
1868 sched_mm_cid_after_execve(current);
1869 /* execve succeeded */
1870 current->fs->in_exec = 0;
1871 current->in_execve = 0;
1872 rseq_execve(current);
1873 user_events_execve(current);
1874 acct_update_integrals(current);
1875 task_numa_free(current, false);
1876 return retval;
1877
1878 out:
1879 /*
1880 * If past the point of no return ensure the code never
1881 * returns to the userspace process. Use an existing fatal
1882 * signal if present otherwise terminate the process with
1883 * SIGSEGV.
1884 */
1885 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1886 force_fatal_sig(SIGSEGV);
1887
1888 out_unmark:
1889 sched_mm_cid_after_execve(current);
1890 current->fs->in_exec = 0;
1891 current->in_execve = 0;
1892
1893 return retval;
1894 }
1895
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1896 static int do_execveat_common(int fd, struct filename *filename,
1897 struct user_arg_ptr argv,
1898 struct user_arg_ptr envp,
1899 int flags)
1900 {
1901 struct linux_binprm *bprm;
1902 int retval;
1903
1904 if (IS_ERR(filename))
1905 return PTR_ERR(filename);
1906
1907 /*
1908 * We move the actual failure in case of RLIMIT_NPROC excess from
1909 * set*uid() to execve() because too many poorly written programs
1910 * don't check setuid() return code. Here we additionally recheck
1911 * whether NPROC limit is still exceeded.
1912 */
1913 if ((current->flags & PF_NPROC_EXCEEDED) &&
1914 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1915 retval = -EAGAIN;
1916 goto out_ret;
1917 }
1918
1919 /* We're below the limit (still or again), so we don't want to make
1920 * further execve() calls fail. */
1921 current->flags &= ~PF_NPROC_EXCEEDED;
1922
1923 bprm = alloc_bprm(fd, filename);
1924 if (IS_ERR(bprm)) {
1925 retval = PTR_ERR(bprm);
1926 goto out_ret;
1927 }
1928
1929 retval = count(argv, MAX_ARG_STRINGS);
1930 if (retval == 0)
1931 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1932 current->comm, bprm->filename);
1933 if (retval < 0)
1934 goto out_free;
1935 bprm->argc = retval;
1936
1937 retval = count(envp, MAX_ARG_STRINGS);
1938 if (retval < 0)
1939 goto out_free;
1940 bprm->envc = retval;
1941
1942 retval = bprm_stack_limits(bprm);
1943 if (retval < 0)
1944 goto out_free;
1945
1946 retval = copy_string_kernel(bprm->filename, bprm);
1947 if (retval < 0)
1948 goto out_free;
1949 bprm->exec = bprm->p;
1950
1951 retval = copy_strings(bprm->envc, envp, bprm);
1952 if (retval < 0)
1953 goto out_free;
1954
1955 retval = copy_strings(bprm->argc, argv, bprm);
1956 if (retval < 0)
1957 goto out_free;
1958
1959 /*
1960 * When argv is empty, add an empty string ("") as argv[0] to
1961 * ensure confused userspace programs that start processing
1962 * from argv[1] won't end up walking envp. See also
1963 * bprm_stack_limits().
1964 */
1965 if (bprm->argc == 0) {
1966 retval = copy_string_kernel("", bprm);
1967 if (retval < 0)
1968 goto out_free;
1969 bprm->argc = 1;
1970 }
1971
1972 retval = bprm_execve(bprm, fd, filename, flags);
1973 out_free:
1974 free_bprm(bprm);
1975
1976 out_ret:
1977 putname(filename);
1978 return retval;
1979 }
1980
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1981 int kernel_execve(const char *kernel_filename,
1982 const char *const *argv, const char *const *envp)
1983 {
1984 struct filename *filename;
1985 struct linux_binprm *bprm;
1986 int fd = AT_FDCWD;
1987 int retval;
1988
1989 /* It is non-sense for kernel threads to call execve */
1990 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1991 return -EINVAL;
1992
1993 filename = getname_kernel(kernel_filename);
1994 if (IS_ERR(filename))
1995 return PTR_ERR(filename);
1996
1997 bprm = alloc_bprm(fd, filename);
1998 if (IS_ERR(bprm)) {
1999 retval = PTR_ERR(bprm);
2000 goto out_ret;
2001 }
2002
2003 retval = count_strings_kernel(argv);
2004 if (WARN_ON_ONCE(retval == 0))
2005 retval = -EINVAL;
2006 if (retval < 0)
2007 goto out_free;
2008 bprm->argc = retval;
2009
2010 retval = count_strings_kernel(envp);
2011 if (retval < 0)
2012 goto out_free;
2013 bprm->envc = retval;
2014
2015 retval = bprm_stack_limits(bprm);
2016 if (retval < 0)
2017 goto out_free;
2018
2019 retval = copy_string_kernel(bprm->filename, bprm);
2020 if (retval < 0)
2021 goto out_free;
2022 bprm->exec = bprm->p;
2023
2024 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2025 if (retval < 0)
2026 goto out_free;
2027
2028 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2029 if (retval < 0)
2030 goto out_free;
2031
2032 retval = bprm_execve(bprm, fd, filename, 0);
2033 out_free:
2034 free_bprm(bprm);
2035 out_ret:
2036 putname(filename);
2037 return retval;
2038 }
2039
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2040 static int do_execve(struct filename *filename,
2041 const char __user *const __user *__argv,
2042 const char __user *const __user *__envp)
2043 {
2044 struct user_arg_ptr argv = { .ptr.native = __argv };
2045 struct user_arg_ptr envp = { .ptr.native = __envp };
2046 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2047 }
2048
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2049 static int do_execveat(int fd, struct filename *filename,
2050 const char __user *const __user *__argv,
2051 const char __user *const __user *__envp,
2052 int flags)
2053 {
2054 struct user_arg_ptr argv = { .ptr.native = __argv };
2055 struct user_arg_ptr envp = { .ptr.native = __envp };
2056
2057 return do_execveat_common(fd, filename, argv, envp, flags);
2058 }
2059
2060 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2061 static int compat_do_execve(struct filename *filename,
2062 const compat_uptr_t __user *__argv,
2063 const compat_uptr_t __user *__envp)
2064 {
2065 struct user_arg_ptr argv = {
2066 .is_compat = true,
2067 .ptr.compat = __argv,
2068 };
2069 struct user_arg_ptr envp = {
2070 .is_compat = true,
2071 .ptr.compat = __envp,
2072 };
2073 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2074 }
2075
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2076 static int compat_do_execveat(int fd, struct filename *filename,
2077 const compat_uptr_t __user *__argv,
2078 const compat_uptr_t __user *__envp,
2079 int flags)
2080 {
2081 struct user_arg_ptr argv = {
2082 .is_compat = true,
2083 .ptr.compat = __argv,
2084 };
2085 struct user_arg_ptr envp = {
2086 .is_compat = true,
2087 .ptr.compat = __envp,
2088 };
2089 return do_execveat_common(fd, filename, argv, envp, flags);
2090 }
2091 #endif
2092
set_binfmt(struct linux_binfmt * new)2093 void set_binfmt(struct linux_binfmt *new)
2094 {
2095 struct mm_struct *mm = current->mm;
2096
2097 if (mm->binfmt)
2098 module_put(mm->binfmt->module);
2099
2100 mm->binfmt = new;
2101 if (new)
2102 __module_get(new->module);
2103 }
2104 EXPORT_SYMBOL(set_binfmt);
2105
2106 /*
2107 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2108 */
set_dumpable(struct mm_struct * mm,int value)2109 void set_dumpable(struct mm_struct *mm, int value)
2110 {
2111 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2112 return;
2113
2114 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2115 }
2116
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2117 SYSCALL_DEFINE3(execve,
2118 const char __user *, filename,
2119 const char __user *const __user *, argv,
2120 const char __user *const __user *, envp)
2121 {
2122 return do_execve(getname(filename), argv, envp);
2123 }
2124
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2125 SYSCALL_DEFINE5(execveat,
2126 int, fd, const char __user *, filename,
2127 const char __user *const __user *, argv,
2128 const char __user *const __user *, envp,
2129 int, flags)
2130 {
2131 return do_execveat(fd,
2132 getname_uflags(filename, flags),
2133 argv, envp, flags);
2134 }
2135
2136 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2137 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2138 const compat_uptr_t __user *, argv,
2139 const compat_uptr_t __user *, envp)
2140 {
2141 return compat_do_execve(getname(filename), argv, envp);
2142 }
2143
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2144 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2145 const char __user *, filename,
2146 const compat_uptr_t __user *, argv,
2147 const compat_uptr_t __user *, envp,
2148 int, flags)
2149 {
2150 return compat_do_execveat(fd,
2151 getname_uflags(filename, flags),
2152 argv, envp, flags);
2153 }
2154 #endif
2155
2156 #ifdef CONFIG_SYSCTL
2157
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2158 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2159 void *buffer, size_t *lenp, loff_t *ppos)
2160 {
2161 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2162
2163 if (!error)
2164 validate_coredump_safety();
2165 return error;
2166 }
2167
2168 static struct ctl_table fs_exec_sysctls[] = {
2169 {
2170 .procname = "suid_dumpable",
2171 .data = &suid_dumpable,
2172 .maxlen = sizeof(int),
2173 .mode = 0644,
2174 .proc_handler = proc_dointvec_minmax_coredump,
2175 .extra1 = SYSCTL_ZERO,
2176 .extra2 = SYSCTL_TWO,
2177 },
2178 { }
2179 };
2180
init_fs_exec_sysctls(void)2181 static int __init init_fs_exec_sysctls(void)
2182 {
2183 register_sysctl_init("fs", fs_exec_sysctls);
2184 return 0;
2185 }
2186
2187 fs_initcall(init_fs_exec_sysctls);
2188 #endif /* CONFIG_SYSCTL */
2189