xref: /openbmc/linux/net/core/filter.c (revision 77c523df)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86 
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 	if (in_compat_syscall()) {
93 		struct compat_sock_fprog f32;
94 
95 		if (len != sizeof(f32))
96 			return -EINVAL;
97 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 			return -EFAULT;
99 		memset(dst, 0, sizeof(*dst));
100 		dst->len = f32.len;
101 		dst->filter = compat_ptr(f32.filter);
102 	} else {
103 		if (len != sizeof(*dst))
104 			return -EINVAL;
105 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 			return -EFAULT;
107 	}
108 
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112 
113 /**
114  *	sk_filter_trim_cap - run a packet through a socket filter
115  *	@sk: sock associated with &sk_buff
116  *	@skb: buffer to filter
117  *	@cap: limit on how short the eBPF program may trim the packet
118  *
119  * Run the eBPF program and then cut skb->data to correct size returned by
120  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121  * than pkt_len we keep whole skb->data. This is the socket level
122  * wrapper to bpf_prog_run. It returns 0 if the packet should
123  * be accepted or -EPERM if the packet should be tossed.
124  *
125  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 	int err;
129 	struct sk_filter *filter;
130 
131 	/*
132 	 * If the skb was allocated from pfmemalloc reserves, only
133 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 	 * helping free memory
135 	 */
136 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 		return -ENOMEM;
139 	}
140 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 	if (err)
142 		return err;
143 
144 	err = security_sock_rcv_skb(sk, skb);
145 	if (err)
146 		return err;
147 
148 	rcu_read_lock();
149 	filter = rcu_dereference(sk->sk_filter);
150 	if (filter) {
151 		struct sock *save_sk = skb->sk;
152 		unsigned int pkt_len;
153 
154 		skb->sk = sk;
155 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 		skb->sk = save_sk;
157 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 	}
159 	rcu_read_unlock();
160 
161 	return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 	return skb_get_poff(skb);
168 }
169 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 	struct nlattr *nla;
173 
174 	if (skb_is_nonlinear(skb))
175 		return 0;
176 
177 	if (skb->len < sizeof(struct nlattr))
178 		return 0;
179 
180 	if (a > skb->len - sizeof(struct nlattr))
181 		return 0;
182 
183 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 	if (nla)
185 		return (void *) nla - (void *) skb->data;
186 
187 	return 0;
188 }
189 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 	struct nlattr *nla;
193 
194 	if (skb_is_nonlinear(skb))
195 		return 0;
196 
197 	if (skb->len < sizeof(struct nlattr))
198 		return 0;
199 
200 	if (a > skb->len - sizeof(struct nlattr))
201 		return 0;
202 
203 	nla = (struct nlattr *) &skb->data[a];
204 	if (nla->nla_len > skb->len - a)
205 		return 0;
206 
207 	nla = nla_find_nested(nla, x);
208 	if (nla)
209 		return (void *) nla - (void *) skb->data;
210 
211 	return 0;
212 }
213 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)214 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
215 	   data, int, headlen, int, offset)
216 {
217 	u8 tmp, *ptr;
218 	const int len = sizeof(tmp);
219 
220 	if (offset >= 0) {
221 		if (headlen - offset >= len)
222 			return *(u8 *)(data + offset);
223 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
224 			return tmp;
225 	} else {
226 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
227 		if (likely(ptr))
228 			return *(u8 *)ptr;
229 	}
230 
231 	return -EFAULT;
232 }
233 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)234 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
235 	   int, offset)
236 {
237 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
238 					 offset);
239 }
240 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)241 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
242 	   data, int, headlen, int, offset)
243 {
244 	__be16 tmp, *ptr;
245 	const int len = sizeof(tmp);
246 
247 	if (offset >= 0) {
248 		if (headlen - offset >= len)
249 			return get_unaligned_be16(data + offset);
250 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
251 			return be16_to_cpu(tmp);
252 	} else {
253 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
254 		if (likely(ptr))
255 			return get_unaligned_be16(ptr);
256 	}
257 
258 	return -EFAULT;
259 }
260 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)261 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
262 	   int, offset)
263 {
264 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
265 					  offset);
266 }
267 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)268 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
269 	   data, int, headlen, int, offset)
270 {
271 	__be32 tmp, *ptr;
272 	const int len = sizeof(tmp);
273 
274 	if (likely(offset >= 0)) {
275 		if (headlen - offset >= len)
276 			return get_unaligned_be32(data + offset);
277 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
278 			return be32_to_cpu(tmp);
279 	} else {
280 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
281 		if (likely(ptr))
282 			return get_unaligned_be32(ptr);
283 	}
284 
285 	return -EFAULT;
286 }
287 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)288 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
289 	   int, offset)
290 {
291 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
292 					  offset);
293 }
294 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)295 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
296 			      struct bpf_insn *insn_buf)
297 {
298 	struct bpf_insn *insn = insn_buf;
299 
300 	switch (skb_field) {
301 	case SKF_AD_MARK:
302 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
303 
304 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
305 				      offsetof(struct sk_buff, mark));
306 		break;
307 
308 	case SKF_AD_PKTTYPE:
309 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
310 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
311 #ifdef __BIG_ENDIAN_BITFIELD
312 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
313 #endif
314 		break;
315 
316 	case SKF_AD_QUEUE:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, queue_mapping));
321 		break;
322 
323 	case SKF_AD_VLAN_TAG:
324 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
325 
326 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 				      offsetof(struct sk_buff, vlan_tci));
329 		break;
330 	case SKF_AD_VLAN_TAG_PRESENT:
331 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
332 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
333 				      offsetof(struct sk_buff, vlan_all));
334 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
335 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
336 		break;
337 	}
338 
339 	return insn - insn_buf;
340 }
341 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)342 static bool convert_bpf_extensions(struct sock_filter *fp,
343 				   struct bpf_insn **insnp)
344 {
345 	struct bpf_insn *insn = *insnp;
346 	u32 cnt;
347 
348 	switch (fp->k) {
349 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
350 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
351 
352 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
353 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
354 				      offsetof(struct sk_buff, protocol));
355 		/* A = ntohs(A) [emitting a nop or swap16] */
356 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
360 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
361 		insn += cnt - 1;
362 		break;
363 
364 	case SKF_AD_OFF + SKF_AD_IFINDEX:
365 	case SKF_AD_OFF + SKF_AD_HATYPE:
366 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
367 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
368 
369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
370 				      BPF_REG_TMP, BPF_REG_CTX,
371 				      offsetof(struct sk_buff, dev));
372 		/* if (tmp != 0) goto pc + 1 */
373 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
374 		*insn++ = BPF_EXIT_INSN();
375 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
376 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
377 					    offsetof(struct net_device, ifindex));
378 		else
379 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
380 					    offsetof(struct net_device, type));
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_MARK:
384 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_RXHASH:
389 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
390 
391 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
392 				    offsetof(struct sk_buff, hash));
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_QUEUE:
396 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
407 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
408 					 BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
414 
415 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
416 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
417 				      offsetof(struct sk_buff, vlan_proto));
418 		/* A = ntohs(A) [emitting a nop or swap16] */
419 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
420 		break;
421 
422 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
423 	case SKF_AD_OFF + SKF_AD_NLATTR:
424 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
425 	case SKF_AD_OFF + SKF_AD_CPU:
426 	case SKF_AD_OFF + SKF_AD_RANDOM:
427 		/* arg1 = CTX */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
429 		/* arg2 = A */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
431 		/* arg3 = X */
432 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
433 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
434 		switch (fp->k) {
435 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_NLATTR:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_CPU:
445 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
446 			break;
447 		case SKF_AD_OFF + SKF_AD_RANDOM:
448 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
449 			bpf_user_rnd_init_once();
450 			break;
451 		}
452 		break;
453 
454 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
455 		/* A ^= X */
456 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
457 		break;
458 
459 	default:
460 		/* This is just a dummy call to avoid letting the compiler
461 		 * evict __bpf_call_base() as an optimization. Placed here
462 		 * where no-one bothers.
463 		 */
464 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
465 		return false;
466 	}
467 
468 	*insnp = insn;
469 	return true;
470 }
471 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)472 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
473 {
474 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
475 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
476 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
477 		      BPF_SIZE(fp->code) == BPF_W;
478 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
479 	const int ip_align = NET_IP_ALIGN;
480 	struct bpf_insn *insn = *insnp;
481 	int offset = fp->k;
482 
483 	if (!indirect &&
484 	    ((unaligned_ok && offset >= 0) ||
485 	     (!unaligned_ok && offset >= 0 &&
486 	      offset + ip_align >= 0 &&
487 	      offset + ip_align % size == 0))) {
488 		bool ldx_off_ok = offset <= S16_MAX;
489 
490 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
491 		if (offset)
492 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
493 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
494 				      size, 2 + endian + (!ldx_off_ok * 2));
495 		if (ldx_off_ok) {
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_D, offset);
498 		} else {
499 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
500 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
501 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
502 					      BPF_REG_TMP, 0);
503 		}
504 		if (endian)
505 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
506 		*insn++ = BPF_JMP_A(8);
507 	}
508 
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
510 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
511 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
512 	if (!indirect) {
513 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
514 	} else {
515 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
516 		if (fp->k)
517 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
518 	}
519 
520 	switch (BPF_SIZE(fp->code)) {
521 	case BPF_B:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
523 		break;
524 	case BPF_H:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
526 		break;
527 	case BPF_W:
528 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
529 		break;
530 	default:
531 		return false;
532 	}
533 
534 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
535 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
536 	*insn   = BPF_EXIT_INSN();
537 
538 	*insnp = insn;
539 	return true;
540 }
541 
542 /**
543  *	bpf_convert_filter - convert filter program
544  *	@prog: the user passed filter program
545  *	@len: the length of the user passed filter program
546  *	@new_prog: allocated 'struct bpf_prog' or NULL
547  *	@new_len: pointer to store length of converted program
548  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
549  *
550  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
551  * style extended BPF (eBPF).
552  * Conversion workflow:
553  *
554  * 1) First pass for calculating the new program length:
555  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
556  *
557  * 2) 2nd pass to remap in two passes: 1st pass finds new
558  *    jump offsets, 2nd pass remapping:
559  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
560  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)561 static int bpf_convert_filter(struct sock_filter *prog, int len,
562 			      struct bpf_prog *new_prog, int *new_len,
563 			      bool *seen_ld_abs)
564 {
565 	int new_flen = 0, pass = 0, target, i, stack_off;
566 	struct bpf_insn *new_insn, *first_insn = NULL;
567 	struct sock_filter *fp;
568 	int *addrs = NULL;
569 	u8 bpf_src;
570 
571 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
572 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
573 
574 	if (len <= 0 || len > BPF_MAXINSNS)
575 		return -EINVAL;
576 
577 	if (new_prog) {
578 		first_insn = new_prog->insnsi;
579 		addrs = kcalloc(len, sizeof(*addrs),
580 				GFP_KERNEL | __GFP_NOWARN);
581 		if (!addrs)
582 			return -ENOMEM;
583 	}
584 
585 do_pass:
586 	new_insn = first_insn;
587 	fp = prog;
588 
589 	/* Classic BPF related prologue emission. */
590 	if (new_prog) {
591 		/* Classic BPF expects A and X to be reset first. These need
592 		 * to be guaranteed to be the first two instructions.
593 		 */
594 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
595 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
596 
597 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
598 		 * In eBPF case it's done by the compiler, here we need to
599 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
600 		 */
601 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
602 		if (*seen_ld_abs) {
603 			/* For packet access in classic BPF, cache skb->data
604 			 * in callee-saved BPF R8 and skb->len - skb->data_len
605 			 * (headlen) in BPF R9. Since classic BPF is read-only
606 			 * on CTX, we only need to cache it once.
607 			 */
608 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
609 						  BPF_REG_D, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, len));
613 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
614 						  offsetof(struct sk_buff, data_len));
615 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
616 		}
617 	} else {
618 		new_insn += 3;
619 	}
620 
621 	for (i = 0; i < len; fp++, i++) {
622 		struct bpf_insn tmp_insns[32] = { };
623 		struct bpf_insn *insn = tmp_insns;
624 
625 		if (addrs)
626 			addrs[i] = new_insn - first_insn;
627 
628 		switch (fp->code) {
629 		/* All arithmetic insns and skb loads map as-is. */
630 		case BPF_ALU | BPF_ADD | BPF_X:
631 		case BPF_ALU | BPF_ADD | BPF_K:
632 		case BPF_ALU | BPF_SUB | BPF_X:
633 		case BPF_ALU | BPF_SUB | BPF_K:
634 		case BPF_ALU | BPF_AND | BPF_X:
635 		case BPF_ALU | BPF_AND | BPF_K:
636 		case BPF_ALU | BPF_OR | BPF_X:
637 		case BPF_ALU | BPF_OR | BPF_K:
638 		case BPF_ALU | BPF_LSH | BPF_X:
639 		case BPF_ALU | BPF_LSH | BPF_K:
640 		case BPF_ALU | BPF_RSH | BPF_X:
641 		case BPF_ALU | BPF_RSH | BPF_K:
642 		case BPF_ALU | BPF_XOR | BPF_X:
643 		case BPF_ALU | BPF_XOR | BPF_K:
644 		case BPF_ALU | BPF_MUL | BPF_X:
645 		case BPF_ALU | BPF_MUL | BPF_K:
646 		case BPF_ALU | BPF_DIV | BPF_X:
647 		case BPF_ALU | BPF_DIV | BPF_K:
648 		case BPF_ALU | BPF_MOD | BPF_X:
649 		case BPF_ALU | BPF_MOD | BPF_K:
650 		case BPF_ALU | BPF_NEG:
651 		case BPF_LD | BPF_ABS | BPF_W:
652 		case BPF_LD | BPF_ABS | BPF_H:
653 		case BPF_LD | BPF_ABS | BPF_B:
654 		case BPF_LD | BPF_IND | BPF_W:
655 		case BPF_LD | BPF_IND | BPF_H:
656 		case BPF_LD | BPF_IND | BPF_B:
657 			/* Check for overloaded BPF extension and
658 			 * directly convert it if found, otherwise
659 			 * just move on with mapping.
660 			 */
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    BPF_MODE(fp->code) == BPF_ABS &&
663 			    convert_bpf_extensions(fp, &insn))
664 				break;
665 			if (BPF_CLASS(fp->code) == BPF_LD &&
666 			    convert_bpf_ld_abs(fp, &insn)) {
667 				*seen_ld_abs = true;
668 				break;
669 			}
670 
671 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
672 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
673 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
674 				/* Error with exception code on div/mod by 0.
675 				 * For cBPF programs, this was always return 0.
676 				 */
677 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
678 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
679 				*insn++ = BPF_EXIT_INSN();
680 			}
681 
682 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
683 			break;
684 
685 		/* Jump transformation cannot use BPF block macros
686 		 * everywhere as offset calculation and target updates
687 		 * require a bit more work than the rest, i.e. jump
688 		 * opcodes map as-is, but offsets need adjustment.
689 		 */
690 
691 #define BPF_EMIT_JMP							\
692 	do {								\
693 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
694 		s32 off;						\
695 									\
696 		if (target >= len || target < 0)			\
697 			goto err;					\
698 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
699 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
700 		off -= insn - tmp_insns;				\
701 		/* Reject anything not fitting into insn->off. */	\
702 		if (off < off_min || off > off_max)			\
703 			goto err;					\
704 		insn->off = off;					\
705 	} while (0)
706 
707 		case BPF_JMP | BPF_JA:
708 			target = i + fp->k + 1;
709 			insn->code = fp->code;
710 			BPF_EMIT_JMP;
711 			break;
712 
713 		case BPF_JMP | BPF_JEQ | BPF_K:
714 		case BPF_JMP | BPF_JEQ | BPF_X:
715 		case BPF_JMP | BPF_JSET | BPF_K:
716 		case BPF_JMP | BPF_JSET | BPF_X:
717 		case BPF_JMP | BPF_JGT | BPF_K:
718 		case BPF_JMP | BPF_JGT | BPF_X:
719 		case BPF_JMP | BPF_JGE | BPF_K:
720 		case BPF_JMP | BPF_JGE | BPF_X:
721 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
722 				/* BPF immediates are signed, zero extend
723 				 * immediate into tmp register and use it
724 				 * in compare insn.
725 				 */
726 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
727 
728 				insn->dst_reg = BPF_REG_A;
729 				insn->src_reg = BPF_REG_TMP;
730 				bpf_src = BPF_X;
731 			} else {
732 				insn->dst_reg = BPF_REG_A;
733 				insn->imm = fp->k;
734 				bpf_src = BPF_SRC(fp->code);
735 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
736 			}
737 
738 			/* Common case where 'jump_false' is next insn. */
739 			if (fp->jf == 0) {
740 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
741 				target = i + fp->jt + 1;
742 				BPF_EMIT_JMP;
743 				break;
744 			}
745 
746 			/* Convert some jumps when 'jump_true' is next insn. */
747 			if (fp->jt == 0) {
748 				switch (BPF_OP(fp->code)) {
749 				case BPF_JEQ:
750 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
751 					break;
752 				case BPF_JGT:
753 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
754 					break;
755 				case BPF_JGE:
756 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
757 					break;
758 				default:
759 					goto jmp_rest;
760 				}
761 
762 				target = i + fp->jf + 1;
763 				BPF_EMIT_JMP;
764 				break;
765 			}
766 jmp_rest:
767 			/* Other jumps are mapped into two insns: Jxx and JA. */
768 			target = i + fp->jt + 1;
769 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
770 			BPF_EMIT_JMP;
771 			insn++;
772 
773 			insn->code = BPF_JMP | BPF_JA;
774 			target = i + fp->jf + 1;
775 			BPF_EMIT_JMP;
776 			break;
777 
778 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
779 		case BPF_LDX | BPF_MSH | BPF_B: {
780 			struct sock_filter tmp = {
781 				.code	= BPF_LD | BPF_ABS | BPF_B,
782 				.k	= fp->k,
783 			};
784 
785 			*seen_ld_abs = true;
786 
787 			/* X = A */
788 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
789 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
790 			convert_bpf_ld_abs(&tmp, &insn);
791 			insn++;
792 			/* A &= 0xf */
793 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
794 			/* A <<= 2 */
795 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
796 			/* tmp = X */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
798 			/* X = A */
799 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
800 			/* A = tmp */
801 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
802 			break;
803 		}
804 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
805 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
806 		 */
807 		case BPF_RET | BPF_A:
808 		case BPF_RET | BPF_K:
809 			if (BPF_RVAL(fp->code) == BPF_K)
810 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
811 							0, fp->k);
812 			*insn = BPF_EXIT_INSN();
813 			break;
814 
815 		/* Store to stack. */
816 		case BPF_ST:
817 		case BPF_STX:
818 			stack_off = fp->k * 4  + 4;
819 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
820 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
821 					    -stack_off);
822 			/* check_load_and_stores() verifies that classic BPF can
823 			 * load from stack only after write, so tracking
824 			 * stack_depth for ST|STX insns is enough
825 			 */
826 			if (new_prog && new_prog->aux->stack_depth < stack_off)
827 				new_prog->aux->stack_depth = stack_off;
828 			break;
829 
830 		/* Load from stack. */
831 		case BPF_LD | BPF_MEM:
832 		case BPF_LDX | BPF_MEM:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
836 					    -stack_off);
837 			break;
838 
839 		/* A = K or X = K */
840 		case BPF_LD | BPF_IMM:
841 		case BPF_LDX | BPF_IMM:
842 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
843 					      BPF_REG_A : BPF_REG_X, fp->k);
844 			break;
845 
846 		/* X = A */
847 		case BPF_MISC | BPF_TAX:
848 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
849 			break;
850 
851 		/* A = X */
852 		case BPF_MISC | BPF_TXA:
853 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
854 			break;
855 
856 		/* A = skb->len or X = skb->len */
857 		case BPF_LD | BPF_W | BPF_LEN:
858 		case BPF_LDX | BPF_W | BPF_LEN:
859 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
860 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
861 					    offsetof(struct sk_buff, len));
862 			break;
863 
864 		/* Access seccomp_data fields. */
865 		case BPF_LDX | BPF_ABS | BPF_W:
866 			/* A = *(u32 *) (ctx + K) */
867 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
868 			break;
869 
870 		/* Unknown instruction. */
871 		default:
872 			goto err;
873 		}
874 
875 		insn++;
876 		if (new_prog)
877 			memcpy(new_insn, tmp_insns,
878 			       sizeof(*insn) * (insn - tmp_insns));
879 		new_insn += insn - tmp_insns;
880 	}
881 
882 	if (!new_prog) {
883 		/* Only calculating new length. */
884 		*new_len = new_insn - first_insn;
885 		if (*seen_ld_abs)
886 			*new_len += 4; /* Prologue bits. */
887 		return 0;
888 	}
889 
890 	pass++;
891 	if (new_flen != new_insn - first_insn) {
892 		new_flen = new_insn - first_insn;
893 		if (pass > 2)
894 			goto err;
895 		goto do_pass;
896 	}
897 
898 	kfree(addrs);
899 	BUG_ON(*new_len != new_flen);
900 	return 0;
901 err:
902 	kfree(addrs);
903 	return -EINVAL;
904 }
905 
906 /* Security:
907  *
908  * As we dont want to clear mem[] array for each packet going through
909  * __bpf_prog_run(), we check that filter loaded by user never try to read
910  * a cell if not previously written, and we check all branches to be sure
911  * a malicious user doesn't try to abuse us.
912  */
check_load_and_stores(const struct sock_filter * filter,int flen)913 static int check_load_and_stores(const struct sock_filter *filter, int flen)
914 {
915 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
916 	int pc, ret = 0;
917 
918 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
919 
920 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
921 	if (!masks)
922 		return -ENOMEM;
923 
924 	memset(masks, 0xff, flen * sizeof(*masks));
925 
926 	for (pc = 0; pc < flen; pc++) {
927 		memvalid &= masks[pc];
928 
929 		switch (filter[pc].code) {
930 		case BPF_ST:
931 		case BPF_STX:
932 			memvalid |= (1 << filter[pc].k);
933 			break;
934 		case BPF_LD | BPF_MEM:
935 		case BPF_LDX | BPF_MEM:
936 			if (!(memvalid & (1 << filter[pc].k))) {
937 				ret = -EINVAL;
938 				goto error;
939 			}
940 			break;
941 		case BPF_JMP | BPF_JA:
942 			/* A jump must set masks on target */
943 			masks[pc + 1 + filter[pc].k] &= memvalid;
944 			memvalid = ~0;
945 			break;
946 		case BPF_JMP | BPF_JEQ | BPF_K:
947 		case BPF_JMP | BPF_JEQ | BPF_X:
948 		case BPF_JMP | BPF_JGE | BPF_K:
949 		case BPF_JMP | BPF_JGE | BPF_X:
950 		case BPF_JMP | BPF_JGT | BPF_K:
951 		case BPF_JMP | BPF_JGT | BPF_X:
952 		case BPF_JMP | BPF_JSET | BPF_K:
953 		case BPF_JMP | BPF_JSET | BPF_X:
954 			/* A jump must set masks on targets */
955 			masks[pc + 1 + filter[pc].jt] &= memvalid;
956 			masks[pc + 1 + filter[pc].jf] &= memvalid;
957 			memvalid = ~0;
958 			break;
959 		}
960 	}
961 error:
962 	kfree(masks);
963 	return ret;
964 }
965 
chk_code_allowed(u16 code_to_probe)966 static bool chk_code_allowed(u16 code_to_probe)
967 {
968 	static const bool codes[] = {
969 		/* 32 bit ALU operations */
970 		[BPF_ALU | BPF_ADD | BPF_K] = true,
971 		[BPF_ALU | BPF_ADD | BPF_X] = true,
972 		[BPF_ALU | BPF_SUB | BPF_K] = true,
973 		[BPF_ALU | BPF_SUB | BPF_X] = true,
974 		[BPF_ALU | BPF_MUL | BPF_K] = true,
975 		[BPF_ALU | BPF_MUL | BPF_X] = true,
976 		[BPF_ALU | BPF_DIV | BPF_K] = true,
977 		[BPF_ALU | BPF_DIV | BPF_X] = true,
978 		[BPF_ALU | BPF_MOD | BPF_K] = true,
979 		[BPF_ALU | BPF_MOD | BPF_X] = true,
980 		[BPF_ALU | BPF_AND | BPF_K] = true,
981 		[BPF_ALU | BPF_AND | BPF_X] = true,
982 		[BPF_ALU | BPF_OR | BPF_K] = true,
983 		[BPF_ALU | BPF_OR | BPF_X] = true,
984 		[BPF_ALU | BPF_XOR | BPF_K] = true,
985 		[BPF_ALU | BPF_XOR | BPF_X] = true,
986 		[BPF_ALU | BPF_LSH | BPF_K] = true,
987 		[BPF_ALU | BPF_LSH | BPF_X] = true,
988 		[BPF_ALU | BPF_RSH | BPF_K] = true,
989 		[BPF_ALU | BPF_RSH | BPF_X] = true,
990 		[BPF_ALU | BPF_NEG] = true,
991 		/* Load instructions */
992 		[BPF_LD | BPF_W | BPF_ABS] = true,
993 		[BPF_LD | BPF_H | BPF_ABS] = true,
994 		[BPF_LD | BPF_B | BPF_ABS] = true,
995 		[BPF_LD | BPF_W | BPF_LEN] = true,
996 		[BPF_LD | BPF_W | BPF_IND] = true,
997 		[BPF_LD | BPF_H | BPF_IND] = true,
998 		[BPF_LD | BPF_B | BPF_IND] = true,
999 		[BPF_LD | BPF_IMM] = true,
1000 		[BPF_LD | BPF_MEM] = true,
1001 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1002 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1003 		[BPF_LDX | BPF_IMM] = true,
1004 		[BPF_LDX | BPF_MEM] = true,
1005 		/* Store instructions */
1006 		[BPF_ST] = true,
1007 		[BPF_STX] = true,
1008 		/* Misc instructions */
1009 		[BPF_MISC | BPF_TAX] = true,
1010 		[BPF_MISC | BPF_TXA] = true,
1011 		/* Return instructions */
1012 		[BPF_RET | BPF_K] = true,
1013 		[BPF_RET | BPF_A] = true,
1014 		/* Jump instructions */
1015 		[BPF_JMP | BPF_JA] = true,
1016 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1017 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1020 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1021 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1022 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1023 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1024 	};
1025 
1026 	if (code_to_probe >= ARRAY_SIZE(codes))
1027 		return false;
1028 
1029 	return codes[code_to_probe];
1030 }
1031 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1032 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1033 				unsigned int flen)
1034 {
1035 	if (filter == NULL)
1036 		return false;
1037 	if (flen == 0 || flen > BPF_MAXINSNS)
1038 		return false;
1039 
1040 	return true;
1041 }
1042 
1043 /**
1044  *	bpf_check_classic - verify socket filter code
1045  *	@filter: filter to verify
1046  *	@flen: length of filter
1047  *
1048  * Check the user's filter code. If we let some ugly
1049  * filter code slip through kaboom! The filter must contain
1050  * no references or jumps that are out of range, no illegal
1051  * instructions, and must end with a RET instruction.
1052  *
1053  * All jumps are forward as they are not signed.
1054  *
1055  * Returns 0 if the rule set is legal or -EINVAL if not.
1056  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1057 static int bpf_check_classic(const struct sock_filter *filter,
1058 			     unsigned int flen)
1059 {
1060 	bool anc_found;
1061 	int pc;
1062 
1063 	/* Check the filter code now */
1064 	for (pc = 0; pc < flen; pc++) {
1065 		const struct sock_filter *ftest = &filter[pc];
1066 
1067 		/* May we actually operate on this code? */
1068 		if (!chk_code_allowed(ftest->code))
1069 			return -EINVAL;
1070 
1071 		/* Some instructions need special checks */
1072 		switch (ftest->code) {
1073 		case BPF_ALU | BPF_DIV | BPF_K:
1074 		case BPF_ALU | BPF_MOD | BPF_K:
1075 			/* Check for division by zero */
1076 			if (ftest->k == 0)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_ALU | BPF_LSH | BPF_K:
1080 		case BPF_ALU | BPF_RSH | BPF_K:
1081 			if (ftest->k >= 32)
1082 				return -EINVAL;
1083 			break;
1084 		case BPF_LD | BPF_MEM:
1085 		case BPF_LDX | BPF_MEM:
1086 		case BPF_ST:
1087 		case BPF_STX:
1088 			/* Check for invalid memory addresses */
1089 			if (ftest->k >= BPF_MEMWORDS)
1090 				return -EINVAL;
1091 			break;
1092 		case BPF_JMP | BPF_JA:
1093 			/* Note, the large ftest->k might cause loops.
1094 			 * Compare this with conditional jumps below,
1095 			 * where offsets are limited. --ANK (981016)
1096 			 */
1097 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1098 				return -EINVAL;
1099 			break;
1100 		case BPF_JMP | BPF_JEQ | BPF_K:
1101 		case BPF_JMP | BPF_JEQ | BPF_X:
1102 		case BPF_JMP | BPF_JGE | BPF_K:
1103 		case BPF_JMP | BPF_JGE | BPF_X:
1104 		case BPF_JMP | BPF_JGT | BPF_K:
1105 		case BPF_JMP | BPF_JGT | BPF_X:
1106 		case BPF_JMP | BPF_JSET | BPF_K:
1107 		case BPF_JMP | BPF_JSET | BPF_X:
1108 			/* Both conditionals must be safe */
1109 			if (pc + ftest->jt + 1 >= flen ||
1110 			    pc + ftest->jf + 1 >= flen)
1111 				return -EINVAL;
1112 			break;
1113 		case BPF_LD | BPF_W | BPF_ABS:
1114 		case BPF_LD | BPF_H | BPF_ABS:
1115 		case BPF_LD | BPF_B | BPF_ABS:
1116 			anc_found = false;
1117 			if (bpf_anc_helper(ftest) & BPF_ANC)
1118 				anc_found = true;
1119 			/* Ancillary operation unknown or unsupported */
1120 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1121 				return -EINVAL;
1122 		}
1123 	}
1124 
1125 	/* Last instruction must be a RET code */
1126 	switch (filter[flen - 1].code) {
1127 	case BPF_RET | BPF_K:
1128 	case BPF_RET | BPF_A:
1129 		return check_load_and_stores(filter, flen);
1130 	}
1131 
1132 	return -EINVAL;
1133 }
1134 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1135 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1136 				      const struct sock_fprog *fprog)
1137 {
1138 	unsigned int fsize = bpf_classic_proglen(fprog);
1139 	struct sock_fprog_kern *fkprog;
1140 
1141 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1142 	if (!fp->orig_prog)
1143 		return -ENOMEM;
1144 
1145 	fkprog = fp->orig_prog;
1146 	fkprog->len = fprog->len;
1147 
1148 	fkprog->filter = kmemdup(fp->insns, fsize,
1149 				 GFP_KERNEL | __GFP_NOWARN);
1150 	if (!fkprog->filter) {
1151 		kfree(fp->orig_prog);
1152 		return -ENOMEM;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
bpf_release_orig_filter(struct bpf_prog * fp)1158 static void bpf_release_orig_filter(struct bpf_prog *fp)
1159 {
1160 	struct sock_fprog_kern *fprog = fp->orig_prog;
1161 
1162 	if (fprog) {
1163 		kfree(fprog->filter);
1164 		kfree(fprog);
1165 	}
1166 }
1167 
__bpf_prog_release(struct bpf_prog * prog)1168 static void __bpf_prog_release(struct bpf_prog *prog)
1169 {
1170 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1171 		bpf_prog_put(prog);
1172 	} else {
1173 		bpf_release_orig_filter(prog);
1174 		bpf_prog_free(prog);
1175 	}
1176 }
1177 
__sk_filter_release(struct sk_filter * fp)1178 static void __sk_filter_release(struct sk_filter *fp)
1179 {
1180 	__bpf_prog_release(fp->prog);
1181 	kfree(fp);
1182 }
1183 
1184 /**
1185  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1186  *	@rcu: rcu_head that contains the sk_filter to free
1187  */
sk_filter_release_rcu(struct rcu_head * rcu)1188 static void sk_filter_release_rcu(struct rcu_head *rcu)
1189 {
1190 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1191 
1192 	__sk_filter_release(fp);
1193 }
1194 
1195 /**
1196  *	sk_filter_release - release a socket filter
1197  *	@fp: filter to remove
1198  *
1199  *	Remove a filter from a socket and release its resources.
1200  */
sk_filter_release(struct sk_filter * fp)1201 static void sk_filter_release(struct sk_filter *fp)
1202 {
1203 	if (refcount_dec_and_test(&fp->refcnt))
1204 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1205 }
1206 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1207 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 	u32 filter_size = bpf_prog_size(fp->prog->len);
1210 
1211 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1212 	sk_filter_release(fp);
1213 }
1214 
1215 /* try to charge the socket memory if there is space available
1216  * return true on success
1217  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1218 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 	u32 filter_size = bpf_prog_size(fp->prog->len);
1221 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1222 
1223 	/* same check as in sock_kmalloc() */
1224 	if (filter_size <= optmem_max &&
1225 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1226 		atomic_add(filter_size, &sk->sk_omem_alloc);
1227 		return true;
1228 	}
1229 	return false;
1230 }
1231 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1232 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1233 {
1234 	if (!refcount_inc_not_zero(&fp->refcnt))
1235 		return false;
1236 
1237 	if (!__sk_filter_charge(sk, fp)) {
1238 		sk_filter_release(fp);
1239 		return false;
1240 	}
1241 	return true;
1242 }
1243 
bpf_migrate_filter(struct bpf_prog * fp)1244 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1245 {
1246 	struct sock_filter *old_prog;
1247 	struct bpf_prog *old_fp;
1248 	int err, new_len, old_len = fp->len;
1249 	bool seen_ld_abs = false;
1250 
1251 	/* We are free to overwrite insns et al right here as it won't be used at
1252 	 * this point in time anymore internally after the migration to the eBPF
1253 	 * instruction representation.
1254 	 */
1255 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1256 		     sizeof(struct bpf_insn));
1257 
1258 	/* Conversion cannot happen on overlapping memory areas,
1259 	 * so we need to keep the user BPF around until the 2nd
1260 	 * pass. At this time, the user BPF is stored in fp->insns.
1261 	 */
1262 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1263 			   GFP_KERNEL | __GFP_NOWARN);
1264 	if (!old_prog) {
1265 		err = -ENOMEM;
1266 		goto out_err;
1267 	}
1268 
1269 	/* 1st pass: calculate the new program length. */
1270 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1271 				 &seen_ld_abs);
1272 	if (err)
1273 		goto out_err_free;
1274 
1275 	/* Expand fp for appending the new filter representation. */
1276 	old_fp = fp;
1277 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1278 	if (!fp) {
1279 		/* The old_fp is still around in case we couldn't
1280 		 * allocate new memory, so uncharge on that one.
1281 		 */
1282 		fp = old_fp;
1283 		err = -ENOMEM;
1284 		goto out_err_free;
1285 	}
1286 
1287 	fp->len = new_len;
1288 
1289 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1290 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1291 				 &seen_ld_abs);
1292 	if (err)
1293 		/* 2nd bpf_convert_filter() can fail only if it fails
1294 		 * to allocate memory, remapping must succeed. Note,
1295 		 * that at this time old_fp has already been released
1296 		 * by krealloc().
1297 		 */
1298 		goto out_err_free;
1299 
1300 	fp = bpf_prog_select_runtime(fp, &err);
1301 	if (err)
1302 		goto out_err_free;
1303 
1304 	kfree(old_prog);
1305 	return fp;
1306 
1307 out_err_free:
1308 	kfree(old_prog);
1309 out_err:
1310 	__bpf_prog_release(fp);
1311 	return ERR_PTR(err);
1312 }
1313 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1314 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1315 					   bpf_aux_classic_check_t trans)
1316 {
1317 	int err;
1318 
1319 	fp->bpf_func = NULL;
1320 	fp->jited = 0;
1321 
1322 	err = bpf_check_classic(fp->insns, fp->len);
1323 	if (err) {
1324 		__bpf_prog_release(fp);
1325 		return ERR_PTR(err);
1326 	}
1327 
1328 	/* There might be additional checks and transformations
1329 	 * needed on classic filters, f.e. in case of seccomp.
1330 	 */
1331 	if (trans) {
1332 		err = trans(fp->insns, fp->len);
1333 		if (err) {
1334 			__bpf_prog_release(fp);
1335 			return ERR_PTR(err);
1336 		}
1337 	}
1338 
1339 	/* Probe if we can JIT compile the filter and if so, do
1340 	 * the compilation of the filter.
1341 	 */
1342 	bpf_jit_compile(fp);
1343 
1344 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1345 	 * for the optimized interpreter.
1346 	 */
1347 	if (!fp->jited)
1348 		fp = bpf_migrate_filter(fp);
1349 
1350 	return fp;
1351 }
1352 
1353 /**
1354  *	bpf_prog_create - create an unattached filter
1355  *	@pfp: the unattached filter that is created
1356  *	@fprog: the filter program
1357  *
1358  * Create a filter independent of any socket. We first run some
1359  * sanity checks on it to make sure it does not explode on us later.
1360  * If an error occurs or there is insufficient memory for the filter
1361  * a negative errno code is returned. On success the return is zero.
1362  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1363 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1364 {
1365 	unsigned int fsize = bpf_classic_proglen(fprog);
1366 	struct bpf_prog *fp;
1367 
1368 	/* Make sure new filter is there and in the right amounts. */
1369 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1370 		return -EINVAL;
1371 
1372 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1373 	if (!fp)
1374 		return -ENOMEM;
1375 
1376 	memcpy(fp->insns, fprog->filter, fsize);
1377 
1378 	fp->len = fprog->len;
1379 	/* Since unattached filters are not copied back to user
1380 	 * space through sk_get_filter(), we do not need to hold
1381 	 * a copy here, and can spare us the work.
1382 	 */
1383 	fp->orig_prog = NULL;
1384 
1385 	/* bpf_prepare_filter() already takes care of freeing
1386 	 * memory in case something goes wrong.
1387 	 */
1388 	fp = bpf_prepare_filter(fp, NULL);
1389 	if (IS_ERR(fp))
1390 		return PTR_ERR(fp);
1391 
1392 	*pfp = fp;
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(bpf_prog_create);
1396 
1397 /**
1398  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1399  *	@pfp: the unattached filter that is created
1400  *	@fprog: the filter program
1401  *	@trans: post-classic verifier transformation handler
1402  *	@save_orig: save classic BPF program
1403  *
1404  * This function effectively does the same as bpf_prog_create(), only
1405  * that it builds up its insns buffer from user space provided buffer.
1406  * It also allows for passing a bpf_aux_classic_check_t handler.
1407  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1408 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1409 			      bpf_aux_classic_check_t trans, bool save_orig)
1410 {
1411 	unsigned int fsize = bpf_classic_proglen(fprog);
1412 	struct bpf_prog *fp;
1413 	int err;
1414 
1415 	/* Make sure new filter is there and in the right amounts. */
1416 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1417 		return -EINVAL;
1418 
1419 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1420 	if (!fp)
1421 		return -ENOMEM;
1422 
1423 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1424 		__bpf_prog_free(fp);
1425 		return -EFAULT;
1426 	}
1427 
1428 	fp->len = fprog->len;
1429 	fp->orig_prog = NULL;
1430 
1431 	if (save_orig) {
1432 		err = bpf_prog_store_orig_filter(fp, fprog);
1433 		if (err) {
1434 			__bpf_prog_free(fp);
1435 			return -ENOMEM;
1436 		}
1437 	}
1438 
1439 	/* bpf_prepare_filter() already takes care of freeing
1440 	 * memory in case something goes wrong.
1441 	 */
1442 	fp = bpf_prepare_filter(fp, trans);
1443 	if (IS_ERR(fp))
1444 		return PTR_ERR(fp);
1445 
1446 	*pfp = fp;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1450 
bpf_prog_destroy(struct bpf_prog * fp)1451 void bpf_prog_destroy(struct bpf_prog *fp)
1452 {
1453 	__bpf_prog_release(fp);
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1456 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1457 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1458 {
1459 	struct sk_filter *fp, *old_fp;
1460 
1461 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1462 	if (!fp)
1463 		return -ENOMEM;
1464 
1465 	fp->prog = prog;
1466 
1467 	if (!__sk_filter_charge(sk, fp)) {
1468 		kfree(fp);
1469 		return -ENOMEM;
1470 	}
1471 	refcount_set(&fp->refcnt, 1);
1472 
1473 	old_fp = rcu_dereference_protected(sk->sk_filter,
1474 					   lockdep_sock_is_held(sk));
1475 	rcu_assign_pointer(sk->sk_filter, fp);
1476 
1477 	if (old_fp)
1478 		sk_filter_uncharge(sk, old_fp);
1479 
1480 	return 0;
1481 }
1482 
1483 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1484 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1485 {
1486 	unsigned int fsize = bpf_classic_proglen(fprog);
1487 	struct bpf_prog *prog;
1488 	int err;
1489 
1490 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1491 		return ERR_PTR(-EPERM);
1492 
1493 	/* Make sure new filter is there and in the right amounts. */
1494 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1495 		return ERR_PTR(-EINVAL);
1496 
1497 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1498 	if (!prog)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1502 		__bpf_prog_free(prog);
1503 		return ERR_PTR(-EFAULT);
1504 	}
1505 
1506 	prog->len = fprog->len;
1507 
1508 	err = bpf_prog_store_orig_filter(prog, fprog);
1509 	if (err) {
1510 		__bpf_prog_free(prog);
1511 		return ERR_PTR(-ENOMEM);
1512 	}
1513 
1514 	/* bpf_prepare_filter() already takes care of freeing
1515 	 * memory in case something goes wrong.
1516 	 */
1517 	return bpf_prepare_filter(prog, NULL);
1518 }
1519 
1520 /**
1521  *	sk_attach_filter - attach a socket filter
1522  *	@fprog: the filter program
1523  *	@sk: the socket to use
1524  *
1525  * Attach the user's filter code. We first run some sanity checks on
1526  * it to make sure it does not explode on us later. If an error
1527  * occurs or there is insufficient memory for the filter a negative
1528  * errno code is returned. On success the return is zero.
1529  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1530 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1531 {
1532 	struct bpf_prog *prog = __get_filter(fprog, sk);
1533 	int err;
1534 
1535 	if (IS_ERR(prog))
1536 		return PTR_ERR(prog);
1537 
1538 	err = __sk_attach_prog(prog, sk);
1539 	if (err < 0) {
1540 		__bpf_prog_release(prog);
1541 		return err;
1542 	}
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(sk_attach_filter);
1547 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1548 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_filter(fprog, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1557 		err = -ENOMEM;
1558 	else
1559 		err = reuseport_attach_prog(sk, prog);
1560 
1561 	if (err)
1562 		__bpf_prog_release(prog);
1563 
1564 	return err;
1565 }
1566 
__get_bpf(u32 ufd,struct sock * sk)1567 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1570 		return ERR_PTR(-EPERM);
1571 
1572 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1573 }
1574 
sk_attach_bpf(u32 ufd,struct sock * sk)1575 int sk_attach_bpf(u32 ufd, struct sock *sk)
1576 {
1577 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1578 	int err;
1579 
1580 	if (IS_ERR(prog))
1581 		return PTR_ERR(prog);
1582 
1583 	err = __sk_attach_prog(prog, sk);
1584 	if (err < 0) {
1585 		bpf_prog_put(prog);
1586 		return err;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1592 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	struct bpf_prog *prog;
1595 	int err;
1596 
1597 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1598 		return -EPERM;
1599 
1600 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 	if (PTR_ERR(prog) == -EINVAL)
1602 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1603 	if (IS_ERR(prog))
1604 		return PTR_ERR(prog);
1605 
1606 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1607 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1608 		 * bpf prog (e.g. sockmap).  It depends on the
1609 		 * limitation imposed by bpf_prog_load().
1610 		 * Hence, sysctl_optmem_max is not checked.
1611 		 */
1612 		if ((sk->sk_type != SOCK_STREAM &&
1613 		     sk->sk_type != SOCK_DGRAM) ||
1614 		    (sk->sk_protocol != IPPROTO_UDP &&
1615 		     sk->sk_protocol != IPPROTO_TCP) ||
1616 		    (sk->sk_family != AF_INET &&
1617 		     sk->sk_family != AF_INET6)) {
1618 			err = -ENOTSUPP;
1619 			goto err_prog_put;
1620 		}
1621 	} else {
1622 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1623 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1624 			err = -ENOMEM;
1625 			goto err_prog_put;
1626 		}
1627 	}
1628 
1629 	err = reuseport_attach_prog(sk, prog);
1630 err_prog_put:
1631 	if (err)
1632 		bpf_prog_put(prog);
1633 
1634 	return err;
1635 }
1636 
sk_reuseport_prog_free(struct bpf_prog * prog)1637 void sk_reuseport_prog_free(struct bpf_prog *prog)
1638 {
1639 	if (!prog)
1640 		return;
1641 
1642 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1643 		bpf_prog_put(prog);
1644 	else
1645 		bpf_prog_destroy(prog);
1646 }
1647 
1648 struct bpf_scratchpad {
1649 	union {
1650 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1651 		u8     buff[MAX_BPF_STACK];
1652 	};
1653 };
1654 
1655 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1656 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 					  unsigned int write_len)
1659 {
1660 #ifdef CONFIG_DEBUG_NET
1661 	/* Avoid a splat in pskb_may_pull_reason() */
1662 	if (write_len > INT_MAX)
1663 		return -EINVAL;
1664 #endif
1665 	return skb_ensure_writable(skb, write_len);
1666 }
1667 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1668 static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 					unsigned int write_len)
1670 {
1671 	int err = __bpf_try_make_writable(skb, write_len);
1672 
1673 	bpf_compute_data_pointers(skb);
1674 	return err;
1675 }
1676 
bpf_try_make_head_writable(struct sk_buff * skb)1677 static int bpf_try_make_head_writable(struct sk_buff *skb)
1678 {
1679 	return bpf_try_make_writable(skb, skb_headlen(skb));
1680 }
1681 
bpf_push_mac_rcsum(struct sk_buff * skb)1682 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683 {
1684 	if (skb_at_tc_ingress(skb))
1685 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686 }
1687 
bpf_pull_mac_rcsum(struct sk_buff * skb)1688 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689 {
1690 	if (skb_at_tc_ingress(skb))
1691 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692 }
1693 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1694 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 	   const void *, from, u32, len, u64, flags)
1696 {
1697 	void *ptr;
1698 
1699 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 		return -EINVAL;
1701 	if (unlikely(offset > INT_MAX))
1702 		return -EFAULT;
1703 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 		return -EFAULT;
1705 
1706 	ptr = skb->data + offset;
1707 	if (flags & BPF_F_RECOMPUTE_CSUM)
1708 		__skb_postpull_rcsum(skb, ptr, len, offset);
1709 
1710 	memcpy(ptr, from, len);
1711 
1712 	if (flags & BPF_F_RECOMPUTE_CSUM)
1713 		__skb_postpush_rcsum(skb, ptr, len, offset);
1714 	if (flags & BPF_F_INVALIDATE_HASH)
1715 		skb_clear_hash(skb);
1716 
1717 	return 0;
1718 }
1719 
1720 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 	.func		= bpf_skb_store_bytes,
1722 	.gpl_only	= false,
1723 	.ret_type	= RET_INTEGER,
1724 	.arg1_type	= ARG_PTR_TO_CTX,
1725 	.arg2_type	= ARG_ANYTHING,
1726 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1727 	.arg4_type	= ARG_CONST_SIZE,
1728 	.arg5_type	= ARG_ANYTHING,
1729 };
1730 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1731 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 			  u32 len, u64 flags)
1733 {
1734 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735 }
1736 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1737 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 	   void *, to, u32, len)
1739 {
1740 	void *ptr;
1741 
1742 	if (unlikely(offset > INT_MAX))
1743 		goto err_clear;
1744 
1745 	ptr = skb_header_pointer(skb, offset, len, to);
1746 	if (unlikely(!ptr))
1747 		goto err_clear;
1748 	if (ptr != to)
1749 		memcpy(to, ptr, len);
1750 
1751 	return 0;
1752 err_clear:
1753 	memset(to, 0, len);
1754 	return -EFAULT;
1755 }
1756 
1757 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 	.func		= bpf_skb_load_bytes,
1759 	.gpl_only	= false,
1760 	.ret_type	= RET_INTEGER,
1761 	.arg1_type	= ARG_PTR_TO_CTX,
1762 	.arg2_type	= ARG_ANYTHING,
1763 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1764 	.arg4_type	= ARG_CONST_SIZE,
1765 };
1766 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1767 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768 {
1769 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1770 }
1771 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1772 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1774 	   void *, to, u32, len)
1775 {
1776 	void *ptr;
1777 
1778 	if (unlikely(offset > 0xffff))
1779 		goto err_clear;
1780 
1781 	if (unlikely(!ctx->skb))
1782 		goto err_clear;
1783 
1784 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785 	if (unlikely(!ptr))
1786 		goto err_clear;
1787 	if (ptr != to)
1788 		memcpy(to, ptr, len);
1789 
1790 	return 0;
1791 err_clear:
1792 	memset(to, 0, len);
1793 	return -EFAULT;
1794 }
1795 
1796 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 	.func		= bpf_flow_dissector_load_bytes,
1798 	.gpl_only	= false,
1799 	.ret_type	= RET_INTEGER,
1800 	.arg1_type	= ARG_PTR_TO_CTX,
1801 	.arg2_type	= ARG_ANYTHING,
1802 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1803 	.arg4_type	= ARG_CONST_SIZE,
1804 };
1805 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1806 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 	   u32, offset, void *, to, u32, len, u32, start_header)
1808 {
1809 	u8 *end = skb_tail_pointer(skb);
1810 	u8 *start, *ptr;
1811 
1812 	if (unlikely(offset > 0xffff))
1813 		goto err_clear;
1814 
1815 	switch (start_header) {
1816 	case BPF_HDR_START_MAC:
1817 		if (unlikely(!skb_mac_header_was_set(skb)))
1818 			goto err_clear;
1819 		start = skb_mac_header(skb);
1820 		break;
1821 	case BPF_HDR_START_NET:
1822 		start = skb_network_header(skb);
1823 		break;
1824 	default:
1825 		goto err_clear;
1826 	}
1827 
1828 	ptr = start + offset;
1829 
1830 	if (likely(ptr + len <= end)) {
1831 		memcpy(to, ptr, len);
1832 		return 0;
1833 	}
1834 
1835 err_clear:
1836 	memset(to, 0, len);
1837 	return -EFAULT;
1838 }
1839 
1840 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 	.func		= bpf_skb_load_bytes_relative,
1842 	.gpl_only	= false,
1843 	.ret_type	= RET_INTEGER,
1844 	.arg1_type	= ARG_PTR_TO_CTX,
1845 	.arg2_type	= ARG_ANYTHING,
1846 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1847 	.arg4_type	= ARG_CONST_SIZE,
1848 	.arg5_type	= ARG_ANYTHING,
1849 };
1850 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 	.func		= bpf_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1873 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874 {
1875 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876 }
1877 
1878 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 	.func		= bpf_sk_fullsock,
1880 	.gpl_only	= false,
1881 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1882 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1883 };
1884 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1885 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 					   unsigned int write_len)
1887 {
1888 	return __bpf_try_make_writable(skb, write_len);
1889 }
1890 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1891 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892 {
1893 	/* Idea is the following: should the needed direct read/write
1894 	 * test fail during runtime, we can pull in more data and redo
1895 	 * again, since implicitly, we invalidate previous checks here.
1896 	 *
1897 	 * Or, since we know how much we need to make read/writeable,
1898 	 * this can be done once at the program beginning for direct
1899 	 * access case. By this we overcome limitations of only current
1900 	 * headroom being accessible.
1901 	 */
1902 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903 }
1904 
1905 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 	.func		= sk_skb_pull_data,
1907 	.gpl_only	= false,
1908 	.ret_type	= RET_INTEGER,
1909 	.arg1_type	= ARG_PTR_TO_CTX,
1910 	.arg2_type	= ARG_ANYTHING,
1911 };
1912 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1913 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 	   u64, from, u64, to, u64, flags)
1915 {
1916 	__sum16 *ptr;
1917 
1918 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 		return -EINVAL;
1920 	if (unlikely(offset > 0xffff || offset & 1))
1921 		return -EFAULT;
1922 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 		return -EFAULT;
1924 
1925 	ptr = (__sum16 *)(skb->data + offset);
1926 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 	case 0:
1928 		if (unlikely(from != 0))
1929 			return -EINVAL;
1930 
1931 		csum_replace_by_diff(ptr, to);
1932 		break;
1933 	case 2:
1934 		csum_replace2(ptr, from, to);
1935 		break;
1936 	case 4:
1937 		csum_replace4(ptr, from, to);
1938 		break;
1939 	default:
1940 		return -EINVAL;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 	.func		= bpf_l3_csum_replace,
1948 	.gpl_only	= false,
1949 	.ret_type	= RET_INTEGER,
1950 	.arg1_type	= ARG_PTR_TO_CTX,
1951 	.arg2_type	= ARG_ANYTHING,
1952 	.arg3_type	= ARG_ANYTHING,
1953 	.arg4_type	= ARG_ANYTHING,
1954 	.arg5_type	= ARG_ANYTHING,
1955 };
1956 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1957 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 	   u64, from, u64, to, u64, flags)
1959 {
1960 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 	__sum16 *ptr;
1964 
1965 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 		return -EINVAL;
1968 	if (unlikely(offset > 0xffff || offset & 1))
1969 		return -EFAULT;
1970 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 		return -EFAULT;
1972 
1973 	ptr = (__sum16 *)(skb->data + offset);
1974 	if (is_mmzero && !do_mforce && !*ptr)
1975 		return 0;
1976 
1977 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 	case 0:
1979 		if (unlikely(from != 0))
1980 			return -EINVAL;
1981 
1982 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983 		break;
1984 	case 2:
1985 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986 		break;
1987 	case 4:
1988 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989 		break;
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 
1994 	if (is_mmzero && !*ptr)
1995 		*ptr = CSUM_MANGLED_0;
1996 	return 0;
1997 }
1998 
1999 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 	.func		= bpf_l4_csum_replace,
2001 	.gpl_only	= false,
2002 	.ret_type	= RET_INTEGER,
2003 	.arg1_type	= ARG_PTR_TO_CTX,
2004 	.arg2_type	= ARG_ANYTHING,
2005 	.arg3_type	= ARG_ANYTHING,
2006 	.arg4_type	= ARG_ANYTHING,
2007 	.arg5_type	= ARG_ANYTHING,
2008 };
2009 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2010 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 	   __be32 *, to, u32, to_size, __wsum, seed)
2012 {
2013 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014 	u32 diff_size = from_size + to_size;
2015 	int i, j = 0;
2016 
2017 	/* This is quite flexible, some examples:
2018 	 *
2019 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2020 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2021 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2022 	 *
2023 	 * Even for diffing, from_size and to_size don't need to be equal.
2024 	 */
2025 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026 		     diff_size > sizeof(sp->diff)))
2027 		return -EINVAL;
2028 
2029 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030 		sp->diff[j] = ~from[i];
2031 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2032 		sp->diff[j] = to[i];
2033 
2034 	return csum_partial(sp->diff, diff_size, seed);
2035 }
2036 
2037 static const struct bpf_func_proto bpf_csum_diff_proto = {
2038 	.func		= bpf_csum_diff,
2039 	.gpl_only	= false,
2040 	.pkt_access	= true,
2041 	.ret_type	= RET_INTEGER,
2042 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2044 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2046 	.arg5_type	= ARG_ANYTHING,
2047 };
2048 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2049 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050 {
2051 	/* The interface is to be used in combination with bpf_csum_diff()
2052 	 * for direct packet writes. csum rotation for alignment as well
2053 	 * as emulating csum_sub() can be done from the eBPF program.
2054 	 */
2055 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2056 		return (skb->csum = csum_add(skb->csum, csum));
2057 
2058 	return -ENOTSUPP;
2059 }
2060 
2061 static const struct bpf_func_proto bpf_csum_update_proto = {
2062 	.func		= bpf_csum_update,
2063 	.gpl_only	= false,
2064 	.ret_type	= RET_INTEGER,
2065 	.arg1_type	= ARG_PTR_TO_CTX,
2066 	.arg2_type	= ARG_ANYTHING,
2067 };
2068 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2069 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070 {
2071 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2072 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073 	 * is passed as flags, for example.
2074 	 */
2075 	switch (level) {
2076 	case BPF_CSUM_LEVEL_INC:
2077 		__skb_incr_checksum_unnecessary(skb);
2078 		break;
2079 	case BPF_CSUM_LEVEL_DEC:
2080 		__skb_decr_checksum_unnecessary(skb);
2081 		break;
2082 	case BPF_CSUM_LEVEL_RESET:
2083 		__skb_reset_checksum_unnecessary(skb);
2084 		break;
2085 	case BPF_CSUM_LEVEL_QUERY:
2086 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087 		       skb->csum_level : -EACCES;
2088 	default:
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static const struct bpf_func_proto bpf_csum_level_proto = {
2096 	.func		= bpf_csum_level,
2097 	.gpl_only	= false,
2098 	.ret_type	= RET_INTEGER,
2099 	.arg1_type	= ARG_PTR_TO_CTX,
2100 	.arg2_type	= ARG_ANYTHING,
2101 };
2102 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	return dev_forward_skb_nomtu(dev, skb);
2106 }
2107 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2108 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109 				      struct sk_buff *skb)
2110 {
2111 	int ret = ____dev_forward_skb(dev, skb, false);
2112 
2113 	if (likely(!ret)) {
2114 		skb->dev = dev;
2115 		ret = netif_rx(skb);
2116 	}
2117 
2118 	return ret;
2119 }
2120 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2121 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122 {
2123 	int ret;
2124 
2125 	if (dev_xmit_recursion()) {
2126 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127 		kfree_skb(skb);
2128 		return -ENETDOWN;
2129 	}
2130 
2131 	skb->dev = dev;
2132 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2133 	skb_clear_tstamp(skb);
2134 
2135 	dev_xmit_recursion_inc();
2136 	ret = dev_queue_xmit(skb);
2137 	dev_xmit_recursion_dec();
2138 
2139 	return ret;
2140 }
2141 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2142 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	unsigned int mlen = skb_network_offset(skb);
2146 
2147 	if (unlikely(skb->len <= mlen)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	if (mlen) {
2153 		__skb_pull(skb, mlen);
2154 
2155 		/* At ingress, the mac header has already been pulled once.
2156 		 * At egress, skb_pospull_rcsum has to be done in case that
2157 		 * the skb is originated from ingress (i.e. a forwarded skb)
2158 		 * to ensure that rcsum starts at net header.
2159 		 */
2160 		if (!skb_at_tc_ingress(skb))
2161 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2162 	}
2163 	skb_pop_mac_header(skb);
2164 	skb_reset_mac_len(skb);
2165 	return flags & BPF_F_INGRESS ?
2166 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167 }
2168 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2169 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170 				 u32 flags)
2171 {
2172 	/* Verify that a link layer header is carried */
2173 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174 		kfree_skb(skb);
2175 		return -ERANGE;
2176 	}
2177 
2178 	bpf_push_mac_rcsum(skb);
2179 	return flags & BPF_F_INGRESS ?
2180 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181 }
2182 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2183 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184 			  u32 flags)
2185 {
2186 	if (dev_is_mac_header_xmit(dev))
2187 		return __bpf_redirect_common(skb, dev, flags);
2188 	else
2189 		return __bpf_redirect_no_mac(skb, dev, flags);
2190 }
2191 
2192 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2193 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194 			    struct net_device *dev, struct bpf_nh_params *nh)
2195 {
2196 	u32 hh_len = LL_RESERVED_SPACE(dev);
2197 	const struct in6_addr *nexthop;
2198 	struct dst_entry *dst = NULL;
2199 	struct neighbour *neigh;
2200 
2201 	if (dev_xmit_recursion()) {
2202 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203 		goto out_drop;
2204 	}
2205 
2206 	skb->dev = dev;
2207 	skb_clear_tstamp(skb);
2208 
2209 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210 		skb = skb_expand_head(skb, hh_len);
2211 		if (!skb)
2212 			return -ENOMEM;
2213 	}
2214 
2215 	rcu_read_lock();
2216 	if (!nh) {
2217 		dst = skb_dst(skb);
2218 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2219 				      &ipv6_hdr(skb)->daddr);
2220 	} else {
2221 		nexthop = &nh->ipv6_nh;
2222 	}
2223 	neigh = ip_neigh_gw6(dev, nexthop);
2224 	if (likely(!IS_ERR(neigh))) {
2225 		int ret;
2226 
2227 		sock_confirm_neigh(skb, neigh);
2228 		local_bh_disable();
2229 		dev_xmit_recursion_inc();
2230 		ret = neigh_output(neigh, skb, false);
2231 		dev_xmit_recursion_dec();
2232 		local_bh_enable();
2233 		rcu_read_unlock();
2234 		return ret;
2235 	}
2236 	rcu_read_unlock();
2237 	if (dst)
2238 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239 out_drop:
2240 	kfree_skb(skb);
2241 	return -ENETDOWN;
2242 }
2243 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2244 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245 				   struct bpf_nh_params *nh)
2246 {
2247 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248 	struct net *net = dev_net(dev);
2249 	int err, ret = NET_XMIT_DROP;
2250 
2251 	if (!nh) {
2252 		struct dst_entry *dst;
2253 		struct flowi6 fl6 = {
2254 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2255 			.flowi6_mark  = skb->mark,
2256 			.flowlabel    = ip6_flowinfo(ip6h),
2257 			.flowi6_oif   = dev->ifindex,
2258 			.flowi6_proto = ip6h->nexthdr,
2259 			.daddr	      = ip6h->daddr,
2260 			.saddr	      = ip6h->saddr,
2261 		};
2262 
2263 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264 		if (IS_ERR(dst))
2265 			goto out_drop;
2266 
2267 		skb_dst_set(skb, dst);
2268 	} else if (nh->nh_family != AF_INET6) {
2269 		goto out_drop;
2270 	}
2271 
2272 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2273 	if (unlikely(net_xmit_eval(err)))
2274 		DEV_STATS_INC(dev, tx_errors);
2275 	else
2276 		ret = NET_XMIT_SUCCESS;
2277 	goto out_xmit;
2278 out_drop:
2279 	DEV_STATS_INC(dev, tx_errors);
2280 	kfree_skb(skb);
2281 out_xmit:
2282 	return ret;
2283 }
2284 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2285 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286 				   struct bpf_nh_params *nh)
2287 {
2288 	kfree_skb(skb);
2289 	return NET_XMIT_DROP;
2290 }
2291 #endif /* CONFIG_IPV6 */
2292 
2293 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2294 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295 			    struct net_device *dev, struct bpf_nh_params *nh)
2296 {
2297 	u32 hh_len = LL_RESERVED_SPACE(dev);
2298 	struct neighbour *neigh;
2299 	bool is_v6gw = false;
2300 
2301 	if (dev_xmit_recursion()) {
2302 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303 		goto out_drop;
2304 	}
2305 
2306 	skb->dev = dev;
2307 	skb_clear_tstamp(skb);
2308 
2309 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310 		skb = skb_expand_head(skb, hh_len);
2311 		if (!skb)
2312 			return -ENOMEM;
2313 	}
2314 
2315 	rcu_read_lock();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		local_bh_disable();
2336 		dev_xmit_recursion_inc();
2337 		ret = neigh_output(neigh, skb, is_v6gw);
2338 		dev_xmit_recursion_dec();
2339 		local_bh_enable();
2340 		rcu_read_unlock();
2341 		return ret;
2342 	}
2343 	rcu_read_unlock();
2344 out_drop:
2345 	kfree_skb(skb);
2346 	return -ENETDOWN;
2347 }
2348 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2349 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350 				   struct bpf_nh_params *nh)
2351 {
2352 	const struct iphdr *ip4h = ip_hdr(skb);
2353 	struct net *net = dev_net(dev);
2354 	int err, ret = NET_XMIT_DROP;
2355 
2356 	if (!nh) {
2357 		struct flowi4 fl4 = {
2358 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2359 			.flowi4_mark  = skb->mark,
2360 			.flowi4_tos   = RT_TOS(ip4h->tos),
2361 			.flowi4_oif   = dev->ifindex,
2362 			.flowi4_proto = ip4h->protocol,
2363 			.daddr	      = ip4h->daddr,
2364 			.saddr	      = ip4h->saddr,
2365 		};
2366 		struct rtable *rt;
2367 
2368 		rt = ip_route_output_flow(net, &fl4, NULL);
2369 		if (IS_ERR(rt))
2370 			goto out_drop;
2371 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372 			ip_rt_put(rt);
2373 			goto out_drop;
2374 		}
2375 
2376 		skb_dst_set(skb, &rt->dst);
2377 	}
2378 
2379 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2380 	if (unlikely(net_xmit_eval(err)))
2381 		DEV_STATS_INC(dev, tx_errors);
2382 	else
2383 		ret = NET_XMIT_SUCCESS;
2384 	goto out_xmit;
2385 out_drop:
2386 	DEV_STATS_INC(dev, tx_errors);
2387 	kfree_skb(skb);
2388 out_xmit:
2389 	return ret;
2390 }
2391 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2392 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393 				   struct bpf_nh_params *nh)
2394 {
2395 	kfree_skb(skb);
2396 	return NET_XMIT_DROP;
2397 }
2398 #endif /* CONFIG_INET */
2399 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2400 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401 				struct bpf_nh_params *nh)
2402 {
2403 	struct ethhdr *ethh = eth_hdr(skb);
2404 
2405 	if (unlikely(skb->mac_header >= skb->network_header))
2406 		goto out;
2407 	bpf_push_mac_rcsum(skb);
2408 	if (is_multicast_ether_addr(ethh->h_dest))
2409 		goto out;
2410 
2411 	skb_pull(skb, sizeof(*ethh));
2412 	skb_unset_mac_header(skb);
2413 	skb_reset_network_header(skb);
2414 
2415 	if (skb->protocol == htons(ETH_P_IP))
2416 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2417 	else if (skb->protocol == htons(ETH_P_IPV6))
2418 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2419 out:
2420 	kfree_skb(skb);
2421 	return -ENOTSUPP;
2422 }
2423 
2424 /* Internal, non-exposed redirect flags. */
2425 enum {
2426 	BPF_F_NEIGH	= (1ULL << 16),
2427 	BPF_F_PEER	= (1ULL << 17),
2428 	BPF_F_NEXTHOP	= (1ULL << 18),
2429 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430 };
2431 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2432 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433 {
2434 	struct net_device *dev;
2435 	struct sk_buff *clone;
2436 	int ret;
2437 
2438 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2439 
2440 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2441 		return -EINVAL;
2442 
2443 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2444 	if (unlikely(!dev))
2445 		return -EINVAL;
2446 
2447 	clone = skb_clone(skb, GFP_ATOMIC);
2448 	if (unlikely(!clone))
2449 		return -ENOMEM;
2450 
2451 	/* For direct write, we need to keep the invariant that the skbs
2452 	 * we're dealing with need to be uncloned. Should uncloning fail
2453 	 * here, we need to free the just generated clone to unclone once
2454 	 * again.
2455 	 */
2456 	ret = bpf_try_make_head_writable(skb);
2457 	if (unlikely(ret)) {
2458 		kfree_skb(clone);
2459 		return -ENOMEM;
2460 	}
2461 
2462 	return __bpf_redirect(clone, dev, flags);
2463 }
2464 
2465 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2466 	.func           = bpf_clone_redirect,
2467 	.gpl_only       = false,
2468 	.ret_type       = RET_INTEGER,
2469 	.arg1_type      = ARG_PTR_TO_CTX,
2470 	.arg2_type      = ARG_ANYTHING,
2471 	.arg3_type      = ARG_ANYTHING,
2472 };
2473 
2474 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2475 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2476 
skb_do_redirect(struct sk_buff * skb)2477 int skb_do_redirect(struct sk_buff *skb)
2478 {
2479 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2480 	struct net *net = dev_net(skb->dev);
2481 	struct net_device *dev;
2482 	u32 flags = ri->flags;
2483 
2484 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2485 	ri->tgt_index = 0;
2486 	ri->flags = 0;
2487 	if (unlikely(!dev))
2488 		goto out_drop;
2489 	if (flags & BPF_F_PEER) {
2490 		const struct net_device_ops *ops = dev->netdev_ops;
2491 
2492 		if (unlikely(!ops->ndo_get_peer_dev ||
2493 			     !skb_at_tc_ingress(skb)))
2494 			goto out_drop;
2495 		dev = ops->ndo_get_peer_dev(dev);
2496 		if (unlikely(!dev ||
2497 			     !(dev->flags & IFF_UP) ||
2498 			     net_eq(net, dev_net(dev))))
2499 			goto out_drop;
2500 		skb->dev = dev;
2501 		dev_sw_netstats_rx_add(dev, skb->len);
2502 		return -EAGAIN;
2503 	}
2504 	return flags & BPF_F_NEIGH ?
2505 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2506 				    &ri->nh : NULL) :
2507 	       __bpf_redirect(skb, dev, flags);
2508 out_drop:
2509 	kfree_skb(skb);
2510 	return -EINVAL;
2511 }
2512 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2513 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2514 {
2515 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2516 
2517 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2518 		return TC_ACT_SHOT;
2519 
2520 	ri->flags = flags;
2521 	ri->tgt_index = ifindex;
2522 
2523 	return TC_ACT_REDIRECT;
2524 }
2525 
2526 static const struct bpf_func_proto bpf_redirect_proto = {
2527 	.func           = bpf_redirect,
2528 	.gpl_only       = false,
2529 	.ret_type       = RET_INTEGER,
2530 	.arg1_type      = ARG_ANYTHING,
2531 	.arg2_type      = ARG_ANYTHING,
2532 };
2533 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2534 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2535 {
2536 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2537 
2538 	if (unlikely(flags))
2539 		return TC_ACT_SHOT;
2540 
2541 	ri->flags = BPF_F_PEER;
2542 	ri->tgt_index = ifindex;
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2548 	.func           = bpf_redirect_peer,
2549 	.gpl_only       = false,
2550 	.ret_type       = RET_INTEGER,
2551 	.arg1_type      = ARG_ANYTHING,
2552 	.arg2_type      = ARG_ANYTHING,
2553 };
2554 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2555 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2556 	   int, plen, u64, flags)
2557 {
2558 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2559 
2560 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2561 		return TC_ACT_SHOT;
2562 
2563 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2564 	ri->tgt_index = ifindex;
2565 
2566 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2567 	if (plen)
2568 		memcpy(&ri->nh, params, sizeof(ri->nh));
2569 
2570 	return TC_ACT_REDIRECT;
2571 }
2572 
2573 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2574 	.func		= bpf_redirect_neigh,
2575 	.gpl_only	= false,
2576 	.ret_type	= RET_INTEGER,
2577 	.arg1_type	= ARG_ANYTHING,
2578 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2579 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2580 	.arg4_type	= ARG_ANYTHING,
2581 };
2582 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2583 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2584 {
2585 	msg->apply_bytes = bytes;
2586 	return 0;
2587 }
2588 
2589 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2590 	.func           = bpf_msg_apply_bytes,
2591 	.gpl_only       = false,
2592 	.ret_type       = RET_INTEGER,
2593 	.arg1_type	= ARG_PTR_TO_CTX,
2594 	.arg2_type      = ARG_ANYTHING,
2595 };
2596 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2597 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2598 {
2599 	msg->cork_bytes = bytes;
2600 	return 0;
2601 }
2602 
sk_msg_reset_curr(struct sk_msg * msg)2603 static void sk_msg_reset_curr(struct sk_msg *msg)
2604 {
2605 	u32 i = msg->sg.start;
2606 	u32 len = 0;
2607 
2608 	do {
2609 		len += sk_msg_elem(msg, i)->length;
2610 		sk_msg_iter_var_next(i);
2611 		if (len >= msg->sg.size)
2612 			break;
2613 	} while (i != msg->sg.end);
2614 
2615 	msg->sg.curr = i;
2616 	msg->sg.copybreak = 0;
2617 }
2618 
2619 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2620 	.func           = bpf_msg_cork_bytes,
2621 	.gpl_only       = false,
2622 	.ret_type       = RET_INTEGER,
2623 	.arg1_type	= ARG_PTR_TO_CTX,
2624 	.arg2_type      = ARG_ANYTHING,
2625 };
2626 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2627 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2628 	   u32, end, u64, flags)
2629 {
2630 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2631 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2632 	struct scatterlist *sge;
2633 	u8 *raw, *to, *from;
2634 	struct page *page;
2635 
2636 	if (unlikely(flags || end <= start))
2637 		return -EINVAL;
2638 
2639 	/* First find the starting scatterlist element */
2640 	i = msg->sg.start;
2641 	do {
2642 		offset += len;
2643 		len = sk_msg_elem(msg, i)->length;
2644 		if (start < offset + len)
2645 			break;
2646 		sk_msg_iter_var_next(i);
2647 	} while (i != msg->sg.end);
2648 
2649 	if (unlikely(start >= offset + len))
2650 		return -EINVAL;
2651 
2652 	first_sge = i;
2653 	/* The start may point into the sg element so we need to also
2654 	 * account for the headroom.
2655 	 */
2656 	bytes_sg_total = start - offset + bytes;
2657 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2658 		goto out;
2659 
2660 	/* At this point we need to linearize multiple scatterlist
2661 	 * elements or a single shared page. Either way we need to
2662 	 * copy into a linear buffer exclusively owned by BPF. Then
2663 	 * place the buffer in the scatterlist and fixup the original
2664 	 * entries by removing the entries now in the linear buffer
2665 	 * and shifting the remaining entries. For now we do not try
2666 	 * to copy partial entries to avoid complexity of running out
2667 	 * of sg_entry slots. The downside is reading a single byte
2668 	 * will copy the entire sg entry.
2669 	 */
2670 	do {
2671 		copy += sk_msg_elem(msg, i)->length;
2672 		sk_msg_iter_var_next(i);
2673 		if (bytes_sg_total <= copy)
2674 			break;
2675 	} while (i != msg->sg.end);
2676 	last_sge = i;
2677 
2678 	if (unlikely(bytes_sg_total > copy))
2679 		return -EINVAL;
2680 
2681 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2682 			   get_order(copy));
2683 	if (unlikely(!page))
2684 		return -ENOMEM;
2685 
2686 	raw = page_address(page);
2687 	i = first_sge;
2688 	do {
2689 		sge = sk_msg_elem(msg, i);
2690 		from = sg_virt(sge);
2691 		len = sge->length;
2692 		to = raw + poffset;
2693 
2694 		memcpy(to, from, len);
2695 		poffset += len;
2696 		sge->length = 0;
2697 		put_page(sg_page(sge));
2698 
2699 		sk_msg_iter_var_next(i);
2700 	} while (i != last_sge);
2701 
2702 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2703 
2704 	/* To repair sg ring we need to shift entries. If we only
2705 	 * had a single entry though we can just replace it and
2706 	 * be done. Otherwise walk the ring and shift the entries.
2707 	 */
2708 	WARN_ON_ONCE(last_sge == first_sge);
2709 	shift = last_sge > first_sge ?
2710 		last_sge - first_sge - 1 :
2711 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2712 	if (!shift)
2713 		goto out;
2714 
2715 	i = first_sge;
2716 	sk_msg_iter_var_next(i);
2717 	do {
2718 		u32 move_from;
2719 
2720 		if (i + shift >= NR_MSG_FRAG_IDS)
2721 			move_from = i + shift - NR_MSG_FRAG_IDS;
2722 		else
2723 			move_from = i + shift;
2724 		if (move_from == msg->sg.end)
2725 			break;
2726 
2727 		msg->sg.data[i] = msg->sg.data[move_from];
2728 		msg->sg.data[move_from].length = 0;
2729 		msg->sg.data[move_from].page_link = 0;
2730 		msg->sg.data[move_from].offset = 0;
2731 		sk_msg_iter_var_next(i);
2732 	} while (1);
2733 
2734 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2735 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2736 		      msg->sg.end - shift;
2737 out:
2738 	sk_msg_reset_curr(msg);
2739 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2740 	msg->data_end = msg->data + bytes;
2741 	return 0;
2742 }
2743 
2744 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2745 	.func		= bpf_msg_pull_data,
2746 	.gpl_only	= false,
2747 	.ret_type	= RET_INTEGER,
2748 	.arg1_type	= ARG_PTR_TO_CTX,
2749 	.arg2_type	= ARG_ANYTHING,
2750 	.arg3_type	= ARG_ANYTHING,
2751 	.arg4_type	= ARG_ANYTHING,
2752 };
2753 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2754 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2755 	   u32, len, u64, flags)
2756 {
2757 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2758 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2759 	u8 *raw, *to, *from;
2760 	struct page *page;
2761 
2762 	if (unlikely(flags))
2763 		return -EINVAL;
2764 
2765 	if (unlikely(len == 0))
2766 		return 0;
2767 
2768 	/* First find the starting scatterlist element */
2769 	i = msg->sg.start;
2770 	do {
2771 		offset += l;
2772 		l = sk_msg_elem(msg, i)->length;
2773 
2774 		if (start < offset + l)
2775 			break;
2776 		sk_msg_iter_var_next(i);
2777 	} while (i != msg->sg.end);
2778 
2779 	if (start >= offset + l)
2780 		return -EINVAL;
2781 
2782 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2783 
2784 	/* If no space available will fallback to copy, we need at
2785 	 * least one scatterlist elem available to push data into
2786 	 * when start aligns to the beginning of an element or two
2787 	 * when it falls inside an element. We handle the start equals
2788 	 * offset case because its the common case for inserting a
2789 	 * header.
2790 	 */
2791 	if (!space || (space == 1 && start != offset))
2792 		copy = msg->sg.data[i].length;
2793 
2794 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2795 			   get_order(copy + len));
2796 	if (unlikely(!page))
2797 		return -ENOMEM;
2798 
2799 	if (copy) {
2800 		int front, back;
2801 
2802 		raw = page_address(page);
2803 
2804 		psge = sk_msg_elem(msg, i);
2805 		front = start - offset;
2806 		back = psge->length - front;
2807 		from = sg_virt(psge);
2808 
2809 		if (front)
2810 			memcpy(raw, from, front);
2811 
2812 		if (back) {
2813 			from += front;
2814 			to = raw + front + len;
2815 
2816 			memcpy(to, from, back);
2817 		}
2818 
2819 		put_page(sg_page(psge));
2820 	} else if (start - offset) {
2821 		psge = sk_msg_elem(msg, i);
2822 		rsge = sk_msg_elem_cpy(msg, i);
2823 
2824 		psge->length = start - offset;
2825 		rsge.length -= psge->length;
2826 		rsge.offset += start;
2827 
2828 		sk_msg_iter_var_next(i);
2829 		sg_unmark_end(psge);
2830 		sg_unmark_end(&rsge);
2831 		sk_msg_iter_next(msg, end);
2832 	}
2833 
2834 	/* Slot(s) to place newly allocated data */
2835 	new = i;
2836 
2837 	/* Shift one or two slots as needed */
2838 	if (!copy) {
2839 		sge = sk_msg_elem_cpy(msg, i);
2840 
2841 		sk_msg_iter_var_next(i);
2842 		sg_unmark_end(&sge);
2843 		sk_msg_iter_next(msg, end);
2844 
2845 		nsge = sk_msg_elem_cpy(msg, i);
2846 		if (rsge.length) {
2847 			sk_msg_iter_var_next(i);
2848 			nnsge = sk_msg_elem_cpy(msg, i);
2849 		}
2850 
2851 		while (i != msg->sg.end) {
2852 			msg->sg.data[i] = sge;
2853 			sge = nsge;
2854 			sk_msg_iter_var_next(i);
2855 			if (rsge.length) {
2856 				nsge = nnsge;
2857 				nnsge = sk_msg_elem_cpy(msg, i);
2858 			} else {
2859 				nsge = sk_msg_elem_cpy(msg, i);
2860 			}
2861 		}
2862 	}
2863 
2864 	/* Place newly allocated data buffer */
2865 	sk_mem_charge(msg->sk, len);
2866 	msg->sg.size += len;
2867 	__clear_bit(new, msg->sg.copy);
2868 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2869 	if (rsge.length) {
2870 		get_page(sg_page(&rsge));
2871 		sk_msg_iter_var_next(new);
2872 		msg->sg.data[new] = rsge;
2873 	}
2874 
2875 	sk_msg_reset_curr(msg);
2876 	sk_msg_compute_data_pointers(msg);
2877 	return 0;
2878 }
2879 
2880 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2881 	.func		= bpf_msg_push_data,
2882 	.gpl_only	= false,
2883 	.ret_type	= RET_INTEGER,
2884 	.arg1_type	= ARG_PTR_TO_CTX,
2885 	.arg2_type	= ARG_ANYTHING,
2886 	.arg3_type	= ARG_ANYTHING,
2887 	.arg4_type	= ARG_ANYTHING,
2888 };
2889 
sk_msg_shift_left(struct sk_msg * msg,int i)2890 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2891 {
2892 	int prev;
2893 
2894 	do {
2895 		prev = i;
2896 		sk_msg_iter_var_next(i);
2897 		msg->sg.data[prev] = msg->sg.data[i];
2898 	} while (i != msg->sg.end);
2899 
2900 	sk_msg_iter_prev(msg, end);
2901 }
2902 
sk_msg_shift_right(struct sk_msg * msg,int i)2903 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2904 {
2905 	struct scatterlist tmp, sge;
2906 
2907 	sk_msg_iter_next(msg, end);
2908 	sge = sk_msg_elem_cpy(msg, i);
2909 	sk_msg_iter_var_next(i);
2910 	tmp = sk_msg_elem_cpy(msg, i);
2911 
2912 	while (i != msg->sg.end) {
2913 		msg->sg.data[i] = sge;
2914 		sk_msg_iter_var_next(i);
2915 		sge = tmp;
2916 		tmp = sk_msg_elem_cpy(msg, i);
2917 	}
2918 }
2919 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2920 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2921 	   u32, len, u64, flags)
2922 {
2923 	u32 i = 0, l = 0, space, offset = 0;
2924 	u64 last = start + len;
2925 	int pop;
2926 
2927 	if (unlikely(flags))
2928 		return -EINVAL;
2929 
2930 	/* First find the starting scatterlist element */
2931 	i = msg->sg.start;
2932 	do {
2933 		offset += l;
2934 		l = sk_msg_elem(msg, i)->length;
2935 
2936 		if (start < offset + l)
2937 			break;
2938 		sk_msg_iter_var_next(i);
2939 	} while (i != msg->sg.end);
2940 
2941 	/* Bounds checks: start and pop must be inside message */
2942 	if (start >= offset + l || last >= msg->sg.size)
2943 		return -EINVAL;
2944 
2945 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2946 
2947 	pop = len;
2948 	/* --------------| offset
2949 	 * -| start      |-------- len -------|
2950 	 *
2951 	 *  |----- a ----|-------- pop -------|----- b ----|
2952 	 *  |______________________________________________| length
2953 	 *
2954 	 *
2955 	 * a:   region at front of scatter element to save
2956 	 * b:   region at back of scatter element to save when length > A + pop
2957 	 * pop: region to pop from element, same as input 'pop' here will be
2958 	 *      decremented below per iteration.
2959 	 *
2960 	 * Two top-level cases to handle when start != offset, first B is non
2961 	 * zero and second B is zero corresponding to when a pop includes more
2962 	 * than one element.
2963 	 *
2964 	 * Then if B is non-zero AND there is no space allocate space and
2965 	 * compact A, B regions into page. If there is space shift ring to
2966 	 * the rigth free'ing the next element in ring to place B, leaving
2967 	 * A untouched except to reduce length.
2968 	 */
2969 	if (start != offset) {
2970 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2971 		int a = start;
2972 		int b = sge->length - pop - a;
2973 
2974 		sk_msg_iter_var_next(i);
2975 
2976 		if (pop < sge->length - a) {
2977 			if (space) {
2978 				sge->length = a;
2979 				sk_msg_shift_right(msg, i);
2980 				nsge = sk_msg_elem(msg, i);
2981 				get_page(sg_page(sge));
2982 				sg_set_page(nsge,
2983 					    sg_page(sge),
2984 					    b, sge->offset + pop + a);
2985 			} else {
2986 				struct page *page, *orig;
2987 				u8 *to, *from;
2988 
2989 				page = alloc_pages(__GFP_NOWARN |
2990 						   __GFP_COMP   | GFP_ATOMIC,
2991 						   get_order(a + b));
2992 				if (unlikely(!page))
2993 					return -ENOMEM;
2994 
2995 				sge->length = a;
2996 				orig = sg_page(sge);
2997 				from = sg_virt(sge);
2998 				to = page_address(page);
2999 				memcpy(to, from, a);
3000 				memcpy(to + a, from + a + pop, b);
3001 				sg_set_page(sge, page, a + b, 0);
3002 				put_page(orig);
3003 			}
3004 			pop = 0;
3005 		} else if (pop >= sge->length - a) {
3006 			pop -= (sge->length - a);
3007 			sge->length = a;
3008 		}
3009 	}
3010 
3011 	/* From above the current layout _must_ be as follows,
3012 	 *
3013 	 * -| offset
3014 	 * -| start
3015 	 *
3016 	 *  |---- pop ---|---------------- b ------------|
3017 	 *  |____________________________________________| length
3018 	 *
3019 	 * Offset and start of the current msg elem are equal because in the
3020 	 * previous case we handled offset != start and either consumed the
3021 	 * entire element and advanced to the next element OR pop == 0.
3022 	 *
3023 	 * Two cases to handle here are first pop is less than the length
3024 	 * leaving some remainder b above. Simply adjust the element's layout
3025 	 * in this case. Or pop >= length of the element so that b = 0. In this
3026 	 * case advance to next element decrementing pop.
3027 	 */
3028 	while (pop) {
3029 		struct scatterlist *sge = sk_msg_elem(msg, i);
3030 
3031 		if (pop < sge->length) {
3032 			sge->length -= pop;
3033 			sge->offset += pop;
3034 			pop = 0;
3035 		} else {
3036 			pop -= sge->length;
3037 			sk_msg_shift_left(msg, i);
3038 		}
3039 		sk_msg_iter_var_next(i);
3040 	}
3041 
3042 	sk_mem_uncharge(msg->sk, len - pop);
3043 	msg->sg.size -= (len - pop);
3044 	sk_msg_reset_curr(msg);
3045 	sk_msg_compute_data_pointers(msg);
3046 	return 0;
3047 }
3048 
3049 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3050 	.func		= bpf_msg_pop_data,
3051 	.gpl_only	= false,
3052 	.ret_type	= RET_INTEGER,
3053 	.arg1_type	= ARG_PTR_TO_CTX,
3054 	.arg2_type	= ARG_ANYTHING,
3055 	.arg3_type	= ARG_ANYTHING,
3056 	.arg4_type	= ARG_ANYTHING,
3057 };
3058 
3059 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3060 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3061 {
3062 	return __task_get_classid(current);
3063 }
3064 
3065 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3066 	.func		= bpf_get_cgroup_classid_curr,
3067 	.gpl_only	= false,
3068 	.ret_type	= RET_INTEGER,
3069 };
3070 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3071 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3072 {
3073 	struct sock *sk = skb_to_full_sk(skb);
3074 
3075 	if (!sk || !sk_fullsock(sk))
3076 		return 0;
3077 
3078 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3079 }
3080 
3081 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3082 	.func		= bpf_skb_cgroup_classid,
3083 	.gpl_only	= false,
3084 	.ret_type	= RET_INTEGER,
3085 	.arg1_type	= ARG_PTR_TO_CTX,
3086 };
3087 #endif
3088 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3089 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3090 {
3091 	return task_get_classid(skb);
3092 }
3093 
3094 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3095 	.func           = bpf_get_cgroup_classid,
3096 	.gpl_only       = false,
3097 	.ret_type       = RET_INTEGER,
3098 	.arg1_type      = ARG_PTR_TO_CTX,
3099 };
3100 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3101 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3102 {
3103 	return dst_tclassid(skb);
3104 }
3105 
3106 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3107 	.func           = bpf_get_route_realm,
3108 	.gpl_only       = false,
3109 	.ret_type       = RET_INTEGER,
3110 	.arg1_type      = ARG_PTR_TO_CTX,
3111 };
3112 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3113 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3114 {
3115 	/* If skb_clear_hash() was called due to mangling, we can
3116 	 * trigger SW recalculation here. Later access to hash
3117 	 * can then use the inline skb->hash via context directly
3118 	 * instead of calling this helper again.
3119 	 */
3120 	return skb_get_hash(skb);
3121 }
3122 
3123 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3124 	.func		= bpf_get_hash_recalc,
3125 	.gpl_only	= false,
3126 	.ret_type	= RET_INTEGER,
3127 	.arg1_type	= ARG_PTR_TO_CTX,
3128 };
3129 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3130 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3131 {
3132 	/* After all direct packet write, this can be used once for
3133 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3134 	 */
3135 	skb_clear_hash(skb);
3136 	return 0;
3137 }
3138 
3139 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3140 	.func		= bpf_set_hash_invalid,
3141 	.gpl_only	= false,
3142 	.ret_type	= RET_INTEGER,
3143 	.arg1_type	= ARG_PTR_TO_CTX,
3144 };
3145 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3146 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3147 {
3148 	/* Set user specified hash as L4(+), so that it gets returned
3149 	 * on skb_get_hash() call unless BPF prog later on triggers a
3150 	 * skb_clear_hash().
3151 	 */
3152 	__skb_set_sw_hash(skb, hash, true);
3153 	return 0;
3154 }
3155 
3156 static const struct bpf_func_proto bpf_set_hash_proto = {
3157 	.func		= bpf_set_hash,
3158 	.gpl_only	= false,
3159 	.ret_type	= RET_INTEGER,
3160 	.arg1_type	= ARG_PTR_TO_CTX,
3161 	.arg2_type	= ARG_ANYTHING,
3162 };
3163 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3164 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3165 	   u16, vlan_tci)
3166 {
3167 	int ret;
3168 
3169 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3170 		     vlan_proto != htons(ETH_P_8021AD)))
3171 		vlan_proto = htons(ETH_P_8021Q);
3172 
3173 	bpf_push_mac_rcsum(skb);
3174 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3175 	bpf_pull_mac_rcsum(skb);
3176 
3177 	bpf_compute_data_pointers(skb);
3178 	return ret;
3179 }
3180 
3181 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3182 	.func           = bpf_skb_vlan_push,
3183 	.gpl_only       = false,
3184 	.ret_type       = RET_INTEGER,
3185 	.arg1_type      = ARG_PTR_TO_CTX,
3186 	.arg2_type      = ARG_ANYTHING,
3187 	.arg3_type      = ARG_ANYTHING,
3188 };
3189 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3190 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3191 {
3192 	int ret;
3193 
3194 	bpf_push_mac_rcsum(skb);
3195 	ret = skb_vlan_pop(skb);
3196 	bpf_pull_mac_rcsum(skb);
3197 
3198 	bpf_compute_data_pointers(skb);
3199 	return ret;
3200 }
3201 
3202 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3203 	.func           = bpf_skb_vlan_pop,
3204 	.gpl_only       = false,
3205 	.ret_type       = RET_INTEGER,
3206 	.arg1_type      = ARG_PTR_TO_CTX,
3207 };
3208 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3209 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3210 {
3211 	/* Caller already did skb_cow() with len as headroom,
3212 	 * so no need to do it here.
3213 	 */
3214 	skb_push(skb, len);
3215 	memmove(skb->data, skb->data + len, off);
3216 	memset(skb->data + off, 0, len);
3217 
3218 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3219 	 * needed here as it does not change the skb->csum
3220 	 * result for checksum complete when summing over
3221 	 * zeroed blocks.
3222 	 */
3223 	return 0;
3224 }
3225 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3226 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3227 {
3228 	void *old_data;
3229 
3230 	/* skb_ensure_writable() is not needed here, as we're
3231 	 * already working on an uncloned skb.
3232 	 */
3233 	if (unlikely(!pskb_may_pull(skb, off + len)))
3234 		return -ENOMEM;
3235 
3236 	old_data = skb->data;
3237 	__skb_pull(skb, len);
3238 	skb_postpull_rcsum(skb, old_data + off, len);
3239 	memmove(skb->data, old_data, off);
3240 
3241 	return 0;
3242 }
3243 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3244 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3245 {
3246 	bool trans_same = skb->transport_header == skb->network_header;
3247 	int ret;
3248 
3249 	/* There's no need for __skb_push()/__skb_pull() pair to
3250 	 * get to the start of the mac header as we're guaranteed
3251 	 * to always start from here under eBPF.
3252 	 */
3253 	ret = bpf_skb_generic_push(skb, off, len);
3254 	if (likely(!ret)) {
3255 		skb->mac_header -= len;
3256 		skb->network_header -= len;
3257 		if (trans_same)
3258 			skb->transport_header = skb->network_header;
3259 	}
3260 
3261 	return ret;
3262 }
3263 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3264 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3265 {
3266 	bool trans_same = skb->transport_header == skb->network_header;
3267 	int ret;
3268 
3269 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3270 	ret = bpf_skb_generic_pop(skb, off, len);
3271 	if (likely(!ret)) {
3272 		skb->mac_header += len;
3273 		skb->network_header += len;
3274 		if (trans_same)
3275 			skb->transport_header = skb->network_header;
3276 	}
3277 
3278 	return ret;
3279 }
3280 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3281 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3282 {
3283 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3284 	u32 off = skb_mac_header_len(skb);
3285 	int ret;
3286 
3287 	ret = skb_cow(skb, len_diff);
3288 	if (unlikely(ret < 0))
3289 		return ret;
3290 
3291 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3292 	if (unlikely(ret < 0))
3293 		return ret;
3294 
3295 	if (skb_is_gso(skb)) {
3296 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3297 
3298 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3299 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3300 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3301 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3302 		}
3303 	}
3304 
3305 	skb->protocol = htons(ETH_P_IPV6);
3306 	skb_clear_hash(skb);
3307 
3308 	return 0;
3309 }
3310 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3311 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3312 {
3313 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3314 	u32 off = skb_mac_header_len(skb);
3315 	int ret;
3316 
3317 	ret = skb_unclone(skb, GFP_ATOMIC);
3318 	if (unlikely(ret < 0))
3319 		return ret;
3320 
3321 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3322 	if (unlikely(ret < 0))
3323 		return ret;
3324 
3325 	if (skb_is_gso(skb)) {
3326 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3327 
3328 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3329 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3330 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3331 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3332 		}
3333 	}
3334 
3335 	skb->protocol = htons(ETH_P_IP);
3336 	skb_clear_hash(skb);
3337 
3338 	return 0;
3339 }
3340 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3341 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3342 {
3343 	__be16 from_proto = skb->protocol;
3344 
3345 	if (from_proto == htons(ETH_P_IP) &&
3346 	      to_proto == htons(ETH_P_IPV6))
3347 		return bpf_skb_proto_4_to_6(skb);
3348 
3349 	if (from_proto == htons(ETH_P_IPV6) &&
3350 	      to_proto == htons(ETH_P_IP))
3351 		return bpf_skb_proto_6_to_4(skb);
3352 
3353 	return -ENOTSUPP;
3354 }
3355 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3356 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3357 	   u64, flags)
3358 {
3359 	int ret;
3360 
3361 	if (unlikely(flags))
3362 		return -EINVAL;
3363 
3364 	/* General idea is that this helper does the basic groundwork
3365 	 * needed for changing the protocol, and eBPF program fills the
3366 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3367 	 * and other helpers, rather than passing a raw buffer here.
3368 	 *
3369 	 * The rationale is to keep this minimal and without a need to
3370 	 * deal with raw packet data. F.e. even if we would pass buffers
3371 	 * here, the program still needs to call the bpf_lX_csum_replace()
3372 	 * helpers anyway. Plus, this way we keep also separation of
3373 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3374 	 * care of stores.
3375 	 *
3376 	 * Currently, additional options and extension header space are
3377 	 * not supported, but flags register is reserved so we can adapt
3378 	 * that. For offloads, we mark packet as dodgy, so that headers
3379 	 * need to be verified first.
3380 	 */
3381 	ret = bpf_skb_proto_xlat(skb, proto);
3382 	bpf_compute_data_pointers(skb);
3383 	return ret;
3384 }
3385 
3386 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3387 	.func		= bpf_skb_change_proto,
3388 	.gpl_only	= false,
3389 	.ret_type	= RET_INTEGER,
3390 	.arg1_type	= ARG_PTR_TO_CTX,
3391 	.arg2_type	= ARG_ANYTHING,
3392 	.arg3_type	= ARG_ANYTHING,
3393 };
3394 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3395 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3396 {
3397 	/* We only allow a restricted subset to be changed for now. */
3398 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3399 		     !skb_pkt_type_ok(pkt_type)))
3400 		return -EINVAL;
3401 
3402 	skb->pkt_type = pkt_type;
3403 	return 0;
3404 }
3405 
3406 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3407 	.func		= bpf_skb_change_type,
3408 	.gpl_only	= false,
3409 	.ret_type	= RET_INTEGER,
3410 	.arg1_type	= ARG_PTR_TO_CTX,
3411 	.arg2_type	= ARG_ANYTHING,
3412 };
3413 
bpf_skb_net_base_len(const struct sk_buff * skb)3414 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3415 {
3416 	switch (skb->protocol) {
3417 	case htons(ETH_P_IP):
3418 		return sizeof(struct iphdr);
3419 	case htons(ETH_P_IPV6):
3420 		return sizeof(struct ipv6hdr);
3421 	default:
3422 		return ~0U;
3423 	}
3424 }
3425 
3426 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3427 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3428 
3429 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3430 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3431 
3432 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3433 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3434 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3435 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3436 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3437 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3438 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3439 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3440 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3441 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3442 			    u64 flags)
3443 {
3444 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3445 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3446 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3447 	unsigned int gso_type = SKB_GSO_DODGY;
3448 	int ret;
3449 
3450 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3451 		/* udp gso_size delineates datagrams, only allow if fixed */
3452 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3453 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3454 			return -ENOTSUPP;
3455 	}
3456 
3457 	ret = skb_cow_head(skb, len_diff);
3458 	if (unlikely(ret < 0))
3459 		return ret;
3460 
3461 	if (encap) {
3462 		if (skb->protocol != htons(ETH_P_IP) &&
3463 		    skb->protocol != htons(ETH_P_IPV6))
3464 			return -ENOTSUPP;
3465 
3466 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3467 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3468 			return -EINVAL;
3469 
3470 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3471 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3472 			return -EINVAL;
3473 
3474 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3475 		    inner_mac_len < ETH_HLEN)
3476 			return -EINVAL;
3477 
3478 		if (skb->encapsulation)
3479 			return -EALREADY;
3480 
3481 		mac_len = skb->network_header - skb->mac_header;
3482 		inner_net = skb->network_header;
3483 		if (inner_mac_len > len_diff)
3484 			return -EINVAL;
3485 		inner_trans = skb->transport_header;
3486 	}
3487 
3488 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3489 	if (unlikely(ret < 0))
3490 		return ret;
3491 
3492 	if (encap) {
3493 		skb->inner_mac_header = inner_net - inner_mac_len;
3494 		skb->inner_network_header = inner_net;
3495 		skb->inner_transport_header = inner_trans;
3496 
3497 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3498 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3499 		else
3500 			skb_set_inner_protocol(skb, skb->protocol);
3501 
3502 		skb->encapsulation = 1;
3503 		skb_set_network_header(skb, mac_len);
3504 
3505 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3506 			gso_type |= SKB_GSO_UDP_TUNNEL;
3507 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3508 			gso_type |= SKB_GSO_GRE;
3509 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3510 			gso_type |= SKB_GSO_IPXIP6;
3511 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3512 			gso_type |= SKB_GSO_IPXIP4;
3513 
3514 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3515 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3516 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3517 					sizeof(struct ipv6hdr) :
3518 					sizeof(struct iphdr);
3519 
3520 			skb_set_transport_header(skb, mac_len + nh_len);
3521 		}
3522 
3523 		/* Match skb->protocol to new outer l3 protocol */
3524 		if (skb->protocol == htons(ETH_P_IP) &&
3525 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3526 			skb->protocol = htons(ETH_P_IPV6);
3527 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3528 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3529 			skb->protocol = htons(ETH_P_IP);
3530 	}
3531 
3532 	if (skb_is_gso(skb)) {
3533 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3534 
3535 		/* Header must be checked, and gso_segs recomputed. */
3536 		shinfo->gso_type |= gso_type;
3537 		shinfo->gso_segs = 0;
3538 
3539 		/* Due to header growth, MSS needs to be downgraded.
3540 		 * There is a BUG_ON() when segmenting the frag_list with
3541 		 * head_frag true, so linearize the skb after downgrading
3542 		 * the MSS.
3543 		 */
3544 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3545 			skb_decrease_gso_size(shinfo, len_diff);
3546 			if (shinfo->frag_list)
3547 				return skb_linearize(skb);
3548 		}
3549 	}
3550 
3551 	return 0;
3552 }
3553 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3554 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3555 			      u64 flags)
3556 {
3557 	int ret;
3558 
3559 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3560 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3561 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3562 		return -EINVAL;
3563 
3564 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3565 		/* udp gso_size delineates datagrams, only allow if fixed */
3566 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3567 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3568 			return -ENOTSUPP;
3569 	}
3570 
3571 	ret = skb_unclone(skb, GFP_ATOMIC);
3572 	if (unlikely(ret < 0))
3573 		return ret;
3574 
3575 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3576 	if (unlikely(ret < 0))
3577 		return ret;
3578 
3579 	/* Match skb->protocol to new outer l3 protocol */
3580 	if (skb->protocol == htons(ETH_P_IP) &&
3581 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3582 		skb->protocol = htons(ETH_P_IPV6);
3583 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3584 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3585 		skb->protocol = htons(ETH_P_IP);
3586 
3587 	if (skb_is_gso(skb)) {
3588 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3589 
3590 		/* Due to header shrink, MSS can be upgraded. */
3591 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3592 			skb_increase_gso_size(shinfo, len_diff);
3593 
3594 		/* Header must be checked, and gso_segs recomputed. */
3595 		shinfo->gso_type |= SKB_GSO_DODGY;
3596 		shinfo->gso_segs = 0;
3597 	}
3598 
3599 	return 0;
3600 }
3601 
3602 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3603 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3604 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3605 	   u32, mode, u64, flags)
3606 {
3607 	u32 len_diff_abs = abs(len_diff);
3608 	bool shrink = len_diff < 0;
3609 	int ret = 0;
3610 
3611 	if (unlikely(flags || mode))
3612 		return -EINVAL;
3613 	if (unlikely(len_diff_abs > 0xfffU))
3614 		return -EFAULT;
3615 
3616 	if (!shrink) {
3617 		ret = skb_cow(skb, len_diff);
3618 		if (unlikely(ret < 0))
3619 			return ret;
3620 		__skb_push(skb, len_diff_abs);
3621 		memset(skb->data, 0, len_diff_abs);
3622 	} else {
3623 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3624 			return -ENOMEM;
3625 		__skb_pull(skb, len_diff_abs);
3626 	}
3627 	if (tls_sw_has_ctx_rx(skb->sk)) {
3628 		struct strp_msg *rxm = strp_msg(skb);
3629 
3630 		rxm->full_len += len_diff;
3631 	}
3632 	return ret;
3633 }
3634 
3635 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3636 	.func		= sk_skb_adjust_room,
3637 	.gpl_only	= false,
3638 	.ret_type	= RET_INTEGER,
3639 	.arg1_type	= ARG_PTR_TO_CTX,
3640 	.arg2_type	= ARG_ANYTHING,
3641 	.arg3_type	= ARG_ANYTHING,
3642 	.arg4_type	= ARG_ANYTHING,
3643 };
3644 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3645 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3646 	   u32, mode, u64, flags)
3647 {
3648 	u32 len_cur, len_diff_abs = abs(len_diff);
3649 	u32 len_min = bpf_skb_net_base_len(skb);
3650 	u32 len_max = BPF_SKB_MAX_LEN;
3651 	__be16 proto = skb->protocol;
3652 	bool shrink = len_diff < 0;
3653 	u32 off;
3654 	int ret;
3655 
3656 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3657 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3658 		return -EINVAL;
3659 	if (unlikely(len_diff_abs > 0xfffU))
3660 		return -EFAULT;
3661 	if (unlikely(proto != htons(ETH_P_IP) &&
3662 		     proto != htons(ETH_P_IPV6)))
3663 		return -ENOTSUPP;
3664 
3665 	off = skb_mac_header_len(skb);
3666 	switch (mode) {
3667 	case BPF_ADJ_ROOM_NET:
3668 		off += bpf_skb_net_base_len(skb);
3669 		break;
3670 	case BPF_ADJ_ROOM_MAC:
3671 		break;
3672 	default:
3673 		return -ENOTSUPP;
3674 	}
3675 
3676 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3677 		if (!shrink)
3678 			return -EINVAL;
3679 
3680 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3681 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3682 			len_min = sizeof(struct iphdr);
3683 			break;
3684 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3685 			len_min = sizeof(struct ipv6hdr);
3686 			break;
3687 		default:
3688 			return -EINVAL;
3689 		}
3690 	}
3691 
3692 	len_cur = skb->len - skb_network_offset(skb);
3693 	if ((shrink && (len_diff_abs >= len_cur ||
3694 			len_cur - len_diff_abs < len_min)) ||
3695 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3696 			 !skb_is_gso(skb))))
3697 		return -ENOTSUPP;
3698 
3699 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3700 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3701 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3702 		__skb_reset_checksum_unnecessary(skb);
3703 
3704 	bpf_compute_data_pointers(skb);
3705 	return ret;
3706 }
3707 
3708 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3709 	.func		= bpf_skb_adjust_room,
3710 	.gpl_only	= false,
3711 	.ret_type	= RET_INTEGER,
3712 	.arg1_type	= ARG_PTR_TO_CTX,
3713 	.arg2_type	= ARG_ANYTHING,
3714 	.arg3_type	= ARG_ANYTHING,
3715 	.arg4_type	= ARG_ANYTHING,
3716 };
3717 
__bpf_skb_min_len(const struct sk_buff * skb)3718 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3719 {
3720 	u32 min_len = skb_network_offset(skb);
3721 
3722 	if (skb_transport_header_was_set(skb))
3723 		min_len = skb_transport_offset(skb);
3724 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3725 		min_len = skb_checksum_start_offset(skb) +
3726 			  skb->csum_offset + sizeof(__sum16);
3727 	return min_len;
3728 }
3729 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3730 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3731 {
3732 	unsigned int old_len = skb->len;
3733 	int ret;
3734 
3735 	ret = __skb_grow_rcsum(skb, new_len);
3736 	if (!ret)
3737 		memset(skb->data + old_len, 0, new_len - old_len);
3738 	return ret;
3739 }
3740 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3741 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3742 {
3743 	return __skb_trim_rcsum(skb, new_len);
3744 }
3745 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3746 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3747 					u64 flags)
3748 {
3749 	u32 max_len = BPF_SKB_MAX_LEN;
3750 	u32 min_len = __bpf_skb_min_len(skb);
3751 	int ret;
3752 
3753 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3754 		return -EINVAL;
3755 	if (skb->encapsulation)
3756 		return -ENOTSUPP;
3757 
3758 	/* The basic idea of this helper is that it's performing the
3759 	 * needed work to either grow or trim an skb, and eBPF program
3760 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3761 	 * bpf_lX_csum_replace() and others rather than passing a raw
3762 	 * buffer here. This one is a slow path helper and intended
3763 	 * for replies with control messages.
3764 	 *
3765 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3766 	 * minimal and without protocol specifics so that we are able
3767 	 * to separate concerns as in bpf_skb_store_bytes() should only
3768 	 * be the one responsible for writing buffers.
3769 	 *
3770 	 * It's really expected to be a slow path operation here for
3771 	 * control message replies, so we're implicitly linearizing,
3772 	 * uncloning and drop offloads from the skb by this.
3773 	 */
3774 	ret = __bpf_try_make_writable(skb, skb->len);
3775 	if (!ret) {
3776 		if (new_len > skb->len)
3777 			ret = bpf_skb_grow_rcsum(skb, new_len);
3778 		else if (new_len < skb->len)
3779 			ret = bpf_skb_trim_rcsum(skb, new_len);
3780 		if (!ret && skb_is_gso(skb))
3781 			skb_gso_reset(skb);
3782 	}
3783 	return ret;
3784 }
3785 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3786 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3787 	   u64, flags)
3788 {
3789 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3790 
3791 	bpf_compute_data_pointers(skb);
3792 	return ret;
3793 }
3794 
3795 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3796 	.func		= bpf_skb_change_tail,
3797 	.gpl_only	= false,
3798 	.ret_type	= RET_INTEGER,
3799 	.arg1_type	= ARG_PTR_TO_CTX,
3800 	.arg2_type	= ARG_ANYTHING,
3801 	.arg3_type	= ARG_ANYTHING,
3802 };
3803 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3804 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3805 	   u64, flags)
3806 {
3807 	return __bpf_skb_change_tail(skb, new_len, flags);
3808 }
3809 
3810 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3811 	.func		= sk_skb_change_tail,
3812 	.gpl_only	= false,
3813 	.ret_type	= RET_INTEGER,
3814 	.arg1_type	= ARG_PTR_TO_CTX,
3815 	.arg2_type	= ARG_ANYTHING,
3816 	.arg3_type	= ARG_ANYTHING,
3817 };
3818 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3819 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3820 					u64 flags)
3821 {
3822 	u32 max_len = BPF_SKB_MAX_LEN;
3823 	u32 new_len = skb->len + head_room;
3824 	int ret;
3825 
3826 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3827 		     new_len < skb->len))
3828 		return -EINVAL;
3829 
3830 	ret = skb_cow(skb, head_room);
3831 	if (likely(!ret)) {
3832 		/* Idea for this helper is that we currently only
3833 		 * allow to expand on mac header. This means that
3834 		 * skb->protocol network header, etc, stay as is.
3835 		 * Compared to bpf_skb_change_tail(), we're more
3836 		 * flexible due to not needing to linearize or
3837 		 * reset GSO. Intention for this helper is to be
3838 		 * used by an L3 skb that needs to push mac header
3839 		 * for redirection into L2 device.
3840 		 */
3841 		__skb_push(skb, head_room);
3842 		memset(skb->data, 0, head_room);
3843 		skb_reset_mac_header(skb);
3844 		skb_reset_mac_len(skb);
3845 	}
3846 
3847 	return ret;
3848 }
3849 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3850 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3851 	   u64, flags)
3852 {
3853 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3854 
3855 	bpf_compute_data_pointers(skb);
3856 	return ret;
3857 }
3858 
3859 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3860 	.func		= bpf_skb_change_head,
3861 	.gpl_only	= false,
3862 	.ret_type	= RET_INTEGER,
3863 	.arg1_type	= ARG_PTR_TO_CTX,
3864 	.arg2_type	= ARG_ANYTHING,
3865 	.arg3_type	= ARG_ANYTHING,
3866 };
3867 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3868 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3869 	   u64, flags)
3870 {
3871 	return __bpf_skb_change_head(skb, head_room, flags);
3872 }
3873 
3874 static const struct bpf_func_proto sk_skb_change_head_proto = {
3875 	.func		= sk_skb_change_head,
3876 	.gpl_only	= false,
3877 	.ret_type	= RET_INTEGER,
3878 	.arg1_type	= ARG_PTR_TO_CTX,
3879 	.arg2_type	= ARG_ANYTHING,
3880 	.arg3_type	= ARG_ANYTHING,
3881 };
3882 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3883 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3884 {
3885 	return xdp_get_buff_len(xdp);
3886 }
3887 
3888 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3889 	.func		= bpf_xdp_get_buff_len,
3890 	.gpl_only	= false,
3891 	.ret_type	= RET_INTEGER,
3892 	.arg1_type	= ARG_PTR_TO_CTX,
3893 };
3894 
3895 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3896 
3897 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3898 	.func		= bpf_xdp_get_buff_len,
3899 	.gpl_only	= false,
3900 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3901 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3902 };
3903 
xdp_get_metalen(const struct xdp_buff * xdp)3904 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3905 {
3906 	return xdp_data_meta_unsupported(xdp) ? 0 :
3907 	       xdp->data - xdp->data_meta;
3908 }
3909 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3910 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3911 {
3912 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3913 	unsigned long metalen = xdp_get_metalen(xdp);
3914 	void *data_start = xdp_frame_end + metalen;
3915 	void *data = xdp->data + offset;
3916 
3917 	if (unlikely(data < data_start ||
3918 		     data > xdp->data_end - ETH_HLEN))
3919 		return -EINVAL;
3920 
3921 	if (metalen)
3922 		memmove(xdp->data_meta + offset,
3923 			xdp->data_meta, metalen);
3924 	xdp->data_meta += offset;
3925 	xdp->data = data;
3926 
3927 	return 0;
3928 }
3929 
3930 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3931 	.func		= bpf_xdp_adjust_head,
3932 	.gpl_only	= false,
3933 	.ret_type	= RET_INTEGER,
3934 	.arg1_type	= ARG_PTR_TO_CTX,
3935 	.arg2_type	= ARG_ANYTHING,
3936 };
3937 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3938 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3939 		      void *buf, unsigned long len, bool flush)
3940 {
3941 	unsigned long ptr_len, ptr_off = 0;
3942 	skb_frag_t *next_frag, *end_frag;
3943 	struct skb_shared_info *sinfo;
3944 	void *src, *dst;
3945 	u8 *ptr_buf;
3946 
3947 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3948 		src = flush ? buf : xdp->data + off;
3949 		dst = flush ? xdp->data + off : buf;
3950 		memcpy(dst, src, len);
3951 		return;
3952 	}
3953 
3954 	sinfo = xdp_get_shared_info_from_buff(xdp);
3955 	end_frag = &sinfo->frags[sinfo->nr_frags];
3956 	next_frag = &sinfo->frags[0];
3957 
3958 	ptr_len = xdp->data_end - xdp->data;
3959 	ptr_buf = xdp->data;
3960 
3961 	while (true) {
3962 		if (off < ptr_off + ptr_len) {
3963 			unsigned long copy_off = off - ptr_off;
3964 			unsigned long copy_len = min(len, ptr_len - copy_off);
3965 
3966 			src = flush ? buf : ptr_buf + copy_off;
3967 			dst = flush ? ptr_buf + copy_off : buf;
3968 			memcpy(dst, src, copy_len);
3969 
3970 			off += copy_len;
3971 			len -= copy_len;
3972 			buf += copy_len;
3973 		}
3974 
3975 		if (!len || next_frag == end_frag)
3976 			break;
3977 
3978 		ptr_off += ptr_len;
3979 		ptr_buf = skb_frag_address(next_frag);
3980 		ptr_len = skb_frag_size(next_frag);
3981 		next_frag++;
3982 	}
3983 }
3984 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3985 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3986 {
3987 	u32 size = xdp->data_end - xdp->data;
3988 	struct skb_shared_info *sinfo;
3989 	void *addr = xdp->data;
3990 	int i;
3991 
3992 	if (unlikely(offset > 0xffff || len > 0xffff))
3993 		return ERR_PTR(-EFAULT);
3994 
3995 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3996 		return ERR_PTR(-EINVAL);
3997 
3998 	if (likely(offset < size)) /* linear area */
3999 		goto out;
4000 
4001 	sinfo = xdp_get_shared_info_from_buff(xdp);
4002 	offset -= size;
4003 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4004 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4005 
4006 		if  (offset < frag_size) {
4007 			addr = skb_frag_address(&sinfo->frags[i]);
4008 			size = frag_size;
4009 			break;
4010 		}
4011 		offset -= frag_size;
4012 	}
4013 out:
4014 	return offset + len <= size ? addr + offset : NULL;
4015 }
4016 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4017 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4018 	   void *, buf, u32, len)
4019 {
4020 	void *ptr;
4021 
4022 	ptr = bpf_xdp_pointer(xdp, offset, len);
4023 	if (IS_ERR(ptr))
4024 		return PTR_ERR(ptr);
4025 
4026 	if (!ptr)
4027 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4028 	else
4029 		memcpy(buf, ptr, len);
4030 
4031 	return 0;
4032 }
4033 
4034 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4035 	.func		= bpf_xdp_load_bytes,
4036 	.gpl_only	= false,
4037 	.ret_type	= RET_INTEGER,
4038 	.arg1_type	= ARG_PTR_TO_CTX,
4039 	.arg2_type	= ARG_ANYTHING,
4040 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4041 	.arg4_type	= ARG_CONST_SIZE,
4042 };
4043 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4044 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4045 {
4046 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4047 }
4048 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4049 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4050 	   void *, buf, u32, len)
4051 {
4052 	void *ptr;
4053 
4054 	ptr = bpf_xdp_pointer(xdp, offset, len);
4055 	if (IS_ERR(ptr))
4056 		return PTR_ERR(ptr);
4057 
4058 	if (!ptr)
4059 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4060 	else
4061 		memcpy(ptr, buf, len);
4062 
4063 	return 0;
4064 }
4065 
4066 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4067 	.func		= bpf_xdp_store_bytes,
4068 	.gpl_only	= false,
4069 	.ret_type	= RET_INTEGER,
4070 	.arg1_type	= ARG_PTR_TO_CTX,
4071 	.arg2_type	= ARG_ANYTHING,
4072 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4073 	.arg4_type	= ARG_CONST_SIZE,
4074 };
4075 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4076 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4077 {
4078 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4079 }
4080 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4081 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4082 {
4083 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4084 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4085 	struct xdp_rxq_info *rxq = xdp->rxq;
4086 	unsigned int tailroom;
4087 
4088 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4089 		return -EOPNOTSUPP;
4090 
4091 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4092 	if (unlikely(offset > tailroom))
4093 		return -EINVAL;
4094 
4095 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4096 	skb_frag_size_add(frag, offset);
4097 	sinfo->xdp_frags_size += offset;
4098 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4099 		xsk_buff_get_tail(xdp)->data_end += offset;
4100 
4101 	return 0;
4102 }
4103 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4104 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4105 				   struct xdp_mem_info *mem_info, bool release)
4106 {
4107 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4108 
4109 	if (release) {
4110 		xsk_buff_del_tail(zc_frag);
4111 		__xdp_return(NULL, mem_info, false, zc_frag);
4112 	} else {
4113 		zc_frag->data_end -= shrink;
4114 	}
4115 }
4116 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4117 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4118 				int shrink)
4119 {
4120 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4121 	bool release = skb_frag_size(frag) == shrink;
4122 
4123 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4124 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4125 		goto out;
4126 	}
4127 
4128 	if (release) {
4129 		struct page *page = skb_frag_page(frag);
4130 
4131 		__xdp_return(page_address(page), mem_info, false, NULL);
4132 	}
4133 
4134 out:
4135 	return release;
4136 }
4137 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4138 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4139 {
4140 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4141 	int i, n_frags_free = 0, len_free = 0;
4142 
4143 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4144 		return -EINVAL;
4145 
4146 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4147 		skb_frag_t *frag = &sinfo->frags[i];
4148 		int shrink = min_t(int, offset, skb_frag_size(frag));
4149 
4150 		len_free += shrink;
4151 		offset -= shrink;
4152 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4153 			n_frags_free++;
4154 		} else {
4155 			skb_frag_size_sub(frag, shrink);
4156 			break;
4157 		}
4158 	}
4159 	sinfo->nr_frags -= n_frags_free;
4160 	sinfo->xdp_frags_size -= len_free;
4161 
4162 	if (unlikely(!sinfo->nr_frags)) {
4163 		xdp_buff_clear_frags_flag(xdp);
4164 		xdp->data_end -= offset;
4165 	}
4166 
4167 	return 0;
4168 }
4169 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4170 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4171 {
4172 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4173 	void *data_end = xdp->data_end + offset;
4174 
4175 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4176 		if (offset < 0)
4177 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4178 
4179 		return bpf_xdp_frags_increase_tail(xdp, offset);
4180 	}
4181 
4182 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4183 	if (unlikely(data_end > data_hard_end))
4184 		return -EINVAL;
4185 
4186 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4187 		return -EINVAL;
4188 
4189 	/* Clear memory area on grow, can contain uninit kernel memory */
4190 	if (offset > 0)
4191 		memset(xdp->data_end, 0, offset);
4192 
4193 	xdp->data_end = data_end;
4194 
4195 	return 0;
4196 }
4197 
4198 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4199 	.func		= bpf_xdp_adjust_tail,
4200 	.gpl_only	= false,
4201 	.ret_type	= RET_INTEGER,
4202 	.arg1_type	= ARG_PTR_TO_CTX,
4203 	.arg2_type	= ARG_ANYTHING,
4204 };
4205 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4206 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4207 {
4208 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4209 	void *meta = xdp->data_meta + offset;
4210 	unsigned long metalen = xdp->data - meta;
4211 
4212 	if (xdp_data_meta_unsupported(xdp))
4213 		return -ENOTSUPP;
4214 	if (unlikely(meta < xdp_frame_end ||
4215 		     meta > xdp->data))
4216 		return -EINVAL;
4217 	if (unlikely(xdp_metalen_invalid(metalen)))
4218 		return -EACCES;
4219 
4220 	xdp->data_meta = meta;
4221 
4222 	return 0;
4223 }
4224 
4225 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4226 	.func		= bpf_xdp_adjust_meta,
4227 	.gpl_only	= false,
4228 	.ret_type	= RET_INTEGER,
4229 	.arg1_type	= ARG_PTR_TO_CTX,
4230 	.arg2_type	= ARG_ANYTHING,
4231 };
4232 
4233 /**
4234  * DOC: xdp redirect
4235  *
4236  * XDP_REDIRECT works by a three-step process, implemented in the functions
4237  * below:
4238  *
4239  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4240  *    of the redirect and store it (along with some other metadata) in a per-CPU
4241  *    struct bpf_redirect_info.
4242  *
4243  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4244  *    call xdp_do_redirect() which will use the information in struct
4245  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4246  *    bulk queue structure.
4247  *
4248  * 3. Before exiting its NAPI poll loop, the driver will call
4249  *    xdp_do_flush(), which will flush all the different bulk queues,
4250  *    thus completing the redirect. Note that xdp_do_flush() must be
4251  *    called before napi_complete_done() in the driver, as the
4252  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4253  *    through to the xdp_do_flush() call for RCU protection of all
4254  *    in-kernel data structures.
4255  */
4256 /*
4257  * Pointers to the map entries will be kept around for this whole sequence of
4258  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4259  * the core code; instead, the RCU protection relies on everything happening
4260  * inside a single NAPI poll sequence, which means it's between a pair of calls
4261  * to local_bh_disable()/local_bh_enable().
4262  *
4263  * The map entries are marked as __rcu and the map code makes sure to
4264  * dereference those pointers with rcu_dereference_check() in a way that works
4265  * for both sections that to hold an rcu_read_lock() and sections that are
4266  * called from NAPI without a separate rcu_read_lock(). The code below does not
4267  * use RCU annotations, but relies on those in the map code.
4268  */
xdp_do_flush(void)4269 void xdp_do_flush(void)
4270 {
4271 	__dev_flush();
4272 	__cpu_map_flush();
4273 	__xsk_map_flush();
4274 }
4275 EXPORT_SYMBOL_GPL(xdp_do_flush);
4276 
bpf_clear_redirect_map(struct bpf_map * map)4277 void bpf_clear_redirect_map(struct bpf_map *map)
4278 {
4279 	struct bpf_redirect_info *ri;
4280 	int cpu;
4281 
4282 	for_each_possible_cpu(cpu) {
4283 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4284 		/* Avoid polluting remote cacheline due to writes if
4285 		 * not needed. Once we pass this test, we need the
4286 		 * cmpxchg() to make sure it hasn't been changed in
4287 		 * the meantime by remote CPU.
4288 		 */
4289 		if (unlikely(READ_ONCE(ri->map) == map))
4290 			cmpxchg(&ri->map, map, NULL);
4291 	}
4292 }
4293 
4294 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4295 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4296 
xdp_master_redirect(struct xdp_buff * xdp)4297 u32 xdp_master_redirect(struct xdp_buff *xdp)
4298 {
4299 	struct net_device *master, *slave;
4300 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4301 
4302 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4303 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4304 	if (slave && slave != xdp->rxq->dev) {
4305 		/* The target device is different from the receiving device, so
4306 		 * redirect it to the new device.
4307 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4308 		 * drivers to unmap the packet from their rx ring.
4309 		 */
4310 		ri->tgt_index = slave->ifindex;
4311 		ri->map_id = INT_MAX;
4312 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4313 		return XDP_REDIRECT;
4314 	}
4315 	return XDP_TX;
4316 }
4317 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4318 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4319 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4320 					struct net_device *dev,
4321 					struct xdp_buff *xdp,
4322 					struct bpf_prog *xdp_prog)
4323 {
4324 	enum bpf_map_type map_type = ri->map_type;
4325 	void *fwd = ri->tgt_value;
4326 	u32 map_id = ri->map_id;
4327 	int err;
4328 
4329 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4330 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4331 
4332 	err = __xsk_map_redirect(fwd, xdp);
4333 	if (unlikely(err))
4334 		goto err;
4335 
4336 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4337 	return 0;
4338 err:
4339 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4340 	return err;
4341 }
4342 
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4343 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4344 						   struct net_device *dev,
4345 						   struct xdp_frame *xdpf,
4346 						   struct bpf_prog *xdp_prog)
4347 {
4348 	enum bpf_map_type map_type = ri->map_type;
4349 	void *fwd = ri->tgt_value;
4350 	u32 map_id = ri->map_id;
4351 	u32 flags = ri->flags;
4352 	struct bpf_map *map;
4353 	int err;
4354 
4355 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4356 	ri->flags = 0;
4357 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4358 
4359 	if (unlikely(!xdpf)) {
4360 		err = -EOVERFLOW;
4361 		goto err;
4362 	}
4363 
4364 	switch (map_type) {
4365 	case BPF_MAP_TYPE_DEVMAP:
4366 		fallthrough;
4367 	case BPF_MAP_TYPE_DEVMAP_HASH:
4368 		if (unlikely(flags & BPF_F_BROADCAST)) {
4369 			map = READ_ONCE(ri->map);
4370 
4371 			/* The map pointer is cleared when the map is being torn
4372 			 * down by bpf_clear_redirect_map()
4373 			 */
4374 			if (unlikely(!map)) {
4375 				err = -ENOENT;
4376 				break;
4377 			}
4378 
4379 			WRITE_ONCE(ri->map, NULL);
4380 			err = dev_map_enqueue_multi(xdpf, dev, map,
4381 						    flags & BPF_F_EXCLUDE_INGRESS);
4382 		} else {
4383 			err = dev_map_enqueue(fwd, xdpf, dev);
4384 		}
4385 		break;
4386 	case BPF_MAP_TYPE_CPUMAP:
4387 		err = cpu_map_enqueue(fwd, xdpf, dev);
4388 		break;
4389 	case BPF_MAP_TYPE_UNSPEC:
4390 		if (map_id == INT_MAX) {
4391 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4392 			if (unlikely(!fwd)) {
4393 				err = -EINVAL;
4394 				break;
4395 			}
4396 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4397 			break;
4398 		}
4399 		fallthrough;
4400 	default:
4401 		err = -EBADRQC;
4402 	}
4403 
4404 	if (unlikely(err))
4405 		goto err;
4406 
4407 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4408 	return 0;
4409 err:
4410 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4411 	return err;
4412 }
4413 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4414 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4415 		    struct bpf_prog *xdp_prog)
4416 {
4417 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4418 	enum bpf_map_type map_type = ri->map_type;
4419 
4420 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4421 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4422 
4423 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4424 				       xdp_prog);
4425 }
4426 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4427 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4428 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4429 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4430 {
4431 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4432 	enum bpf_map_type map_type = ri->map_type;
4433 
4434 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4435 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4436 
4437 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4438 }
4439 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4440 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4441 static int xdp_do_generic_redirect_map(struct net_device *dev,
4442 				       struct sk_buff *skb,
4443 				       struct xdp_buff *xdp,
4444 				       struct bpf_prog *xdp_prog, void *fwd,
4445 				       enum bpf_map_type map_type, u32 map_id,
4446 				       u32 flags)
4447 {
4448 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4449 	struct bpf_map *map;
4450 	int err;
4451 
4452 	switch (map_type) {
4453 	case BPF_MAP_TYPE_DEVMAP:
4454 		fallthrough;
4455 	case BPF_MAP_TYPE_DEVMAP_HASH:
4456 		if (unlikely(flags & BPF_F_BROADCAST)) {
4457 			map = READ_ONCE(ri->map);
4458 
4459 			/* The map pointer is cleared when the map is being torn
4460 			 * down by bpf_clear_redirect_map()
4461 			 */
4462 			if (unlikely(!map)) {
4463 				err = -ENOENT;
4464 				break;
4465 			}
4466 
4467 			WRITE_ONCE(ri->map, NULL);
4468 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4469 						     flags & BPF_F_EXCLUDE_INGRESS);
4470 		} else {
4471 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4472 		}
4473 		if (unlikely(err))
4474 			goto err;
4475 		break;
4476 	case BPF_MAP_TYPE_XSKMAP:
4477 		err = xsk_generic_rcv(fwd, xdp);
4478 		if (err)
4479 			goto err;
4480 		consume_skb(skb);
4481 		break;
4482 	case BPF_MAP_TYPE_CPUMAP:
4483 		err = cpu_map_generic_redirect(fwd, skb);
4484 		if (unlikely(err))
4485 			goto err;
4486 		break;
4487 	default:
4488 		err = -EBADRQC;
4489 		goto err;
4490 	}
4491 
4492 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4493 	return 0;
4494 err:
4495 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4496 	return err;
4497 }
4498 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4499 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4500 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4501 {
4502 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4503 	enum bpf_map_type map_type = ri->map_type;
4504 	void *fwd = ri->tgt_value;
4505 	u32 map_id = ri->map_id;
4506 	u32 flags = ri->flags;
4507 	int err;
4508 
4509 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4510 	ri->flags = 0;
4511 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4512 
4513 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4514 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4515 		if (unlikely(!fwd)) {
4516 			err = -EINVAL;
4517 			goto err;
4518 		}
4519 
4520 		err = xdp_ok_fwd_dev(fwd, skb->len);
4521 		if (unlikely(err))
4522 			goto err;
4523 
4524 		skb->dev = fwd;
4525 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4526 		generic_xdp_tx(skb, xdp_prog);
4527 		return 0;
4528 	}
4529 
4530 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4531 err:
4532 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4533 	return err;
4534 }
4535 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4536 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4537 {
4538 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4539 
4540 	if (unlikely(flags))
4541 		return XDP_ABORTED;
4542 
4543 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4544 	 * by map_idr) is used for ifindex based XDP redirect.
4545 	 */
4546 	ri->tgt_index = ifindex;
4547 	ri->map_id = INT_MAX;
4548 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4549 
4550 	return XDP_REDIRECT;
4551 }
4552 
4553 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4554 	.func           = bpf_xdp_redirect,
4555 	.gpl_only       = false,
4556 	.ret_type       = RET_INTEGER,
4557 	.arg1_type      = ARG_ANYTHING,
4558 	.arg2_type      = ARG_ANYTHING,
4559 };
4560 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4561 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4562 	   u64, flags)
4563 {
4564 	return map->ops->map_redirect(map, key, flags);
4565 }
4566 
4567 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4568 	.func           = bpf_xdp_redirect_map,
4569 	.gpl_only       = false,
4570 	.ret_type       = RET_INTEGER,
4571 	.arg1_type      = ARG_CONST_MAP_PTR,
4572 	.arg2_type      = ARG_ANYTHING,
4573 	.arg3_type      = ARG_ANYTHING,
4574 };
4575 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4576 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4577 				  unsigned long off, unsigned long len)
4578 {
4579 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4580 
4581 	if (unlikely(!ptr))
4582 		return len;
4583 	if (ptr != dst_buff)
4584 		memcpy(dst_buff, ptr, len);
4585 
4586 	return 0;
4587 }
4588 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4589 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4590 	   u64, flags, void *, meta, u64, meta_size)
4591 {
4592 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4593 
4594 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4595 		return -EINVAL;
4596 	if (unlikely(!skb || skb_size > skb->len))
4597 		return -EFAULT;
4598 
4599 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4600 				bpf_skb_copy);
4601 }
4602 
4603 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4604 	.func		= bpf_skb_event_output,
4605 	.gpl_only	= true,
4606 	.ret_type	= RET_INTEGER,
4607 	.arg1_type	= ARG_PTR_TO_CTX,
4608 	.arg2_type	= ARG_CONST_MAP_PTR,
4609 	.arg3_type	= ARG_ANYTHING,
4610 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4611 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4612 };
4613 
4614 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4615 
4616 const struct bpf_func_proto bpf_skb_output_proto = {
4617 	.func		= bpf_skb_event_output,
4618 	.gpl_only	= true,
4619 	.ret_type	= RET_INTEGER,
4620 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4621 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4622 	.arg2_type	= ARG_CONST_MAP_PTR,
4623 	.arg3_type	= ARG_ANYTHING,
4624 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4625 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4626 };
4627 
bpf_tunnel_key_af(u64 flags)4628 static unsigned short bpf_tunnel_key_af(u64 flags)
4629 {
4630 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4631 }
4632 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4633 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4634 	   u32, size, u64, flags)
4635 {
4636 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4637 	u8 compat[sizeof(struct bpf_tunnel_key)];
4638 	void *to_orig = to;
4639 	int err;
4640 
4641 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4642 					 BPF_F_TUNINFO_FLAGS)))) {
4643 		err = -EINVAL;
4644 		goto err_clear;
4645 	}
4646 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4647 		err = -EPROTO;
4648 		goto err_clear;
4649 	}
4650 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4651 		err = -EINVAL;
4652 		switch (size) {
4653 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4654 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4655 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4656 			goto set_compat;
4657 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4658 			/* Fixup deprecated structure layouts here, so we have
4659 			 * a common path later on.
4660 			 */
4661 			if (ip_tunnel_info_af(info) != AF_INET)
4662 				goto err_clear;
4663 set_compat:
4664 			to = (struct bpf_tunnel_key *)compat;
4665 			break;
4666 		default:
4667 			goto err_clear;
4668 		}
4669 	}
4670 
4671 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4672 	to->tunnel_tos = info->key.tos;
4673 	to->tunnel_ttl = info->key.ttl;
4674 	if (flags & BPF_F_TUNINFO_FLAGS)
4675 		to->tunnel_flags = info->key.tun_flags;
4676 	else
4677 		to->tunnel_ext = 0;
4678 
4679 	if (flags & BPF_F_TUNINFO_IPV6) {
4680 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4681 		       sizeof(to->remote_ipv6));
4682 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4683 		       sizeof(to->local_ipv6));
4684 		to->tunnel_label = be32_to_cpu(info->key.label);
4685 	} else {
4686 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4687 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4688 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4689 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4690 		to->tunnel_label = 0;
4691 	}
4692 
4693 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4694 		memcpy(to_orig, to, size);
4695 
4696 	return 0;
4697 err_clear:
4698 	memset(to_orig, 0, size);
4699 	return err;
4700 }
4701 
4702 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4703 	.func		= bpf_skb_get_tunnel_key,
4704 	.gpl_only	= false,
4705 	.ret_type	= RET_INTEGER,
4706 	.arg1_type	= ARG_PTR_TO_CTX,
4707 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4708 	.arg3_type	= ARG_CONST_SIZE,
4709 	.arg4_type	= ARG_ANYTHING,
4710 };
4711 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4712 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4713 {
4714 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4715 	int err;
4716 
4717 	if (unlikely(!info ||
4718 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4719 		err = -ENOENT;
4720 		goto err_clear;
4721 	}
4722 	if (unlikely(size < info->options_len)) {
4723 		err = -ENOMEM;
4724 		goto err_clear;
4725 	}
4726 
4727 	ip_tunnel_info_opts_get(to, info);
4728 	if (size > info->options_len)
4729 		memset(to + info->options_len, 0, size - info->options_len);
4730 
4731 	return info->options_len;
4732 err_clear:
4733 	memset(to, 0, size);
4734 	return err;
4735 }
4736 
4737 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4738 	.func		= bpf_skb_get_tunnel_opt,
4739 	.gpl_only	= false,
4740 	.ret_type	= RET_INTEGER,
4741 	.arg1_type	= ARG_PTR_TO_CTX,
4742 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4743 	.arg3_type	= ARG_CONST_SIZE,
4744 };
4745 
4746 static struct metadata_dst __percpu *md_dst;
4747 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4748 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4749 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4750 {
4751 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4752 	u8 compat[sizeof(struct bpf_tunnel_key)];
4753 	struct ip_tunnel_info *info;
4754 
4755 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4756 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4757 			       BPF_F_NO_TUNNEL_KEY)))
4758 		return -EINVAL;
4759 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4760 		switch (size) {
4761 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4762 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4763 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4764 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4765 			/* Fixup deprecated structure layouts here, so we have
4766 			 * a common path later on.
4767 			 */
4768 			memcpy(compat, from, size);
4769 			memset(compat + size, 0, sizeof(compat) - size);
4770 			from = (const struct bpf_tunnel_key *) compat;
4771 			break;
4772 		default:
4773 			return -EINVAL;
4774 		}
4775 	}
4776 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4777 		     from->tunnel_ext))
4778 		return -EINVAL;
4779 
4780 	skb_dst_drop(skb);
4781 	dst_hold((struct dst_entry *) md);
4782 	skb_dst_set(skb, (struct dst_entry *) md);
4783 
4784 	info = &md->u.tun_info;
4785 	memset(info, 0, sizeof(*info));
4786 	info->mode = IP_TUNNEL_INFO_TX;
4787 
4788 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4789 	if (flags & BPF_F_DONT_FRAGMENT)
4790 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4791 	if (flags & BPF_F_ZERO_CSUM_TX)
4792 		info->key.tun_flags &= ~TUNNEL_CSUM;
4793 	if (flags & BPF_F_SEQ_NUMBER)
4794 		info->key.tun_flags |= TUNNEL_SEQ;
4795 	if (flags & BPF_F_NO_TUNNEL_KEY)
4796 		info->key.tun_flags &= ~TUNNEL_KEY;
4797 
4798 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4799 	info->key.tos = from->tunnel_tos;
4800 	info->key.ttl = from->tunnel_ttl;
4801 
4802 	if (flags & BPF_F_TUNINFO_IPV6) {
4803 		info->mode |= IP_TUNNEL_INFO_IPV6;
4804 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4805 		       sizeof(from->remote_ipv6));
4806 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4807 		       sizeof(from->local_ipv6));
4808 		info->key.label = cpu_to_be32(from->tunnel_label) &
4809 				  IPV6_FLOWLABEL_MASK;
4810 	} else {
4811 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4812 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4813 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4814 	}
4815 
4816 	return 0;
4817 }
4818 
4819 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4820 	.func		= bpf_skb_set_tunnel_key,
4821 	.gpl_only	= false,
4822 	.ret_type	= RET_INTEGER,
4823 	.arg1_type	= ARG_PTR_TO_CTX,
4824 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4825 	.arg3_type	= ARG_CONST_SIZE,
4826 	.arg4_type	= ARG_ANYTHING,
4827 };
4828 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4829 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4830 	   const u8 *, from, u32, size)
4831 {
4832 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4833 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4834 
4835 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4836 		return -EINVAL;
4837 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4838 		return -ENOMEM;
4839 
4840 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4841 
4842 	return 0;
4843 }
4844 
4845 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4846 	.func		= bpf_skb_set_tunnel_opt,
4847 	.gpl_only	= false,
4848 	.ret_type	= RET_INTEGER,
4849 	.arg1_type	= ARG_PTR_TO_CTX,
4850 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4851 	.arg3_type	= ARG_CONST_SIZE,
4852 };
4853 
4854 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4855 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4856 {
4857 	if (!md_dst) {
4858 		struct metadata_dst __percpu *tmp;
4859 
4860 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4861 						METADATA_IP_TUNNEL,
4862 						GFP_KERNEL);
4863 		if (!tmp)
4864 			return NULL;
4865 		if (cmpxchg(&md_dst, NULL, tmp))
4866 			metadata_dst_free_percpu(tmp);
4867 	}
4868 
4869 	switch (which) {
4870 	case BPF_FUNC_skb_set_tunnel_key:
4871 		return &bpf_skb_set_tunnel_key_proto;
4872 	case BPF_FUNC_skb_set_tunnel_opt:
4873 		return &bpf_skb_set_tunnel_opt_proto;
4874 	default:
4875 		return NULL;
4876 	}
4877 }
4878 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4879 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4880 	   u32, idx)
4881 {
4882 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4883 	struct cgroup *cgrp;
4884 	struct sock *sk;
4885 
4886 	sk = skb_to_full_sk(skb);
4887 	if (!sk || !sk_fullsock(sk))
4888 		return -ENOENT;
4889 	if (unlikely(idx >= array->map.max_entries))
4890 		return -E2BIG;
4891 
4892 	cgrp = READ_ONCE(array->ptrs[idx]);
4893 	if (unlikely(!cgrp))
4894 		return -EAGAIN;
4895 
4896 	return sk_under_cgroup_hierarchy(sk, cgrp);
4897 }
4898 
4899 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4900 	.func		= bpf_skb_under_cgroup,
4901 	.gpl_only	= false,
4902 	.ret_type	= RET_INTEGER,
4903 	.arg1_type	= ARG_PTR_TO_CTX,
4904 	.arg2_type	= ARG_CONST_MAP_PTR,
4905 	.arg3_type	= ARG_ANYTHING,
4906 };
4907 
4908 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4909 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4910 {
4911 	struct cgroup *cgrp;
4912 
4913 	sk = sk_to_full_sk(sk);
4914 	if (!sk || !sk_fullsock(sk))
4915 		return 0;
4916 
4917 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4918 	return cgroup_id(cgrp);
4919 }
4920 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4921 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4922 {
4923 	return __bpf_sk_cgroup_id(skb->sk);
4924 }
4925 
4926 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4927 	.func           = bpf_skb_cgroup_id,
4928 	.gpl_only       = false,
4929 	.ret_type       = RET_INTEGER,
4930 	.arg1_type      = ARG_PTR_TO_CTX,
4931 };
4932 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4933 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4934 					      int ancestor_level)
4935 {
4936 	struct cgroup *ancestor;
4937 	struct cgroup *cgrp;
4938 
4939 	sk = sk_to_full_sk(sk);
4940 	if (!sk || !sk_fullsock(sk))
4941 		return 0;
4942 
4943 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4944 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4945 	if (!ancestor)
4946 		return 0;
4947 
4948 	return cgroup_id(ancestor);
4949 }
4950 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4951 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4952 	   ancestor_level)
4953 {
4954 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4955 }
4956 
4957 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4958 	.func           = bpf_skb_ancestor_cgroup_id,
4959 	.gpl_only       = false,
4960 	.ret_type       = RET_INTEGER,
4961 	.arg1_type      = ARG_PTR_TO_CTX,
4962 	.arg2_type      = ARG_ANYTHING,
4963 };
4964 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4965 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4966 {
4967 	return __bpf_sk_cgroup_id(sk);
4968 }
4969 
4970 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4971 	.func           = bpf_sk_cgroup_id,
4972 	.gpl_only       = false,
4973 	.ret_type       = RET_INTEGER,
4974 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4975 };
4976 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4977 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4978 {
4979 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4980 }
4981 
4982 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4983 	.func           = bpf_sk_ancestor_cgroup_id,
4984 	.gpl_only       = false,
4985 	.ret_type       = RET_INTEGER,
4986 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4987 	.arg2_type      = ARG_ANYTHING,
4988 };
4989 #endif
4990 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4991 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4992 				  unsigned long off, unsigned long len)
4993 {
4994 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4995 
4996 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4997 	return 0;
4998 }
4999 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5000 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5001 	   u64, flags, void *, meta, u64, meta_size)
5002 {
5003 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5004 
5005 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5006 		return -EINVAL;
5007 
5008 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5009 		return -EFAULT;
5010 
5011 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5012 				xdp_size, bpf_xdp_copy);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5016 	.func		= bpf_xdp_event_output,
5017 	.gpl_only	= true,
5018 	.ret_type	= RET_INTEGER,
5019 	.arg1_type	= ARG_PTR_TO_CTX,
5020 	.arg2_type	= ARG_CONST_MAP_PTR,
5021 	.arg3_type	= ARG_ANYTHING,
5022 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5023 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5024 };
5025 
5026 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5027 
5028 const struct bpf_func_proto bpf_xdp_output_proto = {
5029 	.func		= bpf_xdp_event_output,
5030 	.gpl_only	= true,
5031 	.ret_type	= RET_INTEGER,
5032 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5033 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5034 	.arg2_type	= ARG_CONST_MAP_PTR,
5035 	.arg3_type	= ARG_ANYTHING,
5036 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5037 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5038 };
5039 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5040 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5041 {
5042 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5043 }
5044 
5045 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5046 	.func           = bpf_get_socket_cookie,
5047 	.gpl_only       = false,
5048 	.ret_type       = RET_INTEGER,
5049 	.arg1_type      = ARG_PTR_TO_CTX,
5050 };
5051 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5052 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5053 {
5054 	return __sock_gen_cookie(ctx->sk);
5055 }
5056 
5057 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5058 	.func		= bpf_get_socket_cookie_sock_addr,
5059 	.gpl_only	= false,
5060 	.ret_type	= RET_INTEGER,
5061 	.arg1_type	= ARG_PTR_TO_CTX,
5062 };
5063 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5064 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5065 {
5066 	return __sock_gen_cookie(ctx);
5067 }
5068 
5069 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5070 	.func		= bpf_get_socket_cookie_sock,
5071 	.gpl_only	= false,
5072 	.ret_type	= RET_INTEGER,
5073 	.arg1_type	= ARG_PTR_TO_CTX,
5074 };
5075 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5076 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5077 {
5078 	return sk ? sock_gen_cookie(sk) : 0;
5079 }
5080 
5081 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5082 	.func		= bpf_get_socket_ptr_cookie,
5083 	.gpl_only	= false,
5084 	.ret_type	= RET_INTEGER,
5085 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5086 };
5087 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5088 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5089 {
5090 	return __sock_gen_cookie(ctx->sk);
5091 }
5092 
5093 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5094 	.func		= bpf_get_socket_cookie_sock_ops,
5095 	.gpl_only	= false,
5096 	.ret_type	= RET_INTEGER,
5097 	.arg1_type	= ARG_PTR_TO_CTX,
5098 };
5099 
__bpf_get_netns_cookie(struct sock * sk)5100 static u64 __bpf_get_netns_cookie(struct sock *sk)
5101 {
5102 	const struct net *net = sk ? sock_net(sk) : &init_net;
5103 
5104 	return net->net_cookie;
5105 }
5106 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5107 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5108 {
5109 	return __bpf_get_netns_cookie(ctx);
5110 }
5111 
5112 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5113 	.func		= bpf_get_netns_cookie_sock,
5114 	.gpl_only	= false,
5115 	.ret_type	= RET_INTEGER,
5116 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5117 };
5118 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5119 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5120 {
5121 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5122 }
5123 
5124 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5125 	.func		= bpf_get_netns_cookie_sock_addr,
5126 	.gpl_only	= false,
5127 	.ret_type	= RET_INTEGER,
5128 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5129 };
5130 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5131 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5132 {
5133 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5134 }
5135 
5136 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5137 	.func		= bpf_get_netns_cookie_sock_ops,
5138 	.gpl_only	= false,
5139 	.ret_type	= RET_INTEGER,
5140 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5141 };
5142 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5143 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5144 {
5145 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5146 }
5147 
5148 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5149 	.func		= bpf_get_netns_cookie_sk_msg,
5150 	.gpl_only	= false,
5151 	.ret_type	= RET_INTEGER,
5152 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5153 };
5154 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5155 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5156 {
5157 	struct sock *sk = sk_to_full_sk(skb->sk);
5158 	kuid_t kuid;
5159 
5160 	if (!sk || !sk_fullsock(sk))
5161 		return overflowuid;
5162 	kuid = sock_net_uid(sock_net(sk), sk);
5163 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5164 }
5165 
5166 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5167 	.func           = bpf_get_socket_uid,
5168 	.gpl_only       = false,
5169 	.ret_type       = RET_INTEGER,
5170 	.arg1_type      = ARG_PTR_TO_CTX,
5171 };
5172 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5173 static int sol_socket_sockopt(struct sock *sk, int optname,
5174 			      char *optval, int *optlen,
5175 			      bool getopt)
5176 {
5177 	switch (optname) {
5178 	case SO_REUSEADDR:
5179 	case SO_SNDBUF:
5180 	case SO_RCVBUF:
5181 	case SO_KEEPALIVE:
5182 	case SO_PRIORITY:
5183 	case SO_REUSEPORT:
5184 	case SO_RCVLOWAT:
5185 	case SO_MARK:
5186 	case SO_MAX_PACING_RATE:
5187 	case SO_BINDTOIFINDEX:
5188 	case SO_TXREHASH:
5189 		if (*optlen != sizeof(int))
5190 			return -EINVAL;
5191 		break;
5192 	case SO_BINDTODEVICE:
5193 		break;
5194 	default:
5195 		return -EINVAL;
5196 	}
5197 
5198 	if (getopt) {
5199 		if (optname == SO_BINDTODEVICE)
5200 			return -EINVAL;
5201 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5202 				     KERNEL_SOCKPTR(optval),
5203 				     KERNEL_SOCKPTR(optlen));
5204 	}
5205 
5206 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5207 			     KERNEL_SOCKPTR(optval), *optlen);
5208 }
5209 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5210 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5211 				  char *optval, int optlen)
5212 {
5213 	struct tcp_sock *tp = tcp_sk(sk);
5214 	unsigned long timeout;
5215 	int val;
5216 
5217 	if (optlen != sizeof(int))
5218 		return -EINVAL;
5219 
5220 	val = *(int *)optval;
5221 
5222 	/* Only some options are supported */
5223 	switch (optname) {
5224 	case TCP_BPF_IW:
5225 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5226 			return -EINVAL;
5227 		tcp_snd_cwnd_set(tp, val);
5228 		break;
5229 	case TCP_BPF_SNDCWND_CLAMP:
5230 		if (val <= 0)
5231 			return -EINVAL;
5232 		tp->snd_cwnd_clamp = val;
5233 		tp->snd_ssthresh = val;
5234 		break;
5235 	case TCP_BPF_DELACK_MAX:
5236 		timeout = usecs_to_jiffies(val);
5237 		if (timeout > TCP_DELACK_MAX ||
5238 		    timeout < TCP_TIMEOUT_MIN)
5239 			return -EINVAL;
5240 		inet_csk(sk)->icsk_delack_max = timeout;
5241 		break;
5242 	case TCP_BPF_RTO_MIN:
5243 		timeout = usecs_to_jiffies(val);
5244 		if (timeout > TCP_RTO_MIN ||
5245 		    timeout < TCP_TIMEOUT_MIN)
5246 			return -EINVAL;
5247 		inet_csk(sk)->icsk_rto_min = timeout;
5248 		break;
5249 	default:
5250 		return -EINVAL;
5251 	}
5252 
5253 	return 0;
5254 }
5255 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5256 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5257 				      int *optlen, bool getopt)
5258 {
5259 	struct tcp_sock *tp;
5260 	int ret;
5261 
5262 	if (*optlen < 2)
5263 		return -EINVAL;
5264 
5265 	if (getopt) {
5266 		if (!inet_csk(sk)->icsk_ca_ops)
5267 			return -EINVAL;
5268 		/* BPF expects NULL-terminated tcp-cc string */
5269 		optval[--(*optlen)] = '\0';
5270 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5271 					 KERNEL_SOCKPTR(optval),
5272 					 KERNEL_SOCKPTR(optlen));
5273 	}
5274 
5275 	/* "cdg" is the only cc that alloc a ptr
5276 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5277 	 * overwrite this ptr after switching to cdg.
5278 	 */
5279 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5280 		return -ENOTSUPP;
5281 
5282 	/* It stops this looping
5283 	 *
5284 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5285 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5286 	 *
5287 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5288 	 * in order to break the loop when both .init
5289 	 * are the same bpf prog.
5290 	 *
5291 	 * This applies even the second bpf_setsockopt(tcp_cc)
5292 	 * does not cause a loop.  This limits only the first
5293 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5294 	 * pick a fallback cc (eg. peer does not support ECN)
5295 	 * and the second '.init' cannot fallback to
5296 	 * another.
5297 	 */
5298 	tp = tcp_sk(sk);
5299 	if (tp->bpf_chg_cc_inprogress)
5300 		return -EBUSY;
5301 
5302 	tp->bpf_chg_cc_inprogress = 1;
5303 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5304 				KERNEL_SOCKPTR(optval), *optlen);
5305 	tp->bpf_chg_cc_inprogress = 0;
5306 	return ret;
5307 }
5308 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5309 static int sol_tcp_sockopt(struct sock *sk, int optname,
5310 			   char *optval, int *optlen,
5311 			   bool getopt)
5312 {
5313 	if (sk->sk_protocol != IPPROTO_TCP)
5314 		return -EINVAL;
5315 
5316 	switch (optname) {
5317 	case TCP_NODELAY:
5318 	case TCP_MAXSEG:
5319 	case TCP_KEEPIDLE:
5320 	case TCP_KEEPINTVL:
5321 	case TCP_KEEPCNT:
5322 	case TCP_SYNCNT:
5323 	case TCP_WINDOW_CLAMP:
5324 	case TCP_THIN_LINEAR_TIMEOUTS:
5325 	case TCP_USER_TIMEOUT:
5326 	case TCP_NOTSENT_LOWAT:
5327 	case TCP_SAVE_SYN:
5328 		if (*optlen != sizeof(int))
5329 			return -EINVAL;
5330 		break;
5331 	case TCP_CONGESTION:
5332 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5333 	case TCP_SAVED_SYN:
5334 		if (*optlen < 1)
5335 			return -EINVAL;
5336 		break;
5337 	default:
5338 		if (getopt)
5339 			return -EINVAL;
5340 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5341 	}
5342 
5343 	if (getopt) {
5344 		if (optname == TCP_SAVED_SYN) {
5345 			struct tcp_sock *tp = tcp_sk(sk);
5346 
5347 			if (!tp->saved_syn ||
5348 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5349 				return -EINVAL;
5350 			memcpy(optval, tp->saved_syn->data, *optlen);
5351 			/* It cannot free tp->saved_syn here because it
5352 			 * does not know if the user space still needs it.
5353 			 */
5354 			return 0;
5355 		}
5356 
5357 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5358 					 KERNEL_SOCKPTR(optval),
5359 					 KERNEL_SOCKPTR(optlen));
5360 	}
5361 
5362 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5363 				 KERNEL_SOCKPTR(optval), *optlen);
5364 }
5365 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5366 static int sol_ip_sockopt(struct sock *sk, int optname,
5367 			  char *optval, int *optlen,
5368 			  bool getopt)
5369 {
5370 	if (sk->sk_family != AF_INET)
5371 		return -EINVAL;
5372 
5373 	switch (optname) {
5374 	case IP_TOS:
5375 		if (*optlen != sizeof(int))
5376 			return -EINVAL;
5377 		break;
5378 	default:
5379 		return -EINVAL;
5380 	}
5381 
5382 	if (getopt)
5383 		return do_ip_getsockopt(sk, SOL_IP, optname,
5384 					KERNEL_SOCKPTR(optval),
5385 					KERNEL_SOCKPTR(optlen));
5386 
5387 	return do_ip_setsockopt(sk, SOL_IP, optname,
5388 				KERNEL_SOCKPTR(optval), *optlen);
5389 }
5390 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5391 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5392 			    char *optval, int *optlen,
5393 			    bool getopt)
5394 {
5395 	if (sk->sk_family != AF_INET6)
5396 		return -EINVAL;
5397 
5398 	switch (optname) {
5399 	case IPV6_TCLASS:
5400 	case IPV6_AUTOFLOWLABEL:
5401 		if (*optlen != sizeof(int))
5402 			return -EINVAL;
5403 		break;
5404 	default:
5405 		return -EINVAL;
5406 	}
5407 
5408 	if (getopt)
5409 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5410 						      KERNEL_SOCKPTR(optval),
5411 						      KERNEL_SOCKPTR(optlen));
5412 
5413 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5414 					      KERNEL_SOCKPTR(optval), *optlen);
5415 }
5416 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5417 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5418 			    char *optval, int optlen)
5419 {
5420 	if (!sk_fullsock(sk))
5421 		return -EINVAL;
5422 
5423 	if (level == SOL_SOCKET)
5424 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5425 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5426 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5427 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5428 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5429 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5430 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5431 
5432 	return -EINVAL;
5433 }
5434 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5435 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5436 			   char *optval, int optlen)
5437 {
5438 	if (sk_fullsock(sk))
5439 		sock_owned_by_me(sk);
5440 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5441 }
5442 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5443 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5444 			    char *optval, int optlen)
5445 {
5446 	int err, saved_optlen = optlen;
5447 
5448 	if (!sk_fullsock(sk)) {
5449 		err = -EINVAL;
5450 		goto done;
5451 	}
5452 
5453 	if (level == SOL_SOCKET)
5454 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5455 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5456 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5457 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5458 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5459 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5460 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5461 	else
5462 		err = -EINVAL;
5463 
5464 done:
5465 	if (err)
5466 		optlen = 0;
5467 	if (optlen < saved_optlen)
5468 		memset(optval + optlen, 0, saved_optlen - optlen);
5469 	return err;
5470 }
5471 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5472 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5473 			   char *optval, int optlen)
5474 {
5475 	if (sk_fullsock(sk))
5476 		sock_owned_by_me(sk);
5477 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5478 }
5479 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5480 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5481 	   int, optname, char *, optval, int, optlen)
5482 {
5483 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5484 }
5485 
5486 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5487 	.func		= bpf_sk_setsockopt,
5488 	.gpl_only	= false,
5489 	.ret_type	= RET_INTEGER,
5490 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5491 	.arg2_type	= ARG_ANYTHING,
5492 	.arg3_type	= ARG_ANYTHING,
5493 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5494 	.arg5_type	= ARG_CONST_SIZE,
5495 };
5496 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5497 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5498 	   int, optname, char *, optval, int, optlen)
5499 {
5500 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5501 }
5502 
5503 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5504 	.func		= bpf_sk_getsockopt,
5505 	.gpl_only	= false,
5506 	.ret_type	= RET_INTEGER,
5507 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5508 	.arg2_type	= ARG_ANYTHING,
5509 	.arg3_type	= ARG_ANYTHING,
5510 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5511 	.arg5_type	= ARG_CONST_SIZE,
5512 };
5513 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5514 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5515 	   int, optname, char *, optval, int, optlen)
5516 {
5517 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5518 }
5519 
5520 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5521 	.func		= bpf_unlocked_sk_setsockopt,
5522 	.gpl_only	= false,
5523 	.ret_type	= RET_INTEGER,
5524 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5525 	.arg2_type	= ARG_ANYTHING,
5526 	.arg3_type	= ARG_ANYTHING,
5527 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5528 	.arg5_type	= ARG_CONST_SIZE,
5529 };
5530 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5531 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5532 	   int, optname, char *, optval, int, optlen)
5533 {
5534 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5535 }
5536 
5537 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5538 	.func		= bpf_unlocked_sk_getsockopt,
5539 	.gpl_only	= false,
5540 	.ret_type	= RET_INTEGER,
5541 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5542 	.arg2_type	= ARG_ANYTHING,
5543 	.arg3_type	= ARG_ANYTHING,
5544 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5545 	.arg5_type	= ARG_CONST_SIZE,
5546 };
5547 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5548 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5549 	   int, level, int, optname, char *, optval, int, optlen)
5550 {
5551 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5552 }
5553 
5554 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5555 	.func		= bpf_sock_addr_setsockopt,
5556 	.gpl_only	= false,
5557 	.ret_type	= RET_INTEGER,
5558 	.arg1_type	= ARG_PTR_TO_CTX,
5559 	.arg2_type	= ARG_ANYTHING,
5560 	.arg3_type	= ARG_ANYTHING,
5561 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5562 	.arg5_type	= ARG_CONST_SIZE,
5563 };
5564 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5565 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5566 	   int, level, int, optname, char *, optval, int, optlen)
5567 {
5568 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5569 }
5570 
5571 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5572 	.func		= bpf_sock_addr_getsockopt,
5573 	.gpl_only	= false,
5574 	.ret_type	= RET_INTEGER,
5575 	.arg1_type	= ARG_PTR_TO_CTX,
5576 	.arg2_type	= ARG_ANYTHING,
5577 	.arg3_type	= ARG_ANYTHING,
5578 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5579 	.arg5_type	= ARG_CONST_SIZE,
5580 };
5581 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5582 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5583 	   int, level, int, optname, char *, optval, int, optlen)
5584 {
5585 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5586 }
5587 
5588 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5589 	.func		= bpf_sock_ops_setsockopt,
5590 	.gpl_only	= false,
5591 	.ret_type	= RET_INTEGER,
5592 	.arg1_type	= ARG_PTR_TO_CTX,
5593 	.arg2_type	= ARG_ANYTHING,
5594 	.arg3_type	= ARG_ANYTHING,
5595 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5596 	.arg5_type	= ARG_CONST_SIZE,
5597 };
5598 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5599 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5600 				int optname, const u8 **start)
5601 {
5602 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5603 	const u8 *hdr_start;
5604 	int ret;
5605 
5606 	if (syn_skb) {
5607 		/* sk is a request_sock here */
5608 
5609 		if (optname == TCP_BPF_SYN) {
5610 			hdr_start = syn_skb->data;
5611 			ret = tcp_hdrlen(syn_skb);
5612 		} else if (optname == TCP_BPF_SYN_IP) {
5613 			hdr_start = skb_network_header(syn_skb);
5614 			ret = skb_network_header_len(syn_skb) +
5615 				tcp_hdrlen(syn_skb);
5616 		} else {
5617 			/* optname == TCP_BPF_SYN_MAC */
5618 			hdr_start = skb_mac_header(syn_skb);
5619 			ret = skb_mac_header_len(syn_skb) +
5620 				skb_network_header_len(syn_skb) +
5621 				tcp_hdrlen(syn_skb);
5622 		}
5623 	} else {
5624 		struct sock *sk = bpf_sock->sk;
5625 		struct saved_syn *saved_syn;
5626 
5627 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5628 			/* synack retransmit. bpf_sock->syn_skb will
5629 			 * not be available.  It has to resort to
5630 			 * saved_syn (if it is saved).
5631 			 */
5632 			saved_syn = inet_reqsk(sk)->saved_syn;
5633 		else
5634 			saved_syn = tcp_sk(sk)->saved_syn;
5635 
5636 		if (!saved_syn)
5637 			return -ENOENT;
5638 
5639 		if (optname == TCP_BPF_SYN) {
5640 			hdr_start = saved_syn->data +
5641 				saved_syn->mac_hdrlen +
5642 				saved_syn->network_hdrlen;
5643 			ret = saved_syn->tcp_hdrlen;
5644 		} else if (optname == TCP_BPF_SYN_IP) {
5645 			hdr_start = saved_syn->data +
5646 				saved_syn->mac_hdrlen;
5647 			ret = saved_syn->network_hdrlen +
5648 				saved_syn->tcp_hdrlen;
5649 		} else {
5650 			/* optname == TCP_BPF_SYN_MAC */
5651 
5652 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5653 			if (!saved_syn->mac_hdrlen)
5654 				return -ENOENT;
5655 
5656 			hdr_start = saved_syn->data;
5657 			ret = saved_syn->mac_hdrlen +
5658 				saved_syn->network_hdrlen +
5659 				saved_syn->tcp_hdrlen;
5660 		}
5661 	}
5662 
5663 	*start = hdr_start;
5664 	return ret;
5665 }
5666 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5667 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5668 	   int, level, int, optname, char *, optval, int, optlen)
5669 {
5670 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5671 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5672 		int ret, copy_len = 0;
5673 		const u8 *start;
5674 
5675 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5676 		if (ret > 0) {
5677 			copy_len = ret;
5678 			if (optlen < copy_len) {
5679 				copy_len = optlen;
5680 				ret = -ENOSPC;
5681 			}
5682 
5683 			memcpy(optval, start, copy_len);
5684 		}
5685 
5686 		/* Zero out unused buffer at the end */
5687 		memset(optval + copy_len, 0, optlen - copy_len);
5688 
5689 		return ret;
5690 	}
5691 
5692 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5693 }
5694 
5695 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5696 	.func		= bpf_sock_ops_getsockopt,
5697 	.gpl_only	= false,
5698 	.ret_type	= RET_INTEGER,
5699 	.arg1_type	= ARG_PTR_TO_CTX,
5700 	.arg2_type	= ARG_ANYTHING,
5701 	.arg3_type	= ARG_ANYTHING,
5702 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5703 	.arg5_type	= ARG_CONST_SIZE,
5704 };
5705 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5706 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5707 	   int, argval)
5708 {
5709 	struct sock *sk = bpf_sock->sk;
5710 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5711 
5712 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5713 		return -EINVAL;
5714 
5715 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5716 
5717 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5718 }
5719 
5720 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5721 	.func		= bpf_sock_ops_cb_flags_set,
5722 	.gpl_only	= false,
5723 	.ret_type	= RET_INTEGER,
5724 	.arg1_type	= ARG_PTR_TO_CTX,
5725 	.arg2_type	= ARG_ANYTHING,
5726 };
5727 
5728 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5729 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5730 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5731 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5732 	   int, addr_len)
5733 {
5734 #ifdef CONFIG_INET
5735 	struct sock *sk = ctx->sk;
5736 	u32 flags = BIND_FROM_BPF;
5737 	int err;
5738 
5739 	err = -EINVAL;
5740 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5741 		return err;
5742 	if (addr->sa_family == AF_INET) {
5743 		if (addr_len < sizeof(struct sockaddr_in))
5744 			return err;
5745 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5746 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5747 		return __inet_bind(sk, addr, addr_len, flags);
5748 #if IS_ENABLED(CONFIG_IPV6)
5749 	} else if (addr->sa_family == AF_INET6) {
5750 		if (addr_len < SIN6_LEN_RFC2133)
5751 			return err;
5752 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5753 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5754 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5755 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5756 		 */
5757 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5758 #endif /* CONFIG_IPV6 */
5759 	}
5760 #endif /* CONFIG_INET */
5761 
5762 	return -EAFNOSUPPORT;
5763 }
5764 
5765 static const struct bpf_func_proto bpf_bind_proto = {
5766 	.func		= bpf_bind,
5767 	.gpl_only	= false,
5768 	.ret_type	= RET_INTEGER,
5769 	.arg1_type	= ARG_PTR_TO_CTX,
5770 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5771 	.arg3_type	= ARG_CONST_SIZE,
5772 };
5773 
5774 #ifdef CONFIG_XFRM
5775 
5776 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5777     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5778 
5779 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5780 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5781 
5782 #endif
5783 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5784 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5785 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5786 {
5787 	const struct sec_path *sp = skb_sec_path(skb);
5788 	const struct xfrm_state *x;
5789 
5790 	if (!sp || unlikely(index >= sp->len || flags))
5791 		goto err_clear;
5792 
5793 	x = sp->xvec[index];
5794 
5795 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5796 		goto err_clear;
5797 
5798 	to->reqid = x->props.reqid;
5799 	to->spi = x->id.spi;
5800 	to->family = x->props.family;
5801 	to->ext = 0;
5802 
5803 	if (to->family == AF_INET6) {
5804 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5805 		       sizeof(to->remote_ipv6));
5806 	} else {
5807 		to->remote_ipv4 = x->props.saddr.a4;
5808 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5809 	}
5810 
5811 	return 0;
5812 err_clear:
5813 	memset(to, 0, size);
5814 	return -EINVAL;
5815 }
5816 
5817 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5818 	.func		= bpf_skb_get_xfrm_state,
5819 	.gpl_only	= false,
5820 	.ret_type	= RET_INTEGER,
5821 	.arg1_type	= ARG_PTR_TO_CTX,
5822 	.arg2_type	= ARG_ANYTHING,
5823 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5824 	.arg4_type	= ARG_CONST_SIZE,
5825 	.arg5_type	= ARG_ANYTHING,
5826 };
5827 #endif
5828 
5829 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5830 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5831 {
5832 	params->h_vlan_TCI = 0;
5833 	params->h_vlan_proto = 0;
5834 	if (mtu)
5835 		params->mtu_result = mtu; /* union with tot_len */
5836 
5837 	return 0;
5838 }
5839 #endif
5840 
5841 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5842 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5843 			       u32 flags, bool check_mtu)
5844 {
5845 	struct fib_nh_common *nhc;
5846 	struct in_device *in_dev;
5847 	struct neighbour *neigh;
5848 	struct net_device *dev;
5849 	struct fib_result res;
5850 	struct flowi4 fl4;
5851 	u32 mtu = 0;
5852 	int err;
5853 
5854 	dev = dev_get_by_index_rcu(net, params->ifindex);
5855 	if (unlikely(!dev))
5856 		return -ENODEV;
5857 
5858 	/* verify forwarding is enabled on this interface */
5859 	in_dev = __in_dev_get_rcu(dev);
5860 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5861 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5862 
5863 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5864 		fl4.flowi4_iif = 1;
5865 		fl4.flowi4_oif = params->ifindex;
5866 	} else {
5867 		fl4.flowi4_iif = params->ifindex;
5868 		fl4.flowi4_oif = 0;
5869 	}
5870 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5871 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5872 	fl4.flowi4_flags = 0;
5873 
5874 	fl4.flowi4_proto = params->l4_protocol;
5875 	fl4.daddr = params->ipv4_dst;
5876 	fl4.saddr = params->ipv4_src;
5877 	fl4.fl4_sport = params->sport;
5878 	fl4.fl4_dport = params->dport;
5879 	fl4.flowi4_multipath_hash = 0;
5880 
5881 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5882 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5883 		struct fib_table *tb;
5884 
5885 		if (flags & BPF_FIB_LOOKUP_TBID) {
5886 			tbid = params->tbid;
5887 			/* zero out for vlan output */
5888 			params->tbid = 0;
5889 		}
5890 
5891 		tb = fib_get_table(net, tbid);
5892 		if (unlikely(!tb))
5893 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5894 
5895 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5896 	} else {
5897 		fl4.flowi4_mark = 0;
5898 		fl4.flowi4_secid = 0;
5899 		fl4.flowi4_tun_key.tun_id = 0;
5900 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5901 
5902 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5903 	}
5904 
5905 	if (err) {
5906 		/* map fib lookup errors to RTN_ type */
5907 		if (err == -EINVAL)
5908 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5909 		if (err == -EHOSTUNREACH)
5910 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5911 		if (err == -EACCES)
5912 			return BPF_FIB_LKUP_RET_PROHIBIT;
5913 
5914 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5915 	}
5916 
5917 	if (res.type != RTN_UNICAST)
5918 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5919 
5920 	if (fib_info_num_path(res.fi) > 1)
5921 		fib_select_path(net, &res, &fl4, NULL);
5922 
5923 	if (check_mtu) {
5924 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5925 		if (params->tot_len > mtu) {
5926 			params->mtu_result = mtu; /* union with tot_len */
5927 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5928 		}
5929 	}
5930 
5931 	nhc = res.nhc;
5932 
5933 	/* do not handle lwt encaps right now */
5934 	if (nhc->nhc_lwtstate)
5935 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5936 
5937 	dev = nhc->nhc_dev;
5938 
5939 	params->rt_metric = res.fi->fib_priority;
5940 	params->ifindex = dev->ifindex;
5941 
5942 	if (flags & BPF_FIB_LOOKUP_SRC)
5943 		params->ipv4_src = fib_result_prefsrc(net, &res);
5944 
5945 	/* xdp and cls_bpf programs are run in RCU-bh so
5946 	 * rcu_read_lock_bh is not needed here
5947 	 */
5948 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5949 		if (nhc->nhc_gw_family)
5950 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5951 	} else {
5952 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5953 
5954 		params->family = AF_INET6;
5955 		*dst = nhc->nhc_gw.ipv6;
5956 	}
5957 
5958 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5959 		goto set_fwd_params;
5960 
5961 	if (likely(nhc->nhc_gw_family != AF_INET6))
5962 		neigh = __ipv4_neigh_lookup_noref(dev,
5963 						  (__force u32)params->ipv4_dst);
5964 	else
5965 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5966 
5967 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5968 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5969 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5970 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5971 
5972 set_fwd_params:
5973 	return bpf_fib_set_fwd_params(params, mtu);
5974 }
5975 #endif
5976 
5977 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5978 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5979 			       u32 flags, bool check_mtu)
5980 {
5981 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5982 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5983 	struct fib6_result res = {};
5984 	struct neighbour *neigh;
5985 	struct net_device *dev;
5986 	struct inet6_dev *idev;
5987 	struct flowi6 fl6;
5988 	int strict = 0;
5989 	int oif, err;
5990 	u32 mtu = 0;
5991 
5992 	/* link local addresses are never forwarded */
5993 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5994 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5995 
5996 	dev = dev_get_by_index_rcu(net, params->ifindex);
5997 	if (unlikely(!dev))
5998 		return -ENODEV;
5999 
6000 	idev = __in6_dev_get_safely(dev);
6001 	if (unlikely(!idev || !idev->cnf.forwarding))
6002 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6003 
6004 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6005 		fl6.flowi6_iif = 1;
6006 		oif = fl6.flowi6_oif = params->ifindex;
6007 	} else {
6008 		oif = fl6.flowi6_iif = params->ifindex;
6009 		fl6.flowi6_oif = 0;
6010 		strict = RT6_LOOKUP_F_HAS_SADDR;
6011 	}
6012 	fl6.flowlabel = params->flowinfo;
6013 	fl6.flowi6_scope = 0;
6014 	fl6.flowi6_flags = 0;
6015 	fl6.mp_hash = 0;
6016 
6017 	fl6.flowi6_proto = params->l4_protocol;
6018 	fl6.daddr = *dst;
6019 	fl6.saddr = *src;
6020 	fl6.fl6_sport = params->sport;
6021 	fl6.fl6_dport = params->dport;
6022 
6023 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6024 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6025 		struct fib6_table *tb;
6026 
6027 		if (flags & BPF_FIB_LOOKUP_TBID) {
6028 			tbid = params->tbid;
6029 			/* zero out for vlan output */
6030 			params->tbid = 0;
6031 		}
6032 
6033 		tb = ipv6_stub->fib6_get_table(net, tbid);
6034 		if (unlikely(!tb))
6035 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6036 
6037 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6038 						   strict);
6039 	} else {
6040 		fl6.flowi6_mark = 0;
6041 		fl6.flowi6_secid = 0;
6042 		fl6.flowi6_tun_key.tun_id = 0;
6043 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6044 
6045 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6046 	}
6047 
6048 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6049 		     res.f6i == net->ipv6.fib6_null_entry))
6050 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6051 
6052 	switch (res.fib6_type) {
6053 	/* only unicast is forwarded */
6054 	case RTN_UNICAST:
6055 		break;
6056 	case RTN_BLACKHOLE:
6057 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6058 	case RTN_UNREACHABLE:
6059 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6060 	case RTN_PROHIBIT:
6061 		return BPF_FIB_LKUP_RET_PROHIBIT;
6062 	default:
6063 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6064 	}
6065 
6066 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6067 				    fl6.flowi6_oif != 0, NULL, strict);
6068 
6069 	if (check_mtu) {
6070 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6071 		if (params->tot_len > mtu) {
6072 			params->mtu_result = mtu; /* union with tot_len */
6073 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6074 		}
6075 	}
6076 
6077 	if (res.nh->fib_nh_lws)
6078 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6079 
6080 	if (res.nh->fib_nh_gw_family)
6081 		*dst = res.nh->fib_nh_gw6;
6082 
6083 	dev = res.nh->fib_nh_dev;
6084 	params->rt_metric = res.f6i->fib6_metric;
6085 	params->ifindex = dev->ifindex;
6086 
6087 	if (flags & BPF_FIB_LOOKUP_SRC) {
6088 		if (res.f6i->fib6_prefsrc.plen) {
6089 			*src = res.f6i->fib6_prefsrc.addr;
6090 		} else {
6091 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6092 								&fl6.daddr, 0,
6093 								src);
6094 			if (err)
6095 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6096 		}
6097 	}
6098 
6099 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6100 		goto set_fwd_params;
6101 
6102 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6103 	 * not needed here.
6104 	 */
6105 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6106 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6107 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6108 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6109 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6110 
6111 set_fwd_params:
6112 	return bpf_fib_set_fwd_params(params, mtu);
6113 }
6114 #endif
6115 
6116 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6117 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6118 			     BPF_FIB_LOOKUP_SRC)
6119 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6120 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6121 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6122 {
6123 	if (plen < sizeof(*params))
6124 		return -EINVAL;
6125 
6126 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6127 		return -EINVAL;
6128 
6129 	switch (params->family) {
6130 #if IS_ENABLED(CONFIG_INET)
6131 	case AF_INET:
6132 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6133 					   flags, true);
6134 #endif
6135 #if IS_ENABLED(CONFIG_IPV6)
6136 	case AF_INET6:
6137 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6138 					   flags, true);
6139 #endif
6140 	}
6141 	return -EAFNOSUPPORT;
6142 }
6143 
6144 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6145 	.func		= bpf_xdp_fib_lookup,
6146 	.gpl_only	= true,
6147 	.ret_type	= RET_INTEGER,
6148 	.arg1_type      = ARG_PTR_TO_CTX,
6149 	.arg2_type      = ARG_PTR_TO_MEM,
6150 	.arg3_type      = ARG_CONST_SIZE,
6151 	.arg4_type	= ARG_ANYTHING,
6152 };
6153 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6154 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6155 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6156 {
6157 	struct net *net = dev_net(skb->dev);
6158 	int rc = -EAFNOSUPPORT;
6159 	bool check_mtu = false;
6160 
6161 	if (plen < sizeof(*params))
6162 		return -EINVAL;
6163 
6164 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6165 		return -EINVAL;
6166 
6167 	if (params->tot_len)
6168 		check_mtu = true;
6169 
6170 	switch (params->family) {
6171 #if IS_ENABLED(CONFIG_INET)
6172 	case AF_INET:
6173 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6174 		break;
6175 #endif
6176 #if IS_ENABLED(CONFIG_IPV6)
6177 	case AF_INET6:
6178 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6179 		break;
6180 #endif
6181 	}
6182 
6183 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6184 		struct net_device *dev;
6185 
6186 		/* When tot_len isn't provided by user, check skb
6187 		 * against MTU of FIB lookup resulting net_device
6188 		 */
6189 		dev = dev_get_by_index_rcu(net, params->ifindex);
6190 		if (!is_skb_forwardable(dev, skb))
6191 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6192 
6193 		params->mtu_result = dev->mtu; /* union with tot_len */
6194 	}
6195 
6196 	return rc;
6197 }
6198 
6199 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6200 	.func		= bpf_skb_fib_lookup,
6201 	.gpl_only	= true,
6202 	.ret_type	= RET_INTEGER,
6203 	.arg1_type      = ARG_PTR_TO_CTX,
6204 	.arg2_type      = ARG_PTR_TO_MEM,
6205 	.arg3_type      = ARG_CONST_SIZE,
6206 	.arg4_type	= ARG_ANYTHING,
6207 };
6208 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6209 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6210 					    u32 ifindex)
6211 {
6212 	struct net *netns = dev_net(dev_curr);
6213 
6214 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6215 	if (ifindex == 0)
6216 		return dev_curr;
6217 
6218 	return dev_get_by_index_rcu(netns, ifindex);
6219 }
6220 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6221 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6222 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6223 {
6224 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6225 	struct net_device *dev = skb->dev;
6226 	int mtu, dev_len, skb_len;
6227 
6228 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6229 		return -EINVAL;
6230 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6231 		return -EINVAL;
6232 
6233 	dev = __dev_via_ifindex(dev, ifindex);
6234 	if (unlikely(!dev))
6235 		return -ENODEV;
6236 
6237 	mtu = READ_ONCE(dev->mtu);
6238 	dev_len = mtu + dev->hard_header_len;
6239 
6240 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6241 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6242 
6243 	skb_len += len_diff; /* minus result pass check */
6244 	if (skb_len <= dev_len) {
6245 		ret = BPF_MTU_CHK_RET_SUCCESS;
6246 		goto out;
6247 	}
6248 	/* At this point, skb->len exceed MTU, but as it include length of all
6249 	 * segments, it can still be below MTU.  The SKB can possibly get
6250 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6251 	 * must choose if segs are to be MTU checked.
6252 	 */
6253 	if (skb_is_gso(skb)) {
6254 		ret = BPF_MTU_CHK_RET_SUCCESS;
6255 		if (flags & BPF_MTU_CHK_SEGS &&
6256 		    !skb_gso_validate_network_len(skb, mtu))
6257 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6258 	}
6259 out:
6260 	*mtu_len = mtu;
6261 	return ret;
6262 }
6263 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6264 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6265 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6266 {
6267 	struct net_device *dev = xdp->rxq->dev;
6268 	int xdp_len = xdp->data_end - xdp->data;
6269 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6270 	int mtu, dev_len;
6271 
6272 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6273 	if (unlikely(flags))
6274 		return -EINVAL;
6275 
6276 	dev = __dev_via_ifindex(dev, ifindex);
6277 	if (unlikely(!dev))
6278 		return -ENODEV;
6279 
6280 	mtu = READ_ONCE(dev->mtu);
6281 	dev_len = mtu + dev->hard_header_len;
6282 
6283 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6284 	if (*mtu_len)
6285 		xdp_len = *mtu_len + dev->hard_header_len;
6286 
6287 	xdp_len += len_diff; /* minus result pass check */
6288 	if (xdp_len > dev_len)
6289 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6290 
6291 	*mtu_len = mtu;
6292 	return ret;
6293 }
6294 
6295 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6296 	.func		= bpf_skb_check_mtu,
6297 	.gpl_only	= true,
6298 	.ret_type	= RET_INTEGER,
6299 	.arg1_type      = ARG_PTR_TO_CTX,
6300 	.arg2_type      = ARG_ANYTHING,
6301 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6302 	.arg3_size	= sizeof(u32),
6303 	.arg4_type      = ARG_ANYTHING,
6304 	.arg5_type      = ARG_ANYTHING,
6305 };
6306 
6307 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6308 	.func		= bpf_xdp_check_mtu,
6309 	.gpl_only	= true,
6310 	.ret_type	= RET_INTEGER,
6311 	.arg1_type      = ARG_PTR_TO_CTX,
6312 	.arg2_type      = ARG_ANYTHING,
6313 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6314 	.arg3_size	= sizeof(u32),
6315 	.arg4_type      = ARG_ANYTHING,
6316 	.arg5_type      = ARG_ANYTHING,
6317 };
6318 
6319 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6320 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6321 {
6322 	int err;
6323 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6324 
6325 	if (!seg6_validate_srh(srh, len, false))
6326 		return -EINVAL;
6327 
6328 	switch (type) {
6329 	case BPF_LWT_ENCAP_SEG6_INLINE:
6330 		if (skb->protocol != htons(ETH_P_IPV6))
6331 			return -EBADMSG;
6332 
6333 		err = seg6_do_srh_inline(skb, srh);
6334 		break;
6335 	case BPF_LWT_ENCAP_SEG6:
6336 		skb_reset_inner_headers(skb);
6337 		skb->encapsulation = 1;
6338 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6339 		break;
6340 	default:
6341 		return -EINVAL;
6342 	}
6343 
6344 	bpf_compute_data_pointers(skb);
6345 	if (err)
6346 		return err;
6347 
6348 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6349 
6350 	return seg6_lookup_nexthop(skb, NULL, 0);
6351 }
6352 #endif /* CONFIG_IPV6_SEG6_BPF */
6353 
6354 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6355 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6356 			     bool ingress)
6357 {
6358 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6359 }
6360 #endif
6361 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6362 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6363 	   u32, len)
6364 {
6365 	switch (type) {
6366 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6367 	case BPF_LWT_ENCAP_SEG6:
6368 	case BPF_LWT_ENCAP_SEG6_INLINE:
6369 		return bpf_push_seg6_encap(skb, type, hdr, len);
6370 #endif
6371 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6372 	case BPF_LWT_ENCAP_IP:
6373 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6374 #endif
6375 	default:
6376 		return -EINVAL;
6377 	}
6378 }
6379 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6380 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6381 	   void *, hdr, u32, len)
6382 {
6383 	switch (type) {
6384 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6385 	case BPF_LWT_ENCAP_IP:
6386 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6387 #endif
6388 	default:
6389 		return -EINVAL;
6390 	}
6391 }
6392 
6393 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6394 	.func		= bpf_lwt_in_push_encap,
6395 	.gpl_only	= false,
6396 	.ret_type	= RET_INTEGER,
6397 	.arg1_type	= ARG_PTR_TO_CTX,
6398 	.arg2_type	= ARG_ANYTHING,
6399 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6400 	.arg4_type	= ARG_CONST_SIZE
6401 };
6402 
6403 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6404 	.func		= bpf_lwt_xmit_push_encap,
6405 	.gpl_only	= false,
6406 	.ret_type	= RET_INTEGER,
6407 	.arg1_type	= ARG_PTR_TO_CTX,
6408 	.arg2_type	= ARG_ANYTHING,
6409 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6410 	.arg4_type	= ARG_CONST_SIZE
6411 };
6412 
6413 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6414 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6415 	   const void *, from, u32, len)
6416 {
6417 	struct seg6_bpf_srh_state *srh_state =
6418 		this_cpu_ptr(&seg6_bpf_srh_states);
6419 	struct ipv6_sr_hdr *srh = srh_state->srh;
6420 	void *srh_tlvs, *srh_end, *ptr;
6421 	int srhoff = 0;
6422 
6423 	if (srh == NULL)
6424 		return -EINVAL;
6425 
6426 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6427 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6428 
6429 	ptr = skb->data + offset;
6430 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6431 		srh_state->valid = false;
6432 	else if (ptr < (void *)&srh->flags ||
6433 		 ptr + len > (void *)&srh->segments)
6434 		return -EFAULT;
6435 
6436 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6437 		return -EFAULT;
6438 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6439 		return -EINVAL;
6440 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6441 
6442 	memcpy(skb->data + offset, from, len);
6443 	return 0;
6444 }
6445 
6446 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6447 	.func		= bpf_lwt_seg6_store_bytes,
6448 	.gpl_only	= false,
6449 	.ret_type	= RET_INTEGER,
6450 	.arg1_type	= ARG_PTR_TO_CTX,
6451 	.arg2_type	= ARG_ANYTHING,
6452 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6453 	.arg4_type	= ARG_CONST_SIZE
6454 };
6455 
bpf_update_srh_state(struct sk_buff * skb)6456 static void bpf_update_srh_state(struct sk_buff *skb)
6457 {
6458 	struct seg6_bpf_srh_state *srh_state =
6459 		this_cpu_ptr(&seg6_bpf_srh_states);
6460 	int srhoff = 0;
6461 
6462 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6463 		srh_state->srh = NULL;
6464 	} else {
6465 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6466 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6467 		srh_state->valid = true;
6468 	}
6469 }
6470 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6471 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6472 	   u32, action, void *, param, u32, param_len)
6473 {
6474 	struct seg6_bpf_srh_state *srh_state =
6475 		this_cpu_ptr(&seg6_bpf_srh_states);
6476 	int hdroff = 0;
6477 	int err;
6478 
6479 	switch (action) {
6480 	case SEG6_LOCAL_ACTION_END_X:
6481 		if (!seg6_bpf_has_valid_srh(skb))
6482 			return -EBADMSG;
6483 		if (param_len != sizeof(struct in6_addr))
6484 			return -EINVAL;
6485 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6486 	case SEG6_LOCAL_ACTION_END_T:
6487 		if (!seg6_bpf_has_valid_srh(skb))
6488 			return -EBADMSG;
6489 		if (param_len != sizeof(int))
6490 			return -EINVAL;
6491 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6492 	case SEG6_LOCAL_ACTION_END_DT6:
6493 		if (!seg6_bpf_has_valid_srh(skb))
6494 			return -EBADMSG;
6495 		if (param_len != sizeof(int))
6496 			return -EINVAL;
6497 
6498 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6499 			return -EBADMSG;
6500 		if (!pskb_pull(skb, hdroff))
6501 			return -EBADMSG;
6502 
6503 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6504 		skb_reset_network_header(skb);
6505 		skb_reset_transport_header(skb);
6506 		skb->encapsulation = 0;
6507 
6508 		bpf_compute_data_pointers(skb);
6509 		bpf_update_srh_state(skb);
6510 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6511 	case SEG6_LOCAL_ACTION_END_B6:
6512 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6513 			return -EBADMSG;
6514 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6515 					  param, param_len);
6516 		if (!err)
6517 			bpf_update_srh_state(skb);
6518 
6519 		return err;
6520 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6521 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6522 			return -EBADMSG;
6523 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6524 					  param, param_len);
6525 		if (!err)
6526 			bpf_update_srh_state(skb);
6527 
6528 		return err;
6529 	default:
6530 		return -EINVAL;
6531 	}
6532 }
6533 
6534 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6535 	.func		= bpf_lwt_seg6_action,
6536 	.gpl_only	= false,
6537 	.ret_type	= RET_INTEGER,
6538 	.arg1_type	= ARG_PTR_TO_CTX,
6539 	.arg2_type	= ARG_ANYTHING,
6540 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6541 	.arg4_type	= ARG_CONST_SIZE
6542 };
6543 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6544 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6545 	   s32, len)
6546 {
6547 	struct seg6_bpf_srh_state *srh_state =
6548 		this_cpu_ptr(&seg6_bpf_srh_states);
6549 	struct ipv6_sr_hdr *srh = srh_state->srh;
6550 	void *srh_end, *srh_tlvs, *ptr;
6551 	struct ipv6hdr *hdr;
6552 	int srhoff = 0;
6553 	int ret;
6554 
6555 	if (unlikely(srh == NULL))
6556 		return -EINVAL;
6557 
6558 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6559 			((srh->first_segment + 1) << 4));
6560 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6561 			srh_state->hdrlen);
6562 	ptr = skb->data + offset;
6563 
6564 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6565 		return -EFAULT;
6566 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6567 		return -EFAULT;
6568 
6569 	if (len > 0) {
6570 		ret = skb_cow_head(skb, len);
6571 		if (unlikely(ret < 0))
6572 			return ret;
6573 
6574 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6575 	} else {
6576 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6577 	}
6578 
6579 	bpf_compute_data_pointers(skb);
6580 	if (unlikely(ret < 0))
6581 		return ret;
6582 
6583 	hdr = (struct ipv6hdr *)skb->data;
6584 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6585 
6586 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6587 		return -EINVAL;
6588 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6589 	srh_state->hdrlen += len;
6590 	srh_state->valid = false;
6591 	return 0;
6592 }
6593 
6594 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6595 	.func		= bpf_lwt_seg6_adjust_srh,
6596 	.gpl_only	= false,
6597 	.ret_type	= RET_INTEGER,
6598 	.arg1_type	= ARG_PTR_TO_CTX,
6599 	.arg2_type	= ARG_ANYTHING,
6600 	.arg3_type	= ARG_ANYTHING,
6601 };
6602 #endif /* CONFIG_IPV6_SEG6_BPF */
6603 
6604 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6605 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6606 			      int dif, int sdif, u8 family, u8 proto)
6607 {
6608 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6609 	bool refcounted = false;
6610 	struct sock *sk = NULL;
6611 
6612 	if (family == AF_INET) {
6613 		__be32 src4 = tuple->ipv4.saddr;
6614 		__be32 dst4 = tuple->ipv4.daddr;
6615 
6616 		if (proto == IPPROTO_TCP)
6617 			sk = __inet_lookup(net, hinfo, NULL, 0,
6618 					   src4, tuple->ipv4.sport,
6619 					   dst4, tuple->ipv4.dport,
6620 					   dif, sdif, &refcounted);
6621 		else
6622 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6623 					       dst4, tuple->ipv4.dport,
6624 					       dif, sdif, net->ipv4.udp_table, NULL);
6625 #if IS_ENABLED(CONFIG_IPV6)
6626 	} else {
6627 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6628 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6629 
6630 		if (proto == IPPROTO_TCP)
6631 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6632 					    src6, tuple->ipv6.sport,
6633 					    dst6, ntohs(tuple->ipv6.dport),
6634 					    dif, sdif, &refcounted);
6635 		else if (likely(ipv6_bpf_stub))
6636 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6637 							    src6, tuple->ipv6.sport,
6638 							    dst6, tuple->ipv6.dport,
6639 							    dif, sdif,
6640 							    net->ipv4.udp_table, NULL);
6641 #endif
6642 	}
6643 
6644 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6645 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6646 		sk = NULL;
6647 	}
6648 	return sk;
6649 }
6650 
6651 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6652  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6653  */
6654 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6655 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6656 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6657 		 u64 flags, int sdif)
6658 {
6659 	struct sock *sk = NULL;
6660 	struct net *net;
6661 	u8 family;
6662 
6663 	if (len == sizeof(tuple->ipv4))
6664 		family = AF_INET;
6665 	else if (len == sizeof(tuple->ipv6))
6666 		family = AF_INET6;
6667 	else
6668 		return NULL;
6669 
6670 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6671 		goto out;
6672 
6673 	if (sdif < 0) {
6674 		if (family == AF_INET)
6675 			sdif = inet_sdif(skb);
6676 		else
6677 			sdif = inet6_sdif(skb);
6678 	}
6679 
6680 	if ((s32)netns_id < 0) {
6681 		net = caller_net;
6682 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6683 	} else {
6684 		net = get_net_ns_by_id(caller_net, netns_id);
6685 		if (unlikely(!net))
6686 			goto out;
6687 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6688 		put_net(net);
6689 	}
6690 
6691 out:
6692 	return sk;
6693 }
6694 
6695 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6696 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6697 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6698 		u64 flags, int sdif)
6699 {
6700 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6701 					   ifindex, proto, netns_id, flags,
6702 					   sdif);
6703 
6704 	if (sk) {
6705 		struct sock *sk2 = sk_to_full_sk(sk);
6706 
6707 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6708 		 * sock refcnt is decremented to prevent a request_sock leak.
6709 		 */
6710 		if (!sk_fullsock(sk2))
6711 			sk2 = NULL;
6712 		if (sk2 != sk) {
6713 			sock_gen_put(sk);
6714 			/* Ensure there is no need to bump sk2 refcnt */
6715 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6716 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6717 				return NULL;
6718 			}
6719 			sk = sk2;
6720 		}
6721 	}
6722 
6723 	return sk;
6724 }
6725 
6726 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6727 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6728 	       u8 proto, u64 netns_id, u64 flags)
6729 {
6730 	struct net *caller_net;
6731 	int ifindex;
6732 
6733 	if (skb->dev) {
6734 		caller_net = dev_net(skb->dev);
6735 		ifindex = skb->dev->ifindex;
6736 	} else {
6737 		caller_net = sock_net(skb->sk);
6738 		ifindex = 0;
6739 	}
6740 
6741 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6742 				netns_id, flags, -1);
6743 }
6744 
6745 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6746 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6747 	      u8 proto, u64 netns_id, u64 flags)
6748 {
6749 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6750 					 flags);
6751 
6752 	if (sk) {
6753 		struct sock *sk2 = sk_to_full_sk(sk);
6754 
6755 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6756 		 * sock refcnt is decremented to prevent a request_sock leak.
6757 		 */
6758 		if (!sk_fullsock(sk2))
6759 			sk2 = NULL;
6760 		if (sk2 != sk) {
6761 			sock_gen_put(sk);
6762 			/* Ensure there is no need to bump sk2 refcnt */
6763 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6764 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6765 				return NULL;
6766 			}
6767 			sk = sk2;
6768 		}
6769 	}
6770 
6771 	return sk;
6772 }
6773 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6774 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6775 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6776 {
6777 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6778 					     netns_id, flags);
6779 }
6780 
6781 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6782 	.func		= bpf_skc_lookup_tcp,
6783 	.gpl_only	= false,
6784 	.pkt_access	= true,
6785 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6786 	.arg1_type	= ARG_PTR_TO_CTX,
6787 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6788 	.arg3_type	= ARG_CONST_SIZE,
6789 	.arg4_type	= ARG_ANYTHING,
6790 	.arg5_type	= ARG_ANYTHING,
6791 };
6792 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6793 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6794 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6795 {
6796 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6797 					    netns_id, flags);
6798 }
6799 
6800 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6801 	.func		= bpf_sk_lookup_tcp,
6802 	.gpl_only	= false,
6803 	.pkt_access	= true,
6804 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6805 	.arg1_type	= ARG_PTR_TO_CTX,
6806 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6807 	.arg3_type	= ARG_CONST_SIZE,
6808 	.arg4_type	= ARG_ANYTHING,
6809 	.arg5_type	= ARG_ANYTHING,
6810 };
6811 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6812 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6813 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6814 {
6815 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6816 					    netns_id, flags);
6817 }
6818 
6819 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6820 	.func		= bpf_sk_lookup_udp,
6821 	.gpl_only	= false,
6822 	.pkt_access	= true,
6823 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6824 	.arg1_type	= ARG_PTR_TO_CTX,
6825 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6826 	.arg3_type	= ARG_CONST_SIZE,
6827 	.arg4_type	= ARG_ANYTHING,
6828 	.arg5_type	= ARG_ANYTHING,
6829 };
6830 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6831 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6832 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6833 {
6834 	struct net_device *dev = skb->dev;
6835 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6836 	struct net *caller_net = dev_net(dev);
6837 
6838 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6839 					       ifindex, IPPROTO_TCP, netns_id,
6840 					       flags, sdif);
6841 }
6842 
6843 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6844 	.func		= bpf_tc_skc_lookup_tcp,
6845 	.gpl_only	= false,
6846 	.pkt_access	= true,
6847 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6848 	.arg1_type	= ARG_PTR_TO_CTX,
6849 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6850 	.arg3_type	= ARG_CONST_SIZE,
6851 	.arg4_type	= ARG_ANYTHING,
6852 	.arg5_type	= ARG_ANYTHING,
6853 };
6854 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6855 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6856 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6857 {
6858 	struct net_device *dev = skb->dev;
6859 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6860 	struct net *caller_net = dev_net(dev);
6861 
6862 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6863 					      ifindex, IPPROTO_TCP, netns_id,
6864 					      flags, sdif);
6865 }
6866 
6867 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6868 	.func		= bpf_tc_sk_lookup_tcp,
6869 	.gpl_only	= false,
6870 	.pkt_access	= true,
6871 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6872 	.arg1_type	= ARG_PTR_TO_CTX,
6873 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6874 	.arg3_type	= ARG_CONST_SIZE,
6875 	.arg4_type	= ARG_ANYTHING,
6876 	.arg5_type	= ARG_ANYTHING,
6877 };
6878 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6879 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6880 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6881 {
6882 	struct net_device *dev = skb->dev;
6883 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6884 	struct net *caller_net = dev_net(dev);
6885 
6886 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6887 					      ifindex, IPPROTO_UDP, netns_id,
6888 					      flags, sdif);
6889 }
6890 
6891 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6892 	.func		= bpf_tc_sk_lookup_udp,
6893 	.gpl_only	= false,
6894 	.pkt_access	= true,
6895 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6896 	.arg1_type	= ARG_PTR_TO_CTX,
6897 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6898 	.arg3_type	= ARG_CONST_SIZE,
6899 	.arg4_type	= ARG_ANYTHING,
6900 	.arg5_type	= ARG_ANYTHING,
6901 };
6902 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6903 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6904 {
6905 	if (sk && sk_is_refcounted(sk))
6906 		sock_gen_put(sk);
6907 	return 0;
6908 }
6909 
6910 static const struct bpf_func_proto bpf_sk_release_proto = {
6911 	.func		= bpf_sk_release,
6912 	.gpl_only	= false,
6913 	.ret_type	= RET_INTEGER,
6914 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6915 };
6916 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6917 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6918 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6919 {
6920 	struct net_device *dev = ctx->rxq->dev;
6921 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6922 	struct net *caller_net = dev_net(dev);
6923 
6924 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6925 					      ifindex, IPPROTO_UDP, netns_id,
6926 					      flags, sdif);
6927 }
6928 
6929 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6930 	.func           = bpf_xdp_sk_lookup_udp,
6931 	.gpl_only       = false,
6932 	.pkt_access     = true,
6933 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6934 	.arg1_type      = ARG_PTR_TO_CTX,
6935 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6936 	.arg3_type      = ARG_CONST_SIZE,
6937 	.arg4_type      = ARG_ANYTHING,
6938 	.arg5_type      = ARG_ANYTHING,
6939 };
6940 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6941 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6942 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6943 {
6944 	struct net_device *dev = ctx->rxq->dev;
6945 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6946 	struct net *caller_net = dev_net(dev);
6947 
6948 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6949 					       ifindex, IPPROTO_TCP, netns_id,
6950 					       flags, sdif);
6951 }
6952 
6953 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6954 	.func           = bpf_xdp_skc_lookup_tcp,
6955 	.gpl_only       = false,
6956 	.pkt_access     = true,
6957 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6958 	.arg1_type      = ARG_PTR_TO_CTX,
6959 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6960 	.arg3_type      = ARG_CONST_SIZE,
6961 	.arg4_type      = ARG_ANYTHING,
6962 	.arg5_type      = ARG_ANYTHING,
6963 };
6964 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6965 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6966 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6967 {
6968 	struct net_device *dev = ctx->rxq->dev;
6969 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6970 	struct net *caller_net = dev_net(dev);
6971 
6972 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6973 					      ifindex, IPPROTO_TCP, netns_id,
6974 					      flags, sdif);
6975 }
6976 
6977 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6978 	.func           = bpf_xdp_sk_lookup_tcp,
6979 	.gpl_only       = false,
6980 	.pkt_access     = true,
6981 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6982 	.arg1_type      = ARG_PTR_TO_CTX,
6983 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6984 	.arg3_type      = ARG_CONST_SIZE,
6985 	.arg4_type      = ARG_ANYTHING,
6986 	.arg5_type      = ARG_ANYTHING,
6987 };
6988 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6989 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6990 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6991 {
6992 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6993 					       sock_net(ctx->sk), 0,
6994 					       IPPROTO_TCP, netns_id, flags,
6995 					       -1);
6996 }
6997 
6998 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6999 	.func		= bpf_sock_addr_skc_lookup_tcp,
7000 	.gpl_only	= false,
7001 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7002 	.arg1_type	= ARG_PTR_TO_CTX,
7003 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7004 	.arg3_type	= ARG_CONST_SIZE,
7005 	.arg4_type	= ARG_ANYTHING,
7006 	.arg5_type	= ARG_ANYTHING,
7007 };
7008 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7009 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7010 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7011 {
7012 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7013 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7014 					      netns_id, flags, -1);
7015 }
7016 
7017 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7018 	.func		= bpf_sock_addr_sk_lookup_tcp,
7019 	.gpl_only	= false,
7020 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7021 	.arg1_type	= ARG_PTR_TO_CTX,
7022 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7023 	.arg3_type	= ARG_CONST_SIZE,
7024 	.arg4_type	= ARG_ANYTHING,
7025 	.arg5_type	= ARG_ANYTHING,
7026 };
7027 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7028 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7029 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7030 {
7031 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7032 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7033 					      netns_id, flags, -1);
7034 }
7035 
7036 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7037 	.func		= bpf_sock_addr_sk_lookup_udp,
7038 	.gpl_only	= false,
7039 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7040 	.arg1_type	= ARG_PTR_TO_CTX,
7041 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7042 	.arg3_type	= ARG_CONST_SIZE,
7043 	.arg4_type	= ARG_ANYTHING,
7044 	.arg5_type	= ARG_ANYTHING,
7045 };
7046 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7047 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7048 				  struct bpf_insn_access_aux *info)
7049 {
7050 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7051 					  icsk_retransmits))
7052 		return false;
7053 
7054 	if (off % size != 0)
7055 		return false;
7056 
7057 	switch (off) {
7058 	case offsetof(struct bpf_tcp_sock, bytes_received):
7059 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7060 		return size == sizeof(__u64);
7061 	default:
7062 		return size == sizeof(__u32);
7063 	}
7064 }
7065 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7066 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7067 				    const struct bpf_insn *si,
7068 				    struct bpf_insn *insn_buf,
7069 				    struct bpf_prog *prog, u32 *target_size)
7070 {
7071 	struct bpf_insn *insn = insn_buf;
7072 
7073 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7074 	do {								\
7075 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7076 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7077 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7078 				      si->dst_reg, si->src_reg,		\
7079 				      offsetof(struct tcp_sock, FIELD)); \
7080 	} while (0)
7081 
7082 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7083 	do {								\
7084 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7085 					  FIELD) >			\
7086 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7087 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7088 					struct inet_connection_sock,	\
7089 					FIELD),				\
7090 				      si->dst_reg, si->src_reg,		\
7091 				      offsetof(				\
7092 					struct inet_connection_sock,	\
7093 					FIELD));			\
7094 	} while (0)
7095 
7096 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7097 
7098 	switch (si->off) {
7099 	case offsetof(struct bpf_tcp_sock, rtt_min):
7100 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7101 			     sizeof(struct minmax));
7102 		BUILD_BUG_ON(sizeof(struct minmax) <
7103 			     sizeof(struct minmax_sample));
7104 
7105 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7106 				      offsetof(struct tcp_sock, rtt_min) +
7107 				      offsetof(struct minmax_sample, v));
7108 		break;
7109 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7110 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7111 		break;
7112 	case offsetof(struct bpf_tcp_sock, srtt_us):
7113 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7114 		break;
7115 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7116 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7117 		break;
7118 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7119 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7120 		break;
7121 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7122 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7123 		break;
7124 	case offsetof(struct bpf_tcp_sock, snd_una):
7125 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7126 		break;
7127 	case offsetof(struct bpf_tcp_sock, mss_cache):
7128 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7129 		break;
7130 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7131 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7132 		break;
7133 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7134 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7135 		break;
7136 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7137 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7138 		break;
7139 	case offsetof(struct bpf_tcp_sock, packets_out):
7140 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7141 		break;
7142 	case offsetof(struct bpf_tcp_sock, retrans_out):
7143 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7144 		break;
7145 	case offsetof(struct bpf_tcp_sock, total_retrans):
7146 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7147 		break;
7148 	case offsetof(struct bpf_tcp_sock, segs_in):
7149 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7150 		break;
7151 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7152 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7153 		break;
7154 	case offsetof(struct bpf_tcp_sock, segs_out):
7155 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7156 		break;
7157 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7158 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7159 		break;
7160 	case offsetof(struct bpf_tcp_sock, lost_out):
7161 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7162 		break;
7163 	case offsetof(struct bpf_tcp_sock, sacked_out):
7164 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7165 		break;
7166 	case offsetof(struct bpf_tcp_sock, bytes_received):
7167 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7168 		break;
7169 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7170 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7171 		break;
7172 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7173 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7174 		break;
7175 	case offsetof(struct bpf_tcp_sock, delivered):
7176 		BPF_TCP_SOCK_GET_COMMON(delivered);
7177 		break;
7178 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7179 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7180 		break;
7181 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7182 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7183 		break;
7184 	}
7185 
7186 	return insn - insn_buf;
7187 }
7188 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7189 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7190 {
7191 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7192 		return (unsigned long)sk;
7193 
7194 	return (unsigned long)NULL;
7195 }
7196 
7197 const struct bpf_func_proto bpf_tcp_sock_proto = {
7198 	.func		= bpf_tcp_sock,
7199 	.gpl_only	= false,
7200 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7201 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7202 };
7203 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7204 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7205 {
7206 	sk = sk_to_full_sk(sk);
7207 
7208 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7209 		return (unsigned long)sk;
7210 
7211 	return (unsigned long)NULL;
7212 }
7213 
7214 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7215 	.func		= bpf_get_listener_sock,
7216 	.gpl_only	= false,
7217 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7218 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7219 };
7220 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7221 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7222 {
7223 	unsigned int iphdr_len;
7224 
7225 	switch (skb_protocol(skb, true)) {
7226 	case cpu_to_be16(ETH_P_IP):
7227 		iphdr_len = sizeof(struct iphdr);
7228 		break;
7229 	case cpu_to_be16(ETH_P_IPV6):
7230 		iphdr_len = sizeof(struct ipv6hdr);
7231 		break;
7232 	default:
7233 		return 0;
7234 	}
7235 
7236 	if (skb_headlen(skb) < iphdr_len)
7237 		return 0;
7238 
7239 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7240 		return 0;
7241 
7242 	return INET_ECN_set_ce(skb);
7243 }
7244 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7245 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7246 				  struct bpf_insn_access_aux *info)
7247 {
7248 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7249 		return false;
7250 
7251 	if (off % size != 0)
7252 		return false;
7253 
7254 	switch (off) {
7255 	default:
7256 		return size == sizeof(__u32);
7257 	}
7258 }
7259 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7260 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7261 				    const struct bpf_insn *si,
7262 				    struct bpf_insn *insn_buf,
7263 				    struct bpf_prog *prog, u32 *target_size)
7264 {
7265 	struct bpf_insn *insn = insn_buf;
7266 
7267 #define BPF_XDP_SOCK_GET(FIELD)						\
7268 	do {								\
7269 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7270 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7271 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7272 				      si->dst_reg, si->src_reg,		\
7273 				      offsetof(struct xdp_sock, FIELD)); \
7274 	} while (0)
7275 
7276 	switch (si->off) {
7277 	case offsetof(struct bpf_xdp_sock, queue_id):
7278 		BPF_XDP_SOCK_GET(queue_id);
7279 		break;
7280 	}
7281 
7282 	return insn - insn_buf;
7283 }
7284 
7285 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7286 	.func           = bpf_skb_ecn_set_ce,
7287 	.gpl_only       = false,
7288 	.ret_type       = RET_INTEGER,
7289 	.arg1_type      = ARG_PTR_TO_CTX,
7290 };
7291 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7292 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7293 	   struct tcphdr *, th, u32, th_len)
7294 {
7295 #ifdef CONFIG_SYN_COOKIES
7296 	u32 cookie;
7297 	int ret;
7298 
7299 	if (unlikely(!sk || th_len < sizeof(*th)))
7300 		return -EINVAL;
7301 
7302 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7303 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7304 		return -EINVAL;
7305 
7306 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7307 		return -EINVAL;
7308 
7309 	if (!th->ack || th->rst || th->syn)
7310 		return -ENOENT;
7311 
7312 	if (unlikely(iph_len < sizeof(struct iphdr)))
7313 		return -EINVAL;
7314 
7315 	if (tcp_synq_no_recent_overflow(sk))
7316 		return -ENOENT;
7317 
7318 	cookie = ntohl(th->ack_seq) - 1;
7319 
7320 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7321 	 * same offset so we can cast to the shorter header (struct iphdr).
7322 	 */
7323 	switch (((struct iphdr *)iph)->version) {
7324 	case 4:
7325 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7326 			return -EINVAL;
7327 
7328 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7329 		break;
7330 
7331 #if IS_BUILTIN(CONFIG_IPV6)
7332 	case 6:
7333 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7334 			return -EINVAL;
7335 
7336 		if (sk->sk_family != AF_INET6)
7337 			return -EINVAL;
7338 
7339 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7340 		break;
7341 #endif /* CONFIG_IPV6 */
7342 
7343 	default:
7344 		return -EPROTONOSUPPORT;
7345 	}
7346 
7347 	if (ret > 0)
7348 		return 0;
7349 
7350 	return -ENOENT;
7351 #else
7352 	return -ENOTSUPP;
7353 #endif
7354 }
7355 
7356 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7357 	.func		= bpf_tcp_check_syncookie,
7358 	.gpl_only	= true,
7359 	.pkt_access	= true,
7360 	.ret_type	= RET_INTEGER,
7361 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7362 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7363 	.arg3_type	= ARG_CONST_SIZE,
7364 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7365 	.arg5_type	= ARG_CONST_SIZE,
7366 };
7367 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7368 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7369 	   struct tcphdr *, th, u32, th_len)
7370 {
7371 #ifdef CONFIG_SYN_COOKIES
7372 	u32 cookie;
7373 	u16 mss;
7374 
7375 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7376 		return -EINVAL;
7377 
7378 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7379 		return -EINVAL;
7380 
7381 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7382 		return -ENOENT;
7383 
7384 	if (!th->syn || th->ack || th->fin || th->rst)
7385 		return -EINVAL;
7386 
7387 	if (unlikely(iph_len < sizeof(struct iphdr)))
7388 		return -EINVAL;
7389 
7390 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7391 	 * same offset so we can cast to the shorter header (struct iphdr).
7392 	 */
7393 	switch (((struct iphdr *)iph)->version) {
7394 	case 4:
7395 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7396 			return -EINVAL;
7397 
7398 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7399 		break;
7400 
7401 #if IS_BUILTIN(CONFIG_IPV6)
7402 	case 6:
7403 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7404 			return -EINVAL;
7405 
7406 		if (sk->sk_family != AF_INET6)
7407 			return -EINVAL;
7408 
7409 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7410 		break;
7411 #endif /* CONFIG_IPV6 */
7412 
7413 	default:
7414 		return -EPROTONOSUPPORT;
7415 	}
7416 	if (mss == 0)
7417 		return -ENOENT;
7418 
7419 	return cookie | ((u64)mss << 32);
7420 #else
7421 	return -EOPNOTSUPP;
7422 #endif /* CONFIG_SYN_COOKIES */
7423 }
7424 
7425 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7426 	.func		= bpf_tcp_gen_syncookie,
7427 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7428 	.pkt_access	= true,
7429 	.ret_type	= RET_INTEGER,
7430 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7431 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7432 	.arg3_type	= ARG_CONST_SIZE,
7433 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7434 	.arg5_type	= ARG_CONST_SIZE,
7435 };
7436 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7437 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7438 {
7439 	if (!sk || flags != 0)
7440 		return -EINVAL;
7441 	if (!skb_at_tc_ingress(skb))
7442 		return -EOPNOTSUPP;
7443 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7444 		return -ENETUNREACH;
7445 	if (sk_unhashed(sk))
7446 		return -EOPNOTSUPP;
7447 	if (sk_is_refcounted(sk) &&
7448 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7449 		return -ENOENT;
7450 
7451 	skb_orphan(skb);
7452 	skb->sk = sk;
7453 	skb->destructor = sock_pfree;
7454 
7455 	return 0;
7456 }
7457 
7458 static const struct bpf_func_proto bpf_sk_assign_proto = {
7459 	.func		= bpf_sk_assign,
7460 	.gpl_only	= false,
7461 	.ret_type	= RET_INTEGER,
7462 	.arg1_type      = ARG_PTR_TO_CTX,
7463 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7464 	.arg3_type	= ARG_ANYTHING,
7465 };
7466 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7467 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7468 				    u8 search_kind, const u8 *magic,
7469 				    u8 magic_len, bool *eol)
7470 {
7471 	u8 kind, kind_len;
7472 
7473 	*eol = false;
7474 
7475 	while (op < opend) {
7476 		kind = op[0];
7477 
7478 		if (kind == TCPOPT_EOL) {
7479 			*eol = true;
7480 			return ERR_PTR(-ENOMSG);
7481 		} else if (kind == TCPOPT_NOP) {
7482 			op++;
7483 			continue;
7484 		}
7485 
7486 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7487 			/* Something is wrong in the received header.
7488 			 * Follow the TCP stack's tcp_parse_options()
7489 			 * and just bail here.
7490 			 */
7491 			return ERR_PTR(-EFAULT);
7492 
7493 		kind_len = op[1];
7494 		if (search_kind == kind) {
7495 			if (!magic_len)
7496 				return op;
7497 
7498 			if (magic_len > kind_len - 2)
7499 				return ERR_PTR(-ENOMSG);
7500 
7501 			if (!memcmp(&op[2], magic, magic_len))
7502 				return op;
7503 		}
7504 
7505 		op += kind_len;
7506 	}
7507 
7508 	return ERR_PTR(-ENOMSG);
7509 }
7510 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7511 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7512 	   void *, search_res, u32, len, u64, flags)
7513 {
7514 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7515 	const u8 *op, *opend, *magic, *search = search_res;
7516 	u8 search_kind, search_len, copy_len, magic_len;
7517 	int ret;
7518 
7519 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7520 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7521 	 * and this helper disallow loading them also.
7522 	 */
7523 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7524 		return -EINVAL;
7525 
7526 	search_kind = search[0];
7527 	search_len = search[1];
7528 
7529 	if (search_len > len || search_kind == TCPOPT_NOP ||
7530 	    search_kind == TCPOPT_EOL)
7531 		return -EINVAL;
7532 
7533 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7534 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7535 		if (search_len != 4 && search_len != 6)
7536 			return -EINVAL;
7537 		magic = &search[2];
7538 		magic_len = search_len - 2;
7539 	} else {
7540 		if (search_len)
7541 			return -EINVAL;
7542 		magic = NULL;
7543 		magic_len = 0;
7544 	}
7545 
7546 	if (load_syn) {
7547 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7548 		if (ret < 0)
7549 			return ret;
7550 
7551 		opend = op + ret;
7552 		op += sizeof(struct tcphdr);
7553 	} else {
7554 		if (!bpf_sock->skb ||
7555 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7556 			/* This bpf_sock->op cannot call this helper */
7557 			return -EPERM;
7558 
7559 		opend = bpf_sock->skb_data_end;
7560 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7561 	}
7562 
7563 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7564 				&eol);
7565 	if (IS_ERR(op))
7566 		return PTR_ERR(op);
7567 
7568 	copy_len = op[1];
7569 	ret = copy_len;
7570 	if (copy_len > len) {
7571 		ret = -ENOSPC;
7572 		copy_len = len;
7573 	}
7574 
7575 	memcpy(search_res, op, copy_len);
7576 	return ret;
7577 }
7578 
7579 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7580 	.func		= bpf_sock_ops_load_hdr_opt,
7581 	.gpl_only	= false,
7582 	.ret_type	= RET_INTEGER,
7583 	.arg1_type	= ARG_PTR_TO_CTX,
7584 	.arg2_type	= ARG_PTR_TO_MEM,
7585 	.arg3_type	= ARG_CONST_SIZE,
7586 	.arg4_type	= ARG_ANYTHING,
7587 };
7588 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7589 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7590 	   const void *, from, u32, len, u64, flags)
7591 {
7592 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7593 	const u8 *op, *new_op, *magic = NULL;
7594 	struct sk_buff *skb;
7595 	bool eol;
7596 
7597 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7598 		return -EPERM;
7599 
7600 	if (len < 2 || flags)
7601 		return -EINVAL;
7602 
7603 	new_op = from;
7604 	new_kind = new_op[0];
7605 	new_kind_len = new_op[1];
7606 
7607 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7608 	    new_kind == TCPOPT_EOL)
7609 		return -EINVAL;
7610 
7611 	if (new_kind_len > bpf_sock->remaining_opt_len)
7612 		return -ENOSPC;
7613 
7614 	/* 253 is another experimental kind */
7615 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7616 		if (new_kind_len < 4)
7617 			return -EINVAL;
7618 		/* Match for the 2 byte magic also.
7619 		 * RFC 6994: the magic could be 2 or 4 bytes.
7620 		 * Hence, matching by 2 byte only is on the
7621 		 * conservative side but it is the right
7622 		 * thing to do for the 'search-for-duplication'
7623 		 * purpose.
7624 		 */
7625 		magic = &new_op[2];
7626 		magic_len = 2;
7627 	}
7628 
7629 	/* Check for duplication */
7630 	skb = bpf_sock->skb;
7631 	op = skb->data + sizeof(struct tcphdr);
7632 	opend = bpf_sock->skb_data_end;
7633 
7634 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7635 				&eol);
7636 	if (!IS_ERR(op))
7637 		return -EEXIST;
7638 
7639 	if (PTR_ERR(op) != -ENOMSG)
7640 		return PTR_ERR(op);
7641 
7642 	if (eol)
7643 		/* The option has been ended.  Treat it as no more
7644 		 * header option can be written.
7645 		 */
7646 		return -ENOSPC;
7647 
7648 	/* No duplication found.  Store the header option. */
7649 	memcpy(opend, from, new_kind_len);
7650 
7651 	bpf_sock->remaining_opt_len -= new_kind_len;
7652 	bpf_sock->skb_data_end += new_kind_len;
7653 
7654 	return 0;
7655 }
7656 
7657 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7658 	.func		= bpf_sock_ops_store_hdr_opt,
7659 	.gpl_only	= false,
7660 	.ret_type	= RET_INTEGER,
7661 	.arg1_type	= ARG_PTR_TO_CTX,
7662 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7663 	.arg3_type	= ARG_CONST_SIZE,
7664 	.arg4_type	= ARG_ANYTHING,
7665 };
7666 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7667 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7668 	   u32, len, u64, flags)
7669 {
7670 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7671 		return -EPERM;
7672 
7673 	if (flags || len < 2)
7674 		return -EINVAL;
7675 
7676 	if (len > bpf_sock->remaining_opt_len)
7677 		return -ENOSPC;
7678 
7679 	bpf_sock->remaining_opt_len -= len;
7680 
7681 	return 0;
7682 }
7683 
7684 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7685 	.func		= bpf_sock_ops_reserve_hdr_opt,
7686 	.gpl_only	= false,
7687 	.ret_type	= RET_INTEGER,
7688 	.arg1_type	= ARG_PTR_TO_CTX,
7689 	.arg2_type	= ARG_ANYTHING,
7690 	.arg3_type	= ARG_ANYTHING,
7691 };
7692 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7693 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7694 	   u64, tstamp, u32, tstamp_type)
7695 {
7696 	/* skb_clear_delivery_time() is done for inet protocol */
7697 	if (skb->protocol != htons(ETH_P_IP) &&
7698 	    skb->protocol != htons(ETH_P_IPV6))
7699 		return -EOPNOTSUPP;
7700 
7701 	switch (tstamp_type) {
7702 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7703 		if (!tstamp)
7704 			return -EINVAL;
7705 		skb->tstamp = tstamp;
7706 		skb->mono_delivery_time = 1;
7707 		break;
7708 	case BPF_SKB_TSTAMP_UNSPEC:
7709 		if (tstamp)
7710 			return -EINVAL;
7711 		skb->tstamp = 0;
7712 		skb->mono_delivery_time = 0;
7713 		break;
7714 	default:
7715 		return -EINVAL;
7716 	}
7717 
7718 	return 0;
7719 }
7720 
7721 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7722 	.func           = bpf_skb_set_tstamp,
7723 	.gpl_only       = false,
7724 	.ret_type       = RET_INTEGER,
7725 	.arg1_type      = ARG_PTR_TO_CTX,
7726 	.arg2_type      = ARG_ANYTHING,
7727 	.arg3_type      = ARG_ANYTHING,
7728 };
7729 
7730 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7731 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7732 	   struct tcphdr *, th, u32, th_len)
7733 {
7734 	u32 cookie;
7735 	u16 mss;
7736 
7737 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7738 		return -EINVAL;
7739 
7740 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7741 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7742 
7743 	return cookie | ((u64)mss << 32);
7744 }
7745 
7746 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7747 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7748 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7749 	.pkt_access	= true,
7750 	.ret_type	= RET_INTEGER,
7751 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7752 	.arg1_size	= sizeof(struct iphdr),
7753 	.arg2_type	= ARG_PTR_TO_MEM,
7754 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7755 };
7756 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7757 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7758 	   struct tcphdr *, th, u32, th_len)
7759 {
7760 #if IS_BUILTIN(CONFIG_IPV6)
7761 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7762 		sizeof(struct ipv6hdr);
7763 	u32 cookie;
7764 	u16 mss;
7765 
7766 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7767 		return -EINVAL;
7768 
7769 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7770 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7771 
7772 	return cookie | ((u64)mss << 32);
7773 #else
7774 	return -EPROTONOSUPPORT;
7775 #endif
7776 }
7777 
7778 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7779 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7780 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7781 	.pkt_access	= true,
7782 	.ret_type	= RET_INTEGER,
7783 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7784 	.arg1_size	= sizeof(struct ipv6hdr),
7785 	.arg2_type	= ARG_PTR_TO_MEM,
7786 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7787 };
7788 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7789 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7790 	   struct tcphdr *, th)
7791 {
7792 	u32 cookie = ntohl(th->ack_seq) - 1;
7793 
7794 	if (__cookie_v4_check(iph, th, cookie) > 0)
7795 		return 0;
7796 
7797 	return -EACCES;
7798 }
7799 
7800 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7801 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7802 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7803 	.pkt_access	= true,
7804 	.ret_type	= RET_INTEGER,
7805 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7806 	.arg1_size	= sizeof(struct iphdr),
7807 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7808 	.arg2_size	= sizeof(struct tcphdr),
7809 };
7810 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7811 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7812 	   struct tcphdr *, th)
7813 {
7814 #if IS_BUILTIN(CONFIG_IPV6)
7815 	u32 cookie = ntohl(th->ack_seq) - 1;
7816 
7817 	if (__cookie_v6_check(iph, th, cookie) > 0)
7818 		return 0;
7819 
7820 	return -EACCES;
7821 #else
7822 	return -EPROTONOSUPPORT;
7823 #endif
7824 }
7825 
7826 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7827 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7828 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7829 	.pkt_access	= true,
7830 	.ret_type	= RET_INTEGER,
7831 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7832 	.arg1_size	= sizeof(struct ipv6hdr),
7833 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7834 	.arg2_size	= sizeof(struct tcphdr),
7835 };
7836 #endif /* CONFIG_SYN_COOKIES */
7837 
7838 #endif /* CONFIG_INET */
7839 
bpf_helper_changes_pkt_data(void * func)7840 bool bpf_helper_changes_pkt_data(void *func)
7841 {
7842 	if (func == bpf_skb_vlan_push ||
7843 	    func == bpf_skb_vlan_pop ||
7844 	    func == bpf_skb_store_bytes ||
7845 	    func == bpf_skb_change_proto ||
7846 	    func == bpf_skb_change_head ||
7847 	    func == sk_skb_change_head ||
7848 	    func == bpf_skb_change_tail ||
7849 	    func == sk_skb_change_tail ||
7850 	    func == bpf_skb_adjust_room ||
7851 	    func == sk_skb_adjust_room ||
7852 	    func == bpf_skb_pull_data ||
7853 	    func == sk_skb_pull_data ||
7854 	    func == bpf_clone_redirect ||
7855 	    func == bpf_l3_csum_replace ||
7856 	    func == bpf_l4_csum_replace ||
7857 	    func == bpf_xdp_adjust_head ||
7858 	    func == bpf_xdp_adjust_meta ||
7859 	    func == bpf_msg_pull_data ||
7860 	    func == bpf_msg_push_data ||
7861 	    func == bpf_msg_pop_data ||
7862 	    func == bpf_xdp_adjust_tail ||
7863 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7864 	    func == bpf_lwt_seg6_store_bytes ||
7865 	    func == bpf_lwt_seg6_adjust_srh ||
7866 	    func == bpf_lwt_seg6_action ||
7867 #endif
7868 #ifdef CONFIG_INET
7869 	    func == bpf_sock_ops_store_hdr_opt ||
7870 #endif
7871 	    func == bpf_lwt_in_push_encap ||
7872 	    func == bpf_lwt_xmit_push_encap)
7873 		return true;
7874 
7875 	return false;
7876 }
7877 
7878 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7879 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7880 
7881 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7882 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7883 {
7884 	const struct bpf_func_proto *func_proto;
7885 
7886 	func_proto = cgroup_common_func_proto(func_id, prog);
7887 	if (func_proto)
7888 		return func_proto;
7889 
7890 	func_proto = cgroup_current_func_proto(func_id, prog);
7891 	if (func_proto)
7892 		return func_proto;
7893 
7894 	switch (func_id) {
7895 	case BPF_FUNC_get_socket_cookie:
7896 		return &bpf_get_socket_cookie_sock_proto;
7897 	case BPF_FUNC_get_netns_cookie:
7898 		return &bpf_get_netns_cookie_sock_proto;
7899 	case BPF_FUNC_perf_event_output:
7900 		return &bpf_event_output_data_proto;
7901 	case BPF_FUNC_sk_storage_get:
7902 		return &bpf_sk_storage_get_cg_sock_proto;
7903 	case BPF_FUNC_ktime_get_coarse_ns:
7904 		return &bpf_ktime_get_coarse_ns_proto;
7905 	default:
7906 		return bpf_base_func_proto(func_id);
7907 	}
7908 }
7909 
7910 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7911 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7912 {
7913 	const struct bpf_func_proto *func_proto;
7914 
7915 	func_proto = cgroup_common_func_proto(func_id, prog);
7916 	if (func_proto)
7917 		return func_proto;
7918 
7919 	func_proto = cgroup_current_func_proto(func_id, prog);
7920 	if (func_proto)
7921 		return func_proto;
7922 
7923 	switch (func_id) {
7924 	case BPF_FUNC_bind:
7925 		switch (prog->expected_attach_type) {
7926 		case BPF_CGROUP_INET4_CONNECT:
7927 		case BPF_CGROUP_INET6_CONNECT:
7928 			return &bpf_bind_proto;
7929 		default:
7930 			return NULL;
7931 		}
7932 	case BPF_FUNC_get_socket_cookie:
7933 		return &bpf_get_socket_cookie_sock_addr_proto;
7934 	case BPF_FUNC_get_netns_cookie:
7935 		return &bpf_get_netns_cookie_sock_addr_proto;
7936 	case BPF_FUNC_perf_event_output:
7937 		return &bpf_event_output_data_proto;
7938 #ifdef CONFIG_INET
7939 	case BPF_FUNC_sk_lookup_tcp:
7940 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7941 	case BPF_FUNC_sk_lookup_udp:
7942 		return &bpf_sock_addr_sk_lookup_udp_proto;
7943 	case BPF_FUNC_sk_release:
7944 		return &bpf_sk_release_proto;
7945 	case BPF_FUNC_skc_lookup_tcp:
7946 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7947 #endif /* CONFIG_INET */
7948 	case BPF_FUNC_sk_storage_get:
7949 		return &bpf_sk_storage_get_proto;
7950 	case BPF_FUNC_sk_storage_delete:
7951 		return &bpf_sk_storage_delete_proto;
7952 	case BPF_FUNC_setsockopt:
7953 		switch (prog->expected_attach_type) {
7954 		case BPF_CGROUP_INET4_BIND:
7955 		case BPF_CGROUP_INET6_BIND:
7956 		case BPF_CGROUP_INET4_CONNECT:
7957 		case BPF_CGROUP_INET6_CONNECT:
7958 		case BPF_CGROUP_UDP4_RECVMSG:
7959 		case BPF_CGROUP_UDP6_RECVMSG:
7960 		case BPF_CGROUP_UDP4_SENDMSG:
7961 		case BPF_CGROUP_UDP6_SENDMSG:
7962 		case BPF_CGROUP_INET4_GETPEERNAME:
7963 		case BPF_CGROUP_INET6_GETPEERNAME:
7964 		case BPF_CGROUP_INET4_GETSOCKNAME:
7965 		case BPF_CGROUP_INET6_GETSOCKNAME:
7966 			return &bpf_sock_addr_setsockopt_proto;
7967 		default:
7968 			return NULL;
7969 		}
7970 	case BPF_FUNC_getsockopt:
7971 		switch (prog->expected_attach_type) {
7972 		case BPF_CGROUP_INET4_BIND:
7973 		case BPF_CGROUP_INET6_BIND:
7974 		case BPF_CGROUP_INET4_CONNECT:
7975 		case BPF_CGROUP_INET6_CONNECT:
7976 		case BPF_CGROUP_UDP4_RECVMSG:
7977 		case BPF_CGROUP_UDP6_RECVMSG:
7978 		case BPF_CGROUP_UDP4_SENDMSG:
7979 		case BPF_CGROUP_UDP6_SENDMSG:
7980 		case BPF_CGROUP_INET4_GETPEERNAME:
7981 		case BPF_CGROUP_INET6_GETPEERNAME:
7982 		case BPF_CGROUP_INET4_GETSOCKNAME:
7983 		case BPF_CGROUP_INET6_GETSOCKNAME:
7984 			return &bpf_sock_addr_getsockopt_proto;
7985 		default:
7986 			return NULL;
7987 		}
7988 	default:
7989 		return bpf_sk_base_func_proto(func_id);
7990 	}
7991 }
7992 
7993 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7994 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7995 {
7996 	switch (func_id) {
7997 	case BPF_FUNC_skb_load_bytes:
7998 		return &bpf_skb_load_bytes_proto;
7999 	case BPF_FUNC_skb_load_bytes_relative:
8000 		return &bpf_skb_load_bytes_relative_proto;
8001 	case BPF_FUNC_get_socket_cookie:
8002 		return &bpf_get_socket_cookie_proto;
8003 	case BPF_FUNC_get_socket_uid:
8004 		return &bpf_get_socket_uid_proto;
8005 	case BPF_FUNC_perf_event_output:
8006 		return &bpf_skb_event_output_proto;
8007 	default:
8008 		return bpf_sk_base_func_proto(func_id);
8009 	}
8010 }
8011 
8012 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8013 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8014 
8015 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8016 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8017 {
8018 	const struct bpf_func_proto *func_proto;
8019 
8020 	func_proto = cgroup_common_func_proto(func_id, prog);
8021 	if (func_proto)
8022 		return func_proto;
8023 
8024 	switch (func_id) {
8025 	case BPF_FUNC_sk_fullsock:
8026 		return &bpf_sk_fullsock_proto;
8027 	case BPF_FUNC_sk_storage_get:
8028 		return &bpf_sk_storage_get_proto;
8029 	case BPF_FUNC_sk_storage_delete:
8030 		return &bpf_sk_storage_delete_proto;
8031 	case BPF_FUNC_perf_event_output:
8032 		return &bpf_skb_event_output_proto;
8033 #ifdef CONFIG_SOCK_CGROUP_DATA
8034 	case BPF_FUNC_skb_cgroup_id:
8035 		return &bpf_skb_cgroup_id_proto;
8036 	case BPF_FUNC_skb_ancestor_cgroup_id:
8037 		return &bpf_skb_ancestor_cgroup_id_proto;
8038 	case BPF_FUNC_sk_cgroup_id:
8039 		return &bpf_sk_cgroup_id_proto;
8040 	case BPF_FUNC_sk_ancestor_cgroup_id:
8041 		return &bpf_sk_ancestor_cgroup_id_proto;
8042 #endif
8043 #ifdef CONFIG_INET
8044 	case BPF_FUNC_sk_lookup_tcp:
8045 		return &bpf_sk_lookup_tcp_proto;
8046 	case BPF_FUNC_sk_lookup_udp:
8047 		return &bpf_sk_lookup_udp_proto;
8048 	case BPF_FUNC_sk_release:
8049 		return &bpf_sk_release_proto;
8050 	case BPF_FUNC_skc_lookup_tcp:
8051 		return &bpf_skc_lookup_tcp_proto;
8052 	case BPF_FUNC_tcp_sock:
8053 		return &bpf_tcp_sock_proto;
8054 	case BPF_FUNC_get_listener_sock:
8055 		return &bpf_get_listener_sock_proto;
8056 	case BPF_FUNC_skb_ecn_set_ce:
8057 		return &bpf_skb_ecn_set_ce_proto;
8058 #endif
8059 	default:
8060 		return sk_filter_func_proto(func_id, prog);
8061 	}
8062 }
8063 
8064 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8065 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8066 {
8067 	switch (func_id) {
8068 	case BPF_FUNC_skb_store_bytes:
8069 		return &bpf_skb_store_bytes_proto;
8070 	case BPF_FUNC_skb_load_bytes:
8071 		return &bpf_skb_load_bytes_proto;
8072 	case BPF_FUNC_skb_load_bytes_relative:
8073 		return &bpf_skb_load_bytes_relative_proto;
8074 	case BPF_FUNC_skb_pull_data:
8075 		return &bpf_skb_pull_data_proto;
8076 	case BPF_FUNC_csum_diff:
8077 		return &bpf_csum_diff_proto;
8078 	case BPF_FUNC_csum_update:
8079 		return &bpf_csum_update_proto;
8080 	case BPF_FUNC_csum_level:
8081 		return &bpf_csum_level_proto;
8082 	case BPF_FUNC_l3_csum_replace:
8083 		return &bpf_l3_csum_replace_proto;
8084 	case BPF_FUNC_l4_csum_replace:
8085 		return &bpf_l4_csum_replace_proto;
8086 	case BPF_FUNC_clone_redirect:
8087 		return &bpf_clone_redirect_proto;
8088 	case BPF_FUNC_get_cgroup_classid:
8089 		return &bpf_get_cgroup_classid_proto;
8090 	case BPF_FUNC_skb_vlan_push:
8091 		return &bpf_skb_vlan_push_proto;
8092 	case BPF_FUNC_skb_vlan_pop:
8093 		return &bpf_skb_vlan_pop_proto;
8094 	case BPF_FUNC_skb_change_proto:
8095 		return &bpf_skb_change_proto_proto;
8096 	case BPF_FUNC_skb_change_type:
8097 		return &bpf_skb_change_type_proto;
8098 	case BPF_FUNC_skb_adjust_room:
8099 		return &bpf_skb_adjust_room_proto;
8100 	case BPF_FUNC_skb_change_tail:
8101 		return &bpf_skb_change_tail_proto;
8102 	case BPF_FUNC_skb_change_head:
8103 		return &bpf_skb_change_head_proto;
8104 	case BPF_FUNC_skb_get_tunnel_key:
8105 		return &bpf_skb_get_tunnel_key_proto;
8106 	case BPF_FUNC_skb_set_tunnel_key:
8107 		return bpf_get_skb_set_tunnel_proto(func_id);
8108 	case BPF_FUNC_skb_get_tunnel_opt:
8109 		return &bpf_skb_get_tunnel_opt_proto;
8110 	case BPF_FUNC_skb_set_tunnel_opt:
8111 		return bpf_get_skb_set_tunnel_proto(func_id);
8112 	case BPF_FUNC_redirect:
8113 		return &bpf_redirect_proto;
8114 	case BPF_FUNC_redirect_neigh:
8115 		return &bpf_redirect_neigh_proto;
8116 	case BPF_FUNC_redirect_peer:
8117 		return &bpf_redirect_peer_proto;
8118 	case BPF_FUNC_get_route_realm:
8119 		return &bpf_get_route_realm_proto;
8120 	case BPF_FUNC_get_hash_recalc:
8121 		return &bpf_get_hash_recalc_proto;
8122 	case BPF_FUNC_set_hash_invalid:
8123 		return &bpf_set_hash_invalid_proto;
8124 	case BPF_FUNC_set_hash:
8125 		return &bpf_set_hash_proto;
8126 	case BPF_FUNC_perf_event_output:
8127 		return &bpf_skb_event_output_proto;
8128 	case BPF_FUNC_get_smp_processor_id:
8129 		return &bpf_get_smp_processor_id_proto;
8130 	case BPF_FUNC_skb_under_cgroup:
8131 		return &bpf_skb_under_cgroup_proto;
8132 	case BPF_FUNC_get_socket_cookie:
8133 		return &bpf_get_socket_cookie_proto;
8134 	case BPF_FUNC_get_socket_uid:
8135 		return &bpf_get_socket_uid_proto;
8136 	case BPF_FUNC_fib_lookup:
8137 		return &bpf_skb_fib_lookup_proto;
8138 	case BPF_FUNC_check_mtu:
8139 		return &bpf_skb_check_mtu_proto;
8140 	case BPF_FUNC_sk_fullsock:
8141 		return &bpf_sk_fullsock_proto;
8142 	case BPF_FUNC_sk_storage_get:
8143 		return &bpf_sk_storage_get_proto;
8144 	case BPF_FUNC_sk_storage_delete:
8145 		return &bpf_sk_storage_delete_proto;
8146 #ifdef CONFIG_XFRM
8147 	case BPF_FUNC_skb_get_xfrm_state:
8148 		return &bpf_skb_get_xfrm_state_proto;
8149 #endif
8150 #ifdef CONFIG_CGROUP_NET_CLASSID
8151 	case BPF_FUNC_skb_cgroup_classid:
8152 		return &bpf_skb_cgroup_classid_proto;
8153 #endif
8154 #ifdef CONFIG_SOCK_CGROUP_DATA
8155 	case BPF_FUNC_skb_cgroup_id:
8156 		return &bpf_skb_cgroup_id_proto;
8157 	case BPF_FUNC_skb_ancestor_cgroup_id:
8158 		return &bpf_skb_ancestor_cgroup_id_proto;
8159 #endif
8160 #ifdef CONFIG_INET
8161 	case BPF_FUNC_sk_lookup_tcp:
8162 		return &bpf_tc_sk_lookup_tcp_proto;
8163 	case BPF_FUNC_sk_lookup_udp:
8164 		return &bpf_tc_sk_lookup_udp_proto;
8165 	case BPF_FUNC_sk_release:
8166 		return &bpf_sk_release_proto;
8167 	case BPF_FUNC_tcp_sock:
8168 		return &bpf_tcp_sock_proto;
8169 	case BPF_FUNC_get_listener_sock:
8170 		return &bpf_get_listener_sock_proto;
8171 	case BPF_FUNC_skc_lookup_tcp:
8172 		return &bpf_tc_skc_lookup_tcp_proto;
8173 	case BPF_FUNC_tcp_check_syncookie:
8174 		return &bpf_tcp_check_syncookie_proto;
8175 	case BPF_FUNC_skb_ecn_set_ce:
8176 		return &bpf_skb_ecn_set_ce_proto;
8177 	case BPF_FUNC_tcp_gen_syncookie:
8178 		return &bpf_tcp_gen_syncookie_proto;
8179 	case BPF_FUNC_sk_assign:
8180 		return &bpf_sk_assign_proto;
8181 	case BPF_FUNC_skb_set_tstamp:
8182 		return &bpf_skb_set_tstamp_proto;
8183 #ifdef CONFIG_SYN_COOKIES
8184 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8185 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8186 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8187 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8188 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8189 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8190 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8191 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8192 #endif
8193 #endif
8194 	default:
8195 		return bpf_sk_base_func_proto(func_id);
8196 	}
8197 }
8198 
8199 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8200 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8201 {
8202 	switch (func_id) {
8203 	case BPF_FUNC_perf_event_output:
8204 		return &bpf_xdp_event_output_proto;
8205 	case BPF_FUNC_get_smp_processor_id:
8206 		return &bpf_get_smp_processor_id_proto;
8207 	case BPF_FUNC_csum_diff:
8208 		return &bpf_csum_diff_proto;
8209 	case BPF_FUNC_xdp_adjust_head:
8210 		return &bpf_xdp_adjust_head_proto;
8211 	case BPF_FUNC_xdp_adjust_meta:
8212 		return &bpf_xdp_adjust_meta_proto;
8213 	case BPF_FUNC_redirect:
8214 		return &bpf_xdp_redirect_proto;
8215 	case BPF_FUNC_redirect_map:
8216 		return &bpf_xdp_redirect_map_proto;
8217 	case BPF_FUNC_xdp_adjust_tail:
8218 		return &bpf_xdp_adjust_tail_proto;
8219 	case BPF_FUNC_xdp_get_buff_len:
8220 		return &bpf_xdp_get_buff_len_proto;
8221 	case BPF_FUNC_xdp_load_bytes:
8222 		return &bpf_xdp_load_bytes_proto;
8223 	case BPF_FUNC_xdp_store_bytes:
8224 		return &bpf_xdp_store_bytes_proto;
8225 	case BPF_FUNC_fib_lookup:
8226 		return &bpf_xdp_fib_lookup_proto;
8227 	case BPF_FUNC_check_mtu:
8228 		return &bpf_xdp_check_mtu_proto;
8229 #ifdef CONFIG_INET
8230 	case BPF_FUNC_sk_lookup_udp:
8231 		return &bpf_xdp_sk_lookup_udp_proto;
8232 	case BPF_FUNC_sk_lookup_tcp:
8233 		return &bpf_xdp_sk_lookup_tcp_proto;
8234 	case BPF_FUNC_sk_release:
8235 		return &bpf_sk_release_proto;
8236 	case BPF_FUNC_skc_lookup_tcp:
8237 		return &bpf_xdp_skc_lookup_tcp_proto;
8238 	case BPF_FUNC_tcp_check_syncookie:
8239 		return &bpf_tcp_check_syncookie_proto;
8240 	case BPF_FUNC_tcp_gen_syncookie:
8241 		return &bpf_tcp_gen_syncookie_proto;
8242 #ifdef CONFIG_SYN_COOKIES
8243 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8244 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8245 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8246 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8247 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8248 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8249 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8250 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8251 #endif
8252 #endif
8253 	default:
8254 		return bpf_sk_base_func_proto(func_id);
8255 	}
8256 
8257 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8258 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8259 	 * kfuncs are defined in two different modules, and we want to be able
8260 	 * to use them interchangably with the same BTF type ID. Because modules
8261 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8262 	 * referenced in the vmlinux BTF or the verifier will get confused about
8263 	 * the different types. So we add this dummy type reference which will
8264 	 * be included in vmlinux BTF, allowing both modules to refer to the
8265 	 * same type ID.
8266 	 */
8267 	BTF_TYPE_EMIT(struct nf_conn___init);
8268 #endif
8269 }
8270 
8271 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8272 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8273 
8274 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8275 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8276 {
8277 	const struct bpf_func_proto *func_proto;
8278 
8279 	func_proto = cgroup_common_func_proto(func_id, prog);
8280 	if (func_proto)
8281 		return func_proto;
8282 
8283 	switch (func_id) {
8284 	case BPF_FUNC_setsockopt:
8285 		return &bpf_sock_ops_setsockopt_proto;
8286 	case BPF_FUNC_getsockopt:
8287 		return &bpf_sock_ops_getsockopt_proto;
8288 	case BPF_FUNC_sock_ops_cb_flags_set:
8289 		return &bpf_sock_ops_cb_flags_set_proto;
8290 	case BPF_FUNC_sock_map_update:
8291 		return &bpf_sock_map_update_proto;
8292 	case BPF_FUNC_sock_hash_update:
8293 		return &bpf_sock_hash_update_proto;
8294 	case BPF_FUNC_get_socket_cookie:
8295 		return &bpf_get_socket_cookie_sock_ops_proto;
8296 	case BPF_FUNC_perf_event_output:
8297 		return &bpf_event_output_data_proto;
8298 	case BPF_FUNC_sk_storage_get:
8299 		return &bpf_sk_storage_get_proto;
8300 	case BPF_FUNC_sk_storage_delete:
8301 		return &bpf_sk_storage_delete_proto;
8302 	case BPF_FUNC_get_netns_cookie:
8303 		return &bpf_get_netns_cookie_sock_ops_proto;
8304 #ifdef CONFIG_INET
8305 	case BPF_FUNC_load_hdr_opt:
8306 		return &bpf_sock_ops_load_hdr_opt_proto;
8307 	case BPF_FUNC_store_hdr_opt:
8308 		return &bpf_sock_ops_store_hdr_opt_proto;
8309 	case BPF_FUNC_reserve_hdr_opt:
8310 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8311 	case BPF_FUNC_tcp_sock:
8312 		return &bpf_tcp_sock_proto;
8313 #endif /* CONFIG_INET */
8314 	default:
8315 		return bpf_sk_base_func_proto(func_id);
8316 	}
8317 }
8318 
8319 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8320 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8321 
8322 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8323 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8324 {
8325 	switch (func_id) {
8326 	case BPF_FUNC_msg_redirect_map:
8327 		return &bpf_msg_redirect_map_proto;
8328 	case BPF_FUNC_msg_redirect_hash:
8329 		return &bpf_msg_redirect_hash_proto;
8330 	case BPF_FUNC_msg_apply_bytes:
8331 		return &bpf_msg_apply_bytes_proto;
8332 	case BPF_FUNC_msg_cork_bytes:
8333 		return &bpf_msg_cork_bytes_proto;
8334 	case BPF_FUNC_msg_pull_data:
8335 		return &bpf_msg_pull_data_proto;
8336 	case BPF_FUNC_msg_push_data:
8337 		return &bpf_msg_push_data_proto;
8338 	case BPF_FUNC_msg_pop_data:
8339 		return &bpf_msg_pop_data_proto;
8340 	case BPF_FUNC_perf_event_output:
8341 		return &bpf_event_output_data_proto;
8342 	case BPF_FUNC_get_current_uid_gid:
8343 		return &bpf_get_current_uid_gid_proto;
8344 	case BPF_FUNC_get_current_pid_tgid:
8345 		return &bpf_get_current_pid_tgid_proto;
8346 	case BPF_FUNC_sk_storage_get:
8347 		return &bpf_sk_storage_get_proto;
8348 	case BPF_FUNC_sk_storage_delete:
8349 		return &bpf_sk_storage_delete_proto;
8350 	case BPF_FUNC_get_netns_cookie:
8351 		return &bpf_get_netns_cookie_sk_msg_proto;
8352 #ifdef CONFIG_CGROUP_NET_CLASSID
8353 	case BPF_FUNC_get_cgroup_classid:
8354 		return &bpf_get_cgroup_classid_curr_proto;
8355 #endif
8356 	default:
8357 		return bpf_sk_base_func_proto(func_id);
8358 	}
8359 }
8360 
8361 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8362 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8363 
8364 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8365 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8366 {
8367 	switch (func_id) {
8368 	case BPF_FUNC_skb_store_bytes:
8369 		return &bpf_skb_store_bytes_proto;
8370 	case BPF_FUNC_skb_load_bytes:
8371 		return &bpf_skb_load_bytes_proto;
8372 	case BPF_FUNC_skb_pull_data:
8373 		return &sk_skb_pull_data_proto;
8374 	case BPF_FUNC_skb_change_tail:
8375 		return &sk_skb_change_tail_proto;
8376 	case BPF_FUNC_skb_change_head:
8377 		return &sk_skb_change_head_proto;
8378 	case BPF_FUNC_skb_adjust_room:
8379 		return &sk_skb_adjust_room_proto;
8380 	case BPF_FUNC_get_socket_cookie:
8381 		return &bpf_get_socket_cookie_proto;
8382 	case BPF_FUNC_get_socket_uid:
8383 		return &bpf_get_socket_uid_proto;
8384 	case BPF_FUNC_sk_redirect_map:
8385 		return &bpf_sk_redirect_map_proto;
8386 	case BPF_FUNC_sk_redirect_hash:
8387 		return &bpf_sk_redirect_hash_proto;
8388 	case BPF_FUNC_perf_event_output:
8389 		return &bpf_skb_event_output_proto;
8390 #ifdef CONFIG_INET
8391 	case BPF_FUNC_sk_lookup_tcp:
8392 		return &bpf_sk_lookup_tcp_proto;
8393 	case BPF_FUNC_sk_lookup_udp:
8394 		return &bpf_sk_lookup_udp_proto;
8395 	case BPF_FUNC_sk_release:
8396 		return &bpf_sk_release_proto;
8397 	case BPF_FUNC_skc_lookup_tcp:
8398 		return &bpf_skc_lookup_tcp_proto;
8399 #endif
8400 	default:
8401 		return bpf_sk_base_func_proto(func_id);
8402 	}
8403 }
8404 
8405 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8406 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8407 {
8408 	switch (func_id) {
8409 	case BPF_FUNC_skb_load_bytes:
8410 		return &bpf_flow_dissector_load_bytes_proto;
8411 	default:
8412 		return bpf_sk_base_func_proto(func_id);
8413 	}
8414 }
8415 
8416 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8417 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8418 {
8419 	switch (func_id) {
8420 	case BPF_FUNC_skb_load_bytes:
8421 		return &bpf_skb_load_bytes_proto;
8422 	case BPF_FUNC_skb_pull_data:
8423 		return &bpf_skb_pull_data_proto;
8424 	case BPF_FUNC_csum_diff:
8425 		return &bpf_csum_diff_proto;
8426 	case BPF_FUNC_get_cgroup_classid:
8427 		return &bpf_get_cgroup_classid_proto;
8428 	case BPF_FUNC_get_route_realm:
8429 		return &bpf_get_route_realm_proto;
8430 	case BPF_FUNC_get_hash_recalc:
8431 		return &bpf_get_hash_recalc_proto;
8432 	case BPF_FUNC_perf_event_output:
8433 		return &bpf_skb_event_output_proto;
8434 	case BPF_FUNC_get_smp_processor_id:
8435 		return &bpf_get_smp_processor_id_proto;
8436 	case BPF_FUNC_skb_under_cgroup:
8437 		return &bpf_skb_under_cgroup_proto;
8438 	default:
8439 		return bpf_sk_base_func_proto(func_id);
8440 	}
8441 }
8442 
8443 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8444 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8445 {
8446 	switch (func_id) {
8447 	case BPF_FUNC_lwt_push_encap:
8448 		return &bpf_lwt_in_push_encap_proto;
8449 	default:
8450 		return lwt_out_func_proto(func_id, prog);
8451 	}
8452 }
8453 
8454 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8455 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8456 {
8457 	switch (func_id) {
8458 	case BPF_FUNC_skb_get_tunnel_key:
8459 		return &bpf_skb_get_tunnel_key_proto;
8460 	case BPF_FUNC_skb_set_tunnel_key:
8461 		return bpf_get_skb_set_tunnel_proto(func_id);
8462 	case BPF_FUNC_skb_get_tunnel_opt:
8463 		return &bpf_skb_get_tunnel_opt_proto;
8464 	case BPF_FUNC_skb_set_tunnel_opt:
8465 		return bpf_get_skb_set_tunnel_proto(func_id);
8466 	case BPF_FUNC_redirect:
8467 		return &bpf_redirect_proto;
8468 	case BPF_FUNC_clone_redirect:
8469 		return &bpf_clone_redirect_proto;
8470 	case BPF_FUNC_skb_change_tail:
8471 		return &bpf_skb_change_tail_proto;
8472 	case BPF_FUNC_skb_change_head:
8473 		return &bpf_skb_change_head_proto;
8474 	case BPF_FUNC_skb_store_bytes:
8475 		return &bpf_skb_store_bytes_proto;
8476 	case BPF_FUNC_csum_update:
8477 		return &bpf_csum_update_proto;
8478 	case BPF_FUNC_csum_level:
8479 		return &bpf_csum_level_proto;
8480 	case BPF_FUNC_l3_csum_replace:
8481 		return &bpf_l3_csum_replace_proto;
8482 	case BPF_FUNC_l4_csum_replace:
8483 		return &bpf_l4_csum_replace_proto;
8484 	case BPF_FUNC_set_hash_invalid:
8485 		return &bpf_set_hash_invalid_proto;
8486 	case BPF_FUNC_lwt_push_encap:
8487 		return &bpf_lwt_xmit_push_encap_proto;
8488 	default:
8489 		return lwt_out_func_proto(func_id, prog);
8490 	}
8491 }
8492 
8493 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8494 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8495 {
8496 	switch (func_id) {
8497 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8498 	case BPF_FUNC_lwt_seg6_store_bytes:
8499 		return &bpf_lwt_seg6_store_bytes_proto;
8500 	case BPF_FUNC_lwt_seg6_action:
8501 		return &bpf_lwt_seg6_action_proto;
8502 	case BPF_FUNC_lwt_seg6_adjust_srh:
8503 		return &bpf_lwt_seg6_adjust_srh_proto;
8504 #endif
8505 	default:
8506 		return lwt_out_func_proto(func_id, prog);
8507 	}
8508 }
8509 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8510 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8511 				    const struct bpf_prog *prog,
8512 				    struct bpf_insn_access_aux *info)
8513 {
8514 	const int size_default = sizeof(__u32);
8515 
8516 	if (off < 0 || off >= sizeof(struct __sk_buff))
8517 		return false;
8518 
8519 	/* The verifier guarantees that size > 0. */
8520 	if (off % size != 0)
8521 		return false;
8522 
8523 	switch (off) {
8524 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8525 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8526 			return false;
8527 		break;
8528 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8529 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8530 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8531 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8532 	case bpf_ctx_range(struct __sk_buff, data):
8533 	case bpf_ctx_range(struct __sk_buff, data_meta):
8534 	case bpf_ctx_range(struct __sk_buff, data_end):
8535 		if (size != size_default)
8536 			return false;
8537 		break;
8538 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8539 		return false;
8540 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8541 		if (type == BPF_WRITE || size != sizeof(__u64))
8542 			return false;
8543 		break;
8544 	case bpf_ctx_range(struct __sk_buff, tstamp):
8545 		if (size != sizeof(__u64))
8546 			return false;
8547 		break;
8548 	case offsetof(struct __sk_buff, sk):
8549 		if (type == BPF_WRITE || size != sizeof(__u64))
8550 			return false;
8551 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8552 		break;
8553 	case offsetof(struct __sk_buff, tstamp_type):
8554 		return false;
8555 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8556 		/* Explicitly prohibit access to padding in __sk_buff. */
8557 		return false;
8558 	default:
8559 		/* Only narrow read access allowed for now. */
8560 		if (type == BPF_WRITE) {
8561 			if (size != size_default)
8562 				return false;
8563 		} else {
8564 			bpf_ctx_record_field_size(info, size_default);
8565 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8566 				return false;
8567 		}
8568 	}
8569 
8570 	return true;
8571 }
8572 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8573 static bool sk_filter_is_valid_access(int off, int size,
8574 				      enum bpf_access_type type,
8575 				      const struct bpf_prog *prog,
8576 				      struct bpf_insn_access_aux *info)
8577 {
8578 	switch (off) {
8579 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8580 	case bpf_ctx_range(struct __sk_buff, data):
8581 	case bpf_ctx_range(struct __sk_buff, data_meta):
8582 	case bpf_ctx_range(struct __sk_buff, data_end):
8583 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8584 	case bpf_ctx_range(struct __sk_buff, tstamp):
8585 	case bpf_ctx_range(struct __sk_buff, wire_len):
8586 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8587 		return false;
8588 	}
8589 
8590 	if (type == BPF_WRITE) {
8591 		switch (off) {
8592 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8593 			break;
8594 		default:
8595 			return false;
8596 		}
8597 	}
8598 
8599 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8600 }
8601 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8602 static bool cg_skb_is_valid_access(int off, int size,
8603 				   enum bpf_access_type type,
8604 				   const struct bpf_prog *prog,
8605 				   struct bpf_insn_access_aux *info)
8606 {
8607 	switch (off) {
8608 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8609 	case bpf_ctx_range(struct __sk_buff, data_meta):
8610 	case bpf_ctx_range(struct __sk_buff, wire_len):
8611 		return false;
8612 	case bpf_ctx_range(struct __sk_buff, data):
8613 	case bpf_ctx_range(struct __sk_buff, data_end):
8614 		if (!bpf_capable())
8615 			return false;
8616 		break;
8617 	}
8618 
8619 	if (type == BPF_WRITE) {
8620 		switch (off) {
8621 		case bpf_ctx_range(struct __sk_buff, mark):
8622 		case bpf_ctx_range(struct __sk_buff, priority):
8623 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8624 			break;
8625 		case bpf_ctx_range(struct __sk_buff, tstamp):
8626 			if (!bpf_capable())
8627 				return false;
8628 			break;
8629 		default:
8630 			return false;
8631 		}
8632 	}
8633 
8634 	switch (off) {
8635 	case bpf_ctx_range(struct __sk_buff, data):
8636 		info->reg_type = PTR_TO_PACKET;
8637 		break;
8638 	case bpf_ctx_range(struct __sk_buff, data_end):
8639 		info->reg_type = PTR_TO_PACKET_END;
8640 		break;
8641 	}
8642 
8643 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8644 }
8645 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8646 static bool lwt_is_valid_access(int off, int size,
8647 				enum bpf_access_type type,
8648 				const struct bpf_prog *prog,
8649 				struct bpf_insn_access_aux *info)
8650 {
8651 	switch (off) {
8652 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8653 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8654 	case bpf_ctx_range(struct __sk_buff, data_meta):
8655 	case bpf_ctx_range(struct __sk_buff, tstamp):
8656 	case bpf_ctx_range(struct __sk_buff, wire_len):
8657 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8658 		return false;
8659 	}
8660 
8661 	if (type == BPF_WRITE) {
8662 		switch (off) {
8663 		case bpf_ctx_range(struct __sk_buff, mark):
8664 		case bpf_ctx_range(struct __sk_buff, priority):
8665 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8666 			break;
8667 		default:
8668 			return false;
8669 		}
8670 	}
8671 
8672 	switch (off) {
8673 	case bpf_ctx_range(struct __sk_buff, data):
8674 		info->reg_type = PTR_TO_PACKET;
8675 		break;
8676 	case bpf_ctx_range(struct __sk_buff, data_end):
8677 		info->reg_type = PTR_TO_PACKET_END;
8678 		break;
8679 	}
8680 
8681 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8682 }
8683 
8684 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8685 static bool __sock_filter_check_attach_type(int off,
8686 					    enum bpf_access_type access_type,
8687 					    enum bpf_attach_type attach_type)
8688 {
8689 	switch (off) {
8690 	case offsetof(struct bpf_sock, bound_dev_if):
8691 	case offsetof(struct bpf_sock, mark):
8692 	case offsetof(struct bpf_sock, priority):
8693 		switch (attach_type) {
8694 		case BPF_CGROUP_INET_SOCK_CREATE:
8695 		case BPF_CGROUP_INET_SOCK_RELEASE:
8696 			goto full_access;
8697 		default:
8698 			return false;
8699 		}
8700 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8701 		switch (attach_type) {
8702 		case BPF_CGROUP_INET4_POST_BIND:
8703 			goto read_only;
8704 		default:
8705 			return false;
8706 		}
8707 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8708 		switch (attach_type) {
8709 		case BPF_CGROUP_INET6_POST_BIND:
8710 			goto read_only;
8711 		default:
8712 			return false;
8713 		}
8714 	case bpf_ctx_range(struct bpf_sock, src_port):
8715 		switch (attach_type) {
8716 		case BPF_CGROUP_INET4_POST_BIND:
8717 		case BPF_CGROUP_INET6_POST_BIND:
8718 			goto read_only;
8719 		default:
8720 			return false;
8721 		}
8722 	}
8723 read_only:
8724 	return access_type == BPF_READ;
8725 full_access:
8726 	return true;
8727 }
8728 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8729 bool bpf_sock_common_is_valid_access(int off, int size,
8730 				     enum bpf_access_type type,
8731 				     struct bpf_insn_access_aux *info)
8732 {
8733 	switch (off) {
8734 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8735 		return false;
8736 	default:
8737 		return bpf_sock_is_valid_access(off, size, type, info);
8738 	}
8739 }
8740 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8741 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8742 			      struct bpf_insn_access_aux *info)
8743 {
8744 	const int size_default = sizeof(__u32);
8745 	int field_size;
8746 
8747 	if (off < 0 || off >= sizeof(struct bpf_sock))
8748 		return false;
8749 	if (off % size != 0)
8750 		return false;
8751 
8752 	switch (off) {
8753 	case offsetof(struct bpf_sock, state):
8754 	case offsetof(struct bpf_sock, family):
8755 	case offsetof(struct bpf_sock, type):
8756 	case offsetof(struct bpf_sock, protocol):
8757 	case offsetof(struct bpf_sock, src_port):
8758 	case offsetof(struct bpf_sock, rx_queue_mapping):
8759 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8760 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8761 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8762 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8763 		bpf_ctx_record_field_size(info, size_default);
8764 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8765 	case bpf_ctx_range(struct bpf_sock, dst_port):
8766 		field_size = size == size_default ?
8767 			size_default : sizeof_field(struct bpf_sock, dst_port);
8768 		bpf_ctx_record_field_size(info, field_size);
8769 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8770 	case offsetofend(struct bpf_sock, dst_port) ...
8771 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8772 		return false;
8773 	}
8774 
8775 	return size == size_default;
8776 }
8777 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8778 static bool sock_filter_is_valid_access(int off, int size,
8779 					enum bpf_access_type type,
8780 					const struct bpf_prog *prog,
8781 					struct bpf_insn_access_aux *info)
8782 {
8783 	if (!bpf_sock_is_valid_access(off, size, type, info))
8784 		return false;
8785 	return __sock_filter_check_attach_type(off, type,
8786 					       prog->expected_attach_type);
8787 }
8788 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8789 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8790 			     const struct bpf_prog *prog)
8791 {
8792 	/* Neither direct read nor direct write requires any preliminary
8793 	 * action.
8794 	 */
8795 	return 0;
8796 }
8797 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8798 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8799 				const struct bpf_prog *prog, int drop_verdict)
8800 {
8801 	struct bpf_insn *insn = insn_buf;
8802 
8803 	if (!direct_write)
8804 		return 0;
8805 
8806 	/* if (!skb->cloned)
8807 	 *       goto start;
8808 	 *
8809 	 * (Fast-path, otherwise approximation that we might be
8810 	 *  a clone, do the rest in helper.)
8811 	 */
8812 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8813 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8814 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8815 
8816 	/* ret = bpf_skb_pull_data(skb, 0); */
8817 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8818 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8819 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8820 			       BPF_FUNC_skb_pull_data);
8821 	/* if (!ret)
8822 	 *      goto restore;
8823 	 * return TC_ACT_SHOT;
8824 	 */
8825 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8826 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8827 	*insn++ = BPF_EXIT_INSN();
8828 
8829 	/* restore: */
8830 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8831 	/* start: */
8832 	*insn++ = prog->insnsi[0];
8833 
8834 	return insn - insn_buf;
8835 }
8836 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8837 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8838 			  struct bpf_insn *insn_buf)
8839 {
8840 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8841 	struct bpf_insn *insn = insn_buf;
8842 
8843 	if (!indirect) {
8844 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8845 	} else {
8846 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8847 		if (orig->imm)
8848 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8849 	}
8850 	/* We're guaranteed here that CTX is in R6. */
8851 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8852 
8853 	switch (BPF_SIZE(orig->code)) {
8854 	case BPF_B:
8855 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8856 		break;
8857 	case BPF_H:
8858 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8859 		break;
8860 	case BPF_W:
8861 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8862 		break;
8863 	}
8864 
8865 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8866 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8867 	*insn++ = BPF_EXIT_INSN();
8868 
8869 	return insn - insn_buf;
8870 }
8871 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8872 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8873 			       const struct bpf_prog *prog)
8874 {
8875 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8876 }
8877 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8878 static bool tc_cls_act_is_valid_access(int off, int size,
8879 				       enum bpf_access_type type,
8880 				       const struct bpf_prog *prog,
8881 				       struct bpf_insn_access_aux *info)
8882 {
8883 	if (type == BPF_WRITE) {
8884 		switch (off) {
8885 		case bpf_ctx_range(struct __sk_buff, mark):
8886 		case bpf_ctx_range(struct __sk_buff, tc_index):
8887 		case bpf_ctx_range(struct __sk_buff, priority):
8888 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8889 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8890 		case bpf_ctx_range(struct __sk_buff, tstamp):
8891 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8892 			break;
8893 		default:
8894 			return false;
8895 		}
8896 	}
8897 
8898 	switch (off) {
8899 	case bpf_ctx_range(struct __sk_buff, data):
8900 		info->reg_type = PTR_TO_PACKET;
8901 		break;
8902 	case bpf_ctx_range(struct __sk_buff, data_meta):
8903 		info->reg_type = PTR_TO_PACKET_META;
8904 		break;
8905 	case bpf_ctx_range(struct __sk_buff, data_end):
8906 		info->reg_type = PTR_TO_PACKET_END;
8907 		break;
8908 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8909 		return false;
8910 	case offsetof(struct __sk_buff, tstamp_type):
8911 		/* The convert_ctx_access() on reading and writing
8912 		 * __sk_buff->tstamp depends on whether the bpf prog
8913 		 * has used __sk_buff->tstamp_type or not.
8914 		 * Thus, we need to set prog->tstamp_type_access
8915 		 * earlier during is_valid_access() here.
8916 		 */
8917 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8918 		return size == sizeof(__u8);
8919 	}
8920 
8921 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8922 }
8923 
8924 DEFINE_MUTEX(nf_conn_btf_access_lock);
8925 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8926 
8927 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8928 			      const struct bpf_reg_state *reg,
8929 			      int off, int size);
8930 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8931 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8932 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8933 					const struct bpf_reg_state *reg,
8934 					int off, int size)
8935 {
8936 	int ret = -EACCES;
8937 
8938 	mutex_lock(&nf_conn_btf_access_lock);
8939 	if (nfct_btf_struct_access)
8940 		ret = nfct_btf_struct_access(log, reg, off, size);
8941 	mutex_unlock(&nf_conn_btf_access_lock);
8942 
8943 	return ret;
8944 }
8945 
__is_valid_xdp_access(int off,int size)8946 static bool __is_valid_xdp_access(int off, int size)
8947 {
8948 	if (off < 0 || off >= sizeof(struct xdp_md))
8949 		return false;
8950 	if (off % size != 0)
8951 		return false;
8952 	if (size != sizeof(__u32))
8953 		return false;
8954 
8955 	return true;
8956 }
8957 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8958 static bool xdp_is_valid_access(int off, int size,
8959 				enum bpf_access_type type,
8960 				const struct bpf_prog *prog,
8961 				struct bpf_insn_access_aux *info)
8962 {
8963 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8964 		switch (off) {
8965 		case offsetof(struct xdp_md, egress_ifindex):
8966 			return false;
8967 		}
8968 	}
8969 
8970 	if (type == BPF_WRITE) {
8971 		if (bpf_prog_is_offloaded(prog->aux)) {
8972 			switch (off) {
8973 			case offsetof(struct xdp_md, rx_queue_index):
8974 				return __is_valid_xdp_access(off, size);
8975 			}
8976 		}
8977 		return false;
8978 	}
8979 
8980 	switch (off) {
8981 	case offsetof(struct xdp_md, data):
8982 		info->reg_type = PTR_TO_PACKET;
8983 		break;
8984 	case offsetof(struct xdp_md, data_meta):
8985 		info->reg_type = PTR_TO_PACKET_META;
8986 		break;
8987 	case offsetof(struct xdp_md, data_end):
8988 		info->reg_type = PTR_TO_PACKET_END;
8989 		break;
8990 	}
8991 
8992 	return __is_valid_xdp_access(off, size);
8993 }
8994 
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8995 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8996 {
8997 	const u32 act_max = XDP_REDIRECT;
8998 
8999 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9000 		     act > act_max ? "Illegal" : "Driver unsupported",
9001 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9002 }
9003 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9004 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9005 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9006 				 const struct bpf_reg_state *reg,
9007 				 int off, int size)
9008 {
9009 	int ret = -EACCES;
9010 
9011 	mutex_lock(&nf_conn_btf_access_lock);
9012 	if (nfct_btf_struct_access)
9013 		ret = nfct_btf_struct_access(log, reg, off, size);
9014 	mutex_unlock(&nf_conn_btf_access_lock);
9015 
9016 	return ret;
9017 }
9018 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9019 static bool sock_addr_is_valid_access(int off, int size,
9020 				      enum bpf_access_type type,
9021 				      const struct bpf_prog *prog,
9022 				      struct bpf_insn_access_aux *info)
9023 {
9024 	const int size_default = sizeof(__u32);
9025 
9026 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9027 		return false;
9028 	if (off % size != 0)
9029 		return false;
9030 
9031 	/* Disallow access to IPv6 fields from IPv4 contex and vise
9032 	 * versa.
9033 	 */
9034 	switch (off) {
9035 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9036 		switch (prog->expected_attach_type) {
9037 		case BPF_CGROUP_INET4_BIND:
9038 		case BPF_CGROUP_INET4_CONNECT:
9039 		case BPF_CGROUP_INET4_GETPEERNAME:
9040 		case BPF_CGROUP_INET4_GETSOCKNAME:
9041 		case BPF_CGROUP_UDP4_SENDMSG:
9042 		case BPF_CGROUP_UDP4_RECVMSG:
9043 			break;
9044 		default:
9045 			return false;
9046 		}
9047 		break;
9048 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9049 		switch (prog->expected_attach_type) {
9050 		case BPF_CGROUP_INET6_BIND:
9051 		case BPF_CGROUP_INET6_CONNECT:
9052 		case BPF_CGROUP_INET6_GETPEERNAME:
9053 		case BPF_CGROUP_INET6_GETSOCKNAME:
9054 		case BPF_CGROUP_UDP6_SENDMSG:
9055 		case BPF_CGROUP_UDP6_RECVMSG:
9056 			break;
9057 		default:
9058 			return false;
9059 		}
9060 		break;
9061 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9062 		switch (prog->expected_attach_type) {
9063 		case BPF_CGROUP_UDP4_SENDMSG:
9064 			break;
9065 		default:
9066 			return false;
9067 		}
9068 		break;
9069 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9070 				msg_src_ip6[3]):
9071 		switch (prog->expected_attach_type) {
9072 		case BPF_CGROUP_UDP6_SENDMSG:
9073 			break;
9074 		default:
9075 			return false;
9076 		}
9077 		break;
9078 	}
9079 
9080 	switch (off) {
9081 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9082 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9083 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9084 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9085 				msg_src_ip6[3]):
9086 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9087 		if (type == BPF_READ) {
9088 			bpf_ctx_record_field_size(info, size_default);
9089 
9090 			if (bpf_ctx_wide_access_ok(off, size,
9091 						   struct bpf_sock_addr,
9092 						   user_ip6))
9093 				return true;
9094 
9095 			if (bpf_ctx_wide_access_ok(off, size,
9096 						   struct bpf_sock_addr,
9097 						   msg_src_ip6))
9098 				return true;
9099 
9100 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9101 				return false;
9102 		} else {
9103 			if (bpf_ctx_wide_access_ok(off, size,
9104 						   struct bpf_sock_addr,
9105 						   user_ip6))
9106 				return true;
9107 
9108 			if (bpf_ctx_wide_access_ok(off, size,
9109 						   struct bpf_sock_addr,
9110 						   msg_src_ip6))
9111 				return true;
9112 
9113 			if (size != size_default)
9114 				return false;
9115 		}
9116 		break;
9117 	case offsetof(struct bpf_sock_addr, sk):
9118 		if (type != BPF_READ)
9119 			return false;
9120 		if (size != sizeof(__u64))
9121 			return false;
9122 		info->reg_type = PTR_TO_SOCKET;
9123 		break;
9124 	default:
9125 		if (type == BPF_READ) {
9126 			if (size != size_default)
9127 				return false;
9128 		} else {
9129 			return false;
9130 		}
9131 	}
9132 
9133 	return true;
9134 }
9135 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9136 static bool sock_ops_is_valid_access(int off, int size,
9137 				     enum bpf_access_type type,
9138 				     const struct bpf_prog *prog,
9139 				     struct bpf_insn_access_aux *info)
9140 {
9141 	const int size_default = sizeof(__u32);
9142 
9143 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9144 		return false;
9145 
9146 	/* The verifier guarantees that size > 0. */
9147 	if (off % size != 0)
9148 		return false;
9149 
9150 	if (type == BPF_WRITE) {
9151 		switch (off) {
9152 		case offsetof(struct bpf_sock_ops, reply):
9153 		case offsetof(struct bpf_sock_ops, sk_txhash):
9154 			if (size != size_default)
9155 				return false;
9156 			break;
9157 		default:
9158 			return false;
9159 		}
9160 	} else {
9161 		switch (off) {
9162 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9163 					bytes_acked):
9164 			if (size != sizeof(__u64))
9165 				return false;
9166 			break;
9167 		case offsetof(struct bpf_sock_ops, sk):
9168 			if (size != sizeof(__u64))
9169 				return false;
9170 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9171 			break;
9172 		case offsetof(struct bpf_sock_ops, skb_data):
9173 			if (size != sizeof(__u64))
9174 				return false;
9175 			info->reg_type = PTR_TO_PACKET;
9176 			break;
9177 		case offsetof(struct bpf_sock_ops, skb_data_end):
9178 			if (size != sizeof(__u64))
9179 				return false;
9180 			info->reg_type = PTR_TO_PACKET_END;
9181 			break;
9182 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9183 			bpf_ctx_record_field_size(info, size_default);
9184 			return bpf_ctx_narrow_access_ok(off, size,
9185 							size_default);
9186 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9187 			if (size != sizeof(__u64))
9188 				return false;
9189 			break;
9190 		default:
9191 			if (size != size_default)
9192 				return false;
9193 			break;
9194 		}
9195 	}
9196 
9197 	return true;
9198 }
9199 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9200 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9201 			   const struct bpf_prog *prog)
9202 {
9203 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9204 }
9205 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9206 static bool sk_skb_is_valid_access(int off, int size,
9207 				   enum bpf_access_type type,
9208 				   const struct bpf_prog *prog,
9209 				   struct bpf_insn_access_aux *info)
9210 {
9211 	switch (off) {
9212 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9213 	case bpf_ctx_range(struct __sk_buff, data_meta):
9214 	case bpf_ctx_range(struct __sk_buff, tstamp):
9215 	case bpf_ctx_range(struct __sk_buff, wire_len):
9216 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9217 		return false;
9218 	}
9219 
9220 	if (type == BPF_WRITE) {
9221 		switch (off) {
9222 		case bpf_ctx_range(struct __sk_buff, tc_index):
9223 		case bpf_ctx_range(struct __sk_buff, priority):
9224 			break;
9225 		default:
9226 			return false;
9227 		}
9228 	}
9229 
9230 	switch (off) {
9231 	case bpf_ctx_range(struct __sk_buff, mark):
9232 		return false;
9233 	case bpf_ctx_range(struct __sk_buff, data):
9234 		info->reg_type = PTR_TO_PACKET;
9235 		break;
9236 	case bpf_ctx_range(struct __sk_buff, data_end):
9237 		info->reg_type = PTR_TO_PACKET_END;
9238 		break;
9239 	}
9240 
9241 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9242 }
9243 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9244 static bool sk_msg_is_valid_access(int off, int size,
9245 				   enum bpf_access_type type,
9246 				   const struct bpf_prog *prog,
9247 				   struct bpf_insn_access_aux *info)
9248 {
9249 	if (type == BPF_WRITE)
9250 		return false;
9251 
9252 	if (off % size != 0)
9253 		return false;
9254 
9255 	switch (off) {
9256 	case offsetof(struct sk_msg_md, data):
9257 		info->reg_type = PTR_TO_PACKET;
9258 		if (size != sizeof(__u64))
9259 			return false;
9260 		break;
9261 	case offsetof(struct sk_msg_md, data_end):
9262 		info->reg_type = PTR_TO_PACKET_END;
9263 		if (size != sizeof(__u64))
9264 			return false;
9265 		break;
9266 	case offsetof(struct sk_msg_md, sk):
9267 		if (size != sizeof(__u64))
9268 			return false;
9269 		info->reg_type = PTR_TO_SOCKET;
9270 		break;
9271 	case bpf_ctx_range(struct sk_msg_md, family):
9272 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9273 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9274 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9275 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9276 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9277 	case bpf_ctx_range(struct sk_msg_md, local_port):
9278 	case bpf_ctx_range(struct sk_msg_md, size):
9279 		if (size != sizeof(__u32))
9280 			return false;
9281 		break;
9282 	default:
9283 		return false;
9284 	}
9285 	return true;
9286 }
9287 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9288 static bool flow_dissector_is_valid_access(int off, int size,
9289 					   enum bpf_access_type type,
9290 					   const struct bpf_prog *prog,
9291 					   struct bpf_insn_access_aux *info)
9292 {
9293 	const int size_default = sizeof(__u32);
9294 
9295 	if (off < 0 || off >= sizeof(struct __sk_buff))
9296 		return false;
9297 
9298 	if (type == BPF_WRITE)
9299 		return false;
9300 
9301 	switch (off) {
9302 	case bpf_ctx_range(struct __sk_buff, data):
9303 		if (size != size_default)
9304 			return false;
9305 		info->reg_type = PTR_TO_PACKET;
9306 		return true;
9307 	case bpf_ctx_range(struct __sk_buff, data_end):
9308 		if (size != size_default)
9309 			return false;
9310 		info->reg_type = PTR_TO_PACKET_END;
9311 		return true;
9312 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9313 		if (size != sizeof(__u64))
9314 			return false;
9315 		info->reg_type = PTR_TO_FLOW_KEYS;
9316 		return true;
9317 	default:
9318 		return false;
9319 	}
9320 }
9321 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9322 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9323 					     const struct bpf_insn *si,
9324 					     struct bpf_insn *insn_buf,
9325 					     struct bpf_prog *prog,
9326 					     u32 *target_size)
9327 
9328 {
9329 	struct bpf_insn *insn = insn_buf;
9330 
9331 	switch (si->off) {
9332 	case offsetof(struct __sk_buff, data):
9333 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9334 				      si->dst_reg, si->src_reg,
9335 				      offsetof(struct bpf_flow_dissector, data));
9336 		break;
9337 
9338 	case offsetof(struct __sk_buff, data_end):
9339 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9340 				      si->dst_reg, si->src_reg,
9341 				      offsetof(struct bpf_flow_dissector, data_end));
9342 		break;
9343 
9344 	case offsetof(struct __sk_buff, flow_keys):
9345 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9346 				      si->dst_reg, si->src_reg,
9347 				      offsetof(struct bpf_flow_dissector, flow_keys));
9348 		break;
9349 	}
9350 
9351 	return insn - insn_buf;
9352 }
9353 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9354 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9355 						     struct bpf_insn *insn)
9356 {
9357 	__u8 value_reg = si->dst_reg;
9358 	__u8 skb_reg = si->src_reg;
9359 	/* AX is needed because src_reg and dst_reg could be the same */
9360 	__u8 tmp_reg = BPF_REG_AX;
9361 
9362 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9363 			      SKB_BF_MONO_TC_OFFSET);
9364 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9365 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9366 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9367 	*insn++ = BPF_JMP_A(1);
9368 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9369 
9370 	return insn;
9371 }
9372 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9373 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9374 						  struct bpf_insn *insn)
9375 {
9376 	/* si->dst_reg = skb_shinfo(SKB); */
9377 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9378 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9379 			      BPF_REG_AX, skb_reg,
9380 			      offsetof(struct sk_buff, end));
9381 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9382 			      dst_reg, skb_reg,
9383 			      offsetof(struct sk_buff, head));
9384 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9385 #else
9386 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9387 			      dst_reg, skb_reg,
9388 			      offsetof(struct sk_buff, end));
9389 #endif
9390 
9391 	return insn;
9392 }
9393 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9394 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9395 						const struct bpf_insn *si,
9396 						struct bpf_insn *insn)
9397 {
9398 	__u8 value_reg = si->dst_reg;
9399 	__u8 skb_reg = si->src_reg;
9400 
9401 #ifdef CONFIG_NET_XGRESS
9402 	/* If the tstamp_type is read,
9403 	 * the bpf prog is aware the tstamp could have delivery time.
9404 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9405 	 */
9406 	if (!prog->tstamp_type_access) {
9407 		/* AX is needed because src_reg and dst_reg could be the same */
9408 		__u8 tmp_reg = BPF_REG_AX;
9409 
9410 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9411 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9412 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9413 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9414 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9415 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9416 		 * read 0 as the (rcv) timestamp.
9417 		 */
9418 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9419 		*insn++ = BPF_JMP_A(1);
9420 	}
9421 #endif
9422 
9423 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9424 			      offsetof(struct sk_buff, tstamp));
9425 	return insn;
9426 }
9427 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9428 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9429 						 const struct bpf_insn *si,
9430 						 struct bpf_insn *insn)
9431 {
9432 	__u8 value_reg = si->src_reg;
9433 	__u8 skb_reg = si->dst_reg;
9434 
9435 #ifdef CONFIG_NET_XGRESS
9436 	/* If the tstamp_type is read,
9437 	 * the bpf prog is aware the tstamp could have delivery time.
9438 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9439 	 * Otherwise, writing at ingress will have to clear the
9440 	 * mono_delivery_time bit also.
9441 	 */
9442 	if (!prog->tstamp_type_access) {
9443 		__u8 tmp_reg = BPF_REG_AX;
9444 
9445 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9446 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9447 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9448 		/* goto <store> */
9449 		*insn++ = BPF_JMP_A(2);
9450 		/* <clear>: mono_delivery_time */
9451 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9452 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9453 	}
9454 #endif
9455 
9456 	/* <store>: skb->tstamp = tstamp */
9457 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9458 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9459 	return insn;
9460 }
9461 
9462 #define BPF_EMIT_STORE(size, si, off)					\
9463 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9464 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9465 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9466 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9467 				  const struct bpf_insn *si,
9468 				  struct bpf_insn *insn_buf,
9469 				  struct bpf_prog *prog, u32 *target_size)
9470 {
9471 	struct bpf_insn *insn = insn_buf;
9472 	int off;
9473 
9474 	switch (si->off) {
9475 	case offsetof(struct __sk_buff, len):
9476 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9477 				      bpf_target_off(struct sk_buff, len, 4,
9478 						     target_size));
9479 		break;
9480 
9481 	case offsetof(struct __sk_buff, protocol):
9482 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9483 				      bpf_target_off(struct sk_buff, protocol, 2,
9484 						     target_size));
9485 		break;
9486 
9487 	case offsetof(struct __sk_buff, vlan_proto):
9488 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9489 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9490 						     target_size));
9491 		break;
9492 
9493 	case offsetof(struct __sk_buff, priority):
9494 		if (type == BPF_WRITE)
9495 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9496 						 bpf_target_off(struct sk_buff, priority, 4,
9497 								target_size));
9498 		else
9499 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9500 					      bpf_target_off(struct sk_buff, priority, 4,
9501 							     target_size));
9502 		break;
9503 
9504 	case offsetof(struct __sk_buff, ingress_ifindex):
9505 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9506 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9507 						     target_size));
9508 		break;
9509 
9510 	case offsetof(struct __sk_buff, ifindex):
9511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9512 				      si->dst_reg, si->src_reg,
9513 				      offsetof(struct sk_buff, dev));
9514 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9515 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9516 				      bpf_target_off(struct net_device, ifindex, 4,
9517 						     target_size));
9518 		break;
9519 
9520 	case offsetof(struct __sk_buff, hash):
9521 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9522 				      bpf_target_off(struct sk_buff, hash, 4,
9523 						     target_size));
9524 		break;
9525 
9526 	case offsetof(struct __sk_buff, mark):
9527 		if (type == BPF_WRITE)
9528 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9529 						 bpf_target_off(struct sk_buff, mark, 4,
9530 								target_size));
9531 		else
9532 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9533 					      bpf_target_off(struct sk_buff, mark, 4,
9534 							     target_size));
9535 		break;
9536 
9537 	case offsetof(struct __sk_buff, pkt_type):
9538 		*target_size = 1;
9539 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9540 				      PKT_TYPE_OFFSET);
9541 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9542 #ifdef __BIG_ENDIAN_BITFIELD
9543 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9544 #endif
9545 		break;
9546 
9547 	case offsetof(struct __sk_buff, queue_mapping):
9548 		if (type == BPF_WRITE) {
9549 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9550 
9551 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9552 				*insn++ = BPF_JMP_A(0); /* noop */
9553 				break;
9554 			}
9555 
9556 			if (BPF_CLASS(si->code) == BPF_STX)
9557 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9558 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9559 		} else {
9560 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9561 					      bpf_target_off(struct sk_buff,
9562 							     queue_mapping,
9563 							     2, target_size));
9564 		}
9565 		break;
9566 
9567 	case offsetof(struct __sk_buff, vlan_present):
9568 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9569 				      bpf_target_off(struct sk_buff,
9570 						     vlan_all, 4, target_size));
9571 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9572 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9573 		break;
9574 
9575 	case offsetof(struct __sk_buff, vlan_tci):
9576 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9577 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9578 						     target_size));
9579 		break;
9580 
9581 	case offsetof(struct __sk_buff, cb[0]) ...
9582 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9583 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9584 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9585 			      offsetof(struct qdisc_skb_cb, data)) %
9586 			     sizeof(__u64));
9587 
9588 		prog->cb_access = 1;
9589 		off  = si->off;
9590 		off -= offsetof(struct __sk_buff, cb[0]);
9591 		off += offsetof(struct sk_buff, cb);
9592 		off += offsetof(struct qdisc_skb_cb, data);
9593 		if (type == BPF_WRITE)
9594 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9595 		else
9596 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9597 					      si->src_reg, off);
9598 		break;
9599 
9600 	case offsetof(struct __sk_buff, tc_classid):
9601 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9602 
9603 		off  = si->off;
9604 		off -= offsetof(struct __sk_buff, tc_classid);
9605 		off += offsetof(struct sk_buff, cb);
9606 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9607 		*target_size = 2;
9608 		if (type == BPF_WRITE)
9609 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9610 		else
9611 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9612 					      si->src_reg, off);
9613 		break;
9614 
9615 	case offsetof(struct __sk_buff, data):
9616 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9617 				      si->dst_reg, si->src_reg,
9618 				      offsetof(struct sk_buff, data));
9619 		break;
9620 
9621 	case offsetof(struct __sk_buff, data_meta):
9622 		off  = si->off;
9623 		off -= offsetof(struct __sk_buff, data_meta);
9624 		off += offsetof(struct sk_buff, cb);
9625 		off += offsetof(struct bpf_skb_data_end, data_meta);
9626 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9627 				      si->src_reg, off);
9628 		break;
9629 
9630 	case offsetof(struct __sk_buff, data_end):
9631 		off  = si->off;
9632 		off -= offsetof(struct __sk_buff, data_end);
9633 		off += offsetof(struct sk_buff, cb);
9634 		off += offsetof(struct bpf_skb_data_end, data_end);
9635 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9636 				      si->src_reg, off);
9637 		break;
9638 
9639 	case offsetof(struct __sk_buff, tc_index):
9640 #ifdef CONFIG_NET_SCHED
9641 		if (type == BPF_WRITE)
9642 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9643 						 bpf_target_off(struct sk_buff, tc_index, 2,
9644 								target_size));
9645 		else
9646 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9647 					      bpf_target_off(struct sk_buff, tc_index, 2,
9648 							     target_size));
9649 #else
9650 		*target_size = 2;
9651 		if (type == BPF_WRITE)
9652 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9653 		else
9654 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9655 #endif
9656 		break;
9657 
9658 	case offsetof(struct __sk_buff, napi_id):
9659 #if defined(CONFIG_NET_RX_BUSY_POLL)
9660 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9661 				      bpf_target_off(struct sk_buff, napi_id, 4,
9662 						     target_size));
9663 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9664 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9665 #else
9666 		*target_size = 4;
9667 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9668 #endif
9669 		break;
9670 	case offsetof(struct __sk_buff, family):
9671 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9672 
9673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9674 				      si->dst_reg, si->src_reg,
9675 				      offsetof(struct sk_buff, sk));
9676 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9677 				      bpf_target_off(struct sock_common,
9678 						     skc_family,
9679 						     2, target_size));
9680 		break;
9681 	case offsetof(struct __sk_buff, remote_ip4):
9682 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9683 
9684 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9685 				      si->dst_reg, si->src_reg,
9686 				      offsetof(struct sk_buff, sk));
9687 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9688 				      bpf_target_off(struct sock_common,
9689 						     skc_daddr,
9690 						     4, target_size));
9691 		break;
9692 	case offsetof(struct __sk_buff, local_ip4):
9693 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9694 					  skc_rcv_saddr) != 4);
9695 
9696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9697 				      si->dst_reg, si->src_reg,
9698 				      offsetof(struct sk_buff, sk));
9699 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9700 				      bpf_target_off(struct sock_common,
9701 						     skc_rcv_saddr,
9702 						     4, target_size));
9703 		break;
9704 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9705 	     offsetof(struct __sk_buff, remote_ip6[3]):
9706 #if IS_ENABLED(CONFIG_IPV6)
9707 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9708 					  skc_v6_daddr.s6_addr32[0]) != 4);
9709 
9710 		off = si->off;
9711 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9712 
9713 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9714 				      si->dst_reg, si->src_reg,
9715 				      offsetof(struct sk_buff, sk));
9716 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9717 				      offsetof(struct sock_common,
9718 					       skc_v6_daddr.s6_addr32[0]) +
9719 				      off);
9720 #else
9721 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9722 #endif
9723 		break;
9724 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9725 	     offsetof(struct __sk_buff, local_ip6[3]):
9726 #if IS_ENABLED(CONFIG_IPV6)
9727 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9728 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9729 
9730 		off = si->off;
9731 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9732 
9733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9734 				      si->dst_reg, si->src_reg,
9735 				      offsetof(struct sk_buff, sk));
9736 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9737 				      offsetof(struct sock_common,
9738 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9739 				      off);
9740 #else
9741 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9742 #endif
9743 		break;
9744 
9745 	case offsetof(struct __sk_buff, remote_port):
9746 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9747 
9748 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9749 				      si->dst_reg, si->src_reg,
9750 				      offsetof(struct sk_buff, sk));
9751 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9752 				      bpf_target_off(struct sock_common,
9753 						     skc_dport,
9754 						     2, target_size));
9755 #ifndef __BIG_ENDIAN_BITFIELD
9756 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9757 #endif
9758 		break;
9759 
9760 	case offsetof(struct __sk_buff, local_port):
9761 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9762 
9763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9764 				      si->dst_reg, si->src_reg,
9765 				      offsetof(struct sk_buff, sk));
9766 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9767 				      bpf_target_off(struct sock_common,
9768 						     skc_num, 2, target_size));
9769 		break;
9770 
9771 	case offsetof(struct __sk_buff, tstamp):
9772 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9773 
9774 		if (type == BPF_WRITE)
9775 			insn = bpf_convert_tstamp_write(prog, si, insn);
9776 		else
9777 			insn = bpf_convert_tstamp_read(prog, si, insn);
9778 		break;
9779 
9780 	case offsetof(struct __sk_buff, tstamp_type):
9781 		insn = bpf_convert_tstamp_type_read(si, insn);
9782 		break;
9783 
9784 	case offsetof(struct __sk_buff, gso_segs):
9785 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9786 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9787 				      si->dst_reg, si->dst_reg,
9788 				      bpf_target_off(struct skb_shared_info,
9789 						     gso_segs, 2,
9790 						     target_size));
9791 		break;
9792 	case offsetof(struct __sk_buff, gso_size):
9793 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9794 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9795 				      si->dst_reg, si->dst_reg,
9796 				      bpf_target_off(struct skb_shared_info,
9797 						     gso_size, 2,
9798 						     target_size));
9799 		break;
9800 	case offsetof(struct __sk_buff, wire_len):
9801 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9802 
9803 		off = si->off;
9804 		off -= offsetof(struct __sk_buff, wire_len);
9805 		off += offsetof(struct sk_buff, cb);
9806 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9807 		*target_size = 4;
9808 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9809 		break;
9810 
9811 	case offsetof(struct __sk_buff, sk):
9812 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9813 				      si->dst_reg, si->src_reg,
9814 				      offsetof(struct sk_buff, sk));
9815 		break;
9816 	case offsetof(struct __sk_buff, hwtstamp):
9817 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9818 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9819 
9820 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9821 		*insn++ = BPF_LDX_MEM(BPF_DW,
9822 				      si->dst_reg, si->dst_reg,
9823 				      bpf_target_off(struct skb_shared_info,
9824 						     hwtstamps, 8,
9825 						     target_size));
9826 		break;
9827 	}
9828 
9829 	return insn - insn_buf;
9830 }
9831 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9832 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9833 				const struct bpf_insn *si,
9834 				struct bpf_insn *insn_buf,
9835 				struct bpf_prog *prog, u32 *target_size)
9836 {
9837 	struct bpf_insn *insn = insn_buf;
9838 	int off;
9839 
9840 	switch (si->off) {
9841 	case offsetof(struct bpf_sock, bound_dev_if):
9842 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9843 
9844 		if (type == BPF_WRITE)
9845 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9846 						 offsetof(struct sock, sk_bound_dev_if));
9847 		else
9848 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9849 				      offsetof(struct sock, sk_bound_dev_if));
9850 		break;
9851 
9852 	case offsetof(struct bpf_sock, mark):
9853 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9854 
9855 		if (type == BPF_WRITE)
9856 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9857 						 offsetof(struct sock, sk_mark));
9858 		else
9859 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9860 				      offsetof(struct sock, sk_mark));
9861 		break;
9862 
9863 	case offsetof(struct bpf_sock, priority):
9864 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9865 
9866 		if (type == BPF_WRITE)
9867 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9868 						 offsetof(struct sock, sk_priority));
9869 		else
9870 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9871 				      offsetof(struct sock, sk_priority));
9872 		break;
9873 
9874 	case offsetof(struct bpf_sock, family):
9875 		*insn++ = BPF_LDX_MEM(
9876 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9877 			si->dst_reg, si->src_reg,
9878 			bpf_target_off(struct sock_common,
9879 				       skc_family,
9880 				       sizeof_field(struct sock_common,
9881 						    skc_family),
9882 				       target_size));
9883 		break;
9884 
9885 	case offsetof(struct bpf_sock, type):
9886 		*insn++ = BPF_LDX_MEM(
9887 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9888 			si->dst_reg, si->src_reg,
9889 			bpf_target_off(struct sock, sk_type,
9890 				       sizeof_field(struct sock, sk_type),
9891 				       target_size));
9892 		break;
9893 
9894 	case offsetof(struct bpf_sock, protocol):
9895 		*insn++ = BPF_LDX_MEM(
9896 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9897 			si->dst_reg, si->src_reg,
9898 			bpf_target_off(struct sock, sk_protocol,
9899 				       sizeof_field(struct sock, sk_protocol),
9900 				       target_size));
9901 		break;
9902 
9903 	case offsetof(struct bpf_sock, src_ip4):
9904 		*insn++ = BPF_LDX_MEM(
9905 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9906 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9907 				       sizeof_field(struct sock_common,
9908 						    skc_rcv_saddr),
9909 				       target_size));
9910 		break;
9911 
9912 	case offsetof(struct bpf_sock, dst_ip4):
9913 		*insn++ = BPF_LDX_MEM(
9914 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9915 			bpf_target_off(struct sock_common, skc_daddr,
9916 				       sizeof_field(struct sock_common,
9917 						    skc_daddr),
9918 				       target_size));
9919 		break;
9920 
9921 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9922 #if IS_ENABLED(CONFIG_IPV6)
9923 		off = si->off;
9924 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9925 		*insn++ = BPF_LDX_MEM(
9926 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9927 			bpf_target_off(
9928 				struct sock_common,
9929 				skc_v6_rcv_saddr.s6_addr32[0],
9930 				sizeof_field(struct sock_common,
9931 					     skc_v6_rcv_saddr.s6_addr32[0]),
9932 				target_size) + off);
9933 #else
9934 		(void)off;
9935 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9936 #endif
9937 		break;
9938 
9939 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9940 #if IS_ENABLED(CONFIG_IPV6)
9941 		off = si->off;
9942 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9943 		*insn++ = BPF_LDX_MEM(
9944 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9945 			bpf_target_off(struct sock_common,
9946 				       skc_v6_daddr.s6_addr32[0],
9947 				       sizeof_field(struct sock_common,
9948 						    skc_v6_daddr.s6_addr32[0]),
9949 				       target_size) + off);
9950 #else
9951 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9952 		*target_size = 4;
9953 #endif
9954 		break;
9955 
9956 	case offsetof(struct bpf_sock, src_port):
9957 		*insn++ = BPF_LDX_MEM(
9958 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9959 			si->dst_reg, si->src_reg,
9960 			bpf_target_off(struct sock_common, skc_num,
9961 				       sizeof_field(struct sock_common,
9962 						    skc_num),
9963 				       target_size));
9964 		break;
9965 
9966 	case offsetof(struct bpf_sock, dst_port):
9967 		*insn++ = BPF_LDX_MEM(
9968 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9969 			si->dst_reg, si->src_reg,
9970 			bpf_target_off(struct sock_common, skc_dport,
9971 				       sizeof_field(struct sock_common,
9972 						    skc_dport),
9973 				       target_size));
9974 		break;
9975 
9976 	case offsetof(struct bpf_sock, state):
9977 		*insn++ = BPF_LDX_MEM(
9978 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9979 			si->dst_reg, si->src_reg,
9980 			bpf_target_off(struct sock_common, skc_state,
9981 				       sizeof_field(struct sock_common,
9982 						    skc_state),
9983 				       target_size));
9984 		break;
9985 	case offsetof(struct bpf_sock, rx_queue_mapping):
9986 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9987 		*insn++ = BPF_LDX_MEM(
9988 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9989 			si->dst_reg, si->src_reg,
9990 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9991 				       sizeof_field(struct sock,
9992 						    sk_rx_queue_mapping),
9993 				       target_size));
9994 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9995 				      1);
9996 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9997 #else
9998 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9999 		*target_size = 2;
10000 #endif
10001 		break;
10002 	}
10003 
10004 	return insn - insn_buf;
10005 }
10006 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10007 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10008 					 const struct bpf_insn *si,
10009 					 struct bpf_insn *insn_buf,
10010 					 struct bpf_prog *prog, u32 *target_size)
10011 {
10012 	struct bpf_insn *insn = insn_buf;
10013 
10014 	switch (si->off) {
10015 	case offsetof(struct __sk_buff, ifindex):
10016 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10017 				      si->dst_reg, si->src_reg,
10018 				      offsetof(struct sk_buff, dev));
10019 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10020 				      bpf_target_off(struct net_device, ifindex, 4,
10021 						     target_size));
10022 		break;
10023 	default:
10024 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10025 					      target_size);
10026 	}
10027 
10028 	return insn - insn_buf;
10029 }
10030 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10031 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10032 				  const struct bpf_insn *si,
10033 				  struct bpf_insn *insn_buf,
10034 				  struct bpf_prog *prog, u32 *target_size)
10035 {
10036 	struct bpf_insn *insn = insn_buf;
10037 
10038 	switch (si->off) {
10039 	case offsetof(struct xdp_md, data):
10040 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10041 				      si->dst_reg, si->src_reg,
10042 				      offsetof(struct xdp_buff, data));
10043 		break;
10044 	case offsetof(struct xdp_md, data_meta):
10045 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10046 				      si->dst_reg, si->src_reg,
10047 				      offsetof(struct xdp_buff, data_meta));
10048 		break;
10049 	case offsetof(struct xdp_md, data_end):
10050 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10051 				      si->dst_reg, si->src_reg,
10052 				      offsetof(struct xdp_buff, data_end));
10053 		break;
10054 	case offsetof(struct xdp_md, ingress_ifindex):
10055 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10056 				      si->dst_reg, si->src_reg,
10057 				      offsetof(struct xdp_buff, rxq));
10058 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10059 				      si->dst_reg, si->dst_reg,
10060 				      offsetof(struct xdp_rxq_info, dev));
10061 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10062 				      offsetof(struct net_device, ifindex));
10063 		break;
10064 	case offsetof(struct xdp_md, rx_queue_index):
10065 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10066 				      si->dst_reg, si->src_reg,
10067 				      offsetof(struct xdp_buff, rxq));
10068 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10069 				      offsetof(struct xdp_rxq_info,
10070 					       queue_index));
10071 		break;
10072 	case offsetof(struct xdp_md, egress_ifindex):
10073 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10074 				      si->dst_reg, si->src_reg,
10075 				      offsetof(struct xdp_buff, txq));
10076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10077 				      si->dst_reg, si->dst_reg,
10078 				      offsetof(struct xdp_txq_info, dev));
10079 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10080 				      offsetof(struct net_device, ifindex));
10081 		break;
10082 	}
10083 
10084 	return insn - insn_buf;
10085 }
10086 
10087 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10088  * context Structure, F is Field in context structure that contains a pointer
10089  * to Nested Structure of type NS that has the field NF.
10090  *
10091  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10092  * sure that SIZE is not greater than actual size of S.F.NF.
10093  *
10094  * If offset OFF is provided, the load happens from that offset relative to
10095  * offset of NF.
10096  */
10097 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10098 	do {								       \
10099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10100 				      si->src_reg, offsetof(S, F));	       \
10101 		*insn++ = BPF_LDX_MEM(					       \
10102 			SIZE, si->dst_reg, si->dst_reg,			       \
10103 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10104 				       target_size)			       \
10105 				+ OFF);					       \
10106 	} while (0)
10107 
10108 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10109 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10110 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10111 
10112 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10113  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10114  *
10115  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10116  * "register" since two registers available in convert_ctx_access are not
10117  * enough: we can't override neither SRC, since it contains value to store, nor
10118  * DST since it contains pointer to context that may be used by later
10119  * instructions. But we need a temporary place to save pointer to nested
10120  * structure whose field we want to store to.
10121  */
10122 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10123 	do {								       \
10124 		int tmp_reg = BPF_REG_9;				       \
10125 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10126 			--tmp_reg;					       \
10127 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10128 			--tmp_reg;					       \
10129 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10130 				      offsetof(S, TF));			       \
10131 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10132 				      si->dst_reg, offsetof(S, F));	       \
10133 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10134 				       tmp_reg, si->src_reg,		       \
10135 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10136 				       target_size)			       \
10137 				       + OFF,				       \
10138 				       si->imm);			       \
10139 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10140 				      offsetof(S, TF));			       \
10141 	} while (0)
10142 
10143 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10144 						      TF)		       \
10145 	do {								       \
10146 		if (type == BPF_WRITE) {				       \
10147 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10148 							 OFF, TF);	       \
10149 		} else {						       \
10150 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10151 				S, NS, F, NF, SIZE, OFF);  \
10152 		}							       \
10153 	} while (0)
10154 
10155 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10156 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10157 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10158 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10159 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10160 					const struct bpf_insn *si,
10161 					struct bpf_insn *insn_buf,
10162 					struct bpf_prog *prog, u32 *target_size)
10163 {
10164 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10165 	struct bpf_insn *insn = insn_buf;
10166 
10167 	switch (si->off) {
10168 	case offsetof(struct bpf_sock_addr, user_family):
10169 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10170 					    struct sockaddr, uaddr, sa_family);
10171 		break;
10172 
10173 	case offsetof(struct bpf_sock_addr, user_ip4):
10174 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10175 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10176 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10177 		break;
10178 
10179 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10180 		off = si->off;
10181 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10182 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10183 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10184 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10185 			tmp_reg);
10186 		break;
10187 
10188 	case offsetof(struct bpf_sock_addr, user_port):
10189 		/* To get port we need to know sa_family first and then treat
10190 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10191 		 * Though we can simplify since port field has same offset and
10192 		 * size in both structures.
10193 		 * Here we check this invariant and use just one of the
10194 		 * structures if it's true.
10195 		 */
10196 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10197 			     offsetof(struct sockaddr_in6, sin6_port));
10198 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10199 			     sizeof_field(struct sockaddr_in6, sin6_port));
10200 		/* Account for sin6_port being smaller than user_port. */
10201 		port_size = min(port_size, BPF_LDST_BYTES(si));
10202 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10203 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10204 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10205 		break;
10206 
10207 	case offsetof(struct bpf_sock_addr, family):
10208 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10209 					    struct sock, sk, sk_family);
10210 		break;
10211 
10212 	case offsetof(struct bpf_sock_addr, type):
10213 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10214 					    struct sock, sk, sk_type);
10215 		break;
10216 
10217 	case offsetof(struct bpf_sock_addr, protocol):
10218 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10219 					    struct sock, sk, sk_protocol);
10220 		break;
10221 
10222 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10223 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10224 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10225 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10226 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10227 		break;
10228 
10229 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10230 				msg_src_ip6[3]):
10231 		off = si->off;
10232 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10233 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10234 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10235 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10236 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10237 		break;
10238 	case offsetof(struct bpf_sock_addr, sk):
10239 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10240 				      si->dst_reg, si->src_reg,
10241 				      offsetof(struct bpf_sock_addr_kern, sk));
10242 		break;
10243 	}
10244 
10245 	return insn - insn_buf;
10246 }
10247 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10248 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10249 				       const struct bpf_insn *si,
10250 				       struct bpf_insn *insn_buf,
10251 				       struct bpf_prog *prog,
10252 				       u32 *target_size)
10253 {
10254 	struct bpf_insn *insn = insn_buf;
10255 	int off;
10256 
10257 /* Helper macro for adding read access to tcp_sock or sock fields. */
10258 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10259 	do {								      \
10260 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10261 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10262 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10263 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10264 			reg--;						      \
10265 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10266 			reg--;						      \
10267 		if (si->dst_reg == si->src_reg) {			      \
10268 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10269 					  offsetof(struct bpf_sock_ops_kern,  \
10270 					  temp));			      \
10271 			fullsock_reg = reg;				      \
10272 			jmp += 2;					      \
10273 		}							      \
10274 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10275 						struct bpf_sock_ops_kern,     \
10276 						is_fullsock),		      \
10277 				      fullsock_reg, si->src_reg,	      \
10278 				      offsetof(struct bpf_sock_ops_kern,      \
10279 					       is_fullsock));		      \
10280 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10281 		if (si->dst_reg == si->src_reg)				      \
10282 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10283 				      offsetof(struct bpf_sock_ops_kern,      \
10284 				      temp));				      \
10285 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10286 						struct bpf_sock_ops_kern, sk),\
10287 				      si->dst_reg, si->src_reg,		      \
10288 				      offsetof(struct bpf_sock_ops_kern, sk));\
10289 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10290 						       OBJ_FIELD),	      \
10291 				      si->dst_reg, si->dst_reg,		      \
10292 				      offsetof(OBJ, OBJ_FIELD));	      \
10293 		if (si->dst_reg == si->src_reg)	{			      \
10294 			*insn++ = BPF_JMP_A(1);				      \
10295 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10296 				      offsetof(struct bpf_sock_ops_kern,      \
10297 				      temp));				      \
10298 		}							      \
10299 	} while (0)
10300 
10301 #define SOCK_OPS_GET_SK()							      \
10302 	do {								      \
10303 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10304 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10305 			reg--;						      \
10306 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10307 			reg--;						      \
10308 		if (si->dst_reg == si->src_reg) {			      \
10309 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10310 					  offsetof(struct bpf_sock_ops_kern,  \
10311 					  temp));			      \
10312 			fullsock_reg = reg;				      \
10313 			jmp += 2;					      \
10314 		}							      \
10315 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10316 						struct bpf_sock_ops_kern,     \
10317 						is_fullsock),		      \
10318 				      fullsock_reg, si->src_reg,	      \
10319 				      offsetof(struct bpf_sock_ops_kern,      \
10320 					       is_fullsock));		      \
10321 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10322 		if (si->dst_reg == si->src_reg)				      \
10323 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10324 				      offsetof(struct bpf_sock_ops_kern,      \
10325 				      temp));				      \
10326 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10327 						struct bpf_sock_ops_kern, sk),\
10328 				      si->dst_reg, si->src_reg,		      \
10329 				      offsetof(struct bpf_sock_ops_kern, sk));\
10330 		if (si->dst_reg == si->src_reg)	{			      \
10331 			*insn++ = BPF_JMP_A(1);				      \
10332 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10333 				      offsetof(struct bpf_sock_ops_kern,      \
10334 				      temp));				      \
10335 		}							      \
10336 	} while (0)
10337 
10338 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10339 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10340 
10341 /* Helper macro for adding write access to tcp_sock or sock fields.
10342  * The macro is called with two registers, dst_reg which contains a pointer
10343  * to ctx (context) and src_reg which contains the value that should be
10344  * stored. However, we need an additional register since we cannot overwrite
10345  * dst_reg because it may be used later in the program.
10346  * Instead we "borrow" one of the other register. We first save its value
10347  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10348  * it at the end of the macro.
10349  */
10350 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10351 	do {								      \
10352 		int reg = BPF_REG_9;					      \
10353 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10354 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10355 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10356 			reg--;						      \
10357 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10358 			reg--;						      \
10359 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10360 				      offsetof(struct bpf_sock_ops_kern,      \
10361 					       temp));			      \
10362 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10363 						struct bpf_sock_ops_kern,     \
10364 						is_fullsock),		      \
10365 				      reg, si->dst_reg,			      \
10366 				      offsetof(struct bpf_sock_ops_kern,      \
10367 					       is_fullsock));		      \
10368 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10370 						struct bpf_sock_ops_kern, sk),\
10371 				      reg, si->dst_reg,			      \
10372 				      offsetof(struct bpf_sock_ops_kern, sk));\
10373 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10374 				       BPF_MEM | BPF_CLASS(si->code),	      \
10375 				       reg, si->src_reg,		      \
10376 				       offsetof(OBJ, OBJ_FIELD),	      \
10377 				       si->imm);			      \
10378 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10379 				      offsetof(struct bpf_sock_ops_kern,      \
10380 					       temp));			      \
10381 	} while (0)
10382 
10383 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10384 	do {								      \
10385 		if (TYPE == BPF_WRITE)					      \
10386 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10387 		else							      \
10388 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10389 	} while (0)
10390 
10391 	switch (si->off) {
10392 	case offsetof(struct bpf_sock_ops, op):
10393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10394 						       op),
10395 				      si->dst_reg, si->src_reg,
10396 				      offsetof(struct bpf_sock_ops_kern, op));
10397 		break;
10398 
10399 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10400 	     offsetof(struct bpf_sock_ops, replylong[3]):
10401 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10402 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10403 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10404 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10405 		off = si->off;
10406 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10407 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10408 		if (type == BPF_WRITE)
10409 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10410 		else
10411 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10412 					      off);
10413 		break;
10414 
10415 	case offsetof(struct bpf_sock_ops, family):
10416 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10417 
10418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10419 					      struct bpf_sock_ops_kern, sk),
10420 				      si->dst_reg, si->src_reg,
10421 				      offsetof(struct bpf_sock_ops_kern, sk));
10422 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10423 				      offsetof(struct sock_common, skc_family));
10424 		break;
10425 
10426 	case offsetof(struct bpf_sock_ops, remote_ip4):
10427 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10428 
10429 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10430 						struct bpf_sock_ops_kern, sk),
10431 				      si->dst_reg, si->src_reg,
10432 				      offsetof(struct bpf_sock_ops_kern, sk));
10433 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10434 				      offsetof(struct sock_common, skc_daddr));
10435 		break;
10436 
10437 	case offsetof(struct bpf_sock_ops, local_ip4):
10438 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10439 					  skc_rcv_saddr) != 4);
10440 
10441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10442 					      struct bpf_sock_ops_kern, sk),
10443 				      si->dst_reg, si->src_reg,
10444 				      offsetof(struct bpf_sock_ops_kern, sk));
10445 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10446 				      offsetof(struct sock_common,
10447 					       skc_rcv_saddr));
10448 		break;
10449 
10450 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10451 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10452 #if IS_ENABLED(CONFIG_IPV6)
10453 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10454 					  skc_v6_daddr.s6_addr32[0]) != 4);
10455 
10456 		off = si->off;
10457 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10458 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10459 						struct bpf_sock_ops_kern, sk),
10460 				      si->dst_reg, si->src_reg,
10461 				      offsetof(struct bpf_sock_ops_kern, sk));
10462 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10463 				      offsetof(struct sock_common,
10464 					       skc_v6_daddr.s6_addr32[0]) +
10465 				      off);
10466 #else
10467 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10468 #endif
10469 		break;
10470 
10471 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10472 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10473 #if IS_ENABLED(CONFIG_IPV6)
10474 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10475 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10476 
10477 		off = si->off;
10478 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10479 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10480 						struct bpf_sock_ops_kern, sk),
10481 				      si->dst_reg, si->src_reg,
10482 				      offsetof(struct bpf_sock_ops_kern, sk));
10483 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10484 				      offsetof(struct sock_common,
10485 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10486 				      off);
10487 #else
10488 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10489 #endif
10490 		break;
10491 
10492 	case offsetof(struct bpf_sock_ops, remote_port):
10493 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10494 
10495 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10496 						struct bpf_sock_ops_kern, sk),
10497 				      si->dst_reg, si->src_reg,
10498 				      offsetof(struct bpf_sock_ops_kern, sk));
10499 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10500 				      offsetof(struct sock_common, skc_dport));
10501 #ifndef __BIG_ENDIAN_BITFIELD
10502 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10503 #endif
10504 		break;
10505 
10506 	case offsetof(struct bpf_sock_ops, local_port):
10507 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10508 
10509 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10510 						struct bpf_sock_ops_kern, sk),
10511 				      si->dst_reg, si->src_reg,
10512 				      offsetof(struct bpf_sock_ops_kern, sk));
10513 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10514 				      offsetof(struct sock_common, skc_num));
10515 		break;
10516 
10517 	case offsetof(struct bpf_sock_ops, is_fullsock):
10518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10519 						struct bpf_sock_ops_kern,
10520 						is_fullsock),
10521 				      si->dst_reg, si->src_reg,
10522 				      offsetof(struct bpf_sock_ops_kern,
10523 					       is_fullsock));
10524 		break;
10525 
10526 	case offsetof(struct bpf_sock_ops, state):
10527 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10528 
10529 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10530 						struct bpf_sock_ops_kern, sk),
10531 				      si->dst_reg, si->src_reg,
10532 				      offsetof(struct bpf_sock_ops_kern, sk));
10533 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10534 				      offsetof(struct sock_common, skc_state));
10535 		break;
10536 
10537 	case offsetof(struct bpf_sock_ops, rtt_min):
10538 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10539 			     sizeof(struct minmax));
10540 		BUILD_BUG_ON(sizeof(struct minmax) <
10541 			     sizeof(struct minmax_sample));
10542 
10543 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10544 						struct bpf_sock_ops_kern, sk),
10545 				      si->dst_reg, si->src_reg,
10546 				      offsetof(struct bpf_sock_ops_kern, sk));
10547 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10548 				      offsetof(struct tcp_sock, rtt_min) +
10549 				      sizeof_field(struct minmax_sample, t));
10550 		break;
10551 
10552 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10553 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10554 				   struct tcp_sock);
10555 		break;
10556 
10557 	case offsetof(struct bpf_sock_ops, sk_txhash):
10558 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10559 					  struct sock, type);
10560 		break;
10561 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10562 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10563 		break;
10564 	case offsetof(struct bpf_sock_ops, srtt_us):
10565 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10566 		break;
10567 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10568 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10569 		break;
10570 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10571 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10572 		break;
10573 	case offsetof(struct bpf_sock_ops, snd_nxt):
10574 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10575 		break;
10576 	case offsetof(struct bpf_sock_ops, snd_una):
10577 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10578 		break;
10579 	case offsetof(struct bpf_sock_ops, mss_cache):
10580 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10581 		break;
10582 	case offsetof(struct bpf_sock_ops, ecn_flags):
10583 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10584 		break;
10585 	case offsetof(struct bpf_sock_ops, rate_delivered):
10586 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10587 		break;
10588 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10589 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10590 		break;
10591 	case offsetof(struct bpf_sock_ops, packets_out):
10592 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10593 		break;
10594 	case offsetof(struct bpf_sock_ops, retrans_out):
10595 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10596 		break;
10597 	case offsetof(struct bpf_sock_ops, total_retrans):
10598 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10599 		break;
10600 	case offsetof(struct bpf_sock_ops, segs_in):
10601 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10602 		break;
10603 	case offsetof(struct bpf_sock_ops, data_segs_in):
10604 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10605 		break;
10606 	case offsetof(struct bpf_sock_ops, segs_out):
10607 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10608 		break;
10609 	case offsetof(struct bpf_sock_ops, data_segs_out):
10610 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10611 		break;
10612 	case offsetof(struct bpf_sock_ops, lost_out):
10613 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10614 		break;
10615 	case offsetof(struct bpf_sock_ops, sacked_out):
10616 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10617 		break;
10618 	case offsetof(struct bpf_sock_ops, bytes_received):
10619 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10620 		break;
10621 	case offsetof(struct bpf_sock_ops, bytes_acked):
10622 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10623 		break;
10624 	case offsetof(struct bpf_sock_ops, sk):
10625 		SOCK_OPS_GET_SK();
10626 		break;
10627 	case offsetof(struct bpf_sock_ops, skb_data_end):
10628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10629 						       skb_data_end),
10630 				      si->dst_reg, si->src_reg,
10631 				      offsetof(struct bpf_sock_ops_kern,
10632 					       skb_data_end));
10633 		break;
10634 	case offsetof(struct bpf_sock_ops, skb_data):
10635 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10636 						       skb),
10637 				      si->dst_reg, si->src_reg,
10638 				      offsetof(struct bpf_sock_ops_kern,
10639 					       skb));
10640 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10641 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10642 				      si->dst_reg, si->dst_reg,
10643 				      offsetof(struct sk_buff, data));
10644 		break;
10645 	case offsetof(struct bpf_sock_ops, skb_len):
10646 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10647 						       skb),
10648 				      si->dst_reg, si->src_reg,
10649 				      offsetof(struct bpf_sock_ops_kern,
10650 					       skb));
10651 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10652 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10653 				      si->dst_reg, si->dst_reg,
10654 				      offsetof(struct sk_buff, len));
10655 		break;
10656 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10657 		off = offsetof(struct sk_buff, cb);
10658 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10659 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10660 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10661 						       skb),
10662 				      si->dst_reg, si->src_reg,
10663 				      offsetof(struct bpf_sock_ops_kern,
10664 					       skb));
10665 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10667 						       tcp_flags),
10668 				      si->dst_reg, si->dst_reg, off);
10669 		break;
10670 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10671 		struct bpf_insn *jmp_on_null_skb;
10672 
10673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10674 						       skb),
10675 				      si->dst_reg, si->src_reg,
10676 				      offsetof(struct bpf_sock_ops_kern,
10677 					       skb));
10678 		/* Reserve one insn to test skb == NULL */
10679 		jmp_on_null_skb = insn++;
10680 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10681 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10682 				      bpf_target_off(struct skb_shared_info,
10683 						     hwtstamps, 8,
10684 						     target_size));
10685 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10686 					       insn - jmp_on_null_skb - 1);
10687 		break;
10688 	}
10689 	}
10690 	return insn - insn_buf;
10691 }
10692 
10693 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10694 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10695 						    struct bpf_insn *insn)
10696 {
10697 	int reg;
10698 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10699 			   offsetof(struct sk_skb_cb, temp_reg);
10700 
10701 	if (si->src_reg == si->dst_reg) {
10702 		/* We need an extra register, choose and save a register. */
10703 		reg = BPF_REG_9;
10704 		if (si->src_reg == reg || si->dst_reg == reg)
10705 			reg--;
10706 		if (si->src_reg == reg || si->dst_reg == reg)
10707 			reg--;
10708 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10709 	} else {
10710 		reg = si->dst_reg;
10711 	}
10712 
10713 	/* reg = skb->data */
10714 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10715 			      reg, si->src_reg,
10716 			      offsetof(struct sk_buff, data));
10717 	/* AX = skb->len */
10718 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10719 			      BPF_REG_AX, si->src_reg,
10720 			      offsetof(struct sk_buff, len));
10721 	/* reg = skb->data + skb->len */
10722 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10723 	/* AX = skb->data_len */
10724 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10725 			      BPF_REG_AX, si->src_reg,
10726 			      offsetof(struct sk_buff, data_len));
10727 
10728 	/* reg = skb->data + skb->len - skb->data_len */
10729 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10730 
10731 	if (si->src_reg == si->dst_reg) {
10732 		/* Restore the saved register */
10733 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10734 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10735 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10736 	}
10737 
10738 	return insn;
10739 }
10740 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10741 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10742 				     const struct bpf_insn *si,
10743 				     struct bpf_insn *insn_buf,
10744 				     struct bpf_prog *prog, u32 *target_size)
10745 {
10746 	struct bpf_insn *insn = insn_buf;
10747 	int off;
10748 
10749 	switch (si->off) {
10750 	case offsetof(struct __sk_buff, data_end):
10751 		insn = bpf_convert_data_end_access(si, insn);
10752 		break;
10753 	case offsetof(struct __sk_buff, cb[0]) ...
10754 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10755 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10756 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10757 			      offsetof(struct sk_skb_cb, data)) %
10758 			     sizeof(__u64));
10759 
10760 		prog->cb_access = 1;
10761 		off  = si->off;
10762 		off -= offsetof(struct __sk_buff, cb[0]);
10763 		off += offsetof(struct sk_buff, cb);
10764 		off += offsetof(struct sk_skb_cb, data);
10765 		if (type == BPF_WRITE)
10766 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10767 		else
10768 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10769 					      si->src_reg, off);
10770 		break;
10771 
10772 
10773 	default:
10774 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10775 					      target_size);
10776 	}
10777 
10778 	return insn - insn_buf;
10779 }
10780 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10781 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10782 				     const struct bpf_insn *si,
10783 				     struct bpf_insn *insn_buf,
10784 				     struct bpf_prog *prog, u32 *target_size)
10785 {
10786 	struct bpf_insn *insn = insn_buf;
10787 #if IS_ENABLED(CONFIG_IPV6)
10788 	int off;
10789 #endif
10790 
10791 	/* convert ctx uses the fact sg element is first in struct */
10792 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10793 
10794 	switch (si->off) {
10795 	case offsetof(struct sk_msg_md, data):
10796 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10797 				      si->dst_reg, si->src_reg,
10798 				      offsetof(struct sk_msg, data));
10799 		break;
10800 	case offsetof(struct sk_msg_md, data_end):
10801 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10802 				      si->dst_reg, si->src_reg,
10803 				      offsetof(struct sk_msg, data_end));
10804 		break;
10805 	case offsetof(struct sk_msg_md, family):
10806 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10807 
10808 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10809 					      struct sk_msg, sk),
10810 				      si->dst_reg, si->src_reg,
10811 				      offsetof(struct sk_msg, sk));
10812 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10813 				      offsetof(struct sock_common, skc_family));
10814 		break;
10815 
10816 	case offsetof(struct sk_msg_md, remote_ip4):
10817 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10818 
10819 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10820 						struct sk_msg, sk),
10821 				      si->dst_reg, si->src_reg,
10822 				      offsetof(struct sk_msg, sk));
10823 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10824 				      offsetof(struct sock_common, skc_daddr));
10825 		break;
10826 
10827 	case offsetof(struct sk_msg_md, local_ip4):
10828 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10829 					  skc_rcv_saddr) != 4);
10830 
10831 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10832 					      struct sk_msg, sk),
10833 				      si->dst_reg, si->src_reg,
10834 				      offsetof(struct sk_msg, sk));
10835 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10836 				      offsetof(struct sock_common,
10837 					       skc_rcv_saddr));
10838 		break;
10839 
10840 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10841 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10842 #if IS_ENABLED(CONFIG_IPV6)
10843 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10844 					  skc_v6_daddr.s6_addr32[0]) != 4);
10845 
10846 		off = si->off;
10847 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10848 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10849 						struct sk_msg, sk),
10850 				      si->dst_reg, si->src_reg,
10851 				      offsetof(struct sk_msg, sk));
10852 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10853 				      offsetof(struct sock_common,
10854 					       skc_v6_daddr.s6_addr32[0]) +
10855 				      off);
10856 #else
10857 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10858 #endif
10859 		break;
10860 
10861 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10862 	     offsetof(struct sk_msg_md, local_ip6[3]):
10863 #if IS_ENABLED(CONFIG_IPV6)
10864 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10865 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10866 
10867 		off = si->off;
10868 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10869 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10870 						struct sk_msg, sk),
10871 				      si->dst_reg, si->src_reg,
10872 				      offsetof(struct sk_msg, sk));
10873 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10874 				      offsetof(struct sock_common,
10875 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10876 				      off);
10877 #else
10878 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10879 #endif
10880 		break;
10881 
10882 	case offsetof(struct sk_msg_md, remote_port):
10883 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10884 
10885 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10886 						struct sk_msg, sk),
10887 				      si->dst_reg, si->src_reg,
10888 				      offsetof(struct sk_msg, sk));
10889 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10890 				      offsetof(struct sock_common, skc_dport));
10891 #ifndef __BIG_ENDIAN_BITFIELD
10892 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10893 #endif
10894 		break;
10895 
10896 	case offsetof(struct sk_msg_md, local_port):
10897 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10898 
10899 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10900 						struct sk_msg, sk),
10901 				      si->dst_reg, si->src_reg,
10902 				      offsetof(struct sk_msg, sk));
10903 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10904 				      offsetof(struct sock_common, skc_num));
10905 		break;
10906 
10907 	case offsetof(struct sk_msg_md, size):
10908 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10909 				      si->dst_reg, si->src_reg,
10910 				      offsetof(struct sk_msg_sg, size));
10911 		break;
10912 
10913 	case offsetof(struct sk_msg_md, sk):
10914 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10915 				      si->dst_reg, si->src_reg,
10916 				      offsetof(struct sk_msg, sk));
10917 		break;
10918 	}
10919 
10920 	return insn - insn_buf;
10921 }
10922 
10923 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10924 	.get_func_proto		= sk_filter_func_proto,
10925 	.is_valid_access	= sk_filter_is_valid_access,
10926 	.convert_ctx_access	= bpf_convert_ctx_access,
10927 	.gen_ld_abs		= bpf_gen_ld_abs,
10928 };
10929 
10930 const struct bpf_prog_ops sk_filter_prog_ops = {
10931 	.test_run		= bpf_prog_test_run_skb,
10932 };
10933 
10934 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10935 	.get_func_proto		= tc_cls_act_func_proto,
10936 	.is_valid_access	= tc_cls_act_is_valid_access,
10937 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10938 	.gen_prologue		= tc_cls_act_prologue,
10939 	.gen_ld_abs		= bpf_gen_ld_abs,
10940 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10941 };
10942 
10943 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10944 	.test_run		= bpf_prog_test_run_skb,
10945 };
10946 
10947 const struct bpf_verifier_ops xdp_verifier_ops = {
10948 	.get_func_proto		= xdp_func_proto,
10949 	.is_valid_access	= xdp_is_valid_access,
10950 	.convert_ctx_access	= xdp_convert_ctx_access,
10951 	.gen_prologue		= bpf_noop_prologue,
10952 	.btf_struct_access	= xdp_btf_struct_access,
10953 };
10954 
10955 const struct bpf_prog_ops xdp_prog_ops = {
10956 	.test_run		= bpf_prog_test_run_xdp,
10957 };
10958 
10959 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10960 	.get_func_proto		= cg_skb_func_proto,
10961 	.is_valid_access	= cg_skb_is_valid_access,
10962 	.convert_ctx_access	= bpf_convert_ctx_access,
10963 };
10964 
10965 const struct bpf_prog_ops cg_skb_prog_ops = {
10966 	.test_run		= bpf_prog_test_run_skb,
10967 };
10968 
10969 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10970 	.get_func_proto		= lwt_in_func_proto,
10971 	.is_valid_access	= lwt_is_valid_access,
10972 	.convert_ctx_access	= bpf_convert_ctx_access,
10973 };
10974 
10975 const struct bpf_prog_ops lwt_in_prog_ops = {
10976 	.test_run		= bpf_prog_test_run_skb,
10977 };
10978 
10979 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10980 	.get_func_proto		= lwt_out_func_proto,
10981 	.is_valid_access	= lwt_is_valid_access,
10982 	.convert_ctx_access	= bpf_convert_ctx_access,
10983 };
10984 
10985 const struct bpf_prog_ops lwt_out_prog_ops = {
10986 	.test_run		= bpf_prog_test_run_skb,
10987 };
10988 
10989 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10990 	.get_func_proto		= lwt_xmit_func_proto,
10991 	.is_valid_access	= lwt_is_valid_access,
10992 	.convert_ctx_access	= bpf_convert_ctx_access,
10993 	.gen_prologue		= tc_cls_act_prologue,
10994 };
10995 
10996 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10997 	.test_run		= bpf_prog_test_run_skb,
10998 };
10999 
11000 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11001 	.get_func_proto		= lwt_seg6local_func_proto,
11002 	.is_valid_access	= lwt_is_valid_access,
11003 	.convert_ctx_access	= bpf_convert_ctx_access,
11004 };
11005 
11006 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11007 	.test_run		= bpf_prog_test_run_skb,
11008 };
11009 
11010 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11011 	.get_func_proto		= sock_filter_func_proto,
11012 	.is_valid_access	= sock_filter_is_valid_access,
11013 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11014 };
11015 
11016 const struct bpf_prog_ops cg_sock_prog_ops = {
11017 };
11018 
11019 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11020 	.get_func_proto		= sock_addr_func_proto,
11021 	.is_valid_access	= sock_addr_is_valid_access,
11022 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11023 };
11024 
11025 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11026 };
11027 
11028 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11029 	.get_func_proto		= sock_ops_func_proto,
11030 	.is_valid_access	= sock_ops_is_valid_access,
11031 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11032 };
11033 
11034 const struct bpf_prog_ops sock_ops_prog_ops = {
11035 };
11036 
11037 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11038 	.get_func_proto		= sk_skb_func_proto,
11039 	.is_valid_access	= sk_skb_is_valid_access,
11040 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11041 	.gen_prologue		= sk_skb_prologue,
11042 };
11043 
11044 const struct bpf_prog_ops sk_skb_prog_ops = {
11045 };
11046 
11047 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11048 	.get_func_proto		= sk_msg_func_proto,
11049 	.is_valid_access	= sk_msg_is_valid_access,
11050 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11051 	.gen_prologue		= bpf_noop_prologue,
11052 };
11053 
11054 const struct bpf_prog_ops sk_msg_prog_ops = {
11055 };
11056 
11057 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11058 	.get_func_proto		= flow_dissector_func_proto,
11059 	.is_valid_access	= flow_dissector_is_valid_access,
11060 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11061 };
11062 
11063 const struct bpf_prog_ops flow_dissector_prog_ops = {
11064 	.test_run		= bpf_prog_test_run_flow_dissector,
11065 };
11066 
sk_detach_filter(struct sock * sk)11067 int sk_detach_filter(struct sock *sk)
11068 {
11069 	int ret = -ENOENT;
11070 	struct sk_filter *filter;
11071 
11072 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11073 		return -EPERM;
11074 
11075 	filter = rcu_dereference_protected(sk->sk_filter,
11076 					   lockdep_sock_is_held(sk));
11077 	if (filter) {
11078 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11079 		sk_filter_uncharge(sk, filter);
11080 		ret = 0;
11081 	}
11082 
11083 	return ret;
11084 }
11085 EXPORT_SYMBOL_GPL(sk_detach_filter);
11086 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11087 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11088 {
11089 	struct sock_fprog_kern *fprog;
11090 	struct sk_filter *filter;
11091 	int ret = 0;
11092 
11093 	sockopt_lock_sock(sk);
11094 	filter = rcu_dereference_protected(sk->sk_filter,
11095 					   lockdep_sock_is_held(sk));
11096 	if (!filter)
11097 		goto out;
11098 
11099 	/* We're copying the filter that has been originally attached,
11100 	 * so no conversion/decode needed anymore. eBPF programs that
11101 	 * have no original program cannot be dumped through this.
11102 	 */
11103 	ret = -EACCES;
11104 	fprog = filter->prog->orig_prog;
11105 	if (!fprog)
11106 		goto out;
11107 
11108 	ret = fprog->len;
11109 	if (!len)
11110 		/* User space only enquires number of filter blocks. */
11111 		goto out;
11112 
11113 	ret = -EINVAL;
11114 	if (len < fprog->len)
11115 		goto out;
11116 
11117 	ret = -EFAULT;
11118 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11119 		goto out;
11120 
11121 	/* Instead of bytes, the API requests to return the number
11122 	 * of filter blocks.
11123 	 */
11124 	ret = fprog->len;
11125 out:
11126 	sockopt_release_sock(sk);
11127 	return ret;
11128 }
11129 
11130 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11131 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11132 				    struct sock_reuseport *reuse,
11133 				    struct sock *sk, struct sk_buff *skb,
11134 				    struct sock *migrating_sk,
11135 				    u32 hash)
11136 {
11137 	reuse_kern->skb = skb;
11138 	reuse_kern->sk = sk;
11139 	reuse_kern->selected_sk = NULL;
11140 	reuse_kern->migrating_sk = migrating_sk;
11141 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11142 	reuse_kern->hash = hash;
11143 	reuse_kern->reuseport_id = reuse->reuseport_id;
11144 	reuse_kern->bind_inany = reuse->bind_inany;
11145 }
11146 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11147 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11148 				  struct bpf_prog *prog, struct sk_buff *skb,
11149 				  struct sock *migrating_sk,
11150 				  u32 hash)
11151 {
11152 	struct sk_reuseport_kern reuse_kern;
11153 	enum sk_action action;
11154 
11155 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11156 	action = bpf_prog_run(prog, &reuse_kern);
11157 
11158 	if (action == SK_PASS)
11159 		return reuse_kern.selected_sk;
11160 	else
11161 		return ERR_PTR(-ECONNREFUSED);
11162 }
11163 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11164 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11165 	   struct bpf_map *, map, void *, key, u32, flags)
11166 {
11167 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11168 	struct sock_reuseport *reuse;
11169 	struct sock *selected_sk;
11170 
11171 	selected_sk = map->ops->map_lookup_elem(map, key);
11172 	if (!selected_sk)
11173 		return -ENOENT;
11174 
11175 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11176 	if (!reuse) {
11177 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11178 		if (sk_is_refcounted(selected_sk))
11179 			sock_put(selected_sk);
11180 
11181 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11182 		 * The only (!reuse) case here is - the sk has already been
11183 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11184 		 *
11185 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11186 		 * the sk may never be in the reuseport group to begin with.
11187 		 */
11188 		return is_sockarray ? -ENOENT : -EINVAL;
11189 	}
11190 
11191 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11192 		struct sock *sk = reuse_kern->sk;
11193 
11194 		if (sk->sk_protocol != selected_sk->sk_protocol)
11195 			return -EPROTOTYPE;
11196 		else if (sk->sk_family != selected_sk->sk_family)
11197 			return -EAFNOSUPPORT;
11198 
11199 		/* Catch all. Likely bound to a different sockaddr. */
11200 		return -EBADFD;
11201 	}
11202 
11203 	reuse_kern->selected_sk = selected_sk;
11204 
11205 	return 0;
11206 }
11207 
11208 static const struct bpf_func_proto sk_select_reuseport_proto = {
11209 	.func           = sk_select_reuseport,
11210 	.gpl_only       = false,
11211 	.ret_type       = RET_INTEGER,
11212 	.arg1_type	= ARG_PTR_TO_CTX,
11213 	.arg2_type      = ARG_CONST_MAP_PTR,
11214 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11215 	.arg4_type	= ARG_ANYTHING,
11216 };
11217 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11218 BPF_CALL_4(sk_reuseport_load_bytes,
11219 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11220 	   void *, to, u32, len)
11221 {
11222 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11223 }
11224 
11225 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11226 	.func		= sk_reuseport_load_bytes,
11227 	.gpl_only	= false,
11228 	.ret_type	= RET_INTEGER,
11229 	.arg1_type	= ARG_PTR_TO_CTX,
11230 	.arg2_type	= ARG_ANYTHING,
11231 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11232 	.arg4_type	= ARG_CONST_SIZE,
11233 };
11234 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11235 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11236 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11237 	   void *, to, u32, len, u32, start_header)
11238 {
11239 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11240 					       len, start_header);
11241 }
11242 
11243 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11244 	.func		= sk_reuseport_load_bytes_relative,
11245 	.gpl_only	= false,
11246 	.ret_type	= RET_INTEGER,
11247 	.arg1_type	= ARG_PTR_TO_CTX,
11248 	.arg2_type	= ARG_ANYTHING,
11249 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11250 	.arg4_type	= ARG_CONST_SIZE,
11251 	.arg5_type	= ARG_ANYTHING,
11252 };
11253 
11254 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11255 sk_reuseport_func_proto(enum bpf_func_id func_id,
11256 			const struct bpf_prog *prog)
11257 {
11258 	switch (func_id) {
11259 	case BPF_FUNC_sk_select_reuseport:
11260 		return &sk_select_reuseport_proto;
11261 	case BPF_FUNC_skb_load_bytes:
11262 		return &sk_reuseport_load_bytes_proto;
11263 	case BPF_FUNC_skb_load_bytes_relative:
11264 		return &sk_reuseport_load_bytes_relative_proto;
11265 	case BPF_FUNC_get_socket_cookie:
11266 		return &bpf_get_socket_ptr_cookie_proto;
11267 	case BPF_FUNC_ktime_get_coarse_ns:
11268 		return &bpf_ktime_get_coarse_ns_proto;
11269 	default:
11270 		return bpf_base_func_proto(func_id);
11271 	}
11272 }
11273 
11274 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11275 sk_reuseport_is_valid_access(int off, int size,
11276 			     enum bpf_access_type type,
11277 			     const struct bpf_prog *prog,
11278 			     struct bpf_insn_access_aux *info)
11279 {
11280 	const u32 size_default = sizeof(__u32);
11281 
11282 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11283 	    off % size || type != BPF_READ)
11284 		return false;
11285 
11286 	switch (off) {
11287 	case offsetof(struct sk_reuseport_md, data):
11288 		info->reg_type = PTR_TO_PACKET;
11289 		return size == sizeof(__u64);
11290 
11291 	case offsetof(struct sk_reuseport_md, data_end):
11292 		info->reg_type = PTR_TO_PACKET_END;
11293 		return size == sizeof(__u64);
11294 
11295 	case offsetof(struct sk_reuseport_md, hash):
11296 		return size == size_default;
11297 
11298 	case offsetof(struct sk_reuseport_md, sk):
11299 		info->reg_type = PTR_TO_SOCKET;
11300 		return size == sizeof(__u64);
11301 
11302 	case offsetof(struct sk_reuseport_md, migrating_sk):
11303 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11304 		return size == sizeof(__u64);
11305 
11306 	/* Fields that allow narrowing */
11307 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11308 		if (size < sizeof_field(struct sk_buff, protocol))
11309 			return false;
11310 		fallthrough;
11311 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11312 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11313 	case bpf_ctx_range(struct sk_reuseport_md, len):
11314 		bpf_ctx_record_field_size(info, size_default);
11315 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11316 
11317 	default:
11318 		return false;
11319 	}
11320 }
11321 
11322 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11323 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11324 			      si->dst_reg, si->src_reg,			\
11325 			      bpf_target_off(struct sk_reuseport_kern, F, \
11326 					     sizeof_field(struct sk_reuseport_kern, F), \
11327 					     target_size));		\
11328 	})
11329 
11330 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11331 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11332 				    struct sk_buff,			\
11333 				    skb,				\
11334 				    SKB_FIELD)
11335 
11336 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11337 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11338 				    struct sock,			\
11339 				    sk,					\
11340 				    SK_FIELD)
11341 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11342 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11343 					   const struct bpf_insn *si,
11344 					   struct bpf_insn *insn_buf,
11345 					   struct bpf_prog *prog,
11346 					   u32 *target_size)
11347 {
11348 	struct bpf_insn *insn = insn_buf;
11349 
11350 	switch (si->off) {
11351 	case offsetof(struct sk_reuseport_md, data):
11352 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11353 		break;
11354 
11355 	case offsetof(struct sk_reuseport_md, len):
11356 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11357 		break;
11358 
11359 	case offsetof(struct sk_reuseport_md, eth_protocol):
11360 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11361 		break;
11362 
11363 	case offsetof(struct sk_reuseport_md, ip_protocol):
11364 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11365 		break;
11366 
11367 	case offsetof(struct sk_reuseport_md, data_end):
11368 		SK_REUSEPORT_LOAD_FIELD(data_end);
11369 		break;
11370 
11371 	case offsetof(struct sk_reuseport_md, hash):
11372 		SK_REUSEPORT_LOAD_FIELD(hash);
11373 		break;
11374 
11375 	case offsetof(struct sk_reuseport_md, bind_inany):
11376 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11377 		break;
11378 
11379 	case offsetof(struct sk_reuseport_md, sk):
11380 		SK_REUSEPORT_LOAD_FIELD(sk);
11381 		break;
11382 
11383 	case offsetof(struct sk_reuseport_md, migrating_sk):
11384 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11385 		break;
11386 	}
11387 
11388 	return insn - insn_buf;
11389 }
11390 
11391 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11392 	.get_func_proto		= sk_reuseport_func_proto,
11393 	.is_valid_access	= sk_reuseport_is_valid_access,
11394 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11395 };
11396 
11397 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11398 };
11399 
11400 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11401 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11402 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11403 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11404 	   struct sock *, sk, u64, flags)
11405 {
11406 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11407 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11408 		return -EINVAL;
11409 	if (unlikely(sk && sk_is_refcounted(sk)))
11410 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11411 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11412 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11413 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11414 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11415 
11416 	/* Check if socket is suitable for packet L3/L4 protocol */
11417 	if (sk && sk->sk_protocol != ctx->protocol)
11418 		return -EPROTOTYPE;
11419 	if (sk && sk->sk_family != ctx->family &&
11420 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11421 		return -EAFNOSUPPORT;
11422 
11423 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11424 		return -EEXIST;
11425 
11426 	/* Select socket as lookup result */
11427 	ctx->selected_sk = sk;
11428 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11429 	return 0;
11430 }
11431 
11432 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11433 	.func		= bpf_sk_lookup_assign,
11434 	.gpl_only	= false,
11435 	.ret_type	= RET_INTEGER,
11436 	.arg1_type	= ARG_PTR_TO_CTX,
11437 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11438 	.arg3_type	= ARG_ANYTHING,
11439 };
11440 
11441 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11442 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11443 {
11444 	switch (func_id) {
11445 	case BPF_FUNC_perf_event_output:
11446 		return &bpf_event_output_data_proto;
11447 	case BPF_FUNC_sk_assign:
11448 		return &bpf_sk_lookup_assign_proto;
11449 	case BPF_FUNC_sk_release:
11450 		return &bpf_sk_release_proto;
11451 	default:
11452 		return bpf_sk_base_func_proto(func_id);
11453 	}
11454 }
11455 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11456 static bool sk_lookup_is_valid_access(int off, int size,
11457 				      enum bpf_access_type type,
11458 				      const struct bpf_prog *prog,
11459 				      struct bpf_insn_access_aux *info)
11460 {
11461 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11462 		return false;
11463 	if (off % size != 0)
11464 		return false;
11465 	if (type != BPF_READ)
11466 		return false;
11467 
11468 	switch (off) {
11469 	case offsetof(struct bpf_sk_lookup, sk):
11470 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11471 		return size == sizeof(__u64);
11472 
11473 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11474 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11475 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11476 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11477 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11478 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11479 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11480 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11481 		bpf_ctx_record_field_size(info, sizeof(__u32));
11482 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11483 
11484 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11485 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11486 		if (size == sizeof(__u32))
11487 			return true;
11488 		bpf_ctx_record_field_size(info, sizeof(__be16));
11489 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11490 
11491 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11492 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11493 		/* Allow access to zero padding for backward compatibility */
11494 		bpf_ctx_record_field_size(info, sizeof(__u16));
11495 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11496 
11497 	default:
11498 		return false;
11499 	}
11500 }
11501 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11502 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11503 					const struct bpf_insn *si,
11504 					struct bpf_insn *insn_buf,
11505 					struct bpf_prog *prog,
11506 					u32 *target_size)
11507 {
11508 	struct bpf_insn *insn = insn_buf;
11509 
11510 	switch (si->off) {
11511 	case offsetof(struct bpf_sk_lookup, sk):
11512 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11513 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11514 		break;
11515 
11516 	case offsetof(struct bpf_sk_lookup, family):
11517 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11518 				      bpf_target_off(struct bpf_sk_lookup_kern,
11519 						     family, 2, target_size));
11520 		break;
11521 
11522 	case offsetof(struct bpf_sk_lookup, protocol):
11523 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11524 				      bpf_target_off(struct bpf_sk_lookup_kern,
11525 						     protocol, 2, target_size));
11526 		break;
11527 
11528 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11529 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11530 				      bpf_target_off(struct bpf_sk_lookup_kern,
11531 						     v4.saddr, 4, target_size));
11532 		break;
11533 
11534 	case offsetof(struct bpf_sk_lookup, local_ip4):
11535 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11536 				      bpf_target_off(struct bpf_sk_lookup_kern,
11537 						     v4.daddr, 4, target_size));
11538 		break;
11539 
11540 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11541 				remote_ip6[0], remote_ip6[3]): {
11542 #if IS_ENABLED(CONFIG_IPV6)
11543 		int off = si->off;
11544 
11545 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11546 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11547 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11548 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11549 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11550 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11551 #else
11552 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11553 #endif
11554 		break;
11555 	}
11556 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11557 				local_ip6[0], local_ip6[3]): {
11558 #if IS_ENABLED(CONFIG_IPV6)
11559 		int off = si->off;
11560 
11561 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11562 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11563 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11564 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11565 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11566 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11567 #else
11568 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11569 #endif
11570 		break;
11571 	}
11572 	case offsetof(struct bpf_sk_lookup, remote_port):
11573 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11574 				      bpf_target_off(struct bpf_sk_lookup_kern,
11575 						     sport, 2, target_size));
11576 		break;
11577 
11578 	case offsetofend(struct bpf_sk_lookup, remote_port):
11579 		*target_size = 2;
11580 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11581 		break;
11582 
11583 	case offsetof(struct bpf_sk_lookup, local_port):
11584 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11585 				      bpf_target_off(struct bpf_sk_lookup_kern,
11586 						     dport, 2, target_size));
11587 		break;
11588 
11589 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11590 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11591 				      bpf_target_off(struct bpf_sk_lookup_kern,
11592 						     ingress_ifindex, 4, target_size));
11593 		break;
11594 	}
11595 
11596 	return insn - insn_buf;
11597 }
11598 
11599 const struct bpf_prog_ops sk_lookup_prog_ops = {
11600 	.test_run = bpf_prog_test_run_sk_lookup,
11601 };
11602 
11603 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11604 	.get_func_proto		= sk_lookup_func_proto,
11605 	.is_valid_access	= sk_lookup_is_valid_access,
11606 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11607 };
11608 
11609 #endif /* CONFIG_INET */
11610 
DEFINE_BPF_DISPATCHER(xdp)11611 DEFINE_BPF_DISPATCHER(xdp)
11612 
11613 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11614 {
11615 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11616 }
11617 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11618 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11619 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11620 BTF_SOCK_TYPE_xxx
11621 #undef BTF_SOCK_TYPE
11622 
11623 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11624 {
11625 	/* tcp6_sock type is not generated in dwarf and hence btf,
11626 	 * trigger an explicit type generation here.
11627 	 */
11628 	BTF_TYPE_EMIT(struct tcp6_sock);
11629 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11630 	    sk->sk_family == AF_INET6)
11631 		return (unsigned long)sk;
11632 
11633 	return (unsigned long)NULL;
11634 }
11635 
11636 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11637 	.func			= bpf_skc_to_tcp6_sock,
11638 	.gpl_only		= false,
11639 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11640 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11641 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11642 };
11643 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11644 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11645 {
11646 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11647 		return (unsigned long)sk;
11648 
11649 	return (unsigned long)NULL;
11650 }
11651 
11652 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11653 	.func			= bpf_skc_to_tcp_sock,
11654 	.gpl_only		= false,
11655 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11656 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11657 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11658 };
11659 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11660 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11661 {
11662 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11663 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11664 	 */
11665 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11666 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11667 
11668 #ifdef CONFIG_INET
11669 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11670 		return (unsigned long)sk;
11671 #endif
11672 
11673 #if IS_BUILTIN(CONFIG_IPV6)
11674 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11675 		return (unsigned long)sk;
11676 #endif
11677 
11678 	return (unsigned long)NULL;
11679 }
11680 
11681 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11682 	.func			= bpf_skc_to_tcp_timewait_sock,
11683 	.gpl_only		= false,
11684 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11685 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11686 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11687 };
11688 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11689 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11690 {
11691 #ifdef CONFIG_INET
11692 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11693 		return (unsigned long)sk;
11694 #endif
11695 
11696 #if IS_BUILTIN(CONFIG_IPV6)
11697 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11698 		return (unsigned long)sk;
11699 #endif
11700 
11701 	return (unsigned long)NULL;
11702 }
11703 
11704 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11705 	.func			= bpf_skc_to_tcp_request_sock,
11706 	.gpl_only		= false,
11707 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11708 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11709 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11710 };
11711 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11712 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11713 {
11714 	/* udp6_sock type is not generated in dwarf and hence btf,
11715 	 * trigger an explicit type generation here.
11716 	 */
11717 	BTF_TYPE_EMIT(struct udp6_sock);
11718 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11719 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11720 		return (unsigned long)sk;
11721 
11722 	return (unsigned long)NULL;
11723 }
11724 
11725 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11726 	.func			= bpf_skc_to_udp6_sock,
11727 	.gpl_only		= false,
11728 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11729 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11730 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11731 };
11732 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11733 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11734 {
11735 	/* unix_sock type is not generated in dwarf and hence btf,
11736 	 * trigger an explicit type generation here.
11737 	 */
11738 	BTF_TYPE_EMIT(struct unix_sock);
11739 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11740 		return (unsigned long)sk;
11741 
11742 	return (unsigned long)NULL;
11743 }
11744 
11745 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11746 	.func			= bpf_skc_to_unix_sock,
11747 	.gpl_only		= false,
11748 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11749 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11750 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11751 };
11752 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11753 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11754 {
11755 	BTF_TYPE_EMIT(struct mptcp_sock);
11756 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11757 }
11758 
11759 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11760 	.func		= bpf_skc_to_mptcp_sock,
11761 	.gpl_only	= false,
11762 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11763 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11764 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11765 };
11766 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11767 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11768 {
11769 	return (unsigned long)sock_from_file(file);
11770 }
11771 
11772 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11773 BTF_ID(struct, socket)
11774 BTF_ID(struct, file)
11775 
11776 const struct bpf_func_proto bpf_sock_from_file_proto = {
11777 	.func		= bpf_sock_from_file,
11778 	.gpl_only	= false,
11779 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11780 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11781 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11782 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11783 };
11784 
11785 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11786 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11787 {
11788 	const struct bpf_func_proto *func;
11789 
11790 	switch (func_id) {
11791 	case BPF_FUNC_skc_to_tcp6_sock:
11792 		func = &bpf_skc_to_tcp6_sock_proto;
11793 		break;
11794 	case BPF_FUNC_skc_to_tcp_sock:
11795 		func = &bpf_skc_to_tcp_sock_proto;
11796 		break;
11797 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11798 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11799 		break;
11800 	case BPF_FUNC_skc_to_tcp_request_sock:
11801 		func = &bpf_skc_to_tcp_request_sock_proto;
11802 		break;
11803 	case BPF_FUNC_skc_to_udp6_sock:
11804 		func = &bpf_skc_to_udp6_sock_proto;
11805 		break;
11806 	case BPF_FUNC_skc_to_unix_sock:
11807 		func = &bpf_skc_to_unix_sock_proto;
11808 		break;
11809 	case BPF_FUNC_skc_to_mptcp_sock:
11810 		func = &bpf_skc_to_mptcp_sock_proto;
11811 		break;
11812 	case BPF_FUNC_ktime_get_coarse_ns:
11813 		return &bpf_ktime_get_coarse_ns_proto;
11814 	default:
11815 		return bpf_base_func_proto(func_id);
11816 	}
11817 
11818 	if (!perfmon_capable())
11819 		return NULL;
11820 
11821 	return func;
11822 }
11823 
11824 __diag_push();
11825 __diag_ignore_all("-Wmissing-prototypes",
11826 		  "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11827 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11828 				    struct bpf_dynptr_kern *ptr__uninit)
11829 {
11830 	if (flags) {
11831 		bpf_dynptr_set_null(ptr__uninit);
11832 		return -EINVAL;
11833 	}
11834 
11835 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11836 
11837 	return 0;
11838 }
11839 
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11840 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11841 				    struct bpf_dynptr_kern *ptr__uninit)
11842 {
11843 	if (flags) {
11844 		bpf_dynptr_set_null(ptr__uninit);
11845 		return -EINVAL;
11846 	}
11847 
11848 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11849 
11850 	return 0;
11851 }
11852 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11853 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11854 					   const u8 *sun_path, u32 sun_path__sz)
11855 {
11856 	struct sockaddr_un *un;
11857 
11858 	if (sa_kern->sk->sk_family != AF_UNIX)
11859 		return -EINVAL;
11860 
11861 	/* We do not allow changing the address to unnamed or larger than the
11862 	 * maximum allowed address size for a unix sockaddr.
11863 	 */
11864 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11865 		return -EINVAL;
11866 
11867 	un = (struct sockaddr_un *)sa_kern->uaddr;
11868 	memcpy(un->sun_path, sun_path, sun_path__sz);
11869 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11870 
11871 	return 0;
11872 }
11873 __diag_pop();
11874 
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11875 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11876 			       struct bpf_dynptr_kern *ptr__uninit)
11877 {
11878 	int err;
11879 
11880 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11881 	if (err)
11882 		return err;
11883 
11884 	bpf_dynptr_set_rdonly(ptr__uninit);
11885 
11886 	return 0;
11887 }
11888 
11889 BTF_SET8_START(bpf_kfunc_check_set_skb)
11890 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11891 BTF_SET8_END(bpf_kfunc_check_set_skb)
11892 
11893 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11894 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11895 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11896 
11897 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11898 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11899 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11900 
11901 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11902 	.owner = THIS_MODULE,
11903 	.set = &bpf_kfunc_check_set_skb,
11904 };
11905 
11906 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11907 	.owner = THIS_MODULE,
11908 	.set = &bpf_kfunc_check_set_xdp,
11909 };
11910 
11911 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11912 	.owner = THIS_MODULE,
11913 	.set = &bpf_kfunc_check_set_sock_addr,
11914 };
11915 
bpf_kfunc_init(void)11916 static int __init bpf_kfunc_init(void)
11917 {
11918 	int ret;
11919 
11920 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11921 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11922 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11923 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11924 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11925 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11926 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11927 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11928 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11929 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11930 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11931 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11932 						&bpf_kfunc_set_sock_addr);
11933 }
11934 late_initcall(bpf_kfunc_init);
11935 
11936 /* Disables missing prototype warnings */
11937 __diag_push();
11938 __diag_ignore_all("-Wmissing-prototypes",
11939 		  "Global functions as their definitions will be in vmlinux BTF");
11940 
11941 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11942  *
11943  * The function expects a non-NULL pointer to a socket, and invokes the
11944  * protocol specific socket destroy handlers.
11945  *
11946  * The helper can only be called from BPF contexts that have acquired the socket
11947  * locks.
11948  *
11949  * Parameters:
11950  * @sock: Pointer to socket to be destroyed
11951  *
11952  * Return:
11953  * On error, may return EPROTONOSUPPORT, EINVAL.
11954  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11955  * 0 otherwise
11956  */
bpf_sock_destroy(struct sock_common * sock)11957 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11958 {
11959 	struct sock *sk = (struct sock *)sock;
11960 
11961 	/* The locking semantics that allow for synchronous execution of the
11962 	 * destroy handlers are only supported for TCP and UDP.
11963 	 * Supporting protocols will need to acquire sock lock in the BPF context
11964 	 * prior to invoking this kfunc.
11965 	 */
11966 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11967 					   sk->sk_protocol != IPPROTO_UDP))
11968 		return -EOPNOTSUPP;
11969 
11970 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11971 }
11972 
11973 __diag_pop()
11974 
BTF_SET8_START(bpf_sk_iter_kfunc_ids)11975 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11976 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11977 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11978 
11979 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11980 {
11981 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11982 	    prog->expected_attach_type != BPF_TRACE_ITER)
11983 		return -EACCES;
11984 	return 0;
11985 }
11986 
11987 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11988 	.owner = THIS_MODULE,
11989 	.set   = &bpf_sk_iter_kfunc_ids,
11990 	.filter = tracing_iter_filter,
11991 };
11992 
init_subsystem(void)11993 static int init_subsystem(void)
11994 {
11995 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11996 }
11997 late_initcall(init_subsystem);
11998