1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Functions to manage eBPF programs attached to cgroups
4 *
5 * Copyright (c) 2016 Daniel Mack
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <linux/bpf_lsm.h>
18 #include <linux/bpf_verifier.h>
19 #include <net/sock.h>
20 #include <net/bpf_sk_storage.h>
21
22 #include "../cgroup/cgroup-internal.h"
23
24 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
25 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
26
27 /*
28 * cgroup bpf destruction makes heavy use of work items and there can be a lot
29 * of concurrent destructions. Use a separate workqueue so that cgroup bpf
30 * destruction work items don't end up filling up max_active of system_wq
31 * which may lead to deadlock.
32 */
33 static struct workqueue_struct *cgroup_bpf_destroy_wq;
34
cgroup_bpf_wq_init(void)35 static int __init cgroup_bpf_wq_init(void)
36 {
37 cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1);
38 if (!cgroup_bpf_destroy_wq)
39 panic("Failed to alloc workqueue for cgroup bpf destroy.\n");
40 return 0;
41 }
42 core_initcall(cgroup_bpf_wq_init);
43
44 /* __always_inline is necessary to prevent indirect call through run_prog
45 * function pointer.
46 */
47 static __always_inline int
bpf_prog_run_array_cg(const struct cgroup_bpf * cgrp,enum cgroup_bpf_attach_type atype,const void * ctx,bpf_prog_run_fn run_prog,int retval,u32 * ret_flags)48 bpf_prog_run_array_cg(const struct cgroup_bpf *cgrp,
49 enum cgroup_bpf_attach_type atype,
50 const void *ctx, bpf_prog_run_fn run_prog,
51 int retval, u32 *ret_flags)
52 {
53 const struct bpf_prog_array_item *item;
54 const struct bpf_prog *prog;
55 const struct bpf_prog_array *array;
56 struct bpf_run_ctx *old_run_ctx;
57 struct bpf_cg_run_ctx run_ctx;
58 u32 func_ret;
59
60 run_ctx.retval = retval;
61 migrate_disable();
62 rcu_read_lock();
63 array = rcu_dereference(cgrp->effective[atype]);
64 item = &array->items[0];
65 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
66 while ((prog = READ_ONCE(item->prog))) {
67 run_ctx.prog_item = item;
68 func_ret = run_prog(prog, ctx);
69 if (ret_flags) {
70 *(ret_flags) |= (func_ret >> 1);
71 func_ret &= 1;
72 }
73 if (!func_ret && !IS_ERR_VALUE((long)run_ctx.retval))
74 run_ctx.retval = -EPERM;
75 item++;
76 }
77 bpf_reset_run_ctx(old_run_ctx);
78 rcu_read_unlock();
79 migrate_enable();
80 return run_ctx.retval;
81 }
82
__cgroup_bpf_run_lsm_sock(const void * ctx,const struct bpf_insn * insn)83 unsigned int __cgroup_bpf_run_lsm_sock(const void *ctx,
84 const struct bpf_insn *insn)
85 {
86 const struct bpf_prog *shim_prog;
87 struct sock *sk;
88 struct cgroup *cgrp;
89 int ret = 0;
90 u64 *args;
91
92 args = (u64 *)ctx;
93 sk = (void *)(unsigned long)args[0];
94 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
95 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
96
97 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
98 if (likely(cgrp))
99 ret = bpf_prog_run_array_cg(&cgrp->bpf,
100 shim_prog->aux->cgroup_atype,
101 ctx, bpf_prog_run, 0, NULL);
102 return ret;
103 }
104
__cgroup_bpf_run_lsm_socket(const void * ctx,const struct bpf_insn * insn)105 unsigned int __cgroup_bpf_run_lsm_socket(const void *ctx,
106 const struct bpf_insn *insn)
107 {
108 const struct bpf_prog *shim_prog;
109 struct socket *sock;
110 struct cgroup *cgrp;
111 int ret = 0;
112 u64 *args;
113
114 args = (u64 *)ctx;
115 sock = (void *)(unsigned long)args[0];
116 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
117 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
118
119 cgrp = sock_cgroup_ptr(&sock->sk->sk_cgrp_data);
120 if (likely(cgrp))
121 ret = bpf_prog_run_array_cg(&cgrp->bpf,
122 shim_prog->aux->cgroup_atype,
123 ctx, bpf_prog_run, 0, NULL);
124 return ret;
125 }
126
__cgroup_bpf_run_lsm_current(const void * ctx,const struct bpf_insn * insn)127 unsigned int __cgroup_bpf_run_lsm_current(const void *ctx,
128 const struct bpf_insn *insn)
129 {
130 const struct bpf_prog *shim_prog;
131 struct cgroup *cgrp;
132 int ret = 0;
133
134 /*shim_prog = container_of(insn, struct bpf_prog, insnsi);*/
135 shim_prog = (const struct bpf_prog *)((void *)insn - offsetof(struct bpf_prog, insnsi));
136
137 /* We rely on trampoline's __bpf_prog_enter_lsm_cgroup to grab RCU read lock. */
138 cgrp = task_dfl_cgroup(current);
139 if (likely(cgrp))
140 ret = bpf_prog_run_array_cg(&cgrp->bpf,
141 shim_prog->aux->cgroup_atype,
142 ctx, bpf_prog_run, 0, NULL);
143 return ret;
144 }
145
146 #ifdef CONFIG_BPF_LSM
147 struct cgroup_lsm_atype {
148 u32 attach_btf_id;
149 int refcnt;
150 };
151
152 static struct cgroup_lsm_atype cgroup_lsm_atype[CGROUP_LSM_NUM];
153
154 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)155 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
156 {
157 int i;
158
159 lockdep_assert_held(&cgroup_mutex);
160
161 if (attach_type != BPF_LSM_CGROUP)
162 return to_cgroup_bpf_attach_type(attach_type);
163
164 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
165 if (cgroup_lsm_atype[i].attach_btf_id == attach_btf_id)
166 return CGROUP_LSM_START + i;
167
168 for (i = 0; i < ARRAY_SIZE(cgroup_lsm_atype); i++)
169 if (cgroup_lsm_atype[i].attach_btf_id == 0)
170 return CGROUP_LSM_START + i;
171
172 return -E2BIG;
173
174 }
175
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)176 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype)
177 {
178 int i = cgroup_atype - CGROUP_LSM_START;
179
180 lockdep_assert_held(&cgroup_mutex);
181
182 WARN_ON_ONCE(cgroup_lsm_atype[i].attach_btf_id &&
183 cgroup_lsm_atype[i].attach_btf_id != attach_btf_id);
184
185 cgroup_lsm_atype[i].attach_btf_id = attach_btf_id;
186 cgroup_lsm_atype[i].refcnt++;
187 }
188
bpf_cgroup_atype_put(int cgroup_atype)189 void bpf_cgroup_atype_put(int cgroup_atype)
190 {
191 int i = cgroup_atype - CGROUP_LSM_START;
192
193 cgroup_lock();
194 if (--cgroup_lsm_atype[i].refcnt <= 0)
195 cgroup_lsm_atype[i].attach_btf_id = 0;
196 WARN_ON_ONCE(cgroup_lsm_atype[i].refcnt < 0);
197 cgroup_unlock();
198 }
199 #else
200 static enum cgroup_bpf_attach_type
bpf_cgroup_atype_find(enum bpf_attach_type attach_type,u32 attach_btf_id)201 bpf_cgroup_atype_find(enum bpf_attach_type attach_type, u32 attach_btf_id)
202 {
203 if (attach_type != BPF_LSM_CGROUP)
204 return to_cgroup_bpf_attach_type(attach_type);
205 return -EOPNOTSUPP;
206 }
207 #endif /* CONFIG_BPF_LSM */
208
cgroup_bpf_offline(struct cgroup * cgrp)209 void cgroup_bpf_offline(struct cgroup *cgrp)
210 {
211 cgroup_get(cgrp);
212 percpu_ref_kill(&cgrp->bpf.refcnt);
213 }
214
bpf_cgroup_storages_free(struct bpf_cgroup_storage * storages[])215 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
216 {
217 enum bpf_cgroup_storage_type stype;
218
219 for_each_cgroup_storage_type(stype)
220 bpf_cgroup_storage_free(storages[stype]);
221 }
222
bpf_cgroup_storages_alloc(struct bpf_cgroup_storage * storages[],struct bpf_cgroup_storage * new_storages[],enum bpf_attach_type type,struct bpf_prog * prog,struct cgroup * cgrp)223 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
224 struct bpf_cgroup_storage *new_storages[],
225 enum bpf_attach_type type,
226 struct bpf_prog *prog,
227 struct cgroup *cgrp)
228 {
229 enum bpf_cgroup_storage_type stype;
230 struct bpf_cgroup_storage_key key;
231 struct bpf_map *map;
232
233 key.cgroup_inode_id = cgroup_id(cgrp);
234 key.attach_type = type;
235
236 for_each_cgroup_storage_type(stype) {
237 map = prog->aux->cgroup_storage[stype];
238 if (!map)
239 continue;
240
241 storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
242 if (storages[stype])
243 continue;
244
245 storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
246 if (IS_ERR(storages[stype])) {
247 bpf_cgroup_storages_free(new_storages);
248 return -ENOMEM;
249 }
250
251 new_storages[stype] = storages[stype];
252 }
253
254 return 0;
255 }
256
bpf_cgroup_storages_assign(struct bpf_cgroup_storage * dst[],struct bpf_cgroup_storage * src[])257 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
258 struct bpf_cgroup_storage *src[])
259 {
260 enum bpf_cgroup_storage_type stype;
261
262 for_each_cgroup_storage_type(stype)
263 dst[stype] = src[stype];
264 }
265
bpf_cgroup_storages_link(struct bpf_cgroup_storage * storages[],struct cgroup * cgrp,enum bpf_attach_type attach_type)266 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
267 struct cgroup *cgrp,
268 enum bpf_attach_type attach_type)
269 {
270 enum bpf_cgroup_storage_type stype;
271
272 for_each_cgroup_storage_type(stype)
273 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
274 }
275
276 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
277 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
278 * doesn't free link memory, which will eventually be done by bpf_link's
279 * release() callback, when its last FD is closed.
280 */
bpf_cgroup_link_auto_detach(struct bpf_cgroup_link * link)281 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
282 {
283 cgroup_put(link->cgroup);
284 link->cgroup = NULL;
285 }
286
287 /**
288 * cgroup_bpf_release() - put references of all bpf programs and
289 * release all cgroup bpf data
290 * @work: work structure embedded into the cgroup to modify
291 */
cgroup_bpf_release(struct work_struct * work)292 static void cgroup_bpf_release(struct work_struct *work)
293 {
294 struct cgroup *p, *cgrp = container_of(work, struct cgroup,
295 bpf.release_work);
296 struct bpf_prog_array *old_array;
297 struct list_head *storages = &cgrp->bpf.storages;
298 struct bpf_cgroup_storage *storage, *stmp;
299
300 unsigned int atype;
301
302 cgroup_lock();
303
304 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
305 struct hlist_head *progs = &cgrp->bpf.progs[atype];
306 struct bpf_prog_list *pl;
307 struct hlist_node *pltmp;
308
309 hlist_for_each_entry_safe(pl, pltmp, progs, node) {
310 hlist_del(&pl->node);
311 if (pl->prog) {
312 if (pl->prog->expected_attach_type == BPF_LSM_CGROUP)
313 bpf_trampoline_unlink_cgroup_shim(pl->prog);
314 bpf_prog_put(pl->prog);
315 }
316 if (pl->link) {
317 if (pl->link->link.prog->expected_attach_type == BPF_LSM_CGROUP)
318 bpf_trampoline_unlink_cgroup_shim(pl->link->link.prog);
319 bpf_cgroup_link_auto_detach(pl->link);
320 }
321 kfree(pl);
322 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
323 }
324 old_array = rcu_dereference_protected(
325 cgrp->bpf.effective[atype],
326 lockdep_is_held(&cgroup_mutex));
327 bpf_prog_array_free(old_array);
328 }
329
330 list_for_each_entry_safe(storage, stmp, storages, list_cg) {
331 bpf_cgroup_storage_unlink(storage);
332 bpf_cgroup_storage_free(storage);
333 }
334
335 cgroup_unlock();
336
337 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
338 cgroup_bpf_put(p);
339
340 percpu_ref_exit(&cgrp->bpf.refcnt);
341 cgroup_put(cgrp);
342 }
343
344 /**
345 * cgroup_bpf_release_fn() - callback used to schedule releasing
346 * of bpf cgroup data
347 * @ref: percpu ref counter structure
348 */
cgroup_bpf_release_fn(struct percpu_ref * ref)349 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
350 {
351 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
352
353 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
354 queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work);
355 }
356
357 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
358 * link or direct prog.
359 */
prog_list_prog(struct bpf_prog_list * pl)360 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
361 {
362 if (pl->prog)
363 return pl->prog;
364 if (pl->link)
365 return pl->link->link.prog;
366 return NULL;
367 }
368
369 /* count number of elements in the list.
370 * it's slow but the list cannot be long
371 */
prog_list_length(struct hlist_head * head)372 static u32 prog_list_length(struct hlist_head *head)
373 {
374 struct bpf_prog_list *pl;
375 u32 cnt = 0;
376
377 hlist_for_each_entry(pl, head, node) {
378 if (!prog_list_prog(pl))
379 continue;
380 cnt++;
381 }
382 return cnt;
383 }
384
385 /* if parent has non-overridable prog attached,
386 * disallow attaching new programs to the descendent cgroup.
387 * if parent has overridable or multi-prog, allow attaching
388 */
hierarchy_allows_attach(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)389 static bool hierarchy_allows_attach(struct cgroup *cgrp,
390 enum cgroup_bpf_attach_type atype)
391 {
392 struct cgroup *p;
393
394 p = cgroup_parent(cgrp);
395 if (!p)
396 return true;
397 do {
398 u32 flags = p->bpf.flags[atype];
399 u32 cnt;
400
401 if (flags & BPF_F_ALLOW_MULTI)
402 return true;
403 cnt = prog_list_length(&p->bpf.progs[atype]);
404 WARN_ON_ONCE(cnt > 1);
405 if (cnt == 1)
406 return !!(flags & BPF_F_ALLOW_OVERRIDE);
407 p = cgroup_parent(p);
408 } while (p);
409 return true;
410 }
411
412 /* compute a chain of effective programs for a given cgroup:
413 * start from the list of programs in this cgroup and add
414 * all parent programs.
415 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
416 * to programs in this cgroup
417 */
compute_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array ** array)418 static int compute_effective_progs(struct cgroup *cgrp,
419 enum cgroup_bpf_attach_type atype,
420 struct bpf_prog_array **array)
421 {
422 struct bpf_prog_array_item *item;
423 struct bpf_prog_array *progs;
424 struct bpf_prog_list *pl;
425 struct cgroup *p = cgrp;
426 int cnt = 0;
427
428 /* count number of effective programs by walking parents */
429 do {
430 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
431 cnt += prog_list_length(&p->bpf.progs[atype]);
432 p = cgroup_parent(p);
433 } while (p);
434
435 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
436 if (!progs)
437 return -ENOMEM;
438
439 /* populate the array with effective progs */
440 cnt = 0;
441 p = cgrp;
442 do {
443 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
444 continue;
445
446 hlist_for_each_entry(pl, &p->bpf.progs[atype], node) {
447 if (!prog_list_prog(pl))
448 continue;
449
450 item = &progs->items[cnt];
451 item->prog = prog_list_prog(pl);
452 bpf_cgroup_storages_assign(item->cgroup_storage,
453 pl->storage);
454 cnt++;
455 }
456 } while ((p = cgroup_parent(p)));
457
458 *array = progs;
459 return 0;
460 }
461
activate_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array * old_array)462 static void activate_effective_progs(struct cgroup *cgrp,
463 enum cgroup_bpf_attach_type atype,
464 struct bpf_prog_array *old_array)
465 {
466 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
467 lockdep_is_held(&cgroup_mutex));
468 /* free prog array after grace period, since __cgroup_bpf_run_*()
469 * might be still walking the array
470 */
471 bpf_prog_array_free(old_array);
472 }
473
474 /**
475 * cgroup_bpf_inherit() - inherit effective programs from parent
476 * @cgrp: the cgroup to modify
477 */
cgroup_bpf_inherit(struct cgroup * cgrp)478 int cgroup_bpf_inherit(struct cgroup *cgrp)
479 {
480 /* has to use marco instead of const int, since compiler thinks
481 * that array below is variable length
482 */
483 #define NR ARRAY_SIZE(cgrp->bpf.effective)
484 struct bpf_prog_array *arrays[NR] = {};
485 struct cgroup *p;
486 int ret, i;
487
488 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
489 GFP_KERNEL);
490 if (ret)
491 return ret;
492
493 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
494 cgroup_bpf_get(p);
495
496 for (i = 0; i < NR; i++)
497 INIT_HLIST_HEAD(&cgrp->bpf.progs[i]);
498
499 INIT_LIST_HEAD(&cgrp->bpf.storages);
500
501 for (i = 0; i < NR; i++)
502 if (compute_effective_progs(cgrp, i, &arrays[i]))
503 goto cleanup;
504
505 for (i = 0; i < NR; i++)
506 activate_effective_progs(cgrp, i, arrays[i]);
507
508 return 0;
509 cleanup:
510 for (i = 0; i < NR; i++)
511 bpf_prog_array_free(arrays[i]);
512
513 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
514 cgroup_bpf_put(p);
515
516 percpu_ref_exit(&cgrp->bpf.refcnt);
517
518 return -ENOMEM;
519 }
520
update_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)521 static int update_effective_progs(struct cgroup *cgrp,
522 enum cgroup_bpf_attach_type atype)
523 {
524 struct cgroup_subsys_state *css;
525 int err;
526
527 /* allocate and recompute effective prog arrays */
528 css_for_each_descendant_pre(css, &cgrp->self) {
529 struct cgroup *desc = container_of(css, struct cgroup, self);
530
531 if (percpu_ref_is_zero(&desc->bpf.refcnt))
532 continue;
533
534 err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
535 if (err)
536 goto cleanup;
537 }
538
539 /* all allocations were successful. Activate all prog arrays */
540 css_for_each_descendant_pre(css, &cgrp->self) {
541 struct cgroup *desc = container_of(css, struct cgroup, self);
542
543 if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
544 if (unlikely(desc->bpf.inactive)) {
545 bpf_prog_array_free(desc->bpf.inactive);
546 desc->bpf.inactive = NULL;
547 }
548 continue;
549 }
550
551 activate_effective_progs(desc, atype, desc->bpf.inactive);
552 desc->bpf.inactive = NULL;
553 }
554
555 return 0;
556
557 cleanup:
558 /* oom while computing effective. Free all computed effective arrays
559 * since they were not activated
560 */
561 css_for_each_descendant_pre(css, &cgrp->self) {
562 struct cgroup *desc = container_of(css, struct cgroup, self);
563
564 bpf_prog_array_free(desc->bpf.inactive);
565 desc->bpf.inactive = NULL;
566 }
567
568 return err;
569 }
570
571 #define BPF_CGROUP_MAX_PROGS 64
572
find_attach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,struct bpf_prog * replace_prog,bool allow_multi)573 static struct bpf_prog_list *find_attach_entry(struct hlist_head *progs,
574 struct bpf_prog *prog,
575 struct bpf_cgroup_link *link,
576 struct bpf_prog *replace_prog,
577 bool allow_multi)
578 {
579 struct bpf_prog_list *pl;
580
581 /* single-attach case */
582 if (!allow_multi) {
583 if (hlist_empty(progs))
584 return NULL;
585 return hlist_entry(progs->first, typeof(*pl), node);
586 }
587
588 hlist_for_each_entry(pl, progs, node) {
589 if (prog && pl->prog == prog && prog != replace_prog)
590 /* disallow attaching the same prog twice */
591 return ERR_PTR(-EINVAL);
592 if (link && pl->link == link)
593 /* disallow attaching the same link twice */
594 return ERR_PTR(-EINVAL);
595 }
596
597 /* direct prog multi-attach w/ replacement case */
598 if (replace_prog) {
599 hlist_for_each_entry(pl, progs, node) {
600 if (pl->prog == replace_prog)
601 /* a match found */
602 return pl;
603 }
604 /* prog to replace not found for cgroup */
605 return ERR_PTR(-ENOENT);
606 }
607
608 return NULL;
609 }
610
611 /**
612 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
613 * propagate the change to descendants
614 * @cgrp: The cgroup which descendants to traverse
615 * @prog: A program to attach
616 * @link: A link to attach
617 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
618 * @type: Type of attach operation
619 * @flags: Option flags
620 *
621 * Exactly one of @prog or @link can be non-null.
622 * Must be called with cgroup_mutex held.
623 */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)624 static int __cgroup_bpf_attach(struct cgroup *cgrp,
625 struct bpf_prog *prog, struct bpf_prog *replace_prog,
626 struct bpf_cgroup_link *link,
627 enum bpf_attach_type type, u32 flags)
628 {
629 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
630 struct bpf_prog *old_prog = NULL;
631 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
632 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
633 struct bpf_prog *new_prog = prog ? : link->link.prog;
634 enum cgroup_bpf_attach_type atype;
635 struct bpf_prog_list *pl;
636 struct hlist_head *progs;
637 int err;
638
639 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
640 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
641 /* invalid combination */
642 return -EINVAL;
643 if (link && (prog || replace_prog))
644 /* only either link or prog/replace_prog can be specified */
645 return -EINVAL;
646 if (!!replace_prog != !!(flags & BPF_F_REPLACE))
647 /* replace_prog implies BPF_F_REPLACE, and vice versa */
648 return -EINVAL;
649
650 atype = bpf_cgroup_atype_find(type, new_prog->aux->attach_btf_id);
651 if (atype < 0)
652 return -EINVAL;
653
654 progs = &cgrp->bpf.progs[atype];
655
656 if (!hierarchy_allows_attach(cgrp, atype))
657 return -EPERM;
658
659 if (!hlist_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
660 /* Disallow attaching non-overridable on top
661 * of existing overridable in this cgroup.
662 * Disallow attaching multi-prog if overridable or none
663 */
664 return -EPERM;
665
666 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
667 return -E2BIG;
668
669 pl = find_attach_entry(progs, prog, link, replace_prog,
670 flags & BPF_F_ALLOW_MULTI);
671 if (IS_ERR(pl))
672 return PTR_ERR(pl);
673
674 if (bpf_cgroup_storages_alloc(storage, new_storage, type,
675 prog ? : link->link.prog, cgrp))
676 return -ENOMEM;
677
678 if (pl) {
679 old_prog = pl->prog;
680 } else {
681 struct hlist_node *last = NULL;
682
683 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
684 if (!pl) {
685 bpf_cgroup_storages_free(new_storage);
686 return -ENOMEM;
687 }
688 if (hlist_empty(progs))
689 hlist_add_head(&pl->node, progs);
690 else
691 hlist_for_each(last, progs) {
692 if (last->next)
693 continue;
694 hlist_add_behind(&pl->node, last);
695 break;
696 }
697 }
698
699 pl->prog = prog;
700 pl->link = link;
701 bpf_cgroup_storages_assign(pl->storage, storage);
702 cgrp->bpf.flags[atype] = saved_flags;
703
704 if (type == BPF_LSM_CGROUP) {
705 err = bpf_trampoline_link_cgroup_shim(new_prog, atype);
706 if (err)
707 goto cleanup;
708 }
709
710 err = update_effective_progs(cgrp, atype);
711 if (err)
712 goto cleanup_trampoline;
713
714 if (old_prog) {
715 if (type == BPF_LSM_CGROUP)
716 bpf_trampoline_unlink_cgroup_shim(old_prog);
717 bpf_prog_put(old_prog);
718 } else {
719 static_branch_inc(&cgroup_bpf_enabled_key[atype]);
720 }
721 bpf_cgroup_storages_link(new_storage, cgrp, type);
722 return 0;
723
724 cleanup_trampoline:
725 if (type == BPF_LSM_CGROUP)
726 bpf_trampoline_unlink_cgroup_shim(new_prog);
727
728 cleanup:
729 if (old_prog) {
730 pl->prog = old_prog;
731 pl->link = NULL;
732 }
733 bpf_cgroup_storages_free(new_storage);
734 if (!old_prog) {
735 hlist_del(&pl->node);
736 kfree(pl);
737 }
738 return err;
739 }
740
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)741 static int cgroup_bpf_attach(struct cgroup *cgrp,
742 struct bpf_prog *prog, struct bpf_prog *replace_prog,
743 struct bpf_cgroup_link *link,
744 enum bpf_attach_type type,
745 u32 flags)
746 {
747 int ret;
748
749 cgroup_lock();
750 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
751 cgroup_unlock();
752 return ret;
753 }
754
755 /* Swap updated BPF program for given link in effective program arrays across
756 * all descendant cgroups. This function is guaranteed to succeed.
757 */
replace_effective_prog(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_cgroup_link * link)758 static void replace_effective_prog(struct cgroup *cgrp,
759 enum cgroup_bpf_attach_type atype,
760 struct bpf_cgroup_link *link)
761 {
762 struct bpf_prog_array_item *item;
763 struct cgroup_subsys_state *css;
764 struct bpf_prog_array *progs;
765 struct bpf_prog_list *pl;
766 struct hlist_head *head;
767 struct cgroup *cg;
768 int pos;
769
770 css_for_each_descendant_pre(css, &cgrp->self) {
771 struct cgroup *desc = container_of(css, struct cgroup, self);
772
773 if (percpu_ref_is_zero(&desc->bpf.refcnt))
774 continue;
775
776 /* find position of link in effective progs array */
777 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
778 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
779 continue;
780
781 head = &cg->bpf.progs[atype];
782 hlist_for_each_entry(pl, head, node) {
783 if (!prog_list_prog(pl))
784 continue;
785 if (pl->link == link)
786 goto found;
787 pos++;
788 }
789 }
790 found:
791 BUG_ON(!cg);
792 progs = rcu_dereference_protected(
793 desc->bpf.effective[atype],
794 lockdep_is_held(&cgroup_mutex));
795 item = &progs->items[pos];
796 WRITE_ONCE(item->prog, link->link.prog);
797 }
798 }
799
800 /**
801 * __cgroup_bpf_replace() - Replace link's program and propagate the change
802 * to descendants
803 * @cgrp: The cgroup which descendants to traverse
804 * @link: A link for which to replace BPF program
805 * @new_prog: &struct bpf_prog for the target BPF program with its refcnt
806 * incremented
807 *
808 * Must be called with cgroup_mutex held.
809 */
__cgroup_bpf_replace(struct cgroup * cgrp,struct bpf_cgroup_link * link,struct bpf_prog * new_prog)810 static int __cgroup_bpf_replace(struct cgroup *cgrp,
811 struct bpf_cgroup_link *link,
812 struct bpf_prog *new_prog)
813 {
814 enum cgroup_bpf_attach_type atype;
815 struct bpf_prog *old_prog;
816 struct bpf_prog_list *pl;
817 struct hlist_head *progs;
818 bool found = false;
819
820 atype = bpf_cgroup_atype_find(link->type, new_prog->aux->attach_btf_id);
821 if (atype < 0)
822 return -EINVAL;
823
824 progs = &cgrp->bpf.progs[atype];
825
826 if (link->link.prog->type != new_prog->type)
827 return -EINVAL;
828
829 hlist_for_each_entry(pl, progs, node) {
830 if (pl->link == link) {
831 found = true;
832 break;
833 }
834 }
835 if (!found)
836 return -ENOENT;
837
838 old_prog = xchg(&link->link.prog, new_prog);
839 replace_effective_prog(cgrp, atype, link);
840 bpf_prog_put(old_prog);
841 return 0;
842 }
843
cgroup_bpf_replace(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)844 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
845 struct bpf_prog *old_prog)
846 {
847 struct bpf_cgroup_link *cg_link;
848 int ret;
849
850 cg_link = container_of(link, struct bpf_cgroup_link, link);
851
852 cgroup_lock();
853 /* link might have been auto-released by dying cgroup, so fail */
854 if (!cg_link->cgroup) {
855 ret = -ENOLINK;
856 goto out_unlock;
857 }
858 if (old_prog && link->prog != old_prog) {
859 ret = -EPERM;
860 goto out_unlock;
861 }
862 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
863 out_unlock:
864 cgroup_unlock();
865 return ret;
866 }
867
find_detach_entry(struct hlist_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,bool allow_multi)868 static struct bpf_prog_list *find_detach_entry(struct hlist_head *progs,
869 struct bpf_prog *prog,
870 struct bpf_cgroup_link *link,
871 bool allow_multi)
872 {
873 struct bpf_prog_list *pl;
874
875 if (!allow_multi) {
876 if (hlist_empty(progs))
877 /* report error when trying to detach and nothing is attached */
878 return ERR_PTR(-ENOENT);
879
880 /* to maintain backward compatibility NONE and OVERRIDE cgroups
881 * allow detaching with invalid FD (prog==NULL) in legacy mode
882 */
883 return hlist_entry(progs->first, typeof(*pl), node);
884 }
885
886 if (!prog && !link)
887 /* to detach MULTI prog the user has to specify valid FD
888 * of the program or link to be detached
889 */
890 return ERR_PTR(-EINVAL);
891
892 /* find the prog or link and detach it */
893 hlist_for_each_entry(pl, progs, node) {
894 if (pl->prog == prog && pl->link == link)
895 return pl;
896 }
897 return ERR_PTR(-ENOENT);
898 }
899
900 /**
901 * purge_effective_progs() - After compute_effective_progs fails to alloc new
902 * cgrp->bpf.inactive table we can recover by
903 * recomputing the array in place.
904 *
905 * @cgrp: The cgroup which descendants to travers
906 * @prog: A program to detach or NULL
907 * @link: A link to detach or NULL
908 * @atype: Type of detach operation
909 */
purge_effective_progs(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum cgroup_bpf_attach_type atype)910 static void purge_effective_progs(struct cgroup *cgrp, struct bpf_prog *prog,
911 struct bpf_cgroup_link *link,
912 enum cgroup_bpf_attach_type atype)
913 {
914 struct cgroup_subsys_state *css;
915 struct bpf_prog_array *progs;
916 struct bpf_prog_list *pl;
917 struct hlist_head *head;
918 struct cgroup *cg;
919 int pos;
920
921 /* recompute effective prog array in place */
922 css_for_each_descendant_pre(css, &cgrp->self) {
923 struct cgroup *desc = container_of(css, struct cgroup, self);
924
925 if (percpu_ref_is_zero(&desc->bpf.refcnt))
926 continue;
927
928 /* find position of link or prog in effective progs array */
929 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
930 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
931 continue;
932
933 head = &cg->bpf.progs[atype];
934 hlist_for_each_entry(pl, head, node) {
935 if (!prog_list_prog(pl))
936 continue;
937 if (pl->prog == prog && pl->link == link)
938 goto found;
939 pos++;
940 }
941 }
942
943 /* no link or prog match, skip the cgroup of this layer */
944 continue;
945 found:
946 progs = rcu_dereference_protected(
947 desc->bpf.effective[atype],
948 lockdep_is_held(&cgroup_mutex));
949
950 /* Remove the program from the array */
951 WARN_ONCE(bpf_prog_array_delete_safe_at(progs, pos),
952 "Failed to purge a prog from array at index %d", pos);
953 }
954 }
955
956 /**
957 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
958 * propagate the change to descendants
959 * @cgrp: The cgroup which descendants to traverse
960 * @prog: A program to detach or NULL
961 * @link: A link to detach or NULL
962 * @type: Type of detach operation
963 *
964 * At most one of @prog or @link can be non-NULL.
965 * Must be called with cgroup_mutex held.
966 */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum bpf_attach_type type)967 static int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
968 struct bpf_cgroup_link *link, enum bpf_attach_type type)
969 {
970 enum cgroup_bpf_attach_type atype;
971 struct bpf_prog *old_prog;
972 struct bpf_prog_list *pl;
973 struct hlist_head *progs;
974 u32 attach_btf_id = 0;
975 u32 flags;
976
977 if (prog)
978 attach_btf_id = prog->aux->attach_btf_id;
979 if (link)
980 attach_btf_id = link->link.prog->aux->attach_btf_id;
981
982 atype = bpf_cgroup_atype_find(type, attach_btf_id);
983 if (atype < 0)
984 return -EINVAL;
985
986 progs = &cgrp->bpf.progs[atype];
987 flags = cgrp->bpf.flags[atype];
988
989 if (prog && link)
990 /* only one of prog or link can be specified */
991 return -EINVAL;
992
993 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
994 if (IS_ERR(pl))
995 return PTR_ERR(pl);
996
997 /* mark it deleted, so it's ignored while recomputing effective */
998 old_prog = pl->prog;
999 pl->prog = NULL;
1000 pl->link = NULL;
1001
1002 if (update_effective_progs(cgrp, atype)) {
1003 /* if update effective array failed replace the prog with a dummy prog*/
1004 pl->prog = old_prog;
1005 pl->link = link;
1006 purge_effective_progs(cgrp, old_prog, link, atype);
1007 }
1008
1009 /* now can actually delete it from this cgroup list */
1010 hlist_del(&pl->node);
1011
1012 kfree(pl);
1013 if (hlist_empty(progs))
1014 /* last program was detached, reset flags to zero */
1015 cgrp->bpf.flags[atype] = 0;
1016 if (old_prog) {
1017 if (type == BPF_LSM_CGROUP)
1018 bpf_trampoline_unlink_cgroup_shim(old_prog);
1019 bpf_prog_put(old_prog);
1020 }
1021 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
1022 return 0;
1023 }
1024
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)1025 static int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
1026 enum bpf_attach_type type)
1027 {
1028 int ret;
1029
1030 cgroup_lock();
1031 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
1032 cgroup_unlock();
1033 return ret;
1034 }
1035
1036 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1037 static int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1038 union bpf_attr __user *uattr)
1039 {
1040 __u32 __user *prog_attach_flags = u64_to_user_ptr(attr->query.prog_attach_flags);
1041 bool effective_query = attr->query.query_flags & BPF_F_QUERY_EFFECTIVE;
1042 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
1043 enum bpf_attach_type type = attr->query.attach_type;
1044 enum cgroup_bpf_attach_type from_atype, to_atype;
1045 enum cgroup_bpf_attach_type atype;
1046 struct bpf_prog_array *effective;
1047 int cnt, ret = 0, i;
1048 int total_cnt = 0;
1049 u32 flags;
1050
1051 if (effective_query && prog_attach_flags)
1052 return -EINVAL;
1053
1054 if (type == BPF_LSM_CGROUP) {
1055 if (!effective_query && attr->query.prog_cnt &&
1056 prog_ids && !prog_attach_flags)
1057 return -EINVAL;
1058
1059 from_atype = CGROUP_LSM_START;
1060 to_atype = CGROUP_LSM_END;
1061 flags = 0;
1062 } else {
1063 from_atype = to_cgroup_bpf_attach_type(type);
1064 if (from_atype < 0)
1065 return -EINVAL;
1066 to_atype = from_atype;
1067 flags = cgrp->bpf.flags[from_atype];
1068 }
1069
1070 for (atype = from_atype; atype <= to_atype; atype++) {
1071 if (effective_query) {
1072 effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1073 lockdep_is_held(&cgroup_mutex));
1074 total_cnt += bpf_prog_array_length(effective);
1075 } else {
1076 total_cnt += prog_list_length(&cgrp->bpf.progs[atype]);
1077 }
1078 }
1079
1080 /* always output uattr->query.attach_flags as 0 during effective query */
1081 flags = effective_query ? 0 : flags;
1082 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
1083 return -EFAULT;
1084 if (copy_to_user(&uattr->query.prog_cnt, &total_cnt, sizeof(total_cnt)))
1085 return -EFAULT;
1086 if (attr->query.prog_cnt == 0 || !prog_ids || !total_cnt)
1087 /* return early if user requested only program count + flags */
1088 return 0;
1089
1090 if (attr->query.prog_cnt < total_cnt) {
1091 total_cnt = attr->query.prog_cnt;
1092 ret = -ENOSPC;
1093 }
1094
1095 for (atype = from_atype; atype <= to_atype && total_cnt; atype++) {
1096 if (effective_query) {
1097 effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
1098 lockdep_is_held(&cgroup_mutex));
1099 cnt = min_t(int, bpf_prog_array_length(effective), total_cnt);
1100 ret = bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
1101 } else {
1102 struct hlist_head *progs;
1103 struct bpf_prog_list *pl;
1104 struct bpf_prog *prog;
1105 u32 id;
1106
1107 progs = &cgrp->bpf.progs[atype];
1108 cnt = min_t(int, prog_list_length(progs), total_cnt);
1109 i = 0;
1110 hlist_for_each_entry(pl, progs, node) {
1111 prog = prog_list_prog(pl);
1112 id = prog->aux->id;
1113 if (copy_to_user(prog_ids + i, &id, sizeof(id)))
1114 return -EFAULT;
1115 if (++i == cnt)
1116 break;
1117 }
1118
1119 if (prog_attach_flags) {
1120 flags = cgrp->bpf.flags[atype];
1121
1122 for (i = 0; i < cnt; i++)
1123 if (copy_to_user(prog_attach_flags + i,
1124 &flags, sizeof(flags)))
1125 return -EFAULT;
1126 prog_attach_flags += cnt;
1127 }
1128 }
1129
1130 prog_ids += cnt;
1131 total_cnt -= cnt;
1132 }
1133 return ret;
1134 }
1135
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)1136 static int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
1137 union bpf_attr __user *uattr)
1138 {
1139 int ret;
1140
1141 cgroup_lock();
1142 ret = __cgroup_bpf_query(cgrp, attr, uattr);
1143 cgroup_unlock();
1144 return ret;
1145 }
1146
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)1147 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
1148 enum bpf_prog_type ptype, struct bpf_prog *prog)
1149 {
1150 struct bpf_prog *replace_prog = NULL;
1151 struct cgroup *cgrp;
1152 int ret;
1153
1154 cgrp = cgroup_get_from_fd(attr->target_fd);
1155 if (IS_ERR(cgrp))
1156 return PTR_ERR(cgrp);
1157
1158 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
1159 (attr->attach_flags & BPF_F_REPLACE)) {
1160 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
1161 if (IS_ERR(replace_prog)) {
1162 cgroup_put(cgrp);
1163 return PTR_ERR(replace_prog);
1164 }
1165 }
1166
1167 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
1168 attr->attach_type, attr->attach_flags);
1169
1170 if (replace_prog)
1171 bpf_prog_put(replace_prog);
1172 cgroup_put(cgrp);
1173 return ret;
1174 }
1175
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)1176 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
1177 {
1178 struct bpf_prog *prog;
1179 struct cgroup *cgrp;
1180 int ret;
1181
1182 cgrp = cgroup_get_from_fd(attr->target_fd);
1183 if (IS_ERR(cgrp))
1184 return PTR_ERR(cgrp);
1185
1186 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
1187 if (IS_ERR(prog))
1188 prog = NULL;
1189
1190 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
1191 if (prog)
1192 bpf_prog_put(prog);
1193
1194 cgroup_put(cgrp);
1195 return ret;
1196 }
1197
bpf_cgroup_link_release(struct bpf_link * link)1198 static void bpf_cgroup_link_release(struct bpf_link *link)
1199 {
1200 struct bpf_cgroup_link *cg_link =
1201 container_of(link, struct bpf_cgroup_link, link);
1202 struct cgroup *cg;
1203
1204 /* link might have been auto-detached by dying cgroup already,
1205 * in that case our work is done here
1206 */
1207 if (!cg_link->cgroup)
1208 return;
1209
1210 cgroup_lock();
1211
1212 /* re-check cgroup under lock again */
1213 if (!cg_link->cgroup) {
1214 cgroup_unlock();
1215 return;
1216 }
1217
1218 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
1219 cg_link->type));
1220 if (cg_link->type == BPF_LSM_CGROUP)
1221 bpf_trampoline_unlink_cgroup_shim(cg_link->link.prog);
1222
1223 cg = cg_link->cgroup;
1224 cg_link->cgroup = NULL;
1225
1226 cgroup_unlock();
1227
1228 cgroup_put(cg);
1229 }
1230
bpf_cgroup_link_dealloc(struct bpf_link * link)1231 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
1232 {
1233 struct bpf_cgroup_link *cg_link =
1234 container_of(link, struct bpf_cgroup_link, link);
1235
1236 kfree(cg_link);
1237 }
1238
bpf_cgroup_link_detach(struct bpf_link * link)1239 static int bpf_cgroup_link_detach(struct bpf_link *link)
1240 {
1241 bpf_cgroup_link_release(link);
1242
1243 return 0;
1244 }
1245
bpf_cgroup_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)1246 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
1247 struct seq_file *seq)
1248 {
1249 struct bpf_cgroup_link *cg_link =
1250 container_of(link, struct bpf_cgroup_link, link);
1251 u64 cg_id = 0;
1252
1253 cgroup_lock();
1254 if (cg_link->cgroup)
1255 cg_id = cgroup_id(cg_link->cgroup);
1256 cgroup_unlock();
1257
1258 seq_printf(seq,
1259 "cgroup_id:\t%llu\n"
1260 "attach_type:\t%d\n",
1261 cg_id,
1262 cg_link->type);
1263 }
1264
bpf_cgroup_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)1265 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
1266 struct bpf_link_info *info)
1267 {
1268 struct bpf_cgroup_link *cg_link =
1269 container_of(link, struct bpf_cgroup_link, link);
1270 u64 cg_id = 0;
1271
1272 cgroup_lock();
1273 if (cg_link->cgroup)
1274 cg_id = cgroup_id(cg_link->cgroup);
1275 cgroup_unlock();
1276
1277 info->cgroup.cgroup_id = cg_id;
1278 info->cgroup.attach_type = cg_link->type;
1279 return 0;
1280 }
1281
1282 static const struct bpf_link_ops bpf_cgroup_link_lops = {
1283 .release = bpf_cgroup_link_release,
1284 .dealloc = bpf_cgroup_link_dealloc,
1285 .detach = bpf_cgroup_link_detach,
1286 .update_prog = cgroup_bpf_replace,
1287 .show_fdinfo = bpf_cgroup_link_show_fdinfo,
1288 .fill_link_info = bpf_cgroup_link_fill_link_info,
1289 };
1290
cgroup_bpf_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)1291 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
1292 {
1293 struct bpf_link_primer link_primer;
1294 struct bpf_cgroup_link *link;
1295 struct cgroup *cgrp;
1296 int err;
1297
1298 if (attr->link_create.flags)
1299 return -EINVAL;
1300
1301 cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
1302 if (IS_ERR(cgrp))
1303 return PTR_ERR(cgrp);
1304
1305 link = kzalloc(sizeof(*link), GFP_USER);
1306 if (!link) {
1307 err = -ENOMEM;
1308 goto out_put_cgroup;
1309 }
1310 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
1311 prog);
1312 link->cgroup = cgrp;
1313 link->type = attr->link_create.attach_type;
1314
1315 err = bpf_link_prime(&link->link, &link_primer);
1316 if (err) {
1317 kfree(link);
1318 goto out_put_cgroup;
1319 }
1320
1321 err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
1322 link->type, BPF_F_ALLOW_MULTI);
1323 if (err) {
1324 bpf_link_cleanup(&link_primer);
1325 goto out_put_cgroup;
1326 }
1327
1328 return bpf_link_settle(&link_primer);
1329
1330 out_put_cgroup:
1331 cgroup_put(cgrp);
1332 return err;
1333 }
1334
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)1335 int cgroup_bpf_prog_query(const union bpf_attr *attr,
1336 union bpf_attr __user *uattr)
1337 {
1338 struct cgroup *cgrp;
1339 int ret;
1340
1341 cgrp = cgroup_get_from_fd(attr->query.target_fd);
1342 if (IS_ERR(cgrp))
1343 return PTR_ERR(cgrp);
1344
1345 ret = cgroup_bpf_query(cgrp, attr, uattr);
1346
1347 cgroup_put(cgrp);
1348 return ret;
1349 }
1350
1351 /**
1352 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
1353 * @sk: The socket sending or receiving traffic
1354 * @skb: The skb that is being sent or received
1355 * @atype: The type of program to be executed
1356 *
1357 * If no socket is passed, or the socket is not of type INET or INET6,
1358 * this function does nothing and returns 0.
1359 *
1360 * The program type passed in via @type must be suitable for network
1361 * filtering. No further check is performed to assert that.
1362 *
1363 * For egress packets, this function can return:
1364 * NET_XMIT_SUCCESS (0) - continue with packet output
1365 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
1366 * NET_XMIT_CN (2) - continue with packet output and notify TCP
1367 * to call cwr
1368 * -err - drop packet
1369 *
1370 * For ingress packets, this function will return -EPERM if any
1371 * attached program was found and if it returned != 1 during execution.
1372 * Otherwise 0 is returned.
1373 */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum cgroup_bpf_attach_type atype)1374 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1375 struct sk_buff *skb,
1376 enum cgroup_bpf_attach_type atype)
1377 {
1378 unsigned int offset = skb->data - skb_network_header(skb);
1379 struct sock *save_sk;
1380 void *saved_data_end;
1381 struct cgroup *cgrp;
1382 int ret;
1383
1384 if (!sk || !sk_fullsock(sk))
1385 return 0;
1386
1387 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1388 return 0;
1389
1390 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1391 save_sk = skb->sk;
1392 skb->sk = sk;
1393 __skb_push(skb, offset);
1394
1395 /* compute pointers for the bpf prog */
1396 bpf_compute_and_save_data_end(skb, &saved_data_end);
1397
1398 if (atype == CGROUP_INET_EGRESS) {
1399 u32 flags = 0;
1400 bool cn;
1401
1402 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, skb,
1403 __bpf_prog_run_save_cb, 0, &flags);
1404
1405 /* Return values of CGROUP EGRESS BPF programs are:
1406 * 0: drop packet
1407 * 1: keep packet
1408 * 2: drop packet and cn
1409 * 3: keep packet and cn
1410 *
1411 * The returned value is then converted to one of the NET_XMIT
1412 * or an error code that is then interpreted as drop packet
1413 * (and no cn):
1414 * 0: NET_XMIT_SUCCESS skb should be transmitted
1415 * 1: NET_XMIT_DROP skb should be dropped and cn
1416 * 2: NET_XMIT_CN skb should be transmitted and cn
1417 * 3: -err skb should be dropped
1418 */
1419
1420 cn = flags & BPF_RET_SET_CN;
1421 if (ret && !IS_ERR_VALUE((long)ret))
1422 ret = -EFAULT;
1423 if (!ret)
1424 ret = (cn ? NET_XMIT_CN : NET_XMIT_SUCCESS);
1425 else
1426 ret = (cn ? NET_XMIT_DROP : ret);
1427 } else {
1428 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype,
1429 skb, __bpf_prog_run_save_cb, 0,
1430 NULL);
1431 if (ret && !IS_ERR_VALUE((long)ret))
1432 ret = -EFAULT;
1433 }
1434 bpf_restore_data_end(skb, saved_data_end);
1435 __skb_pull(skb, offset);
1436 skb->sk = save_sk;
1437
1438 return ret;
1439 }
1440 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1441
1442 /**
1443 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1444 * @sk: sock structure to manipulate
1445 * @atype: The type of program to be executed
1446 *
1447 * socket is passed is expected to be of type INET or INET6.
1448 *
1449 * The program type passed in via @type must be suitable for sock
1450 * filtering. No further check is performed to assert that.
1451 *
1452 * This function will return %-EPERM if any if an attached program was found
1453 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1454 */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum cgroup_bpf_attach_type atype)1455 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1456 enum cgroup_bpf_attach_type atype)
1457 {
1458 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1459
1460 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sk, bpf_prog_run, 0,
1461 NULL);
1462 }
1463 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1464
1465 /**
1466 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1467 * provided by user sockaddr
1468 * @sk: sock struct that will use sockaddr
1469 * @uaddr: sockaddr struct provided by user
1470 * @uaddrlen: Pointer to the size of the sockaddr struct provided by user. It is
1471 * read-only for AF_INET[6] uaddr but can be modified for AF_UNIX
1472 * uaddr.
1473 * @atype: The type of program to be executed
1474 * @t_ctx: Pointer to attach type specific context
1475 * @flags: Pointer to u32 which contains higher bits of BPF program
1476 * return value (OR'ed together).
1477 *
1478 * socket is expected to be of type INET or INET6.
1479 *
1480 * This function will return %-EPERM if an attached program is found and
1481 * returned value != 1 during execution. In all other cases, 0 is returned.
1482 */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,int * uaddrlen,enum cgroup_bpf_attach_type atype,void * t_ctx,u32 * flags)1483 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1484 struct sockaddr *uaddr,
1485 int *uaddrlen,
1486 enum cgroup_bpf_attach_type atype,
1487 void *t_ctx,
1488 u32 *flags)
1489 {
1490 struct bpf_sock_addr_kern ctx = {
1491 .sk = sk,
1492 .uaddr = uaddr,
1493 .t_ctx = t_ctx,
1494 };
1495 struct sockaddr_storage unspec;
1496 struct cgroup *cgrp;
1497 int ret;
1498
1499 /* Check socket family since not all sockets represent network
1500 * endpoint (e.g. AF_UNIX).
1501 */
1502 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1503 return 0;
1504
1505 if (!ctx.uaddr) {
1506 memset(&unspec, 0, sizeof(unspec));
1507 ctx.uaddr = (struct sockaddr *)&unspec;
1508 ctx.uaddrlen = 0;
1509 } else {
1510 ctx.uaddrlen = *uaddrlen;
1511 }
1512
1513 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1514 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run,
1515 0, flags);
1516
1517 if (!ret && uaddr)
1518 *uaddrlen = ctx.uaddrlen;
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1523
1524 /**
1525 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1526 * @sk: socket to get cgroup from
1527 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1528 * sk with connection information (IP addresses, etc.) May not contain
1529 * cgroup info if it is a req sock.
1530 * @atype: The type of program to be executed
1531 *
1532 * socket passed is expected to be of type INET or INET6.
1533 *
1534 * The program type passed in via @type must be suitable for sock_ops
1535 * filtering. No further check is performed to assert that.
1536 *
1537 * This function will return %-EPERM if any if an attached program was found
1538 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1539 */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum cgroup_bpf_attach_type atype)1540 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1541 struct bpf_sock_ops_kern *sock_ops,
1542 enum cgroup_bpf_attach_type atype)
1543 {
1544 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1545
1546 return bpf_prog_run_array_cg(&cgrp->bpf, atype, sock_ops, bpf_prog_run,
1547 0, NULL);
1548 }
1549 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1550
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum cgroup_bpf_attach_type atype)1551 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1552 short access, enum cgroup_bpf_attach_type atype)
1553 {
1554 struct cgroup *cgrp;
1555 struct bpf_cgroup_dev_ctx ctx = {
1556 .access_type = (access << 16) | dev_type,
1557 .major = major,
1558 .minor = minor,
1559 };
1560 int ret;
1561
1562 rcu_read_lock();
1563 cgrp = task_dfl_cgroup(current);
1564 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1565 NULL);
1566 rcu_read_unlock();
1567
1568 return ret;
1569 }
1570
BPF_CALL_2(bpf_get_local_storage,struct bpf_map *,map,u64,flags)1571 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
1572 {
1573 /* flags argument is not used now,
1574 * but provides an ability to extend the API.
1575 * verifier checks that its value is correct.
1576 */
1577 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
1578 struct bpf_cgroup_storage *storage;
1579 struct bpf_cg_run_ctx *ctx;
1580 void *ptr;
1581
1582 /* get current cgroup storage from BPF run context */
1583 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1584 storage = ctx->prog_item->cgroup_storage[stype];
1585
1586 if (stype == BPF_CGROUP_STORAGE_SHARED)
1587 ptr = &READ_ONCE(storage->buf)->data[0];
1588 else
1589 ptr = this_cpu_ptr(storage->percpu_buf);
1590
1591 return (unsigned long)ptr;
1592 }
1593
1594 const struct bpf_func_proto bpf_get_local_storage_proto = {
1595 .func = bpf_get_local_storage,
1596 .gpl_only = false,
1597 .ret_type = RET_PTR_TO_MAP_VALUE,
1598 .arg1_type = ARG_CONST_MAP_PTR,
1599 .arg2_type = ARG_ANYTHING,
1600 };
1601
BPF_CALL_0(bpf_get_retval)1602 BPF_CALL_0(bpf_get_retval)
1603 {
1604 struct bpf_cg_run_ctx *ctx =
1605 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1606
1607 return ctx->retval;
1608 }
1609
1610 const struct bpf_func_proto bpf_get_retval_proto = {
1611 .func = bpf_get_retval,
1612 .gpl_only = false,
1613 .ret_type = RET_INTEGER,
1614 };
1615
BPF_CALL_1(bpf_set_retval,int,retval)1616 BPF_CALL_1(bpf_set_retval, int, retval)
1617 {
1618 struct bpf_cg_run_ctx *ctx =
1619 container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
1620
1621 ctx->retval = retval;
1622 return 0;
1623 }
1624
1625 const struct bpf_func_proto bpf_set_retval_proto = {
1626 .func = bpf_set_retval,
1627 .gpl_only = false,
1628 .ret_type = RET_INTEGER,
1629 .arg1_type = ARG_ANYTHING,
1630 };
1631
1632 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1633 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1634 {
1635 const struct bpf_func_proto *func_proto;
1636
1637 func_proto = cgroup_common_func_proto(func_id, prog);
1638 if (func_proto)
1639 return func_proto;
1640
1641 func_proto = cgroup_current_func_proto(func_id, prog);
1642 if (func_proto)
1643 return func_proto;
1644
1645 switch (func_id) {
1646 case BPF_FUNC_perf_event_output:
1647 return &bpf_event_output_data_proto;
1648 default:
1649 return bpf_base_func_proto(func_id);
1650 }
1651 }
1652
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1653 static bool cgroup_dev_is_valid_access(int off, int size,
1654 enum bpf_access_type type,
1655 const struct bpf_prog *prog,
1656 struct bpf_insn_access_aux *info)
1657 {
1658 const int size_default = sizeof(__u32);
1659
1660 if (type == BPF_WRITE)
1661 return false;
1662
1663 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1664 return false;
1665 /* The verifier guarantees that size > 0. */
1666 if (off % size != 0)
1667 return false;
1668
1669 switch (off) {
1670 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1671 bpf_ctx_record_field_size(info, size_default);
1672 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1673 return false;
1674 break;
1675 default:
1676 if (size != size_default)
1677 return false;
1678 }
1679
1680 return true;
1681 }
1682
1683 const struct bpf_prog_ops cg_dev_prog_ops = {
1684 };
1685
1686 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1687 .get_func_proto = cgroup_dev_func_proto,
1688 .is_valid_access = cgroup_dev_is_valid_access,
1689 };
1690
1691 /**
1692 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1693 *
1694 * @head: sysctl table header
1695 * @table: sysctl table
1696 * @write: sysctl is being read (= 0) or written (= 1)
1697 * @buf: pointer to buffer (in and out)
1698 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1699 * result is size of @new_buf if program set new value, initial value
1700 * otherwise
1701 * @ppos: value-result argument: value is position at which read from or write
1702 * to sysctl is happening, result is new position if program overrode it,
1703 * initial value otherwise
1704 * @atype: type of program to be executed
1705 *
1706 * Program is run when sysctl is being accessed, either read or written, and
1707 * can allow or deny such access.
1708 *
1709 * This function will return %-EPERM if an attached program is found and
1710 * returned value != 1 during execution. In all other cases 0 is returned.
1711 */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,char ** buf,size_t * pcount,loff_t * ppos,enum cgroup_bpf_attach_type atype)1712 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1713 struct ctl_table *table, int write,
1714 char **buf, size_t *pcount, loff_t *ppos,
1715 enum cgroup_bpf_attach_type atype)
1716 {
1717 struct bpf_sysctl_kern ctx = {
1718 .head = head,
1719 .table = table,
1720 .write = write,
1721 .ppos = ppos,
1722 .cur_val = NULL,
1723 .cur_len = PAGE_SIZE,
1724 .new_val = NULL,
1725 .new_len = 0,
1726 .new_updated = 0,
1727 };
1728 struct cgroup *cgrp;
1729 loff_t pos = 0;
1730 int ret;
1731
1732 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1733 if (!ctx.cur_val ||
1734 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1735 /* Let BPF program decide how to proceed. */
1736 ctx.cur_len = 0;
1737 }
1738
1739 if (write && *buf && *pcount) {
1740 /* BPF program should be able to override new value with a
1741 * buffer bigger than provided by user.
1742 */
1743 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1744 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1745 if (ctx.new_val) {
1746 memcpy(ctx.new_val, *buf, ctx.new_len);
1747 } else {
1748 /* Let BPF program decide how to proceed. */
1749 ctx.new_len = 0;
1750 }
1751 }
1752
1753 rcu_read_lock();
1754 cgrp = task_dfl_cgroup(current);
1755 ret = bpf_prog_run_array_cg(&cgrp->bpf, atype, &ctx, bpf_prog_run, 0,
1756 NULL);
1757 rcu_read_unlock();
1758
1759 kfree(ctx.cur_val);
1760
1761 if (ret == 1 && ctx.new_updated) {
1762 kfree(*buf);
1763 *buf = ctx.new_val;
1764 *pcount = ctx.new_len;
1765 } else {
1766 kfree(ctx.new_val);
1767 }
1768
1769 return ret;
1770 }
1771
1772 #ifdef CONFIG_NET
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen,struct bpf_sockopt_buf * buf)1773 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1774 struct bpf_sockopt_buf *buf)
1775 {
1776 if (unlikely(max_optlen < 0))
1777 return -EINVAL;
1778
1779 if (unlikely(max_optlen > PAGE_SIZE)) {
1780 /* We don't expose optvals that are greater than PAGE_SIZE
1781 * to the BPF program.
1782 */
1783 max_optlen = PAGE_SIZE;
1784 }
1785
1786 if (max_optlen <= sizeof(buf->data)) {
1787 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1788 * bytes avoid the cost of kzalloc.
1789 */
1790 ctx->optval = buf->data;
1791 ctx->optval_end = ctx->optval + max_optlen;
1792 return max_optlen;
1793 }
1794
1795 ctx->optval = kzalloc(max_optlen, GFP_USER);
1796 if (!ctx->optval)
1797 return -ENOMEM;
1798
1799 ctx->optval_end = ctx->optval + max_optlen;
1800
1801 return max_optlen;
1802 }
1803
sockopt_free_buf(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1804 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1805 struct bpf_sockopt_buf *buf)
1806 {
1807 if (ctx->optval == buf->data)
1808 return;
1809 kfree(ctx->optval);
1810 }
1811
sockopt_buf_allocated(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1812 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1813 struct bpf_sockopt_buf *buf)
1814 {
1815 return ctx->optval != buf->data;
1816 }
1817
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,sockptr_t optval,int * optlen,char ** kernel_optval)1818 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1819 int *optname, sockptr_t optval,
1820 int *optlen, char **kernel_optval)
1821 {
1822 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1823 struct bpf_sockopt_buf buf = {};
1824 struct bpf_sockopt_kern ctx = {
1825 .sk = sk,
1826 .level = *level,
1827 .optname = *optname,
1828 };
1829 int ret, max_optlen;
1830
1831 /* Allocate a bit more than the initial user buffer for
1832 * BPF program. The canonical use case is overriding
1833 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1834 */
1835 max_optlen = max_t(int, 16, *optlen);
1836 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1837 if (max_optlen < 0)
1838 return max_optlen;
1839
1840 ctx.optlen = *optlen;
1841
1842 if (copy_from_sockptr(ctx.optval, optval,
1843 min(*optlen, max_optlen))) {
1844 ret = -EFAULT;
1845 goto out;
1846 }
1847
1848 lock_sock(sk);
1849 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_SETSOCKOPT,
1850 &ctx, bpf_prog_run, 0, NULL);
1851 release_sock(sk);
1852
1853 if (ret)
1854 goto out;
1855
1856 if (ctx.optlen == -1) {
1857 /* optlen set to -1, bypass kernel */
1858 ret = 1;
1859 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1860 /* optlen is out of bounds */
1861 if (*optlen > PAGE_SIZE && ctx.optlen >= 0) {
1862 pr_info_once("bpf setsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1863 ctx.optlen, max_optlen);
1864 ret = 0;
1865 goto out;
1866 }
1867 ret = -EFAULT;
1868 } else {
1869 /* optlen within bounds, run kernel handler */
1870 ret = 0;
1871
1872 /* export any potential modifications */
1873 *level = ctx.level;
1874 *optname = ctx.optname;
1875
1876 /* optlen == 0 from BPF indicates that we should
1877 * use original userspace data.
1878 */
1879 if (ctx.optlen != 0) {
1880 *optlen = ctx.optlen;
1881 /* We've used bpf_sockopt_kern->buf as an intermediary
1882 * storage, but the BPF program indicates that we need
1883 * to pass this data to the kernel setsockopt handler.
1884 * No way to export on-stack buf, have to allocate a
1885 * new buffer.
1886 */
1887 if (!sockopt_buf_allocated(&ctx, &buf)) {
1888 void *p = kmalloc(ctx.optlen, GFP_USER);
1889
1890 if (!p) {
1891 ret = -ENOMEM;
1892 goto out;
1893 }
1894 memcpy(p, ctx.optval, ctx.optlen);
1895 *kernel_optval = p;
1896 } else {
1897 *kernel_optval = ctx.optval;
1898 }
1899 /* export and don't free sockopt buf */
1900 return 0;
1901 }
1902 }
1903
1904 out:
1905 sockopt_free_buf(&ctx, &buf);
1906 return ret;
1907 }
1908
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen,int max_optlen,int retval)1909 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1910 int optname, sockptr_t optval,
1911 sockptr_t optlen, int max_optlen,
1912 int retval)
1913 {
1914 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1915 struct bpf_sockopt_buf buf = {};
1916 struct bpf_sockopt_kern ctx = {
1917 .sk = sk,
1918 .level = level,
1919 .optname = optname,
1920 .current_task = current,
1921 };
1922 int orig_optlen;
1923 int ret;
1924
1925 orig_optlen = max_optlen;
1926 ctx.optlen = max_optlen;
1927 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1928 if (max_optlen < 0)
1929 return max_optlen;
1930
1931 if (!retval) {
1932 /* If kernel getsockopt finished successfully,
1933 * copy whatever was returned to the user back
1934 * into our temporary buffer. Set optlen to the
1935 * one that kernel returned as well to let
1936 * BPF programs inspect the value.
1937 */
1938 if (copy_from_sockptr(&ctx.optlen, optlen,
1939 sizeof(ctx.optlen))) {
1940 ret = -EFAULT;
1941 goto out;
1942 }
1943
1944 if (ctx.optlen < 0) {
1945 ret = -EFAULT;
1946 goto out;
1947 }
1948 orig_optlen = ctx.optlen;
1949
1950 if (copy_from_sockptr(ctx.optval, optval,
1951 min(ctx.optlen, max_optlen))) {
1952 ret = -EFAULT;
1953 goto out;
1954 }
1955 }
1956
1957 lock_sock(sk);
1958 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
1959 &ctx, bpf_prog_run, retval, NULL);
1960 release_sock(sk);
1961
1962 if (ret < 0)
1963 goto out;
1964
1965 if (!sockptr_is_null(optval) &&
1966 (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1967 if (orig_optlen > PAGE_SIZE && ctx.optlen >= 0) {
1968 pr_info_once("bpf getsockopt: ignoring program buffer with optlen=%d (max_optlen=%d)\n",
1969 ctx.optlen, max_optlen);
1970 ret = retval;
1971 goto out;
1972 }
1973 ret = -EFAULT;
1974 goto out;
1975 }
1976
1977 if (ctx.optlen != 0) {
1978 if (!sockptr_is_null(optval) &&
1979 copy_to_sockptr(optval, ctx.optval, ctx.optlen)) {
1980 ret = -EFAULT;
1981 goto out;
1982 }
1983 if (copy_to_sockptr(optlen, &ctx.optlen, sizeof(ctx.optlen))) {
1984 ret = -EFAULT;
1985 goto out;
1986 }
1987 }
1988
1989 out:
1990 sockopt_free_buf(&ctx, &buf);
1991 return ret;
1992 }
1993
__cgroup_bpf_run_filter_getsockopt_kern(struct sock * sk,int level,int optname,void * optval,int * optlen,int retval)1994 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1995 int optname, void *optval,
1996 int *optlen, int retval)
1997 {
1998 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1999 struct bpf_sockopt_kern ctx = {
2000 .sk = sk,
2001 .level = level,
2002 .optname = optname,
2003 .optlen = *optlen,
2004 .optval = optval,
2005 .optval_end = optval + *optlen,
2006 .current_task = current,
2007 };
2008 int ret;
2009
2010 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
2011 * user data back into BPF buffer when reval != 0. This is
2012 * done as an optimization to avoid extra copy, assuming
2013 * kernel won't populate the data in case of an error.
2014 * Here we always pass the data and memset() should
2015 * be called if that data shouldn't be "exported".
2016 */
2017
2018 ret = bpf_prog_run_array_cg(&cgrp->bpf, CGROUP_GETSOCKOPT,
2019 &ctx, bpf_prog_run, retval, NULL);
2020 if (ret < 0)
2021 return ret;
2022
2023 if (ctx.optlen > *optlen)
2024 return -EFAULT;
2025
2026 /* BPF programs can shrink the buffer, export the modifications.
2027 */
2028 if (ctx.optlen != 0)
2029 *optlen = ctx.optlen;
2030
2031 return ret;
2032 }
2033 #endif
2034
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)2035 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
2036 size_t *lenp)
2037 {
2038 ssize_t tmp_ret = 0, ret;
2039
2040 if (dir->header.parent) {
2041 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
2042 if (tmp_ret < 0)
2043 return tmp_ret;
2044 }
2045
2046 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
2047 if (ret < 0)
2048 return ret;
2049 *bufp += ret;
2050 *lenp -= ret;
2051 ret += tmp_ret;
2052
2053 /* Avoid leading slash. */
2054 if (!ret)
2055 return ret;
2056
2057 tmp_ret = strscpy(*bufp, "/", *lenp);
2058 if (tmp_ret < 0)
2059 return tmp_ret;
2060 *bufp += tmp_ret;
2061 *lenp -= tmp_ret;
2062
2063 return ret + tmp_ret;
2064 }
2065
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)2066 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
2067 size_t, buf_len, u64, flags)
2068 {
2069 ssize_t tmp_ret = 0, ret;
2070
2071 if (!buf)
2072 return -EINVAL;
2073
2074 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
2075 if (!ctx->head)
2076 return -EINVAL;
2077 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
2078 if (tmp_ret < 0)
2079 return tmp_ret;
2080 }
2081
2082 ret = strscpy(buf, ctx->table->procname, buf_len);
2083
2084 return ret < 0 ? ret : tmp_ret + ret;
2085 }
2086
2087 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
2088 .func = bpf_sysctl_get_name,
2089 .gpl_only = false,
2090 .ret_type = RET_INTEGER,
2091 .arg1_type = ARG_PTR_TO_CTX,
2092 .arg2_type = ARG_PTR_TO_MEM,
2093 .arg3_type = ARG_CONST_SIZE,
2094 .arg4_type = ARG_ANYTHING,
2095 };
2096
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)2097 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
2098 size_t src_len)
2099 {
2100 if (!dst)
2101 return -EINVAL;
2102
2103 if (!dst_len)
2104 return -E2BIG;
2105
2106 if (!src || !src_len) {
2107 memset(dst, 0, dst_len);
2108 return -EINVAL;
2109 }
2110
2111 memcpy(dst, src, min(dst_len, src_len));
2112
2113 if (dst_len > src_len) {
2114 memset(dst + src_len, '\0', dst_len - src_len);
2115 return src_len;
2116 }
2117
2118 dst[dst_len - 1] = '\0';
2119
2120 return -E2BIG;
2121 }
2122
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2123 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
2124 char *, buf, size_t, buf_len)
2125 {
2126 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
2127 }
2128
2129 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
2130 .func = bpf_sysctl_get_current_value,
2131 .gpl_only = false,
2132 .ret_type = RET_INTEGER,
2133 .arg1_type = ARG_PTR_TO_CTX,
2134 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2135 .arg3_type = ARG_CONST_SIZE,
2136 };
2137
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)2138 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
2139 size_t, buf_len)
2140 {
2141 if (!ctx->write) {
2142 if (buf && buf_len)
2143 memset(buf, '\0', buf_len);
2144 return -EINVAL;
2145 }
2146 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
2147 }
2148
2149 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
2150 .func = bpf_sysctl_get_new_value,
2151 .gpl_only = false,
2152 .ret_type = RET_INTEGER,
2153 .arg1_type = ARG_PTR_TO_CTX,
2154 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2155 .arg3_type = ARG_CONST_SIZE,
2156 };
2157
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)2158 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
2159 const char *, buf, size_t, buf_len)
2160 {
2161 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
2162 return -EINVAL;
2163
2164 if (buf_len > PAGE_SIZE - 1)
2165 return -E2BIG;
2166
2167 memcpy(ctx->new_val, buf, buf_len);
2168 ctx->new_len = buf_len;
2169 ctx->new_updated = 1;
2170
2171 return 0;
2172 }
2173
2174 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
2175 .func = bpf_sysctl_set_new_value,
2176 .gpl_only = false,
2177 .ret_type = RET_INTEGER,
2178 .arg1_type = ARG_PTR_TO_CTX,
2179 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
2180 .arg3_type = ARG_CONST_SIZE,
2181 };
2182
2183 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2184 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2185 {
2186 const struct bpf_func_proto *func_proto;
2187
2188 func_proto = cgroup_common_func_proto(func_id, prog);
2189 if (func_proto)
2190 return func_proto;
2191
2192 func_proto = cgroup_current_func_proto(func_id, prog);
2193 if (func_proto)
2194 return func_proto;
2195
2196 switch (func_id) {
2197 case BPF_FUNC_sysctl_get_name:
2198 return &bpf_sysctl_get_name_proto;
2199 case BPF_FUNC_sysctl_get_current_value:
2200 return &bpf_sysctl_get_current_value_proto;
2201 case BPF_FUNC_sysctl_get_new_value:
2202 return &bpf_sysctl_get_new_value_proto;
2203 case BPF_FUNC_sysctl_set_new_value:
2204 return &bpf_sysctl_set_new_value_proto;
2205 case BPF_FUNC_ktime_get_coarse_ns:
2206 return &bpf_ktime_get_coarse_ns_proto;
2207 case BPF_FUNC_perf_event_output:
2208 return &bpf_event_output_data_proto;
2209 default:
2210 return bpf_base_func_proto(func_id);
2211 }
2212 }
2213
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2214 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
2215 const struct bpf_prog *prog,
2216 struct bpf_insn_access_aux *info)
2217 {
2218 const int size_default = sizeof(__u32);
2219
2220 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
2221 return false;
2222
2223 switch (off) {
2224 case bpf_ctx_range(struct bpf_sysctl, write):
2225 if (type != BPF_READ)
2226 return false;
2227 bpf_ctx_record_field_size(info, size_default);
2228 return bpf_ctx_narrow_access_ok(off, size, size_default);
2229 case bpf_ctx_range(struct bpf_sysctl, file_pos):
2230 if (type == BPF_READ) {
2231 bpf_ctx_record_field_size(info, size_default);
2232 return bpf_ctx_narrow_access_ok(off, size, size_default);
2233 } else {
2234 return size == size_default;
2235 }
2236 default:
2237 return false;
2238 }
2239 }
2240
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2241 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
2242 const struct bpf_insn *si,
2243 struct bpf_insn *insn_buf,
2244 struct bpf_prog *prog, u32 *target_size)
2245 {
2246 struct bpf_insn *insn = insn_buf;
2247 u32 read_size;
2248
2249 switch (si->off) {
2250 case offsetof(struct bpf_sysctl, write):
2251 *insn++ = BPF_LDX_MEM(
2252 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
2253 bpf_target_off(struct bpf_sysctl_kern, write,
2254 sizeof_field(struct bpf_sysctl_kern,
2255 write),
2256 target_size));
2257 break;
2258 case offsetof(struct bpf_sysctl, file_pos):
2259 /* ppos is a pointer so it should be accessed via indirect
2260 * loads and stores. Also for stores additional temporary
2261 * register is used since neither src_reg nor dst_reg can be
2262 * overridden.
2263 */
2264 if (type == BPF_WRITE) {
2265 int treg = BPF_REG_9;
2266
2267 if (si->src_reg == treg || si->dst_reg == treg)
2268 --treg;
2269 if (si->src_reg == treg || si->dst_reg == treg)
2270 --treg;
2271 *insn++ = BPF_STX_MEM(
2272 BPF_DW, si->dst_reg, treg,
2273 offsetof(struct bpf_sysctl_kern, tmp_reg));
2274 *insn++ = BPF_LDX_MEM(
2275 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2276 treg, si->dst_reg,
2277 offsetof(struct bpf_sysctl_kern, ppos));
2278 *insn++ = BPF_RAW_INSN(
2279 BPF_CLASS(si->code) | BPF_MEM | BPF_SIZEOF(u32),
2280 treg, si->src_reg,
2281 bpf_ctx_narrow_access_offset(
2282 0, sizeof(u32), sizeof(loff_t)),
2283 si->imm);
2284 *insn++ = BPF_LDX_MEM(
2285 BPF_DW, treg, si->dst_reg,
2286 offsetof(struct bpf_sysctl_kern, tmp_reg));
2287 } else {
2288 *insn++ = BPF_LDX_MEM(
2289 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
2290 si->dst_reg, si->src_reg,
2291 offsetof(struct bpf_sysctl_kern, ppos));
2292 read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
2293 *insn++ = BPF_LDX_MEM(
2294 BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
2295 bpf_ctx_narrow_access_offset(
2296 0, read_size, sizeof(loff_t)));
2297 }
2298 *target_size = sizeof(u32);
2299 break;
2300 }
2301
2302 return insn - insn_buf;
2303 }
2304
2305 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
2306 .get_func_proto = sysctl_func_proto,
2307 .is_valid_access = sysctl_is_valid_access,
2308 .convert_ctx_access = sysctl_convert_ctx_access,
2309 };
2310
2311 const struct bpf_prog_ops cg_sysctl_prog_ops = {
2312 };
2313
2314 #ifdef CONFIG_NET
BPF_CALL_1(bpf_get_netns_cookie_sockopt,struct bpf_sockopt_kern *,ctx)2315 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
2316 {
2317 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
2318
2319 return net->net_cookie;
2320 }
2321
2322 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
2323 .func = bpf_get_netns_cookie_sockopt,
2324 .gpl_only = false,
2325 .ret_type = RET_INTEGER,
2326 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
2327 };
2328 #endif
2329
2330 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2331 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2332 {
2333 const struct bpf_func_proto *func_proto;
2334
2335 func_proto = cgroup_common_func_proto(func_id, prog);
2336 if (func_proto)
2337 return func_proto;
2338
2339 func_proto = cgroup_current_func_proto(func_id, prog);
2340 if (func_proto)
2341 return func_proto;
2342
2343 switch (func_id) {
2344 #ifdef CONFIG_NET
2345 case BPF_FUNC_get_netns_cookie:
2346 return &bpf_get_netns_cookie_sockopt_proto;
2347 case BPF_FUNC_sk_storage_get:
2348 return &bpf_sk_storage_get_proto;
2349 case BPF_FUNC_sk_storage_delete:
2350 return &bpf_sk_storage_delete_proto;
2351 case BPF_FUNC_setsockopt:
2352 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2353 return &bpf_sk_setsockopt_proto;
2354 return NULL;
2355 case BPF_FUNC_getsockopt:
2356 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
2357 return &bpf_sk_getsockopt_proto;
2358 return NULL;
2359 #endif
2360 #ifdef CONFIG_INET
2361 case BPF_FUNC_tcp_sock:
2362 return &bpf_tcp_sock_proto;
2363 #endif
2364 case BPF_FUNC_perf_event_output:
2365 return &bpf_event_output_data_proto;
2366 default:
2367 return bpf_base_func_proto(func_id);
2368 }
2369 }
2370
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2371 static bool cg_sockopt_is_valid_access(int off, int size,
2372 enum bpf_access_type type,
2373 const struct bpf_prog *prog,
2374 struct bpf_insn_access_aux *info)
2375 {
2376 const int size_default = sizeof(__u32);
2377
2378 if (off < 0 || off >= sizeof(struct bpf_sockopt))
2379 return false;
2380
2381 if (off % size != 0)
2382 return false;
2383
2384 if (type == BPF_WRITE) {
2385 switch (off) {
2386 case offsetof(struct bpf_sockopt, retval):
2387 if (size != size_default)
2388 return false;
2389 return prog->expected_attach_type ==
2390 BPF_CGROUP_GETSOCKOPT;
2391 case offsetof(struct bpf_sockopt, optname):
2392 fallthrough;
2393 case offsetof(struct bpf_sockopt, level):
2394 if (size != size_default)
2395 return false;
2396 return prog->expected_attach_type ==
2397 BPF_CGROUP_SETSOCKOPT;
2398 case offsetof(struct bpf_sockopt, optlen):
2399 return size == size_default;
2400 default:
2401 return false;
2402 }
2403 }
2404
2405 switch (off) {
2406 case offsetof(struct bpf_sockopt, sk):
2407 if (size != sizeof(__u64))
2408 return false;
2409 info->reg_type = PTR_TO_SOCKET;
2410 break;
2411 case offsetof(struct bpf_sockopt, optval):
2412 if (size != sizeof(__u64))
2413 return false;
2414 info->reg_type = PTR_TO_PACKET;
2415 break;
2416 case offsetof(struct bpf_sockopt, optval_end):
2417 if (size != sizeof(__u64))
2418 return false;
2419 info->reg_type = PTR_TO_PACKET_END;
2420 break;
2421 case offsetof(struct bpf_sockopt, retval):
2422 if (size != size_default)
2423 return false;
2424 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
2425 default:
2426 if (size != size_default)
2427 return false;
2428 break;
2429 }
2430 return true;
2431 }
2432
2433 #define CG_SOCKOPT_READ_FIELD(F) \
2434 BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
2435 si->dst_reg, si->src_reg, \
2436 offsetof(struct bpf_sockopt_kern, F))
2437
2438 #define CG_SOCKOPT_WRITE_FIELD(F) \
2439 BPF_RAW_INSN((BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F) | \
2440 BPF_MEM | BPF_CLASS(si->code)), \
2441 si->dst_reg, si->src_reg, \
2442 offsetof(struct bpf_sockopt_kern, F), \
2443 si->imm)
2444
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2445 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
2446 const struct bpf_insn *si,
2447 struct bpf_insn *insn_buf,
2448 struct bpf_prog *prog,
2449 u32 *target_size)
2450 {
2451 struct bpf_insn *insn = insn_buf;
2452
2453 switch (si->off) {
2454 case offsetof(struct bpf_sockopt, sk):
2455 *insn++ = CG_SOCKOPT_READ_FIELD(sk);
2456 break;
2457 case offsetof(struct bpf_sockopt, level):
2458 if (type == BPF_WRITE)
2459 *insn++ = CG_SOCKOPT_WRITE_FIELD(level);
2460 else
2461 *insn++ = CG_SOCKOPT_READ_FIELD(level);
2462 break;
2463 case offsetof(struct bpf_sockopt, optname):
2464 if (type == BPF_WRITE)
2465 *insn++ = CG_SOCKOPT_WRITE_FIELD(optname);
2466 else
2467 *insn++ = CG_SOCKOPT_READ_FIELD(optname);
2468 break;
2469 case offsetof(struct bpf_sockopt, optlen):
2470 if (type == BPF_WRITE)
2471 *insn++ = CG_SOCKOPT_WRITE_FIELD(optlen);
2472 else
2473 *insn++ = CG_SOCKOPT_READ_FIELD(optlen);
2474 break;
2475 case offsetof(struct bpf_sockopt, retval):
2476 BUILD_BUG_ON(offsetof(struct bpf_cg_run_ctx, run_ctx) != 0);
2477
2478 if (type == BPF_WRITE) {
2479 int treg = BPF_REG_9;
2480
2481 if (si->src_reg == treg || si->dst_reg == treg)
2482 --treg;
2483 if (si->src_reg == treg || si->dst_reg == treg)
2484 --treg;
2485 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, treg,
2486 offsetof(struct bpf_sockopt_kern, tmp_reg));
2487 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2488 treg, si->dst_reg,
2489 offsetof(struct bpf_sockopt_kern, current_task));
2490 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2491 treg, treg,
2492 offsetof(struct task_struct, bpf_ctx));
2493 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_MEM |
2494 BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2495 treg, si->src_reg,
2496 offsetof(struct bpf_cg_run_ctx, retval),
2497 si->imm);
2498 *insn++ = BPF_LDX_MEM(BPF_DW, treg, si->dst_reg,
2499 offsetof(struct bpf_sockopt_kern, tmp_reg));
2500 } else {
2501 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, current_task),
2502 si->dst_reg, si->src_reg,
2503 offsetof(struct bpf_sockopt_kern, current_task));
2504 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct task_struct, bpf_ctx),
2505 si->dst_reg, si->dst_reg,
2506 offsetof(struct task_struct, bpf_ctx));
2507 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_cg_run_ctx, retval),
2508 si->dst_reg, si->dst_reg,
2509 offsetof(struct bpf_cg_run_ctx, retval));
2510 }
2511 break;
2512 case offsetof(struct bpf_sockopt, optval):
2513 *insn++ = CG_SOCKOPT_READ_FIELD(optval);
2514 break;
2515 case offsetof(struct bpf_sockopt, optval_end):
2516 *insn++ = CG_SOCKOPT_READ_FIELD(optval_end);
2517 break;
2518 }
2519
2520 return insn - insn_buf;
2521 }
2522
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)2523 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2524 bool direct_write,
2525 const struct bpf_prog *prog)
2526 {
2527 /* Nothing to do for sockopt argument. The data is kzalloc'ated.
2528 */
2529 return 0;
2530 }
2531
2532 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2533 .get_func_proto = cg_sockopt_func_proto,
2534 .is_valid_access = cg_sockopt_is_valid_access,
2535 .convert_ctx_access = cg_sockopt_convert_ctx_access,
2536 .gen_prologue = cg_sockopt_get_prologue,
2537 };
2538
2539 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2540 };
2541
2542 /* Common helpers for cgroup hooks. */
2543 const struct bpf_func_proto *
cgroup_common_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2544 cgroup_common_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2545 {
2546 switch (func_id) {
2547 case BPF_FUNC_get_local_storage:
2548 return &bpf_get_local_storage_proto;
2549 case BPF_FUNC_get_retval:
2550 switch (prog->expected_attach_type) {
2551 case BPF_CGROUP_INET_INGRESS:
2552 case BPF_CGROUP_INET_EGRESS:
2553 case BPF_CGROUP_SOCK_OPS:
2554 case BPF_CGROUP_UDP4_RECVMSG:
2555 case BPF_CGROUP_UDP6_RECVMSG:
2556 case BPF_CGROUP_INET4_GETPEERNAME:
2557 case BPF_CGROUP_INET6_GETPEERNAME:
2558 case BPF_CGROUP_INET4_GETSOCKNAME:
2559 case BPF_CGROUP_INET6_GETSOCKNAME:
2560 return NULL;
2561 default:
2562 return &bpf_get_retval_proto;
2563 }
2564 case BPF_FUNC_set_retval:
2565 switch (prog->expected_attach_type) {
2566 case BPF_CGROUP_INET_INGRESS:
2567 case BPF_CGROUP_INET_EGRESS:
2568 case BPF_CGROUP_SOCK_OPS:
2569 case BPF_CGROUP_UDP4_RECVMSG:
2570 case BPF_CGROUP_UDP6_RECVMSG:
2571 case BPF_CGROUP_INET4_GETPEERNAME:
2572 case BPF_CGROUP_INET6_GETPEERNAME:
2573 case BPF_CGROUP_INET4_GETSOCKNAME:
2574 case BPF_CGROUP_INET6_GETSOCKNAME:
2575 return NULL;
2576 default:
2577 return &bpf_set_retval_proto;
2578 }
2579 default:
2580 return NULL;
2581 }
2582 }
2583
2584 /* Common helpers for cgroup hooks with valid process context. */
2585 const struct bpf_func_proto *
cgroup_current_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)2586 cgroup_current_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2587 {
2588 switch (func_id) {
2589 case BPF_FUNC_get_current_uid_gid:
2590 return &bpf_get_current_uid_gid_proto;
2591 case BPF_FUNC_get_current_pid_tgid:
2592 return &bpf_get_current_pid_tgid_proto;
2593 case BPF_FUNC_get_current_comm:
2594 return &bpf_get_current_comm_proto;
2595 #ifdef CONFIG_CGROUP_NET_CLASSID
2596 case BPF_FUNC_get_cgroup_classid:
2597 return &bpf_get_cgroup_classid_curr_proto;
2598 #endif
2599 default:
2600 return NULL;
2601 }
2602 }
2603