xref: /openbmc/linux/arch/x86/kvm/svm/avic.c (revision 86d6a628a281a17b8341ece99997c1251bb41a41)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * AMD SVM support
6   *
7   * Copyright (C) 2006 Qumranet, Inc.
8   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9   *
10   * Authors:
11   *   Yaniv Kamay  <yaniv@qumranet.com>
12   *   Avi Kivity   <avi@qumranet.com>
13   */
14  
15  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16  
17  #include <linux/kvm_types.h>
18  #include <linux/hashtable.h>
19  #include <linux/amd-iommu.h>
20  #include <linux/kvm_host.h>
21  
22  #include <asm/irq_remapping.h>
23  
24  #include "trace.h"
25  #include "lapic.h"
26  #include "x86.h"
27  #include "irq.h"
28  #include "svm.h"
29  
30  /*
31   * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
32   * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
33   * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
34   *
35   * For the vCPU ID, use however many bits are currently allowed for the max
36   * guest physical APIC ID (limited by the size of the physical ID table), and
37   * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the
38   * size of the GATag is defined by hardware (32 bits), but is an opaque value
39   * as far as hardware is concerned.
40   */
41  #define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK
42  
43  #define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
44  #define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
45  
46  #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
47  #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
48  
49  #define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
50  					 ((vcpu_id) & AVIC_VCPU_ID_MASK))
51  #define AVIC_GATAG(vm_id, vcpu_id)					\
52  ({									\
53  	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\
54  									\
55  	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\
56  	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\
57  	ga_tag;								\
58  })
59  
60  static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
61  
62  static bool force_avic;
63  module_param_unsafe(force_avic, bool, 0444);
64  
65  /* Note:
66   * This hash table is used to map VM_ID to a struct kvm_svm,
67   * when handling AMD IOMMU GALOG notification to schedule in
68   * a particular vCPU.
69   */
70  #define SVM_VM_DATA_HASH_BITS	8
71  static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
72  static u32 next_vm_id = 0;
73  static bool next_vm_id_wrapped = 0;
74  static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
75  bool x2avic_enabled;
76  
77  /*
78   * This is a wrapper of struct amd_iommu_ir_data.
79   */
80  struct amd_svm_iommu_ir {
81  	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
82  	void *data;		/* Storing pointer to struct amd_ir_data */
83  };
84  
avic_activate_vmcb(struct vcpu_svm * svm)85  static void avic_activate_vmcb(struct vcpu_svm *svm)
86  {
87  	struct vmcb *vmcb = svm->vmcb01.ptr;
88  
89  	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
90  	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
91  
92  	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
93  
94  	/*
95  	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
96  	 * accesses, while interrupt injection to a running vCPU can be
97  	 * achieved using AVIC doorbell.  KVM disables the APIC access page
98  	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
99  	 * AVIC in hybrid mode activates only the doorbell mechanism.
100  	 */
101  	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
102  		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
103  		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
104  		/* Disabling MSR intercept for x2APIC registers */
105  		svm_set_x2apic_msr_interception(svm, false);
106  	} else {
107  		/*
108  		 * Flush the TLB, the guest may have inserted a non-APIC
109  		 * mapping into the TLB while AVIC was disabled.
110  		 */
111  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
112  
113  		/* For xAVIC and hybrid-xAVIC modes */
114  		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
115  		/* Enabling MSR intercept for x2APIC registers */
116  		svm_set_x2apic_msr_interception(svm, true);
117  	}
118  }
119  
avic_deactivate_vmcb(struct vcpu_svm * svm)120  static void avic_deactivate_vmcb(struct vcpu_svm *svm)
121  {
122  	struct vmcb *vmcb = svm->vmcb01.ptr;
123  
124  	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
125  	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
126  
127  	/*
128  	 * If running nested and the guest uses its own MSR bitmap, there
129  	 * is no need to update L0's msr bitmap
130  	 */
131  	if (is_guest_mode(&svm->vcpu) &&
132  	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
133  		return;
134  
135  	/* Enabling MSR intercept for x2APIC registers */
136  	svm_set_x2apic_msr_interception(svm, true);
137  }
138  
139  /* Note:
140   * This function is called from IOMMU driver to notify
141   * SVM to schedule in a particular vCPU of a particular VM.
142   */
avic_ga_log_notifier(u32 ga_tag)143  int avic_ga_log_notifier(u32 ga_tag)
144  {
145  	unsigned long flags;
146  	struct kvm_svm *kvm_svm;
147  	struct kvm_vcpu *vcpu = NULL;
148  	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
149  	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
150  
151  	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
152  	trace_kvm_avic_ga_log(vm_id, vcpu_id);
153  
154  	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
155  	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
156  		if (kvm_svm->avic_vm_id != vm_id)
157  			continue;
158  		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
159  		break;
160  	}
161  	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
162  
163  	/* Note:
164  	 * At this point, the IOMMU should have already set the pending
165  	 * bit in the vAPIC backing page. So, we just need to schedule
166  	 * in the vcpu.
167  	 */
168  	if (vcpu)
169  		kvm_vcpu_wake_up(vcpu);
170  
171  	return 0;
172  }
173  
avic_vm_destroy(struct kvm * kvm)174  void avic_vm_destroy(struct kvm *kvm)
175  {
176  	unsigned long flags;
177  	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178  
179  	if (!enable_apicv)
180  		return;
181  
182  	if (kvm_svm->avic_logical_id_table_page)
183  		__free_page(kvm_svm->avic_logical_id_table_page);
184  	if (kvm_svm->avic_physical_id_table_page)
185  		__free_page(kvm_svm->avic_physical_id_table_page);
186  
187  	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
188  	hash_del(&kvm_svm->hnode);
189  	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
190  }
191  
avic_vm_init(struct kvm * kvm)192  int avic_vm_init(struct kvm *kvm)
193  {
194  	unsigned long flags;
195  	int err = -ENOMEM;
196  	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
197  	struct kvm_svm *k2;
198  	struct page *p_page;
199  	struct page *l_page;
200  	u32 vm_id;
201  
202  	if (!enable_apicv)
203  		return 0;
204  
205  	/* Allocating physical APIC ID table (4KB) */
206  	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
207  	if (!p_page)
208  		goto free_avic;
209  
210  	kvm_svm->avic_physical_id_table_page = p_page;
211  
212  	/* Allocating logical APIC ID table (4KB) */
213  	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
214  	if (!l_page)
215  		goto free_avic;
216  
217  	kvm_svm->avic_logical_id_table_page = l_page;
218  
219  	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
220   again:
221  	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
222  	if (vm_id == 0) { /* id is 1-based, zero is not okay */
223  		next_vm_id_wrapped = 1;
224  		goto again;
225  	}
226  	/* Is it still in use? Only possible if wrapped at least once */
227  	if (next_vm_id_wrapped) {
228  		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
229  			if (k2->avic_vm_id == vm_id)
230  				goto again;
231  		}
232  	}
233  	kvm_svm->avic_vm_id = vm_id;
234  	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
235  	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
236  
237  	return 0;
238  
239  free_avic:
240  	avic_vm_destroy(kvm);
241  	return err;
242  }
243  
avic_init_vmcb(struct vcpu_svm * svm,struct vmcb * vmcb)244  void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
245  {
246  	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
247  	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
248  	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
249  	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
250  
251  	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
252  	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
253  	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
254  	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
255  
256  	if (kvm_apicv_activated(svm->vcpu.kvm))
257  		avic_activate_vmcb(svm);
258  	else
259  		avic_deactivate_vmcb(svm);
260  }
261  
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)262  static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
263  				       unsigned int index)
264  {
265  	u64 *avic_physical_id_table;
266  	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
267  
268  	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
269  	    (index > X2AVIC_MAX_PHYSICAL_ID))
270  		return NULL;
271  
272  	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
273  
274  	return &avic_physical_id_table[index];
275  }
276  
avic_init_backing_page(struct kvm_vcpu * vcpu)277  static int avic_init_backing_page(struct kvm_vcpu *vcpu)
278  {
279  	u64 *entry, new_entry;
280  	int id = vcpu->vcpu_id;
281  	struct vcpu_svm *svm = to_svm(vcpu);
282  
283  	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
284  	    (id > X2AVIC_MAX_PHYSICAL_ID))
285  		return -EINVAL;
286  
287  	if (!vcpu->arch.apic->regs)
288  		return -EINVAL;
289  
290  	if (kvm_apicv_activated(vcpu->kvm)) {
291  		int ret;
292  
293  		/*
294  		 * Note, AVIC hardware walks the nested page table to check
295  		 * permissions, but does not use the SPA address specified in
296  		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
297  		 * pointer field of the VMCB.
298  		 */
299  		ret = kvm_alloc_apic_access_page(vcpu->kvm);
300  		if (ret)
301  			return ret;
302  	}
303  
304  	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
305  
306  	/* Setting AVIC backing page address in the phy APIC ID table */
307  	entry = avic_get_physical_id_entry(vcpu, id);
308  	if (!entry)
309  		return -EINVAL;
310  
311  	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
312  			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
313  			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
314  	WRITE_ONCE(*entry, new_entry);
315  
316  	svm->avic_physical_id_cache = entry;
317  
318  	return 0;
319  }
320  
avic_ring_doorbell(struct kvm_vcpu * vcpu)321  void avic_ring_doorbell(struct kvm_vcpu *vcpu)
322  {
323  	/*
324  	 * Note, the vCPU could get migrated to a different pCPU at any point,
325  	 * which could result in signalling the wrong/previous pCPU.  But if
326  	 * that happens the vCPU is guaranteed to do a VMRUN (after being
327  	 * migrated) and thus will process pending interrupts, i.e. a doorbell
328  	 * is not needed (and the spurious one is harmless).
329  	 */
330  	int cpu = READ_ONCE(vcpu->cpu);
331  
332  	if (cpu != get_cpu()) {
333  		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
334  		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
335  	}
336  	put_cpu();
337  }
338  
339  
avic_kick_vcpu(struct kvm_vcpu * vcpu,u32 icrl)340  static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
341  {
342  	vcpu->arch.apic->irr_pending = true;
343  	svm_complete_interrupt_delivery(vcpu,
344  					icrl & APIC_MODE_MASK,
345  					icrl & APIC_INT_LEVELTRIG,
346  					icrl & APIC_VECTOR_MASK);
347  }
348  
avic_kick_vcpu_by_physical_id(struct kvm * kvm,u32 physical_id,u32 icrl)349  static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
350  					  u32 icrl)
351  {
352  	/*
353  	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
354  	 * i.e. APIC ID == vCPU ID.
355  	 */
356  	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
357  
358  	/* Once again, nothing to do if the target vCPU doesn't exist. */
359  	if (unlikely(!target_vcpu))
360  		return;
361  
362  	avic_kick_vcpu(target_vcpu, icrl);
363  }
364  
avic_kick_vcpu_by_logical_id(struct kvm * kvm,u32 * avic_logical_id_table,u32 logid_index,u32 icrl)365  static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
366  					 u32 logid_index, u32 icrl)
367  {
368  	u32 physical_id;
369  
370  	if (avic_logical_id_table) {
371  		u32 logid_entry = avic_logical_id_table[logid_index];
372  
373  		/* Nothing to do if the logical destination is invalid. */
374  		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
375  			return;
376  
377  		physical_id = logid_entry &
378  			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
379  	} else {
380  		/*
381  		 * For x2APIC, the logical APIC ID is a read-only value that is
382  		 * derived from the x2APIC ID, thus the x2APIC ID can be found
383  		 * by reversing the calculation (stored in logid_index).  Note,
384  		 * bits 31:20 of the x2APIC ID aren't propagated to the logical
385  		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
386  		 */
387  		physical_id = logid_index;
388  	}
389  
390  	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
391  }
392  
393  /*
394   * A fast-path version of avic_kick_target_vcpus(), which attempts to match
395   * destination APIC ID to vCPU without looping through all vCPUs.
396   */
avic_kick_target_vcpus_fast(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)397  static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
398  				       u32 icrl, u32 icrh, u32 index)
399  {
400  	int dest_mode = icrl & APIC_DEST_MASK;
401  	int shorthand = icrl & APIC_SHORT_MASK;
402  	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
403  	u32 dest;
404  
405  	if (shorthand != APIC_DEST_NOSHORT)
406  		return -EINVAL;
407  
408  	if (apic_x2apic_mode(source))
409  		dest = icrh;
410  	else
411  		dest = GET_XAPIC_DEST_FIELD(icrh);
412  
413  	if (dest_mode == APIC_DEST_PHYSICAL) {
414  		/* broadcast destination, use slow path */
415  		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
416  			return -EINVAL;
417  		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
418  			return -EINVAL;
419  
420  		if (WARN_ON_ONCE(dest != index))
421  			return -EINVAL;
422  
423  		avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
424  	} else {
425  		u32 *avic_logical_id_table;
426  		unsigned long bitmap, i;
427  		u32 cluster;
428  
429  		if (apic_x2apic_mode(source)) {
430  			/* 16 bit dest mask, 16 bit cluster id */
431  			bitmap = dest & 0xFFFF;
432  			cluster = (dest >> 16) << 4;
433  		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
434  			/* 8 bit dest mask*/
435  			bitmap = dest;
436  			cluster = 0;
437  		} else {
438  			/* 4 bit desk mask, 4 bit cluster id */
439  			bitmap = dest & 0xF;
440  			cluster = (dest >> 4) << 2;
441  		}
442  
443  		/* Nothing to do if there are no destinations in the cluster. */
444  		if (unlikely(!bitmap))
445  			return 0;
446  
447  		if (apic_x2apic_mode(source))
448  			avic_logical_id_table = NULL;
449  		else
450  			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
451  
452  		/*
453  		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
454  		 * IDs, thus each bit in the destination is guaranteed to map
455  		 * to at most one vCPU.
456  		 */
457  		for_each_set_bit(i, &bitmap, 16)
458  			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
459  						     cluster + i, icrl);
460  	}
461  
462  	return 0;
463  }
464  
avic_kick_target_vcpus(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh,u32 index)465  static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
466  				   u32 icrl, u32 icrh, u32 index)
467  {
468  	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
469  	unsigned long i;
470  	struct kvm_vcpu *vcpu;
471  
472  	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
473  		return;
474  
475  	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
476  
477  	/*
478  	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
479  	 * event.  There's no need to signal doorbells, as hardware has handled
480  	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
481  	 * since entered the guest will have processed pending IRQs at VMRUN.
482  	 */
483  	kvm_for_each_vcpu(i, vcpu, kvm) {
484  		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
485  					dest, icrl & APIC_DEST_MASK))
486  			avic_kick_vcpu(vcpu, icrl);
487  	}
488  }
489  
avic_incomplete_ipi_interception(struct kvm_vcpu * vcpu)490  int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
491  {
492  	struct vcpu_svm *svm = to_svm(vcpu);
493  	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
494  	u32 icrl = svm->vmcb->control.exit_info_1;
495  	u32 id = svm->vmcb->control.exit_info_2 >> 32;
496  	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
497  	struct kvm_lapic *apic = vcpu->arch.apic;
498  
499  	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
500  
501  	switch (id) {
502  	case AVIC_IPI_FAILURE_INVALID_TARGET:
503  	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
504  		/*
505  		 * Emulate IPIs that are not handled by AVIC hardware, which
506  		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
507  		 * if _any_ targets are invalid, e.g. if the logical mode mask
508  		 * is a superset of running vCPUs.
509  		 *
510  		 * The exit is a trap, e.g. ICR holds the correct value and RIP
511  		 * has been advanced, KVM is responsible only for emulating the
512  		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set,
513  		 * in which case KVM needs to emulate the ICR write as well in
514  		 * order to clear the BUSY flag.
515  		 */
516  		if (icrl & APIC_ICR_BUSY)
517  			kvm_apic_write_nodecode(vcpu, APIC_ICR);
518  		else
519  			kvm_apic_send_ipi(apic, icrl, icrh);
520  		break;
521  	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
522  		/*
523  		 * At this point, we expect that the AVIC HW has already
524  		 * set the appropriate IRR bits on the valid target
525  		 * vcpus. So, we just need to kick the appropriate vcpu.
526  		 */
527  		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
528  		break;
529  	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
530  		WARN_ONCE(1, "Invalid backing page\n");
531  		break;
532  	case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR:
533  		/* Invalid IPI with vector < 16 */
534  		break;
535  	default:
536  		vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n");
537  	}
538  
539  	return 1;
540  }
541  
avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu * vcpu)542  unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
543  {
544  	if (is_guest_mode(vcpu))
545  		return APICV_INHIBIT_REASON_NESTED;
546  	return 0;
547  }
548  
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)549  static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
550  {
551  	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
552  	u32 *logical_apic_id_table;
553  	u32 cluster, index;
554  
555  	ldr = GET_APIC_LOGICAL_ID(ldr);
556  
557  	if (flat) {
558  		cluster = 0;
559  	} else {
560  		cluster = (ldr >> 4);
561  		if (cluster >= 0xf)
562  			return NULL;
563  		ldr &= 0xf;
564  	}
565  	if (!ldr || !is_power_of_2(ldr))
566  		return NULL;
567  
568  	index = __ffs(ldr);
569  	if (WARN_ON_ONCE(index > 7))
570  		return NULL;
571  	index += (cluster << 2);
572  
573  	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
574  
575  	return &logical_apic_id_table[index];
576  }
577  
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)578  static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
579  {
580  	bool flat;
581  	u32 *entry, new_entry;
582  
583  	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
584  	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
585  	if (!entry)
586  		return;
587  
588  	new_entry = READ_ONCE(*entry);
589  	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
590  	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
591  	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
592  	WRITE_ONCE(*entry, new_entry);
593  }
594  
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)595  static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
596  {
597  	struct vcpu_svm *svm = to_svm(vcpu);
598  	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
599  	u32 *entry;
600  
601  	/* Note: x2AVIC does not use logical APIC ID table */
602  	if (apic_x2apic_mode(vcpu->arch.apic))
603  		return;
604  
605  	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
606  	if (entry)
607  		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
608  }
609  
avic_handle_ldr_update(struct kvm_vcpu * vcpu)610  static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
611  {
612  	struct vcpu_svm *svm = to_svm(vcpu);
613  	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
614  	u32 id = kvm_xapic_id(vcpu->arch.apic);
615  
616  	/* AVIC does not support LDR update for x2APIC */
617  	if (apic_x2apic_mode(vcpu->arch.apic))
618  		return;
619  
620  	if (ldr == svm->ldr_reg)
621  		return;
622  
623  	avic_invalidate_logical_id_entry(vcpu);
624  
625  	svm->ldr_reg = ldr;
626  	avic_ldr_write(vcpu, id, ldr);
627  }
628  
avic_handle_dfr_update(struct kvm_vcpu * vcpu)629  static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
630  {
631  	struct vcpu_svm *svm = to_svm(vcpu);
632  	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
633  
634  	if (svm->dfr_reg == dfr)
635  		return;
636  
637  	avic_invalidate_logical_id_entry(vcpu);
638  	svm->dfr_reg = dfr;
639  }
640  
avic_unaccel_trap_write(struct kvm_vcpu * vcpu)641  static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
642  {
643  	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
644  				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
645  
646  	switch (offset) {
647  	case APIC_LDR:
648  		avic_handle_ldr_update(vcpu);
649  		break;
650  	case APIC_DFR:
651  		avic_handle_dfr_update(vcpu);
652  		break;
653  	case APIC_RRR:
654  		/* Ignore writes to Read Remote Data, it's read-only. */
655  		return 1;
656  	default:
657  		break;
658  	}
659  
660  	kvm_apic_write_nodecode(vcpu, offset);
661  	return 1;
662  }
663  
is_avic_unaccelerated_access_trap(u32 offset)664  static bool is_avic_unaccelerated_access_trap(u32 offset)
665  {
666  	bool ret = false;
667  
668  	switch (offset) {
669  	case APIC_ID:
670  	case APIC_EOI:
671  	case APIC_RRR:
672  	case APIC_LDR:
673  	case APIC_DFR:
674  	case APIC_SPIV:
675  	case APIC_ESR:
676  	case APIC_ICR:
677  	case APIC_LVTT:
678  	case APIC_LVTTHMR:
679  	case APIC_LVTPC:
680  	case APIC_LVT0:
681  	case APIC_LVT1:
682  	case APIC_LVTERR:
683  	case APIC_TMICT:
684  	case APIC_TDCR:
685  		ret = true;
686  		break;
687  	default:
688  		break;
689  	}
690  	return ret;
691  }
692  
avic_unaccelerated_access_interception(struct kvm_vcpu * vcpu)693  int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
694  {
695  	struct vcpu_svm *svm = to_svm(vcpu);
696  	int ret = 0;
697  	u32 offset = svm->vmcb->control.exit_info_1 &
698  		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
699  	u32 vector = svm->vmcb->control.exit_info_2 &
700  		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
701  	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
702  		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
703  	bool trap = is_avic_unaccelerated_access_trap(offset);
704  
705  	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
706  					    trap, write, vector);
707  	if (trap) {
708  		/* Handling Trap */
709  		WARN_ONCE(!write, "svm: Handling trap read.\n");
710  		ret = avic_unaccel_trap_write(vcpu);
711  	} else {
712  		/* Handling Fault */
713  		ret = kvm_emulate_instruction(vcpu, 0);
714  	}
715  
716  	return ret;
717  }
718  
avic_init_vcpu(struct vcpu_svm * svm)719  int avic_init_vcpu(struct vcpu_svm *svm)
720  {
721  	int ret;
722  	struct kvm_vcpu *vcpu = &svm->vcpu;
723  
724  	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
725  		return 0;
726  
727  	ret = avic_init_backing_page(vcpu);
728  	if (ret)
729  		return ret;
730  
731  	INIT_LIST_HEAD(&svm->ir_list);
732  	spin_lock_init(&svm->ir_list_lock);
733  	svm->dfr_reg = APIC_DFR_FLAT;
734  
735  	return ret;
736  }
737  
avic_apicv_post_state_restore(struct kvm_vcpu * vcpu)738  void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
739  {
740  	avic_handle_dfr_update(vcpu);
741  	avic_handle_ldr_update(vcpu);
742  }
743  
avic_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)744  static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
745  {
746  	int ret = 0;
747  	unsigned long flags;
748  	struct amd_svm_iommu_ir *ir;
749  	struct vcpu_svm *svm = to_svm(vcpu);
750  
751  	if (!kvm_arch_has_assigned_device(vcpu->kvm))
752  		return 0;
753  
754  	/*
755  	 * Here, we go through the per-vcpu ir_list to update all existing
756  	 * interrupt remapping table entry targeting this vcpu.
757  	 */
758  	spin_lock_irqsave(&svm->ir_list_lock, flags);
759  
760  	if (list_empty(&svm->ir_list))
761  		goto out;
762  
763  	list_for_each_entry(ir, &svm->ir_list, node) {
764  		if (activate)
765  			ret = amd_iommu_activate_guest_mode(ir->data);
766  		else
767  			ret = amd_iommu_deactivate_guest_mode(ir->data);
768  		if (ret)
769  			break;
770  	}
771  out:
772  	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
773  	return ret;
774  }
775  
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)776  static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
777  {
778  	unsigned long flags;
779  	struct amd_svm_iommu_ir *cur;
780  
781  	spin_lock_irqsave(&svm->ir_list_lock, flags);
782  	list_for_each_entry(cur, &svm->ir_list, node) {
783  		if (cur->data != pi->ir_data)
784  			continue;
785  		list_del(&cur->node);
786  		kfree(cur);
787  		break;
788  	}
789  	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
790  }
791  
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)792  static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
793  {
794  	int ret = 0;
795  	unsigned long flags;
796  	struct amd_svm_iommu_ir *ir;
797  	u64 entry;
798  
799  	/**
800  	 * In some cases, the existing irte is updated and re-set,
801  	 * so we need to check here if it's already been * added
802  	 * to the ir_list.
803  	 */
804  	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
805  		struct kvm *kvm = svm->vcpu.kvm;
806  		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
807  		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
808  		struct vcpu_svm *prev_svm;
809  
810  		if (!prev_vcpu) {
811  			ret = -EINVAL;
812  			goto out;
813  		}
814  
815  		prev_svm = to_svm(prev_vcpu);
816  		svm_ir_list_del(prev_svm, pi);
817  	}
818  
819  	/**
820  	 * Allocating new amd_iommu_pi_data, which will get
821  	 * add to the per-vcpu ir_list.
822  	 */
823  	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
824  	if (!ir) {
825  		ret = -ENOMEM;
826  		goto out;
827  	}
828  	ir->data = pi->ir_data;
829  
830  	spin_lock_irqsave(&svm->ir_list_lock, flags);
831  
832  	/*
833  	 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
834  	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
835  	 * will update the pCPU info when the vCPU awkened and/or scheduled in.
836  	 * See also avic_vcpu_load().
837  	 */
838  	entry = READ_ONCE(*(svm->avic_physical_id_cache));
839  	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
840  		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
841  				    true, pi->ir_data);
842  
843  	list_add(&ir->node, &svm->ir_list);
844  	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
845  out:
846  	return ret;
847  }
848  
849  /*
850   * Note:
851   * The HW cannot support posting multicast/broadcast
852   * interrupts to a vCPU. So, we still use legacy interrupt
853   * remapping for these kind of interrupts.
854   *
855   * For lowest-priority interrupts, we only support
856   * those with single CPU as the destination, e.g. user
857   * configures the interrupts via /proc/irq or uses
858   * irqbalance to make the interrupts single-CPU.
859   */
860  static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)861  get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
862  		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
863  {
864  	struct kvm_lapic_irq irq;
865  	struct kvm_vcpu *vcpu = NULL;
866  
867  	kvm_set_msi_irq(kvm, e, &irq);
868  
869  	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
870  	    !kvm_irq_is_postable(&irq)) {
871  		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
872  			 __func__, irq.vector);
873  		return -1;
874  	}
875  
876  	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
877  		 irq.vector);
878  	*svm = to_svm(vcpu);
879  	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
880  	vcpu_info->vector = irq.vector;
881  
882  	return 0;
883  }
884  
885  /*
886   * avic_pi_update_irte - set IRTE for Posted-Interrupts
887   *
888   * @kvm: kvm
889   * @host_irq: host irq of the interrupt
890   * @guest_irq: gsi of the interrupt
891   * @set: set or unset PI
892   * returns 0 on success, < 0 on failure
893   */
avic_pi_update_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)894  int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
895  			uint32_t guest_irq, bool set)
896  {
897  	struct kvm_kernel_irq_routing_entry *e;
898  	struct kvm_irq_routing_table *irq_rt;
899  	int idx, ret = 0;
900  
901  	if (!kvm_arch_has_assigned_device(kvm) ||
902  	    !irq_remapping_cap(IRQ_POSTING_CAP))
903  		return 0;
904  
905  	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
906  		 __func__, host_irq, guest_irq, set);
907  
908  	idx = srcu_read_lock(&kvm->irq_srcu);
909  	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
910  
911  	if (guest_irq >= irq_rt->nr_rt_entries ||
912  		hlist_empty(&irq_rt->map[guest_irq])) {
913  		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
914  			     guest_irq, irq_rt->nr_rt_entries);
915  		goto out;
916  	}
917  
918  	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
919  		struct vcpu_data vcpu_info;
920  		struct vcpu_svm *svm = NULL;
921  
922  		if (e->type != KVM_IRQ_ROUTING_MSI)
923  			continue;
924  
925  		/**
926  		 * Here, we setup with legacy mode in the following cases:
927  		 * 1. When cannot target interrupt to a specific vcpu.
928  		 * 2. Unsetting posted interrupt.
929  		 * 3. APIC virtualization is disabled for the vcpu.
930  		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
931  		 */
932  		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
933  		    kvm_vcpu_apicv_active(&svm->vcpu)) {
934  			struct amd_iommu_pi_data pi;
935  
936  			/* Try to enable guest_mode in IRTE */
937  			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
938  					    AVIC_HPA_MASK);
939  			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
940  						     svm->vcpu.vcpu_id);
941  			pi.is_guest_mode = true;
942  			pi.vcpu_data = &vcpu_info;
943  			ret = irq_set_vcpu_affinity(host_irq, &pi);
944  
945  			/**
946  			 * Here, we successfully setting up vcpu affinity in
947  			 * IOMMU guest mode. Now, we need to store the posted
948  			 * interrupt information in a per-vcpu ir_list so that
949  			 * we can reference to them directly when we update vcpu
950  			 * scheduling information in IOMMU irte.
951  			 */
952  			if (!ret && pi.is_guest_mode)
953  				svm_ir_list_add(svm, &pi);
954  		} else {
955  			/* Use legacy mode in IRTE */
956  			struct amd_iommu_pi_data pi;
957  
958  			/**
959  			 * Here, pi is used to:
960  			 * - Tell IOMMU to use legacy mode for this interrupt.
961  			 * - Retrieve ga_tag of prior interrupt remapping data.
962  			 */
963  			pi.prev_ga_tag = 0;
964  			pi.is_guest_mode = false;
965  			ret = irq_set_vcpu_affinity(host_irq, &pi);
966  
967  			/**
968  			 * Check if the posted interrupt was previously
969  			 * setup with the guest_mode by checking if the ga_tag
970  			 * was cached. If so, we need to clean up the per-vcpu
971  			 * ir_list.
972  			 */
973  			if (!ret && pi.prev_ga_tag) {
974  				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
975  				struct kvm_vcpu *vcpu;
976  
977  				vcpu = kvm_get_vcpu_by_id(kvm, id);
978  				if (vcpu)
979  					svm_ir_list_del(to_svm(vcpu), &pi);
980  			}
981  		}
982  
983  		if (!ret && svm) {
984  			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
985  						 e->gsi, vcpu_info.vector,
986  						 vcpu_info.pi_desc_addr, set);
987  		}
988  
989  		if (ret < 0) {
990  			pr_err("%s: failed to update PI IRTE\n", __func__);
991  			goto out;
992  		}
993  	}
994  
995  	ret = 0;
996  out:
997  	srcu_read_unlock(&kvm->irq_srcu, idx);
998  	return ret;
999  }
1000  
1001  static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)1002  avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1003  {
1004  	int ret = 0;
1005  	struct amd_svm_iommu_ir *ir;
1006  	struct vcpu_svm *svm = to_svm(vcpu);
1007  
1008  	lockdep_assert_held(&svm->ir_list_lock);
1009  
1010  	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1011  		return 0;
1012  
1013  	/*
1014  	 * Here, we go through the per-vcpu ir_list to update all existing
1015  	 * interrupt remapping table entry targeting this vcpu.
1016  	 */
1017  	if (list_empty(&svm->ir_list))
1018  		return 0;
1019  
1020  	list_for_each_entry(ir, &svm->ir_list, node) {
1021  		ret = amd_iommu_update_ga(cpu, r, ir->data);
1022  		if (ret)
1023  			return ret;
1024  	}
1025  	return 0;
1026  }
1027  
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1028  void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1029  {
1030  	u64 entry;
1031  	int h_physical_id = kvm_cpu_get_apicid(cpu);
1032  	struct vcpu_svm *svm = to_svm(vcpu);
1033  	unsigned long flags;
1034  
1035  	lockdep_assert_preemption_disabled();
1036  
1037  	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1038  		return;
1039  
1040  	/*
1041  	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1042  	 * is being scheduled in after being preempted.  The CPU entries in the
1043  	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1044  	 * If the vCPU was migrated, its new CPU value will be stuffed when the
1045  	 * vCPU unblocks.
1046  	 */
1047  	if (kvm_vcpu_is_blocking(vcpu))
1048  		return;
1049  
1050  	/*
1051  	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
1052  	 * _currently_ have assigned devices, as that can change.  Holding
1053  	 * ir_list_lock ensures that either svm_ir_list_add() will consume
1054  	 * up-to-date entry information, or that this task will wait until
1055  	 * svm_ir_list_add() completes to set the new target pCPU.
1056  	 */
1057  	spin_lock_irqsave(&svm->ir_list_lock, flags);
1058  
1059  	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1060  	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1061  
1062  	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1063  	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1064  	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1065  
1066  	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1067  	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1068  
1069  	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1070  }
1071  
avic_vcpu_put(struct kvm_vcpu * vcpu)1072  void avic_vcpu_put(struct kvm_vcpu *vcpu)
1073  {
1074  	u64 entry;
1075  	struct vcpu_svm *svm = to_svm(vcpu);
1076  	unsigned long flags;
1077  
1078  	lockdep_assert_preemption_disabled();
1079  
1080  	/*
1081  	 * Note, reading the Physical ID entry outside of ir_list_lock is safe
1082  	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
1083  	 * to modify the entry, and preemption is disabled.  I.e. the vCPU
1084  	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
1085  	 * recursively.
1086  	 */
1087  	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1088  
1089  	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1090  	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1091  		return;
1092  
1093  	/*
1094  	 * Take and hold the per-vCPU interrupt remapping lock while updating
1095  	 * the Physical ID entry even though the lock doesn't protect against
1096  	 * multiple writers (see above).  Holding ir_list_lock ensures that
1097  	 * either svm_ir_list_add() will consume up-to-date entry information,
1098  	 * or that this task will wait until svm_ir_list_add() completes to
1099  	 * mark the vCPU as not running.
1100  	 */
1101  	spin_lock_irqsave(&svm->ir_list_lock, flags);
1102  
1103  	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1104  
1105  	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1106  	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1107  
1108  	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1109  
1110  }
1111  
avic_refresh_virtual_apic_mode(struct kvm_vcpu * vcpu)1112  void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
1113  {
1114  	struct vcpu_svm *svm = to_svm(vcpu);
1115  	struct vmcb *vmcb = svm->vmcb01.ptr;
1116  
1117  	if (!lapic_in_kernel(vcpu) || !enable_apicv)
1118  		return;
1119  
1120  	if (kvm_vcpu_apicv_active(vcpu)) {
1121  		/**
1122  		 * During AVIC temporary deactivation, guest could update
1123  		 * APIC ID, DFR and LDR registers, which would not be trapped
1124  		 * by avic_unaccelerated_access_interception(). In this case,
1125  		 * we need to check and update the AVIC logical APIC ID table
1126  		 * accordingly before re-activating.
1127  		 */
1128  		avic_apicv_post_state_restore(vcpu);
1129  		avic_activate_vmcb(svm);
1130  	} else {
1131  		avic_deactivate_vmcb(svm);
1132  	}
1133  	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1134  }
1135  
avic_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)1136  void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1137  {
1138  	bool activated = kvm_vcpu_apicv_active(vcpu);
1139  
1140  	if (!enable_apicv)
1141  		return;
1142  
1143  	avic_refresh_virtual_apic_mode(vcpu);
1144  
1145  	if (activated)
1146  		avic_vcpu_load(vcpu, vcpu->cpu);
1147  	else
1148  		avic_vcpu_put(vcpu);
1149  
1150  	avic_set_pi_irte_mode(vcpu, activated);
1151  }
1152  
avic_vcpu_blocking(struct kvm_vcpu * vcpu)1153  void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1154  {
1155  	if (!kvm_vcpu_apicv_active(vcpu))
1156  		return;
1157  
1158         /*
1159          * Unload the AVIC when the vCPU is about to block, _before_
1160          * the vCPU actually blocks.
1161          *
1162          * Any IRQs that arrive before IsRunning=0 will not cause an
1163          * incomplete IPI vmexit on the source, therefore vIRR will also
1164          * be checked by kvm_vcpu_check_block() before blocking.  The
1165          * memory barrier implicit in set_current_state orders writing
1166          * IsRunning=0 before reading the vIRR.  The processor needs a
1167          * matching memory barrier on interrupt delivery between writing
1168          * IRR and reading IsRunning; the lack of this barrier might be
1169          * the cause of errata #1235).
1170          */
1171  	avic_vcpu_put(vcpu);
1172  }
1173  
avic_vcpu_unblocking(struct kvm_vcpu * vcpu)1174  void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1175  {
1176  	if (!kvm_vcpu_apicv_active(vcpu))
1177  		return;
1178  
1179  	avic_vcpu_load(vcpu, vcpu->cpu);
1180  }
1181  
1182  /*
1183   * Note:
1184   * - The module param avic enable both xAPIC and x2APIC mode.
1185   * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1186   * - The mode can be switched at run-time.
1187   */
avic_hardware_setup(void)1188  bool avic_hardware_setup(void)
1189  {
1190  	if (!npt_enabled)
1191  		return false;
1192  
1193  	/* AVIC is a prerequisite for x2AVIC. */
1194  	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1195  		if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1196  			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1197  			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1198  		}
1199  		return false;
1200  	}
1201  
1202  	if (boot_cpu_has(X86_FEATURE_AVIC)) {
1203  		pr_info("AVIC enabled\n");
1204  	} else if (force_avic) {
1205  		/*
1206  		 * Some older systems does not advertise AVIC support.
1207  		 * See Revision Guide for specific AMD processor for more detail.
1208  		 */
1209  		pr_warn("AVIC is not supported in CPUID but force enabled");
1210  		pr_warn("Your system might crash and burn");
1211  	}
1212  
1213  	/* AVIC is a prerequisite for x2AVIC. */
1214  	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1215  	if (x2avic_enabled)
1216  		pr_info("x2AVIC enabled\n");
1217  
1218  	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1219  
1220  	return true;
1221  }
1222