xref: /openbmc/linux/kernel/rcu/tree.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 	.gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 
159 /*
160  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161  * real-time priority(enabling/disabling) is controlled by
162  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163  */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222  * permit this function to be invoked without holding the root rcu_node
223  * structure's ->lock, but of course results can be subject to change.
224  */
rcu_gp_in_progress(void)225 static int rcu_gp_in_progress(void)
226 {
227 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229 
230 /*
231  * Return the number of callbacks queued on the specified CPU.
232  * Handles both the nocbs and normal cases.
233  */
rcu_get_n_cbs_cpu(int cpu)234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237 
238 	if (rcu_segcblist_is_enabled(&rdp->cblist))
239 		return rcu_segcblist_n_cbs(&rdp->cblist);
240 	return 0;
241 }
242 
rcu_softirq_qs(void)243 void rcu_softirq_qs(void)
244 {
245 	rcu_qs();
246 	rcu_preempt_deferred_qs(current);
247 	rcu_tasks_qs(current, false);
248 }
249 
250 /*
251  * Reset the current CPU's ->dynticks counter to indicate that the
252  * newly onlined CPU is no longer in an extended quiescent state.
253  * This will either leave the counter unchanged, or increment it
254  * to the next non-quiescent value.
255  *
256  * The non-atomic test/increment sequence works because the upper bits
257  * of the ->dynticks counter are manipulated only by the corresponding CPU,
258  * or when the corresponding CPU is offline.
259  */
rcu_dynticks_eqs_online(void)260 static void rcu_dynticks_eqs_online(void)
261 {
262 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 		return;
264 	ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266 
267 /*
268  * Snapshot the ->dynticks counter with full ordering so as to allow
269  * stable comparison of this counter with past and future snapshots.
270  */
rcu_dynticks_snap(int cpu)271 static int rcu_dynticks_snap(int cpu)
272 {
273 	smp_mb();  // Fundamental RCU ordering guarantee.
274 	return ct_dynticks_cpu_acquire(cpu);
275 }
276 
277 /*
278  * Return true if the snapshot returned from rcu_dynticks_snap()
279  * indicates that RCU is in an extended quiescent state.
280  */
rcu_dynticks_in_eqs(int snap)281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 	return !(snap & RCU_DYNTICKS_IDX);
284 }
285 
286 /*
287  * Return true if the CPU corresponding to the specified rcu_data
288  * structure has spent some time in an extended quiescent state since
289  * rcu_dynticks_snap() returned the specified snapshot.
290  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 	return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295 
296 /*
297  * Return true if the referenced integer is zero while the specified
298  * CPU remains within a single extended quiescent state.
299  */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 	int snap;
303 
304 	// If not quiescent, force back to earlier extended quiescent state.
305 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 	smp_rmb(); // Order ->dynticks and *vp reads.
307 	if (READ_ONCE(*vp))
308 		return false;  // Non-zero, so report failure;
309 	smp_rmb(); // Order *vp read and ->dynticks re-read.
310 
311 	// If still in the same extended quiescent state, we are good!
312 	return snap == ct_dynticks_cpu(cpu);
313 }
314 
315 /*
316  * Let the RCU core know that this CPU has gone through the scheduler,
317  * which is a quiescent state.  This is called when the need for a
318  * quiescent state is urgent, so we burn an atomic operation and full
319  * memory barriers to let the RCU core know about it, regardless of what
320  * this CPU might (or might not) do in the near future.
321  *
322  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323  *
324  * The caller must have disabled interrupts and must not be idle.
325  */
rcu_momentary_dyntick_idle(void)326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 	int seq;
329 
330 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 	/* It is illegal to call this from idle state. */
333 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 	rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337 
338 /**
339  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340  *
341  * If the current CPU is idle and running at a first-level (not nested)
342  * interrupt, or directly, from idle, return true.
343  *
344  * The caller must have at least disabled IRQs.
345  */
rcu_is_cpu_rrupt_from_idle(void)346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 	long nesting;
349 
350 	/*
351 	 * Usually called from the tick; but also used from smp_function_call()
352 	 * for expedited grace periods. This latter can result in running from
353 	 * the idle task, instead of an actual IPI.
354 	 */
355 	lockdep_assert_irqs_disabled();
356 
357 	/* Check for counter underflows */
358 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 			 "RCU dynticks_nesting counter underflow!");
360 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362 
363 	/* Are we at first interrupt nesting level? */
364 	nesting = ct_dynticks_nmi_nesting();
365 	if (nesting > 1)
366 		return false;
367 
368 	/*
369 	 * If we're not in an interrupt, we must be in the idle task!
370 	 */
371 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372 
373 	/* Does CPU appear to be idle from an RCU standpoint? */
374 	return ct_dynticks_nesting() == 0;
375 }
376 
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 				// Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394 
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400 
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404 
405 /*
406  * How long the grace period must be before we start recruiting
407  * quiescent-state help from rcu_note_context_switch().
408  */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 
414 /*
415  * Make sure that we give the grace-period kthread time to detect any
416  * idle CPUs before taking active measures to force quiescent states.
417  * However, don't go below 100 milliseconds, adjusted upwards for really
418  * large systems.
419  */
adjust_jiffies_till_sched_qs(void)420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 	unsigned long j;
423 
424 	/* If jiffies_till_sched_qs was specified, respect the request. */
425 	if (jiffies_till_sched_qs != ULONG_MAX) {
426 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 		return;
428 	}
429 	/* Otherwise, set to third fqs scan, but bound below on large system. */
430 	j = READ_ONCE(jiffies_till_first_fqs) +
431 		      2 * READ_ONCE(jiffies_till_next_fqs);
432 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 	WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 	ulong j;
441 	int ret = kstrtoul(val, 0, &j);
442 
443 	if (!ret) {
444 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 		adjust_jiffies_till_sched_qs();
446 	}
447 	return ret;
448 }
449 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 	ulong j;
453 	int ret = kstrtoul(val, 0, &j);
454 
455 	if (!ret) {
456 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 		adjust_jiffies_till_sched_qs();
458 	}
459 	return ret;
460 }
461 
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 	.set = param_set_first_fqs_jiffies,
464 	.get = param_get_ulong,
465 };
466 
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 	.set = param_set_next_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475 
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478 
479 /*
480  * Return the number of RCU GPs completed thus far for debug & stats.
481  */
rcu_get_gp_seq(void)482 unsigned long rcu_get_gp_seq(void)
483 {
484 	return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487 
488 /*
489  * Return the number of RCU expedited batches completed thus far for
490  * debug & stats.  Odd numbers mean that a batch is in progress, even
491  * numbers mean idle.  The value returned will thus be roughly double
492  * the cumulative batches since boot.
493  */
rcu_exp_batches_completed(void)494 unsigned long rcu_exp_batches_completed(void)
495 {
496 	return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499 
500 /*
501  * Return the root node of the rcu_state structure.
502  */
rcu_get_root(void)503 static struct rcu_node *rcu_get_root(void)
504 {
505 	return &rcu_state.node[0];
506 }
507 
508 /*
509  * Send along grace-period-related data for rcutorture diagnostics.
510  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 			    unsigned long *gp_seq)
513 {
514 	switch (test_type) {
515 	case RCU_FLAVOR:
516 		*flags = READ_ONCE(rcu_state.gp_flags);
517 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 		break;
519 	default:
520 		break;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524 
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527  * An empty function that will trigger a reschedule on
528  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529  */
late_wakeup_func(struct irq_work * work)530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533 
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 	IRQ_WORK_INIT(late_wakeup_func);
536 
537 /*
538  * If either:
539  *
540  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542  *
543  * In these cases the late RCU wake ups aren't supported in the resched loops and our
544  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545  * get re-enabled again.
546  */
rcu_irq_work_resched(void)547 noinstr void rcu_irq_work_resched(void)
548 {
549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550 
551 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 		return;
553 
554 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 		return;
556 
557 	instrumentation_begin();
558 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 	}
561 	instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564 
565 #ifdef CONFIG_PROVE_RCU
566 /**
567  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568  */
rcu_irq_exit_check_preempt(void)569 void rcu_irq_exit_check_preempt(void)
570 {
571 	lockdep_assert_irqs_disabled();
572 
573 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 			 "RCU dynticks_nesting counter underflow/zero!");
575 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 			 DYNTICK_IRQ_NONIDLE,
577 			 "Bad RCU  dynticks_nmi_nesting counter\n");
578 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 			 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582 
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586  *
587  * The scheduler tick is not normally enabled when CPUs enter the kernel
588  * from nohz_full userspace execution.  After all, nohz_full userspace
589  * execution is an RCU quiescent state and the time executing in the kernel
590  * is quite short.  Except of course when it isn't.  And it is not hard to
591  * cause a large system to spend tens of seconds or even minutes looping
592  * in the kernel, which can cause a number of problems, include RCU CPU
593  * stall warnings.
594  *
595  * Therefore, if a nohz_full CPU fails to report a quiescent state
596  * in a timely manner, the RCU grace-period kthread sets that CPU's
597  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598  * exception will invoke this function, which will turn on the scheduler
599  * tick, which will enable RCU to detect that CPU's quiescent states,
600  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601  * The tick will be disabled once a quiescent state is reported for
602  * this CPU.
603  *
604  * Of course, in carefully tuned systems, there might never be an
605  * interrupt or exception.  In that case, the RCU grace-period kthread
606  * will eventually cause one to happen.  However, in less carefully
607  * controlled environments, this function allows RCU to get what it
608  * needs without creating otherwise useless interruptions.
609  */
__rcu_irq_enter_check_tick(void)610 void __rcu_irq_enter_check_tick(void)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	// If we're here from NMI there's nothing to do.
615 	if (in_nmi())
616 		return;
617 
618 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620 
621 	if (!tick_nohz_full_cpu(rdp->cpu) ||
622 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623 	    READ_ONCE(rdp->rcu_forced_tick)) {
624 		// RCU doesn't need nohz_full help from this CPU, or it is
625 		// already getting that help.
626 		return;
627 	}
628 
629 	// We get here only when not in an extended quiescent state and
630 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631 	// already watching and (2) The fact that we are in an interrupt
632 	// handler and that the rcu_node lock is an irq-disabled lock
633 	// prevents self-deadlock.  So we can safely recheck under the lock.
634 	// Note that the nohz_full state currently cannot change.
635 	raw_spin_lock_rcu_node(rdp->mynode);
636 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 		// A nohz_full CPU is in the kernel and RCU needs a
638 		// quiescent state.  Turn on the tick!
639 		WRITE_ONCE(rdp->rcu_forced_tick, true);
640 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 	}
642 	raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646 
647 /*
648  * Check to see if any future non-offloaded RCU-related work will need
649  * to be done by the current CPU, even if none need be done immediately,
650  * returning 1 if so.  This function is part of the RCU implementation;
651  * it is -not- an exported member of the RCU API.  This is used by
652  * the idle-entry code to figure out whether it is safe to disable the
653  * scheduler-clock interrupt.
654  *
655  * Just check whether or not this CPU has non-offloaded RCU callbacks
656  * queued.
657  */
rcu_needs_cpu(void)658 int rcu_needs_cpu(void)
659 {
660 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663 
664 /*
665  * If any sort of urgency was applied to the current CPU (for example,
666  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667  * to get to a quiescent state, disable it.
668  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 		WRITE_ONCE(rdp->rcu_forced_tick, false);
677 	}
678 }
679 
680 /**
681  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682  *
683  * Return @true if RCU is watching the running CPU and @false otherwise.
684  * An @true return means that this CPU can safely enter RCU read-side
685  * critical sections.
686  *
687  * Although calls to rcu_is_watching() from most parts of the kernel
688  * will return @true, there are important exceptions.  For example, if the
689  * current CPU is deep within its idle loop, in kernel entry/exit code,
690  * or offline, rcu_is_watching() will return @false.
691  *
692  * Make notrace because it can be called by the internal functions of
693  * ftrace, and making this notrace removes unnecessary recursion calls.
694  */
rcu_is_watching(void)695 notrace bool rcu_is_watching(void)
696 {
697 	bool ret;
698 
699 	preempt_disable_notrace();
700 	ret = !rcu_dynticks_curr_cpu_in_eqs();
701 	preempt_enable_notrace();
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705 
706 /*
707  * If a holdout task is actually running, request an urgent quiescent
708  * state from its CPU.  This is unsynchronized, so migrations can cause
709  * the request to go to the wrong CPU.  Which is OK, all that will happen
710  * is that the CPU's next context switch will be a bit slower and next
711  * time around this task will generate another request.
712  */
rcu_request_urgent_qs_task(struct task_struct * t)713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 	int cpu;
716 
717 	barrier();
718 	cpu = task_cpu(t);
719 	if (!task_curr(t))
720 		return; /* This task is not running on that CPU. */
721 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723 
724 /*
725  * When trying to report a quiescent state on behalf of some other CPU,
726  * it is our responsibility to check for and handle potential overflow
727  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728  * After all, the CPU might be in deep idle state, and thus executing no
729  * code whatsoever.
730  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 	raw_lockdep_assert_held_rcu_node(rnp);
734 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 			 rnp->gp_seq))
736 		WRITE_ONCE(rdp->gpwrap, true);
737 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740 
741 /*
742  * Snapshot the specified CPU's dynticks counter so that we can later
743  * credit them with an implicit quiescent state.  Return 1 if this CPU
744  * is in dynticks idle mode, which is an extended quiescent state.
745  */
dyntick_save_progress_counter(struct rcu_data * rdp)746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 		rcu_gpnum_ovf(rdp->mynode, rdp);
752 		return 1;
753 	}
754 	return 0;
755 }
756 
757 #ifndef arch_irq_stat_cpu
758 #define arch_irq_stat_cpu(cpu) 0
759 #endif
760 
761 /*
762  * Returns positive if the specified CPU has passed through a quiescent state
763  * by virtue of being in or having passed through an dynticks idle state since
764  * the last call to dyntick_save_progress_counter() for this same CPU, or by
765  * virtue of having been offline.
766  *
767  * Returns negative if the specified CPU needs a force resched.
768  *
769  * Returns zero otherwise.
770  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)771 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
772 {
773 	unsigned long jtsq;
774 	int ret = 0;
775 	struct rcu_node *rnp = rdp->mynode;
776 
777 	/*
778 	 * If the CPU passed through or entered a dynticks idle phase with
779 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
780 	 * already acknowledged the request to pass through a quiescent
781 	 * state.  Either way, that CPU cannot possibly be in an RCU
782 	 * read-side critical section that started before the beginning
783 	 * of the current RCU grace period.
784 	 */
785 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
786 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
787 		rcu_gpnum_ovf(rnp, rdp);
788 		return 1;
789 	}
790 
791 	/*
792 	 * Complain if a CPU that is considered to be offline from RCU's
793 	 * perspective has not yet reported a quiescent state.  After all,
794 	 * the offline CPU should have reported a quiescent state during
795 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
796 	 * if it ran concurrently with either the CPU going offline or the
797 	 * last task on a leaf rcu_node structure exiting its RCU read-side
798 	 * critical section while all CPUs corresponding to that structure
799 	 * are offline.  This added warning detects bugs in any of these
800 	 * code paths.
801 	 *
802 	 * The rcu_node structure's ->lock is held here, which excludes
803 	 * the relevant portions the CPU-hotplug code, the grace-period
804 	 * initialization code, and the rcu_read_unlock() code paths.
805 	 *
806 	 * For more detail, please refer to the "Hotplug CPU" section
807 	 * of RCU's Requirements documentation.
808 	 */
809 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
810 		struct rcu_node *rnp1;
811 
812 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
813 			__func__, rnp->grplo, rnp->grphi, rnp->level,
814 			(long)rnp->gp_seq, (long)rnp->completedqs);
815 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
816 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
817 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
818 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
819 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
820 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
821 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
822 		return 1; /* Break things loose after complaining. */
823 	}
824 
825 	/*
826 	 * A CPU running for an extended time within the kernel can
827 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
828 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
829 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
830 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
831 	 * variable are safe because the assignments are repeated if this
832 	 * CPU failed to pass through a quiescent state.  This code
833 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
834 	 * is set way high.
835 	 */
836 	jtsq = READ_ONCE(jiffies_to_sched_qs);
837 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
838 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
839 	     time_after(jiffies, rcu_state.jiffies_resched) ||
840 	     rcu_state.cbovld)) {
841 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
842 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
843 		smp_store_release(&rdp->rcu_urgent_qs, true);
844 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
845 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
846 	}
847 
848 	/*
849 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
850 	 * The above code handles this, but only for straight cond_resched().
851 	 * And some in-kernel loops check need_resched() before calling
852 	 * cond_resched(), which defeats the above code for CPUs that are
853 	 * running in-kernel with scheduling-clock interrupts disabled.
854 	 * So hit them over the head with the resched_cpu() hammer!
855 	 */
856 	if (tick_nohz_full_cpu(rdp->cpu) &&
857 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
858 	     rcu_state.cbovld)) {
859 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
860 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
861 		ret = -1;
862 	}
863 
864 	/*
865 	 * If more than halfway to RCU CPU stall-warning time, invoke
866 	 * resched_cpu() more frequently to try to loosen things up a bit.
867 	 * Also check to see if the CPU is getting hammered with interrupts,
868 	 * but only once per grace period, just to keep the IPIs down to
869 	 * a dull roar.
870 	 */
871 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
872 		if (time_after(jiffies,
873 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
874 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
875 			ret = -1;
876 		}
877 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
878 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
879 		    (rnp->ffmask & rdp->grpmask)) {
880 			rdp->rcu_iw_pending = true;
881 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
882 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
883 		}
884 
885 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
886 			int cpu = rdp->cpu;
887 			struct rcu_snap_record *rsrp;
888 			struct kernel_cpustat *kcsp;
889 
890 			kcsp = &kcpustat_cpu(cpu);
891 
892 			rsrp = &rdp->snap_record;
893 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
894 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
895 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
896 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu);
897 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu);
898 			rsrp->nr_csw = nr_context_switches_cpu(cpu);
899 			rsrp->jiffies = jiffies;
900 			rsrp->gp_seq = rdp->gp_seq;
901 		}
902 	}
903 
904 	return ret;
905 }
906 
907 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)908 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
909 			      unsigned long gp_seq_req, const char *s)
910 {
911 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
912 				      gp_seq_req, rnp->level,
913 				      rnp->grplo, rnp->grphi, s);
914 }
915 
916 /*
917  * rcu_start_this_gp - Request the start of a particular grace period
918  * @rnp_start: The leaf node of the CPU from which to start.
919  * @rdp: The rcu_data corresponding to the CPU from which to start.
920  * @gp_seq_req: The gp_seq of the grace period to start.
921  *
922  * Start the specified grace period, as needed to handle newly arrived
923  * callbacks.  The required future grace periods are recorded in each
924  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
925  * is reason to awaken the grace-period kthread.
926  *
927  * The caller must hold the specified rcu_node structure's ->lock, which
928  * is why the caller is responsible for waking the grace-period kthread.
929  *
930  * Returns true if the GP thread needs to be awakened else false.
931  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)932 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
933 			      unsigned long gp_seq_req)
934 {
935 	bool ret = false;
936 	struct rcu_node *rnp;
937 
938 	/*
939 	 * Use funnel locking to either acquire the root rcu_node
940 	 * structure's lock or bail out if the need for this grace period
941 	 * has already been recorded -- or if that grace period has in
942 	 * fact already started.  If there is already a grace period in
943 	 * progress in a non-leaf node, no recording is needed because the
944 	 * end of the grace period will scan the leaf rcu_node structures.
945 	 * Note that rnp_start->lock must not be released.
946 	 */
947 	raw_lockdep_assert_held_rcu_node(rnp_start);
948 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
949 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
950 		if (rnp != rnp_start)
951 			raw_spin_lock_rcu_node(rnp);
952 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
953 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
954 		    (rnp != rnp_start &&
955 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
956 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
957 					  TPS("Prestarted"));
958 			goto unlock_out;
959 		}
960 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
961 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
962 			/*
963 			 * We just marked the leaf or internal node, and a
964 			 * grace period is in progress, which means that
965 			 * rcu_gp_cleanup() will see the marking.  Bail to
966 			 * reduce contention.
967 			 */
968 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
969 					  TPS("Startedleaf"));
970 			goto unlock_out;
971 		}
972 		if (rnp != rnp_start && rnp->parent != NULL)
973 			raw_spin_unlock_rcu_node(rnp);
974 		if (!rnp->parent)
975 			break;  /* At root, and perhaps also leaf. */
976 	}
977 
978 	/* If GP already in progress, just leave, otherwise start one. */
979 	if (rcu_gp_in_progress()) {
980 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
981 		goto unlock_out;
982 	}
983 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
984 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
985 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
986 	if (!READ_ONCE(rcu_state.gp_kthread)) {
987 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
988 		goto unlock_out;
989 	}
990 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
991 	ret = true;  /* Caller must wake GP kthread. */
992 unlock_out:
993 	/* Push furthest requested GP to leaf node and rcu_data structure. */
994 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
995 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
996 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
997 	}
998 	if (rnp != rnp_start)
999 		raw_spin_unlock_rcu_node(rnp);
1000 	return ret;
1001 }
1002 
1003 /*
1004  * Clean up any old requests for the just-ended grace period.  Also return
1005  * whether any additional grace periods have been requested.
1006  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1007 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1008 {
1009 	bool needmore;
1010 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1011 
1012 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1013 	if (!needmore)
1014 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1015 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1016 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1017 	return needmore;
1018 }
1019 
swake_up_one_online_ipi(void * arg)1020 static void swake_up_one_online_ipi(void *arg)
1021 {
1022 	struct swait_queue_head *wqh = arg;
1023 
1024 	swake_up_one(wqh);
1025 }
1026 
swake_up_one_online(struct swait_queue_head * wqh)1027 static void swake_up_one_online(struct swait_queue_head *wqh)
1028 {
1029 	int cpu = get_cpu();
1030 
1031 	/*
1032 	 * If called from rcutree_report_cpu_starting(), wake up
1033 	 * is dangerous that late in the CPU-down hotplug process. The
1034 	 * scheduler might queue an ignored hrtimer. Defer the wake up
1035 	 * to an online CPU instead.
1036 	 */
1037 	if (unlikely(cpu_is_offline(cpu))) {
1038 		int target;
1039 
1040 		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1041 					 cpu_online_mask);
1042 
1043 		smp_call_function_single(target, swake_up_one_online_ipi,
1044 					 wqh, 0);
1045 		put_cpu();
1046 	} else {
1047 		put_cpu();
1048 		swake_up_one(wqh);
1049 	}
1050 }
1051 
1052 /*
1053  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1054  * interrupt or softirq handler, in which case we just might immediately
1055  * sleep upon return, resulting in a grace-period hang), and don't bother
1056  * awakening when there is nothing for the grace-period kthread to do
1057  * (as in several CPUs raced to awaken, we lost), and finally don't try
1058  * to awaken a kthread that has not yet been created.  If all those checks
1059  * are passed, track some debug information and awaken.
1060  *
1061  * So why do the self-wakeup when in an interrupt or softirq handler
1062  * in the grace-period kthread's context?  Because the kthread might have
1063  * been interrupted just as it was going to sleep, and just after the final
1064  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1065  * is required, and is therefore supplied.
1066  */
rcu_gp_kthread_wake(void)1067 static void rcu_gp_kthread_wake(void)
1068 {
1069 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070 
1071 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1072 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1073 		return;
1074 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1076 	swake_up_one_online(&rcu_state.gp_wq);
1077 }
1078 
1079 /*
1080  * If there is room, assign a ->gp_seq number to any callbacks on this
1081  * CPU that have not already been assigned.  Also accelerate any callbacks
1082  * that were previously assigned a ->gp_seq number that has since proven
1083  * to be too conservative, which can happen if callbacks get assigned a
1084  * ->gp_seq number while RCU is idle, but with reference to a non-root
1085  * rcu_node structure.  This function is idempotent, so it does not hurt
1086  * to call it repeatedly.  Returns an flag saying that we should awaken
1087  * the RCU grace-period kthread.
1088  *
1089  * The caller must hold rnp->lock with interrupts disabled.
1090  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1092 {
1093 	unsigned long gp_seq_req;
1094 	bool ret = false;
1095 
1096 	rcu_lockdep_assert_cblist_protected(rdp);
1097 	raw_lockdep_assert_held_rcu_node(rnp);
1098 
1099 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1101 		return false;
1102 
1103 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104 
1105 	/*
1106 	 * Callbacks are often registered with incomplete grace-period
1107 	 * information.  Something about the fact that getting exact
1108 	 * information requires acquiring a global lock...  RCU therefore
1109 	 * makes a conservative estimate of the grace period number at which
1110 	 * a given callback will become ready to invoke.	The following
1111 	 * code checks this estimate and improves it when possible, thus
1112 	 * accelerating callback invocation to an earlier grace-period
1113 	 * number.
1114 	 */
1115 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1116 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1118 
1119 	/* Trace depending on how much we were able to accelerate. */
1120 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1121 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1122 	else
1123 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124 
1125 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126 
1127 	return ret;
1128 }
1129 
1130 /*
1131  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132  * rcu_node structure's ->lock be held.  It consults the cached value
1133  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135  * while holding the leaf rcu_node structure's ->lock.
1136  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1138 					struct rcu_data *rdp)
1139 {
1140 	unsigned long c;
1141 	bool needwake;
1142 
1143 	rcu_lockdep_assert_cblist_protected(rdp);
1144 	c = rcu_seq_snap(&rcu_state.gp_seq);
1145 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1146 		/* Old request still live, so mark recent callbacks. */
1147 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 		return;
1149 	}
1150 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1151 	needwake = rcu_accelerate_cbs(rnp, rdp);
1152 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 	if (needwake)
1154 		rcu_gp_kthread_wake();
1155 }
1156 
1157 /*
1158  * Move any callbacks whose grace period has completed to the
1159  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1160  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1161  * sublist.  This function is idempotent, so it does not hurt to
1162  * invoke it repeatedly.  As long as it is not invoked -too- often...
1163  * Returns true if the RCU grace-period kthread needs to be awakened.
1164  *
1165  * The caller must hold rnp->lock with interrupts disabled.
1166  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1168 {
1169 	rcu_lockdep_assert_cblist_protected(rdp);
1170 	raw_lockdep_assert_held_rcu_node(rnp);
1171 
1172 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1174 		return false;
1175 
1176 	/*
1177 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1178 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 	 */
1180 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1181 
1182 	/* Classify any remaining callbacks. */
1183 	return rcu_accelerate_cbs(rnp, rdp);
1184 }
1185 
1186 /*
1187  * Move and classify callbacks, but only if doing so won't require
1188  * that the RCU grace-period kthread be awakened.
1189  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 						  struct rcu_data *rdp)
1192 {
1193 	rcu_lockdep_assert_cblist_protected(rdp);
1194 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1195 		return;
1196 	// The grace period cannot end while we hold the rcu_node lock.
1197 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1199 	raw_spin_unlock_rcu_node(rnp);
1200 }
1201 
1202 /*
1203  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204  * quiescent state.  This is intended to be invoked when the CPU notices
1205  * a new grace period.
1206  */
rcu_strict_gp_check_qs(void)1207 static void rcu_strict_gp_check_qs(void)
1208 {
1209 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 		rcu_read_lock();
1211 		rcu_read_unlock();
1212 	}
1213 }
1214 
1215 /*
1216  * Update CPU-local rcu_data state to record the beginnings and ends of
1217  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1218  * structure corresponding to the current CPU, and must have irqs disabled.
1219  * Returns true if the grace-period kthread needs to be awakened.
1220  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1222 {
1223 	bool ret = false;
1224 	bool need_qs;
1225 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1226 
1227 	raw_lockdep_assert_held_rcu_node(rnp);
1228 
1229 	if (rdp->gp_seq == rnp->gp_seq)
1230 		return false; /* Nothing to do. */
1231 
1232 	/* Handle the ends of any preceding grace periods first. */
1233 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1235 		if (!offloaded)
1236 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1237 		rdp->core_needs_qs = false;
1238 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1239 	} else {
1240 		if (!offloaded)
1241 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1242 		if (rdp->core_needs_qs)
1243 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1244 	}
1245 
1246 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1249 		/*
1250 		 * If the current grace period is waiting for this CPU,
1251 		 * set up to detect a quiescent state, otherwise don't
1252 		 * go looking for one.
1253 		 */
1254 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1255 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 		rdp->cpu_no_qs.b.norm = need_qs;
1257 		rdp->core_needs_qs = need_qs;
1258 		zero_cpu_stall_ticks(rdp);
1259 	}
1260 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1261 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1262 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1263 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1265 	WRITE_ONCE(rdp->gpwrap, false);
1266 	rcu_gpnum_ovf(rnp, rdp);
1267 	return ret;
1268 }
1269 
note_gp_changes(struct rcu_data * rdp)1270 static void note_gp_changes(struct rcu_data *rdp)
1271 {
1272 	unsigned long flags;
1273 	bool needwake;
1274 	struct rcu_node *rnp;
1275 
1276 	local_irq_save(flags);
1277 	rnp = rdp->mynode;
1278 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1279 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1280 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1281 		local_irq_restore(flags);
1282 		return;
1283 	}
1284 	needwake = __note_gp_changes(rnp, rdp);
1285 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 	rcu_strict_gp_check_qs();
1287 	if (needwake)
1288 		rcu_gp_kthread_wake();
1289 }
1290 
1291 static atomic_t *rcu_gp_slow_suppress;
1292 
1293 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1294 void rcu_gp_slow_register(atomic_t *rgssp)
1295 {
1296 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1297 
1298 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301 
1302 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1303 void rcu_gp_slow_unregister(atomic_t *rgssp)
1304 {
1305 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1306 
1307 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310 
rcu_gp_slow_is_suppressed(void)1311 static bool rcu_gp_slow_is_suppressed(void)
1312 {
1313 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314 
1315 	return rgssp && atomic_read(rgssp);
1316 }
1317 
rcu_gp_slow(int delay)1318 static void rcu_gp_slow(int delay)
1319 {
1320 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1322 		schedule_timeout_idle(delay);
1323 }
1324 
1325 static unsigned long sleep_duration;
1326 
1327 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1328 void rcu_gp_set_torture_wait(int duration)
1329 {
1330 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 		WRITE_ONCE(sleep_duration, duration);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334 
1335 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1336 static void rcu_gp_torture_wait(void)
1337 {
1338 	unsigned long duration;
1339 
1340 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 		return;
1342 	duration = xchg(&sleep_duration, 0UL);
1343 	if (duration > 0) {
1344 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1345 		schedule_timeout_idle(duration);
1346 		pr_alert("%s: Wait complete\n", __func__);
1347 	}
1348 }
1349 
1350 /*
1351  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352  * processing.
1353  */
rcu_strict_gp_boundary(void * unused)1354 static void rcu_strict_gp_boundary(void *unused)
1355 {
1356 	invoke_rcu_core();
1357 }
1358 
1359 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1360 static void rcu_poll_gp_seq_start(unsigned long *snap)
1361 {
1362 	struct rcu_node *rnp = rcu_get_root();
1363 
1364 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1365 		raw_lockdep_assert_held_rcu_node(rnp);
1366 
1367 	// If RCU was idle, note beginning of GP.
1368 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1369 		rcu_seq_start(&rcu_state.gp_seq_polled);
1370 
1371 	// Either way, record current state.
1372 	*snap = rcu_state.gp_seq_polled;
1373 }
1374 
1375 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1376 static void rcu_poll_gp_seq_end(unsigned long *snap)
1377 {
1378 	struct rcu_node *rnp = rcu_get_root();
1379 
1380 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1381 		raw_lockdep_assert_held_rcu_node(rnp);
1382 
1383 	// If the previously noted GP is still in effect, record the
1384 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1385 	// problems.
1386 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1387 		rcu_seq_end(&rcu_state.gp_seq_polled);
1388 		rcu_state.gp_seq_polled_snap = 0;
1389 		rcu_state.gp_seq_polled_exp_snap = 0;
1390 	} else {
1391 		*snap = 0;
1392 	}
1393 }
1394 
1395 // Make the polled API aware of the beginning of a grace period, but
1396 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1397 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1398 {
1399 	unsigned long flags;
1400 	struct rcu_node *rnp = rcu_get_root();
1401 
1402 	if (rcu_init_invoked()) {
1403 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1404 			lockdep_assert_irqs_enabled();
1405 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1406 	}
1407 	rcu_poll_gp_seq_start(snap);
1408 	if (rcu_init_invoked())
1409 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1410 }
1411 
1412 // Make the polled API aware of the end of a grace period, but where
1413 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1414 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1415 {
1416 	unsigned long flags;
1417 	struct rcu_node *rnp = rcu_get_root();
1418 
1419 	if (rcu_init_invoked()) {
1420 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1421 			lockdep_assert_irqs_enabled();
1422 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1423 	}
1424 	rcu_poll_gp_seq_end(snap);
1425 	if (rcu_init_invoked())
1426 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427 }
1428 
1429 /*
1430  * Initialize a new grace period.  Return false if no grace period required.
1431  */
rcu_gp_init(void)1432 static noinline_for_stack bool rcu_gp_init(void)
1433 {
1434 	unsigned long flags;
1435 	unsigned long oldmask;
1436 	unsigned long mask;
1437 	struct rcu_data *rdp;
1438 	struct rcu_node *rnp = rcu_get_root();
1439 
1440 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1441 	raw_spin_lock_irq_rcu_node(rnp);
1442 	if (!READ_ONCE(rcu_state.gp_flags)) {
1443 		/* Spurious wakeup, tell caller to go back to sleep.  */
1444 		raw_spin_unlock_irq_rcu_node(rnp);
1445 		return false;
1446 	}
1447 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1448 
1449 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1450 		/*
1451 		 * Grace period already in progress, don't start another.
1452 		 * Not supposed to be able to happen.
1453 		 */
1454 		raw_spin_unlock_irq_rcu_node(rnp);
1455 		return false;
1456 	}
1457 
1458 	/* Advance to a new grace period and initialize state. */
1459 	record_gp_stall_check_time();
1460 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1461 	rcu_seq_start(&rcu_state.gp_seq);
1462 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1463 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1464 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1465 	raw_spin_unlock_irq_rcu_node(rnp);
1466 
1467 	/*
1468 	 * Apply per-leaf buffered online and offline operations to
1469 	 * the rcu_node tree. Note that this new grace period need not
1470 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1471 	 * offlining path, when combined with checks in this function,
1472 	 * will handle CPUs that are currently going offline or that will
1473 	 * go offline later.  Please also refer to "Hotplug CPU" section
1474 	 * of RCU's Requirements documentation.
1475 	 */
1476 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1477 	/* Exclude CPU hotplug operations. */
1478 	rcu_for_each_leaf_node(rnp) {
1479 		local_irq_save(flags);
1480 		arch_spin_lock(&rcu_state.ofl_lock);
1481 		raw_spin_lock_rcu_node(rnp);
1482 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1483 		    !rnp->wait_blkd_tasks) {
1484 			/* Nothing to do on this leaf rcu_node structure. */
1485 			raw_spin_unlock_rcu_node(rnp);
1486 			arch_spin_unlock(&rcu_state.ofl_lock);
1487 			local_irq_restore(flags);
1488 			continue;
1489 		}
1490 
1491 		/* Record old state, apply changes to ->qsmaskinit field. */
1492 		oldmask = rnp->qsmaskinit;
1493 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1494 
1495 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1496 		if (!oldmask != !rnp->qsmaskinit) {
1497 			if (!oldmask) { /* First online CPU for rcu_node. */
1498 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1499 					rcu_init_new_rnp(rnp);
1500 			} else if (rcu_preempt_has_tasks(rnp)) {
1501 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1502 			} else { /* Last offline CPU and can propagate. */
1503 				rcu_cleanup_dead_rnp(rnp);
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * If all waited-on tasks from prior grace period are
1509 		 * done, and if all this rcu_node structure's CPUs are
1510 		 * still offline, propagate up the rcu_node tree and
1511 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1512 		 * rcu_node structure's CPUs has since come back online,
1513 		 * simply clear ->wait_blkd_tasks.
1514 		 */
1515 		if (rnp->wait_blkd_tasks &&
1516 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1517 			rnp->wait_blkd_tasks = false;
1518 			if (!rnp->qsmaskinit)
1519 				rcu_cleanup_dead_rnp(rnp);
1520 		}
1521 
1522 		raw_spin_unlock_rcu_node(rnp);
1523 		arch_spin_unlock(&rcu_state.ofl_lock);
1524 		local_irq_restore(flags);
1525 	}
1526 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1527 
1528 	/*
1529 	 * Set the quiescent-state-needed bits in all the rcu_node
1530 	 * structures for all currently online CPUs in breadth-first
1531 	 * order, starting from the root rcu_node structure, relying on the
1532 	 * layout of the tree within the rcu_state.node[] array.  Note that
1533 	 * other CPUs will access only the leaves of the hierarchy, thus
1534 	 * seeing that no grace period is in progress, at least until the
1535 	 * corresponding leaf node has been initialized.
1536 	 *
1537 	 * The grace period cannot complete until the initialization
1538 	 * process finishes, because this kthread handles both.
1539 	 */
1540 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1541 	rcu_for_each_node_breadth_first(rnp) {
1542 		rcu_gp_slow(gp_init_delay);
1543 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1544 		rdp = this_cpu_ptr(&rcu_data);
1545 		rcu_preempt_check_blocked_tasks(rnp);
1546 		rnp->qsmask = rnp->qsmaskinit;
1547 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1548 		if (rnp == rdp->mynode)
1549 			(void)__note_gp_changes(rnp, rdp);
1550 		rcu_preempt_boost_start_gp(rnp);
1551 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1552 					    rnp->level, rnp->grplo,
1553 					    rnp->grphi, rnp->qsmask);
1554 		/* Quiescent states for tasks on any now-offline CPUs. */
1555 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1556 		rnp->rcu_gp_init_mask = mask;
1557 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1558 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1559 		else
1560 			raw_spin_unlock_irq_rcu_node(rnp);
1561 		cond_resched_tasks_rcu_qs();
1562 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1563 	}
1564 
1565 	// If strict, make all CPUs aware of new grace period.
1566 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1567 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1568 
1569 	return true;
1570 }
1571 
1572 /*
1573  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1574  * time.
1575  */
rcu_gp_fqs_check_wake(int * gfp)1576 static bool rcu_gp_fqs_check_wake(int *gfp)
1577 {
1578 	struct rcu_node *rnp = rcu_get_root();
1579 
1580 	// If under overload conditions, force an immediate FQS scan.
1581 	if (*gfp & RCU_GP_FLAG_OVLD)
1582 		return true;
1583 
1584 	// Someone like call_rcu() requested a force-quiescent-state scan.
1585 	*gfp = READ_ONCE(rcu_state.gp_flags);
1586 	if (*gfp & RCU_GP_FLAG_FQS)
1587 		return true;
1588 
1589 	// The current grace period has completed.
1590 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1591 		return true;
1592 
1593 	return false;
1594 }
1595 
1596 /*
1597  * Do one round of quiescent-state forcing.
1598  */
rcu_gp_fqs(bool first_time)1599 static void rcu_gp_fqs(bool first_time)
1600 {
1601 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1602 	struct rcu_node *rnp = rcu_get_root();
1603 
1604 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606 
1607 	WARN_ON_ONCE(nr_fqs > 3);
1608 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1609 	if (nr_fqs) {
1610 		if (nr_fqs == 1) {
1611 			WRITE_ONCE(rcu_state.jiffies_stall,
1612 				   jiffies + rcu_jiffies_till_stall_check());
1613 		}
1614 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1615 	}
1616 
1617 	if (first_time) {
1618 		/* Collect dyntick-idle snapshots. */
1619 		force_qs_rnp(dyntick_save_progress_counter);
1620 	} else {
1621 		/* Handle dyntick-idle and offline CPUs. */
1622 		force_qs_rnp(rcu_implicit_dynticks_qs);
1623 	}
1624 	/* Clear flag to prevent immediate re-entry. */
1625 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1626 		raw_spin_lock_irq_rcu_node(rnp);
1627 		WRITE_ONCE(rcu_state.gp_flags,
1628 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1629 		raw_spin_unlock_irq_rcu_node(rnp);
1630 	}
1631 }
1632 
1633 /*
1634  * Loop doing repeated quiescent-state forcing until the grace period ends.
1635  */
rcu_gp_fqs_loop(void)1636 static noinline_for_stack void rcu_gp_fqs_loop(void)
1637 {
1638 	bool first_gp_fqs = true;
1639 	int gf = 0;
1640 	unsigned long j;
1641 	int ret;
1642 	struct rcu_node *rnp = rcu_get_root();
1643 
1644 	j = READ_ONCE(jiffies_till_first_fqs);
1645 	if (rcu_state.cbovld)
1646 		gf = RCU_GP_FLAG_OVLD;
1647 	ret = 0;
1648 	for (;;) {
1649 		if (rcu_state.cbovld) {
1650 			j = (j + 2) / 3;
1651 			if (j <= 0)
1652 				j = 1;
1653 		}
1654 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1655 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1656 			/*
1657 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1658 			 * update; required for stall checks.
1659 			 */
1660 			smp_wmb();
1661 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1662 				   jiffies + (j ? 3 * j : 2));
1663 		}
1664 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1665 				       TPS("fqswait"));
1666 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1667 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1668 				 rcu_gp_fqs_check_wake(&gf), j);
1669 		rcu_gp_torture_wait();
1670 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1671 		/* Locking provides needed memory barriers. */
1672 		/*
1673 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1674 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1675 		 * is required only for single-node rcu_node trees because readers blocking
1676 		 * the current grace period are queued only on leaf rcu_node structures.
1677 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1678 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1679 		 * the corresponding leaf nodes have passed through their quiescent state.
1680 		 */
1681 		if (!READ_ONCE(rnp->qsmask) &&
1682 		    !rcu_preempt_blocked_readers_cgp(rnp))
1683 			break;
1684 		/* If time for quiescent-state forcing, do it. */
1685 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1686 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1687 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1688 					       TPS("fqsstart"));
1689 			rcu_gp_fqs(first_gp_fqs);
1690 			gf = 0;
1691 			if (first_gp_fqs) {
1692 				first_gp_fqs = false;
1693 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1694 			}
1695 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696 					       TPS("fqsend"));
1697 			cond_resched_tasks_rcu_qs();
1698 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1699 			ret = 0; /* Force full wait till next FQS. */
1700 			j = READ_ONCE(jiffies_till_next_fqs);
1701 		} else {
1702 			/* Deal with stray signal. */
1703 			cond_resched_tasks_rcu_qs();
1704 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1705 			WARN_ON(signal_pending(current));
1706 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1707 					       TPS("fqswaitsig"));
1708 			ret = 1; /* Keep old FQS timing. */
1709 			j = jiffies;
1710 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1711 				j = 1;
1712 			else
1713 				j = rcu_state.jiffies_force_qs - j;
1714 			gf = 0;
1715 		}
1716 	}
1717 }
1718 
1719 /*
1720  * Clean up after the old grace period.
1721  */
rcu_gp_cleanup(void)1722 static noinline void rcu_gp_cleanup(void)
1723 {
1724 	int cpu;
1725 	bool needgp = false;
1726 	unsigned long gp_duration;
1727 	unsigned long new_gp_seq;
1728 	bool offloaded;
1729 	struct rcu_data *rdp;
1730 	struct rcu_node *rnp = rcu_get_root();
1731 	struct swait_queue_head *sq;
1732 
1733 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 	raw_spin_lock_irq_rcu_node(rnp);
1735 	rcu_state.gp_end = jiffies;
1736 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1737 	if (gp_duration > rcu_state.gp_max)
1738 		rcu_state.gp_max = gp_duration;
1739 
1740 	/*
1741 	 * We know the grace period is complete, but to everyone else
1742 	 * it appears to still be ongoing.  But it is also the case
1743 	 * that to everyone else it looks like there is nothing that
1744 	 * they can do to advance the grace period.  It is therefore
1745 	 * safe for us to drop the lock in order to mark the grace
1746 	 * period as completed in all of the rcu_node structures.
1747 	 */
1748 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1749 	raw_spin_unlock_irq_rcu_node(rnp);
1750 
1751 	/*
1752 	 * Propagate new ->gp_seq value to rcu_node structures so that
1753 	 * other CPUs don't have to wait until the start of the next grace
1754 	 * period to process their callbacks.  This also avoids some nasty
1755 	 * RCU grace-period initialization races by forcing the end of
1756 	 * the current grace period to be completely recorded in all of
1757 	 * the rcu_node structures before the beginning of the next grace
1758 	 * period is recorded in any of the rcu_node structures.
1759 	 */
1760 	new_gp_seq = rcu_state.gp_seq;
1761 	rcu_seq_end(&new_gp_seq);
1762 	rcu_for_each_node_breadth_first(rnp) {
1763 		raw_spin_lock_irq_rcu_node(rnp);
1764 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1765 			dump_blkd_tasks(rnp, 10);
1766 		WARN_ON_ONCE(rnp->qsmask);
1767 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1768 		if (!rnp->parent)
1769 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1770 		rdp = this_cpu_ptr(&rcu_data);
1771 		if (rnp == rdp->mynode)
1772 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1773 		/* smp_mb() provided by prior unlock-lock pair. */
1774 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1775 		// Reset overload indication for CPUs no longer overloaded
1776 		if (rcu_is_leaf_node(rnp))
1777 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1778 				rdp = per_cpu_ptr(&rcu_data, cpu);
1779 				check_cb_ovld_locked(rdp, rnp);
1780 			}
1781 		sq = rcu_nocb_gp_get(rnp);
1782 		raw_spin_unlock_irq_rcu_node(rnp);
1783 		rcu_nocb_gp_cleanup(sq);
1784 		cond_resched_tasks_rcu_qs();
1785 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1786 		rcu_gp_slow(gp_cleanup_delay);
1787 	}
1788 	rnp = rcu_get_root();
1789 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1790 
1791 	/* Declare grace period done, trace first to use old GP number. */
1792 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1793 	rcu_seq_end(&rcu_state.gp_seq);
1794 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1795 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1796 	/* Check for GP requests since above loop. */
1797 	rdp = this_cpu_ptr(&rcu_data);
1798 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1799 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1800 				  TPS("CleanupMore"));
1801 		needgp = true;
1802 	}
1803 	/* Advance CBs to reduce false positives below. */
1804 	offloaded = rcu_rdp_is_offloaded(rdp);
1805 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1806 
1807 		// We get here if a grace period was needed (“needgp”)
1808 		// and the above call to rcu_accelerate_cbs() did not set
1809 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1810 		// the need for another grace period).  The purpose
1811 		// of the “offloaded” check is to avoid invoking
1812 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1813 		// hold the ->nocb_lock needed to safely access an offloaded
1814 		// ->cblist.  We do not want to acquire that lock because
1815 		// it can be heavily contended during callback floods.
1816 
1817 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1818 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1819 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1820 	} else {
1821 
1822 		// We get here either if there is no need for an
1823 		// additional grace period or if rcu_accelerate_cbs() has
1824 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1825 		// So all we need to do is to clear all of the other
1826 		// ->gp_flags bits.
1827 
1828 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1829 	}
1830 	raw_spin_unlock_irq_rcu_node(rnp);
1831 
1832 	// If strict, make all CPUs aware of the end of the old grace period.
1833 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1834 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1835 }
1836 
1837 /*
1838  * Body of kthread that handles grace periods.
1839  */
rcu_gp_kthread(void * unused)1840 static int __noreturn rcu_gp_kthread(void *unused)
1841 {
1842 	rcu_bind_gp_kthread();
1843 	for (;;) {
1844 
1845 		/* Handle grace-period start. */
1846 		for (;;) {
1847 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1848 					       TPS("reqwait"));
1849 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1850 			swait_event_idle_exclusive(rcu_state.gp_wq,
1851 					 READ_ONCE(rcu_state.gp_flags) &
1852 					 RCU_GP_FLAG_INIT);
1853 			rcu_gp_torture_wait();
1854 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1855 			/* Locking provides needed memory barrier. */
1856 			if (rcu_gp_init())
1857 				break;
1858 			cond_resched_tasks_rcu_qs();
1859 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860 			WARN_ON(signal_pending(current));
1861 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1862 					       TPS("reqwaitsig"));
1863 		}
1864 
1865 		/* Handle quiescent-state forcing. */
1866 		rcu_gp_fqs_loop();
1867 
1868 		/* Handle grace-period end. */
1869 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1870 		rcu_gp_cleanup();
1871 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1872 	}
1873 }
1874 
1875 /*
1876  * Report a full set of quiescent states to the rcu_state data structure.
1877  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1878  * another grace period is required.  Whether we wake the grace-period
1879  * kthread or it awakens itself for the next round of quiescent-state
1880  * forcing, that kthread will clean up after the just-completed grace
1881  * period.  Note that the caller must hold rnp->lock, which is released
1882  * before return.
1883  */
rcu_report_qs_rsp(unsigned long flags)1884 static void rcu_report_qs_rsp(unsigned long flags)
1885 	__releases(rcu_get_root()->lock)
1886 {
1887 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1888 	WARN_ON_ONCE(!rcu_gp_in_progress());
1889 	WRITE_ONCE(rcu_state.gp_flags,
1890 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1891 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1892 	rcu_gp_kthread_wake();
1893 }
1894 
1895 /*
1896  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1897  * Allows quiescent states for a group of CPUs to be reported at one go
1898  * to the specified rcu_node structure, though all the CPUs in the group
1899  * must be represented by the same rcu_node structure (which need not be a
1900  * leaf rcu_node structure, though it often will be).  The gps parameter
1901  * is the grace-period snapshot, which means that the quiescent states
1902  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1903  * must be held upon entry, and it is released before return.
1904  *
1905  * As a special case, if mask is zero, the bit-already-cleared check is
1906  * disabled.  This allows propagating quiescent state due to resumed tasks
1907  * during grace-period initialization.
1908  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1909 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1910 			      unsigned long gps, unsigned long flags)
1911 	__releases(rnp->lock)
1912 {
1913 	unsigned long oldmask = 0;
1914 	struct rcu_node *rnp_c;
1915 
1916 	raw_lockdep_assert_held_rcu_node(rnp);
1917 
1918 	/* Walk up the rcu_node hierarchy. */
1919 	for (;;) {
1920 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1921 
1922 			/*
1923 			 * Our bit has already been cleared, or the
1924 			 * relevant grace period is already over, so done.
1925 			 */
1926 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1927 			return;
1928 		}
1929 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1930 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1931 			     rcu_preempt_blocked_readers_cgp(rnp));
1932 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1933 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1934 						 mask, rnp->qsmask, rnp->level,
1935 						 rnp->grplo, rnp->grphi,
1936 						 !!rnp->gp_tasks);
1937 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1938 
1939 			/* Other bits still set at this level, so done. */
1940 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 			return;
1942 		}
1943 		rnp->completedqs = rnp->gp_seq;
1944 		mask = rnp->grpmask;
1945 		if (rnp->parent == NULL) {
1946 
1947 			/* No more levels.  Exit loop holding root lock. */
1948 
1949 			break;
1950 		}
1951 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1952 		rnp_c = rnp;
1953 		rnp = rnp->parent;
1954 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1955 		oldmask = READ_ONCE(rnp_c->qsmask);
1956 	}
1957 
1958 	/*
1959 	 * Get here if we are the last CPU to pass through a quiescent
1960 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1961 	 * to clean up and start the next grace period if one is needed.
1962 	 */
1963 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1964 }
1965 
1966 /*
1967  * Record a quiescent state for all tasks that were previously queued
1968  * on the specified rcu_node structure and that were blocking the current
1969  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1970  * irqs disabled, and this lock is released upon return, but irqs remain
1971  * disabled.
1972  */
1973 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1974 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1975 	__releases(rnp->lock)
1976 {
1977 	unsigned long gps;
1978 	unsigned long mask;
1979 	struct rcu_node *rnp_p;
1980 
1981 	raw_lockdep_assert_held_rcu_node(rnp);
1982 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1983 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1984 	    rnp->qsmask != 0) {
1985 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1986 		return;  /* Still need more quiescent states! */
1987 	}
1988 
1989 	rnp->completedqs = rnp->gp_seq;
1990 	rnp_p = rnp->parent;
1991 	if (rnp_p == NULL) {
1992 		/*
1993 		 * Only one rcu_node structure in the tree, so don't
1994 		 * try to report up to its nonexistent parent!
1995 		 */
1996 		rcu_report_qs_rsp(flags);
1997 		return;
1998 	}
1999 
2000 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2001 	gps = rnp->gp_seq;
2002 	mask = rnp->grpmask;
2003 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2004 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2005 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2006 }
2007 
2008 /*
2009  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2010  * structure.  This must be called from the specified CPU.
2011  */
2012 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2013 rcu_report_qs_rdp(struct rcu_data *rdp)
2014 {
2015 	unsigned long flags;
2016 	unsigned long mask;
2017 	bool needacc = false;
2018 	struct rcu_node *rnp;
2019 
2020 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2021 	rnp = rdp->mynode;
2022 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2023 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2024 	    rdp->gpwrap) {
2025 
2026 		/*
2027 		 * The grace period in which this quiescent state was
2028 		 * recorded has ended, so don't report it upwards.
2029 		 * We will instead need a new quiescent state that lies
2030 		 * within the current grace period.
2031 		 */
2032 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2033 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2034 		return;
2035 	}
2036 	mask = rdp->grpmask;
2037 	rdp->core_needs_qs = false;
2038 	if ((rnp->qsmask & mask) == 0) {
2039 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2040 	} else {
2041 		/*
2042 		 * This GP can't end until cpu checks in, so all of our
2043 		 * callbacks can be processed during the next GP.
2044 		 *
2045 		 * NOCB kthreads have their own way to deal with that...
2046 		 */
2047 		if (!rcu_rdp_is_offloaded(rdp)) {
2048 			/*
2049 			 * The current GP has not yet ended, so it
2050 			 * should not be possible for rcu_accelerate_cbs()
2051 			 * to return true.  So complain, but don't awaken.
2052 			 */
2053 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2054 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2055 			/*
2056 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2057 			 * if in the middle of a (de-)offloading process.
2058 			 */
2059 			needacc = true;
2060 		}
2061 
2062 		rcu_disable_urgency_upon_qs(rdp);
2063 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2064 		/* ^^^ Released rnp->lock */
2065 
2066 		if (needacc) {
2067 			rcu_nocb_lock_irqsave(rdp, flags);
2068 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2069 			rcu_nocb_unlock_irqrestore(rdp, flags);
2070 		}
2071 	}
2072 }
2073 
2074 /*
2075  * Check to see if there is a new grace period of which this CPU
2076  * is not yet aware, and if so, set up local rcu_data state for it.
2077  * Otherwise, see if this CPU has just passed through its first
2078  * quiescent state for this grace period, and record that fact if so.
2079  */
2080 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2081 rcu_check_quiescent_state(struct rcu_data *rdp)
2082 {
2083 	/* Check for grace-period ends and beginnings. */
2084 	note_gp_changes(rdp);
2085 
2086 	/*
2087 	 * Does this CPU still need to do its part for current grace period?
2088 	 * If no, return and let the other CPUs do their part as well.
2089 	 */
2090 	if (!rdp->core_needs_qs)
2091 		return;
2092 
2093 	/*
2094 	 * Was there a quiescent state since the beginning of the grace
2095 	 * period? If no, then exit and wait for the next call.
2096 	 */
2097 	if (rdp->cpu_no_qs.b.norm)
2098 		return;
2099 
2100 	/*
2101 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2102 	 * judge of that).
2103 	 */
2104 	rcu_report_qs_rdp(rdp);
2105 }
2106 
2107 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2108 static bool rcu_do_batch_check_time(long count, long tlimit,
2109 				    bool jlimit_check, unsigned long jlimit)
2110 {
2111 	// Invoke local_clock() only once per 32 consecutive callbacks.
2112 	return unlikely(tlimit) &&
2113 	       (!likely(count & 31) ||
2114 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2115 		 jlimit_check && time_after(jiffies, jlimit))) &&
2116 	       local_clock() >= tlimit;
2117 }
2118 
2119 /*
2120  * Invoke any RCU callbacks that have made it to the end of their grace
2121  * period.  Throttle as specified by rdp->blimit.
2122  */
rcu_do_batch(struct rcu_data * rdp)2123 static void rcu_do_batch(struct rcu_data *rdp)
2124 {
2125 	long bl;
2126 	long count = 0;
2127 	int div;
2128 	bool __maybe_unused empty;
2129 	unsigned long flags;
2130 	unsigned long jlimit;
2131 	bool jlimit_check = false;
2132 	long pending;
2133 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2134 	struct rcu_head *rhp;
2135 	long tlimit = 0;
2136 
2137 	/* If no callbacks are ready, just return. */
2138 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2139 		trace_rcu_batch_start(rcu_state.name,
2140 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2141 		trace_rcu_batch_end(rcu_state.name, 0,
2142 				    !rcu_segcblist_empty(&rdp->cblist),
2143 				    need_resched(), is_idle_task(current),
2144 				    rcu_is_callbacks_kthread(rdp));
2145 		return;
2146 	}
2147 
2148 	/*
2149 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2150 	 * races with call_rcu() from interrupt handlers.  Leave the
2151 	 * callback counts, as rcu_barrier() needs to be conservative.
2152 	 */
2153 	rcu_nocb_lock_irqsave(rdp, flags);
2154 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2155 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2156 	div = READ_ONCE(rcu_divisor);
2157 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2158 	bl = max(rdp->blimit, pending >> div);
2159 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2160 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2161 		const long npj = NSEC_PER_SEC / HZ;
2162 		long rrn = READ_ONCE(rcu_resched_ns);
2163 
2164 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2165 		tlimit = local_clock() + rrn;
2166 		jlimit = jiffies + (rrn + npj + 1) / npj;
2167 		jlimit_check = true;
2168 	}
2169 	trace_rcu_batch_start(rcu_state.name,
2170 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2171 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2172 	if (rcu_rdp_is_offloaded(rdp))
2173 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2174 
2175 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2176 	rcu_nocb_unlock_irqrestore(rdp, flags);
2177 
2178 	/* Invoke callbacks. */
2179 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2180 	rhp = rcu_cblist_dequeue(&rcl);
2181 
2182 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2183 		rcu_callback_t f;
2184 
2185 		count++;
2186 		debug_rcu_head_unqueue(rhp);
2187 
2188 		rcu_lock_acquire(&rcu_callback_map);
2189 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2190 
2191 		f = rhp->func;
2192 		debug_rcu_head_callback(rhp);
2193 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2194 		f(rhp);
2195 
2196 		rcu_lock_release(&rcu_callback_map);
2197 
2198 		/*
2199 		 * Stop only if limit reached and CPU has something to do.
2200 		 */
2201 		if (in_serving_softirq()) {
2202 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2203 				break;
2204 			/*
2205 			 * Make sure we don't spend too much time here and deprive other
2206 			 * softirq vectors of CPU cycles.
2207 			 */
2208 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2209 				break;
2210 		} else {
2211 			// In rcuc/rcuoc context, so no worries about
2212 			// depriving other softirq vectors of CPU cycles.
2213 			local_bh_enable();
2214 			lockdep_assert_irqs_enabled();
2215 			cond_resched_tasks_rcu_qs();
2216 			lockdep_assert_irqs_enabled();
2217 			local_bh_disable();
2218 			// But rcuc kthreads can delay quiescent-state
2219 			// reporting, so check time limits for them.
2220 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2221 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2222 				rdp->rcu_cpu_has_work = 1;
2223 				break;
2224 			}
2225 		}
2226 	}
2227 
2228 	rcu_nocb_lock_irqsave(rdp, flags);
2229 	rdp->n_cbs_invoked += count;
2230 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2231 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2232 
2233 	/* Update counts and requeue any remaining callbacks. */
2234 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2235 	rcu_segcblist_add_len(&rdp->cblist, -count);
2236 
2237 	/* Reinstate batch limit if we have worked down the excess. */
2238 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2239 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2240 		rdp->blimit = blimit;
2241 
2242 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2243 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2244 		rdp->qlen_last_fqs_check = 0;
2245 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2246 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2247 		rdp->qlen_last_fqs_check = count;
2248 
2249 	/*
2250 	 * The following usually indicates a double call_rcu().  To track
2251 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2252 	 */
2253 	empty = rcu_segcblist_empty(&rdp->cblist);
2254 	WARN_ON_ONCE(count == 0 && !empty);
2255 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2256 		     count != 0 && empty);
2257 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2258 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2259 
2260 	rcu_nocb_unlock_irqrestore(rdp, flags);
2261 
2262 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2263 }
2264 
2265 /*
2266  * This function is invoked from each scheduling-clock interrupt,
2267  * and checks to see if this CPU is in a non-context-switch quiescent
2268  * state, for example, user mode or idle loop.  It also schedules RCU
2269  * core processing.  If the current grace period has gone on too long,
2270  * it will ask the scheduler to manufacture a context switch for the sole
2271  * purpose of providing the needed quiescent state.
2272  */
rcu_sched_clock_irq(int user)2273 void rcu_sched_clock_irq(int user)
2274 {
2275 	unsigned long j;
2276 
2277 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2278 		j = jiffies;
2279 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2280 		__this_cpu_write(rcu_data.last_sched_clock, j);
2281 	}
2282 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2283 	lockdep_assert_irqs_disabled();
2284 	raw_cpu_inc(rcu_data.ticks_this_gp);
2285 	/* The load-acquire pairs with the store-release setting to true. */
2286 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2287 		/* Idle and userspace execution already are quiescent states. */
2288 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2289 			set_tsk_need_resched(current);
2290 			set_preempt_need_resched();
2291 		}
2292 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2293 	}
2294 	rcu_flavor_sched_clock_irq(user);
2295 	if (rcu_pending(user))
2296 		invoke_rcu_core();
2297 	if (user || rcu_is_cpu_rrupt_from_idle())
2298 		rcu_note_voluntary_context_switch(current);
2299 	lockdep_assert_irqs_disabled();
2300 
2301 	trace_rcu_utilization(TPS("End scheduler-tick"));
2302 }
2303 
2304 /*
2305  * Scan the leaf rcu_node structures.  For each structure on which all
2306  * CPUs have reported a quiescent state and on which there are tasks
2307  * blocking the current grace period, initiate RCU priority boosting.
2308  * Otherwise, invoke the specified function to check dyntick state for
2309  * each CPU that has not yet reported a quiescent state.
2310  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2311 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2312 {
2313 	int cpu;
2314 	unsigned long flags;
2315 	struct rcu_node *rnp;
2316 
2317 	rcu_state.cbovld = rcu_state.cbovldnext;
2318 	rcu_state.cbovldnext = false;
2319 	rcu_for_each_leaf_node(rnp) {
2320 		unsigned long mask = 0;
2321 		unsigned long rsmask = 0;
2322 
2323 		cond_resched_tasks_rcu_qs();
2324 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2325 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2326 		if (rnp->qsmask == 0) {
2327 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2328 				/*
2329 				 * No point in scanning bits because they
2330 				 * are all zero.  But we might need to
2331 				 * priority-boost blocked readers.
2332 				 */
2333 				rcu_initiate_boost(rnp, flags);
2334 				/* rcu_initiate_boost() releases rnp->lock */
2335 				continue;
2336 			}
2337 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 			continue;
2339 		}
2340 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2341 			struct rcu_data *rdp;
2342 			int ret;
2343 
2344 			rdp = per_cpu_ptr(&rcu_data, cpu);
2345 			ret = f(rdp);
2346 			if (ret > 0) {
2347 				mask |= rdp->grpmask;
2348 				rcu_disable_urgency_upon_qs(rdp);
2349 			}
2350 			if (ret < 0)
2351 				rsmask |= rdp->grpmask;
2352 		}
2353 		if (mask != 0) {
2354 			/* Idle/offline CPUs, report (releases rnp->lock). */
2355 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2356 		} else {
2357 			/* Nothing to do here, so just drop the lock. */
2358 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2359 		}
2360 
2361 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2362 			resched_cpu(cpu);
2363 	}
2364 }
2365 
2366 /*
2367  * Force quiescent states on reluctant CPUs, and also detect which
2368  * CPUs are in dyntick-idle mode.
2369  */
rcu_force_quiescent_state(void)2370 void rcu_force_quiescent_state(void)
2371 {
2372 	unsigned long flags;
2373 	bool ret;
2374 	struct rcu_node *rnp;
2375 	struct rcu_node *rnp_old = NULL;
2376 
2377 	/* Funnel through hierarchy to reduce memory contention. */
2378 	rnp = raw_cpu_read(rcu_data.mynode);
2379 	for (; rnp != NULL; rnp = rnp->parent) {
2380 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2381 		       !raw_spin_trylock(&rnp->fqslock);
2382 		if (rnp_old != NULL)
2383 			raw_spin_unlock(&rnp_old->fqslock);
2384 		if (ret)
2385 			return;
2386 		rnp_old = rnp;
2387 	}
2388 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2389 
2390 	/* Reached the root of the rcu_node tree, acquire lock. */
2391 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2392 	raw_spin_unlock(&rnp_old->fqslock);
2393 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2394 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2395 		return;  /* Someone beat us to it. */
2396 	}
2397 	WRITE_ONCE(rcu_state.gp_flags,
2398 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2399 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2400 	rcu_gp_kthread_wake();
2401 }
2402 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2403 
2404 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2405 // grace periods.
strict_work_handler(struct work_struct * work)2406 static void strict_work_handler(struct work_struct *work)
2407 {
2408 	rcu_read_lock();
2409 	rcu_read_unlock();
2410 }
2411 
2412 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2413 static __latent_entropy void rcu_core(void)
2414 {
2415 	unsigned long flags;
2416 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2417 	struct rcu_node *rnp = rdp->mynode;
2418 	/*
2419 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2420 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2421 	 * on this CPU and the below condition must be considered volatile.
2422 	 * However if we race with:
2423 	 *
2424 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2425 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2426 	 *                 call rcu_nocb_lock() if that happens.
2427 	 *
2428 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2429 	 *                 processing. This is fine because the early stage
2430 	 *                 of deoffloading invokes rcu_core() after setting
2431 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2432 	 *                 what could have been dismissed without the need to wait
2433 	 *                 for the next rcu_pending() check in the next jiffy.
2434 	 */
2435 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2436 
2437 	if (cpu_is_offline(smp_processor_id()))
2438 		return;
2439 	trace_rcu_utilization(TPS("Start RCU core"));
2440 	WARN_ON_ONCE(!rdp->beenonline);
2441 
2442 	/* Report any deferred quiescent states if preemption enabled. */
2443 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2444 		rcu_preempt_deferred_qs(current);
2445 	} else if (rcu_preempt_need_deferred_qs(current)) {
2446 		set_tsk_need_resched(current);
2447 		set_preempt_need_resched();
2448 	}
2449 
2450 	/* Update RCU state based on any recent quiescent states. */
2451 	rcu_check_quiescent_state(rdp);
2452 
2453 	/* No grace period and unregistered callbacks? */
2454 	if (!rcu_gp_in_progress() &&
2455 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2456 		rcu_nocb_lock_irqsave(rdp, flags);
2457 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2458 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2459 		rcu_nocb_unlock_irqrestore(rdp, flags);
2460 	}
2461 
2462 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2463 
2464 	/* If there are callbacks ready, invoke them. */
2465 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2466 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2467 		rcu_do_batch(rdp);
2468 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2469 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2470 			invoke_rcu_core();
2471 	}
2472 
2473 	/* Do any needed deferred wakeups of rcuo kthreads. */
2474 	do_nocb_deferred_wakeup(rdp);
2475 	trace_rcu_utilization(TPS("End RCU core"));
2476 
2477 	// If strict GPs, schedule an RCU reader in a clean environment.
2478 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2479 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2480 }
2481 
rcu_core_si(struct softirq_action * h)2482 static void rcu_core_si(struct softirq_action *h)
2483 {
2484 	rcu_core();
2485 }
2486 
rcu_wake_cond(struct task_struct * t,int status)2487 static void rcu_wake_cond(struct task_struct *t, int status)
2488 {
2489 	/*
2490 	 * If the thread is yielding, only wake it when this
2491 	 * is invoked from idle
2492 	 */
2493 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2494 		wake_up_process(t);
2495 }
2496 
invoke_rcu_core_kthread(void)2497 static void invoke_rcu_core_kthread(void)
2498 {
2499 	struct task_struct *t;
2500 	unsigned long flags;
2501 
2502 	local_irq_save(flags);
2503 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2504 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2505 	if (t != NULL && t != current)
2506 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2507 	local_irq_restore(flags);
2508 }
2509 
2510 /*
2511  * Wake up this CPU's rcuc kthread to do RCU core processing.
2512  */
invoke_rcu_core(void)2513 static void invoke_rcu_core(void)
2514 {
2515 	if (!cpu_online(smp_processor_id()))
2516 		return;
2517 	if (use_softirq)
2518 		raise_softirq(RCU_SOFTIRQ);
2519 	else
2520 		invoke_rcu_core_kthread();
2521 }
2522 
rcu_cpu_kthread_park(unsigned int cpu)2523 static void rcu_cpu_kthread_park(unsigned int cpu)
2524 {
2525 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2526 }
2527 
rcu_cpu_kthread_should_run(unsigned int cpu)2528 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2529 {
2530 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2531 }
2532 
2533 /*
2534  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2535  * the RCU softirq used in configurations of RCU that do not support RCU
2536  * priority boosting.
2537  */
rcu_cpu_kthread(unsigned int cpu)2538 static void rcu_cpu_kthread(unsigned int cpu)
2539 {
2540 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2541 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2542 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2543 	int spincnt;
2544 
2545 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2546 	for (spincnt = 0; spincnt < 10; spincnt++) {
2547 		WRITE_ONCE(*j, jiffies);
2548 		local_bh_disable();
2549 		*statusp = RCU_KTHREAD_RUNNING;
2550 		local_irq_disable();
2551 		work = *workp;
2552 		WRITE_ONCE(*workp, 0);
2553 		local_irq_enable();
2554 		if (work)
2555 			rcu_core();
2556 		local_bh_enable();
2557 		if (!READ_ONCE(*workp)) {
2558 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2559 			*statusp = RCU_KTHREAD_WAITING;
2560 			return;
2561 		}
2562 	}
2563 	*statusp = RCU_KTHREAD_YIELDING;
2564 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2565 	schedule_timeout_idle(2);
2566 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2567 	*statusp = RCU_KTHREAD_WAITING;
2568 	WRITE_ONCE(*j, jiffies);
2569 }
2570 
2571 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2572 	.store			= &rcu_data.rcu_cpu_kthread_task,
2573 	.thread_should_run	= rcu_cpu_kthread_should_run,
2574 	.thread_fn		= rcu_cpu_kthread,
2575 	.thread_comm		= "rcuc/%u",
2576 	.setup			= rcu_cpu_kthread_setup,
2577 	.park			= rcu_cpu_kthread_park,
2578 };
2579 
2580 /*
2581  * Spawn per-CPU RCU core processing kthreads.
2582  */
rcu_spawn_core_kthreads(void)2583 static int __init rcu_spawn_core_kthreads(void)
2584 {
2585 	int cpu;
2586 
2587 	for_each_possible_cpu(cpu)
2588 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2589 	if (use_softirq)
2590 		return 0;
2591 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2592 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2593 	return 0;
2594 }
2595 
2596 /*
2597  * Handle any core-RCU processing required by a call_rcu() invocation.
2598  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2599 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2600 			    unsigned long flags)
2601 {
2602 	/*
2603 	 * If called from an extended quiescent state, invoke the RCU
2604 	 * core in order to force a re-evaluation of RCU's idleness.
2605 	 */
2606 	if (!rcu_is_watching())
2607 		invoke_rcu_core();
2608 
2609 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2610 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2611 		return;
2612 
2613 	/*
2614 	 * Force the grace period if too many callbacks or too long waiting.
2615 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2616 	 * if some other CPU has recently done so.  Also, don't bother
2617 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2618 	 * is the only one waiting for a grace period to complete.
2619 	 */
2620 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2621 		     rdp->qlen_last_fqs_check + qhimark)) {
2622 
2623 		/* Are we ignoring a completed grace period? */
2624 		note_gp_changes(rdp);
2625 
2626 		/* Start a new grace period if one not already started. */
2627 		if (!rcu_gp_in_progress()) {
2628 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2629 		} else {
2630 			/* Give the grace period a kick. */
2631 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2632 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2633 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2634 				rcu_force_quiescent_state();
2635 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2636 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2637 		}
2638 	}
2639 }
2640 
2641 /*
2642  * RCU callback function to leak a callback.
2643  */
rcu_leak_callback(struct rcu_head * rhp)2644 static void rcu_leak_callback(struct rcu_head *rhp)
2645 {
2646 }
2647 
2648 /*
2649  * Check and if necessary update the leaf rcu_node structure's
2650  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2651  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2652  * structure's ->lock.
2653  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2654 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2655 {
2656 	raw_lockdep_assert_held_rcu_node(rnp);
2657 	if (qovld_calc <= 0)
2658 		return; // Early boot and wildcard value set.
2659 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2660 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2661 	else
2662 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2663 }
2664 
2665 /*
2666  * Check and if necessary update the leaf rcu_node structure's
2667  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2668  * number of queued RCU callbacks.  No locks need be held, but the
2669  * caller must have disabled interrupts.
2670  *
2671  * Note that this function ignores the possibility that there are a lot
2672  * of callbacks all of which have already seen the end of their respective
2673  * grace periods.  This omission is due to the need for no-CBs CPUs to
2674  * be holding ->nocb_lock to do this check, which is too heavy for a
2675  * common-case operation.
2676  */
check_cb_ovld(struct rcu_data * rdp)2677 static void check_cb_ovld(struct rcu_data *rdp)
2678 {
2679 	struct rcu_node *const rnp = rdp->mynode;
2680 
2681 	if (qovld_calc <= 0 ||
2682 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2683 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2684 		return; // Early boot wildcard value or already set correctly.
2685 	raw_spin_lock_rcu_node(rnp);
2686 	check_cb_ovld_locked(rdp, rnp);
2687 	raw_spin_unlock_rcu_node(rnp);
2688 }
2689 
2690 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2691 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2692 {
2693 	static atomic_t doublefrees;
2694 	unsigned long flags;
2695 	bool lazy;
2696 	struct rcu_data *rdp;
2697 	bool was_alldone;
2698 
2699 	/* Misaligned rcu_head! */
2700 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2701 
2702 	if (debug_rcu_head_queue(head)) {
2703 		/*
2704 		 * Probable double call_rcu(), so leak the callback.
2705 		 * Use rcu:rcu_callback trace event to find the previous
2706 		 * time callback was passed to call_rcu().
2707 		 */
2708 		if (atomic_inc_return(&doublefrees) < 4) {
2709 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2710 			mem_dump_obj(head);
2711 		}
2712 		WRITE_ONCE(head->func, rcu_leak_callback);
2713 		return;
2714 	}
2715 	head->func = func;
2716 	head->next = NULL;
2717 	kasan_record_aux_stack_noalloc(head);
2718 	local_irq_save(flags);
2719 	rdp = this_cpu_ptr(&rcu_data);
2720 	lazy = lazy_in && !rcu_async_should_hurry();
2721 
2722 	/* Add the callback to our list. */
2723 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2724 		// This can trigger due to call_rcu() from offline CPU:
2725 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2726 		WARN_ON_ONCE(!rcu_is_watching());
2727 		// Very early boot, before rcu_init().  Initialize if needed
2728 		// and then drop through to queue the callback.
2729 		if (rcu_segcblist_empty(&rdp->cblist))
2730 			rcu_segcblist_init(&rdp->cblist);
2731 	}
2732 
2733 	check_cb_ovld(rdp);
2734 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
2735 		local_irq_restore(flags);
2736 		return; // Enqueued onto ->nocb_bypass, so just leave.
2737 	}
2738 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2739 	rcu_segcblist_enqueue(&rdp->cblist, head);
2740 	if (__is_kvfree_rcu_offset((unsigned long)func))
2741 		trace_rcu_kvfree_callback(rcu_state.name, head,
2742 					 (unsigned long)func,
2743 					 rcu_segcblist_n_cbs(&rdp->cblist));
2744 	else
2745 		trace_rcu_callback(rcu_state.name, head,
2746 				   rcu_segcblist_n_cbs(&rdp->cblist));
2747 
2748 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2749 
2750 	/* Go handle any RCU core processing required. */
2751 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2752 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2753 	} else {
2754 		__call_rcu_core(rdp, head, flags);
2755 	}
2756 	local_irq_restore(flags);
2757 }
2758 
2759 #ifdef CONFIG_RCU_LAZY
2760 /**
2761  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2762  * flush all lazy callbacks (including the new one) to the main ->cblist while
2763  * doing so.
2764  *
2765  * @head: structure to be used for queueing the RCU updates.
2766  * @func: actual callback function to be invoked after the grace period
2767  *
2768  * The callback function will be invoked some time after a full grace
2769  * period elapses, in other words after all pre-existing RCU read-side
2770  * critical sections have completed.
2771  *
2772  * Use this API instead of call_rcu() if you don't want the callback to be
2773  * invoked after very long periods of time, which can happen on systems without
2774  * memory pressure and on systems which are lightly loaded or mostly idle.
2775  * This function will cause callbacks to be invoked sooner than later at the
2776  * expense of extra power. Other than that, this function is identical to, and
2777  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2778  * ordering and other functionality.
2779  */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2780 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2781 {
2782 	return __call_rcu_common(head, func, false);
2783 }
2784 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2785 #endif
2786 
2787 /**
2788  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2789  * By default the callbacks are 'lazy' and are kept hidden from the main
2790  * ->cblist to prevent starting of grace periods too soon.
2791  * If you desire grace periods to start very soon, use call_rcu_hurry().
2792  *
2793  * @head: structure to be used for queueing the RCU updates.
2794  * @func: actual callback function to be invoked after the grace period
2795  *
2796  * The callback function will be invoked some time after a full grace
2797  * period elapses, in other words after all pre-existing RCU read-side
2798  * critical sections have completed.  However, the callback function
2799  * might well execute concurrently with RCU read-side critical sections
2800  * that started after call_rcu() was invoked.
2801  *
2802  * RCU read-side critical sections are delimited by rcu_read_lock()
2803  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2804  * v5.0 and later, regions of code across which interrupts, preemption,
2805  * or softirqs have been disabled also serve as RCU read-side critical
2806  * sections.  This includes hardware interrupt handlers, softirq handlers,
2807  * and NMI handlers.
2808  *
2809  * Note that all CPUs must agree that the grace period extended beyond
2810  * all pre-existing RCU read-side critical section.  On systems with more
2811  * than one CPU, this means that when "func()" is invoked, each CPU is
2812  * guaranteed to have executed a full memory barrier since the end of its
2813  * last RCU read-side critical section whose beginning preceded the call
2814  * to call_rcu().  It also means that each CPU executing an RCU read-side
2815  * critical section that continues beyond the start of "func()" must have
2816  * executed a memory barrier after the call_rcu() but before the beginning
2817  * of that RCU read-side critical section.  Note that these guarantees
2818  * include CPUs that are offline, idle, or executing in user mode, as
2819  * well as CPUs that are executing in the kernel.
2820  *
2821  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2822  * resulting RCU callback function "func()", then both CPU A and CPU B are
2823  * guaranteed to execute a full memory barrier during the time interval
2824  * between the call to call_rcu() and the invocation of "func()" -- even
2825  * if CPU A and CPU B are the same CPU (but again only if the system has
2826  * more than one CPU).
2827  *
2828  * Implementation of these memory-ordering guarantees is described here:
2829  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2830  */
call_rcu(struct rcu_head * head,rcu_callback_t func)2831 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2832 {
2833 	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2834 }
2835 EXPORT_SYMBOL_GPL(call_rcu);
2836 
2837 /* Maximum number of jiffies to wait before draining a batch. */
2838 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2839 #define KFREE_N_BATCHES 2
2840 #define FREE_N_CHANNELS 2
2841 
2842 /**
2843  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2844  * @list: List node. All blocks are linked between each other
2845  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2846  * @nr_records: Number of active pointers in the array
2847  * @records: Array of the kvfree_rcu() pointers
2848  */
2849 struct kvfree_rcu_bulk_data {
2850 	struct list_head list;
2851 	struct rcu_gp_oldstate gp_snap;
2852 	unsigned long nr_records;
2853 	void *records[];
2854 };
2855 
2856 /*
2857  * This macro defines how many entries the "records" array
2858  * will contain. It is based on the fact that the size of
2859  * kvfree_rcu_bulk_data structure becomes exactly one page.
2860  */
2861 #define KVFREE_BULK_MAX_ENTR \
2862 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2863 
2864 /**
2865  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2866  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2867  * @head_free: List of kfree_rcu() objects waiting for a grace period
2868  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2869  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2870  * @krcp: Pointer to @kfree_rcu_cpu structure
2871  */
2872 
2873 struct kfree_rcu_cpu_work {
2874 	struct rcu_work rcu_work;
2875 	struct rcu_head *head_free;
2876 	struct rcu_gp_oldstate head_free_gp_snap;
2877 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2878 	struct kfree_rcu_cpu *krcp;
2879 };
2880 
2881 /**
2882  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2883  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2884  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2885  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2886  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2887  * @lock: Synchronize access to this structure
2888  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2889  * @initialized: The @rcu_work fields have been initialized
2890  * @head_count: Number of objects in rcu_head singular list
2891  * @bulk_count: Number of objects in bulk-list
2892  * @bkvcache:
2893  *	A simple cache list that contains objects for reuse purpose.
2894  *	In order to save some per-cpu space the list is singular.
2895  *	Even though it is lockless an access has to be protected by the
2896  *	per-cpu lock.
2897  * @page_cache_work: A work to refill the cache when it is empty
2898  * @backoff_page_cache_fill: Delay cache refills
2899  * @work_in_progress: Indicates that page_cache_work is running
2900  * @hrtimer: A hrtimer for scheduling a page_cache_work
2901  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2902  *
2903  * This is a per-CPU structure.  The reason that it is not included in
2904  * the rcu_data structure is to permit this code to be extracted from
2905  * the RCU files.  Such extraction could allow further optimization of
2906  * the interactions with the slab allocators.
2907  */
2908 struct kfree_rcu_cpu {
2909 	// Objects queued on a linked list
2910 	// through their rcu_head structures.
2911 	struct rcu_head *head;
2912 	unsigned long head_gp_snap;
2913 	atomic_t head_count;
2914 
2915 	// Objects queued on a bulk-list.
2916 	struct list_head bulk_head[FREE_N_CHANNELS];
2917 	atomic_t bulk_count[FREE_N_CHANNELS];
2918 
2919 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2920 	raw_spinlock_t lock;
2921 	struct delayed_work monitor_work;
2922 	bool initialized;
2923 
2924 	struct delayed_work page_cache_work;
2925 	atomic_t backoff_page_cache_fill;
2926 	atomic_t work_in_progress;
2927 	struct hrtimer hrtimer;
2928 
2929 	struct llist_head bkvcache;
2930 	int nr_bkv_objs;
2931 };
2932 
2933 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2934 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2935 };
2936 
2937 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2938 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2939 {
2940 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2941 	int i;
2942 
2943 	for (i = 0; i < bhead->nr_records; i++)
2944 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2945 #endif
2946 }
2947 
2948 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2949 krc_this_cpu_lock(unsigned long *flags)
2950 {
2951 	struct kfree_rcu_cpu *krcp;
2952 
2953 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2954 	krcp = this_cpu_ptr(&krc);
2955 	raw_spin_lock(&krcp->lock);
2956 
2957 	return krcp;
2958 }
2959 
2960 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2961 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2962 {
2963 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2964 }
2965 
2966 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2967 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2968 {
2969 	if (!krcp->nr_bkv_objs)
2970 		return NULL;
2971 
2972 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2973 	return (struct kvfree_rcu_bulk_data *)
2974 		llist_del_first(&krcp->bkvcache);
2975 }
2976 
2977 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2978 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2979 	struct kvfree_rcu_bulk_data *bnode)
2980 {
2981 	// Check the limit.
2982 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2983 		return false;
2984 
2985 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2986 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2987 	return true;
2988 }
2989 
2990 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2991 drain_page_cache(struct kfree_rcu_cpu *krcp)
2992 {
2993 	unsigned long flags;
2994 	struct llist_node *page_list, *pos, *n;
2995 	int freed = 0;
2996 
2997 	if (!rcu_min_cached_objs)
2998 		return 0;
2999 
3000 	raw_spin_lock_irqsave(&krcp->lock, flags);
3001 	page_list = llist_del_all(&krcp->bkvcache);
3002 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3003 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3004 
3005 	llist_for_each_safe(pos, n, page_list) {
3006 		free_page((unsigned long)pos);
3007 		freed++;
3008 	}
3009 
3010 	return freed;
3011 }
3012 
3013 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3014 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3015 	struct kvfree_rcu_bulk_data *bnode, int idx)
3016 {
3017 	unsigned long flags;
3018 	int i;
3019 
3020 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3021 		debug_rcu_bhead_unqueue(bnode);
3022 		rcu_lock_acquire(&rcu_callback_map);
3023 		if (idx == 0) { // kmalloc() / kfree().
3024 			trace_rcu_invoke_kfree_bulk_callback(
3025 				rcu_state.name, bnode->nr_records,
3026 				bnode->records);
3027 
3028 			kfree_bulk(bnode->nr_records, bnode->records);
3029 		} else { // vmalloc() / vfree().
3030 			for (i = 0; i < bnode->nr_records; i++) {
3031 				trace_rcu_invoke_kvfree_callback(
3032 					rcu_state.name, bnode->records[i], 0);
3033 
3034 				vfree(bnode->records[i]);
3035 			}
3036 		}
3037 		rcu_lock_release(&rcu_callback_map);
3038 	}
3039 
3040 	raw_spin_lock_irqsave(&krcp->lock, flags);
3041 	if (put_cached_bnode(krcp, bnode))
3042 		bnode = NULL;
3043 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3044 
3045 	if (bnode)
3046 		free_page((unsigned long) bnode);
3047 
3048 	cond_resched_tasks_rcu_qs();
3049 }
3050 
3051 static void
kvfree_rcu_list(struct rcu_head * head)3052 kvfree_rcu_list(struct rcu_head *head)
3053 {
3054 	struct rcu_head *next;
3055 
3056 	for (; head; head = next) {
3057 		void *ptr = (void *) head->func;
3058 		unsigned long offset = (void *) head - ptr;
3059 
3060 		next = head->next;
3061 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3062 		rcu_lock_acquire(&rcu_callback_map);
3063 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3064 
3065 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3066 			kvfree(ptr);
3067 
3068 		rcu_lock_release(&rcu_callback_map);
3069 		cond_resched_tasks_rcu_qs();
3070 	}
3071 }
3072 
3073 /*
3074  * This function is invoked in workqueue context after a grace period.
3075  * It frees all the objects queued on ->bulk_head_free or ->head_free.
3076  */
kfree_rcu_work(struct work_struct * work)3077 static void kfree_rcu_work(struct work_struct *work)
3078 {
3079 	unsigned long flags;
3080 	struct kvfree_rcu_bulk_data *bnode, *n;
3081 	struct list_head bulk_head[FREE_N_CHANNELS];
3082 	struct rcu_head *head;
3083 	struct kfree_rcu_cpu *krcp;
3084 	struct kfree_rcu_cpu_work *krwp;
3085 	struct rcu_gp_oldstate head_gp_snap;
3086 	int i;
3087 
3088 	krwp = container_of(to_rcu_work(work),
3089 		struct kfree_rcu_cpu_work, rcu_work);
3090 	krcp = krwp->krcp;
3091 
3092 	raw_spin_lock_irqsave(&krcp->lock, flags);
3093 	// Channels 1 and 2.
3094 	for (i = 0; i < FREE_N_CHANNELS; i++)
3095 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3096 
3097 	// Channel 3.
3098 	head = krwp->head_free;
3099 	krwp->head_free = NULL;
3100 	head_gp_snap = krwp->head_free_gp_snap;
3101 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3102 
3103 	// Handle the first two channels.
3104 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3105 		// Start from the tail page, so a GP is likely passed for it.
3106 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3107 			kvfree_rcu_bulk(krcp, bnode, i);
3108 	}
3109 
3110 	/*
3111 	 * This is used when the "bulk" path can not be used for the
3112 	 * double-argument of kvfree_rcu().  This happens when the
3113 	 * page-cache is empty, which means that objects are instead
3114 	 * queued on a linked list through their rcu_head structures.
3115 	 * This list is named "Channel 3".
3116 	 */
3117 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3118 		kvfree_rcu_list(head);
3119 }
3120 
3121 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3122 need_offload_krc(struct kfree_rcu_cpu *krcp)
3123 {
3124 	int i;
3125 
3126 	for (i = 0; i < FREE_N_CHANNELS; i++)
3127 		if (!list_empty(&krcp->bulk_head[i]))
3128 			return true;
3129 
3130 	return !!READ_ONCE(krcp->head);
3131 }
3132 
3133 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3134 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3135 {
3136 	int i;
3137 
3138 	for (i = 0; i < FREE_N_CHANNELS; i++)
3139 		if (!list_empty(&krwp->bulk_head_free[i]))
3140 			return true;
3141 
3142 	return !!krwp->head_free;
3143 }
3144 
krc_count(struct kfree_rcu_cpu * krcp)3145 static int krc_count(struct kfree_rcu_cpu *krcp)
3146 {
3147 	int sum = atomic_read(&krcp->head_count);
3148 	int i;
3149 
3150 	for (i = 0; i < FREE_N_CHANNELS; i++)
3151 		sum += atomic_read(&krcp->bulk_count[i]);
3152 
3153 	return sum;
3154 }
3155 
3156 static void
__schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3157 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3158 {
3159 	long delay, delay_left;
3160 
3161 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3162 	if (delayed_work_pending(&krcp->monitor_work)) {
3163 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3164 		if (delay < delay_left)
3165 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3166 		return;
3167 	}
3168 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3169 }
3170 
3171 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3172 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3173 {
3174 	unsigned long flags;
3175 
3176 	raw_spin_lock_irqsave(&krcp->lock, flags);
3177 	__schedule_delayed_monitor_work(krcp);
3178 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3179 }
3180 
3181 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3182 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3183 {
3184 	struct list_head bulk_ready[FREE_N_CHANNELS];
3185 	struct kvfree_rcu_bulk_data *bnode, *n;
3186 	struct rcu_head *head_ready = NULL;
3187 	unsigned long flags;
3188 	int i;
3189 
3190 	raw_spin_lock_irqsave(&krcp->lock, flags);
3191 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3192 		INIT_LIST_HEAD(&bulk_ready[i]);
3193 
3194 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3195 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3196 				break;
3197 
3198 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3199 			list_move(&bnode->list, &bulk_ready[i]);
3200 		}
3201 	}
3202 
3203 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3204 		head_ready = krcp->head;
3205 		atomic_set(&krcp->head_count, 0);
3206 		WRITE_ONCE(krcp->head, NULL);
3207 	}
3208 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209 
3210 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3211 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3212 			kvfree_rcu_bulk(krcp, bnode, i);
3213 	}
3214 
3215 	if (head_ready)
3216 		kvfree_rcu_list(head_ready);
3217 }
3218 
3219 /*
3220  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3221  */
kfree_rcu_monitor(struct work_struct * work)3222 static void kfree_rcu_monitor(struct work_struct *work)
3223 {
3224 	struct kfree_rcu_cpu *krcp = container_of(work,
3225 		struct kfree_rcu_cpu, monitor_work.work);
3226 	unsigned long flags;
3227 	int i, j;
3228 
3229 	// Drain ready for reclaim.
3230 	kvfree_rcu_drain_ready(krcp);
3231 
3232 	raw_spin_lock_irqsave(&krcp->lock, flags);
3233 
3234 	// Attempt to start a new batch.
3235 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3236 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3237 
3238 		// Try to detach bulk_head or head and attach it, only when
3239 		// all channels are free.  Any channel is not free means at krwp
3240 		// there is on-going rcu work to handle krwp's free business.
3241 		if (need_wait_for_krwp_work(krwp))
3242 			continue;
3243 
3244 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3245 		if (need_offload_krc(krcp)) {
3246 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3247 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3248 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3249 				if (list_empty(&krwp->bulk_head_free[j])) {
3250 					atomic_set(&krcp->bulk_count[j], 0);
3251 					list_replace_init(&krcp->bulk_head[j],
3252 						&krwp->bulk_head_free[j]);
3253 				}
3254 			}
3255 
3256 			// Channel 3 corresponds to both SLAB and vmalloc
3257 			// objects queued on the linked list.
3258 			if (!krwp->head_free) {
3259 				krwp->head_free = krcp->head;
3260 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3261 				atomic_set(&krcp->head_count, 0);
3262 				WRITE_ONCE(krcp->head, NULL);
3263 			}
3264 
3265 			// One work is per one batch, so there are three
3266 			// "free channels", the batch can handle. It can
3267 			// be that the work is in the pending state when
3268 			// channels have been detached following by each
3269 			// other.
3270 			queue_rcu_work(system_wq, &krwp->rcu_work);
3271 		}
3272 	}
3273 
3274 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3275 
3276 	// If there is nothing to detach, it means that our job is
3277 	// successfully done here. In case of having at least one
3278 	// of the channels that is still busy we should rearm the
3279 	// work to repeat an attempt. Because previous batches are
3280 	// still in progress.
3281 	if (need_offload_krc(krcp))
3282 		schedule_delayed_monitor_work(krcp);
3283 }
3284 
3285 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3286 schedule_page_work_fn(struct hrtimer *t)
3287 {
3288 	struct kfree_rcu_cpu *krcp =
3289 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3290 
3291 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3292 	return HRTIMER_NORESTART;
3293 }
3294 
fill_page_cache_func(struct work_struct * work)3295 static void fill_page_cache_func(struct work_struct *work)
3296 {
3297 	struct kvfree_rcu_bulk_data *bnode;
3298 	struct kfree_rcu_cpu *krcp =
3299 		container_of(work, struct kfree_rcu_cpu,
3300 			page_cache_work.work);
3301 	unsigned long flags;
3302 	int nr_pages;
3303 	bool pushed;
3304 	int i;
3305 
3306 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3307 		1 : rcu_min_cached_objs;
3308 
3309 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3310 		bnode = (struct kvfree_rcu_bulk_data *)
3311 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312 
3313 		if (!bnode)
3314 			break;
3315 
3316 		raw_spin_lock_irqsave(&krcp->lock, flags);
3317 		pushed = put_cached_bnode(krcp, bnode);
3318 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3319 
3320 		if (!pushed) {
3321 			free_page((unsigned long) bnode);
3322 			break;
3323 		}
3324 	}
3325 
3326 	atomic_set(&krcp->work_in_progress, 0);
3327 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3328 }
3329 
3330 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3331 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3332 {
3333 	// If cache disabled, bail out.
3334 	if (!rcu_min_cached_objs)
3335 		return;
3336 
3337 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3338 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3339 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3340 			queue_delayed_work(system_wq,
3341 				&krcp->page_cache_work,
3342 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3343 		} else {
3344 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3345 			krcp->hrtimer.function = schedule_page_work_fn;
3346 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3347 		}
3348 	}
3349 }
3350 
3351 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3352 // state specified by flags.  If can_alloc is true, the caller must
3353 // be schedulable and not be holding any locks or mutexes that might be
3354 // acquired by the memory allocator or anything that it might invoke.
3355 // Returns true if ptr was successfully recorded, else the caller must
3356 // use a fallback.
3357 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3358 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3359 	unsigned long *flags, void *ptr, bool can_alloc)
3360 {
3361 	struct kvfree_rcu_bulk_data *bnode;
3362 	int idx;
3363 
3364 	*krcp = krc_this_cpu_lock(flags);
3365 	if (unlikely(!(*krcp)->initialized))
3366 		return false;
3367 
3368 	idx = !!is_vmalloc_addr(ptr);
3369 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3370 		struct kvfree_rcu_bulk_data, list);
3371 
3372 	/* Check if a new block is required. */
3373 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3374 		bnode = get_cached_bnode(*krcp);
3375 		if (!bnode && can_alloc) {
3376 			krc_this_cpu_unlock(*krcp, *flags);
3377 
3378 			// __GFP_NORETRY - allows a light-weight direct reclaim
3379 			// what is OK from minimizing of fallback hitting point of
3380 			// view. Apart of that it forbids any OOM invoking what is
3381 			// also beneficial since we are about to release memory soon.
3382 			//
3383 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3384 			// memory reserves. Please note we have a fallback path.
3385 			//
3386 			// __GFP_NOWARN - it is supposed that an allocation can
3387 			// be failed under low memory or high memory pressure
3388 			// scenarios.
3389 			bnode = (struct kvfree_rcu_bulk_data *)
3390 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3391 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3392 		}
3393 
3394 		if (!bnode)
3395 			return false;
3396 
3397 		// Initialize the new block and attach it.
3398 		bnode->nr_records = 0;
3399 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3400 	}
3401 
3402 	// Finally insert and update the GP for this page.
3403 	bnode->records[bnode->nr_records++] = ptr;
3404 	get_state_synchronize_rcu_full(&bnode->gp_snap);
3405 	atomic_inc(&(*krcp)->bulk_count[idx]);
3406 
3407 	return true;
3408 }
3409 
3410 /*
3411  * Queue a request for lazy invocation of the appropriate free routine
3412  * after a grace period.  Please note that three paths are maintained,
3413  * two for the common case using arrays of pointers and a third one that
3414  * is used only when the main paths cannot be used, for example, due to
3415  * memory pressure.
3416  *
3417  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3418  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3419  * be free'd in workqueue context. This allows us to: batch requests together to
3420  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3421  */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3422 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3423 {
3424 	unsigned long flags;
3425 	struct kfree_rcu_cpu *krcp;
3426 	bool success;
3427 
3428 	/*
3429 	 * Please note there is a limitation for the head-less
3430 	 * variant, that is why there is a clear rule for such
3431 	 * objects: it can be used from might_sleep() context
3432 	 * only. For other places please embed an rcu_head to
3433 	 * your data.
3434 	 */
3435 	if (!head)
3436 		might_sleep();
3437 
3438 	// Queue the object but don't yet schedule the batch.
3439 	if (debug_rcu_head_queue(ptr)) {
3440 		// Probable double kfree_rcu(), just leak.
3441 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3442 			  __func__, head);
3443 
3444 		// Mark as success and leave.
3445 		return;
3446 	}
3447 
3448 	kasan_record_aux_stack_noalloc(ptr);
3449 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3450 	if (!success) {
3451 		run_page_cache_worker(krcp);
3452 
3453 		if (head == NULL)
3454 			// Inline if kvfree_rcu(one_arg) call.
3455 			goto unlock_return;
3456 
3457 		head->func = ptr;
3458 		head->next = krcp->head;
3459 		WRITE_ONCE(krcp->head, head);
3460 		atomic_inc(&krcp->head_count);
3461 
3462 		// Take a snapshot for this krcp.
3463 		krcp->head_gp_snap = get_state_synchronize_rcu();
3464 		success = true;
3465 	}
3466 
3467 	/*
3468 	 * The kvfree_rcu() caller considers the pointer freed at this point
3469 	 * and likely removes any references to it. Since the actual slab
3470 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3471 	 * this object (no scanning or false positives reporting).
3472 	 */
3473 	kmemleak_ignore(ptr);
3474 
3475 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3476 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3477 		__schedule_delayed_monitor_work(krcp);
3478 
3479 unlock_return:
3480 	krc_this_cpu_unlock(krcp, flags);
3481 
3482 	/*
3483 	 * Inline kvfree() after synchronize_rcu(). We can do
3484 	 * it from might_sleep() context only, so the current
3485 	 * CPU can pass the QS state.
3486 	 */
3487 	if (!success) {
3488 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3489 		synchronize_rcu();
3490 		kvfree(ptr);
3491 	}
3492 }
3493 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3494 
3495 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3496 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3497 {
3498 	int cpu;
3499 	unsigned long count = 0;
3500 
3501 	/* Snapshot count of all CPUs */
3502 	for_each_possible_cpu(cpu) {
3503 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3504 
3505 		count += krc_count(krcp);
3506 		count += READ_ONCE(krcp->nr_bkv_objs);
3507 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3508 	}
3509 
3510 	return count == 0 ? SHRINK_EMPTY : count;
3511 }
3512 
3513 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3514 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3515 {
3516 	int cpu, freed = 0;
3517 
3518 	for_each_possible_cpu(cpu) {
3519 		int count;
3520 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3521 
3522 		count = krc_count(krcp);
3523 		count += drain_page_cache(krcp);
3524 		kfree_rcu_monitor(&krcp->monitor_work.work);
3525 
3526 		sc->nr_to_scan -= count;
3527 		freed += count;
3528 
3529 		if (sc->nr_to_scan <= 0)
3530 			break;
3531 	}
3532 
3533 	return freed == 0 ? SHRINK_STOP : freed;
3534 }
3535 
3536 static struct shrinker kfree_rcu_shrinker = {
3537 	.count_objects = kfree_rcu_shrink_count,
3538 	.scan_objects = kfree_rcu_shrink_scan,
3539 	.batch = 0,
3540 	.seeks = DEFAULT_SEEKS,
3541 };
3542 
kfree_rcu_scheduler_running(void)3543 void __init kfree_rcu_scheduler_running(void)
3544 {
3545 	int cpu;
3546 
3547 	for_each_possible_cpu(cpu) {
3548 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3549 
3550 		if (need_offload_krc(krcp))
3551 			schedule_delayed_monitor_work(krcp);
3552 	}
3553 }
3554 
3555 /*
3556  * During early boot, any blocking grace-period wait automatically
3557  * implies a grace period.
3558  *
3559  * Later on, this could in theory be the case for kernels built with
3560  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3561  * is not a common case.  Furthermore, this optimization would cause
3562  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3563  * grace-period optimization is ignored once the scheduler is running.
3564  */
rcu_blocking_is_gp(void)3565 static int rcu_blocking_is_gp(void)
3566 {
3567 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3568 		might_sleep();
3569 		return false;
3570 	}
3571 	return true;
3572 }
3573 
3574 /**
3575  * synchronize_rcu - wait until a grace period has elapsed.
3576  *
3577  * Control will return to the caller some time after a full grace
3578  * period has elapsed, in other words after all currently executing RCU
3579  * read-side critical sections have completed.  Note, however, that
3580  * upon return from synchronize_rcu(), the caller might well be executing
3581  * concurrently with new RCU read-side critical sections that began while
3582  * synchronize_rcu() was waiting.
3583  *
3584  * RCU read-side critical sections are delimited by rcu_read_lock()
3585  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3586  * v5.0 and later, regions of code across which interrupts, preemption,
3587  * or softirqs have been disabled also serve as RCU read-side critical
3588  * sections.  This includes hardware interrupt handlers, softirq handlers,
3589  * and NMI handlers.
3590  *
3591  * Note that this guarantee implies further memory-ordering guarantees.
3592  * On systems with more than one CPU, when synchronize_rcu() returns,
3593  * each CPU is guaranteed to have executed a full memory barrier since
3594  * the end of its last RCU read-side critical section whose beginning
3595  * preceded the call to synchronize_rcu().  In addition, each CPU having
3596  * an RCU read-side critical section that extends beyond the return from
3597  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3598  * after the beginning of synchronize_rcu() and before the beginning of
3599  * that RCU read-side critical section.  Note that these guarantees include
3600  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3601  * that are executing in the kernel.
3602  *
3603  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3604  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3605  * to have executed a full memory barrier during the execution of
3606  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3607  * again only if the system has more than one CPU).
3608  *
3609  * Implementation of these memory-ordering guarantees is described here:
3610  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3611  */
synchronize_rcu(void)3612 void synchronize_rcu(void)
3613 {
3614 	unsigned long flags;
3615 	struct rcu_node *rnp;
3616 
3617 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3618 			 lock_is_held(&rcu_lock_map) ||
3619 			 lock_is_held(&rcu_sched_lock_map),
3620 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3621 	if (!rcu_blocking_is_gp()) {
3622 		if (rcu_gp_is_expedited())
3623 			synchronize_rcu_expedited();
3624 		else
3625 			wait_rcu_gp(call_rcu_hurry);
3626 		return;
3627 	}
3628 
3629 	// Context allows vacuous grace periods.
3630 	// Note well that this code runs with !PREEMPT && !SMP.
3631 	// In addition, all code that advances grace periods runs at
3632 	// process level.  Therefore, this normal GP overlaps with other
3633 	// normal GPs only by being fully nested within them, which allows
3634 	// reuse of ->gp_seq_polled_snap.
3635 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3636 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3637 
3638 	// Update the normal grace-period counters to record
3639 	// this grace period, but only those used by the boot CPU.
3640 	// The rcu_scheduler_starting() will take care of the rest of
3641 	// these counters.
3642 	local_irq_save(flags);
3643 	WARN_ON_ONCE(num_online_cpus() > 1);
3644 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3645 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3646 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3647 	local_irq_restore(flags);
3648 }
3649 EXPORT_SYMBOL_GPL(synchronize_rcu);
3650 
3651 /**
3652  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3653  * @rgosp: Place to put state cookie
3654  *
3655  * Stores into @rgosp a value that will always be treated by functions
3656  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3657  * has already completed.
3658  */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3659 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3660 {
3661 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3662 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3663 }
3664 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3665 
3666 /**
3667  * get_state_synchronize_rcu - Snapshot current RCU state
3668  *
3669  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3670  * or poll_state_synchronize_rcu() to determine whether or not a full
3671  * grace period has elapsed in the meantime.
3672  */
get_state_synchronize_rcu(void)3673 unsigned long get_state_synchronize_rcu(void)
3674 {
3675 	/*
3676 	 * Any prior manipulation of RCU-protected data must happen
3677 	 * before the load from ->gp_seq.
3678 	 */
3679 	smp_mb();  /* ^^^ */
3680 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3681 }
3682 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3683 
3684 /**
3685  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3686  * @rgosp: location to place combined normal/expedited grace-period state
3687  *
3688  * Places the normal and expedited grace-period states in @rgosp.  This
3689  * state value can be passed to a later call to cond_synchronize_rcu_full()
3690  * or poll_state_synchronize_rcu_full() to determine whether or not a
3691  * grace period (whether normal or expedited) has elapsed in the meantime.
3692  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3693  * long, but is guaranteed to see all grace periods.  In contrast, the
3694  * combined state occupies less memory, but can sometimes fail to take
3695  * grace periods into account.
3696  *
3697  * This does not guarantee that the needed grace period will actually
3698  * start.
3699  */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3700 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3701 {
3702 	struct rcu_node *rnp = rcu_get_root();
3703 
3704 	/*
3705 	 * Any prior manipulation of RCU-protected data must happen
3706 	 * before the loads from ->gp_seq and ->expedited_sequence.
3707 	 */
3708 	smp_mb();  /* ^^^ */
3709 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3710 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3711 }
3712 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3713 
3714 /*
3715  * Helper function for start_poll_synchronize_rcu() and
3716  * start_poll_synchronize_rcu_full().
3717  */
start_poll_synchronize_rcu_common(void)3718 static void start_poll_synchronize_rcu_common(void)
3719 {
3720 	unsigned long flags;
3721 	bool needwake;
3722 	struct rcu_data *rdp;
3723 	struct rcu_node *rnp;
3724 
3725 	lockdep_assert_irqs_enabled();
3726 	local_irq_save(flags);
3727 	rdp = this_cpu_ptr(&rcu_data);
3728 	rnp = rdp->mynode;
3729 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3730 	// Note it is possible for a grace period to have elapsed between
3731 	// the above call to get_state_synchronize_rcu() and the below call
3732 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3733 	// get a grace period that no one needed.  These accesses are ordered
3734 	// by smp_mb(), and we are accessing them in the opposite order
3735 	// from which they are updated at grace-period start, as required.
3736 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3737 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3738 	if (needwake)
3739 		rcu_gp_kthread_wake();
3740 }
3741 
3742 /**
3743  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3744  *
3745  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3746  * or poll_state_synchronize_rcu() to determine whether or not a full
3747  * grace period has elapsed in the meantime.  If the needed grace period
3748  * is not already slated to start, notifies RCU core of the need for that
3749  * grace period.
3750  *
3751  * Interrupts must be enabled for the case where it is necessary to awaken
3752  * the grace-period kthread.
3753  */
start_poll_synchronize_rcu(void)3754 unsigned long start_poll_synchronize_rcu(void)
3755 {
3756 	unsigned long gp_seq = get_state_synchronize_rcu();
3757 
3758 	start_poll_synchronize_rcu_common();
3759 	return gp_seq;
3760 }
3761 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3762 
3763 /**
3764  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3765  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3766  *
3767  * Places the normal and expedited grace-period states in *@rgos.  This
3768  * state value can be passed to a later call to cond_synchronize_rcu_full()
3769  * or poll_state_synchronize_rcu_full() to determine whether or not a
3770  * grace period (whether normal or expedited) has elapsed in the meantime.
3771  * If the needed grace period is not already slated to start, notifies
3772  * RCU core of the need for that grace period.
3773  *
3774  * Interrupts must be enabled for the case where it is necessary to awaken
3775  * the grace-period kthread.
3776  */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3777 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3778 {
3779 	get_state_synchronize_rcu_full(rgosp);
3780 
3781 	start_poll_synchronize_rcu_common();
3782 }
3783 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3784 
3785 /**
3786  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3787  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3788  *
3789  * If a full RCU grace period has elapsed since the earlier call from
3790  * which @oldstate was obtained, return @true, otherwise return @false.
3791  * If @false is returned, it is the caller's responsibility to invoke this
3792  * function later on until it does return @true.  Alternatively, the caller
3793  * can explicitly wait for a grace period, for example, by passing @oldstate
3794  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3795  * on the one hand or by directly invoking either synchronize_rcu() or
3796  * synchronize_rcu_expedited() on the other.
3797  *
3798  * Yes, this function does not take counter wrap into account.
3799  * But counter wrap is harmless.  If the counter wraps, we have waited for
3800  * more than a billion grace periods (and way more on a 64-bit system!).
3801  * Those needing to keep old state values for very long time periods
3802  * (many hours even on 32-bit systems) should check them occasionally and
3803  * either refresh them or set a flag indicating that the grace period has
3804  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3805  * to get a guaranteed-completed grace-period state.
3806  *
3807  * In addition, because oldstate compresses the grace-period state for
3808  * both normal and expedited grace periods into a single unsigned long,
3809  * it can miss a grace period when synchronize_rcu() runs concurrently
3810  * with synchronize_rcu_expedited().  If this is unacceptable, please
3811  * instead use the _full() variant of these polling APIs.
3812  *
3813  * This function provides the same memory-ordering guarantees that
3814  * would be provided by a synchronize_rcu() that was invoked at the call
3815  * to the function that provided @oldstate, and that returned at the end
3816  * of this function.
3817  */
poll_state_synchronize_rcu(unsigned long oldstate)3818 bool poll_state_synchronize_rcu(unsigned long oldstate)
3819 {
3820 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3821 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3822 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3823 		return true;
3824 	}
3825 	return false;
3826 }
3827 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3828 
3829 /**
3830  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3831  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3832  *
3833  * If a full RCU grace period has elapsed since the earlier call from
3834  * which *rgosp was obtained, return @true, otherwise return @false.
3835  * If @false is returned, it is the caller's responsibility to invoke this
3836  * function later on until it does return @true.  Alternatively, the caller
3837  * can explicitly wait for a grace period, for example, by passing @rgosp
3838  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3839  *
3840  * Yes, this function does not take counter wrap into account.
3841  * But counter wrap is harmless.  If the counter wraps, we have waited
3842  * for more than a billion grace periods (and way more on a 64-bit
3843  * system!).  Those needing to keep rcu_gp_oldstate values for very
3844  * long time periods (many hours even on 32-bit systems) should check
3845  * them occasionally and either refresh them or set a flag indicating
3846  * that the grace period has completed.  Alternatively, they can use
3847  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3848  * grace-period state.
3849  *
3850  * This function provides the same memory-ordering guarantees that would
3851  * be provided by a synchronize_rcu() that was invoked at the call to
3852  * the function that provided @rgosp, and that returned at the end of this
3853  * function.  And this guarantee requires that the root rcu_node structure's
3854  * ->gp_seq field be checked instead of that of the rcu_state structure.
3855  * The problem is that the just-ending grace-period's callbacks can be
3856  * invoked between the time that the root rcu_node structure's ->gp_seq
3857  * field is updated and the time that the rcu_state structure's ->gp_seq
3858  * field is updated.  Therefore, if a single synchronize_rcu() is to
3859  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3860  * then the root rcu_node structure is the one that needs to be polled.
3861  */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3862 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3863 {
3864 	struct rcu_node *rnp = rcu_get_root();
3865 
3866 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3867 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3868 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3869 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3870 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3871 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3872 		return true;
3873 	}
3874 	return false;
3875 }
3876 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3877 
3878 /**
3879  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3880  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3881  *
3882  * If a full RCU grace period has elapsed since the earlier call to
3883  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3884  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3885  *
3886  * Yes, this function does not take counter wrap into account.
3887  * But counter wrap is harmless.  If the counter wraps, we have waited for
3888  * more than 2 billion grace periods (and way more on a 64-bit system!),
3889  * so waiting for a couple of additional grace periods should be just fine.
3890  *
3891  * This function provides the same memory-ordering guarantees that
3892  * would be provided by a synchronize_rcu() that was invoked at the call
3893  * to the function that provided @oldstate and that returned at the end
3894  * of this function.
3895  */
cond_synchronize_rcu(unsigned long oldstate)3896 void cond_synchronize_rcu(unsigned long oldstate)
3897 {
3898 	if (!poll_state_synchronize_rcu(oldstate))
3899 		synchronize_rcu();
3900 }
3901 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3902 
3903 /**
3904  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3905  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3906  *
3907  * If a full RCU grace period has elapsed since the call to
3908  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3909  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3910  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3911  * for a full grace period.
3912  *
3913  * Yes, this function does not take counter wrap into account.
3914  * But counter wrap is harmless.  If the counter wraps, we have waited for
3915  * more than 2 billion grace periods (and way more on a 64-bit system!),
3916  * so waiting for a couple of additional grace periods should be just fine.
3917  *
3918  * This function provides the same memory-ordering guarantees that
3919  * would be provided by a synchronize_rcu() that was invoked at the call
3920  * to the function that provided @rgosp and that returned at the end of
3921  * this function.
3922  */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3923 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3924 {
3925 	if (!poll_state_synchronize_rcu_full(rgosp))
3926 		synchronize_rcu();
3927 }
3928 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3929 
3930 /*
3931  * Check to see if there is any immediate RCU-related work to be done by
3932  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3933  * in order of increasing expense: checks that can be carried out against
3934  * CPU-local state are performed first.  However, we must check for CPU
3935  * stalls first, else we might not get a chance.
3936  */
rcu_pending(int user)3937 static int rcu_pending(int user)
3938 {
3939 	bool gp_in_progress;
3940 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3941 	struct rcu_node *rnp = rdp->mynode;
3942 
3943 	lockdep_assert_irqs_disabled();
3944 
3945 	/* Check for CPU stalls, if enabled. */
3946 	check_cpu_stall(rdp);
3947 
3948 	/* Does this CPU need a deferred NOCB wakeup? */
3949 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3950 		return 1;
3951 
3952 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3953 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3954 		return 0;
3955 
3956 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3957 	gp_in_progress = rcu_gp_in_progress();
3958 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3959 		return 1;
3960 
3961 	/* Does this CPU have callbacks ready to invoke? */
3962 	if (!rcu_rdp_is_offloaded(rdp) &&
3963 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3964 		return 1;
3965 
3966 	/* Has RCU gone idle with this CPU needing another grace period? */
3967 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3968 	    !rcu_rdp_is_offloaded(rdp) &&
3969 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3970 		return 1;
3971 
3972 	/* Have RCU grace period completed or started?  */
3973 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3974 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3975 		return 1;
3976 
3977 	/* nothing to do */
3978 	return 0;
3979 }
3980 
3981 /*
3982  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3983  * the compiler is expected to optimize this away.
3984  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3985 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3986 {
3987 	trace_rcu_barrier(rcu_state.name, s, cpu,
3988 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3989 }
3990 
3991 /*
3992  * RCU callback function for rcu_barrier().  If we are last, wake
3993  * up the task executing rcu_barrier().
3994  *
3995  * Note that the value of rcu_state.barrier_sequence must be captured
3996  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3997  * other CPUs might count the value down to zero before this CPU gets
3998  * around to invoking rcu_barrier_trace(), which might result in bogus
3999  * data from the next instance of rcu_barrier().
4000  */
rcu_barrier_callback(struct rcu_head * rhp)4001 static void rcu_barrier_callback(struct rcu_head *rhp)
4002 {
4003 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4004 
4005 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4006 		rcu_barrier_trace(TPS("LastCB"), -1, s);
4007 		complete(&rcu_state.barrier_completion);
4008 	} else {
4009 		rcu_barrier_trace(TPS("CB"), -1, s);
4010 	}
4011 }
4012 
4013 /*
4014  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4015  */
rcu_barrier_entrain(struct rcu_data * rdp)4016 static void rcu_barrier_entrain(struct rcu_data *rdp)
4017 {
4018 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4019 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4020 	bool wake_nocb = false;
4021 	bool was_alldone = false;
4022 
4023 	lockdep_assert_held(&rcu_state.barrier_lock);
4024 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4025 		return;
4026 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4027 	rdp->barrier_head.func = rcu_barrier_callback;
4028 	debug_rcu_head_queue(&rdp->barrier_head);
4029 	rcu_nocb_lock(rdp);
4030 	/*
4031 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4032 	 * queue. This way we don't wait for bypass timer that can reach seconds
4033 	 * if it's fully lazy.
4034 	 */
4035 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4036 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4037 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4038 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4039 		atomic_inc(&rcu_state.barrier_cpu_count);
4040 	} else {
4041 		debug_rcu_head_unqueue(&rdp->barrier_head);
4042 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4043 	}
4044 	rcu_nocb_unlock(rdp);
4045 	if (wake_nocb)
4046 		wake_nocb_gp(rdp, false);
4047 	smp_store_release(&rdp->barrier_seq_snap, gseq);
4048 }
4049 
4050 /*
4051  * Called with preemption disabled, and from cross-cpu IRQ context.
4052  */
rcu_barrier_handler(void * cpu_in)4053 static void rcu_barrier_handler(void *cpu_in)
4054 {
4055 	uintptr_t cpu = (uintptr_t)cpu_in;
4056 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4057 
4058 	lockdep_assert_irqs_disabled();
4059 	WARN_ON_ONCE(cpu != rdp->cpu);
4060 	WARN_ON_ONCE(cpu != smp_processor_id());
4061 	raw_spin_lock(&rcu_state.barrier_lock);
4062 	rcu_barrier_entrain(rdp);
4063 	raw_spin_unlock(&rcu_state.barrier_lock);
4064 }
4065 
4066 /**
4067  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4068  *
4069  * Note that this primitive does not necessarily wait for an RCU grace period
4070  * to complete.  For example, if there are no RCU callbacks queued anywhere
4071  * in the system, then rcu_barrier() is within its rights to return
4072  * immediately, without waiting for anything, much less an RCU grace period.
4073  */
rcu_barrier(void)4074 void rcu_barrier(void)
4075 {
4076 	uintptr_t cpu;
4077 	unsigned long flags;
4078 	unsigned long gseq;
4079 	struct rcu_data *rdp;
4080 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4081 
4082 	rcu_barrier_trace(TPS("Begin"), -1, s);
4083 
4084 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4085 	mutex_lock(&rcu_state.barrier_mutex);
4086 
4087 	/* Did someone else do our work for us? */
4088 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4089 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4090 		smp_mb(); /* caller's subsequent code after above check. */
4091 		mutex_unlock(&rcu_state.barrier_mutex);
4092 		return;
4093 	}
4094 
4095 	/* Mark the start of the barrier operation. */
4096 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4097 	rcu_seq_start(&rcu_state.barrier_sequence);
4098 	gseq = rcu_state.barrier_sequence;
4099 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4100 
4101 	/*
4102 	 * Initialize the count to two rather than to zero in order
4103 	 * to avoid a too-soon return to zero in case of an immediate
4104 	 * invocation of the just-enqueued callback (or preemption of
4105 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4106 	 * offline non-offloaded CPU has callbacks queued.
4107 	 */
4108 	init_completion(&rcu_state.barrier_completion);
4109 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4110 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4111 
4112 	/*
4113 	 * Force each CPU with callbacks to register a new callback.
4114 	 * When that callback is invoked, we will know that all of the
4115 	 * corresponding CPU's preceding callbacks have been invoked.
4116 	 */
4117 	for_each_possible_cpu(cpu) {
4118 		rdp = per_cpu_ptr(&rcu_data, cpu);
4119 retry:
4120 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4121 			continue;
4122 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4123 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4124 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4125 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4126 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4127 			continue;
4128 		}
4129 		if (!rcu_rdp_cpu_online(rdp)) {
4130 			rcu_barrier_entrain(rdp);
4131 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4132 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4133 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4134 			continue;
4135 		}
4136 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4137 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4138 			schedule_timeout_uninterruptible(1);
4139 			goto retry;
4140 		}
4141 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4142 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4143 	}
4144 
4145 	/*
4146 	 * Now that we have an rcu_barrier_callback() callback on each
4147 	 * CPU, and thus each counted, remove the initial count.
4148 	 */
4149 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4150 		complete(&rcu_state.barrier_completion);
4151 
4152 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4153 	wait_for_completion(&rcu_state.barrier_completion);
4154 
4155 	/* Mark the end of the barrier operation. */
4156 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4157 	rcu_seq_end(&rcu_state.barrier_sequence);
4158 	gseq = rcu_state.barrier_sequence;
4159 	for_each_possible_cpu(cpu) {
4160 		rdp = per_cpu_ptr(&rcu_data, cpu);
4161 
4162 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4163 	}
4164 
4165 	/* Other rcu_barrier() invocations can now safely proceed. */
4166 	mutex_unlock(&rcu_state.barrier_mutex);
4167 }
4168 EXPORT_SYMBOL_GPL(rcu_barrier);
4169 
4170 /*
4171  * Compute the mask of online CPUs for the specified rcu_node structure.
4172  * This will not be stable unless the rcu_node structure's ->lock is
4173  * held, but the bit corresponding to the current CPU will be stable
4174  * in most contexts.
4175  */
rcu_rnp_online_cpus(struct rcu_node * rnp)4176 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4177 {
4178 	return READ_ONCE(rnp->qsmaskinitnext);
4179 }
4180 
4181 /*
4182  * Is the CPU corresponding to the specified rcu_data structure online
4183  * from RCU's perspective?  This perspective is given by that structure's
4184  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4185  */
rcu_rdp_cpu_online(struct rcu_data * rdp)4186 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4187 {
4188 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4189 }
4190 
rcu_cpu_online(int cpu)4191 bool rcu_cpu_online(int cpu)
4192 {
4193 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4194 
4195 	return rcu_rdp_cpu_online(rdp);
4196 }
4197 
4198 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4199 
4200 /*
4201  * Is the current CPU online as far as RCU is concerned?
4202  *
4203  * Disable preemption to avoid false positives that could otherwise
4204  * happen due to the current CPU number being sampled, this task being
4205  * preempted, its old CPU being taken offline, resuming on some other CPU,
4206  * then determining that its old CPU is now offline.
4207  *
4208  * Disable checking if in an NMI handler because we cannot safely
4209  * report errors from NMI handlers anyway.  In addition, it is OK to use
4210  * RCU on an offline processor during initial boot, hence the check for
4211  * rcu_scheduler_fully_active.
4212  */
rcu_lockdep_current_cpu_online(void)4213 bool rcu_lockdep_current_cpu_online(void)
4214 {
4215 	struct rcu_data *rdp;
4216 	bool ret = false;
4217 
4218 	if (in_nmi() || !rcu_scheduler_fully_active)
4219 		return true;
4220 	preempt_disable_notrace();
4221 	rdp = this_cpu_ptr(&rcu_data);
4222 	/*
4223 	 * Strictly, we care here about the case where the current CPU is
4224 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4225 	 * not being up to date. So arch_spin_is_locked() might have a
4226 	 * false positive if it's held by some *other* CPU, but that's
4227 	 * OK because that just means a false *negative* on the warning.
4228 	 */
4229 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4230 		ret = true;
4231 	preempt_enable_notrace();
4232 	return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4235 
4236 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4237 
4238 // Has rcu_init() been invoked?  This is used (for example) to determine
4239 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4240 static bool rcu_init_invoked(void)
4241 {
4242 	return !!rcu_state.n_online_cpus;
4243 }
4244 
4245 /*
4246  * Near the end of the offline process.  Trace the fact that this CPU
4247  * is going offline.
4248  */
rcutree_dying_cpu(unsigned int cpu)4249 int rcutree_dying_cpu(unsigned int cpu)
4250 {
4251 	bool blkd;
4252 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4253 	struct rcu_node *rnp = rdp->mynode;
4254 
4255 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4256 		return 0;
4257 
4258 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4259 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4260 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4261 	return 0;
4262 }
4263 
4264 /*
4265  * All CPUs for the specified rcu_node structure have gone offline,
4266  * and all tasks that were preempted within an RCU read-side critical
4267  * section while running on one of those CPUs have since exited their RCU
4268  * read-side critical section.  Some other CPU is reporting this fact with
4269  * the specified rcu_node structure's ->lock held and interrupts disabled.
4270  * This function therefore goes up the tree of rcu_node structures,
4271  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4272  * the leaf rcu_node structure's ->qsmaskinit field has already been
4273  * updated.
4274  *
4275  * This function does check that the specified rcu_node structure has
4276  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4277  * prematurely.  That said, invoking it after the fact will cost you
4278  * a needless lock acquisition.  So once it has done its work, don't
4279  * invoke it again.
4280  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4281 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4282 {
4283 	long mask;
4284 	struct rcu_node *rnp = rnp_leaf;
4285 
4286 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4287 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4288 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4289 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4290 		return;
4291 	for (;;) {
4292 		mask = rnp->grpmask;
4293 		rnp = rnp->parent;
4294 		if (!rnp)
4295 			break;
4296 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4297 		rnp->qsmaskinit &= ~mask;
4298 		/* Between grace periods, so better already be zero! */
4299 		WARN_ON_ONCE(rnp->qsmask);
4300 		if (rnp->qsmaskinit) {
4301 			raw_spin_unlock_rcu_node(rnp);
4302 			/* irqs remain disabled. */
4303 			return;
4304 		}
4305 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4306 	}
4307 }
4308 
4309 /*
4310  * The CPU has been completely removed, and some other CPU is reporting
4311  * this fact from process context.  Do the remainder of the cleanup.
4312  * There can only be one CPU hotplug operation at a time, so no need for
4313  * explicit locking.
4314  */
rcutree_dead_cpu(unsigned int cpu)4315 int rcutree_dead_cpu(unsigned int cpu)
4316 {
4317 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4318 		return 0;
4319 
4320 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4321 	// Stop-machine done, so allow nohz_full to disable tick.
4322 	tick_dep_clear(TICK_DEP_BIT_RCU);
4323 	return 0;
4324 }
4325 
4326 /*
4327  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4328  * first CPU in a given leaf rcu_node structure coming online.  The caller
4329  * must hold the corresponding leaf rcu_node ->lock with interrupts
4330  * disabled.
4331  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4332 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4333 {
4334 	long mask;
4335 	long oldmask;
4336 	struct rcu_node *rnp = rnp_leaf;
4337 
4338 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4339 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4340 	for (;;) {
4341 		mask = rnp->grpmask;
4342 		rnp = rnp->parent;
4343 		if (rnp == NULL)
4344 			return;
4345 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4346 		oldmask = rnp->qsmaskinit;
4347 		rnp->qsmaskinit |= mask;
4348 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4349 		if (oldmask)
4350 			return;
4351 	}
4352 }
4353 
4354 /*
4355  * Do boot-time initialization of a CPU's per-CPU RCU data.
4356  */
4357 static void __init
rcu_boot_init_percpu_data(int cpu)4358 rcu_boot_init_percpu_data(int cpu)
4359 {
4360 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4361 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4362 
4363 	/* Set up local state, ensuring consistent view of global state. */
4364 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4365 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4366 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4367 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4368 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4369 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4370 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4371 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4372 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4373 	rdp->last_sched_clock = jiffies;
4374 	rdp->cpu = cpu;
4375 	rcu_boot_init_nocb_percpu_data(rdp);
4376 }
4377 
4378 /*
4379  * Invoked early in the CPU-online process, when pretty much all services
4380  * are available.  The incoming CPU is not present.
4381  *
4382  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4383  * offline event can be happening at a given time.  Note also that we can
4384  * accept some slop in the rsp->gp_seq access due to the fact that this
4385  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4386  * And any offloaded callbacks are being numbered elsewhere.
4387  */
rcutree_prepare_cpu(unsigned int cpu)4388 int rcutree_prepare_cpu(unsigned int cpu)
4389 {
4390 	unsigned long flags;
4391 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4392 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4393 	struct rcu_node *rnp = rcu_get_root();
4394 
4395 	/* Set up local state, ensuring consistent view of global state. */
4396 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4397 	rdp->qlen_last_fqs_check = 0;
4398 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4399 	rdp->blimit = blimit;
4400 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4401 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4402 
4403 	/*
4404 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4405 	 * (re-)initialized.
4406 	 */
4407 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4408 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4409 
4410 	/*
4411 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4412 	 * propagation up the rcu_node tree will happen at the beginning
4413 	 * of the next grace period.
4414 	 */
4415 	rnp = rdp->mynode;
4416 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4417 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4418 	rdp->gp_seq_needed = rdp->gp_seq;
4419 	rdp->cpu_no_qs.b.norm = true;
4420 	rdp->core_needs_qs = false;
4421 	rdp->rcu_iw_pending = false;
4422 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4423 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4424 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4425 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4426 	rcu_spawn_one_boost_kthread(rnp);
4427 	rcu_spawn_cpu_nocb_kthread(cpu);
4428 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4429 
4430 	return 0;
4431 }
4432 
4433 /*
4434  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4435  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4436 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4437 {
4438 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4439 
4440 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4441 }
4442 
4443 /*
4444  * Has the specified (known valid) CPU ever been fully online?
4445  */
rcu_cpu_beenfullyonline(int cpu)4446 bool rcu_cpu_beenfullyonline(int cpu)
4447 {
4448 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4449 
4450 	return smp_load_acquire(&rdp->beenonline);
4451 }
4452 
4453 /*
4454  * Near the end of the CPU-online process.  Pretty much all services
4455  * enabled, and the CPU is now very much alive.
4456  */
rcutree_online_cpu(unsigned int cpu)4457 int rcutree_online_cpu(unsigned int cpu)
4458 {
4459 	unsigned long flags;
4460 	struct rcu_data *rdp;
4461 	struct rcu_node *rnp;
4462 
4463 	rdp = per_cpu_ptr(&rcu_data, cpu);
4464 	rnp = rdp->mynode;
4465 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4466 	rnp->ffmask |= rdp->grpmask;
4467 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4468 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4469 		return 0; /* Too early in boot for scheduler work. */
4470 	sync_sched_exp_online_cleanup(cpu);
4471 	rcutree_affinity_setting(cpu, -1);
4472 
4473 	// Stop-machine done, so allow nohz_full to disable tick.
4474 	tick_dep_clear(TICK_DEP_BIT_RCU);
4475 	return 0;
4476 }
4477 
4478 /*
4479  * Near the beginning of the process.  The CPU is still very much alive
4480  * with pretty much all services enabled.
4481  */
rcutree_offline_cpu(unsigned int cpu)4482 int rcutree_offline_cpu(unsigned int cpu)
4483 {
4484 	unsigned long flags;
4485 	struct rcu_data *rdp;
4486 	struct rcu_node *rnp;
4487 
4488 	rdp = per_cpu_ptr(&rcu_data, cpu);
4489 	rnp = rdp->mynode;
4490 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4491 	rnp->ffmask &= ~rdp->grpmask;
4492 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4493 
4494 	rcutree_affinity_setting(cpu, cpu);
4495 
4496 	// nohz_full CPUs need the tick for stop-machine to work quickly
4497 	tick_dep_set(TICK_DEP_BIT_RCU);
4498 	return 0;
4499 }
4500 
4501 /*
4502  * Mark the specified CPU as being online so that subsequent grace periods
4503  * (both expedited and normal) will wait on it.  Note that this means that
4504  * incoming CPUs are not allowed to use RCU read-side critical sections
4505  * until this function is called.  Failing to observe this restriction
4506  * will result in lockdep splats.
4507  *
4508  * Note that this function is special in that it is invoked directly
4509  * from the incoming CPU rather than from the cpuhp_step mechanism.
4510  * This is because this function must be invoked at a precise location.
4511  * This incoming CPU must not have enabled interrupts yet.
4512  */
rcu_cpu_starting(unsigned int cpu)4513 void rcu_cpu_starting(unsigned int cpu)
4514 {
4515 	unsigned long mask;
4516 	struct rcu_data *rdp;
4517 	struct rcu_node *rnp;
4518 	bool newcpu;
4519 
4520 	lockdep_assert_irqs_disabled();
4521 	rdp = per_cpu_ptr(&rcu_data, cpu);
4522 	if (rdp->cpu_started)
4523 		return;
4524 	rdp->cpu_started = true;
4525 
4526 	rnp = rdp->mynode;
4527 	mask = rdp->grpmask;
4528 	arch_spin_lock(&rcu_state.ofl_lock);
4529 	rcu_dynticks_eqs_online();
4530 	raw_spin_lock(&rcu_state.barrier_lock);
4531 	raw_spin_lock_rcu_node(rnp);
4532 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4533 	raw_spin_unlock(&rcu_state.barrier_lock);
4534 	newcpu = !(rnp->expmaskinitnext & mask);
4535 	rnp->expmaskinitnext |= mask;
4536 	/* Allow lockless access for expedited grace periods. */
4537 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4538 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4539 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4540 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4541 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4542 
4543 	/* An incoming CPU should never be blocking a grace period. */
4544 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4545 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4546 		unsigned long flags;
4547 
4548 		local_irq_save(flags);
4549 		rcu_disable_urgency_upon_qs(rdp);
4550 		/* Report QS -after- changing ->qsmaskinitnext! */
4551 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4552 	} else {
4553 		raw_spin_unlock_rcu_node(rnp);
4554 	}
4555 	arch_spin_unlock(&rcu_state.ofl_lock);
4556 	smp_store_release(&rdp->beenonline, true);
4557 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4558 }
4559 
4560 /*
4561  * The outgoing function has no further need of RCU, so remove it from
4562  * the rcu_node tree's ->qsmaskinitnext bit masks.
4563  *
4564  * Note that this function is special in that it is invoked directly
4565  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4566  * This is because this function must be invoked at a precise location.
4567  */
rcu_report_dead(unsigned int cpu)4568 void rcu_report_dead(unsigned int cpu)
4569 {
4570 	unsigned long flags, seq_flags;
4571 	unsigned long mask;
4572 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4573 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4574 
4575 	// Do any dangling deferred wakeups.
4576 	do_nocb_deferred_wakeup(rdp);
4577 
4578 	rcu_preempt_deferred_qs(current);
4579 
4580 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4581 	mask = rdp->grpmask;
4582 	local_irq_save(seq_flags);
4583 	arch_spin_lock(&rcu_state.ofl_lock);
4584 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4585 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4586 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4587 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4588 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4589 		rcu_disable_urgency_upon_qs(rdp);
4590 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4591 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4592 	}
4593 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4594 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4595 	arch_spin_unlock(&rcu_state.ofl_lock);
4596 	local_irq_restore(seq_flags);
4597 
4598 	rdp->cpu_started = false;
4599 }
4600 
4601 #ifdef CONFIG_HOTPLUG_CPU
4602 /*
4603  * The outgoing CPU has just passed through the dying-idle state, and we
4604  * are being invoked from the CPU that was IPIed to continue the offline
4605  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4606  */
rcutree_migrate_callbacks(int cpu)4607 void rcutree_migrate_callbacks(int cpu)
4608 {
4609 	unsigned long flags;
4610 	struct rcu_data *my_rdp;
4611 	struct rcu_node *my_rnp;
4612 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4613 	bool needwake;
4614 
4615 	if (rcu_rdp_is_offloaded(rdp))
4616 		return;
4617 
4618 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4619 	if (rcu_segcblist_empty(&rdp->cblist)) {
4620 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4621 		return;  /* No callbacks to migrate. */
4622 	}
4623 
4624 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4625 	rcu_barrier_entrain(rdp);
4626 	my_rdp = this_cpu_ptr(&rcu_data);
4627 	my_rnp = my_rdp->mynode;
4628 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4629 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4630 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4631 	/* Leverage recent GPs and set GP for new callbacks. */
4632 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4633 		   rcu_advance_cbs(my_rnp, my_rdp);
4634 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4635 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4636 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4637 	rcu_segcblist_disable(&rdp->cblist);
4638 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4639 	check_cb_ovld_locked(my_rdp, my_rnp);
4640 	if (rcu_rdp_is_offloaded(my_rdp)) {
4641 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4642 		__call_rcu_nocb_wake(my_rdp, true, flags);
4643 	} else {
4644 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4645 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4646 	}
4647 	local_irq_restore(flags);
4648 	if (needwake)
4649 		rcu_gp_kthread_wake();
4650 	lockdep_assert_irqs_enabled();
4651 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4652 		  !rcu_segcblist_empty(&rdp->cblist),
4653 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4654 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4655 		  rcu_segcblist_first_cb(&rdp->cblist));
4656 }
4657 #endif
4658 
4659 /*
4660  * On non-huge systems, use expedited RCU grace periods to make suspend
4661  * and hibernation run faster.
4662  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4663 static int rcu_pm_notify(struct notifier_block *self,
4664 			 unsigned long action, void *hcpu)
4665 {
4666 	switch (action) {
4667 	case PM_HIBERNATION_PREPARE:
4668 	case PM_SUSPEND_PREPARE:
4669 		rcu_async_hurry();
4670 		rcu_expedite_gp();
4671 		break;
4672 	case PM_POST_HIBERNATION:
4673 	case PM_POST_SUSPEND:
4674 		rcu_unexpedite_gp();
4675 		rcu_async_relax();
4676 		break;
4677 	default:
4678 		break;
4679 	}
4680 	return NOTIFY_OK;
4681 }
4682 
4683 #ifdef CONFIG_RCU_EXP_KTHREAD
4684 struct kthread_worker *rcu_exp_gp_kworker;
4685 struct kthread_worker *rcu_exp_par_gp_kworker;
4686 
rcu_start_exp_gp_kworkers(void)4687 static void __init rcu_start_exp_gp_kworkers(void)
4688 {
4689 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4690 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4691 	struct sched_param param = { .sched_priority = kthread_prio };
4692 
4693 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4694 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4695 		pr_err("Failed to create %s!\n", gp_kworker_name);
4696 		rcu_exp_gp_kworker = NULL;
4697 		return;
4698 	}
4699 
4700 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4701 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4702 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4703 		rcu_exp_par_gp_kworker = NULL;
4704 		kthread_destroy_worker(rcu_exp_gp_kworker);
4705 		rcu_exp_gp_kworker = NULL;
4706 		return;
4707 	}
4708 
4709 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4710 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4711 				   &param);
4712 }
4713 
rcu_alloc_par_gp_wq(void)4714 static inline void rcu_alloc_par_gp_wq(void)
4715 {
4716 }
4717 #else /* !CONFIG_RCU_EXP_KTHREAD */
4718 struct workqueue_struct *rcu_par_gp_wq;
4719 
rcu_start_exp_gp_kworkers(void)4720 static void __init rcu_start_exp_gp_kworkers(void)
4721 {
4722 }
4723 
rcu_alloc_par_gp_wq(void)4724 static inline void rcu_alloc_par_gp_wq(void)
4725 {
4726 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4727 	WARN_ON(!rcu_par_gp_wq);
4728 }
4729 #endif /* CONFIG_RCU_EXP_KTHREAD */
4730 
4731 /*
4732  * Spawn the kthreads that handle RCU's grace periods.
4733  */
rcu_spawn_gp_kthread(void)4734 static int __init rcu_spawn_gp_kthread(void)
4735 {
4736 	unsigned long flags;
4737 	struct rcu_node *rnp;
4738 	struct sched_param sp;
4739 	struct task_struct *t;
4740 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4741 
4742 	rcu_scheduler_fully_active = 1;
4743 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4744 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4745 		return 0;
4746 	if (kthread_prio) {
4747 		sp.sched_priority = kthread_prio;
4748 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4749 	}
4750 	rnp = rcu_get_root();
4751 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4752 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4753 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4754 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4755 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4756 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4757 	wake_up_process(t);
4758 	/* This is a pre-SMP initcall, we expect a single CPU */
4759 	WARN_ON(num_online_cpus() > 1);
4760 	/*
4761 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4762 	 * due to rcu_scheduler_fully_active.
4763 	 */
4764 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4765 	rcu_spawn_one_boost_kthread(rdp->mynode);
4766 	rcu_spawn_core_kthreads();
4767 	/* Create kthread worker for expedited GPs */
4768 	rcu_start_exp_gp_kworkers();
4769 	return 0;
4770 }
4771 early_initcall(rcu_spawn_gp_kthread);
4772 
4773 /*
4774  * This function is invoked towards the end of the scheduler's
4775  * initialization process.  Before this is called, the idle task might
4776  * contain synchronous grace-period primitives (during which time, this idle
4777  * task is booting the system, and such primitives are no-ops).  After this
4778  * function is called, any synchronous grace-period primitives are run as
4779  * expedited, with the requesting task driving the grace period forward.
4780  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4781  * runtime RCU functionality.
4782  */
rcu_scheduler_starting(void)4783 void rcu_scheduler_starting(void)
4784 {
4785 	unsigned long flags;
4786 	struct rcu_node *rnp;
4787 
4788 	WARN_ON(num_online_cpus() != 1);
4789 	WARN_ON(nr_context_switches() > 0);
4790 	rcu_test_sync_prims();
4791 
4792 	// Fix up the ->gp_seq counters.
4793 	local_irq_save(flags);
4794 	rcu_for_each_node_breadth_first(rnp)
4795 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4796 	local_irq_restore(flags);
4797 
4798 	// Switch out of early boot mode.
4799 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4800 	rcu_test_sync_prims();
4801 }
4802 
4803 /*
4804  * Helper function for rcu_init() that initializes the rcu_state structure.
4805  */
rcu_init_one(void)4806 static void __init rcu_init_one(void)
4807 {
4808 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4809 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4810 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4811 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4812 
4813 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4814 	int cpustride = 1;
4815 	int i;
4816 	int j;
4817 	struct rcu_node *rnp;
4818 
4819 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4820 
4821 	/* Silence gcc 4.8 false positive about array index out of range. */
4822 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4823 		panic("rcu_init_one: rcu_num_lvls out of range");
4824 
4825 	/* Initialize the level-tracking arrays. */
4826 
4827 	for (i = 1; i < rcu_num_lvls; i++)
4828 		rcu_state.level[i] =
4829 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4830 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4831 
4832 	/* Initialize the elements themselves, starting from the leaves. */
4833 
4834 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4835 		cpustride *= levelspread[i];
4836 		rnp = rcu_state.level[i];
4837 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4838 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4839 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4840 						   &rcu_node_class[i], buf[i]);
4841 			raw_spin_lock_init(&rnp->fqslock);
4842 			lockdep_set_class_and_name(&rnp->fqslock,
4843 						   &rcu_fqs_class[i], fqs[i]);
4844 			rnp->gp_seq = rcu_state.gp_seq;
4845 			rnp->gp_seq_needed = rcu_state.gp_seq;
4846 			rnp->completedqs = rcu_state.gp_seq;
4847 			rnp->qsmask = 0;
4848 			rnp->qsmaskinit = 0;
4849 			rnp->grplo = j * cpustride;
4850 			rnp->grphi = (j + 1) * cpustride - 1;
4851 			if (rnp->grphi >= nr_cpu_ids)
4852 				rnp->grphi = nr_cpu_ids - 1;
4853 			if (i == 0) {
4854 				rnp->grpnum = 0;
4855 				rnp->grpmask = 0;
4856 				rnp->parent = NULL;
4857 			} else {
4858 				rnp->grpnum = j % levelspread[i - 1];
4859 				rnp->grpmask = BIT(rnp->grpnum);
4860 				rnp->parent = rcu_state.level[i - 1] +
4861 					      j / levelspread[i - 1];
4862 			}
4863 			rnp->level = i;
4864 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4865 			rcu_init_one_nocb(rnp);
4866 			init_waitqueue_head(&rnp->exp_wq[0]);
4867 			init_waitqueue_head(&rnp->exp_wq[1]);
4868 			init_waitqueue_head(&rnp->exp_wq[2]);
4869 			init_waitqueue_head(&rnp->exp_wq[3]);
4870 			spin_lock_init(&rnp->exp_lock);
4871 			mutex_init(&rnp->boost_kthread_mutex);
4872 			raw_spin_lock_init(&rnp->exp_poll_lock);
4873 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4874 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4875 		}
4876 	}
4877 
4878 	init_swait_queue_head(&rcu_state.gp_wq);
4879 	init_swait_queue_head(&rcu_state.expedited_wq);
4880 	rnp = rcu_first_leaf_node();
4881 	for_each_possible_cpu(i) {
4882 		while (i > rnp->grphi)
4883 			rnp++;
4884 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4885 		rcu_boot_init_percpu_data(i);
4886 	}
4887 }
4888 
4889 /*
4890  * Force priority from the kernel command-line into range.
4891  */
sanitize_kthread_prio(void)4892 static void __init sanitize_kthread_prio(void)
4893 {
4894 	int kthread_prio_in = kthread_prio;
4895 
4896 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4897 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4898 		kthread_prio = 2;
4899 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4900 		kthread_prio = 1;
4901 	else if (kthread_prio < 0)
4902 		kthread_prio = 0;
4903 	else if (kthread_prio > 99)
4904 		kthread_prio = 99;
4905 
4906 	if (kthread_prio != kthread_prio_in)
4907 		pr_alert("%s: Limited prio to %d from %d\n",
4908 			 __func__, kthread_prio, kthread_prio_in);
4909 }
4910 
4911 /*
4912  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4913  * replace the definitions in tree.h because those are needed to size
4914  * the ->node array in the rcu_state structure.
4915  */
rcu_init_geometry(void)4916 void rcu_init_geometry(void)
4917 {
4918 	ulong d;
4919 	int i;
4920 	static unsigned long old_nr_cpu_ids;
4921 	int rcu_capacity[RCU_NUM_LVLS];
4922 	static bool initialized;
4923 
4924 	if (initialized) {
4925 		/*
4926 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4927 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4928 		 */
4929 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4930 		return;
4931 	}
4932 
4933 	old_nr_cpu_ids = nr_cpu_ids;
4934 	initialized = true;
4935 
4936 	/*
4937 	 * Initialize any unspecified boot parameters.
4938 	 * The default values of jiffies_till_first_fqs and
4939 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4940 	 * value, which is a function of HZ, then adding one for each
4941 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4942 	 */
4943 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4944 	if (jiffies_till_first_fqs == ULONG_MAX)
4945 		jiffies_till_first_fqs = d;
4946 	if (jiffies_till_next_fqs == ULONG_MAX)
4947 		jiffies_till_next_fqs = d;
4948 	adjust_jiffies_till_sched_qs();
4949 
4950 	/* If the compile-time values are accurate, just leave. */
4951 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4952 	    nr_cpu_ids == NR_CPUS)
4953 		return;
4954 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4955 		rcu_fanout_leaf, nr_cpu_ids);
4956 
4957 	/*
4958 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4959 	 * and cannot exceed the number of bits in the rcu_node masks.
4960 	 * Complain and fall back to the compile-time values if this
4961 	 * limit is exceeded.
4962 	 */
4963 	if (rcu_fanout_leaf < 2 ||
4964 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4965 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4966 		WARN_ON(1);
4967 		return;
4968 	}
4969 
4970 	/*
4971 	 * Compute number of nodes that can be handled an rcu_node tree
4972 	 * with the given number of levels.
4973 	 */
4974 	rcu_capacity[0] = rcu_fanout_leaf;
4975 	for (i = 1; i < RCU_NUM_LVLS; i++)
4976 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4977 
4978 	/*
4979 	 * The tree must be able to accommodate the configured number of CPUs.
4980 	 * If this limit is exceeded, fall back to the compile-time values.
4981 	 */
4982 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4983 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4984 		WARN_ON(1);
4985 		return;
4986 	}
4987 
4988 	/* Calculate the number of levels in the tree. */
4989 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4990 	}
4991 	rcu_num_lvls = i + 1;
4992 
4993 	/* Calculate the number of rcu_nodes at each level of the tree. */
4994 	for (i = 0; i < rcu_num_lvls; i++) {
4995 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4996 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4997 	}
4998 
4999 	/* Calculate the total number of rcu_node structures. */
5000 	rcu_num_nodes = 0;
5001 	for (i = 0; i < rcu_num_lvls; i++)
5002 		rcu_num_nodes += num_rcu_lvl[i];
5003 }
5004 
5005 /*
5006  * Dump out the structure of the rcu_node combining tree associated
5007  * with the rcu_state structure.
5008  */
rcu_dump_rcu_node_tree(void)5009 static void __init rcu_dump_rcu_node_tree(void)
5010 {
5011 	int level = 0;
5012 	struct rcu_node *rnp;
5013 
5014 	pr_info("rcu_node tree layout dump\n");
5015 	pr_info(" ");
5016 	rcu_for_each_node_breadth_first(rnp) {
5017 		if (rnp->level != level) {
5018 			pr_cont("\n");
5019 			pr_info(" ");
5020 			level = rnp->level;
5021 		}
5022 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5023 	}
5024 	pr_cont("\n");
5025 }
5026 
5027 struct workqueue_struct *rcu_gp_wq;
5028 
kfree_rcu_batch_init(void)5029 static void __init kfree_rcu_batch_init(void)
5030 {
5031 	int cpu;
5032 	int i, j;
5033 
5034 	/* Clamp it to [0:100] seconds interval. */
5035 	if (rcu_delay_page_cache_fill_msec < 0 ||
5036 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5037 
5038 		rcu_delay_page_cache_fill_msec =
5039 			clamp(rcu_delay_page_cache_fill_msec, 0,
5040 				(int) (100 * MSEC_PER_SEC));
5041 
5042 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5043 			rcu_delay_page_cache_fill_msec);
5044 	}
5045 
5046 	for_each_possible_cpu(cpu) {
5047 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5048 
5049 		for (i = 0; i < KFREE_N_BATCHES; i++) {
5050 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5051 			krcp->krw_arr[i].krcp = krcp;
5052 
5053 			for (j = 0; j < FREE_N_CHANNELS; j++)
5054 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5055 		}
5056 
5057 		for (i = 0; i < FREE_N_CHANNELS; i++)
5058 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5059 
5060 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5061 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5062 		krcp->initialized = true;
5063 	}
5064 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5065 		pr_err("Failed to register kfree_rcu() shrinker!\n");
5066 }
5067 
rcu_init(void)5068 void __init rcu_init(void)
5069 {
5070 	int cpu = smp_processor_id();
5071 
5072 	rcu_early_boot_tests();
5073 
5074 	kfree_rcu_batch_init();
5075 	rcu_bootup_announce();
5076 	sanitize_kthread_prio();
5077 	rcu_init_geometry();
5078 	rcu_init_one();
5079 	if (dump_tree)
5080 		rcu_dump_rcu_node_tree();
5081 	if (use_softirq)
5082 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5083 
5084 	/*
5085 	 * We don't need protection against CPU-hotplug here because
5086 	 * this is called early in boot, before either interrupts
5087 	 * or the scheduler are operational.
5088 	 */
5089 	pm_notifier(rcu_pm_notify, 0);
5090 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5091 	rcutree_prepare_cpu(cpu);
5092 	rcu_cpu_starting(cpu);
5093 	rcutree_online_cpu(cpu);
5094 
5095 	/* Create workqueue for Tree SRCU and for expedited GPs. */
5096 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5097 	WARN_ON(!rcu_gp_wq);
5098 	rcu_alloc_par_gp_wq();
5099 
5100 	/* Fill in default value for rcutree.qovld boot parameter. */
5101 	/* -After- the rcu_node ->lock fields are initialized! */
5102 	if (qovld < 0)
5103 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5104 	else
5105 		qovld_calc = qovld;
5106 
5107 	// Kick-start in case any polled grace periods started early.
5108 	(void)start_poll_synchronize_rcu_expedited();
5109 
5110 	rcu_test_sync_prims();
5111 }
5112 
5113 #include "tree_stall.h"
5114 #include "tree_exp.h"
5115 #include "tree_nocb.h"
5116 #include "tree_plugin.h"
5117