1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5 #ifndef __LINUX_BIO_H
6 #define __LINUX_BIO_H
7
8 #include <linux/mempool.h>
9 /* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10 #include <linux/blk_types.h>
11 #include <linux/uio.h>
12
13 #define BIO_MAX_VECS 256U
14 #define BIO_MAX_INLINE_VECS UIO_MAXIOV
15
16 struct queue_limits;
17
bio_max_segs(unsigned int nr_segs)18 static inline unsigned int bio_max_segs(unsigned int nr_segs)
19 {
20 return min(nr_segs, BIO_MAX_VECS);
21 }
22
23 #define bio_prio(bio) (bio)->bi_ioprio
24 #define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio)
25
26 #define bio_iter_iovec(bio, iter) \
27 bvec_iter_bvec((bio)->bi_io_vec, (iter))
28
29 #define bio_iter_page(bio, iter) \
30 bvec_iter_page((bio)->bi_io_vec, (iter))
31 #define bio_iter_len(bio, iter) \
32 bvec_iter_len((bio)->bi_io_vec, (iter))
33 #define bio_iter_offset(bio, iter) \
34 bvec_iter_offset((bio)->bi_io_vec, (iter))
35
36 #define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
37 #define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
38 #define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
39
40 #define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
41 #define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
42
43 #define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
44 #define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
45
46 /*
47 * Return the data direction, READ or WRITE.
48 */
49 #define bio_data_dir(bio) \
50 (op_is_write(bio_op(bio)) ? WRITE : READ)
51
52 /*
53 * Check whether this bio carries any data or not. A NULL bio is allowed.
54 */
bio_has_data(struct bio * bio)55 static inline bool bio_has_data(struct bio *bio)
56 {
57 if (bio &&
58 bio->bi_iter.bi_size &&
59 bio_op(bio) != REQ_OP_DISCARD &&
60 bio_op(bio) != REQ_OP_SECURE_ERASE &&
61 bio_op(bio) != REQ_OP_WRITE_ZEROES)
62 return true;
63
64 return false;
65 }
66
bio_no_advance_iter(const struct bio * bio)67 static inline bool bio_no_advance_iter(const struct bio *bio)
68 {
69 return bio_op(bio) == REQ_OP_DISCARD ||
70 bio_op(bio) == REQ_OP_SECURE_ERASE ||
71 bio_op(bio) == REQ_OP_WRITE_ZEROES;
72 }
73
bio_data(struct bio * bio)74 static inline void *bio_data(struct bio *bio)
75 {
76 if (bio_has_data(bio))
77 return page_address(bio_page(bio)) + bio_offset(bio);
78
79 return NULL;
80 }
81
bio_next_segment(const struct bio * bio,struct bvec_iter_all * iter)82 static inline bool bio_next_segment(const struct bio *bio,
83 struct bvec_iter_all *iter)
84 {
85 if (iter->idx >= bio->bi_vcnt)
86 return false;
87
88 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
89 return true;
90 }
91
92 /*
93 * drivers should _never_ use the all version - the bio may have been split
94 * before it got to the driver and the driver won't own all of it
95 */
96 #define bio_for_each_segment_all(bvl, bio, iter) \
97 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
98
bio_advance_iter(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)99 static inline void bio_advance_iter(const struct bio *bio,
100 struct bvec_iter *iter, unsigned int bytes)
101 {
102 iter->bi_sector += bytes >> 9;
103
104 if (bio_no_advance_iter(bio))
105 iter->bi_size -= bytes;
106 else
107 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
108 /* TODO: It is reasonable to complete bio with error here. */
109 }
110
111 /* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
bio_advance_iter_single(const struct bio * bio,struct bvec_iter * iter,unsigned int bytes)112 static inline void bio_advance_iter_single(const struct bio *bio,
113 struct bvec_iter *iter,
114 unsigned int bytes)
115 {
116 iter->bi_sector += bytes >> 9;
117
118 if (bio_no_advance_iter(bio))
119 iter->bi_size -= bytes;
120 else
121 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
122 }
123
124 void __bio_advance(struct bio *, unsigned bytes);
125
126 /**
127 * bio_advance - increment/complete a bio by some number of bytes
128 * @bio: bio to advance
129 * @nbytes: number of bytes to complete
130 *
131 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
132 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
133 * be updated on the last bvec as well.
134 *
135 * @bio will then represent the remaining, uncompleted portion of the io.
136 */
bio_advance(struct bio * bio,unsigned int nbytes)137 static inline void bio_advance(struct bio *bio, unsigned int nbytes)
138 {
139 if (nbytes == bio->bi_iter.bi_size) {
140 bio->bi_iter.bi_size = 0;
141 return;
142 }
143 __bio_advance(bio, nbytes);
144 }
145
146 #define __bio_for_each_segment(bvl, bio, iter, start) \
147 for (iter = (start); \
148 (iter).bi_size && \
149 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
150 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
151
152 #define bio_for_each_segment(bvl, bio, iter) \
153 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
154
155 #define __bio_for_each_bvec(bvl, bio, iter, start) \
156 for (iter = (start); \
157 (iter).bi_size && \
158 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
159 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
160
161 /* iterate over multi-page bvec */
162 #define bio_for_each_bvec(bvl, bio, iter) \
163 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
164
165 /*
166 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
167 * same reasons as bio_for_each_segment_all().
168 */
169 #define bio_for_each_bvec_all(bvl, bio, i) \
170 for (i = 0, bvl = bio_first_bvec_all(bio); \
171 i < (bio)->bi_vcnt; i++, bvl++)
172
173 #define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
174
bio_segments(struct bio * bio)175 static inline unsigned bio_segments(struct bio *bio)
176 {
177 unsigned segs = 0;
178 struct bio_vec bv;
179 struct bvec_iter iter;
180
181 /*
182 * We special case discard/write same/write zeroes, because they
183 * interpret bi_size differently:
184 */
185
186 switch (bio_op(bio)) {
187 case REQ_OP_DISCARD:
188 case REQ_OP_SECURE_ERASE:
189 case REQ_OP_WRITE_ZEROES:
190 return 0;
191 default:
192 break;
193 }
194
195 bio_for_each_segment(bv, bio, iter)
196 segs++;
197
198 return segs;
199 }
200
201 /*
202 * get a reference to a bio, so it won't disappear. the intended use is
203 * something like:
204 *
205 * bio_get(bio);
206 * submit_bio(rw, bio);
207 * if (bio->bi_flags ...)
208 * do_something
209 * bio_put(bio);
210 *
211 * without the bio_get(), it could potentially complete I/O before submit_bio
212 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
213 * runs
214 */
bio_get(struct bio * bio)215 static inline void bio_get(struct bio *bio)
216 {
217 bio->bi_flags |= (1 << BIO_REFFED);
218 smp_mb__before_atomic();
219 atomic_inc(&bio->__bi_cnt);
220 }
221
bio_cnt_set(struct bio * bio,unsigned int count)222 static inline void bio_cnt_set(struct bio *bio, unsigned int count)
223 {
224 if (count != 1) {
225 bio->bi_flags |= (1 << BIO_REFFED);
226 smp_mb();
227 }
228 atomic_set(&bio->__bi_cnt, count);
229 }
230
bio_flagged(struct bio * bio,unsigned int bit)231 static inline bool bio_flagged(struct bio *bio, unsigned int bit)
232 {
233 return bio->bi_flags & (1U << bit);
234 }
235
bio_set_flag(struct bio * bio,unsigned int bit)236 static inline void bio_set_flag(struct bio *bio, unsigned int bit)
237 {
238 bio->bi_flags |= (1U << bit);
239 }
240
bio_clear_flag(struct bio * bio,unsigned int bit)241 static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
242 {
243 bio->bi_flags &= ~(1U << bit);
244 }
245
bio_first_bvec_all(struct bio * bio)246 static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
247 {
248 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
249 return bio->bi_io_vec;
250 }
251
bio_first_page_all(struct bio * bio)252 static inline struct page *bio_first_page_all(struct bio *bio)
253 {
254 return bio_first_bvec_all(bio)->bv_page;
255 }
256
bio_first_folio_all(struct bio * bio)257 static inline struct folio *bio_first_folio_all(struct bio *bio)
258 {
259 return page_folio(bio_first_page_all(bio));
260 }
261
bio_last_bvec_all(struct bio * bio)262 static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
263 {
264 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
265 return &bio->bi_io_vec[bio->bi_vcnt - 1];
266 }
267
268 /**
269 * struct folio_iter - State for iterating all folios in a bio.
270 * @folio: The current folio we're iterating. NULL after the last folio.
271 * @offset: The byte offset within the current folio.
272 * @length: The number of bytes in this iteration (will not cross folio
273 * boundary).
274 */
275 struct folio_iter {
276 struct folio *folio;
277 size_t offset;
278 size_t length;
279 /* private: for use by the iterator */
280 struct folio *_next;
281 size_t _seg_count;
282 int _i;
283 };
284
bio_first_folio(struct folio_iter * fi,struct bio * bio,int i)285 static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
286 int i)
287 {
288 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
289
290 if (unlikely(i >= bio->bi_vcnt)) {
291 fi->folio = NULL;
292 return;
293 }
294
295 fi->folio = page_folio(bvec->bv_page);
296 fi->offset = bvec->bv_offset +
297 PAGE_SIZE * folio_page_idx(fi->folio, bvec->bv_page);
298 fi->_seg_count = bvec->bv_len;
299 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
300 fi->_next = folio_next(fi->folio);
301 fi->_i = i;
302 }
303
bio_next_folio(struct folio_iter * fi,struct bio * bio)304 static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
305 {
306 fi->_seg_count -= fi->length;
307 if (fi->_seg_count) {
308 fi->folio = fi->_next;
309 fi->offset = 0;
310 fi->length = min(folio_size(fi->folio), fi->_seg_count);
311 fi->_next = folio_next(fi->folio);
312 } else {
313 bio_first_folio(fi, bio, fi->_i + 1);
314 }
315 }
316
317 /**
318 * bio_for_each_folio_all - Iterate over each folio in a bio.
319 * @fi: struct folio_iter which is updated for each folio.
320 * @bio: struct bio to iterate over.
321 */
322 #define bio_for_each_folio_all(fi, bio) \
323 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
324
325 enum bip_flags {
326 BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */
327 BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */
328 BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */
329 BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */
330 BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */
331 };
332
333 /*
334 * bio integrity payload
335 */
336 struct bio_integrity_payload {
337 struct bio *bip_bio; /* parent bio */
338
339 struct bvec_iter bip_iter;
340
341 unsigned short bip_vcnt; /* # of integrity bio_vecs */
342 unsigned short bip_max_vcnt; /* integrity bio_vec slots */
343 unsigned short bip_flags; /* control flags */
344
345 struct bvec_iter bio_iter; /* for rewinding parent bio */
346
347 struct work_struct bip_work; /* I/O completion */
348
349 struct bio_vec *bip_vec;
350 struct bio_vec bip_inline_vecs[];/* embedded bvec array */
351 };
352
353 #if defined(CONFIG_BLK_DEV_INTEGRITY)
354
bio_integrity(struct bio * bio)355 static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
356 {
357 if (bio->bi_opf & REQ_INTEGRITY)
358 return bio->bi_integrity;
359
360 return NULL;
361 }
362
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)363 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
364 {
365 struct bio_integrity_payload *bip = bio_integrity(bio);
366
367 if (bip)
368 return bip->bip_flags & flag;
369
370 return false;
371 }
372
bip_get_seed(struct bio_integrity_payload * bip)373 static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
374 {
375 return bip->bip_iter.bi_sector;
376 }
377
bip_set_seed(struct bio_integrity_payload * bip,sector_t seed)378 static inline void bip_set_seed(struct bio_integrity_payload *bip,
379 sector_t seed)
380 {
381 bip->bip_iter.bi_sector = seed;
382 }
383
384 #endif /* CONFIG_BLK_DEV_INTEGRITY */
385
386 void bio_trim(struct bio *bio, sector_t offset, sector_t size);
387 extern struct bio *bio_split(struct bio *bio, int sectors,
388 gfp_t gfp, struct bio_set *bs);
389 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
390 unsigned *segs, struct bio_set *bs, unsigned max_bytes);
391
392 /**
393 * bio_next_split - get next @sectors from a bio, splitting if necessary
394 * @bio: bio to split
395 * @sectors: number of sectors to split from the front of @bio
396 * @gfp: gfp mask
397 * @bs: bio set to allocate from
398 *
399 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
400 * than @sectors, returns the original bio unchanged.
401 */
bio_next_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)402 static inline struct bio *bio_next_split(struct bio *bio, int sectors,
403 gfp_t gfp, struct bio_set *bs)
404 {
405 if (sectors >= bio_sectors(bio))
406 return bio;
407
408 return bio_split(bio, sectors, gfp, bs);
409 }
410
411 enum {
412 BIOSET_NEED_BVECS = BIT(0),
413 BIOSET_NEED_RESCUER = BIT(1),
414 BIOSET_PERCPU_CACHE = BIT(2),
415 };
416 extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
417 extern void bioset_exit(struct bio_set *);
418 extern int biovec_init_pool(mempool_t *pool, int pool_entries);
419
420 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
421 blk_opf_t opf, gfp_t gfp_mask,
422 struct bio_set *bs);
423 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
424 extern void bio_put(struct bio *);
425
426 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
427 gfp_t gfp, struct bio_set *bs);
428 int bio_init_clone(struct block_device *bdev, struct bio *bio,
429 struct bio *bio_src, gfp_t gfp);
430
431 extern struct bio_set fs_bio_set;
432
bio_alloc(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask)433 static inline struct bio *bio_alloc(struct block_device *bdev,
434 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
435 {
436 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
437 }
438
439 void submit_bio(struct bio *bio);
440
441 extern void bio_endio(struct bio *);
442
bio_io_error(struct bio * bio)443 static inline void bio_io_error(struct bio *bio)
444 {
445 bio->bi_status = BLK_STS_IOERR;
446 bio_endio(bio);
447 }
448
bio_wouldblock_error(struct bio * bio)449 static inline void bio_wouldblock_error(struct bio *bio)
450 {
451 bio_set_flag(bio, BIO_QUIET);
452 bio->bi_status = BLK_STS_AGAIN;
453 bio_endio(bio);
454 }
455
456 /*
457 * Calculate number of bvec segments that should be allocated to fit data
458 * pointed by @iter. If @iter is backed by bvec it's going to be reused
459 * instead of allocating a new one.
460 */
bio_iov_vecs_to_alloc(struct iov_iter * iter,int max_segs)461 static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
462 {
463 if (iov_iter_is_bvec(iter))
464 return 0;
465 return iov_iter_npages(iter, max_segs);
466 }
467
468 struct request_queue;
469
470 extern int submit_bio_wait(struct bio *bio);
471 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
472 unsigned short max_vecs, blk_opf_t opf);
473 extern void bio_uninit(struct bio *);
474 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
475 void bio_chain(struct bio *, struct bio *);
476
477 int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
478 unsigned off);
479 bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
480 size_t len, size_t off);
481 extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
482 unsigned int, unsigned int);
483 int bio_add_zone_append_page(struct bio *bio, struct page *page,
484 unsigned int len, unsigned int offset);
485 void __bio_add_page(struct bio *bio, struct page *page,
486 unsigned int len, unsigned int off);
487 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
488 size_t off);
489 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
490 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
491 void __bio_release_pages(struct bio *bio, bool mark_dirty);
492 extern void bio_set_pages_dirty(struct bio *bio);
493 extern void bio_check_pages_dirty(struct bio *bio);
494
495 extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
496 struct bio *src, struct bvec_iter *src_iter);
497 extern void bio_copy_data(struct bio *dst, struct bio *src);
498 extern void bio_free_pages(struct bio *bio);
499 void guard_bio_eod(struct bio *bio);
500 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter iter);
501
zero_fill_bio(struct bio * bio)502 static inline void zero_fill_bio(struct bio *bio)
503 {
504 zero_fill_bio_iter(bio, bio->bi_iter);
505 }
506
bio_release_pages(struct bio * bio,bool mark_dirty)507 static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
508 {
509 if (bio_flagged(bio, BIO_PAGE_PINNED))
510 __bio_release_pages(bio, mark_dirty);
511 }
512
513 #define bio_dev(bio) \
514 disk_devt((bio)->bi_bdev->bd_disk)
515
516 #ifdef CONFIG_BLK_CGROUP
517 void bio_associate_blkg(struct bio *bio);
518 void bio_associate_blkg_from_css(struct bio *bio,
519 struct cgroup_subsys_state *css);
520 void bio_clone_blkg_association(struct bio *dst, struct bio *src);
521 void blkcg_punt_bio_submit(struct bio *bio);
522 #else /* CONFIG_BLK_CGROUP */
bio_associate_blkg(struct bio * bio)523 static inline void bio_associate_blkg(struct bio *bio) { }
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)524 static inline void bio_associate_blkg_from_css(struct bio *bio,
525 struct cgroup_subsys_state *css)
526 { }
bio_clone_blkg_association(struct bio * dst,struct bio * src)527 static inline void bio_clone_blkg_association(struct bio *dst,
528 struct bio *src) { }
blkcg_punt_bio_submit(struct bio * bio)529 static inline void blkcg_punt_bio_submit(struct bio *bio)
530 {
531 submit_bio(bio);
532 }
533 #endif /* CONFIG_BLK_CGROUP */
534
bio_set_dev(struct bio * bio,struct block_device * bdev)535 static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
536 {
537 bio_clear_flag(bio, BIO_REMAPPED);
538 if (bio->bi_bdev != bdev)
539 bio_clear_flag(bio, BIO_BPS_THROTTLED);
540 bio->bi_bdev = bdev;
541 bio_associate_blkg(bio);
542 }
543
544 /*
545 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
546 *
547 * A bio_list anchors a singly-linked list of bios chained through the bi_next
548 * member of the bio. The bio_list also caches the last list member to allow
549 * fast access to the tail.
550 */
551 struct bio_list {
552 struct bio *head;
553 struct bio *tail;
554 };
555
bio_list_empty(const struct bio_list * bl)556 static inline int bio_list_empty(const struct bio_list *bl)
557 {
558 return bl->head == NULL;
559 }
560
bio_list_init(struct bio_list * bl)561 static inline void bio_list_init(struct bio_list *bl)
562 {
563 bl->head = bl->tail = NULL;
564 }
565
566 #define BIO_EMPTY_LIST { NULL, NULL }
567
568 #define bio_list_for_each(bio, bl) \
569 for (bio = (bl)->head; bio; bio = bio->bi_next)
570
bio_list_size(const struct bio_list * bl)571 static inline unsigned bio_list_size(const struct bio_list *bl)
572 {
573 unsigned sz = 0;
574 struct bio *bio;
575
576 bio_list_for_each(bio, bl)
577 sz++;
578
579 return sz;
580 }
581
bio_list_add(struct bio_list * bl,struct bio * bio)582 static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
583 {
584 bio->bi_next = NULL;
585
586 if (bl->tail)
587 bl->tail->bi_next = bio;
588 else
589 bl->head = bio;
590
591 bl->tail = bio;
592 }
593
bio_list_add_head(struct bio_list * bl,struct bio * bio)594 static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
595 {
596 bio->bi_next = bl->head;
597
598 bl->head = bio;
599
600 if (!bl->tail)
601 bl->tail = bio;
602 }
603
bio_list_merge(struct bio_list * bl,struct bio_list * bl2)604 static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
605 {
606 if (!bl2->head)
607 return;
608
609 if (bl->tail)
610 bl->tail->bi_next = bl2->head;
611 else
612 bl->head = bl2->head;
613
614 bl->tail = bl2->tail;
615 }
616
bio_list_merge_head(struct bio_list * bl,struct bio_list * bl2)617 static inline void bio_list_merge_head(struct bio_list *bl,
618 struct bio_list *bl2)
619 {
620 if (!bl2->head)
621 return;
622
623 if (bl->head)
624 bl2->tail->bi_next = bl->head;
625 else
626 bl->tail = bl2->tail;
627
628 bl->head = bl2->head;
629 }
630
bio_list_peek(struct bio_list * bl)631 static inline struct bio *bio_list_peek(struct bio_list *bl)
632 {
633 return bl->head;
634 }
635
bio_list_pop(struct bio_list * bl)636 static inline struct bio *bio_list_pop(struct bio_list *bl)
637 {
638 struct bio *bio = bl->head;
639
640 if (bio) {
641 bl->head = bl->head->bi_next;
642 if (!bl->head)
643 bl->tail = NULL;
644
645 bio->bi_next = NULL;
646 }
647
648 return bio;
649 }
650
bio_list_get(struct bio_list * bl)651 static inline struct bio *bio_list_get(struct bio_list *bl)
652 {
653 struct bio *bio = bl->head;
654
655 bl->head = bl->tail = NULL;
656
657 return bio;
658 }
659
660 /*
661 * Increment chain count for the bio. Make sure the CHAIN flag update
662 * is visible before the raised count.
663 */
bio_inc_remaining(struct bio * bio)664 static inline void bio_inc_remaining(struct bio *bio)
665 {
666 bio_set_flag(bio, BIO_CHAIN);
667 smp_mb__before_atomic();
668 atomic_inc(&bio->__bi_remaining);
669 }
670
671 /*
672 * bio_set is used to allow other portions of the IO system to
673 * allocate their own private memory pools for bio and iovec structures.
674 * These memory pools in turn all allocate from the bio_slab
675 * and the bvec_slabs[].
676 */
677 #define BIO_POOL_SIZE 2
678
679 struct bio_set {
680 struct kmem_cache *bio_slab;
681 unsigned int front_pad;
682
683 /*
684 * per-cpu bio alloc cache
685 */
686 struct bio_alloc_cache __percpu *cache;
687
688 mempool_t bio_pool;
689 mempool_t bvec_pool;
690 #if defined(CONFIG_BLK_DEV_INTEGRITY)
691 mempool_t bio_integrity_pool;
692 mempool_t bvec_integrity_pool;
693 #endif
694
695 unsigned int back_pad;
696 /*
697 * Deadlock avoidance for stacking block drivers: see comments in
698 * bio_alloc_bioset() for details
699 */
700 spinlock_t rescue_lock;
701 struct bio_list rescue_list;
702 struct work_struct rescue_work;
703 struct workqueue_struct *rescue_workqueue;
704
705 /*
706 * Hot un-plug notifier for the per-cpu cache, if used
707 */
708 struct hlist_node cpuhp_dead;
709 };
710
bioset_initialized(struct bio_set * bs)711 static inline bool bioset_initialized(struct bio_set *bs)
712 {
713 return bs->bio_slab != NULL;
714 }
715
716 #if defined(CONFIG_BLK_DEV_INTEGRITY)
717
718 #define bip_for_each_vec(bvl, bip, iter) \
719 for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
720
721 #define bio_for_each_integrity_vec(_bvl, _bio, _iter) \
722 for_each_bio(_bio) \
723 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
724
725 extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
726 extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
727 extern bool bio_integrity_prep(struct bio *);
728 extern void bio_integrity_advance(struct bio *, unsigned int);
729 extern void bio_integrity_trim(struct bio *);
730 extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
731 extern int bioset_integrity_create(struct bio_set *, int);
732 extern void bioset_integrity_free(struct bio_set *);
733 extern void bio_integrity_init(void);
734
735 #else /* CONFIG_BLK_DEV_INTEGRITY */
736
bio_integrity(struct bio * bio)737 static inline void *bio_integrity(struct bio *bio)
738 {
739 return NULL;
740 }
741
bioset_integrity_create(struct bio_set * bs,int pool_size)742 static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
743 {
744 return 0;
745 }
746
bioset_integrity_free(struct bio_set * bs)747 static inline void bioset_integrity_free (struct bio_set *bs)
748 {
749 return;
750 }
751
bio_integrity_prep(struct bio * bio)752 static inline bool bio_integrity_prep(struct bio *bio)
753 {
754 return true;
755 }
756
bio_integrity_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp_mask)757 static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
758 gfp_t gfp_mask)
759 {
760 return 0;
761 }
762
bio_integrity_advance(struct bio * bio,unsigned int bytes_done)763 static inline void bio_integrity_advance(struct bio *bio,
764 unsigned int bytes_done)
765 {
766 return;
767 }
768
bio_integrity_trim(struct bio * bio)769 static inline void bio_integrity_trim(struct bio *bio)
770 {
771 return;
772 }
773
bio_integrity_init(void)774 static inline void bio_integrity_init(void)
775 {
776 return;
777 }
778
bio_integrity_flagged(struct bio * bio,enum bip_flags flag)779 static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
780 {
781 return false;
782 }
783
bio_integrity_alloc(struct bio * bio,gfp_t gfp,unsigned int nr)784 static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
785 unsigned int nr)
786 {
787 return ERR_PTR(-EINVAL);
788 }
789
bio_integrity_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)790 static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
791 unsigned int len, unsigned int offset)
792 {
793 return 0;
794 }
795
796 #endif /* CONFIG_BLK_DEV_INTEGRITY */
797
798 /*
799 * Mark a bio as polled. Note that for async polled IO, the caller must
800 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
801 * We cannot block waiting for requests on polled IO, as those completions
802 * must be found by the caller. This is different than IRQ driven IO, where
803 * it's safe to wait for IO to complete.
804 */
bio_set_polled(struct bio * bio,struct kiocb * kiocb)805 static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
806 {
807 bio->bi_opf |= REQ_POLLED;
808 if (kiocb->ki_flags & IOCB_NOWAIT)
809 bio->bi_opf |= REQ_NOWAIT;
810 }
811
bio_clear_polled(struct bio * bio)812 static inline void bio_clear_polled(struct bio *bio)
813 {
814 bio->bi_opf &= ~REQ_POLLED;
815 }
816
817 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
818 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
819
820 #endif /* __LINUX_BIO_H */
821