xref: /openbmc/linux/kernel/sched/fair.c (revision 24617f9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
arch_asym_cpu_priority(int cpu)106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
sched_fair_sysctl_init(void)178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
update_load_add(struct load_weight * lw,unsigned long inc)186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
update_load_sub(struct load_weight * lw,unsigned long dec)192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
update_load_set(struct load_weight * lw,unsigned long w)198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
get_update_sysctl_factor(void)213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
update_sysctl(void)234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
sched_init_granularity(void)244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
__update_inv_weight(struct load_weight * lw)252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
calc_delta_fair(u64 delta,struct sched_entity * se)311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
assert_list_leaf_cfs_rq(struct rq * rq)419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
parent_entity(const struct sched_entity * se)439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
tg_is_idle(struct task_group * tg)476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
se_is_idle(struct sched_entity * se)486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
assert_list_leaf_cfs_rq(struct rq * rq)507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
parent_entity(struct sched_entity * se)514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
tg_is_idle(struct task_group * tg)524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
se_is_idle(struct sched_entity * se)534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return task_has_idle_policy(task_of(se));
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
max_vruntime(u64 max_vruntime,u64 vruntime)548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
min_vruntime(u64 min_vruntime,u64 vruntime)557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
entity_before(const struct sched_entity * a,const struct sched_entity * b)566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
avg_vruntime(struct cfs_rq * cfs_rq)671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
entity_lag(u64 avruntime,struct sched_entity * se)710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 	s64 vlag, limit;
713 
714 	vlag = avruntime - se->vruntime;
715 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716 
717 	return clamp(vlag, -limit, limit);
718 }
719 
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	SCHED_WARN_ON(!se->on_rq);
723 
724 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726 
727 /*
728  * Entity is eligible once it received less service than it ought to have,
729  * eg. lag >= 0.
730  *
731  * lag_i = S - s_i = w_i*(V - v_i)
732  *
733  * lag_i >= 0 -> V >= v_i
734  *
735  *     \Sum (v_i - v)*w_i
736  * V = ------------------ + v
737  *          \Sum w_i
738  *
739  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740  *
741  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742  *       to the loss in precision caused by the division.
743  */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	struct sched_entity *curr = cfs_rq->curr;
747 	s64 avg = cfs_rq->avg_vruntime;
748 	long load = cfs_rq->avg_load;
749 
750 	if (curr && curr->on_rq) {
751 		unsigned long weight = scale_load_down(curr->load.weight);
752 
753 		avg += entity_key(cfs_rq, curr) * weight;
754 		load += weight;
755 	}
756 
757 	return avg >= entity_key(cfs_rq, se) * load;
758 }
759 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 	u64 min_vruntime = cfs_rq->min_vruntime;
763 	/*
764 	 * open coded max_vruntime() to allow updating avg_vruntime
765 	 */
766 	s64 delta = (s64)(vruntime - min_vruntime);
767 	if (delta > 0) {
768 		avg_vruntime_update(cfs_rq, delta);
769 		min_vruntime = vruntime;
770 	}
771 	return min_vruntime;
772 }
773 
update_min_vruntime(struct cfs_rq * cfs_rq)774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 	struct sched_entity *se = __pick_first_entity(cfs_rq);
777 	struct sched_entity *curr = cfs_rq->curr;
778 
779 	u64 vruntime = cfs_rq->min_vruntime;
780 
781 	if (curr) {
782 		if (curr->on_rq)
783 			vruntime = curr->vruntime;
784 		else
785 			curr = NULL;
786 	}
787 
788 	if (se) {
789 		if (!curr)
790 			vruntime = se->vruntime;
791 		else
792 			vruntime = min_vruntime(vruntime, se->vruntime);
793 	}
794 
795 	/* ensure we never gain time by being placed backwards. */
796 	u64_u32_store(cfs_rq->min_vruntime,
797 		      __update_min_vruntime(cfs_rq, vruntime));
798 }
799 
__entity_less(struct rb_node * a,const struct rb_node * b)800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
__update_min_deadline(struct sched_entity * se,struct rb_node * node)807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (deadline_gt(min_deadline, se, rse))
812 			se->min_deadline = rse->min_deadline;
813 	}
814 }
815 
816 /*
817  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818  */
min_deadline_update(struct sched_entity * se,bool exit)819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 	u64 old_min_deadline = se->min_deadline;
822 	struct rb_node *node = &se->run_node;
823 
824 	se->min_deadline = se->deadline;
825 	__update_min_deadline(se, node->rb_right);
826 	__update_min_deadline(se, node->rb_left);
827 
828 	return se->min_deadline == old_min_deadline;
829 }
830 
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 		     run_node, min_deadline, min_deadline_update);
833 
834 /*
835  * Enqueue an entity into the rb-tree:
836  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	avg_vruntime_add(cfs_rq, se);
840 	se->min_deadline = se->deadline;
841 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				__entity_less, &min_deadline_cb);
843 }
844 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 				  &min_deadline_cb);
849 	avg_vruntime_sub(cfs_rq, se);
850 }
851 
__pick_first_entity(struct cfs_rq * cfs_rq)852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855 
856 	if (!left)
857 		return NULL;
858 
859 	return __node_2_se(left);
860 }
861 
862 /*
863  * Earliest Eligible Virtual Deadline First
864  *
865  * In order to provide latency guarantees for different request sizes
866  * EEVDF selects the best runnable task from two criteria:
867  *
868  *  1) the task must be eligible (must be owed service)
869  *
870  *  2) from those tasks that meet 1), we select the one
871  *     with the earliest virtual deadline.
872  *
873  * We can do this in O(log n) time due to an augmented RB-tree. The
874  * tree keeps the entries sorted on service, but also functions as a
875  * heap based on the deadline by keeping:
876  *
877  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878  *
879  * Which allows an EDF like search on (sub)trees.
880  */
__pick_eevdf(struct cfs_rq * cfs_rq)881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 	struct sched_entity *curr = cfs_rq->curr;
885 	struct sched_entity *best = NULL;
886 	struct sched_entity *best_left = NULL;
887 
888 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 		curr = NULL;
890 	best = curr;
891 
892 	/*
893 	 * Once selected, run a task until it either becomes non-eligible or
894 	 * until it gets a new slice. See the HACK in set_next_entity().
895 	 */
896 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 		return curr;
898 
899 	while (node) {
900 		struct sched_entity *se = __node_2_se(node);
901 
902 		/*
903 		 * If this entity is not eligible, try the left subtree.
904 		 */
905 		if (!entity_eligible(cfs_rq, se)) {
906 			node = node->rb_left;
907 			continue;
908 		}
909 
910 		/*
911 		 * Now we heap search eligible trees for the best (min_)deadline
912 		 */
913 		if (!best || deadline_gt(deadline, best, se))
914 			best = se;
915 
916 		/*
917 		 * Every se in a left branch is eligible, keep track of the
918 		 * branch with the best min_deadline
919 		 */
920 		if (node->rb_left) {
921 			struct sched_entity *left = __node_2_se(node->rb_left);
922 
923 			if (!best_left || deadline_gt(min_deadline, best_left, left))
924 				best_left = left;
925 
926 			/*
927 			 * min_deadline is in the left branch. rb_left and all
928 			 * descendants are eligible, so immediately switch to the second
929 			 * loop.
930 			 */
931 			if (left->min_deadline == se->min_deadline)
932 				break;
933 		}
934 
935 		/* min_deadline is at this node, no need to look right */
936 		if (se->deadline == se->min_deadline)
937 			break;
938 
939 		/* else min_deadline is in the right branch. */
940 		node = node->rb_right;
941 	}
942 
943 	/*
944 	 * We ran into an eligible node which is itself the best.
945 	 * (Or nr_running == 0 and both are NULL)
946 	 */
947 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 		return best;
949 
950 	/*
951 	 * Now best_left and all of its children are eligible, and we are just
952 	 * looking for deadline == min_deadline
953 	 */
954 	node = &best_left->run_node;
955 	while (node) {
956 		struct sched_entity *se = __node_2_se(node);
957 
958 		/* min_deadline is the current node */
959 		if (se->deadline == se->min_deadline)
960 			return se;
961 
962 		/* min_deadline is in the left branch */
963 		if (node->rb_left &&
964 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 			node = node->rb_left;
966 			continue;
967 		}
968 
969 		/* else min_deadline is in the right branch */
970 		node = node->rb_right;
971 	}
972 	return NULL;
973 }
974 
pick_eevdf(struct cfs_rq * cfs_rq)975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 	struct sched_entity *se = __pick_eevdf(cfs_rq);
978 
979 	if (!se) {
980 		struct sched_entity *left = __pick_first_entity(cfs_rq);
981 		if (left) {
982 			pr_err("EEVDF scheduling fail, picking leftmost\n");
983 			return left;
984 		}
985 	}
986 
987 	return se;
988 }
989 
990 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994 
995 	if (!last)
996 		return NULL;
997 
998 	return __node_2_se(last);
999 }
1000 
1001 /**************************************************************
1002  * Scheduling class statistics methods:
1003  */
1004 #ifdef CONFIG_SMP
sched_update_scaling(void)1005 int sched_update_scaling(void)
1006 {
1007 	unsigned int factor = get_update_sysctl_factor();
1008 
1009 #define WRT_SYSCTL(name) \
1010 	(normalized_sysctl_##name = sysctl_##name / (factor))
1011 	WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013 
1014 	return 0;
1015 }
1016 #endif
1017 #endif
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	se->slice = sysctl_sched_base_slice;
1036 
1037 	/*
1038 	 * EEVDF: vd_i = ve_i + r_i / w_i
1039 	 */
1040 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041 
1042 	/*
1043 	 * The task has consumed its request, reschedule.
1044 	 */
1045 	if (cfs_rq->nr_running > 1) {
1046 		resched_curr(rq_of(cfs_rq));
1047 		clear_buddies(cfs_rq, se);
1048 	}
1049 }
1050 
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053 
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057 
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 	struct sched_avg *sa = &se->avg;
1062 
1063 	memset(sa, 0, sizeof(*sa));
1064 
1065 	/*
1066 	 * Tasks are initialized with full load to be seen as heavy tasks until
1067 	 * they get a chance to stabilize to their real load level.
1068 	 * Group entities are initialized with zero load to reflect the fact that
1069 	 * nothing has been attached to the task group yet.
1070 	 */
1071 	if (entity_is_task(se))
1072 		sa->load_avg = scale_load_down(se->load.weight);
1073 
1074 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076 
1077 /*
1078  * With new tasks being created, their initial util_avgs are extrapolated
1079  * based on the cfs_rq's current util_avg:
1080  *
1081  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082  *
1083  * However, in many cases, the above util_avg does not give a desired
1084  * value. Moreover, the sum of the util_avgs may be divergent, such
1085  * as when the series is a harmonic series.
1086  *
1087  * To solve this problem, we also cap the util_avg of successive tasks to
1088  * only 1/2 of the left utilization budget:
1089  *
1090  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091  *
1092  * where n denotes the nth task and cpu_scale the CPU capacity.
1093  *
1094  * For example, for a CPU with 1024 of capacity, a simplest series from
1095  * the beginning would be like:
1096  *
1097  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1098  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099  *
1100  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101  * if util_avg > util_avg_cap.
1102  */
post_init_entity_util_avg(struct task_struct * p)1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 	struct sched_entity *se = &p->se;
1106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 	struct sched_avg *sa = &se->avg;
1108 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110 
1111 	if (p->sched_class != &fair_sched_class) {
1112 		/*
1113 		 * For !fair tasks do:
1114 		 *
1115 		update_cfs_rq_load_avg(now, cfs_rq);
1116 		attach_entity_load_avg(cfs_rq, se);
1117 		switched_from_fair(rq, p);
1118 		 *
1119 		 * such that the next switched_to_fair() has the
1120 		 * expected state.
1121 		 */
1122 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 		return;
1124 	}
1125 
1126 	if (cap > 0) {
1127 		if (cfs_rq->avg.util_avg != 0) {
1128 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1129 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130 
1131 			if (sa->util_avg > cap)
1132 				sa->util_avg = cap;
1133 		} else {
1134 			sa->util_avg = cap;
1135 		}
1136 	}
1137 
1138 	sa->runnable_avg = sa->util_avg;
1139 }
1140 
1141 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
post_init_entity_util_avg(struct task_struct * p)1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152 
update_curr_se(struct rq * rq,struct sched_entity * curr)1153 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1154 {
1155 	u64 now = rq_clock_task(rq);
1156 	s64 delta_exec;
1157 
1158 	delta_exec = now - curr->exec_start;
1159 	if (unlikely(delta_exec <= 0))
1160 		return delta_exec;
1161 
1162 	curr->exec_start = now;
1163 	curr->sum_exec_runtime += delta_exec;
1164 
1165 	if (schedstat_enabled()) {
1166 		struct sched_statistics *stats;
1167 
1168 		stats = __schedstats_from_se(curr);
1169 		__schedstat_set(stats->exec_max,
1170 				max(delta_exec, stats->exec_max));
1171 	}
1172 
1173 	return delta_exec;
1174 }
1175 
update_curr_task(struct task_struct * p,s64 delta_exec)1176 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1177 {
1178 	trace_sched_stat_runtime(p, delta_exec);
1179 	account_group_exec_runtime(p, delta_exec);
1180 	cgroup_account_cputime(p, delta_exec);
1181 }
1182 
1183 /*
1184  * Used by other classes to account runtime.
1185  */
update_curr_common(struct rq * rq)1186 s64 update_curr_common(struct rq *rq)
1187 {
1188 	struct task_struct *curr = rq->curr;
1189 	s64 delta_exec;
1190 
1191 	delta_exec = update_curr_se(rq, &curr->se);
1192 	if (likely(delta_exec > 0))
1193 		update_curr_task(curr, delta_exec);
1194 
1195 	return delta_exec;
1196 }
1197 
1198 /*
1199  * Update the current task's runtime statistics.
1200  */
update_curr(struct cfs_rq * cfs_rq)1201 static void update_curr(struct cfs_rq *cfs_rq)
1202 {
1203 	struct sched_entity *curr = cfs_rq->curr;
1204 	s64 delta_exec;
1205 
1206 	if (unlikely(!curr))
1207 		return;
1208 
1209 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1210 	if (unlikely(delta_exec <= 0))
1211 		return;
1212 
1213 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1214 	update_deadline(cfs_rq, curr);
1215 	update_min_vruntime(cfs_rq);
1216 
1217 	if (entity_is_task(curr))
1218 		update_curr_task(task_of(curr), delta_exec);
1219 
1220 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1221 }
1222 
update_curr_fair(struct rq * rq)1223 static void update_curr_fair(struct rq *rq)
1224 {
1225 	update_curr(cfs_rq_of(&rq->curr->se));
1226 }
1227 
1228 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1229 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1230 {
1231 	struct sched_statistics *stats;
1232 	struct task_struct *p = NULL;
1233 
1234 	if (!schedstat_enabled())
1235 		return;
1236 
1237 	stats = __schedstats_from_se(se);
1238 
1239 	if (entity_is_task(se))
1240 		p = task_of(se);
1241 
1242 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1243 }
1244 
1245 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1246 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 	struct sched_statistics *stats;
1249 	struct task_struct *p = NULL;
1250 
1251 	if (!schedstat_enabled())
1252 		return;
1253 
1254 	stats = __schedstats_from_se(se);
1255 
1256 	/*
1257 	 * When the sched_schedstat changes from 0 to 1, some sched se
1258 	 * maybe already in the runqueue, the se->statistics.wait_start
1259 	 * will be 0.So it will let the delta wrong. We need to avoid this
1260 	 * scenario.
1261 	 */
1262 	if (unlikely(!schedstat_val(stats->wait_start)))
1263 		return;
1264 
1265 	if (entity_is_task(se))
1266 		p = task_of(se);
1267 
1268 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1269 }
1270 
1271 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1272 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1273 {
1274 	struct sched_statistics *stats;
1275 	struct task_struct *tsk = NULL;
1276 
1277 	if (!schedstat_enabled())
1278 		return;
1279 
1280 	stats = __schedstats_from_se(se);
1281 
1282 	if (entity_is_task(se))
1283 		tsk = task_of(se);
1284 
1285 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1286 }
1287 
1288 /*
1289  * Task is being enqueued - update stats:
1290  */
1291 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1292 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1293 {
1294 	if (!schedstat_enabled())
1295 		return;
1296 
1297 	/*
1298 	 * Are we enqueueing a waiting task? (for current tasks
1299 	 * a dequeue/enqueue event is a NOP)
1300 	 */
1301 	if (se != cfs_rq->curr)
1302 		update_stats_wait_start_fair(cfs_rq, se);
1303 
1304 	if (flags & ENQUEUE_WAKEUP)
1305 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1306 }
1307 
1308 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1309 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1310 {
1311 
1312 	if (!schedstat_enabled())
1313 		return;
1314 
1315 	/*
1316 	 * Mark the end of the wait period if dequeueing a
1317 	 * waiting task:
1318 	 */
1319 	if (se != cfs_rq->curr)
1320 		update_stats_wait_end_fair(cfs_rq, se);
1321 
1322 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1323 		struct task_struct *tsk = task_of(se);
1324 		unsigned int state;
1325 
1326 		/* XXX racy against TTWU */
1327 		state = READ_ONCE(tsk->__state);
1328 		if (state & TASK_INTERRUPTIBLE)
1329 			__schedstat_set(tsk->stats.sleep_start,
1330 				      rq_clock(rq_of(cfs_rq)));
1331 		if (state & TASK_UNINTERRUPTIBLE)
1332 			__schedstat_set(tsk->stats.block_start,
1333 				      rq_clock(rq_of(cfs_rq)));
1334 	}
1335 }
1336 
1337 /*
1338  * We are picking a new current task - update its stats:
1339  */
1340 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1341 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1342 {
1343 	/*
1344 	 * We are starting a new run period:
1345 	 */
1346 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1347 }
1348 
1349 /**************************************************
1350  * Scheduling class queueing methods:
1351  */
1352 
is_core_idle(int cpu)1353 static inline bool is_core_idle(int cpu)
1354 {
1355 #ifdef CONFIG_SCHED_SMT
1356 	int sibling;
1357 
1358 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1359 		if (cpu == sibling)
1360 			continue;
1361 
1362 		if (!idle_cpu(sibling))
1363 			return false;
1364 	}
1365 #endif
1366 
1367 	return true;
1368 }
1369 
1370 #ifdef CONFIG_NUMA
1371 #define NUMA_IMBALANCE_MIN 2
1372 
1373 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1374 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1375 {
1376 	/*
1377 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1378 	 * threshold. Above this threshold, individual tasks may be contending
1379 	 * for both memory bandwidth and any shared HT resources.  This is an
1380 	 * approximation as the number of running tasks may not be related to
1381 	 * the number of busy CPUs due to sched_setaffinity.
1382 	 */
1383 	if (dst_running > imb_numa_nr)
1384 		return imbalance;
1385 
1386 	/*
1387 	 * Allow a small imbalance based on a simple pair of communicating
1388 	 * tasks that remain local when the destination is lightly loaded.
1389 	 */
1390 	if (imbalance <= NUMA_IMBALANCE_MIN)
1391 		return 0;
1392 
1393 	return imbalance;
1394 }
1395 #endif /* CONFIG_NUMA */
1396 
1397 #ifdef CONFIG_NUMA_BALANCING
1398 /*
1399  * Approximate time to scan a full NUMA task in ms. The task scan period is
1400  * calculated based on the tasks virtual memory size and
1401  * numa_balancing_scan_size.
1402  */
1403 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1404 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1405 
1406 /* Portion of address space to scan in MB */
1407 unsigned int sysctl_numa_balancing_scan_size = 256;
1408 
1409 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1410 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1411 
1412 /* The page with hint page fault latency < threshold in ms is considered hot */
1413 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1414 
1415 struct numa_group {
1416 	refcount_t refcount;
1417 
1418 	spinlock_t lock; /* nr_tasks, tasks */
1419 	int nr_tasks;
1420 	pid_t gid;
1421 	int active_nodes;
1422 
1423 	struct rcu_head rcu;
1424 	unsigned long total_faults;
1425 	unsigned long max_faults_cpu;
1426 	/*
1427 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1428 	 *
1429 	 * Faults_cpu is used to decide whether memory should move
1430 	 * towards the CPU. As a consequence, these stats are weighted
1431 	 * more by CPU use than by memory faults.
1432 	 */
1433 	unsigned long faults[];
1434 };
1435 
1436 /*
1437  * For functions that can be called in multiple contexts that permit reading
1438  * ->numa_group (see struct task_struct for locking rules).
1439  */
deref_task_numa_group(struct task_struct * p)1440 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1441 {
1442 	return rcu_dereference_check(p->numa_group, p == current ||
1443 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1444 }
1445 
deref_curr_numa_group(struct task_struct * p)1446 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1447 {
1448 	return rcu_dereference_protected(p->numa_group, p == current);
1449 }
1450 
1451 static inline unsigned long group_faults_priv(struct numa_group *ng);
1452 static inline unsigned long group_faults_shared(struct numa_group *ng);
1453 
task_nr_scan_windows(struct task_struct * p)1454 static unsigned int task_nr_scan_windows(struct task_struct *p)
1455 {
1456 	unsigned long rss = 0;
1457 	unsigned long nr_scan_pages;
1458 
1459 	/*
1460 	 * Calculations based on RSS as non-present and empty pages are skipped
1461 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1462 	 * on resident pages
1463 	 */
1464 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1465 	rss = get_mm_rss(p->mm);
1466 	if (!rss)
1467 		rss = nr_scan_pages;
1468 
1469 	rss = round_up(rss, nr_scan_pages);
1470 	return rss / nr_scan_pages;
1471 }
1472 
1473 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1474 #define MAX_SCAN_WINDOW 2560
1475 
task_scan_min(struct task_struct * p)1476 static unsigned int task_scan_min(struct task_struct *p)
1477 {
1478 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1479 	unsigned int scan, floor;
1480 	unsigned int windows = 1;
1481 
1482 	if (scan_size < MAX_SCAN_WINDOW)
1483 		windows = MAX_SCAN_WINDOW / scan_size;
1484 	floor = 1000 / windows;
1485 
1486 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1487 	return max_t(unsigned int, floor, scan);
1488 }
1489 
task_scan_start(struct task_struct * p)1490 static unsigned int task_scan_start(struct task_struct *p)
1491 {
1492 	unsigned long smin = task_scan_min(p);
1493 	unsigned long period = smin;
1494 	struct numa_group *ng;
1495 
1496 	/* Scale the maximum scan period with the amount of shared memory. */
1497 	rcu_read_lock();
1498 	ng = rcu_dereference(p->numa_group);
1499 	if (ng) {
1500 		unsigned long shared = group_faults_shared(ng);
1501 		unsigned long private = group_faults_priv(ng);
1502 
1503 		period *= refcount_read(&ng->refcount);
1504 		period *= shared + 1;
1505 		period /= private + shared + 1;
1506 	}
1507 	rcu_read_unlock();
1508 
1509 	return max(smin, period);
1510 }
1511 
task_scan_max(struct task_struct * p)1512 static unsigned int task_scan_max(struct task_struct *p)
1513 {
1514 	unsigned long smin = task_scan_min(p);
1515 	unsigned long smax;
1516 	struct numa_group *ng;
1517 
1518 	/* Watch for min being lower than max due to floor calculations */
1519 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1520 
1521 	/* Scale the maximum scan period with the amount of shared memory. */
1522 	ng = deref_curr_numa_group(p);
1523 	if (ng) {
1524 		unsigned long shared = group_faults_shared(ng);
1525 		unsigned long private = group_faults_priv(ng);
1526 		unsigned long period = smax;
1527 
1528 		period *= refcount_read(&ng->refcount);
1529 		period *= shared + 1;
1530 		period /= private + shared + 1;
1531 
1532 		smax = max(smax, period);
1533 	}
1534 
1535 	return max(smin, smax);
1536 }
1537 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1538 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1539 {
1540 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1541 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1542 }
1543 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1544 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1545 {
1546 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1547 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1548 }
1549 
1550 /* Shared or private faults. */
1551 #define NR_NUMA_HINT_FAULT_TYPES 2
1552 
1553 /* Memory and CPU locality */
1554 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1555 
1556 /* Averaged statistics, and temporary buffers. */
1557 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1558 
task_numa_group_id(struct task_struct * p)1559 pid_t task_numa_group_id(struct task_struct *p)
1560 {
1561 	struct numa_group *ng;
1562 	pid_t gid = 0;
1563 
1564 	rcu_read_lock();
1565 	ng = rcu_dereference(p->numa_group);
1566 	if (ng)
1567 		gid = ng->gid;
1568 	rcu_read_unlock();
1569 
1570 	return gid;
1571 }
1572 
1573 /*
1574  * The averaged statistics, shared & private, memory & CPU,
1575  * occupy the first half of the array. The second half of the
1576  * array is for current counters, which are averaged into the
1577  * first set by task_numa_placement.
1578  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1579 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1580 {
1581 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1582 }
1583 
task_faults(struct task_struct * p,int nid)1584 static inline unsigned long task_faults(struct task_struct *p, int nid)
1585 {
1586 	if (!p->numa_faults)
1587 		return 0;
1588 
1589 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1590 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1591 }
1592 
group_faults(struct task_struct * p,int nid)1593 static inline unsigned long group_faults(struct task_struct *p, int nid)
1594 {
1595 	struct numa_group *ng = deref_task_numa_group(p);
1596 
1597 	if (!ng)
1598 		return 0;
1599 
1600 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1601 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1602 }
1603 
group_faults_cpu(struct numa_group * group,int nid)1604 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1605 {
1606 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1607 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1608 }
1609 
group_faults_priv(struct numa_group * ng)1610 static inline unsigned long group_faults_priv(struct numa_group *ng)
1611 {
1612 	unsigned long faults = 0;
1613 	int node;
1614 
1615 	for_each_online_node(node) {
1616 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1617 	}
1618 
1619 	return faults;
1620 }
1621 
group_faults_shared(struct numa_group * ng)1622 static inline unsigned long group_faults_shared(struct numa_group *ng)
1623 {
1624 	unsigned long faults = 0;
1625 	int node;
1626 
1627 	for_each_online_node(node) {
1628 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1629 	}
1630 
1631 	return faults;
1632 }
1633 
1634 /*
1635  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1636  * considered part of a numa group's pseudo-interleaving set. Migrations
1637  * between these nodes are slowed down, to allow things to settle down.
1638  */
1639 #define ACTIVE_NODE_FRACTION 3
1640 
numa_is_active_node(int nid,struct numa_group * ng)1641 static bool numa_is_active_node(int nid, struct numa_group *ng)
1642 {
1643 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1644 }
1645 
1646 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1647 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1648 					int lim_dist, bool task)
1649 {
1650 	unsigned long score = 0;
1651 	int node, max_dist;
1652 
1653 	/*
1654 	 * All nodes are directly connected, and the same distance
1655 	 * from each other. No need for fancy placement algorithms.
1656 	 */
1657 	if (sched_numa_topology_type == NUMA_DIRECT)
1658 		return 0;
1659 
1660 	/* sched_max_numa_distance may be changed in parallel. */
1661 	max_dist = READ_ONCE(sched_max_numa_distance);
1662 	/*
1663 	 * This code is called for each node, introducing N^2 complexity,
1664 	 * which should be ok given the number of nodes rarely exceeds 8.
1665 	 */
1666 	for_each_online_node(node) {
1667 		unsigned long faults;
1668 		int dist = node_distance(nid, node);
1669 
1670 		/*
1671 		 * The furthest away nodes in the system are not interesting
1672 		 * for placement; nid was already counted.
1673 		 */
1674 		if (dist >= max_dist || node == nid)
1675 			continue;
1676 
1677 		/*
1678 		 * On systems with a backplane NUMA topology, compare groups
1679 		 * of nodes, and move tasks towards the group with the most
1680 		 * memory accesses. When comparing two nodes at distance
1681 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1682 		 * of each group. Skip other nodes.
1683 		 */
1684 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1685 			continue;
1686 
1687 		/* Add up the faults from nearby nodes. */
1688 		if (task)
1689 			faults = task_faults(p, node);
1690 		else
1691 			faults = group_faults(p, node);
1692 
1693 		/*
1694 		 * On systems with a glueless mesh NUMA topology, there are
1695 		 * no fixed "groups of nodes". Instead, nodes that are not
1696 		 * directly connected bounce traffic through intermediate
1697 		 * nodes; a numa_group can occupy any set of nodes.
1698 		 * The further away a node is, the less the faults count.
1699 		 * This seems to result in good task placement.
1700 		 */
1701 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1702 			faults *= (max_dist - dist);
1703 			faults /= (max_dist - LOCAL_DISTANCE);
1704 		}
1705 
1706 		score += faults;
1707 	}
1708 
1709 	return score;
1710 }
1711 
1712 /*
1713  * These return the fraction of accesses done by a particular task, or
1714  * task group, on a particular numa node.  The group weight is given a
1715  * larger multiplier, in order to group tasks together that are almost
1716  * evenly spread out between numa nodes.
1717  */
task_weight(struct task_struct * p,int nid,int dist)1718 static inline unsigned long task_weight(struct task_struct *p, int nid,
1719 					int dist)
1720 {
1721 	unsigned long faults, total_faults;
1722 
1723 	if (!p->numa_faults)
1724 		return 0;
1725 
1726 	total_faults = p->total_numa_faults;
1727 
1728 	if (!total_faults)
1729 		return 0;
1730 
1731 	faults = task_faults(p, nid);
1732 	faults += score_nearby_nodes(p, nid, dist, true);
1733 
1734 	return 1000 * faults / total_faults;
1735 }
1736 
group_weight(struct task_struct * p,int nid,int dist)1737 static inline unsigned long group_weight(struct task_struct *p, int nid,
1738 					 int dist)
1739 {
1740 	struct numa_group *ng = deref_task_numa_group(p);
1741 	unsigned long faults, total_faults;
1742 
1743 	if (!ng)
1744 		return 0;
1745 
1746 	total_faults = ng->total_faults;
1747 
1748 	if (!total_faults)
1749 		return 0;
1750 
1751 	faults = group_faults(p, nid);
1752 	faults += score_nearby_nodes(p, nid, dist, false);
1753 
1754 	return 1000 * faults / total_faults;
1755 }
1756 
1757 /*
1758  * If memory tiering mode is enabled, cpupid of slow memory page is
1759  * used to record scan time instead of CPU and PID.  When tiering mode
1760  * is disabled at run time, the scan time (in cpupid) will be
1761  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1762  * access out of array bound.
1763  */
cpupid_valid(int cpupid)1764 static inline bool cpupid_valid(int cpupid)
1765 {
1766 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1767 }
1768 
1769 /*
1770  * For memory tiering mode, if there are enough free pages (more than
1771  * enough watermark defined here) in fast memory node, to take full
1772  * advantage of fast memory capacity, all recently accessed slow
1773  * memory pages will be migrated to fast memory node without
1774  * considering hot threshold.
1775  */
pgdat_free_space_enough(struct pglist_data * pgdat)1776 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1777 {
1778 	int z;
1779 	unsigned long enough_wmark;
1780 
1781 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1782 			   pgdat->node_present_pages >> 4);
1783 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1784 		struct zone *zone = pgdat->node_zones + z;
1785 
1786 		if (!populated_zone(zone))
1787 			continue;
1788 
1789 		if (zone_watermark_ok(zone, 0,
1790 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1791 				      ZONE_MOVABLE, 0))
1792 			return true;
1793 	}
1794 	return false;
1795 }
1796 
1797 /*
1798  * For memory tiering mode, when page tables are scanned, the scan
1799  * time will be recorded in struct page in addition to make page
1800  * PROT_NONE for slow memory page.  So when the page is accessed, in
1801  * hint page fault handler, the hint page fault latency is calculated
1802  * via,
1803  *
1804  *	hint page fault latency = hint page fault time - scan time
1805  *
1806  * The smaller the hint page fault latency, the higher the possibility
1807  * for the page to be hot.
1808  */
numa_hint_fault_latency(struct page * page)1809 static int numa_hint_fault_latency(struct page *page)
1810 {
1811 	int last_time, time;
1812 
1813 	time = jiffies_to_msecs(jiffies);
1814 	last_time = xchg_page_access_time(page, time);
1815 
1816 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1817 }
1818 
1819 /*
1820  * For memory tiering mode, too high promotion/demotion throughput may
1821  * hurt application latency.  So we provide a mechanism to rate limit
1822  * the number of pages that are tried to be promoted.
1823  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1824 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1825 				      unsigned long rate_limit, int nr)
1826 {
1827 	unsigned long nr_cand;
1828 	unsigned int now, start;
1829 
1830 	now = jiffies_to_msecs(jiffies);
1831 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1832 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 	start = pgdat->nbp_rl_start;
1834 	if (now - start > MSEC_PER_SEC &&
1835 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1836 		pgdat->nbp_rl_nr_cand = nr_cand;
1837 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1838 		return true;
1839 	return false;
1840 }
1841 
1842 #define NUMA_MIGRATION_ADJUST_STEPS	16
1843 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1844 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1845 					    unsigned long rate_limit,
1846 					    unsigned int ref_th)
1847 {
1848 	unsigned int now, start, th_period, unit_th, th;
1849 	unsigned long nr_cand, ref_cand, diff_cand;
1850 
1851 	now = jiffies_to_msecs(jiffies);
1852 	th_period = sysctl_numa_balancing_scan_period_max;
1853 	start = pgdat->nbp_th_start;
1854 	if (now - start > th_period &&
1855 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1856 		ref_cand = rate_limit *
1857 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1858 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1859 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1860 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1861 		th = pgdat->nbp_threshold ? : ref_th;
1862 		if (diff_cand > ref_cand * 11 / 10)
1863 			th = max(th - unit_th, unit_th);
1864 		else if (diff_cand < ref_cand * 9 / 10)
1865 			th = min(th + unit_th, ref_th * 2);
1866 		pgdat->nbp_th_nr_cand = nr_cand;
1867 		pgdat->nbp_threshold = th;
1868 	}
1869 }
1870 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1871 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1872 				int src_nid, int dst_cpu)
1873 {
1874 	struct numa_group *ng = deref_curr_numa_group(p);
1875 	int dst_nid = cpu_to_node(dst_cpu);
1876 	int last_cpupid, this_cpupid;
1877 
1878 	/*
1879 	 * The pages in slow memory node should be migrated according
1880 	 * to hot/cold instead of private/shared.
1881 	 */
1882 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 	    !node_is_toptier(src_nid)) {
1884 		struct pglist_data *pgdat;
1885 		unsigned long rate_limit;
1886 		unsigned int latency, th, def_th;
1887 
1888 		pgdat = NODE_DATA(dst_nid);
1889 		if (pgdat_free_space_enough(pgdat)) {
1890 			/* workload changed, reset hot threshold */
1891 			pgdat->nbp_threshold = 0;
1892 			return true;
1893 		}
1894 
1895 		def_th = sysctl_numa_balancing_hot_threshold;
1896 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1897 			(20 - PAGE_SHIFT);
1898 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1899 
1900 		th = pgdat->nbp_threshold ? : def_th;
1901 		latency = numa_hint_fault_latency(page);
1902 		if (latency >= th)
1903 			return false;
1904 
1905 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1906 						  thp_nr_pages(page));
1907 	}
1908 
1909 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1910 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1911 
1912 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1913 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1914 		return false;
1915 
1916 	/*
1917 	 * Allow first faults or private faults to migrate immediately early in
1918 	 * the lifetime of a task. The magic number 4 is based on waiting for
1919 	 * two full passes of the "multi-stage node selection" test that is
1920 	 * executed below.
1921 	 */
1922 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1923 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1924 		return true;
1925 
1926 	/*
1927 	 * Multi-stage node selection is used in conjunction with a periodic
1928 	 * migration fault to build a temporal task<->page relation. By using
1929 	 * a two-stage filter we remove short/unlikely relations.
1930 	 *
1931 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1932 	 * a task's usage of a particular page (n_p) per total usage of this
1933 	 * page (n_t) (in a given time-span) to a probability.
1934 	 *
1935 	 * Our periodic faults will sample this probability and getting the
1936 	 * same result twice in a row, given these samples are fully
1937 	 * independent, is then given by P(n)^2, provided our sample period
1938 	 * is sufficiently short compared to the usage pattern.
1939 	 *
1940 	 * This quadric squishes small probabilities, making it less likely we
1941 	 * act on an unlikely task<->page relation.
1942 	 */
1943 	if (!cpupid_pid_unset(last_cpupid) &&
1944 				cpupid_to_nid(last_cpupid) != dst_nid)
1945 		return false;
1946 
1947 	/* Always allow migrate on private faults */
1948 	if (cpupid_match_pid(p, last_cpupid))
1949 		return true;
1950 
1951 	/* A shared fault, but p->numa_group has not been set up yet. */
1952 	if (!ng)
1953 		return true;
1954 
1955 	/*
1956 	 * Destination node is much more heavily used than the source
1957 	 * node? Allow migration.
1958 	 */
1959 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1960 					ACTIVE_NODE_FRACTION)
1961 		return true;
1962 
1963 	/*
1964 	 * Distribute memory according to CPU & memory use on each node,
1965 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1966 	 *
1967 	 * faults_cpu(dst)   3   faults_cpu(src)
1968 	 * --------------- * - > ---------------
1969 	 * faults_mem(dst)   4   faults_mem(src)
1970 	 */
1971 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1972 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1973 }
1974 
1975 /*
1976  * 'numa_type' describes the node at the moment of load balancing.
1977  */
1978 enum numa_type {
1979 	/* The node has spare capacity that can be used to run more tasks.  */
1980 	node_has_spare = 0,
1981 	/*
1982 	 * The node is fully used and the tasks don't compete for more CPU
1983 	 * cycles. Nevertheless, some tasks might wait before running.
1984 	 */
1985 	node_fully_busy,
1986 	/*
1987 	 * The node is overloaded and can't provide expected CPU cycles to all
1988 	 * tasks.
1989 	 */
1990 	node_overloaded
1991 };
1992 
1993 /* Cached statistics for all CPUs within a node */
1994 struct numa_stats {
1995 	unsigned long load;
1996 	unsigned long runnable;
1997 	unsigned long util;
1998 	/* Total compute capacity of CPUs on a node */
1999 	unsigned long compute_capacity;
2000 	unsigned int nr_running;
2001 	unsigned int weight;
2002 	enum numa_type node_type;
2003 	int idle_cpu;
2004 };
2005 
2006 struct task_numa_env {
2007 	struct task_struct *p;
2008 
2009 	int src_cpu, src_nid;
2010 	int dst_cpu, dst_nid;
2011 	int imb_numa_nr;
2012 
2013 	struct numa_stats src_stats, dst_stats;
2014 
2015 	int imbalance_pct;
2016 	int dist;
2017 
2018 	struct task_struct *best_task;
2019 	long best_imp;
2020 	int best_cpu;
2021 };
2022 
2023 static unsigned long cpu_load(struct rq *rq);
2024 static unsigned long cpu_runnable(struct rq *rq);
2025 
2026 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2027 numa_type numa_classify(unsigned int imbalance_pct,
2028 			 struct numa_stats *ns)
2029 {
2030 	if ((ns->nr_running > ns->weight) &&
2031 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2032 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2033 		return node_overloaded;
2034 
2035 	if ((ns->nr_running < ns->weight) ||
2036 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2037 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2038 		return node_has_spare;
2039 
2040 	return node_fully_busy;
2041 }
2042 
2043 #ifdef CONFIG_SCHED_SMT
2044 /* Forward declarations of select_idle_sibling helpers */
2045 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2046 static inline int numa_idle_core(int idle_core, int cpu)
2047 {
2048 	if (!static_branch_likely(&sched_smt_present) ||
2049 	    idle_core >= 0 || !test_idle_cores(cpu))
2050 		return idle_core;
2051 
2052 	/*
2053 	 * Prefer cores instead of packing HT siblings
2054 	 * and triggering future load balancing.
2055 	 */
2056 	if (is_core_idle(cpu))
2057 		idle_core = cpu;
2058 
2059 	return idle_core;
2060 }
2061 #else
numa_idle_core(int idle_core,int cpu)2062 static inline int numa_idle_core(int idle_core, int cpu)
2063 {
2064 	return idle_core;
2065 }
2066 #endif
2067 
2068 /*
2069  * Gather all necessary information to make NUMA balancing placement
2070  * decisions that are compatible with standard load balancer. This
2071  * borrows code and logic from update_sg_lb_stats but sharing a
2072  * common implementation is impractical.
2073  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2074 static void update_numa_stats(struct task_numa_env *env,
2075 			      struct numa_stats *ns, int nid,
2076 			      bool find_idle)
2077 {
2078 	int cpu, idle_core = -1;
2079 
2080 	memset(ns, 0, sizeof(*ns));
2081 	ns->idle_cpu = -1;
2082 
2083 	rcu_read_lock();
2084 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2085 		struct rq *rq = cpu_rq(cpu);
2086 
2087 		ns->load += cpu_load(rq);
2088 		ns->runnable += cpu_runnable(rq);
2089 		ns->util += cpu_util_cfs(cpu);
2090 		ns->nr_running += rq->cfs.h_nr_running;
2091 		ns->compute_capacity += capacity_of(cpu);
2092 
2093 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2094 			if (READ_ONCE(rq->numa_migrate_on) ||
2095 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2096 				continue;
2097 
2098 			if (ns->idle_cpu == -1)
2099 				ns->idle_cpu = cpu;
2100 
2101 			idle_core = numa_idle_core(idle_core, cpu);
2102 		}
2103 	}
2104 	rcu_read_unlock();
2105 
2106 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2107 
2108 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2109 
2110 	if (idle_core >= 0)
2111 		ns->idle_cpu = idle_core;
2112 }
2113 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2114 static void task_numa_assign(struct task_numa_env *env,
2115 			     struct task_struct *p, long imp)
2116 {
2117 	struct rq *rq = cpu_rq(env->dst_cpu);
2118 
2119 	/* Check if run-queue part of active NUMA balance. */
2120 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2121 		int cpu;
2122 		int start = env->dst_cpu;
2123 
2124 		/* Find alternative idle CPU. */
2125 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2126 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2127 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2128 				continue;
2129 			}
2130 
2131 			env->dst_cpu = cpu;
2132 			rq = cpu_rq(env->dst_cpu);
2133 			if (!xchg(&rq->numa_migrate_on, 1))
2134 				goto assign;
2135 		}
2136 
2137 		/* Failed to find an alternative idle CPU */
2138 		return;
2139 	}
2140 
2141 assign:
2142 	/*
2143 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2144 	 * found a better CPU to move/swap.
2145 	 */
2146 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2147 		rq = cpu_rq(env->best_cpu);
2148 		WRITE_ONCE(rq->numa_migrate_on, 0);
2149 	}
2150 
2151 	if (env->best_task)
2152 		put_task_struct(env->best_task);
2153 	if (p)
2154 		get_task_struct(p);
2155 
2156 	env->best_task = p;
2157 	env->best_imp = imp;
2158 	env->best_cpu = env->dst_cpu;
2159 }
2160 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2161 static bool load_too_imbalanced(long src_load, long dst_load,
2162 				struct task_numa_env *env)
2163 {
2164 	long imb, old_imb;
2165 	long orig_src_load, orig_dst_load;
2166 	long src_capacity, dst_capacity;
2167 
2168 	/*
2169 	 * The load is corrected for the CPU capacity available on each node.
2170 	 *
2171 	 * src_load        dst_load
2172 	 * ------------ vs ---------
2173 	 * src_capacity    dst_capacity
2174 	 */
2175 	src_capacity = env->src_stats.compute_capacity;
2176 	dst_capacity = env->dst_stats.compute_capacity;
2177 
2178 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2179 
2180 	orig_src_load = env->src_stats.load;
2181 	orig_dst_load = env->dst_stats.load;
2182 
2183 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2184 
2185 	/* Would this change make things worse? */
2186 	return (imb > old_imb);
2187 }
2188 
2189 /*
2190  * Maximum NUMA importance can be 1998 (2*999);
2191  * SMALLIMP @ 30 would be close to 1998/64.
2192  * Used to deter task migration.
2193  */
2194 #define SMALLIMP	30
2195 
2196 /*
2197  * This checks if the overall compute and NUMA accesses of the system would
2198  * be improved if the source tasks was migrated to the target dst_cpu taking
2199  * into account that it might be best if task running on the dst_cpu should
2200  * be exchanged with the source task
2201  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2202 static bool task_numa_compare(struct task_numa_env *env,
2203 			      long taskimp, long groupimp, bool maymove)
2204 {
2205 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2206 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2207 	long imp = p_ng ? groupimp : taskimp;
2208 	struct task_struct *cur;
2209 	long src_load, dst_load;
2210 	int dist = env->dist;
2211 	long moveimp = imp;
2212 	long load;
2213 	bool stopsearch = false;
2214 
2215 	if (READ_ONCE(dst_rq->numa_migrate_on))
2216 		return false;
2217 
2218 	rcu_read_lock();
2219 	cur = rcu_dereference(dst_rq->curr);
2220 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2221 		cur = NULL;
2222 
2223 	/*
2224 	 * Because we have preemption enabled we can get migrated around and
2225 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2226 	 */
2227 	if (cur == env->p) {
2228 		stopsearch = true;
2229 		goto unlock;
2230 	}
2231 
2232 	if (!cur) {
2233 		if (maymove && moveimp >= env->best_imp)
2234 			goto assign;
2235 		else
2236 			goto unlock;
2237 	}
2238 
2239 	/* Skip this swap candidate if cannot move to the source cpu. */
2240 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2241 		goto unlock;
2242 
2243 	/*
2244 	 * Skip this swap candidate if it is not moving to its preferred
2245 	 * node and the best task is.
2246 	 */
2247 	if (env->best_task &&
2248 	    env->best_task->numa_preferred_nid == env->src_nid &&
2249 	    cur->numa_preferred_nid != env->src_nid) {
2250 		goto unlock;
2251 	}
2252 
2253 	/*
2254 	 * "imp" is the fault differential for the source task between the
2255 	 * source and destination node. Calculate the total differential for
2256 	 * the source task and potential destination task. The more negative
2257 	 * the value is, the more remote accesses that would be expected to
2258 	 * be incurred if the tasks were swapped.
2259 	 *
2260 	 * If dst and source tasks are in the same NUMA group, or not
2261 	 * in any group then look only at task weights.
2262 	 */
2263 	cur_ng = rcu_dereference(cur->numa_group);
2264 	if (cur_ng == p_ng) {
2265 		/*
2266 		 * Do not swap within a group or between tasks that have
2267 		 * no group if there is spare capacity. Swapping does
2268 		 * not address the load imbalance and helps one task at
2269 		 * the cost of punishing another.
2270 		 */
2271 		if (env->dst_stats.node_type == node_has_spare)
2272 			goto unlock;
2273 
2274 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2275 		      task_weight(cur, env->dst_nid, dist);
2276 		/*
2277 		 * Add some hysteresis to prevent swapping the
2278 		 * tasks within a group over tiny differences.
2279 		 */
2280 		if (cur_ng)
2281 			imp -= imp / 16;
2282 	} else {
2283 		/*
2284 		 * Compare the group weights. If a task is all by itself
2285 		 * (not part of a group), use the task weight instead.
2286 		 */
2287 		if (cur_ng && p_ng)
2288 			imp += group_weight(cur, env->src_nid, dist) -
2289 			       group_weight(cur, env->dst_nid, dist);
2290 		else
2291 			imp += task_weight(cur, env->src_nid, dist) -
2292 			       task_weight(cur, env->dst_nid, dist);
2293 	}
2294 
2295 	/* Discourage picking a task already on its preferred node */
2296 	if (cur->numa_preferred_nid == env->dst_nid)
2297 		imp -= imp / 16;
2298 
2299 	/*
2300 	 * Encourage picking a task that moves to its preferred node.
2301 	 * This potentially makes imp larger than it's maximum of
2302 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2303 	 * case, it does not matter.
2304 	 */
2305 	if (cur->numa_preferred_nid == env->src_nid)
2306 		imp += imp / 8;
2307 
2308 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2309 		imp = moveimp;
2310 		cur = NULL;
2311 		goto assign;
2312 	}
2313 
2314 	/*
2315 	 * Prefer swapping with a task moving to its preferred node over a
2316 	 * task that is not.
2317 	 */
2318 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2319 	    env->best_task->numa_preferred_nid != env->src_nid) {
2320 		goto assign;
2321 	}
2322 
2323 	/*
2324 	 * If the NUMA importance is less than SMALLIMP,
2325 	 * task migration might only result in ping pong
2326 	 * of tasks and also hurt performance due to cache
2327 	 * misses.
2328 	 */
2329 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2330 		goto unlock;
2331 
2332 	/*
2333 	 * In the overloaded case, try and keep the load balanced.
2334 	 */
2335 	load = task_h_load(env->p) - task_h_load(cur);
2336 	if (!load)
2337 		goto assign;
2338 
2339 	dst_load = env->dst_stats.load + load;
2340 	src_load = env->src_stats.load - load;
2341 
2342 	if (load_too_imbalanced(src_load, dst_load, env))
2343 		goto unlock;
2344 
2345 assign:
2346 	/* Evaluate an idle CPU for a task numa move. */
2347 	if (!cur) {
2348 		int cpu = env->dst_stats.idle_cpu;
2349 
2350 		/* Nothing cached so current CPU went idle since the search. */
2351 		if (cpu < 0)
2352 			cpu = env->dst_cpu;
2353 
2354 		/*
2355 		 * If the CPU is no longer truly idle and the previous best CPU
2356 		 * is, keep using it.
2357 		 */
2358 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2359 		    idle_cpu(env->best_cpu)) {
2360 			cpu = env->best_cpu;
2361 		}
2362 
2363 		env->dst_cpu = cpu;
2364 	}
2365 
2366 	task_numa_assign(env, cur, imp);
2367 
2368 	/*
2369 	 * If a move to idle is allowed because there is capacity or load
2370 	 * balance improves then stop the search. While a better swap
2371 	 * candidate may exist, a search is not free.
2372 	 */
2373 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2374 		stopsearch = true;
2375 
2376 	/*
2377 	 * If a swap candidate must be identified and the current best task
2378 	 * moves its preferred node then stop the search.
2379 	 */
2380 	if (!maymove && env->best_task &&
2381 	    env->best_task->numa_preferred_nid == env->src_nid) {
2382 		stopsearch = true;
2383 	}
2384 unlock:
2385 	rcu_read_unlock();
2386 
2387 	return stopsearch;
2388 }
2389 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2390 static void task_numa_find_cpu(struct task_numa_env *env,
2391 				long taskimp, long groupimp)
2392 {
2393 	bool maymove = false;
2394 	int cpu;
2395 
2396 	/*
2397 	 * If dst node has spare capacity, then check if there is an
2398 	 * imbalance that would be overruled by the load balancer.
2399 	 */
2400 	if (env->dst_stats.node_type == node_has_spare) {
2401 		unsigned int imbalance;
2402 		int src_running, dst_running;
2403 
2404 		/*
2405 		 * Would movement cause an imbalance? Note that if src has
2406 		 * more running tasks that the imbalance is ignored as the
2407 		 * move improves the imbalance from the perspective of the
2408 		 * CPU load balancer.
2409 		 * */
2410 		src_running = env->src_stats.nr_running - 1;
2411 		dst_running = env->dst_stats.nr_running + 1;
2412 		imbalance = max(0, dst_running - src_running);
2413 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2414 						  env->imb_numa_nr);
2415 
2416 		/* Use idle CPU if there is no imbalance */
2417 		if (!imbalance) {
2418 			maymove = true;
2419 			if (env->dst_stats.idle_cpu >= 0) {
2420 				env->dst_cpu = env->dst_stats.idle_cpu;
2421 				task_numa_assign(env, NULL, 0);
2422 				return;
2423 			}
2424 		}
2425 	} else {
2426 		long src_load, dst_load, load;
2427 		/*
2428 		 * If the improvement from just moving env->p direction is better
2429 		 * than swapping tasks around, check if a move is possible.
2430 		 */
2431 		load = task_h_load(env->p);
2432 		dst_load = env->dst_stats.load + load;
2433 		src_load = env->src_stats.load - load;
2434 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2435 	}
2436 
2437 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2438 		/* Skip this CPU if the source task cannot migrate */
2439 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2440 			continue;
2441 
2442 		env->dst_cpu = cpu;
2443 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2444 			break;
2445 	}
2446 }
2447 
task_numa_migrate(struct task_struct * p)2448 static int task_numa_migrate(struct task_struct *p)
2449 {
2450 	struct task_numa_env env = {
2451 		.p = p,
2452 
2453 		.src_cpu = task_cpu(p),
2454 		.src_nid = task_node(p),
2455 
2456 		.imbalance_pct = 112,
2457 
2458 		.best_task = NULL,
2459 		.best_imp = 0,
2460 		.best_cpu = -1,
2461 	};
2462 	unsigned long taskweight, groupweight;
2463 	struct sched_domain *sd;
2464 	long taskimp, groupimp;
2465 	struct numa_group *ng;
2466 	struct rq *best_rq;
2467 	int nid, ret, dist;
2468 
2469 	/*
2470 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2471 	 * imbalance and would be the first to start moving tasks about.
2472 	 *
2473 	 * And we want to avoid any moving of tasks about, as that would create
2474 	 * random movement of tasks -- counter the numa conditions we're trying
2475 	 * to satisfy here.
2476 	 */
2477 	rcu_read_lock();
2478 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2479 	if (sd) {
2480 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2481 		env.imb_numa_nr = sd->imb_numa_nr;
2482 	}
2483 	rcu_read_unlock();
2484 
2485 	/*
2486 	 * Cpusets can break the scheduler domain tree into smaller
2487 	 * balance domains, some of which do not cross NUMA boundaries.
2488 	 * Tasks that are "trapped" in such domains cannot be migrated
2489 	 * elsewhere, so there is no point in (re)trying.
2490 	 */
2491 	if (unlikely(!sd)) {
2492 		sched_setnuma(p, task_node(p));
2493 		return -EINVAL;
2494 	}
2495 
2496 	env.dst_nid = p->numa_preferred_nid;
2497 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2498 	taskweight = task_weight(p, env.src_nid, dist);
2499 	groupweight = group_weight(p, env.src_nid, dist);
2500 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2501 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2502 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2503 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2504 
2505 	/* Try to find a spot on the preferred nid. */
2506 	task_numa_find_cpu(&env, taskimp, groupimp);
2507 
2508 	/*
2509 	 * Look at other nodes in these cases:
2510 	 * - there is no space available on the preferred_nid
2511 	 * - the task is part of a numa_group that is interleaved across
2512 	 *   multiple NUMA nodes; in order to better consolidate the group,
2513 	 *   we need to check other locations.
2514 	 */
2515 	ng = deref_curr_numa_group(p);
2516 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2517 		for_each_node_state(nid, N_CPU) {
2518 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2519 				continue;
2520 
2521 			dist = node_distance(env.src_nid, env.dst_nid);
2522 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2523 						dist != env.dist) {
2524 				taskweight = task_weight(p, env.src_nid, dist);
2525 				groupweight = group_weight(p, env.src_nid, dist);
2526 			}
2527 
2528 			/* Only consider nodes where both task and groups benefit */
2529 			taskimp = task_weight(p, nid, dist) - taskweight;
2530 			groupimp = group_weight(p, nid, dist) - groupweight;
2531 			if (taskimp < 0 && groupimp < 0)
2532 				continue;
2533 
2534 			env.dist = dist;
2535 			env.dst_nid = nid;
2536 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2537 			task_numa_find_cpu(&env, taskimp, groupimp);
2538 		}
2539 	}
2540 
2541 	/*
2542 	 * If the task is part of a workload that spans multiple NUMA nodes,
2543 	 * and is migrating into one of the workload's active nodes, remember
2544 	 * this node as the task's preferred numa node, so the workload can
2545 	 * settle down.
2546 	 * A task that migrated to a second choice node will be better off
2547 	 * trying for a better one later. Do not set the preferred node here.
2548 	 */
2549 	if (ng) {
2550 		if (env.best_cpu == -1)
2551 			nid = env.src_nid;
2552 		else
2553 			nid = cpu_to_node(env.best_cpu);
2554 
2555 		if (nid != p->numa_preferred_nid)
2556 			sched_setnuma(p, nid);
2557 	}
2558 
2559 	/* No better CPU than the current one was found. */
2560 	if (env.best_cpu == -1) {
2561 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2562 		return -EAGAIN;
2563 	}
2564 
2565 	best_rq = cpu_rq(env.best_cpu);
2566 	if (env.best_task == NULL) {
2567 		ret = migrate_task_to(p, env.best_cpu);
2568 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2569 		if (ret != 0)
2570 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2571 		return ret;
2572 	}
2573 
2574 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2575 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2576 
2577 	if (ret != 0)
2578 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2579 	put_task_struct(env.best_task);
2580 	return ret;
2581 }
2582 
2583 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2584 static void numa_migrate_preferred(struct task_struct *p)
2585 {
2586 	unsigned long interval = HZ;
2587 
2588 	/* This task has no NUMA fault statistics yet */
2589 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2590 		return;
2591 
2592 	/* Periodically retry migrating the task to the preferred node */
2593 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2594 	p->numa_migrate_retry = jiffies + interval;
2595 
2596 	/* Success if task is already running on preferred CPU */
2597 	if (task_node(p) == p->numa_preferred_nid)
2598 		return;
2599 
2600 	/* Otherwise, try migrate to a CPU on the preferred node */
2601 	task_numa_migrate(p);
2602 }
2603 
2604 /*
2605  * Find out how many nodes the workload is actively running on. Do this by
2606  * tracking the nodes from which NUMA hinting faults are triggered. This can
2607  * be different from the set of nodes where the workload's memory is currently
2608  * located.
2609  */
numa_group_count_active_nodes(struct numa_group * numa_group)2610 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2611 {
2612 	unsigned long faults, max_faults = 0;
2613 	int nid, active_nodes = 0;
2614 
2615 	for_each_node_state(nid, N_CPU) {
2616 		faults = group_faults_cpu(numa_group, nid);
2617 		if (faults > max_faults)
2618 			max_faults = faults;
2619 	}
2620 
2621 	for_each_node_state(nid, N_CPU) {
2622 		faults = group_faults_cpu(numa_group, nid);
2623 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2624 			active_nodes++;
2625 	}
2626 
2627 	numa_group->max_faults_cpu = max_faults;
2628 	numa_group->active_nodes = active_nodes;
2629 }
2630 
2631 /*
2632  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2633  * increments. The more local the fault statistics are, the higher the scan
2634  * period will be for the next scan window. If local/(local+remote) ratio is
2635  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2636  * the scan period will decrease. Aim for 70% local accesses.
2637  */
2638 #define NUMA_PERIOD_SLOTS 10
2639 #define NUMA_PERIOD_THRESHOLD 7
2640 
2641 /*
2642  * Increase the scan period (slow down scanning) if the majority of
2643  * our memory is already on our local node, or if the majority of
2644  * the page accesses are shared with other processes.
2645  * Otherwise, decrease the scan period.
2646  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2647 static void update_task_scan_period(struct task_struct *p,
2648 			unsigned long shared, unsigned long private)
2649 {
2650 	unsigned int period_slot;
2651 	int lr_ratio, ps_ratio;
2652 	int diff;
2653 
2654 	unsigned long remote = p->numa_faults_locality[0];
2655 	unsigned long local = p->numa_faults_locality[1];
2656 
2657 	/*
2658 	 * If there were no record hinting faults then either the task is
2659 	 * completely idle or all activity is in areas that are not of interest
2660 	 * to automatic numa balancing. Related to that, if there were failed
2661 	 * migration then it implies we are migrating too quickly or the local
2662 	 * node is overloaded. In either case, scan slower
2663 	 */
2664 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2665 		p->numa_scan_period = min(p->numa_scan_period_max,
2666 			p->numa_scan_period << 1);
2667 
2668 		p->mm->numa_next_scan = jiffies +
2669 			msecs_to_jiffies(p->numa_scan_period);
2670 
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Prepare to scale scan period relative to the current period.
2676 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2677 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2678 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2679 	 */
2680 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2681 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2682 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2683 
2684 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2685 		/*
2686 		 * Most memory accesses are local. There is no need to
2687 		 * do fast NUMA scanning, since memory is already local.
2688 		 */
2689 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2690 		if (!slot)
2691 			slot = 1;
2692 		diff = slot * period_slot;
2693 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2694 		/*
2695 		 * Most memory accesses are shared with other tasks.
2696 		 * There is no point in continuing fast NUMA scanning,
2697 		 * since other tasks may just move the memory elsewhere.
2698 		 */
2699 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2700 		if (!slot)
2701 			slot = 1;
2702 		diff = slot * period_slot;
2703 	} else {
2704 		/*
2705 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2706 		 * yet they are not on the local NUMA node. Speed up
2707 		 * NUMA scanning to get the memory moved over.
2708 		 */
2709 		int ratio = max(lr_ratio, ps_ratio);
2710 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2711 	}
2712 
2713 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2714 			task_scan_min(p), task_scan_max(p));
2715 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2716 }
2717 
2718 /*
2719  * Get the fraction of time the task has been running since the last
2720  * NUMA placement cycle. The scheduler keeps similar statistics, but
2721  * decays those on a 32ms period, which is orders of magnitude off
2722  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2723  * stats only if the task is so new there are no NUMA statistics yet.
2724  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2725 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2726 {
2727 	u64 runtime, delta, now;
2728 	/* Use the start of this time slice to avoid calculations. */
2729 	now = p->se.exec_start;
2730 	runtime = p->se.sum_exec_runtime;
2731 
2732 	if (p->last_task_numa_placement) {
2733 		delta = runtime - p->last_sum_exec_runtime;
2734 		*period = now - p->last_task_numa_placement;
2735 
2736 		/* Avoid time going backwards, prevent potential divide error: */
2737 		if (unlikely((s64)*period < 0))
2738 			*period = 0;
2739 	} else {
2740 		delta = p->se.avg.load_sum;
2741 		*period = LOAD_AVG_MAX;
2742 	}
2743 
2744 	p->last_sum_exec_runtime = runtime;
2745 	p->last_task_numa_placement = now;
2746 
2747 	return delta;
2748 }
2749 
2750 /*
2751  * Determine the preferred nid for a task in a numa_group. This needs to
2752  * be done in a way that produces consistent results with group_weight,
2753  * otherwise workloads might not converge.
2754  */
preferred_group_nid(struct task_struct * p,int nid)2755 static int preferred_group_nid(struct task_struct *p, int nid)
2756 {
2757 	nodemask_t nodes;
2758 	int dist;
2759 
2760 	/* Direct connections between all NUMA nodes. */
2761 	if (sched_numa_topology_type == NUMA_DIRECT)
2762 		return nid;
2763 
2764 	/*
2765 	 * On a system with glueless mesh NUMA topology, group_weight
2766 	 * scores nodes according to the number of NUMA hinting faults on
2767 	 * both the node itself, and on nearby nodes.
2768 	 */
2769 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2770 		unsigned long score, max_score = 0;
2771 		int node, max_node = nid;
2772 
2773 		dist = sched_max_numa_distance;
2774 
2775 		for_each_node_state(node, N_CPU) {
2776 			score = group_weight(p, node, dist);
2777 			if (score > max_score) {
2778 				max_score = score;
2779 				max_node = node;
2780 			}
2781 		}
2782 		return max_node;
2783 	}
2784 
2785 	/*
2786 	 * Finding the preferred nid in a system with NUMA backplane
2787 	 * interconnect topology is more involved. The goal is to locate
2788 	 * tasks from numa_groups near each other in the system, and
2789 	 * untangle workloads from different sides of the system. This requires
2790 	 * searching down the hierarchy of node groups, recursively searching
2791 	 * inside the highest scoring group of nodes. The nodemask tricks
2792 	 * keep the complexity of the search down.
2793 	 */
2794 	nodes = node_states[N_CPU];
2795 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2796 		unsigned long max_faults = 0;
2797 		nodemask_t max_group = NODE_MASK_NONE;
2798 		int a, b;
2799 
2800 		/* Are there nodes at this distance from each other? */
2801 		if (!find_numa_distance(dist))
2802 			continue;
2803 
2804 		for_each_node_mask(a, nodes) {
2805 			unsigned long faults = 0;
2806 			nodemask_t this_group;
2807 			nodes_clear(this_group);
2808 
2809 			/* Sum group's NUMA faults; includes a==b case. */
2810 			for_each_node_mask(b, nodes) {
2811 				if (node_distance(a, b) < dist) {
2812 					faults += group_faults(p, b);
2813 					node_set(b, this_group);
2814 					node_clear(b, nodes);
2815 				}
2816 			}
2817 
2818 			/* Remember the top group. */
2819 			if (faults > max_faults) {
2820 				max_faults = faults;
2821 				max_group = this_group;
2822 				/*
2823 				 * subtle: at the smallest distance there is
2824 				 * just one node left in each "group", the
2825 				 * winner is the preferred nid.
2826 				 */
2827 				nid = a;
2828 			}
2829 		}
2830 		/* Next round, evaluate the nodes within max_group. */
2831 		if (!max_faults)
2832 			break;
2833 		nodes = max_group;
2834 	}
2835 	return nid;
2836 }
2837 
task_numa_placement(struct task_struct * p)2838 static void task_numa_placement(struct task_struct *p)
2839 {
2840 	int seq, nid, max_nid = NUMA_NO_NODE;
2841 	unsigned long max_faults = 0;
2842 	unsigned long fault_types[2] = { 0, 0 };
2843 	unsigned long total_faults;
2844 	u64 runtime, period;
2845 	spinlock_t *group_lock = NULL;
2846 	struct numa_group *ng;
2847 
2848 	/*
2849 	 * The p->mm->numa_scan_seq field gets updated without
2850 	 * exclusive access. Use READ_ONCE() here to ensure
2851 	 * that the field is read in a single access:
2852 	 */
2853 	seq = READ_ONCE(p->mm->numa_scan_seq);
2854 	if (p->numa_scan_seq == seq)
2855 		return;
2856 	p->numa_scan_seq = seq;
2857 	p->numa_scan_period_max = task_scan_max(p);
2858 
2859 	total_faults = p->numa_faults_locality[0] +
2860 		       p->numa_faults_locality[1];
2861 	runtime = numa_get_avg_runtime(p, &period);
2862 
2863 	/* If the task is part of a group prevent parallel updates to group stats */
2864 	ng = deref_curr_numa_group(p);
2865 	if (ng) {
2866 		group_lock = &ng->lock;
2867 		spin_lock_irq(group_lock);
2868 	}
2869 
2870 	/* Find the node with the highest number of faults */
2871 	for_each_online_node(nid) {
2872 		/* Keep track of the offsets in numa_faults array */
2873 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2874 		unsigned long faults = 0, group_faults = 0;
2875 		int priv;
2876 
2877 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2878 			long diff, f_diff, f_weight;
2879 
2880 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2881 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2882 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2883 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2884 
2885 			/* Decay existing window, copy faults since last scan */
2886 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2887 			fault_types[priv] += p->numa_faults[membuf_idx];
2888 			p->numa_faults[membuf_idx] = 0;
2889 
2890 			/*
2891 			 * Normalize the faults_from, so all tasks in a group
2892 			 * count according to CPU use, instead of by the raw
2893 			 * number of faults. Tasks with little runtime have
2894 			 * little over-all impact on throughput, and thus their
2895 			 * faults are less important.
2896 			 */
2897 			f_weight = div64_u64(runtime << 16, period + 1);
2898 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2899 				   (total_faults + 1);
2900 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2901 			p->numa_faults[cpubuf_idx] = 0;
2902 
2903 			p->numa_faults[mem_idx] += diff;
2904 			p->numa_faults[cpu_idx] += f_diff;
2905 			faults += p->numa_faults[mem_idx];
2906 			p->total_numa_faults += diff;
2907 			if (ng) {
2908 				/*
2909 				 * safe because we can only change our own group
2910 				 *
2911 				 * mem_idx represents the offset for a given
2912 				 * nid and priv in a specific region because it
2913 				 * is at the beginning of the numa_faults array.
2914 				 */
2915 				ng->faults[mem_idx] += diff;
2916 				ng->faults[cpu_idx] += f_diff;
2917 				ng->total_faults += diff;
2918 				group_faults += ng->faults[mem_idx];
2919 			}
2920 		}
2921 
2922 		if (!ng) {
2923 			if (faults > max_faults) {
2924 				max_faults = faults;
2925 				max_nid = nid;
2926 			}
2927 		} else if (group_faults > max_faults) {
2928 			max_faults = group_faults;
2929 			max_nid = nid;
2930 		}
2931 	}
2932 
2933 	/* Cannot migrate task to CPU-less node */
2934 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2935 		int near_nid = max_nid;
2936 		int distance, near_distance = INT_MAX;
2937 
2938 		for_each_node_state(nid, N_CPU) {
2939 			distance = node_distance(max_nid, nid);
2940 			if (distance < near_distance) {
2941 				near_nid = nid;
2942 				near_distance = distance;
2943 			}
2944 		}
2945 		max_nid = near_nid;
2946 	}
2947 
2948 	if (ng) {
2949 		numa_group_count_active_nodes(ng);
2950 		spin_unlock_irq(group_lock);
2951 		max_nid = preferred_group_nid(p, max_nid);
2952 	}
2953 
2954 	if (max_faults) {
2955 		/* Set the new preferred node */
2956 		if (max_nid != p->numa_preferred_nid)
2957 			sched_setnuma(p, max_nid);
2958 	}
2959 
2960 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2961 }
2962 
get_numa_group(struct numa_group * grp)2963 static inline int get_numa_group(struct numa_group *grp)
2964 {
2965 	return refcount_inc_not_zero(&grp->refcount);
2966 }
2967 
put_numa_group(struct numa_group * grp)2968 static inline void put_numa_group(struct numa_group *grp)
2969 {
2970 	if (refcount_dec_and_test(&grp->refcount))
2971 		kfree_rcu(grp, rcu);
2972 }
2973 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2974 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2975 			int *priv)
2976 {
2977 	struct numa_group *grp, *my_grp;
2978 	struct task_struct *tsk;
2979 	bool join = false;
2980 	int cpu = cpupid_to_cpu(cpupid);
2981 	int i;
2982 
2983 	if (unlikely(!deref_curr_numa_group(p))) {
2984 		unsigned int size = sizeof(struct numa_group) +
2985 				    NR_NUMA_HINT_FAULT_STATS *
2986 				    nr_node_ids * sizeof(unsigned long);
2987 
2988 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2989 		if (!grp)
2990 			return;
2991 
2992 		refcount_set(&grp->refcount, 1);
2993 		grp->active_nodes = 1;
2994 		grp->max_faults_cpu = 0;
2995 		spin_lock_init(&grp->lock);
2996 		grp->gid = p->pid;
2997 
2998 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2999 			grp->faults[i] = p->numa_faults[i];
3000 
3001 		grp->total_faults = p->total_numa_faults;
3002 
3003 		grp->nr_tasks++;
3004 		rcu_assign_pointer(p->numa_group, grp);
3005 	}
3006 
3007 	rcu_read_lock();
3008 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3009 
3010 	if (!cpupid_match_pid(tsk, cpupid))
3011 		goto no_join;
3012 
3013 	grp = rcu_dereference(tsk->numa_group);
3014 	if (!grp)
3015 		goto no_join;
3016 
3017 	my_grp = deref_curr_numa_group(p);
3018 	if (grp == my_grp)
3019 		goto no_join;
3020 
3021 	/*
3022 	 * Only join the other group if its bigger; if we're the bigger group,
3023 	 * the other task will join us.
3024 	 */
3025 	if (my_grp->nr_tasks > grp->nr_tasks)
3026 		goto no_join;
3027 
3028 	/*
3029 	 * Tie-break on the grp address.
3030 	 */
3031 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3032 		goto no_join;
3033 
3034 	/* Always join threads in the same process. */
3035 	if (tsk->mm == current->mm)
3036 		join = true;
3037 
3038 	/* Simple filter to avoid false positives due to PID collisions */
3039 	if (flags & TNF_SHARED)
3040 		join = true;
3041 
3042 	/* Update priv based on whether false sharing was detected */
3043 	*priv = !join;
3044 
3045 	if (join && !get_numa_group(grp))
3046 		goto no_join;
3047 
3048 	rcu_read_unlock();
3049 
3050 	if (!join)
3051 		return;
3052 
3053 	WARN_ON_ONCE(irqs_disabled());
3054 	double_lock_irq(&my_grp->lock, &grp->lock);
3055 
3056 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3057 		my_grp->faults[i] -= p->numa_faults[i];
3058 		grp->faults[i] += p->numa_faults[i];
3059 	}
3060 	my_grp->total_faults -= p->total_numa_faults;
3061 	grp->total_faults += p->total_numa_faults;
3062 
3063 	my_grp->nr_tasks--;
3064 	grp->nr_tasks++;
3065 
3066 	spin_unlock(&my_grp->lock);
3067 	spin_unlock_irq(&grp->lock);
3068 
3069 	rcu_assign_pointer(p->numa_group, grp);
3070 
3071 	put_numa_group(my_grp);
3072 	return;
3073 
3074 no_join:
3075 	rcu_read_unlock();
3076 	return;
3077 }
3078 
3079 /*
3080  * Get rid of NUMA statistics associated with a task (either current or dead).
3081  * If @final is set, the task is dead and has reached refcount zero, so we can
3082  * safely free all relevant data structures. Otherwise, there might be
3083  * concurrent reads from places like load balancing and procfs, and we should
3084  * reset the data back to default state without freeing ->numa_faults.
3085  */
task_numa_free(struct task_struct * p,bool final)3086 void task_numa_free(struct task_struct *p, bool final)
3087 {
3088 	/* safe: p either is current or is being freed by current */
3089 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3090 	unsigned long *numa_faults = p->numa_faults;
3091 	unsigned long flags;
3092 	int i;
3093 
3094 	if (!numa_faults)
3095 		return;
3096 
3097 	if (grp) {
3098 		spin_lock_irqsave(&grp->lock, flags);
3099 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3100 			grp->faults[i] -= p->numa_faults[i];
3101 		grp->total_faults -= p->total_numa_faults;
3102 
3103 		grp->nr_tasks--;
3104 		spin_unlock_irqrestore(&grp->lock, flags);
3105 		RCU_INIT_POINTER(p->numa_group, NULL);
3106 		put_numa_group(grp);
3107 	}
3108 
3109 	if (final) {
3110 		p->numa_faults = NULL;
3111 		kfree(numa_faults);
3112 	} else {
3113 		p->total_numa_faults = 0;
3114 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3115 			numa_faults[i] = 0;
3116 	}
3117 }
3118 
3119 /*
3120  * Got a PROT_NONE fault for a page on @node.
3121  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3122 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3123 {
3124 	struct task_struct *p = current;
3125 	bool migrated = flags & TNF_MIGRATED;
3126 	int cpu_node = task_node(current);
3127 	int local = !!(flags & TNF_FAULT_LOCAL);
3128 	struct numa_group *ng;
3129 	int priv;
3130 
3131 	if (!static_branch_likely(&sched_numa_balancing))
3132 		return;
3133 
3134 	/* for example, ksmd faulting in a user's mm */
3135 	if (!p->mm)
3136 		return;
3137 
3138 	/*
3139 	 * NUMA faults statistics are unnecessary for the slow memory
3140 	 * node for memory tiering mode.
3141 	 */
3142 	if (!node_is_toptier(mem_node) &&
3143 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3144 	     !cpupid_valid(last_cpupid)))
3145 		return;
3146 
3147 	/* Allocate buffer to track faults on a per-node basis */
3148 	if (unlikely(!p->numa_faults)) {
3149 		int size = sizeof(*p->numa_faults) *
3150 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3151 
3152 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3153 		if (!p->numa_faults)
3154 			return;
3155 
3156 		p->total_numa_faults = 0;
3157 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3158 	}
3159 
3160 	/*
3161 	 * First accesses are treated as private, otherwise consider accesses
3162 	 * to be private if the accessing pid has not changed
3163 	 */
3164 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3165 		priv = 1;
3166 	} else {
3167 		priv = cpupid_match_pid(p, last_cpupid);
3168 		if (!priv && !(flags & TNF_NO_GROUP))
3169 			task_numa_group(p, last_cpupid, flags, &priv);
3170 	}
3171 
3172 	/*
3173 	 * If a workload spans multiple NUMA nodes, a shared fault that
3174 	 * occurs wholly within the set of nodes that the workload is
3175 	 * actively using should be counted as local. This allows the
3176 	 * scan rate to slow down when a workload has settled down.
3177 	 */
3178 	ng = deref_curr_numa_group(p);
3179 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3180 				numa_is_active_node(cpu_node, ng) &&
3181 				numa_is_active_node(mem_node, ng))
3182 		local = 1;
3183 
3184 	/*
3185 	 * Retry to migrate task to preferred node periodically, in case it
3186 	 * previously failed, or the scheduler moved us.
3187 	 */
3188 	if (time_after(jiffies, p->numa_migrate_retry)) {
3189 		task_numa_placement(p);
3190 		numa_migrate_preferred(p);
3191 	}
3192 
3193 	if (migrated)
3194 		p->numa_pages_migrated += pages;
3195 	if (flags & TNF_MIGRATE_FAIL)
3196 		p->numa_faults_locality[2] += pages;
3197 
3198 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3199 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3200 	p->numa_faults_locality[local] += pages;
3201 }
3202 
reset_ptenuma_scan(struct task_struct * p)3203 static void reset_ptenuma_scan(struct task_struct *p)
3204 {
3205 	/*
3206 	 * We only did a read acquisition of the mmap sem, so
3207 	 * p->mm->numa_scan_seq is written to without exclusive access
3208 	 * and the update is not guaranteed to be atomic. That's not
3209 	 * much of an issue though, since this is just used for
3210 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3211 	 * expensive, to avoid any form of compiler optimizations:
3212 	 */
3213 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3214 	p->mm->numa_scan_offset = 0;
3215 }
3216 
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3217 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3218 {
3219 	unsigned long pids;
3220 	/*
3221 	 * Allow unconditional access first two times, so that all the (pages)
3222 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3223 	 * This is also done to avoid any side effect of task scanning
3224 	 * amplifying the unfairness of disjoint set of VMAs' access.
3225 	 */
3226 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3227 		return true;
3228 
3229 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3230 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3231 		return true;
3232 
3233 	/*
3234 	 * Complete a scan that has already started regardless of PID access, or
3235 	 * some VMAs may never be scanned in multi-threaded applications:
3236 	 */
3237 	if (mm->numa_scan_offset > vma->vm_start) {
3238 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3239 		return true;
3240 	}
3241 
3242 	/*
3243 	 * This vma has not been accessed for a while, and if the number
3244 	 * the threads in the same process is low, which means no other
3245 	 * threads can help scan this vma, force a vma scan.
3246 	 */
3247 	if (READ_ONCE(mm->numa_scan_seq) >
3248 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3249 		return true;
3250 
3251 	return false;
3252 }
3253 
3254 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3255 
3256 /*
3257  * The expensive part of numa migration is done from task_work context.
3258  * Triggered from task_tick_numa().
3259  */
task_numa_work(struct callback_head * work)3260 static void task_numa_work(struct callback_head *work)
3261 {
3262 	unsigned long migrate, next_scan, now = jiffies;
3263 	struct task_struct *p = current;
3264 	struct mm_struct *mm = p->mm;
3265 	u64 runtime = p->se.sum_exec_runtime;
3266 	struct vm_area_struct *vma;
3267 	unsigned long start, end;
3268 	unsigned long nr_pte_updates = 0;
3269 	long pages, virtpages;
3270 	struct vma_iterator vmi;
3271 	bool vma_pids_skipped;
3272 	bool vma_pids_forced = false;
3273 
3274 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3275 
3276 	work->next = work;
3277 	/*
3278 	 * Who cares about NUMA placement when they're dying.
3279 	 *
3280 	 * NOTE: make sure not to dereference p->mm before this check,
3281 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3282 	 * without p->mm even though we still had it when we enqueued this
3283 	 * work.
3284 	 */
3285 	if (p->flags & PF_EXITING)
3286 		return;
3287 
3288 	if (!mm->numa_next_scan) {
3289 		mm->numa_next_scan = now +
3290 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3291 	}
3292 
3293 	/*
3294 	 * Enforce maximal scan/migration frequency..
3295 	 */
3296 	migrate = mm->numa_next_scan;
3297 	if (time_before(now, migrate))
3298 		return;
3299 
3300 	if (p->numa_scan_period == 0) {
3301 		p->numa_scan_period_max = task_scan_max(p);
3302 		p->numa_scan_period = task_scan_start(p);
3303 	}
3304 
3305 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3306 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3307 		return;
3308 
3309 	/*
3310 	 * Delay this task enough that another task of this mm will likely win
3311 	 * the next time around.
3312 	 */
3313 	p->node_stamp += 2 * TICK_NSEC;
3314 
3315 	pages = sysctl_numa_balancing_scan_size;
3316 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3317 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3318 	if (!pages)
3319 		return;
3320 
3321 
3322 	if (!mmap_read_trylock(mm))
3323 		return;
3324 
3325 	/*
3326 	 * VMAs are skipped if the current PID has not trapped a fault within
3327 	 * the VMA recently. Allow scanning to be forced if there is no
3328 	 * suitable VMA remaining.
3329 	 */
3330 	vma_pids_skipped = false;
3331 
3332 retry_pids:
3333 	start = mm->numa_scan_offset;
3334 	vma_iter_init(&vmi, mm, start);
3335 	vma = vma_next(&vmi);
3336 	if (!vma) {
3337 		reset_ptenuma_scan(p);
3338 		start = 0;
3339 		vma_iter_set(&vmi, start);
3340 		vma = vma_next(&vmi);
3341 	}
3342 
3343 	for (; vma; vma = vma_next(&vmi)) {
3344 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3345 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3346 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3347 			continue;
3348 		}
3349 
3350 		/*
3351 		 * Shared library pages mapped by multiple processes are not
3352 		 * migrated as it is expected they are cache replicated. Avoid
3353 		 * hinting faults in read-only file-backed mappings or the vdso
3354 		 * as migrating the pages will be of marginal benefit.
3355 		 */
3356 		if (!vma->vm_mm ||
3357 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3358 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3359 			continue;
3360 		}
3361 
3362 		/*
3363 		 * Skip inaccessible VMAs to avoid any confusion between
3364 		 * PROT_NONE and NUMA hinting ptes
3365 		 */
3366 		if (!vma_is_accessible(vma)) {
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3368 			continue;
3369 		}
3370 
3371 		/* Initialise new per-VMA NUMAB state. */
3372 		if (!vma->numab_state) {
3373 			struct vma_numab_state *ptr;
3374 
3375 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3376 			if (!ptr)
3377 				continue;
3378 
3379 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3380 				kfree(ptr);
3381 				continue;
3382 			}
3383 
3384 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3385 
3386 			vma->numab_state->next_scan = now +
3387 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3388 
3389 			/* Reset happens after 4 times scan delay of scan start */
3390 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3391 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3392 
3393 			/*
3394 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3395 			 * to prevent VMAs being skipped prematurely on the
3396 			 * first scan:
3397 			 */
3398 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3399 		}
3400 
3401 		/*
3402 		 * Scanning the VMA's of short lived tasks add more overhead. So
3403 		 * delay the scan for new VMAs.
3404 		 */
3405 		if (mm->numa_scan_seq && time_before(jiffies,
3406 						vma->numab_state->next_scan)) {
3407 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3408 			continue;
3409 		}
3410 
3411 		/* RESET access PIDs regularly for old VMAs. */
3412 		if (mm->numa_scan_seq &&
3413 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3414 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3415 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3416 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3417 			vma->numab_state->pids_active[1] = 0;
3418 		}
3419 
3420 		/* Do not rescan VMAs twice within the same sequence. */
3421 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3422 			mm->numa_scan_offset = vma->vm_end;
3423 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3424 			continue;
3425 		}
3426 
3427 		/*
3428 		 * Do not scan the VMA if task has not accessed it, unless no other
3429 		 * VMA candidate exists.
3430 		 */
3431 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3432 			vma_pids_skipped = true;
3433 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3434 			continue;
3435 		}
3436 
3437 		do {
3438 			start = max(start, vma->vm_start);
3439 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3440 			end = min(end, vma->vm_end);
3441 			nr_pte_updates = change_prot_numa(vma, start, end);
3442 
3443 			/*
3444 			 * Try to scan sysctl_numa_balancing_size worth of
3445 			 * hpages that have at least one present PTE that
3446 			 * is not already pte-numa. If the VMA contains
3447 			 * areas that are unused or already full of prot_numa
3448 			 * PTEs, scan up to virtpages, to skip through those
3449 			 * areas faster.
3450 			 */
3451 			if (nr_pte_updates)
3452 				pages -= (end - start) >> PAGE_SHIFT;
3453 			virtpages -= (end - start) >> PAGE_SHIFT;
3454 
3455 			start = end;
3456 			if (pages <= 0 || virtpages <= 0)
3457 				goto out;
3458 
3459 			cond_resched();
3460 		} while (end != vma->vm_end);
3461 
3462 		/* VMA scan is complete, do not scan until next sequence. */
3463 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3464 
3465 		/*
3466 		 * Only force scan within one VMA at a time, to limit the
3467 		 * cost of scanning a potentially uninteresting VMA.
3468 		 */
3469 		if (vma_pids_forced)
3470 			break;
3471 	}
3472 
3473 	/*
3474 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3475 	 * not accessing the VMA previously, then force a scan to ensure
3476 	 * forward progress:
3477 	 */
3478 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3479 		vma_pids_forced = true;
3480 		goto retry_pids;
3481 	}
3482 
3483 out:
3484 	/*
3485 	 * It is possible to reach the end of the VMA list but the last few
3486 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3487 	 * would find the !migratable VMA on the next scan but not reset the
3488 	 * scanner to the start so check it now.
3489 	 */
3490 	if (vma)
3491 		mm->numa_scan_offset = start;
3492 	else
3493 		reset_ptenuma_scan(p);
3494 	mmap_read_unlock(mm);
3495 
3496 	/*
3497 	 * Make sure tasks use at least 32x as much time to run other code
3498 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3499 	 * Usually update_task_scan_period slows down scanning enough; on an
3500 	 * overloaded system we need to limit overhead on a per task basis.
3501 	 */
3502 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3503 		u64 diff = p->se.sum_exec_runtime - runtime;
3504 		p->node_stamp += 32 * diff;
3505 	}
3506 }
3507 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3508 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3509 {
3510 	int mm_users = 0;
3511 	struct mm_struct *mm = p->mm;
3512 
3513 	if (mm) {
3514 		mm_users = atomic_read(&mm->mm_users);
3515 		if (mm_users == 1) {
3516 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3517 			mm->numa_scan_seq = 0;
3518 		}
3519 	}
3520 	p->node_stamp			= 0;
3521 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3522 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3523 	p->numa_migrate_retry		= 0;
3524 	/* Protect against double add, see task_tick_numa and task_numa_work */
3525 	p->numa_work.next		= &p->numa_work;
3526 	p->numa_faults			= NULL;
3527 	p->numa_pages_migrated		= 0;
3528 	p->total_numa_faults		= 0;
3529 	RCU_INIT_POINTER(p->numa_group, NULL);
3530 	p->last_task_numa_placement	= 0;
3531 	p->last_sum_exec_runtime	= 0;
3532 
3533 	init_task_work(&p->numa_work, task_numa_work);
3534 
3535 	/* New address space, reset the preferred nid */
3536 	if (!(clone_flags & CLONE_VM)) {
3537 		p->numa_preferred_nid = NUMA_NO_NODE;
3538 		return;
3539 	}
3540 
3541 	/*
3542 	 * New thread, keep existing numa_preferred_nid which should be copied
3543 	 * already by arch_dup_task_struct but stagger when scans start.
3544 	 */
3545 	if (mm) {
3546 		unsigned int delay;
3547 
3548 		delay = min_t(unsigned int, task_scan_max(current),
3549 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3550 		delay += 2 * TICK_NSEC;
3551 		p->node_stamp = delay;
3552 	}
3553 }
3554 
3555 /*
3556  * Drive the periodic memory faults..
3557  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3558 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3559 {
3560 	struct callback_head *work = &curr->numa_work;
3561 	u64 period, now;
3562 
3563 	/*
3564 	 * We don't care about NUMA placement if we don't have memory.
3565 	 */
3566 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3567 		return;
3568 
3569 	/*
3570 	 * Using runtime rather than walltime has the dual advantage that
3571 	 * we (mostly) drive the selection from busy threads and that the
3572 	 * task needs to have done some actual work before we bother with
3573 	 * NUMA placement.
3574 	 */
3575 	now = curr->se.sum_exec_runtime;
3576 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3577 
3578 	if (now > curr->node_stamp + period) {
3579 		if (!curr->node_stamp)
3580 			curr->numa_scan_period = task_scan_start(curr);
3581 		curr->node_stamp += period;
3582 
3583 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3584 			task_work_add(curr, work, TWA_RESUME);
3585 	}
3586 }
3587 
update_scan_period(struct task_struct * p,int new_cpu)3588 static void update_scan_period(struct task_struct *p, int new_cpu)
3589 {
3590 	int src_nid = cpu_to_node(task_cpu(p));
3591 	int dst_nid = cpu_to_node(new_cpu);
3592 
3593 	if (!static_branch_likely(&sched_numa_balancing))
3594 		return;
3595 
3596 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3597 		return;
3598 
3599 	if (src_nid == dst_nid)
3600 		return;
3601 
3602 	/*
3603 	 * Allow resets if faults have been trapped before one scan
3604 	 * has completed. This is most likely due to a new task that
3605 	 * is pulled cross-node due to wakeups or load balancing.
3606 	 */
3607 	if (p->numa_scan_seq) {
3608 		/*
3609 		 * Avoid scan adjustments if moving to the preferred
3610 		 * node or if the task was not previously running on
3611 		 * the preferred node.
3612 		 */
3613 		if (dst_nid == p->numa_preferred_nid ||
3614 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3615 			src_nid != p->numa_preferred_nid))
3616 			return;
3617 	}
3618 
3619 	p->numa_scan_period = task_scan_start(p);
3620 }
3621 
3622 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3623 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3624 {
3625 }
3626 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3627 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3628 {
3629 }
3630 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3631 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3632 {
3633 }
3634 
update_scan_period(struct task_struct * p,int new_cpu)3635 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3636 {
3637 }
3638 
3639 #endif /* CONFIG_NUMA_BALANCING */
3640 
3641 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3642 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3643 {
3644 	update_load_add(&cfs_rq->load, se->load.weight);
3645 #ifdef CONFIG_SMP
3646 	if (entity_is_task(se)) {
3647 		struct rq *rq = rq_of(cfs_rq);
3648 
3649 		account_numa_enqueue(rq, task_of(se));
3650 		list_add(&se->group_node, &rq->cfs_tasks);
3651 	}
3652 #endif
3653 	cfs_rq->nr_running++;
3654 	if (se_is_idle(se))
3655 		cfs_rq->idle_nr_running++;
3656 }
3657 
3658 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3659 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3660 {
3661 	update_load_sub(&cfs_rq->load, se->load.weight);
3662 #ifdef CONFIG_SMP
3663 	if (entity_is_task(se)) {
3664 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3665 		list_del_init(&se->group_node);
3666 	}
3667 #endif
3668 	cfs_rq->nr_running--;
3669 	if (se_is_idle(se))
3670 		cfs_rq->idle_nr_running--;
3671 }
3672 
3673 /*
3674  * Signed add and clamp on underflow.
3675  *
3676  * Explicitly do a load-store to ensure the intermediate value never hits
3677  * memory. This allows lockless observations without ever seeing the negative
3678  * values.
3679  */
3680 #define add_positive(_ptr, _val) do {                           \
3681 	typeof(_ptr) ptr = (_ptr);                              \
3682 	typeof(_val) val = (_val);                              \
3683 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3684 								\
3685 	res = var + val;                                        \
3686 								\
3687 	if (val < 0 && res > var)                               \
3688 		res = 0;                                        \
3689 								\
3690 	WRITE_ONCE(*ptr, res);                                  \
3691 } while (0)
3692 
3693 /*
3694  * Unsigned subtract and clamp on underflow.
3695  *
3696  * Explicitly do a load-store to ensure the intermediate value never hits
3697  * memory. This allows lockless observations without ever seeing the negative
3698  * values.
3699  */
3700 #define sub_positive(_ptr, _val) do {				\
3701 	typeof(_ptr) ptr = (_ptr);				\
3702 	typeof(*ptr) val = (_val);				\
3703 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3704 	res = var - val;					\
3705 	if (res > var)						\
3706 		res = 0;					\
3707 	WRITE_ONCE(*ptr, res);					\
3708 } while (0)
3709 
3710 /*
3711  * Remove and clamp on negative, from a local variable.
3712  *
3713  * A variant of sub_positive(), which does not use explicit load-store
3714  * and is thus optimized for local variable updates.
3715  */
3716 #define lsub_positive(_ptr, _val) do {				\
3717 	typeof(_ptr) ptr = (_ptr);				\
3718 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3719 } while (0)
3720 
3721 #ifdef CONFIG_SMP
3722 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3723 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3724 {
3725 	cfs_rq->avg.load_avg += se->avg.load_avg;
3726 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3727 }
3728 
3729 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3730 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3731 {
3732 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3733 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3734 	/* See update_cfs_rq_load_avg() */
3735 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3736 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3737 }
3738 #else
3739 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3740 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3741 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3742 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3743 #endif
3744 
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3745 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3746 			   unsigned long weight)
3747 {
3748 	unsigned long old_weight = se->load.weight;
3749 	s64 vlag, vslice;
3750 
3751 	/*
3752 	 * VRUNTIME
3753 	 * ========
3754 	 *
3755 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3756 	 * adjusted if re-weight at !0-lag point.
3757 	 *
3758 	 * Proof: For contradiction assume this is not true, so we can
3759 	 * re-weight without changing vruntime at !0-lag point.
3760 	 *
3761 	 *             Weight	VRuntime   Avg-VRuntime
3762 	 *     before    w          v            V
3763 	 *      after    w'         v'           V'
3764 	 *
3765 	 * Since lag needs to be preserved through re-weight:
3766 	 *
3767 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3768 	 *	==>	V' = (V - v)*w/w' + v		(1)
3769 	 *
3770 	 * Let W be the total weight of the entities before reweight,
3771 	 * since V' is the new weighted average of entities:
3772 	 *
3773 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3774 	 *
3775 	 * by using (1) & (2) we obtain:
3776 	 *
3777 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3778 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3779 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3780 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3781 	 *
3782 	 * Since we are doing at !0-lag point which means V != v, we
3783 	 * can simplify (3):
3784 	 *
3785 	 *	==>	W / (W + w' - w) = w / w'
3786 	 *	==>	Ww' = Ww + ww' - ww
3787 	 *	==>	W * (w' - w) = w * (w' - w)
3788 	 *	==>	W = w	(re-weight indicates w' != w)
3789 	 *
3790 	 * So the cfs_rq contains only one entity, hence vruntime of
3791 	 * the entity @v should always equal to the cfs_rq's weighted
3792 	 * average vruntime @V, which means we will always re-weight
3793 	 * at 0-lag point, thus breach assumption. Proof completed.
3794 	 *
3795 	 *
3796 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3797 	 * vruntime of all the entities.
3798 	 *
3799 	 * Proof: According to corollary #1, Eq. (1) should be:
3800 	 *
3801 	 *	(V - v)*w = (V' - v')*w'
3802 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3803 	 *
3804 	 * According to the weighted average formula, we have:
3805 	 *
3806 	 *	V' = (WV - wv + w'v') / (W - w + w')
3807 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3808 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3809 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3810 	 *
3811 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3812 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3813 	 *
3814 	 * If the entity is the only one in the cfs_rq, then reweight
3815 	 * always occurs at 0-lag point, so V won't change. Or else
3816 	 * there are other entities, hence W != w, then Eq. (5) turns
3817 	 * into V' = V. So V won't change in either case, proof done.
3818 	 *
3819 	 *
3820 	 * So according to corollary #1 & #2, the effect of re-weight
3821 	 * on vruntime should be:
3822 	 *
3823 	 *	v' = V' - (V - v) * w / w'		(4)
3824 	 *	   = V  - (V - v) * w / w'
3825 	 *	   = V  - vl * w / w'
3826 	 *	   = V  - vl'
3827 	 */
3828 	if (avruntime != se->vruntime) {
3829 		vlag = entity_lag(avruntime, se);
3830 		vlag = div_s64(vlag * old_weight, weight);
3831 		se->vruntime = avruntime - vlag;
3832 	}
3833 
3834 	/*
3835 	 * DEADLINE
3836 	 * ========
3837 	 *
3838 	 * When the weight changes, the virtual time slope changes and
3839 	 * we should adjust the relative virtual deadline accordingly.
3840 	 *
3841 	 *	d' = v' + (d - v)*w/w'
3842 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3843 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3844 	 *	   = V  + (d - V)*w/w'
3845 	 */
3846 	vslice = (s64)(se->deadline - avruntime);
3847 	vslice = div_s64(vslice * old_weight, weight);
3848 	se->deadline = avruntime + vslice;
3849 }
3850 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3851 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3852 			    unsigned long weight)
3853 {
3854 	bool curr = cfs_rq->curr == se;
3855 	u64 avruntime;
3856 
3857 	if (se->on_rq) {
3858 		/* commit outstanding execution time */
3859 		update_curr(cfs_rq);
3860 		avruntime = avg_vruntime(cfs_rq);
3861 		if (!curr)
3862 			__dequeue_entity(cfs_rq, se);
3863 		update_load_sub(&cfs_rq->load, se->load.weight);
3864 	}
3865 	dequeue_load_avg(cfs_rq, se);
3866 
3867 	if (se->on_rq) {
3868 		reweight_eevdf(se, avruntime, weight);
3869 	} else {
3870 		/*
3871 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3872 		 * we need to scale se->vlag when w_i changes.
3873 		 */
3874 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3875 	}
3876 
3877 	update_load_set(&se->load, weight);
3878 
3879 #ifdef CONFIG_SMP
3880 	do {
3881 		u32 divider = get_pelt_divider(&se->avg);
3882 
3883 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3884 	} while (0);
3885 #endif
3886 
3887 	enqueue_load_avg(cfs_rq, se);
3888 	if (se->on_rq) {
3889 		update_load_add(&cfs_rq->load, se->load.weight);
3890 		if (!curr)
3891 			__enqueue_entity(cfs_rq, se);
3892 
3893 		/*
3894 		 * The entity's vruntime has been adjusted, so let's check
3895 		 * whether the rq-wide min_vruntime needs updated too. Since
3896 		 * the calculations above require stable min_vruntime rather
3897 		 * than up-to-date one, we do the update at the end of the
3898 		 * reweight process.
3899 		 */
3900 		update_min_vruntime(cfs_rq);
3901 	}
3902 }
3903 
reweight_task(struct task_struct * p,const struct load_weight * lw)3904 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3905 {
3906 	struct sched_entity *se = &p->se;
3907 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3908 	struct load_weight *load = &se->load;
3909 
3910 	reweight_entity(cfs_rq, se, lw->weight);
3911 	load->inv_weight = lw->inv_weight;
3912 }
3913 
3914 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3915 
3916 #ifdef CONFIG_FAIR_GROUP_SCHED
3917 #ifdef CONFIG_SMP
3918 /*
3919  * All this does is approximate the hierarchical proportion which includes that
3920  * global sum we all love to hate.
3921  *
3922  * That is, the weight of a group entity, is the proportional share of the
3923  * group weight based on the group runqueue weights. That is:
3924  *
3925  *                     tg->weight * grq->load.weight
3926  *   ge->load.weight = -----------------------------               (1)
3927  *                       \Sum grq->load.weight
3928  *
3929  * Now, because computing that sum is prohibitively expensive to compute (been
3930  * there, done that) we approximate it with this average stuff. The average
3931  * moves slower and therefore the approximation is cheaper and more stable.
3932  *
3933  * So instead of the above, we substitute:
3934  *
3935  *   grq->load.weight -> grq->avg.load_avg                         (2)
3936  *
3937  * which yields the following:
3938  *
3939  *                     tg->weight * grq->avg.load_avg
3940  *   ge->load.weight = ------------------------------              (3)
3941  *                             tg->load_avg
3942  *
3943  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3944  *
3945  * That is shares_avg, and it is right (given the approximation (2)).
3946  *
3947  * The problem with it is that because the average is slow -- it was designed
3948  * to be exactly that of course -- this leads to transients in boundary
3949  * conditions. In specific, the case where the group was idle and we start the
3950  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3951  * yielding bad latency etc..
3952  *
3953  * Now, in that special case (1) reduces to:
3954  *
3955  *                     tg->weight * grq->load.weight
3956  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3957  *                         grp->load.weight
3958  *
3959  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3960  *
3961  * So what we do is modify our approximation (3) to approach (4) in the (near)
3962  * UP case, like:
3963  *
3964  *   ge->load.weight =
3965  *
3966  *              tg->weight * grq->load.weight
3967  *     ---------------------------------------------------         (5)
3968  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3969  *
3970  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3971  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3972  *
3973  *
3974  *                     tg->weight * grq->load.weight
3975  *   ge->load.weight = -----------------------------		   (6)
3976  *                             tg_load_avg'
3977  *
3978  * Where:
3979  *
3980  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3981  *                  max(grq->load.weight, grq->avg.load_avg)
3982  *
3983  * And that is shares_weight and is icky. In the (near) UP case it approaches
3984  * (4) while in the normal case it approaches (3). It consistently
3985  * overestimates the ge->load.weight and therefore:
3986  *
3987  *   \Sum ge->load.weight >= tg->weight
3988  *
3989  * hence icky!
3990  */
calc_group_shares(struct cfs_rq * cfs_rq)3991 static long calc_group_shares(struct cfs_rq *cfs_rq)
3992 {
3993 	long tg_weight, tg_shares, load, shares;
3994 	struct task_group *tg = cfs_rq->tg;
3995 
3996 	tg_shares = READ_ONCE(tg->shares);
3997 
3998 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3999 
4000 	tg_weight = atomic_long_read(&tg->load_avg);
4001 
4002 	/* Ensure tg_weight >= load */
4003 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4004 	tg_weight += load;
4005 
4006 	shares = (tg_shares * load);
4007 	if (tg_weight)
4008 		shares /= tg_weight;
4009 
4010 	/*
4011 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4012 	 * of a group with small tg->shares value. It is a floor value which is
4013 	 * assigned as a minimum load.weight to the sched_entity representing
4014 	 * the group on a CPU.
4015 	 *
4016 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4017 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4018 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4019 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4020 	 * instead of 0.
4021 	 */
4022 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4023 }
4024 #endif /* CONFIG_SMP */
4025 
4026 /*
4027  * Recomputes the group entity based on the current state of its group
4028  * runqueue.
4029  */
update_cfs_group(struct sched_entity * se)4030 static void update_cfs_group(struct sched_entity *se)
4031 {
4032 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4033 	long shares;
4034 
4035 	if (!gcfs_rq)
4036 		return;
4037 
4038 	if (throttled_hierarchy(gcfs_rq))
4039 		return;
4040 
4041 #ifndef CONFIG_SMP
4042 	shares = READ_ONCE(gcfs_rq->tg->shares);
4043 #else
4044 	shares = calc_group_shares(gcfs_rq);
4045 #endif
4046 	if (unlikely(se->load.weight != shares))
4047 		reweight_entity(cfs_rq_of(se), se, shares);
4048 }
4049 
4050 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4051 static inline void update_cfs_group(struct sched_entity *se)
4052 {
4053 }
4054 #endif /* CONFIG_FAIR_GROUP_SCHED */
4055 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4056 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4057 {
4058 	struct rq *rq = rq_of(cfs_rq);
4059 
4060 	if (&rq->cfs == cfs_rq) {
4061 		/*
4062 		 * There are a few boundary cases this might miss but it should
4063 		 * get called often enough that that should (hopefully) not be
4064 		 * a real problem.
4065 		 *
4066 		 * It will not get called when we go idle, because the idle
4067 		 * thread is a different class (!fair), nor will the utilization
4068 		 * number include things like RT tasks.
4069 		 *
4070 		 * As is, the util number is not freq-invariant (we'd have to
4071 		 * implement arch_scale_freq_capacity() for that).
4072 		 *
4073 		 * See cpu_util_cfs().
4074 		 */
4075 		cpufreq_update_util(rq, flags);
4076 	}
4077 }
4078 
4079 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4080 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4081 {
4082 	if (sa->load_sum)
4083 		return false;
4084 
4085 	if (sa->util_sum)
4086 		return false;
4087 
4088 	if (sa->runnable_sum)
4089 		return false;
4090 
4091 	/*
4092 	 * _avg must be null when _sum are null because _avg = _sum / divider
4093 	 * Make sure that rounding and/or propagation of PELT values never
4094 	 * break this.
4095 	 */
4096 	SCHED_WARN_ON(sa->load_avg ||
4097 		      sa->util_avg ||
4098 		      sa->runnable_avg);
4099 
4100 	return true;
4101 }
4102 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4103 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4104 {
4105 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4106 				 cfs_rq->last_update_time_copy);
4107 }
4108 #ifdef CONFIG_FAIR_GROUP_SCHED
4109 /*
4110  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4111  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4112  * bottom-up, we only have to test whether the cfs_rq before us on the list
4113  * is our child.
4114  * If cfs_rq is not on the list, test whether a child needs its to be added to
4115  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4116  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4117 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4118 {
4119 	struct cfs_rq *prev_cfs_rq;
4120 	struct list_head *prev;
4121 
4122 	if (cfs_rq->on_list) {
4123 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4124 	} else {
4125 		struct rq *rq = rq_of(cfs_rq);
4126 
4127 		prev = rq->tmp_alone_branch;
4128 	}
4129 
4130 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4131 
4132 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4133 }
4134 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4135 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4136 {
4137 	if (cfs_rq->load.weight)
4138 		return false;
4139 
4140 	if (!load_avg_is_decayed(&cfs_rq->avg))
4141 		return false;
4142 
4143 	if (child_cfs_rq_on_list(cfs_rq))
4144 		return false;
4145 
4146 	return true;
4147 }
4148 
4149 /**
4150  * update_tg_load_avg - update the tg's load avg
4151  * @cfs_rq: the cfs_rq whose avg changed
4152  *
4153  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4154  * However, because tg->load_avg is a global value there are performance
4155  * considerations.
4156  *
4157  * In order to avoid having to look at the other cfs_rq's, we use a
4158  * differential update where we store the last value we propagated. This in
4159  * turn allows skipping updates if the differential is 'small'.
4160  *
4161  * Updating tg's load_avg is necessary before update_cfs_share().
4162  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4163 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4164 {
4165 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4166 
4167 	/*
4168 	 * No need to update load_avg for root_task_group as it is not used.
4169 	 */
4170 	if (cfs_rq->tg == &root_task_group)
4171 		return;
4172 
4173 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4174 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4175 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4176 	}
4177 }
4178 
4179 /*
4180  * Called within set_task_rq() right before setting a task's CPU. The
4181  * caller only guarantees p->pi_lock is held; no other assumptions,
4182  * including the state of rq->lock, should be made.
4183  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4184 void set_task_rq_fair(struct sched_entity *se,
4185 		      struct cfs_rq *prev, struct cfs_rq *next)
4186 {
4187 	u64 p_last_update_time;
4188 	u64 n_last_update_time;
4189 
4190 	if (!sched_feat(ATTACH_AGE_LOAD))
4191 		return;
4192 
4193 	/*
4194 	 * We are supposed to update the task to "current" time, then its up to
4195 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4196 	 * getting what current time is, so simply throw away the out-of-date
4197 	 * time. This will result in the wakee task is less decayed, but giving
4198 	 * the wakee more load sounds not bad.
4199 	 */
4200 	if (!(se->avg.last_update_time && prev))
4201 		return;
4202 
4203 	p_last_update_time = cfs_rq_last_update_time(prev);
4204 	n_last_update_time = cfs_rq_last_update_time(next);
4205 
4206 	__update_load_avg_blocked_se(p_last_update_time, se);
4207 	se->avg.last_update_time = n_last_update_time;
4208 }
4209 
4210 /*
4211  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4212  * propagate its contribution. The key to this propagation is the invariant
4213  * that for each group:
4214  *
4215  *   ge->avg == grq->avg						(1)
4216  *
4217  * _IFF_ we look at the pure running and runnable sums. Because they
4218  * represent the very same entity, just at different points in the hierarchy.
4219  *
4220  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4221  * and simply copies the running/runnable sum over (but still wrong, because
4222  * the group entity and group rq do not have their PELT windows aligned).
4223  *
4224  * However, update_tg_cfs_load() is more complex. So we have:
4225  *
4226  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4227  *
4228  * And since, like util, the runnable part should be directly transferable,
4229  * the following would _appear_ to be the straight forward approach:
4230  *
4231  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4232  *
4233  * And per (1) we have:
4234  *
4235  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4236  *
4237  * Which gives:
4238  *
4239  *                      ge->load.weight * grq->avg.load_avg
4240  *   ge->avg.load_avg = -----------------------------------		(4)
4241  *                               grq->load.weight
4242  *
4243  * Except that is wrong!
4244  *
4245  * Because while for entities historical weight is not important and we
4246  * really only care about our future and therefore can consider a pure
4247  * runnable sum, runqueues can NOT do this.
4248  *
4249  * We specifically want runqueues to have a load_avg that includes
4250  * historical weights. Those represent the blocked load, the load we expect
4251  * to (shortly) return to us. This only works by keeping the weights as
4252  * integral part of the sum. We therefore cannot decompose as per (3).
4253  *
4254  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4255  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4256  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4257  * runnable section of these tasks overlap (or not). If they were to perfectly
4258  * align the rq as a whole would be runnable 2/3 of the time. If however we
4259  * always have at least 1 runnable task, the rq as a whole is always runnable.
4260  *
4261  * So we'll have to approximate.. :/
4262  *
4263  * Given the constraint:
4264  *
4265  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4266  *
4267  * We can construct a rule that adds runnable to a rq by assuming minimal
4268  * overlap.
4269  *
4270  * On removal, we'll assume each task is equally runnable; which yields:
4271  *
4272  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4273  *
4274  * XXX: only do this for the part of runnable > running ?
4275  *
4276  */
4277 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4278 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4279 {
4280 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4281 	u32 new_sum, divider;
4282 
4283 	/* Nothing to update */
4284 	if (!delta_avg)
4285 		return;
4286 
4287 	/*
4288 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4289 	 * See ___update_load_avg() for details.
4290 	 */
4291 	divider = get_pelt_divider(&cfs_rq->avg);
4292 
4293 
4294 	/* Set new sched_entity's utilization */
4295 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4296 	new_sum = se->avg.util_avg * divider;
4297 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4298 	se->avg.util_sum = new_sum;
4299 
4300 	/* Update parent cfs_rq utilization */
4301 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4302 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4303 
4304 	/* See update_cfs_rq_load_avg() */
4305 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4306 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4307 }
4308 
4309 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4311 {
4312 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4313 	u32 new_sum, divider;
4314 
4315 	/* Nothing to update */
4316 	if (!delta_avg)
4317 		return;
4318 
4319 	/*
4320 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4321 	 * See ___update_load_avg() for details.
4322 	 */
4323 	divider = get_pelt_divider(&cfs_rq->avg);
4324 
4325 	/* Set new sched_entity's runnable */
4326 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4327 	new_sum = se->avg.runnable_avg * divider;
4328 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4329 	se->avg.runnable_sum = new_sum;
4330 
4331 	/* Update parent cfs_rq runnable */
4332 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4333 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4334 	/* See update_cfs_rq_load_avg() */
4335 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4336 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4337 }
4338 
4339 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4340 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4341 {
4342 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4343 	unsigned long load_avg;
4344 	u64 load_sum = 0;
4345 	s64 delta_sum;
4346 	u32 divider;
4347 
4348 	if (!runnable_sum)
4349 		return;
4350 
4351 	gcfs_rq->prop_runnable_sum = 0;
4352 
4353 	/*
4354 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4355 	 * See ___update_load_avg() for details.
4356 	 */
4357 	divider = get_pelt_divider(&cfs_rq->avg);
4358 
4359 	if (runnable_sum >= 0) {
4360 		/*
4361 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4362 		 * the CPU is saturated running == runnable.
4363 		 */
4364 		runnable_sum += se->avg.load_sum;
4365 		runnable_sum = min_t(long, runnable_sum, divider);
4366 	} else {
4367 		/*
4368 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4369 		 * assuming all tasks are equally runnable.
4370 		 */
4371 		if (scale_load_down(gcfs_rq->load.weight)) {
4372 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4373 				scale_load_down(gcfs_rq->load.weight));
4374 		}
4375 
4376 		/* But make sure to not inflate se's runnable */
4377 		runnable_sum = min(se->avg.load_sum, load_sum);
4378 	}
4379 
4380 	/*
4381 	 * runnable_sum can't be lower than running_sum
4382 	 * Rescale running sum to be in the same range as runnable sum
4383 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4384 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4385 	 */
4386 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4387 	runnable_sum = max(runnable_sum, running_sum);
4388 
4389 	load_sum = se_weight(se) * runnable_sum;
4390 	load_avg = div_u64(load_sum, divider);
4391 
4392 	delta_avg = load_avg - se->avg.load_avg;
4393 	if (!delta_avg)
4394 		return;
4395 
4396 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4397 
4398 	se->avg.load_sum = runnable_sum;
4399 	se->avg.load_avg = load_avg;
4400 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4401 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4402 	/* See update_cfs_rq_load_avg() */
4403 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4404 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4405 }
4406 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4407 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4408 {
4409 	cfs_rq->propagate = 1;
4410 	cfs_rq->prop_runnable_sum += runnable_sum;
4411 }
4412 
4413 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4414 static inline int propagate_entity_load_avg(struct sched_entity *se)
4415 {
4416 	struct cfs_rq *cfs_rq, *gcfs_rq;
4417 
4418 	if (entity_is_task(se))
4419 		return 0;
4420 
4421 	gcfs_rq = group_cfs_rq(se);
4422 	if (!gcfs_rq->propagate)
4423 		return 0;
4424 
4425 	gcfs_rq->propagate = 0;
4426 
4427 	cfs_rq = cfs_rq_of(se);
4428 
4429 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4430 
4431 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4432 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4433 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4434 
4435 	trace_pelt_cfs_tp(cfs_rq);
4436 	trace_pelt_se_tp(se);
4437 
4438 	return 1;
4439 }
4440 
4441 /*
4442  * Check if we need to update the load and the utilization of a blocked
4443  * group_entity:
4444  */
skip_blocked_update(struct sched_entity * se)4445 static inline bool skip_blocked_update(struct sched_entity *se)
4446 {
4447 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4448 
4449 	/*
4450 	 * If sched_entity still have not zero load or utilization, we have to
4451 	 * decay it:
4452 	 */
4453 	if (se->avg.load_avg || se->avg.util_avg)
4454 		return false;
4455 
4456 	/*
4457 	 * If there is a pending propagation, we have to update the load and
4458 	 * the utilization of the sched_entity:
4459 	 */
4460 	if (gcfs_rq->propagate)
4461 		return false;
4462 
4463 	/*
4464 	 * Otherwise, the load and the utilization of the sched_entity is
4465 	 * already zero and there is no pending propagation, so it will be a
4466 	 * waste of time to try to decay it:
4467 	 */
4468 	return true;
4469 }
4470 
4471 #else /* CONFIG_FAIR_GROUP_SCHED */
4472 
update_tg_load_avg(struct cfs_rq * cfs_rq)4473 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4474 
propagate_entity_load_avg(struct sched_entity * se)4475 static inline int propagate_entity_load_avg(struct sched_entity *se)
4476 {
4477 	return 0;
4478 }
4479 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4480 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4481 
4482 #endif /* CONFIG_FAIR_GROUP_SCHED */
4483 
4484 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4485 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4486 {
4487 	u64 throttled = 0, now, lut;
4488 	struct cfs_rq *cfs_rq;
4489 	struct rq *rq;
4490 	bool is_idle;
4491 
4492 	if (load_avg_is_decayed(&se->avg))
4493 		return;
4494 
4495 	cfs_rq = cfs_rq_of(se);
4496 	rq = rq_of(cfs_rq);
4497 
4498 	rcu_read_lock();
4499 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4500 	rcu_read_unlock();
4501 
4502 	/*
4503 	 * The lag estimation comes with a cost we don't want to pay all the
4504 	 * time. Hence, limiting to the case where the source CPU is idle and
4505 	 * we know we are at the greatest risk to have an outdated clock.
4506 	 */
4507 	if (!is_idle)
4508 		return;
4509 
4510 	/*
4511 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4512 	 *
4513 	 *   last_update_time (the cfs_rq's last_update_time)
4514 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4515 	 *      = rq_clock_pelt()@cfs_rq_idle
4516 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4517 	 *
4518 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4519 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4520 	 *
4521 	 *   rq_idle_lag (delta between now and rq's update)
4522 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4523 	 *
4524 	 * We can then write:
4525 	 *
4526 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4527 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4528 	 * Where:
4529 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4530 	 *      rq_clock()@rq_idle      is rq->clock_idle
4531 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4532 	 *                              is cfs_rq->throttled_pelt_idle
4533 	 */
4534 
4535 #ifdef CONFIG_CFS_BANDWIDTH
4536 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4537 	/* The clock has been stopped for throttling */
4538 	if (throttled == U64_MAX)
4539 		return;
4540 #endif
4541 	now = u64_u32_load(rq->clock_pelt_idle);
4542 	/*
4543 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4544 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4545 	 * which lead to an underestimation. The opposite would lead to an
4546 	 * overestimation.
4547 	 */
4548 	smp_rmb();
4549 	lut = cfs_rq_last_update_time(cfs_rq);
4550 
4551 	now -= throttled;
4552 	if (now < lut)
4553 		/*
4554 		 * cfs_rq->avg.last_update_time is more recent than our
4555 		 * estimation, let's use it.
4556 		 */
4557 		now = lut;
4558 	else
4559 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4560 
4561 	__update_load_avg_blocked_se(now, se);
4562 }
4563 #else
migrate_se_pelt_lag(struct sched_entity * se)4564 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4565 #endif
4566 
4567 /**
4568  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4569  * @now: current time, as per cfs_rq_clock_pelt()
4570  * @cfs_rq: cfs_rq to update
4571  *
4572  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4573  * avg. The immediate corollary is that all (fair) tasks must be attached.
4574  *
4575  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4576  *
4577  * Return: true if the load decayed or we removed load.
4578  *
4579  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4580  * call update_tg_load_avg() when this function returns true.
4581  */
4582 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4583 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4584 {
4585 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4586 	struct sched_avg *sa = &cfs_rq->avg;
4587 	int decayed = 0;
4588 
4589 	if (cfs_rq->removed.nr) {
4590 		unsigned long r;
4591 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4592 
4593 		raw_spin_lock(&cfs_rq->removed.lock);
4594 		swap(cfs_rq->removed.util_avg, removed_util);
4595 		swap(cfs_rq->removed.load_avg, removed_load);
4596 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4597 		cfs_rq->removed.nr = 0;
4598 		raw_spin_unlock(&cfs_rq->removed.lock);
4599 
4600 		r = removed_load;
4601 		sub_positive(&sa->load_avg, r);
4602 		sub_positive(&sa->load_sum, r * divider);
4603 		/* See sa->util_sum below */
4604 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4605 
4606 		r = removed_util;
4607 		sub_positive(&sa->util_avg, r);
4608 		sub_positive(&sa->util_sum, r * divider);
4609 		/*
4610 		 * Because of rounding, se->util_sum might ends up being +1 more than
4611 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4612 		 * a lot of tasks with the rounding problem between 2 updates of
4613 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4614 		 * cfs_util_avg is not.
4615 		 * Check that util_sum is still above its lower bound for the new
4616 		 * util_avg. Given that period_contrib might have moved since the last
4617 		 * sync, we are only sure that util_sum must be above or equal to
4618 		 *    util_avg * minimum possible divider
4619 		 */
4620 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4621 
4622 		r = removed_runnable;
4623 		sub_positive(&sa->runnable_avg, r);
4624 		sub_positive(&sa->runnable_sum, r * divider);
4625 		/* See sa->util_sum above */
4626 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4627 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4628 
4629 		/*
4630 		 * removed_runnable is the unweighted version of removed_load so we
4631 		 * can use it to estimate removed_load_sum.
4632 		 */
4633 		add_tg_cfs_propagate(cfs_rq,
4634 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4635 
4636 		decayed = 1;
4637 	}
4638 
4639 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4640 	u64_u32_store_copy(sa->last_update_time,
4641 			   cfs_rq->last_update_time_copy,
4642 			   sa->last_update_time);
4643 	return decayed;
4644 }
4645 
4646 /**
4647  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4648  * @cfs_rq: cfs_rq to attach to
4649  * @se: sched_entity to attach
4650  *
4651  * Must call update_cfs_rq_load_avg() before this, since we rely on
4652  * cfs_rq->avg.last_update_time being current.
4653  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4654 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4655 {
4656 	/*
4657 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4658 	 * See ___update_load_avg() for details.
4659 	 */
4660 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4661 
4662 	/*
4663 	 * When we attach the @se to the @cfs_rq, we must align the decay
4664 	 * window because without that, really weird and wonderful things can
4665 	 * happen.
4666 	 *
4667 	 * XXX illustrate
4668 	 */
4669 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4670 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4671 
4672 	/*
4673 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4674 	 * period_contrib. This isn't strictly correct, but since we're
4675 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4676 	 * _sum a little.
4677 	 */
4678 	se->avg.util_sum = se->avg.util_avg * divider;
4679 
4680 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4681 
4682 	se->avg.load_sum = se->avg.load_avg * divider;
4683 	if (se_weight(se) < se->avg.load_sum)
4684 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4685 	else
4686 		se->avg.load_sum = 1;
4687 
4688 	enqueue_load_avg(cfs_rq, se);
4689 	cfs_rq->avg.util_avg += se->avg.util_avg;
4690 	cfs_rq->avg.util_sum += se->avg.util_sum;
4691 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4692 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4693 
4694 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4695 
4696 	cfs_rq_util_change(cfs_rq, 0);
4697 
4698 	trace_pelt_cfs_tp(cfs_rq);
4699 }
4700 
4701 /**
4702  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4703  * @cfs_rq: cfs_rq to detach from
4704  * @se: sched_entity to detach
4705  *
4706  * Must call update_cfs_rq_load_avg() before this, since we rely on
4707  * cfs_rq->avg.last_update_time being current.
4708  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4709 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4710 {
4711 	dequeue_load_avg(cfs_rq, se);
4712 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4713 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4714 	/* See update_cfs_rq_load_avg() */
4715 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4716 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4717 
4718 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4719 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4720 	/* See update_cfs_rq_load_avg() */
4721 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4722 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4723 
4724 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4725 
4726 	cfs_rq_util_change(cfs_rq, 0);
4727 
4728 	trace_pelt_cfs_tp(cfs_rq);
4729 }
4730 
4731 /*
4732  * Optional action to be done while updating the load average
4733  */
4734 #define UPDATE_TG	0x1
4735 #define SKIP_AGE_LOAD	0x2
4736 #define DO_ATTACH	0x4
4737 #define DO_DETACH	0x8
4738 
4739 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4740 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4741 {
4742 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4743 	int decayed;
4744 
4745 	/*
4746 	 * Track task load average for carrying it to new CPU after migrated, and
4747 	 * track group sched_entity load average for task_h_load calc in migration
4748 	 */
4749 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4750 		__update_load_avg_se(now, cfs_rq, se);
4751 
4752 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4753 	decayed |= propagate_entity_load_avg(se);
4754 
4755 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4756 
4757 		/*
4758 		 * DO_ATTACH means we're here from enqueue_entity().
4759 		 * !last_update_time means we've passed through
4760 		 * migrate_task_rq_fair() indicating we migrated.
4761 		 *
4762 		 * IOW we're enqueueing a task on a new CPU.
4763 		 */
4764 		attach_entity_load_avg(cfs_rq, se);
4765 		update_tg_load_avg(cfs_rq);
4766 
4767 	} else if (flags & DO_DETACH) {
4768 		/*
4769 		 * DO_DETACH means we're here from dequeue_entity()
4770 		 * and we are migrating task out of the CPU.
4771 		 */
4772 		detach_entity_load_avg(cfs_rq, se);
4773 		update_tg_load_avg(cfs_rq);
4774 	} else if (decayed) {
4775 		cfs_rq_util_change(cfs_rq, 0);
4776 
4777 		if (flags & UPDATE_TG)
4778 			update_tg_load_avg(cfs_rq);
4779 	}
4780 }
4781 
4782 /*
4783  * Synchronize entity load avg of dequeued entity without locking
4784  * the previous rq.
4785  */
sync_entity_load_avg(struct sched_entity * se)4786 static void sync_entity_load_avg(struct sched_entity *se)
4787 {
4788 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4789 	u64 last_update_time;
4790 
4791 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4792 	__update_load_avg_blocked_se(last_update_time, se);
4793 }
4794 
4795 /*
4796  * Task first catches up with cfs_rq, and then subtract
4797  * itself from the cfs_rq (task must be off the queue now).
4798  */
remove_entity_load_avg(struct sched_entity * se)4799 static void remove_entity_load_avg(struct sched_entity *se)
4800 {
4801 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4802 	unsigned long flags;
4803 
4804 	/*
4805 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4806 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4807 	 * so we can remove unconditionally.
4808 	 */
4809 
4810 	sync_entity_load_avg(se);
4811 
4812 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4813 	++cfs_rq->removed.nr;
4814 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4815 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4816 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4817 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4818 }
4819 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4820 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4821 {
4822 	return cfs_rq->avg.runnable_avg;
4823 }
4824 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4825 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4826 {
4827 	return cfs_rq->avg.load_avg;
4828 }
4829 
4830 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4831 
task_util(struct task_struct * p)4832 static inline unsigned long task_util(struct task_struct *p)
4833 {
4834 	return READ_ONCE(p->se.avg.util_avg);
4835 }
4836 
_task_util_est(struct task_struct * p)4837 static inline unsigned long _task_util_est(struct task_struct *p)
4838 {
4839 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4840 
4841 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4842 }
4843 
task_util_est(struct task_struct * p)4844 static inline unsigned long task_util_est(struct task_struct *p)
4845 {
4846 	return max(task_util(p), _task_util_est(p));
4847 }
4848 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4849 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4850 				    struct task_struct *p)
4851 {
4852 	unsigned int enqueued;
4853 
4854 	if (!sched_feat(UTIL_EST))
4855 		return;
4856 
4857 	/* Update root cfs_rq's estimated utilization */
4858 	enqueued  = cfs_rq->avg.util_est.enqueued;
4859 	enqueued += _task_util_est(p);
4860 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4861 
4862 	trace_sched_util_est_cfs_tp(cfs_rq);
4863 }
4864 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4865 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4866 				    struct task_struct *p)
4867 {
4868 	unsigned int enqueued;
4869 
4870 	if (!sched_feat(UTIL_EST))
4871 		return;
4872 
4873 	/* Update root cfs_rq's estimated utilization */
4874 	enqueued  = cfs_rq->avg.util_est.enqueued;
4875 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4876 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4877 
4878 	trace_sched_util_est_cfs_tp(cfs_rq);
4879 }
4880 
4881 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4882 
4883 /*
4884  * Check if a (signed) value is within a specified (unsigned) margin,
4885  * based on the observation that:
4886  *
4887  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4888  *
4889  * NOTE: this only works when value + margin < INT_MAX.
4890  */
within_margin(int value,int margin)4891 static inline bool within_margin(int value, int margin)
4892 {
4893 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4894 }
4895 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4896 static inline void util_est_update(struct cfs_rq *cfs_rq,
4897 				   struct task_struct *p,
4898 				   bool task_sleep)
4899 {
4900 	long last_ewma_diff, last_enqueued_diff;
4901 	struct util_est ue;
4902 
4903 	if (!sched_feat(UTIL_EST))
4904 		return;
4905 
4906 	/*
4907 	 * Skip update of task's estimated utilization when the task has not
4908 	 * yet completed an activation, e.g. being migrated.
4909 	 */
4910 	if (!task_sleep)
4911 		return;
4912 
4913 	/*
4914 	 * If the PELT values haven't changed since enqueue time,
4915 	 * skip the util_est update.
4916 	 */
4917 	ue = p->se.avg.util_est;
4918 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4919 		return;
4920 
4921 	last_enqueued_diff = ue.enqueued;
4922 
4923 	/*
4924 	 * Reset EWMA on utilization increases, the moving average is used only
4925 	 * to smooth utilization decreases.
4926 	 */
4927 	ue.enqueued = task_util(p);
4928 	if (sched_feat(UTIL_EST_FASTUP)) {
4929 		if (ue.ewma < ue.enqueued) {
4930 			ue.ewma = ue.enqueued;
4931 			goto done;
4932 		}
4933 	}
4934 
4935 	/*
4936 	 * Skip update of task's estimated utilization when its members are
4937 	 * already ~1% close to its last activation value.
4938 	 */
4939 	last_ewma_diff = ue.enqueued - ue.ewma;
4940 	last_enqueued_diff -= ue.enqueued;
4941 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4942 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4943 			goto done;
4944 
4945 		return;
4946 	}
4947 
4948 	/*
4949 	 * To avoid overestimation of actual task utilization, skip updates if
4950 	 * we cannot grant there is idle time in this CPU.
4951 	 */
4952 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4953 		return;
4954 
4955 	/*
4956 	 * Update Task's estimated utilization
4957 	 *
4958 	 * When *p completes an activation we can consolidate another sample
4959 	 * of the task size. This is done by storing the current PELT value
4960 	 * as ue.enqueued and by using this value to update the Exponential
4961 	 * Weighted Moving Average (EWMA):
4962 	 *
4963 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4964 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4965 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4966 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4967 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4968 	 *
4969 	 * Where 'w' is the weight of new samples, which is configured to be
4970 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4971 	 */
4972 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4973 	ue.ewma  += last_ewma_diff;
4974 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4975 done:
4976 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4977 	WRITE_ONCE(p->se.avg.util_est, ue);
4978 
4979 	trace_sched_util_est_se_tp(&p->se);
4980 }
4981 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4982 static inline int util_fits_cpu(unsigned long util,
4983 				unsigned long uclamp_min,
4984 				unsigned long uclamp_max,
4985 				int cpu)
4986 {
4987 	unsigned long capacity_orig, capacity_orig_thermal;
4988 	unsigned long capacity = capacity_of(cpu);
4989 	bool fits, uclamp_max_fits;
4990 
4991 	/*
4992 	 * Check if the real util fits without any uclamp boost/cap applied.
4993 	 */
4994 	fits = fits_capacity(util, capacity);
4995 
4996 	if (!uclamp_is_used())
4997 		return fits;
4998 
4999 	/*
5000 	 * We must use capacity_orig_of() for comparing against uclamp_min and
5001 	 * uclamp_max. We only care about capacity pressure (by using
5002 	 * capacity_of()) for comparing against the real util.
5003 	 *
5004 	 * If a task is boosted to 1024 for example, we don't want a tiny
5005 	 * pressure to skew the check whether it fits a CPU or not.
5006 	 *
5007 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
5008 	 * should fit a little cpu even if there's some pressure.
5009 	 *
5010 	 * Only exception is for thermal pressure since it has a direct impact
5011 	 * on available OPP of the system.
5012 	 *
5013 	 * We honour it for uclamp_min only as a drop in performance level
5014 	 * could result in not getting the requested minimum performance level.
5015 	 *
5016 	 * For uclamp_max, we can tolerate a drop in performance level as the
5017 	 * goal is to cap the task. So it's okay if it's getting less.
5018 	 */
5019 	capacity_orig = capacity_orig_of(cpu);
5020 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5021 
5022 	/*
5023 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5024 	 * But we do have some corner cases to cater for..
5025 	 *
5026 	 *
5027 	 *                                 C=z
5028 	 *   |                             ___
5029 	 *   |                  C=y       |   |
5030 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5031 	 *   |      C=x        |   |      |   |
5032 	 *   |      ___        |   |      |   |
5033 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5034 	 *   |     |   |       |   |      |   |
5035 	 *   |     |   |       |   |      |   |
5036 	 *   +----------------------------------------
5037 	 *         cpu0        cpu1       cpu2
5038 	 *
5039 	 *   In the above example if a task is capped to a specific performance
5040 	 *   point, y, then when:
5041 	 *
5042 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5043 	 *     to cpu1
5044 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5045 	 *     uclamp_max request.
5046 	 *
5047 	 *   which is what we're enforcing here. A task always fits if
5048 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5049 	 *   the normal upmigration rules should withhold still.
5050 	 *
5051 	 *   Only exception is when we are on max capacity, then we need to be
5052 	 *   careful not to block overutilized state. This is so because:
5053 	 *
5054 	 *     1. There's no concept of capping at max_capacity! We can't go
5055 	 *        beyond this performance level anyway.
5056 	 *     2. The system is being saturated when we're operating near
5057 	 *        max capacity, it doesn't make sense to block overutilized.
5058 	 */
5059 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5060 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5061 	fits = fits || uclamp_max_fits;
5062 
5063 	/*
5064 	 *
5065 	 *                                 C=z
5066 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5067 	 *   |                  C=y       |   |
5068 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5069 	 *   |      C=x        |   |      |   |
5070 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5071 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5072 	 *   |     |   |       |   |      |   |
5073 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5074 	 *   +----------------------------------------
5075 	 *         cpu0        cpu1       cpu2
5076 	 *
5077 	 * a) If util > uclamp_max, then we're capped, we don't care about
5078 	 *    actual fitness value here. We only care if uclamp_max fits
5079 	 *    capacity without taking margin/pressure into account.
5080 	 *    See comment above.
5081 	 *
5082 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5083 	 *    fits_capacity() rules apply. Except we need to ensure that we
5084 	 *    enforce we remain within uclamp_max, see comment above.
5085 	 *
5086 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5087 	 *    need to take into account the boosted value fits the CPU without
5088 	 *    taking margin/pressure into account.
5089 	 *
5090 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5091 	 * just need to consider an extra check for case (c) after ensuring we
5092 	 * handle the case uclamp_min > uclamp_max.
5093 	 */
5094 	uclamp_min = min(uclamp_min, uclamp_max);
5095 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5096 		return -1;
5097 
5098 	return fits;
5099 }
5100 
task_fits_cpu(struct task_struct * p,int cpu)5101 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5102 {
5103 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5104 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5105 	unsigned long util = task_util_est(p);
5106 	/*
5107 	 * Return true only if the cpu fully fits the task requirements, which
5108 	 * include the utilization but also the performance hints.
5109 	 */
5110 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5111 }
5112 
update_misfit_status(struct task_struct * p,struct rq * rq)5113 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5114 {
5115 	if (!sched_asym_cpucap_active())
5116 		return;
5117 
5118 	if (!p || p->nr_cpus_allowed == 1) {
5119 		rq->misfit_task_load = 0;
5120 		return;
5121 	}
5122 
5123 	if (task_fits_cpu(p, cpu_of(rq))) {
5124 		rq->misfit_task_load = 0;
5125 		return;
5126 	}
5127 
5128 	/*
5129 	 * Make sure that misfit_task_load will not be null even if
5130 	 * task_h_load() returns 0.
5131 	 */
5132 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5133 }
5134 
5135 #else /* CONFIG_SMP */
5136 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5137 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5138 {
5139 	return !cfs_rq->nr_running;
5140 }
5141 
5142 #define UPDATE_TG	0x0
5143 #define SKIP_AGE_LOAD	0x0
5144 #define DO_ATTACH	0x0
5145 #define DO_DETACH	0x0
5146 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5147 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5148 {
5149 	cfs_rq_util_change(cfs_rq, 0);
5150 }
5151 
remove_entity_load_avg(struct sched_entity * se)5152 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5153 
5154 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5155 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5156 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5157 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5158 
newidle_balance(struct rq * rq,struct rq_flags * rf)5159 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5160 {
5161 	return 0;
5162 }
5163 
5164 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5165 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5166 
5167 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5168 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5169 
5170 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5171 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5172 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5173 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5174 
5175 #endif /* CONFIG_SMP */
5176 
5177 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5178 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5179 {
5180 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5181 	s64 lag = 0;
5182 
5183 	se->slice = sysctl_sched_base_slice;
5184 	vslice = calc_delta_fair(se->slice, se);
5185 
5186 	/*
5187 	 * Due to how V is constructed as the weighted average of entities,
5188 	 * adding tasks with positive lag, or removing tasks with negative lag
5189 	 * will move 'time' backwards, this can screw around with the lag of
5190 	 * other tasks.
5191 	 *
5192 	 * EEVDF: placement strategy #1 / #2
5193 	 */
5194 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5195 		struct sched_entity *curr = cfs_rq->curr;
5196 		unsigned long load;
5197 
5198 		lag = se->vlag;
5199 
5200 		/*
5201 		 * If we want to place a task and preserve lag, we have to
5202 		 * consider the effect of the new entity on the weighted
5203 		 * average and compensate for this, otherwise lag can quickly
5204 		 * evaporate.
5205 		 *
5206 		 * Lag is defined as:
5207 		 *
5208 		 *   lag_i = S - s_i = w_i * (V - v_i)
5209 		 *
5210 		 * To avoid the 'w_i' term all over the place, we only track
5211 		 * the virtual lag:
5212 		 *
5213 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5214 		 *
5215 		 * And we take V to be the weighted average of all v:
5216 		 *
5217 		 *   V = (\Sum w_j*v_j) / W
5218 		 *
5219 		 * Where W is: \Sum w_j
5220 		 *
5221 		 * Then, the weighted average after adding an entity with lag
5222 		 * vl_i is given by:
5223 		 *
5224 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5225 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5226 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5227 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5228 		 *      = V - w_i*vl_i / (W + w_i)
5229 		 *
5230 		 * And the actual lag after adding an entity with vl_i is:
5231 		 *
5232 		 *   vl'_i = V' - v_i
5233 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5234 		 *         = vl_i - w_i*vl_i / (W + w_i)
5235 		 *
5236 		 * Which is strictly less than vl_i. So in order to preserve lag
5237 		 * we should inflate the lag before placement such that the
5238 		 * effective lag after placement comes out right.
5239 		 *
5240 		 * As such, invert the above relation for vl'_i to get the vl_i
5241 		 * we need to use such that the lag after placement is the lag
5242 		 * we computed before dequeue.
5243 		 *
5244 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5245 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5246 		 *
5247 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5248 		 *                   = W*vl_i
5249 		 *
5250 		 *   vl_i = (W + w_i)*vl'_i / W
5251 		 */
5252 		load = cfs_rq->avg_load;
5253 		if (curr && curr->on_rq)
5254 			load += scale_load_down(curr->load.weight);
5255 
5256 		lag *= load + scale_load_down(se->load.weight);
5257 		if (WARN_ON_ONCE(!load))
5258 			load = 1;
5259 		lag = div_s64(lag, load);
5260 	}
5261 
5262 	se->vruntime = vruntime - lag;
5263 
5264 	/*
5265 	 * When joining the competition; the exisiting tasks will be,
5266 	 * on average, halfway through their slice, as such start tasks
5267 	 * off with half a slice to ease into the competition.
5268 	 */
5269 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5270 		vslice /= 2;
5271 
5272 	/*
5273 	 * EEVDF: vd_i = ve_i + r_i/w_i
5274 	 */
5275 	se->deadline = se->vruntime + vslice;
5276 }
5277 
5278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5279 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5280 
5281 static inline bool cfs_bandwidth_used(void);
5282 
5283 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5284 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5285 {
5286 	bool curr = cfs_rq->curr == se;
5287 
5288 	/*
5289 	 * If we're the current task, we must renormalise before calling
5290 	 * update_curr().
5291 	 */
5292 	if (curr)
5293 		place_entity(cfs_rq, se, flags);
5294 
5295 	update_curr(cfs_rq);
5296 
5297 	/*
5298 	 * When enqueuing a sched_entity, we must:
5299 	 *   - Update loads to have both entity and cfs_rq synced with now.
5300 	 *   - For group_entity, update its runnable_weight to reflect the new
5301 	 *     h_nr_running of its group cfs_rq.
5302 	 *   - For group_entity, update its weight to reflect the new share of
5303 	 *     its group cfs_rq
5304 	 *   - Add its new weight to cfs_rq->load.weight
5305 	 */
5306 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5307 	se_update_runnable(se);
5308 	/*
5309 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5310 	 * but update_cfs_group() here will re-adjust the weight and have to
5311 	 * undo/redo all that. Seems wasteful.
5312 	 */
5313 	update_cfs_group(se);
5314 
5315 	/*
5316 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5317 	 * we can place the entity.
5318 	 */
5319 	if (!curr)
5320 		place_entity(cfs_rq, se, flags);
5321 
5322 	account_entity_enqueue(cfs_rq, se);
5323 
5324 	/* Entity has migrated, no longer consider this task hot */
5325 	if (flags & ENQUEUE_MIGRATED)
5326 		se->exec_start = 0;
5327 
5328 	check_schedstat_required();
5329 	update_stats_enqueue_fair(cfs_rq, se, flags);
5330 	if (!curr)
5331 		__enqueue_entity(cfs_rq, se);
5332 	se->on_rq = 1;
5333 
5334 	if (cfs_rq->nr_running == 1) {
5335 		check_enqueue_throttle(cfs_rq);
5336 		if (!throttled_hierarchy(cfs_rq)) {
5337 			list_add_leaf_cfs_rq(cfs_rq);
5338 		} else {
5339 #ifdef CONFIG_CFS_BANDWIDTH
5340 			struct rq *rq = rq_of(cfs_rq);
5341 
5342 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5343 				cfs_rq->throttled_clock = rq_clock(rq);
5344 			if (!cfs_rq->throttled_clock_self)
5345 				cfs_rq->throttled_clock_self = rq_clock(rq);
5346 #endif
5347 		}
5348 	}
5349 }
5350 
__clear_buddies_next(struct sched_entity * se)5351 static void __clear_buddies_next(struct sched_entity *se)
5352 {
5353 	for_each_sched_entity(se) {
5354 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5355 		if (cfs_rq->next != se)
5356 			break;
5357 
5358 		cfs_rq->next = NULL;
5359 	}
5360 }
5361 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5362 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5363 {
5364 	if (cfs_rq->next == se)
5365 		__clear_buddies_next(se);
5366 }
5367 
5368 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5369 
5370 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5371 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5372 {
5373 	int action = UPDATE_TG;
5374 
5375 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5376 		action |= DO_DETACH;
5377 
5378 	/*
5379 	 * Update run-time statistics of the 'current'.
5380 	 */
5381 	update_curr(cfs_rq);
5382 
5383 	/*
5384 	 * When dequeuing a sched_entity, we must:
5385 	 *   - Update loads to have both entity and cfs_rq synced with now.
5386 	 *   - For group_entity, update its runnable_weight to reflect the new
5387 	 *     h_nr_running of its group cfs_rq.
5388 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5389 	 *   - For group entity, update its weight to reflect the new share
5390 	 *     of its group cfs_rq.
5391 	 */
5392 	update_load_avg(cfs_rq, se, action);
5393 	se_update_runnable(se);
5394 
5395 	update_stats_dequeue_fair(cfs_rq, se, flags);
5396 
5397 	clear_buddies(cfs_rq, se);
5398 
5399 	update_entity_lag(cfs_rq, se);
5400 	if (se != cfs_rq->curr)
5401 		__dequeue_entity(cfs_rq, se);
5402 	se->on_rq = 0;
5403 	account_entity_dequeue(cfs_rq, se);
5404 
5405 	/* return excess runtime on last dequeue */
5406 	return_cfs_rq_runtime(cfs_rq);
5407 
5408 	update_cfs_group(se);
5409 
5410 	/*
5411 	 * Now advance min_vruntime if @se was the entity holding it back,
5412 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5413 	 * put back on, and if we advance min_vruntime, we'll be placed back
5414 	 * further than we started -- ie. we'll be penalized.
5415 	 */
5416 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5417 		update_min_vruntime(cfs_rq);
5418 
5419 	if (cfs_rq->nr_running == 0)
5420 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5421 }
5422 
5423 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5425 {
5426 	clear_buddies(cfs_rq, se);
5427 
5428 	/* 'current' is not kept within the tree. */
5429 	if (se->on_rq) {
5430 		/*
5431 		 * Any task has to be enqueued before it get to execute on
5432 		 * a CPU. So account for the time it spent waiting on the
5433 		 * runqueue.
5434 		 */
5435 		update_stats_wait_end_fair(cfs_rq, se);
5436 		__dequeue_entity(cfs_rq, se);
5437 		update_load_avg(cfs_rq, se, UPDATE_TG);
5438 		/*
5439 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5440 		 * which isn't used until dequeue.
5441 		 */
5442 		se->vlag = se->deadline;
5443 	}
5444 
5445 	update_stats_curr_start(cfs_rq, se);
5446 	cfs_rq->curr = se;
5447 
5448 	/*
5449 	 * Track our maximum slice length, if the CPU's load is at
5450 	 * least twice that of our own weight (i.e. dont track it
5451 	 * when there are only lesser-weight tasks around):
5452 	 */
5453 	if (schedstat_enabled() &&
5454 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5455 		struct sched_statistics *stats;
5456 
5457 		stats = __schedstats_from_se(se);
5458 		__schedstat_set(stats->slice_max,
5459 				max((u64)stats->slice_max,
5460 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5461 	}
5462 
5463 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5464 }
5465 
5466 /*
5467  * Pick the next process, keeping these things in mind, in this order:
5468  * 1) keep things fair between processes/task groups
5469  * 2) pick the "next" process, since someone really wants that to run
5470  * 3) pick the "last" process, for cache locality
5471  * 4) do not run the "skip" process, if something else is available
5472  */
5473 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5474 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5475 {
5476 	/*
5477 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5478 	 */
5479 	if (sched_feat(NEXT_BUDDY) &&
5480 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5481 		return cfs_rq->next;
5482 
5483 	return pick_eevdf(cfs_rq);
5484 }
5485 
5486 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5487 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5488 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5489 {
5490 	/*
5491 	 * If still on the runqueue then deactivate_task()
5492 	 * was not called and update_curr() has to be done:
5493 	 */
5494 	if (prev->on_rq)
5495 		update_curr(cfs_rq);
5496 
5497 	/* throttle cfs_rqs exceeding runtime */
5498 	check_cfs_rq_runtime(cfs_rq);
5499 
5500 	if (prev->on_rq) {
5501 		update_stats_wait_start_fair(cfs_rq, prev);
5502 		/* Put 'current' back into the tree. */
5503 		__enqueue_entity(cfs_rq, prev);
5504 		/* in !on_rq case, update occurred at dequeue */
5505 		update_load_avg(cfs_rq, prev, 0);
5506 	}
5507 	cfs_rq->curr = NULL;
5508 }
5509 
5510 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5511 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5512 {
5513 	/*
5514 	 * Update run-time statistics of the 'current'.
5515 	 */
5516 	update_curr(cfs_rq);
5517 
5518 	/*
5519 	 * Ensure that runnable average is periodically updated.
5520 	 */
5521 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5522 	update_cfs_group(curr);
5523 
5524 #ifdef CONFIG_SCHED_HRTICK
5525 	/*
5526 	 * queued ticks are scheduled to match the slice, so don't bother
5527 	 * validating it and just reschedule.
5528 	 */
5529 	if (queued) {
5530 		resched_curr(rq_of(cfs_rq));
5531 		return;
5532 	}
5533 	/*
5534 	 * don't let the period tick interfere with the hrtick preemption
5535 	 */
5536 	if (!sched_feat(DOUBLE_TICK) &&
5537 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5538 		return;
5539 #endif
5540 }
5541 
5542 
5543 /**************************************************
5544  * CFS bandwidth control machinery
5545  */
5546 
5547 #ifdef CONFIG_CFS_BANDWIDTH
5548 
5549 #ifdef CONFIG_JUMP_LABEL
5550 static struct static_key __cfs_bandwidth_used;
5551 
cfs_bandwidth_used(void)5552 static inline bool cfs_bandwidth_used(void)
5553 {
5554 	return static_key_false(&__cfs_bandwidth_used);
5555 }
5556 
cfs_bandwidth_usage_inc(void)5557 void cfs_bandwidth_usage_inc(void)
5558 {
5559 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5560 }
5561 
cfs_bandwidth_usage_dec(void)5562 void cfs_bandwidth_usage_dec(void)
5563 {
5564 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5565 }
5566 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5567 static bool cfs_bandwidth_used(void)
5568 {
5569 	return true;
5570 }
5571 
cfs_bandwidth_usage_inc(void)5572 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5573 void cfs_bandwidth_usage_dec(void) {}
5574 #endif /* CONFIG_JUMP_LABEL */
5575 
5576 /*
5577  * default period for cfs group bandwidth.
5578  * default: 0.1s, units: nanoseconds
5579  */
default_cfs_period(void)5580 static inline u64 default_cfs_period(void)
5581 {
5582 	return 100000000ULL;
5583 }
5584 
sched_cfs_bandwidth_slice(void)5585 static inline u64 sched_cfs_bandwidth_slice(void)
5586 {
5587 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5588 }
5589 
5590 /*
5591  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5592  * directly instead of rq->clock to avoid adding additional synchronization
5593  * around rq->lock.
5594  *
5595  * requires cfs_b->lock
5596  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5597 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5598 {
5599 	s64 runtime;
5600 
5601 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5602 		return;
5603 
5604 	cfs_b->runtime += cfs_b->quota;
5605 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5606 	if (runtime > 0) {
5607 		cfs_b->burst_time += runtime;
5608 		cfs_b->nr_burst++;
5609 	}
5610 
5611 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5612 	cfs_b->runtime_snap = cfs_b->runtime;
5613 }
5614 
tg_cfs_bandwidth(struct task_group * tg)5615 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5616 {
5617 	return &tg->cfs_bandwidth;
5618 }
5619 
5620 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5621 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5622 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5623 {
5624 	u64 min_amount, amount = 0;
5625 
5626 	lockdep_assert_held(&cfs_b->lock);
5627 
5628 	/* note: this is a positive sum as runtime_remaining <= 0 */
5629 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5630 
5631 	if (cfs_b->quota == RUNTIME_INF)
5632 		amount = min_amount;
5633 	else {
5634 		start_cfs_bandwidth(cfs_b);
5635 
5636 		if (cfs_b->runtime > 0) {
5637 			amount = min(cfs_b->runtime, min_amount);
5638 			cfs_b->runtime -= amount;
5639 			cfs_b->idle = 0;
5640 		}
5641 	}
5642 
5643 	cfs_rq->runtime_remaining += amount;
5644 
5645 	return cfs_rq->runtime_remaining > 0;
5646 }
5647 
5648 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5649 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5650 {
5651 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5652 	int ret;
5653 
5654 	raw_spin_lock(&cfs_b->lock);
5655 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5656 	raw_spin_unlock(&cfs_b->lock);
5657 
5658 	return ret;
5659 }
5660 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5661 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5662 {
5663 	/* dock delta_exec before expiring quota (as it could span periods) */
5664 	cfs_rq->runtime_remaining -= delta_exec;
5665 
5666 	if (likely(cfs_rq->runtime_remaining > 0))
5667 		return;
5668 
5669 	if (cfs_rq->throttled)
5670 		return;
5671 	/*
5672 	 * if we're unable to extend our runtime we resched so that the active
5673 	 * hierarchy can be throttled
5674 	 */
5675 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5676 		resched_curr(rq_of(cfs_rq));
5677 }
5678 
5679 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5680 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5681 {
5682 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5683 		return;
5684 
5685 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5686 }
5687 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5688 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5689 {
5690 	return cfs_bandwidth_used() && cfs_rq->throttled;
5691 }
5692 
5693 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5694 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5695 {
5696 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5697 }
5698 
5699 /*
5700  * Ensure that neither of the group entities corresponding to src_cpu or
5701  * dest_cpu are members of a throttled hierarchy when performing group
5702  * load-balance operations.
5703  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5704 static inline int throttled_lb_pair(struct task_group *tg,
5705 				    int src_cpu, int dest_cpu)
5706 {
5707 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5708 
5709 	src_cfs_rq = tg->cfs_rq[src_cpu];
5710 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5711 
5712 	return throttled_hierarchy(src_cfs_rq) ||
5713 	       throttled_hierarchy(dest_cfs_rq);
5714 }
5715 
tg_unthrottle_up(struct task_group * tg,void * data)5716 static int tg_unthrottle_up(struct task_group *tg, void *data)
5717 {
5718 	struct rq *rq = data;
5719 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5720 
5721 	cfs_rq->throttle_count--;
5722 	if (!cfs_rq->throttle_count) {
5723 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5724 					     cfs_rq->throttled_clock_pelt;
5725 
5726 		/* Add cfs_rq with load or one or more already running entities to the list */
5727 		if (!cfs_rq_is_decayed(cfs_rq))
5728 			list_add_leaf_cfs_rq(cfs_rq);
5729 
5730 		if (cfs_rq->throttled_clock_self) {
5731 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5732 
5733 			cfs_rq->throttled_clock_self = 0;
5734 
5735 			if (SCHED_WARN_ON((s64)delta < 0))
5736 				delta = 0;
5737 
5738 			cfs_rq->throttled_clock_self_time += delta;
5739 		}
5740 	}
5741 
5742 	return 0;
5743 }
5744 
tg_throttle_down(struct task_group * tg,void * data)5745 static int tg_throttle_down(struct task_group *tg, void *data)
5746 {
5747 	struct rq *rq = data;
5748 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5749 
5750 	/* group is entering throttled state, stop time */
5751 	if (!cfs_rq->throttle_count) {
5752 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5753 		list_del_leaf_cfs_rq(cfs_rq);
5754 
5755 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5756 		if (cfs_rq->nr_running)
5757 			cfs_rq->throttled_clock_self = rq_clock(rq);
5758 	}
5759 	cfs_rq->throttle_count++;
5760 
5761 	return 0;
5762 }
5763 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5764 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5765 {
5766 	struct rq *rq = rq_of(cfs_rq);
5767 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5768 	struct sched_entity *se;
5769 	long task_delta, idle_task_delta, dequeue = 1;
5770 
5771 	raw_spin_lock(&cfs_b->lock);
5772 	/* This will start the period timer if necessary */
5773 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5774 		/*
5775 		 * We have raced with bandwidth becoming available, and if we
5776 		 * actually throttled the timer might not unthrottle us for an
5777 		 * entire period. We additionally needed to make sure that any
5778 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5779 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5780 		 * for 1ns of runtime rather than just check cfs_b.
5781 		 */
5782 		dequeue = 0;
5783 	} else {
5784 		list_add_tail_rcu(&cfs_rq->throttled_list,
5785 				  &cfs_b->throttled_cfs_rq);
5786 	}
5787 	raw_spin_unlock(&cfs_b->lock);
5788 
5789 	if (!dequeue)
5790 		return false;  /* Throttle no longer required. */
5791 
5792 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5793 
5794 	/* freeze hierarchy runnable averages while throttled */
5795 	rcu_read_lock();
5796 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5797 	rcu_read_unlock();
5798 
5799 	task_delta = cfs_rq->h_nr_running;
5800 	idle_task_delta = cfs_rq->idle_h_nr_running;
5801 	for_each_sched_entity(se) {
5802 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5803 		/* throttled entity or throttle-on-deactivate */
5804 		if (!se->on_rq)
5805 			goto done;
5806 
5807 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5808 
5809 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5810 			idle_task_delta = cfs_rq->h_nr_running;
5811 
5812 		qcfs_rq->h_nr_running -= task_delta;
5813 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5814 
5815 		if (qcfs_rq->load.weight) {
5816 			/* Avoid re-evaluating load for this entity: */
5817 			se = parent_entity(se);
5818 			break;
5819 		}
5820 	}
5821 
5822 	for_each_sched_entity(se) {
5823 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5824 		/* throttled entity or throttle-on-deactivate */
5825 		if (!se->on_rq)
5826 			goto done;
5827 
5828 		update_load_avg(qcfs_rq, se, 0);
5829 		se_update_runnable(se);
5830 
5831 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5832 			idle_task_delta = cfs_rq->h_nr_running;
5833 
5834 		qcfs_rq->h_nr_running -= task_delta;
5835 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5836 	}
5837 
5838 	/* At this point se is NULL and we are at root level*/
5839 	sub_nr_running(rq, task_delta);
5840 
5841 done:
5842 	/*
5843 	 * Note: distribution will already see us throttled via the
5844 	 * throttled-list.  rq->lock protects completion.
5845 	 */
5846 	cfs_rq->throttled = 1;
5847 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5848 	if (cfs_rq->nr_running)
5849 		cfs_rq->throttled_clock = rq_clock(rq);
5850 	return true;
5851 }
5852 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5853 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5854 {
5855 	struct rq *rq = rq_of(cfs_rq);
5856 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5857 	struct sched_entity *se;
5858 	long task_delta, idle_task_delta;
5859 
5860 	se = cfs_rq->tg->se[cpu_of(rq)];
5861 
5862 	cfs_rq->throttled = 0;
5863 
5864 	update_rq_clock(rq);
5865 
5866 	raw_spin_lock(&cfs_b->lock);
5867 	if (cfs_rq->throttled_clock) {
5868 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5869 		cfs_rq->throttled_clock = 0;
5870 	}
5871 	list_del_rcu(&cfs_rq->throttled_list);
5872 	raw_spin_unlock(&cfs_b->lock);
5873 
5874 	/* update hierarchical throttle state */
5875 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5876 
5877 	if (!cfs_rq->load.weight) {
5878 		if (!cfs_rq->on_list)
5879 			return;
5880 		/*
5881 		 * Nothing to run but something to decay (on_list)?
5882 		 * Complete the branch.
5883 		 */
5884 		for_each_sched_entity(se) {
5885 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5886 				break;
5887 		}
5888 		goto unthrottle_throttle;
5889 	}
5890 
5891 	task_delta = cfs_rq->h_nr_running;
5892 	idle_task_delta = cfs_rq->idle_h_nr_running;
5893 	for_each_sched_entity(se) {
5894 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5895 
5896 		if (se->on_rq)
5897 			break;
5898 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5899 
5900 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5901 			idle_task_delta = cfs_rq->h_nr_running;
5902 
5903 		qcfs_rq->h_nr_running += task_delta;
5904 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5905 
5906 		/* end evaluation on encountering a throttled cfs_rq */
5907 		if (cfs_rq_throttled(qcfs_rq))
5908 			goto unthrottle_throttle;
5909 	}
5910 
5911 	for_each_sched_entity(se) {
5912 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5913 
5914 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5915 		se_update_runnable(se);
5916 
5917 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5918 			idle_task_delta = cfs_rq->h_nr_running;
5919 
5920 		qcfs_rq->h_nr_running += task_delta;
5921 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5922 
5923 		/* end evaluation on encountering a throttled cfs_rq */
5924 		if (cfs_rq_throttled(qcfs_rq))
5925 			goto unthrottle_throttle;
5926 	}
5927 
5928 	/* At this point se is NULL and we are at root level*/
5929 	add_nr_running(rq, task_delta);
5930 
5931 unthrottle_throttle:
5932 	assert_list_leaf_cfs_rq(rq);
5933 
5934 	/* Determine whether we need to wake up potentially idle CPU: */
5935 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5936 		resched_curr(rq);
5937 }
5938 
5939 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5940 static void __cfsb_csd_unthrottle(void *arg)
5941 {
5942 	struct cfs_rq *cursor, *tmp;
5943 	struct rq *rq = arg;
5944 	struct rq_flags rf;
5945 
5946 	rq_lock(rq, &rf);
5947 
5948 	/*
5949 	 * Iterating over the list can trigger several call to
5950 	 * update_rq_clock() in unthrottle_cfs_rq().
5951 	 * Do it once and skip the potential next ones.
5952 	 */
5953 	update_rq_clock(rq);
5954 	rq_clock_start_loop_update(rq);
5955 
5956 	/*
5957 	 * Since we hold rq lock we're safe from concurrent manipulation of
5958 	 * the CSD list. However, this RCU critical section annotates the
5959 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5960 	 * race with group being freed in the window between removing it
5961 	 * from the list and advancing to the next entry in the list.
5962 	 */
5963 	rcu_read_lock();
5964 
5965 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5966 				 throttled_csd_list) {
5967 		list_del_init(&cursor->throttled_csd_list);
5968 
5969 		if (cfs_rq_throttled(cursor))
5970 			unthrottle_cfs_rq(cursor);
5971 	}
5972 
5973 	rcu_read_unlock();
5974 
5975 	rq_clock_stop_loop_update(rq);
5976 	rq_unlock(rq, &rf);
5977 }
5978 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980 {
5981 	struct rq *rq = rq_of(cfs_rq);
5982 	bool first;
5983 
5984 	if (rq == this_rq()) {
5985 		unthrottle_cfs_rq(cfs_rq);
5986 		return;
5987 	}
5988 
5989 	/* Already enqueued */
5990 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5991 		return;
5992 
5993 	first = list_empty(&rq->cfsb_csd_list);
5994 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5995 	if (first)
5996 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5997 }
5998 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5999 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6000 {
6001 	unthrottle_cfs_rq(cfs_rq);
6002 }
6003 #endif
6004 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6005 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6006 {
6007 	lockdep_assert_rq_held(rq_of(cfs_rq));
6008 
6009 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6010 	    cfs_rq->runtime_remaining <= 0))
6011 		return;
6012 
6013 	__unthrottle_cfs_rq_async(cfs_rq);
6014 }
6015 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6016 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6017 {
6018 	struct cfs_rq *local_unthrottle = NULL;
6019 	int this_cpu = smp_processor_id();
6020 	u64 runtime, remaining = 1;
6021 	bool throttled = false;
6022 	struct cfs_rq *cfs_rq;
6023 	struct rq_flags rf;
6024 	struct rq *rq;
6025 
6026 	rcu_read_lock();
6027 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6028 				throttled_list) {
6029 		rq = rq_of(cfs_rq);
6030 
6031 		if (!remaining) {
6032 			throttled = true;
6033 			break;
6034 		}
6035 
6036 		rq_lock_irqsave(rq, &rf);
6037 		if (!cfs_rq_throttled(cfs_rq))
6038 			goto next;
6039 
6040 #ifdef CONFIG_SMP
6041 		/* Already queued for async unthrottle */
6042 		if (!list_empty(&cfs_rq->throttled_csd_list))
6043 			goto next;
6044 #endif
6045 
6046 		/* By the above checks, this should never be true */
6047 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6048 
6049 		raw_spin_lock(&cfs_b->lock);
6050 		runtime = -cfs_rq->runtime_remaining + 1;
6051 		if (runtime > cfs_b->runtime)
6052 			runtime = cfs_b->runtime;
6053 		cfs_b->runtime -= runtime;
6054 		remaining = cfs_b->runtime;
6055 		raw_spin_unlock(&cfs_b->lock);
6056 
6057 		cfs_rq->runtime_remaining += runtime;
6058 
6059 		/* we check whether we're throttled above */
6060 		if (cfs_rq->runtime_remaining > 0) {
6061 			if (cpu_of(rq) != this_cpu ||
6062 			    SCHED_WARN_ON(local_unthrottle))
6063 				unthrottle_cfs_rq_async(cfs_rq);
6064 			else
6065 				local_unthrottle = cfs_rq;
6066 		} else {
6067 			throttled = true;
6068 		}
6069 
6070 next:
6071 		rq_unlock_irqrestore(rq, &rf);
6072 	}
6073 	rcu_read_unlock();
6074 
6075 	if (local_unthrottle) {
6076 		rq = cpu_rq(this_cpu);
6077 		rq_lock_irqsave(rq, &rf);
6078 		if (cfs_rq_throttled(local_unthrottle))
6079 			unthrottle_cfs_rq(local_unthrottle);
6080 		rq_unlock_irqrestore(rq, &rf);
6081 	}
6082 
6083 	return throttled;
6084 }
6085 
6086 /*
6087  * Responsible for refilling a task_group's bandwidth and unthrottling its
6088  * cfs_rqs as appropriate. If there has been no activity within the last
6089  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6090  * used to track this state.
6091  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6092 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6093 {
6094 	int throttled;
6095 
6096 	/* no need to continue the timer with no bandwidth constraint */
6097 	if (cfs_b->quota == RUNTIME_INF)
6098 		goto out_deactivate;
6099 
6100 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6101 	cfs_b->nr_periods += overrun;
6102 
6103 	/* Refill extra burst quota even if cfs_b->idle */
6104 	__refill_cfs_bandwidth_runtime(cfs_b);
6105 
6106 	/*
6107 	 * idle depends on !throttled (for the case of a large deficit), and if
6108 	 * we're going inactive then everything else can be deferred
6109 	 */
6110 	if (cfs_b->idle && !throttled)
6111 		goto out_deactivate;
6112 
6113 	if (!throttled) {
6114 		/* mark as potentially idle for the upcoming period */
6115 		cfs_b->idle = 1;
6116 		return 0;
6117 	}
6118 
6119 	/* account preceding periods in which throttling occurred */
6120 	cfs_b->nr_throttled += overrun;
6121 
6122 	/*
6123 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6124 	 */
6125 	while (throttled && cfs_b->runtime > 0) {
6126 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6127 		/* we can't nest cfs_b->lock while distributing bandwidth */
6128 		throttled = distribute_cfs_runtime(cfs_b);
6129 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6130 	}
6131 
6132 	/*
6133 	 * While we are ensured activity in the period following an
6134 	 * unthrottle, this also covers the case in which the new bandwidth is
6135 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6136 	 * timer to remain active while there are any throttled entities.)
6137 	 */
6138 	cfs_b->idle = 0;
6139 
6140 	return 0;
6141 
6142 out_deactivate:
6143 	return 1;
6144 }
6145 
6146 /* a cfs_rq won't donate quota below this amount */
6147 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6148 /* minimum remaining period time to redistribute slack quota */
6149 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6150 /* how long we wait to gather additional slack before distributing */
6151 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6152 
6153 /*
6154  * Are we near the end of the current quota period?
6155  *
6156  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6157  * hrtimer base being cleared by hrtimer_start. In the case of
6158  * migrate_hrtimers, base is never cleared, so we are fine.
6159  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6160 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6161 {
6162 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6163 	s64 remaining;
6164 
6165 	/* if the call-back is running a quota refresh is already occurring */
6166 	if (hrtimer_callback_running(refresh_timer))
6167 		return 1;
6168 
6169 	/* is a quota refresh about to occur? */
6170 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6171 	if (remaining < (s64)min_expire)
6172 		return 1;
6173 
6174 	return 0;
6175 }
6176 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6177 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6178 {
6179 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6180 
6181 	/* if there's a quota refresh soon don't bother with slack */
6182 	if (runtime_refresh_within(cfs_b, min_left))
6183 		return;
6184 
6185 	/* don't push forwards an existing deferred unthrottle */
6186 	if (cfs_b->slack_started)
6187 		return;
6188 	cfs_b->slack_started = true;
6189 
6190 	hrtimer_start(&cfs_b->slack_timer,
6191 			ns_to_ktime(cfs_bandwidth_slack_period),
6192 			HRTIMER_MODE_REL);
6193 }
6194 
6195 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6196 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6197 {
6198 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6199 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6200 
6201 	if (slack_runtime <= 0)
6202 		return;
6203 
6204 	raw_spin_lock(&cfs_b->lock);
6205 	if (cfs_b->quota != RUNTIME_INF) {
6206 		cfs_b->runtime += slack_runtime;
6207 
6208 		/* we are under rq->lock, defer unthrottling using a timer */
6209 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6210 		    !list_empty(&cfs_b->throttled_cfs_rq))
6211 			start_cfs_slack_bandwidth(cfs_b);
6212 	}
6213 	raw_spin_unlock(&cfs_b->lock);
6214 
6215 	/* even if it's not valid for return we don't want to try again */
6216 	cfs_rq->runtime_remaining -= slack_runtime;
6217 }
6218 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6219 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6220 {
6221 	if (!cfs_bandwidth_used())
6222 		return;
6223 
6224 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6225 		return;
6226 
6227 	__return_cfs_rq_runtime(cfs_rq);
6228 }
6229 
6230 /*
6231  * This is done with a timer (instead of inline with bandwidth return) since
6232  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6233  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6234 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6235 {
6236 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6237 	unsigned long flags;
6238 
6239 	/* confirm we're still not at a refresh boundary */
6240 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6241 	cfs_b->slack_started = false;
6242 
6243 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6244 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6245 		return;
6246 	}
6247 
6248 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6249 		runtime = cfs_b->runtime;
6250 
6251 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6252 
6253 	if (!runtime)
6254 		return;
6255 
6256 	distribute_cfs_runtime(cfs_b);
6257 }
6258 
6259 /*
6260  * When a group wakes up we want to make sure that its quota is not already
6261  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6262  * runtime as update_curr() throttling can not trigger until it's on-rq.
6263  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6264 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6265 {
6266 	if (!cfs_bandwidth_used())
6267 		return;
6268 
6269 	/* an active group must be handled by the update_curr()->put() path */
6270 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6271 		return;
6272 
6273 	/* ensure the group is not already throttled */
6274 	if (cfs_rq_throttled(cfs_rq))
6275 		return;
6276 
6277 	/* update runtime allocation */
6278 	account_cfs_rq_runtime(cfs_rq, 0);
6279 	if (cfs_rq->runtime_remaining <= 0)
6280 		throttle_cfs_rq(cfs_rq);
6281 }
6282 
sync_throttle(struct task_group * tg,int cpu)6283 static void sync_throttle(struct task_group *tg, int cpu)
6284 {
6285 	struct cfs_rq *pcfs_rq, *cfs_rq;
6286 
6287 	if (!cfs_bandwidth_used())
6288 		return;
6289 
6290 	if (!tg->parent)
6291 		return;
6292 
6293 	cfs_rq = tg->cfs_rq[cpu];
6294 	pcfs_rq = tg->parent->cfs_rq[cpu];
6295 
6296 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6297 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6298 }
6299 
6300 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6301 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6302 {
6303 	if (!cfs_bandwidth_used())
6304 		return false;
6305 
6306 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6307 		return false;
6308 
6309 	/*
6310 	 * it's possible for a throttled entity to be forced into a running
6311 	 * state (e.g. set_curr_task), in this case we're finished.
6312 	 */
6313 	if (cfs_rq_throttled(cfs_rq))
6314 		return true;
6315 
6316 	return throttle_cfs_rq(cfs_rq);
6317 }
6318 
sched_cfs_slack_timer(struct hrtimer * timer)6319 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6320 {
6321 	struct cfs_bandwidth *cfs_b =
6322 		container_of(timer, struct cfs_bandwidth, slack_timer);
6323 
6324 	do_sched_cfs_slack_timer(cfs_b);
6325 
6326 	return HRTIMER_NORESTART;
6327 }
6328 
6329 extern const u64 max_cfs_quota_period;
6330 
sched_cfs_period_timer(struct hrtimer * timer)6331 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6332 {
6333 	struct cfs_bandwidth *cfs_b =
6334 		container_of(timer, struct cfs_bandwidth, period_timer);
6335 	unsigned long flags;
6336 	int overrun;
6337 	int idle = 0;
6338 	int count = 0;
6339 
6340 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6341 	for (;;) {
6342 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6343 		if (!overrun)
6344 			break;
6345 
6346 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6347 
6348 		if (++count > 3) {
6349 			u64 new, old = ktime_to_ns(cfs_b->period);
6350 
6351 			/*
6352 			 * Grow period by a factor of 2 to avoid losing precision.
6353 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6354 			 * to fail.
6355 			 */
6356 			new = old * 2;
6357 			if (new < max_cfs_quota_period) {
6358 				cfs_b->period = ns_to_ktime(new);
6359 				cfs_b->quota *= 2;
6360 				cfs_b->burst *= 2;
6361 
6362 				pr_warn_ratelimited(
6363 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6364 					smp_processor_id(),
6365 					div_u64(new, NSEC_PER_USEC),
6366 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6367 			} else {
6368 				pr_warn_ratelimited(
6369 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6370 					smp_processor_id(),
6371 					div_u64(old, NSEC_PER_USEC),
6372 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6373 			}
6374 
6375 			/* reset count so we don't come right back in here */
6376 			count = 0;
6377 		}
6378 	}
6379 	if (idle)
6380 		cfs_b->period_active = 0;
6381 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6382 
6383 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6384 }
6385 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6386 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6387 {
6388 	raw_spin_lock_init(&cfs_b->lock);
6389 	cfs_b->runtime = 0;
6390 	cfs_b->quota = RUNTIME_INF;
6391 	cfs_b->period = ns_to_ktime(default_cfs_period());
6392 	cfs_b->burst = 0;
6393 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6394 
6395 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6396 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6397 	cfs_b->period_timer.function = sched_cfs_period_timer;
6398 
6399 	/* Add a random offset so that timers interleave */
6400 	hrtimer_set_expires(&cfs_b->period_timer,
6401 			    get_random_u32_below(cfs_b->period));
6402 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6403 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6404 	cfs_b->slack_started = false;
6405 }
6406 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6407 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6408 {
6409 	cfs_rq->runtime_enabled = 0;
6410 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6411 #ifdef CONFIG_SMP
6412 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6413 #endif
6414 }
6415 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6416 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6417 {
6418 	lockdep_assert_held(&cfs_b->lock);
6419 
6420 	if (cfs_b->period_active)
6421 		return;
6422 
6423 	cfs_b->period_active = 1;
6424 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6425 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6426 }
6427 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6428 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6429 {
6430 	int __maybe_unused i;
6431 
6432 	/* init_cfs_bandwidth() was not called */
6433 	if (!cfs_b->throttled_cfs_rq.next)
6434 		return;
6435 
6436 	hrtimer_cancel(&cfs_b->period_timer);
6437 	hrtimer_cancel(&cfs_b->slack_timer);
6438 
6439 	/*
6440 	 * It is possible that we still have some cfs_rq's pending on a CSD
6441 	 * list, though this race is very rare. In order for this to occur, we
6442 	 * must have raced with the last task leaving the group while there
6443 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6444 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6445 	 * we can simply flush all pending CSD work inline here. We're
6446 	 * guaranteed at this point that no additional cfs_rq of this group can
6447 	 * join a CSD list.
6448 	 */
6449 #ifdef CONFIG_SMP
6450 	for_each_possible_cpu(i) {
6451 		struct rq *rq = cpu_rq(i);
6452 		unsigned long flags;
6453 
6454 		if (list_empty(&rq->cfsb_csd_list))
6455 			continue;
6456 
6457 		local_irq_save(flags);
6458 		__cfsb_csd_unthrottle(rq);
6459 		local_irq_restore(flags);
6460 	}
6461 #endif
6462 }
6463 
6464 /*
6465  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6466  *
6467  * The race is harmless, since modifying bandwidth settings of unhooked group
6468  * bits doesn't do much.
6469  */
6470 
6471 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6472 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6473 {
6474 	struct task_group *tg;
6475 
6476 	lockdep_assert_rq_held(rq);
6477 
6478 	rcu_read_lock();
6479 	list_for_each_entry_rcu(tg, &task_groups, list) {
6480 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6481 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6482 
6483 		raw_spin_lock(&cfs_b->lock);
6484 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6485 		raw_spin_unlock(&cfs_b->lock);
6486 	}
6487 	rcu_read_unlock();
6488 }
6489 
6490 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6491 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6492 {
6493 	struct task_group *tg;
6494 
6495 	lockdep_assert_rq_held(rq);
6496 
6497 	/*
6498 	 * The rq clock has already been updated in the
6499 	 * set_rq_offline(), so we should skip updating
6500 	 * the rq clock again in unthrottle_cfs_rq().
6501 	 */
6502 	rq_clock_start_loop_update(rq);
6503 
6504 	rcu_read_lock();
6505 	list_for_each_entry_rcu(tg, &task_groups, list) {
6506 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6507 
6508 		if (!cfs_rq->runtime_enabled)
6509 			continue;
6510 
6511 		/*
6512 		 * clock_task is not advancing so we just need to make sure
6513 		 * there's some valid quota amount
6514 		 */
6515 		cfs_rq->runtime_remaining = 1;
6516 		/*
6517 		 * Offline rq is schedulable till CPU is completely disabled
6518 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6519 		 */
6520 		cfs_rq->runtime_enabled = 0;
6521 
6522 		if (cfs_rq_throttled(cfs_rq))
6523 			unthrottle_cfs_rq(cfs_rq);
6524 	}
6525 	rcu_read_unlock();
6526 
6527 	rq_clock_stop_loop_update(rq);
6528 }
6529 
cfs_task_bw_constrained(struct task_struct * p)6530 bool cfs_task_bw_constrained(struct task_struct *p)
6531 {
6532 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6533 
6534 	if (!cfs_bandwidth_used())
6535 		return false;
6536 
6537 	if (cfs_rq->runtime_enabled ||
6538 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6539 		return true;
6540 
6541 	return false;
6542 }
6543 
6544 #ifdef CONFIG_NO_HZ_FULL
6545 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6546 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6547 {
6548 	int cpu = cpu_of(rq);
6549 
6550 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6551 		return;
6552 
6553 	if (!tick_nohz_full_cpu(cpu))
6554 		return;
6555 
6556 	if (rq->nr_running != 1)
6557 		return;
6558 
6559 	/*
6560 	 *  We know there is only one task runnable and we've just picked it. The
6561 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6562 	 *  be otherwise able to stop the tick. Just need to check if we are using
6563 	 *  bandwidth control.
6564 	 */
6565 	if (cfs_task_bw_constrained(p))
6566 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6567 }
6568 #endif
6569 
6570 #else /* CONFIG_CFS_BANDWIDTH */
6571 
cfs_bandwidth_used(void)6572 static inline bool cfs_bandwidth_used(void)
6573 {
6574 	return false;
6575 }
6576 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6577 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6578 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6579 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6580 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6581 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6582 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6583 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6584 {
6585 	return 0;
6586 }
6587 
throttled_hierarchy(struct cfs_rq * cfs_rq)6588 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6589 {
6590 	return 0;
6591 }
6592 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6593 static inline int throttled_lb_pair(struct task_group *tg,
6594 				    int src_cpu, int dest_cpu)
6595 {
6596 	return 0;
6597 }
6598 
6599 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6600 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6601 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6602 #endif
6603 
tg_cfs_bandwidth(struct task_group * tg)6604 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6605 {
6606 	return NULL;
6607 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6608 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6609 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6610 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6611 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6612 bool cfs_task_bw_constrained(struct task_struct *p)
6613 {
6614 	return false;
6615 }
6616 #endif
6617 #endif /* CONFIG_CFS_BANDWIDTH */
6618 
6619 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6620 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6621 #endif
6622 
6623 /**************************************************
6624  * CFS operations on tasks:
6625  */
6626 
6627 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6628 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6629 {
6630 	struct sched_entity *se = &p->se;
6631 
6632 	SCHED_WARN_ON(task_rq(p) != rq);
6633 
6634 	if (rq->cfs.h_nr_running > 1) {
6635 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6636 		u64 slice = se->slice;
6637 		s64 delta = slice - ran;
6638 
6639 		if (delta < 0) {
6640 			if (task_current(rq, p))
6641 				resched_curr(rq);
6642 			return;
6643 		}
6644 		hrtick_start(rq, delta);
6645 	}
6646 }
6647 
6648 /*
6649  * called from enqueue/dequeue and updates the hrtick when the
6650  * current task is from our class and nr_running is low enough
6651  * to matter.
6652  */
hrtick_update(struct rq * rq)6653 static void hrtick_update(struct rq *rq)
6654 {
6655 	struct task_struct *curr = rq->curr;
6656 
6657 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6658 		return;
6659 
6660 	hrtick_start_fair(rq, curr);
6661 }
6662 #else /* !CONFIG_SCHED_HRTICK */
6663 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6664 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6665 {
6666 }
6667 
hrtick_update(struct rq * rq)6668 static inline void hrtick_update(struct rq *rq)
6669 {
6670 }
6671 #endif
6672 
6673 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6674 static inline bool cpu_overutilized(int cpu)
6675 {
6676 	unsigned long  rq_util_min, rq_util_max;
6677 
6678 	if (!sched_energy_enabled())
6679 		return false;
6680 
6681 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6682 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6683 
6684 	/* Return true only if the utilization doesn't fit CPU's capacity */
6685 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6686 }
6687 
set_rd_overutilized_status(struct root_domain * rd,unsigned int status)6688 static inline void set_rd_overutilized_status(struct root_domain *rd,
6689 					      unsigned int status)
6690 {
6691 	if (!sched_energy_enabled())
6692 		return;
6693 
6694 	WRITE_ONCE(rd->overutilized, status);
6695 	trace_sched_overutilized_tp(rd, !!status);
6696 }
6697 
check_update_overutilized_status(struct rq * rq)6698 static inline void check_update_overutilized_status(struct rq *rq)
6699 {
6700 	/*
6701 	 * overutilized field is used for load balancing decisions only
6702 	 * if energy aware scheduler is being used
6703 	 */
6704 	if (!sched_energy_enabled())
6705 		return;
6706 
6707 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6708 		set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6709 }
6710 #else
check_update_overutilized_status(struct rq * rq)6711 static inline void check_update_overutilized_status(struct rq *rq) { }
6712 #endif
6713 
6714 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6715 static int sched_idle_rq(struct rq *rq)
6716 {
6717 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6718 			rq->nr_running);
6719 }
6720 
6721 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6722 static int sched_idle_cpu(int cpu)
6723 {
6724 	return sched_idle_rq(cpu_rq(cpu));
6725 }
6726 #endif
6727 
6728 /*
6729  * The enqueue_task method is called before nr_running is
6730  * increased. Here we update the fair scheduling stats and
6731  * then put the task into the rbtree:
6732  */
6733 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6734 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6735 {
6736 	struct cfs_rq *cfs_rq;
6737 	struct sched_entity *se = &p->se;
6738 	int idle_h_nr_running = task_has_idle_policy(p);
6739 	int task_new = !(flags & ENQUEUE_WAKEUP);
6740 
6741 	/*
6742 	 * The code below (indirectly) updates schedutil which looks at
6743 	 * the cfs_rq utilization to select a frequency.
6744 	 * Let's add the task's estimated utilization to the cfs_rq's
6745 	 * estimated utilization, before we update schedutil.
6746 	 */
6747 	util_est_enqueue(&rq->cfs, p);
6748 
6749 	/*
6750 	 * If in_iowait is set, the code below may not trigger any cpufreq
6751 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6752 	 * passed.
6753 	 */
6754 	if (p->in_iowait)
6755 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6756 
6757 	for_each_sched_entity(se) {
6758 		if (se->on_rq)
6759 			break;
6760 		cfs_rq = cfs_rq_of(se);
6761 		enqueue_entity(cfs_rq, se, flags);
6762 
6763 		cfs_rq->h_nr_running++;
6764 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6765 
6766 		if (cfs_rq_is_idle(cfs_rq))
6767 			idle_h_nr_running = 1;
6768 
6769 		/* end evaluation on encountering a throttled cfs_rq */
6770 		if (cfs_rq_throttled(cfs_rq))
6771 			goto enqueue_throttle;
6772 
6773 		flags = ENQUEUE_WAKEUP;
6774 	}
6775 
6776 	for_each_sched_entity(se) {
6777 		cfs_rq = cfs_rq_of(se);
6778 
6779 		update_load_avg(cfs_rq, se, UPDATE_TG);
6780 		se_update_runnable(se);
6781 		update_cfs_group(se);
6782 
6783 		cfs_rq->h_nr_running++;
6784 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6785 
6786 		if (cfs_rq_is_idle(cfs_rq))
6787 			idle_h_nr_running = 1;
6788 
6789 		/* end evaluation on encountering a throttled cfs_rq */
6790 		if (cfs_rq_throttled(cfs_rq))
6791 			goto enqueue_throttle;
6792 	}
6793 
6794 	/* At this point se is NULL and we are at root level*/
6795 	add_nr_running(rq, 1);
6796 
6797 	/*
6798 	 * Since new tasks are assigned an initial util_avg equal to
6799 	 * half of the spare capacity of their CPU, tiny tasks have the
6800 	 * ability to cross the overutilized threshold, which will
6801 	 * result in the load balancer ruining all the task placement
6802 	 * done by EAS. As a way to mitigate that effect, do not account
6803 	 * for the first enqueue operation of new tasks during the
6804 	 * overutilized flag detection.
6805 	 *
6806 	 * A better way of solving this problem would be to wait for
6807 	 * the PELT signals of tasks to converge before taking them
6808 	 * into account, but that is not straightforward to implement,
6809 	 * and the following generally works well enough in practice.
6810 	 */
6811 	if (!task_new)
6812 		check_update_overutilized_status(rq);
6813 
6814 enqueue_throttle:
6815 	assert_list_leaf_cfs_rq(rq);
6816 
6817 	hrtick_update(rq);
6818 }
6819 
6820 static void set_next_buddy(struct sched_entity *se);
6821 
6822 /*
6823  * The dequeue_task method is called before nr_running is
6824  * decreased. We remove the task from the rbtree and
6825  * update the fair scheduling stats:
6826  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6827 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6828 {
6829 	struct cfs_rq *cfs_rq;
6830 	struct sched_entity *se = &p->se;
6831 	int task_sleep = flags & DEQUEUE_SLEEP;
6832 	int idle_h_nr_running = task_has_idle_policy(p);
6833 	bool was_sched_idle = sched_idle_rq(rq);
6834 
6835 	util_est_dequeue(&rq->cfs, p);
6836 
6837 	for_each_sched_entity(se) {
6838 		cfs_rq = cfs_rq_of(se);
6839 		dequeue_entity(cfs_rq, se, flags);
6840 
6841 		cfs_rq->h_nr_running--;
6842 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6843 
6844 		if (cfs_rq_is_idle(cfs_rq))
6845 			idle_h_nr_running = 1;
6846 
6847 		/* end evaluation on encountering a throttled cfs_rq */
6848 		if (cfs_rq_throttled(cfs_rq))
6849 			goto dequeue_throttle;
6850 
6851 		/* Don't dequeue parent if it has other entities besides us */
6852 		if (cfs_rq->load.weight) {
6853 			/* Avoid re-evaluating load for this entity: */
6854 			se = parent_entity(se);
6855 			/*
6856 			 * Bias pick_next to pick a task from this cfs_rq, as
6857 			 * p is sleeping when it is within its sched_slice.
6858 			 */
6859 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6860 				set_next_buddy(se);
6861 			break;
6862 		}
6863 		flags |= DEQUEUE_SLEEP;
6864 	}
6865 
6866 	for_each_sched_entity(se) {
6867 		cfs_rq = cfs_rq_of(se);
6868 
6869 		update_load_avg(cfs_rq, se, UPDATE_TG);
6870 		se_update_runnable(se);
6871 		update_cfs_group(se);
6872 
6873 		cfs_rq->h_nr_running--;
6874 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6875 
6876 		if (cfs_rq_is_idle(cfs_rq))
6877 			idle_h_nr_running = 1;
6878 
6879 		/* end evaluation on encountering a throttled cfs_rq */
6880 		if (cfs_rq_throttled(cfs_rq))
6881 			goto dequeue_throttle;
6882 
6883 	}
6884 
6885 	/* At this point se is NULL and we are at root level*/
6886 	sub_nr_running(rq, 1);
6887 
6888 	/* balance early to pull high priority tasks */
6889 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6890 		rq->next_balance = jiffies;
6891 
6892 dequeue_throttle:
6893 	util_est_update(&rq->cfs, p, task_sleep);
6894 	hrtick_update(rq);
6895 }
6896 
6897 #ifdef CONFIG_SMP
6898 
6899 /* Working cpumask for: load_balance, load_balance_newidle. */
6900 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6901 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6902 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6903 
6904 #ifdef CONFIG_NO_HZ_COMMON
6905 
6906 static struct {
6907 	cpumask_var_t idle_cpus_mask;
6908 	atomic_t nr_cpus;
6909 	int has_blocked;		/* Idle CPUS has blocked load */
6910 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6911 	unsigned long next_balance;     /* in jiffy units */
6912 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6913 } nohz ____cacheline_aligned;
6914 
6915 #endif /* CONFIG_NO_HZ_COMMON */
6916 
cpu_load(struct rq * rq)6917 static unsigned long cpu_load(struct rq *rq)
6918 {
6919 	return cfs_rq_load_avg(&rq->cfs);
6920 }
6921 
6922 /*
6923  * cpu_load_without - compute CPU load without any contributions from *p
6924  * @cpu: the CPU which load is requested
6925  * @p: the task which load should be discounted
6926  *
6927  * The load of a CPU is defined by the load of tasks currently enqueued on that
6928  * CPU as well as tasks which are currently sleeping after an execution on that
6929  * CPU.
6930  *
6931  * This method returns the load of the specified CPU by discounting the load of
6932  * the specified task, whenever the task is currently contributing to the CPU
6933  * load.
6934  */
cpu_load_without(struct rq * rq,struct task_struct * p)6935 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6936 {
6937 	struct cfs_rq *cfs_rq;
6938 	unsigned int load;
6939 
6940 	/* Task has no contribution or is new */
6941 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6942 		return cpu_load(rq);
6943 
6944 	cfs_rq = &rq->cfs;
6945 	load = READ_ONCE(cfs_rq->avg.load_avg);
6946 
6947 	/* Discount task's util from CPU's util */
6948 	lsub_positive(&load, task_h_load(p));
6949 
6950 	return load;
6951 }
6952 
cpu_runnable(struct rq * rq)6953 static unsigned long cpu_runnable(struct rq *rq)
6954 {
6955 	return cfs_rq_runnable_avg(&rq->cfs);
6956 }
6957 
cpu_runnable_without(struct rq * rq,struct task_struct * p)6958 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6959 {
6960 	struct cfs_rq *cfs_rq;
6961 	unsigned int runnable;
6962 
6963 	/* Task has no contribution or is new */
6964 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6965 		return cpu_runnable(rq);
6966 
6967 	cfs_rq = &rq->cfs;
6968 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6969 
6970 	/* Discount task's runnable from CPU's runnable */
6971 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6972 
6973 	return runnable;
6974 }
6975 
capacity_of(int cpu)6976 static unsigned long capacity_of(int cpu)
6977 {
6978 	return cpu_rq(cpu)->cpu_capacity;
6979 }
6980 
record_wakee(struct task_struct * p)6981 static void record_wakee(struct task_struct *p)
6982 {
6983 	/*
6984 	 * Only decay a single time; tasks that have less then 1 wakeup per
6985 	 * jiffy will not have built up many flips.
6986 	 */
6987 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6988 		current->wakee_flips >>= 1;
6989 		current->wakee_flip_decay_ts = jiffies;
6990 	}
6991 
6992 	if (current->last_wakee != p) {
6993 		current->last_wakee = p;
6994 		current->wakee_flips++;
6995 	}
6996 }
6997 
6998 /*
6999  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7000  *
7001  * A waker of many should wake a different task than the one last awakened
7002  * at a frequency roughly N times higher than one of its wakees.
7003  *
7004  * In order to determine whether we should let the load spread vs consolidating
7005  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7006  * partner, and a factor of lls_size higher frequency in the other.
7007  *
7008  * With both conditions met, we can be relatively sure that the relationship is
7009  * non-monogamous, with partner count exceeding socket size.
7010  *
7011  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7012  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7013  * socket size.
7014  */
wake_wide(struct task_struct * p)7015 static int wake_wide(struct task_struct *p)
7016 {
7017 	unsigned int master = current->wakee_flips;
7018 	unsigned int slave = p->wakee_flips;
7019 	int factor = __this_cpu_read(sd_llc_size);
7020 
7021 	if (master < slave)
7022 		swap(master, slave);
7023 	if (slave < factor || master < slave * factor)
7024 		return 0;
7025 	return 1;
7026 }
7027 
7028 /*
7029  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7030  * soonest. For the purpose of speed we only consider the waking and previous
7031  * CPU.
7032  *
7033  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7034  *			cache-affine and is (or	will be) idle.
7035  *
7036  * wake_affine_weight() - considers the weight to reflect the average
7037  *			  scheduling latency of the CPUs. This seems to work
7038  *			  for the overloaded case.
7039  */
7040 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7041 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7042 {
7043 	/*
7044 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7045 	 * context. Only allow the move if cache is shared. Otherwise an
7046 	 * interrupt intensive workload could force all tasks onto one
7047 	 * node depending on the IO topology or IRQ affinity settings.
7048 	 *
7049 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7050 	 * There is no guarantee that the cache hot data from an interrupt
7051 	 * is more important than cache hot data on the prev_cpu and from
7052 	 * a cpufreq perspective, it's better to have higher utilisation
7053 	 * on one CPU.
7054 	 */
7055 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7056 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7057 
7058 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7059 		return this_cpu;
7060 
7061 	if (available_idle_cpu(prev_cpu))
7062 		return prev_cpu;
7063 
7064 	return nr_cpumask_bits;
7065 }
7066 
7067 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7068 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7069 		   int this_cpu, int prev_cpu, int sync)
7070 {
7071 	s64 this_eff_load, prev_eff_load;
7072 	unsigned long task_load;
7073 
7074 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7075 
7076 	if (sync) {
7077 		unsigned long current_load = task_h_load(current);
7078 
7079 		if (current_load > this_eff_load)
7080 			return this_cpu;
7081 
7082 		this_eff_load -= current_load;
7083 	}
7084 
7085 	task_load = task_h_load(p);
7086 
7087 	this_eff_load += task_load;
7088 	if (sched_feat(WA_BIAS))
7089 		this_eff_load *= 100;
7090 	this_eff_load *= capacity_of(prev_cpu);
7091 
7092 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7093 	prev_eff_load -= task_load;
7094 	if (sched_feat(WA_BIAS))
7095 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7096 	prev_eff_load *= capacity_of(this_cpu);
7097 
7098 	/*
7099 	 * If sync, adjust the weight of prev_eff_load such that if
7100 	 * prev_eff == this_eff that select_idle_sibling() will consider
7101 	 * stacking the wakee on top of the waker if no other CPU is
7102 	 * idle.
7103 	 */
7104 	if (sync)
7105 		prev_eff_load += 1;
7106 
7107 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7108 }
7109 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7110 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7111 		       int this_cpu, int prev_cpu, int sync)
7112 {
7113 	int target = nr_cpumask_bits;
7114 
7115 	if (sched_feat(WA_IDLE))
7116 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7117 
7118 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7119 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7120 
7121 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7122 	if (target != this_cpu)
7123 		return prev_cpu;
7124 
7125 	schedstat_inc(sd->ttwu_move_affine);
7126 	schedstat_inc(p->stats.nr_wakeups_affine);
7127 	return target;
7128 }
7129 
7130 static struct sched_group *
7131 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7132 
7133 /*
7134  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7135  */
7136 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7137 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7138 {
7139 	unsigned long load, min_load = ULONG_MAX;
7140 	unsigned int min_exit_latency = UINT_MAX;
7141 	u64 latest_idle_timestamp = 0;
7142 	int least_loaded_cpu = this_cpu;
7143 	int shallowest_idle_cpu = -1;
7144 	int i;
7145 
7146 	/* Check if we have any choice: */
7147 	if (group->group_weight == 1)
7148 		return cpumask_first(sched_group_span(group));
7149 
7150 	/* Traverse only the allowed CPUs */
7151 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7152 		struct rq *rq = cpu_rq(i);
7153 
7154 		if (!sched_core_cookie_match(rq, p))
7155 			continue;
7156 
7157 		if (sched_idle_cpu(i))
7158 			return i;
7159 
7160 		if (available_idle_cpu(i)) {
7161 			struct cpuidle_state *idle = idle_get_state(rq);
7162 			if (idle && idle->exit_latency < min_exit_latency) {
7163 				/*
7164 				 * We give priority to a CPU whose idle state
7165 				 * has the smallest exit latency irrespective
7166 				 * of any idle timestamp.
7167 				 */
7168 				min_exit_latency = idle->exit_latency;
7169 				latest_idle_timestamp = rq->idle_stamp;
7170 				shallowest_idle_cpu = i;
7171 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7172 				   rq->idle_stamp > latest_idle_timestamp) {
7173 				/*
7174 				 * If equal or no active idle state, then
7175 				 * the most recently idled CPU might have
7176 				 * a warmer cache.
7177 				 */
7178 				latest_idle_timestamp = rq->idle_stamp;
7179 				shallowest_idle_cpu = i;
7180 			}
7181 		} else if (shallowest_idle_cpu == -1) {
7182 			load = cpu_load(cpu_rq(i));
7183 			if (load < min_load) {
7184 				min_load = load;
7185 				least_loaded_cpu = i;
7186 			}
7187 		}
7188 	}
7189 
7190 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7191 }
7192 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7193 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7194 				  int cpu, int prev_cpu, int sd_flag)
7195 {
7196 	int new_cpu = cpu;
7197 
7198 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7199 		return prev_cpu;
7200 
7201 	/*
7202 	 * We need task's util for cpu_util_without, sync it up to
7203 	 * prev_cpu's last_update_time.
7204 	 */
7205 	if (!(sd_flag & SD_BALANCE_FORK))
7206 		sync_entity_load_avg(&p->se);
7207 
7208 	while (sd) {
7209 		struct sched_group *group;
7210 		struct sched_domain *tmp;
7211 		int weight;
7212 
7213 		if (!(sd->flags & sd_flag)) {
7214 			sd = sd->child;
7215 			continue;
7216 		}
7217 
7218 		group = find_idlest_group(sd, p, cpu);
7219 		if (!group) {
7220 			sd = sd->child;
7221 			continue;
7222 		}
7223 
7224 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7225 		if (new_cpu == cpu) {
7226 			/* Now try balancing at a lower domain level of 'cpu': */
7227 			sd = sd->child;
7228 			continue;
7229 		}
7230 
7231 		/* Now try balancing at a lower domain level of 'new_cpu': */
7232 		cpu = new_cpu;
7233 		weight = sd->span_weight;
7234 		sd = NULL;
7235 		for_each_domain(cpu, tmp) {
7236 			if (weight <= tmp->span_weight)
7237 				break;
7238 			if (tmp->flags & sd_flag)
7239 				sd = tmp;
7240 		}
7241 	}
7242 
7243 	return new_cpu;
7244 }
7245 
__select_idle_cpu(int cpu,struct task_struct * p)7246 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7247 {
7248 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7249 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7250 		return cpu;
7251 
7252 	return -1;
7253 }
7254 
7255 #ifdef CONFIG_SCHED_SMT
7256 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7257 EXPORT_SYMBOL_GPL(sched_smt_present);
7258 
set_idle_cores(int cpu,int val)7259 static inline void set_idle_cores(int cpu, int val)
7260 {
7261 	struct sched_domain_shared *sds;
7262 
7263 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7264 	if (sds)
7265 		WRITE_ONCE(sds->has_idle_cores, val);
7266 }
7267 
test_idle_cores(int cpu)7268 static inline bool test_idle_cores(int cpu)
7269 {
7270 	struct sched_domain_shared *sds;
7271 
7272 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7273 	if (sds)
7274 		return READ_ONCE(sds->has_idle_cores);
7275 
7276 	return false;
7277 }
7278 
7279 /*
7280  * Scans the local SMT mask to see if the entire core is idle, and records this
7281  * information in sd_llc_shared->has_idle_cores.
7282  *
7283  * Since SMT siblings share all cache levels, inspecting this limited remote
7284  * state should be fairly cheap.
7285  */
__update_idle_core(struct rq * rq)7286 void __update_idle_core(struct rq *rq)
7287 {
7288 	int core = cpu_of(rq);
7289 	int cpu;
7290 
7291 	rcu_read_lock();
7292 	if (test_idle_cores(core))
7293 		goto unlock;
7294 
7295 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7296 		if (cpu == core)
7297 			continue;
7298 
7299 		if (!available_idle_cpu(cpu))
7300 			goto unlock;
7301 	}
7302 
7303 	set_idle_cores(core, 1);
7304 unlock:
7305 	rcu_read_unlock();
7306 }
7307 
7308 /*
7309  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7310  * there are no idle cores left in the system; tracked through
7311  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7312  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7313 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7314 {
7315 	bool idle = true;
7316 	int cpu;
7317 
7318 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7319 		if (!available_idle_cpu(cpu)) {
7320 			idle = false;
7321 			if (*idle_cpu == -1) {
7322 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7323 					*idle_cpu = cpu;
7324 					break;
7325 				}
7326 				continue;
7327 			}
7328 			break;
7329 		}
7330 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7331 			*idle_cpu = cpu;
7332 	}
7333 
7334 	if (idle)
7335 		return core;
7336 
7337 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7338 	return -1;
7339 }
7340 
7341 /*
7342  * Scan the local SMT mask for idle CPUs.
7343  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7344 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7345 {
7346 	int cpu;
7347 
7348 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7349 		if (cpu == target)
7350 			continue;
7351 		/*
7352 		 * Check if the CPU is in the LLC scheduling domain of @target.
7353 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7354 		 */
7355 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7356 			continue;
7357 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7358 			return cpu;
7359 	}
7360 
7361 	return -1;
7362 }
7363 
7364 #else /* CONFIG_SCHED_SMT */
7365 
set_idle_cores(int cpu,int val)7366 static inline void set_idle_cores(int cpu, int val)
7367 {
7368 }
7369 
test_idle_cores(int cpu)7370 static inline bool test_idle_cores(int cpu)
7371 {
7372 	return false;
7373 }
7374 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7375 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7376 {
7377 	return __select_idle_cpu(core, p);
7378 }
7379 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7380 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7381 {
7382 	return -1;
7383 }
7384 
7385 #endif /* CONFIG_SCHED_SMT */
7386 
7387 /*
7388  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7389  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7390  * average idle time for this rq (as found in rq->avg_idle).
7391  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7392 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7393 {
7394 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7395 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7396 	struct sched_domain_shared *sd_share;
7397 	struct rq *this_rq = this_rq();
7398 	int this = smp_processor_id();
7399 	struct sched_domain *this_sd = NULL;
7400 	u64 time = 0;
7401 
7402 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7403 
7404 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7405 		u64 avg_cost, avg_idle, span_avg;
7406 		unsigned long now = jiffies;
7407 
7408 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7409 		if (!this_sd)
7410 			return -1;
7411 
7412 		/*
7413 		 * If we're busy, the assumption that the last idle period
7414 		 * predicts the future is flawed; age away the remaining
7415 		 * predicted idle time.
7416 		 */
7417 		if (unlikely(this_rq->wake_stamp < now)) {
7418 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7419 				this_rq->wake_stamp++;
7420 				this_rq->wake_avg_idle >>= 1;
7421 			}
7422 		}
7423 
7424 		avg_idle = this_rq->wake_avg_idle;
7425 		avg_cost = this_sd->avg_scan_cost + 1;
7426 
7427 		span_avg = sd->span_weight * avg_idle;
7428 		if (span_avg > 4*avg_cost)
7429 			nr = div_u64(span_avg, avg_cost);
7430 		else
7431 			nr = 4;
7432 
7433 		time = cpu_clock(this);
7434 	}
7435 
7436 	if (sched_feat(SIS_UTIL)) {
7437 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7438 		if (sd_share) {
7439 			/* because !--nr is the condition to stop scan */
7440 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7441 			/* overloaded LLC is unlikely to have idle cpu/core */
7442 			if (nr == 1)
7443 				return -1;
7444 		}
7445 	}
7446 
7447 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7448 		if (has_idle_core) {
7449 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7450 			if ((unsigned int)i < nr_cpumask_bits)
7451 				return i;
7452 
7453 		} else {
7454 			if (!--nr)
7455 				return -1;
7456 			idle_cpu = __select_idle_cpu(cpu, p);
7457 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7458 				break;
7459 		}
7460 	}
7461 
7462 	if (has_idle_core)
7463 		set_idle_cores(target, false);
7464 
7465 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7466 		time = cpu_clock(this) - time;
7467 
7468 		/*
7469 		 * Account for the scan cost of wakeups against the average
7470 		 * idle time.
7471 		 */
7472 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7473 
7474 		update_avg(&this_sd->avg_scan_cost, time);
7475 	}
7476 
7477 	return idle_cpu;
7478 }
7479 
7480 /*
7481  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7482  * the task fits. If no CPU is big enough, but there are idle ones, try to
7483  * maximize capacity.
7484  */
7485 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7486 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7487 {
7488 	unsigned long task_util, util_min, util_max, best_cap = 0;
7489 	int fits, best_fits = 0;
7490 	int cpu, best_cpu = -1;
7491 	struct cpumask *cpus;
7492 
7493 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7494 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7495 
7496 	task_util = task_util_est(p);
7497 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7498 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7499 
7500 	for_each_cpu_wrap(cpu, cpus, target) {
7501 		unsigned long cpu_cap = capacity_of(cpu);
7502 
7503 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7504 			continue;
7505 
7506 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7507 
7508 		/* This CPU fits with all requirements */
7509 		if (fits > 0)
7510 			return cpu;
7511 		/*
7512 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7513 		 * Look for the CPU with best capacity.
7514 		 */
7515 		else if (fits < 0)
7516 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7517 
7518 		/*
7519 		 * First, select CPU which fits better (-1 being better than 0).
7520 		 * Then, select the one with best capacity at same level.
7521 		 */
7522 		if ((fits < best_fits) ||
7523 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7524 			best_cap = cpu_cap;
7525 			best_cpu = cpu;
7526 			best_fits = fits;
7527 		}
7528 	}
7529 
7530 	return best_cpu;
7531 }
7532 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7533 static inline bool asym_fits_cpu(unsigned long util,
7534 				 unsigned long util_min,
7535 				 unsigned long util_max,
7536 				 int cpu)
7537 {
7538 	if (sched_asym_cpucap_active())
7539 		/*
7540 		 * Return true only if the cpu fully fits the task requirements
7541 		 * which include the utilization and the performance hints.
7542 		 */
7543 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7544 
7545 	return true;
7546 }
7547 
7548 /*
7549  * Try and locate an idle core/thread in the LLC cache domain.
7550  */
select_idle_sibling(struct task_struct * p,int prev,int target)7551 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7552 {
7553 	bool has_idle_core = false;
7554 	struct sched_domain *sd;
7555 	unsigned long task_util, util_min, util_max;
7556 	int i, recent_used_cpu;
7557 
7558 	/*
7559 	 * On asymmetric system, update task utilization because we will check
7560 	 * that the task fits with cpu's capacity.
7561 	 */
7562 	if (sched_asym_cpucap_active()) {
7563 		sync_entity_load_avg(&p->se);
7564 		task_util = task_util_est(p);
7565 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7566 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7567 	}
7568 
7569 	/*
7570 	 * per-cpu select_rq_mask usage
7571 	 */
7572 	lockdep_assert_irqs_disabled();
7573 
7574 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7575 	    asym_fits_cpu(task_util, util_min, util_max, target))
7576 		return target;
7577 
7578 	/*
7579 	 * If the previous CPU is cache affine and idle, don't be stupid:
7580 	 */
7581 	if (prev != target && cpus_share_cache(prev, target) &&
7582 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7583 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7584 		return prev;
7585 
7586 	/*
7587 	 * Allow a per-cpu kthread to stack with the wakee if the
7588 	 * kworker thread and the tasks previous CPUs are the same.
7589 	 * The assumption is that the wakee queued work for the
7590 	 * per-cpu kthread that is now complete and the wakeup is
7591 	 * essentially a sync wakeup. An obvious example of this
7592 	 * pattern is IO completions.
7593 	 */
7594 	if (is_per_cpu_kthread(current) &&
7595 	    in_task() &&
7596 	    prev == smp_processor_id() &&
7597 	    this_rq()->nr_running <= 1 &&
7598 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7599 		return prev;
7600 	}
7601 
7602 	/* Check a recently used CPU as a potential idle candidate: */
7603 	recent_used_cpu = p->recent_used_cpu;
7604 	p->recent_used_cpu = prev;
7605 	if (recent_used_cpu != prev &&
7606 	    recent_used_cpu != target &&
7607 	    cpus_share_cache(recent_used_cpu, target) &&
7608 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7609 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7610 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7611 		return recent_used_cpu;
7612 	}
7613 
7614 	/*
7615 	 * For asymmetric CPU capacity systems, our domain of interest is
7616 	 * sd_asym_cpucapacity rather than sd_llc.
7617 	 */
7618 	if (sched_asym_cpucap_active()) {
7619 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7620 		/*
7621 		 * On an asymmetric CPU capacity system where an exclusive
7622 		 * cpuset defines a symmetric island (i.e. one unique
7623 		 * capacity_orig value through the cpuset), the key will be set
7624 		 * but the CPUs within that cpuset will not have a domain with
7625 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7626 		 * capacity path.
7627 		 */
7628 		if (sd) {
7629 			i = select_idle_capacity(p, sd, target);
7630 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7631 		}
7632 	}
7633 
7634 	sd = rcu_dereference(per_cpu(sd_llc, target));
7635 	if (!sd)
7636 		return target;
7637 
7638 	if (sched_smt_active()) {
7639 		has_idle_core = test_idle_cores(target);
7640 
7641 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7642 			i = select_idle_smt(p, sd, prev);
7643 			if ((unsigned int)i < nr_cpumask_bits)
7644 				return i;
7645 		}
7646 	}
7647 
7648 	i = select_idle_cpu(p, sd, has_idle_core, target);
7649 	if ((unsigned)i < nr_cpumask_bits)
7650 		return i;
7651 
7652 	return target;
7653 }
7654 
7655 /**
7656  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7657  * @cpu: the CPU to get the utilization for
7658  * @p: task for which the CPU utilization should be predicted or NULL
7659  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7660  * @boost: 1 to enable boosting, otherwise 0
7661  *
7662  * The unit of the return value must be the same as the one of CPU capacity
7663  * so that CPU utilization can be compared with CPU capacity.
7664  *
7665  * CPU utilization is the sum of running time of runnable tasks plus the
7666  * recent utilization of currently non-runnable tasks on that CPU.
7667  * It represents the amount of CPU capacity currently used by CFS tasks in
7668  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7669  * capacity at f_max.
7670  *
7671  * The estimated CPU utilization is defined as the maximum between CPU
7672  * utilization and sum of the estimated utilization of the currently
7673  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7674  * previously-executed tasks, which helps better deduce how busy a CPU will
7675  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7676  * of such a task would be significantly decayed at this point of time.
7677  *
7678  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7679  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7680  * utilization. Boosting is implemented in cpu_util() so that internal
7681  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7682  * latter via cpu_util_cfs_boost().
7683  *
7684  * CPU utilization can be higher than the current CPU capacity
7685  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7686  * of rounding errors as well as task migrations or wakeups of new tasks.
7687  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7688  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7689  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7690  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7691  * though since this is useful for predicting the CPU capacity required
7692  * after task migrations (scheduler-driven DVFS).
7693  *
7694  * Return: (Boosted) (estimated) utilization for the specified CPU.
7695  */
7696 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7697 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7698 {
7699 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7700 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7701 	unsigned long runnable;
7702 
7703 	if (boost) {
7704 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7705 		util = max(util, runnable);
7706 	}
7707 
7708 	/*
7709 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7710 	 * contribution. If @p migrates from another CPU to @cpu add its
7711 	 * contribution. In all the other cases @cpu is not impacted by the
7712 	 * migration so its util_avg is already correct.
7713 	 */
7714 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7715 		lsub_positive(&util, task_util(p));
7716 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7717 		util += task_util(p);
7718 
7719 	if (sched_feat(UTIL_EST)) {
7720 		unsigned long util_est;
7721 
7722 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7723 
7724 		/*
7725 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7726 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7727 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7728 		 * has been enqueued.
7729 		 *
7730 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7731 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7732 		 * Remove it to "simulate" cpu_util without @p's contribution.
7733 		 *
7734 		 * Despite the task_on_rq_queued(@p) check there is still a
7735 		 * small window for a possible race when an exec
7736 		 * select_task_rq_fair() races with LB's detach_task().
7737 		 *
7738 		 *   detach_task()
7739 		 *     deactivate_task()
7740 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7741 		 *       -------------------------------- A
7742 		 *       dequeue_task()                    \
7743 		 *         dequeue_task_fair()              + Race Time
7744 		 *           util_est_dequeue()            /
7745 		 *       -------------------------------- B
7746 		 *
7747 		 * The additional check "current == p" is required to further
7748 		 * reduce the race window.
7749 		 */
7750 		if (dst_cpu == cpu)
7751 			util_est += _task_util_est(p);
7752 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7753 			lsub_positive(&util_est, _task_util_est(p));
7754 
7755 		util = max(util, util_est);
7756 	}
7757 
7758 	return min(util, capacity_orig_of(cpu));
7759 }
7760 
cpu_util_cfs(int cpu)7761 unsigned long cpu_util_cfs(int cpu)
7762 {
7763 	return cpu_util(cpu, NULL, -1, 0);
7764 }
7765 
cpu_util_cfs_boost(int cpu)7766 unsigned long cpu_util_cfs_boost(int cpu)
7767 {
7768 	return cpu_util(cpu, NULL, -1, 1);
7769 }
7770 
7771 /*
7772  * cpu_util_without: compute cpu utilization without any contributions from *p
7773  * @cpu: the CPU which utilization is requested
7774  * @p: the task which utilization should be discounted
7775  *
7776  * The utilization of a CPU is defined by the utilization of tasks currently
7777  * enqueued on that CPU as well as tasks which are currently sleeping after an
7778  * execution on that CPU.
7779  *
7780  * This method returns the utilization of the specified CPU by discounting the
7781  * utilization of the specified task, whenever the task is currently
7782  * contributing to the CPU utilization.
7783  */
cpu_util_without(int cpu,struct task_struct * p)7784 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7785 {
7786 	/* Task has no contribution or is new */
7787 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7788 		p = NULL;
7789 
7790 	return cpu_util(cpu, p, -1, 0);
7791 }
7792 
7793 /*
7794  * energy_env - Utilization landscape for energy estimation.
7795  * @task_busy_time: Utilization contribution by the task for which we test the
7796  *                  placement. Given by eenv_task_busy_time().
7797  * @pd_busy_time:   Utilization of the whole perf domain without the task
7798  *                  contribution. Given by eenv_pd_busy_time().
7799  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7800  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7801  */
7802 struct energy_env {
7803 	unsigned long task_busy_time;
7804 	unsigned long pd_busy_time;
7805 	unsigned long cpu_cap;
7806 	unsigned long pd_cap;
7807 };
7808 
7809 /*
7810  * Compute the task busy time for compute_energy(). This time cannot be
7811  * injected directly into effective_cpu_util() because of the IRQ scaling.
7812  * The latter only makes sense with the most recent CPUs where the task has
7813  * run.
7814  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7815 static inline void eenv_task_busy_time(struct energy_env *eenv,
7816 				       struct task_struct *p, int prev_cpu)
7817 {
7818 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7819 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7820 
7821 	if (unlikely(irq >= max_cap))
7822 		busy_time = max_cap;
7823 	else
7824 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7825 
7826 	eenv->task_busy_time = busy_time;
7827 }
7828 
7829 /*
7830  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7831  * utilization for each @pd_cpus, it however doesn't take into account
7832  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7833  * scale the EM reported power consumption at the (eventually clamped)
7834  * cpu_capacity.
7835  *
7836  * The contribution of the task @p for which we want to estimate the
7837  * energy cost is removed (by cpu_util()) and must be calculated
7838  * separately (see eenv_task_busy_time). This ensures:
7839  *
7840  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7841  *     the task on.
7842  *
7843  *   - A fair comparison between CPUs as the task contribution (task_util())
7844  *     will always be the same no matter which CPU utilization we rely on
7845  *     (util_avg or util_est).
7846  *
7847  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7848  * exceed @eenv->pd_cap.
7849  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7850 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7851 				     struct cpumask *pd_cpus,
7852 				     struct task_struct *p)
7853 {
7854 	unsigned long busy_time = 0;
7855 	int cpu;
7856 
7857 	for_each_cpu(cpu, pd_cpus) {
7858 		unsigned long util = cpu_util(cpu, p, -1, 0);
7859 
7860 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7861 	}
7862 
7863 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7864 }
7865 
7866 /*
7867  * Compute the maximum utilization for compute_energy() when the task @p
7868  * is placed on the cpu @dst_cpu.
7869  *
7870  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7871  * exceed @eenv->cpu_cap.
7872  */
7873 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7874 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7875 		 struct task_struct *p, int dst_cpu)
7876 {
7877 	unsigned long max_util = 0;
7878 	int cpu;
7879 
7880 	for_each_cpu(cpu, pd_cpus) {
7881 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7882 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7883 		unsigned long eff_util;
7884 
7885 		/*
7886 		 * Performance domain frequency: utilization clamping
7887 		 * must be considered since it affects the selection
7888 		 * of the performance domain frequency.
7889 		 * NOTE: in case RT tasks are running, by default the
7890 		 * FREQUENCY_UTIL's utilization can be max OPP.
7891 		 */
7892 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7893 		max_util = max(max_util, eff_util);
7894 	}
7895 
7896 	return min(max_util, eenv->cpu_cap);
7897 }
7898 
7899 /*
7900  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7901  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7902  * contribution is ignored.
7903  */
7904 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7905 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7906 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7907 {
7908 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7909 	unsigned long busy_time = eenv->pd_busy_time;
7910 
7911 	if (dst_cpu >= 0)
7912 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7913 
7914 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7915 }
7916 
7917 /*
7918  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7919  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7920  * spare capacity in each performance domain and uses it as a potential
7921  * candidate to execute the task. Then, it uses the Energy Model to figure
7922  * out which of the CPU candidates is the most energy-efficient.
7923  *
7924  * The rationale for this heuristic is as follows. In a performance domain,
7925  * all the most energy efficient CPU candidates (according to the Energy
7926  * Model) are those for which we'll request a low frequency. When there are
7927  * several CPUs for which the frequency request will be the same, we don't
7928  * have enough data to break the tie between them, because the Energy Model
7929  * only includes active power costs. With this model, if we assume that
7930  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7931  * the maximum spare capacity in a performance domain is guaranteed to be among
7932  * the best candidates of the performance domain.
7933  *
7934  * In practice, it could be preferable from an energy standpoint to pack
7935  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7936  * but that could also hurt our chances to go cluster idle, and we have no
7937  * ways to tell with the current Energy Model if this is actually a good
7938  * idea or not. So, find_energy_efficient_cpu() basically favors
7939  * cluster-packing, and spreading inside a cluster. That should at least be
7940  * a good thing for latency, and this is consistent with the idea that most
7941  * of the energy savings of EAS come from the asymmetry of the system, and
7942  * not so much from breaking the tie between identical CPUs. That's also the
7943  * reason why EAS is enabled in the topology code only for systems where
7944  * SD_ASYM_CPUCAPACITY is set.
7945  *
7946  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7947  * they don't have any useful utilization data yet and it's not possible to
7948  * forecast their impact on energy consumption. Consequently, they will be
7949  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7950  * to be energy-inefficient in some use-cases. The alternative would be to
7951  * bias new tasks towards specific types of CPUs first, or to try to infer
7952  * their util_avg from the parent task, but those heuristics could hurt
7953  * other use-cases too. So, until someone finds a better way to solve this,
7954  * let's keep things simple by re-using the existing slow path.
7955  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7956 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7957 {
7958 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7959 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7960 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7961 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7962 	struct root_domain *rd = this_rq()->rd;
7963 	int cpu, best_energy_cpu, target = -1;
7964 	int prev_fits = -1, best_fits = -1;
7965 	unsigned long best_thermal_cap = 0;
7966 	unsigned long prev_thermal_cap = 0;
7967 	struct sched_domain *sd;
7968 	struct perf_domain *pd;
7969 	struct energy_env eenv;
7970 
7971 	rcu_read_lock();
7972 	pd = rcu_dereference(rd->pd);
7973 	if (!pd || READ_ONCE(rd->overutilized))
7974 		goto unlock;
7975 
7976 	/*
7977 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7978 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7979 	 */
7980 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7981 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7982 		sd = sd->parent;
7983 	if (!sd)
7984 		goto unlock;
7985 
7986 	target = prev_cpu;
7987 
7988 	sync_entity_load_avg(&p->se);
7989 	if (!task_util_est(p) && p_util_min == 0)
7990 		goto unlock;
7991 
7992 	eenv_task_busy_time(&eenv, p, prev_cpu);
7993 
7994 	for (; pd; pd = pd->next) {
7995 		unsigned long util_min = p_util_min, util_max = p_util_max;
7996 		unsigned long cpu_cap, cpu_thermal_cap, util;
7997 		long prev_spare_cap = -1, max_spare_cap = -1;
7998 		unsigned long rq_util_min, rq_util_max;
7999 		unsigned long cur_delta, base_energy;
8000 		int max_spare_cap_cpu = -1;
8001 		int fits, max_fits = -1;
8002 
8003 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8004 
8005 		if (cpumask_empty(cpus))
8006 			continue;
8007 
8008 		/* Account thermal pressure for the energy estimation */
8009 		cpu = cpumask_first(cpus);
8010 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8011 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8012 
8013 		eenv.cpu_cap = cpu_thermal_cap;
8014 		eenv.pd_cap = 0;
8015 
8016 		for_each_cpu(cpu, cpus) {
8017 			struct rq *rq = cpu_rq(cpu);
8018 
8019 			eenv.pd_cap += cpu_thermal_cap;
8020 
8021 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8022 				continue;
8023 
8024 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8025 				continue;
8026 
8027 			util = cpu_util(cpu, p, cpu, 0);
8028 			cpu_cap = capacity_of(cpu);
8029 
8030 			/*
8031 			 * Skip CPUs that cannot satisfy the capacity request.
8032 			 * IOW, placing the task there would make the CPU
8033 			 * overutilized. Take uclamp into account to see how
8034 			 * much capacity we can get out of the CPU; this is
8035 			 * aligned with sched_cpu_util().
8036 			 */
8037 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8038 				/*
8039 				 * Open code uclamp_rq_util_with() except for
8040 				 * the clamp() part. Ie: apply max aggregation
8041 				 * only. util_fits_cpu() logic requires to
8042 				 * operate on non clamped util but must use the
8043 				 * max-aggregated uclamp_{min, max}.
8044 				 */
8045 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8046 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8047 
8048 				util_min = max(rq_util_min, p_util_min);
8049 				util_max = max(rq_util_max, p_util_max);
8050 			}
8051 
8052 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8053 			if (!fits)
8054 				continue;
8055 
8056 			lsub_positive(&cpu_cap, util);
8057 
8058 			if (cpu == prev_cpu) {
8059 				/* Always use prev_cpu as a candidate. */
8060 				prev_spare_cap = cpu_cap;
8061 				prev_fits = fits;
8062 			} else if ((fits > max_fits) ||
8063 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8064 				/*
8065 				 * Find the CPU with the maximum spare capacity
8066 				 * among the remaining CPUs in the performance
8067 				 * domain.
8068 				 */
8069 				max_spare_cap = cpu_cap;
8070 				max_spare_cap_cpu = cpu;
8071 				max_fits = fits;
8072 			}
8073 		}
8074 
8075 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8076 			continue;
8077 
8078 		eenv_pd_busy_time(&eenv, cpus, p);
8079 		/* Compute the 'base' energy of the pd, without @p */
8080 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8081 
8082 		/* Evaluate the energy impact of using prev_cpu. */
8083 		if (prev_spare_cap > -1) {
8084 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8085 						    prev_cpu);
8086 			/* CPU utilization has changed */
8087 			if (prev_delta < base_energy)
8088 				goto unlock;
8089 			prev_delta -= base_energy;
8090 			prev_thermal_cap = cpu_thermal_cap;
8091 			best_delta = min(best_delta, prev_delta);
8092 		}
8093 
8094 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8095 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8096 			/* Current best energy cpu fits better */
8097 			if (max_fits < best_fits)
8098 				continue;
8099 
8100 			/*
8101 			 * Both don't fit performance hint (i.e. uclamp_min)
8102 			 * but best energy cpu has better capacity.
8103 			 */
8104 			if ((max_fits < 0) &&
8105 			    (cpu_thermal_cap <= best_thermal_cap))
8106 				continue;
8107 
8108 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8109 						   max_spare_cap_cpu);
8110 			/* CPU utilization has changed */
8111 			if (cur_delta < base_energy)
8112 				goto unlock;
8113 			cur_delta -= base_energy;
8114 
8115 			/*
8116 			 * Both fit for the task but best energy cpu has lower
8117 			 * energy impact.
8118 			 */
8119 			if ((max_fits > 0) && (best_fits > 0) &&
8120 			    (cur_delta >= best_delta))
8121 				continue;
8122 
8123 			best_delta = cur_delta;
8124 			best_energy_cpu = max_spare_cap_cpu;
8125 			best_fits = max_fits;
8126 			best_thermal_cap = cpu_thermal_cap;
8127 		}
8128 	}
8129 	rcu_read_unlock();
8130 
8131 	if ((best_fits > prev_fits) ||
8132 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8133 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8134 		target = best_energy_cpu;
8135 
8136 	return target;
8137 
8138 unlock:
8139 	rcu_read_unlock();
8140 
8141 	return target;
8142 }
8143 
8144 /*
8145  * select_task_rq_fair: Select target runqueue for the waking task in domains
8146  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8147  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8148  *
8149  * Balances load by selecting the idlest CPU in the idlest group, or under
8150  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8151  *
8152  * Returns the target CPU number.
8153  */
8154 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8155 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8156 {
8157 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8158 	struct sched_domain *tmp, *sd = NULL;
8159 	int cpu = smp_processor_id();
8160 	int new_cpu = prev_cpu;
8161 	int want_affine = 0;
8162 	/* SD_flags and WF_flags share the first nibble */
8163 	int sd_flag = wake_flags & 0xF;
8164 
8165 	/*
8166 	 * required for stable ->cpus_allowed
8167 	 */
8168 	lockdep_assert_held(&p->pi_lock);
8169 	if (wake_flags & WF_TTWU) {
8170 		record_wakee(p);
8171 
8172 		if ((wake_flags & WF_CURRENT_CPU) &&
8173 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8174 			return cpu;
8175 
8176 		if (sched_energy_enabled()) {
8177 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8178 			if (new_cpu >= 0)
8179 				return new_cpu;
8180 			new_cpu = prev_cpu;
8181 		}
8182 
8183 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8184 	}
8185 
8186 	rcu_read_lock();
8187 	for_each_domain(cpu, tmp) {
8188 		/*
8189 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8190 		 * cpu is a valid SD_WAKE_AFFINE target.
8191 		 */
8192 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8193 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8194 			if (cpu != prev_cpu)
8195 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8196 
8197 			sd = NULL; /* Prefer wake_affine over balance flags */
8198 			break;
8199 		}
8200 
8201 		/*
8202 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8203 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8204 		 * will usually go to the fast path.
8205 		 */
8206 		if (tmp->flags & sd_flag)
8207 			sd = tmp;
8208 		else if (!want_affine)
8209 			break;
8210 	}
8211 
8212 	if (unlikely(sd)) {
8213 		/* Slow path */
8214 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8215 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8216 		/* Fast path */
8217 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8218 	}
8219 	rcu_read_unlock();
8220 
8221 	return new_cpu;
8222 }
8223 
8224 /*
8225  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8226  * cfs_rq_of(p) references at time of call are still valid and identify the
8227  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8228  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8229 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8230 {
8231 	struct sched_entity *se = &p->se;
8232 
8233 	if (!task_on_rq_migrating(p)) {
8234 		remove_entity_load_avg(se);
8235 
8236 		/*
8237 		 * Here, the task's PELT values have been updated according to
8238 		 * the current rq's clock. But if that clock hasn't been
8239 		 * updated in a while, a substantial idle time will be missed,
8240 		 * leading to an inflation after wake-up on the new rq.
8241 		 *
8242 		 * Estimate the missing time from the cfs_rq last_update_time
8243 		 * and update sched_avg to improve the PELT continuity after
8244 		 * migration.
8245 		 */
8246 		migrate_se_pelt_lag(se);
8247 	}
8248 
8249 	/* Tell new CPU we are migrated */
8250 	se->avg.last_update_time = 0;
8251 
8252 	update_scan_period(p, new_cpu);
8253 }
8254 
task_dead_fair(struct task_struct * p)8255 static void task_dead_fair(struct task_struct *p)
8256 {
8257 	remove_entity_load_avg(&p->se);
8258 }
8259 
8260 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8261 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8262 {
8263 	if (rq->nr_running)
8264 		return 1;
8265 
8266 	return newidle_balance(rq, rf) != 0;
8267 }
8268 #endif /* CONFIG_SMP */
8269 
set_next_buddy(struct sched_entity * se)8270 static void set_next_buddy(struct sched_entity *se)
8271 {
8272 	for_each_sched_entity(se) {
8273 		if (SCHED_WARN_ON(!se->on_rq))
8274 			return;
8275 		if (se_is_idle(se))
8276 			return;
8277 		cfs_rq_of(se)->next = se;
8278 	}
8279 }
8280 
8281 /*
8282  * Preempt the current task with a newly woken task if needed:
8283  */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8284 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8285 {
8286 	struct task_struct *curr = rq->curr;
8287 	struct sched_entity *se = &curr->se, *pse = &p->se;
8288 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8289 	int next_buddy_marked = 0;
8290 	int cse_is_idle, pse_is_idle;
8291 
8292 	if (unlikely(se == pse))
8293 		return;
8294 
8295 	/*
8296 	 * This is possible from callers such as attach_tasks(), in which we
8297 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8298 	 * lead to a throttle).  This both saves work and prevents false
8299 	 * next-buddy nomination below.
8300 	 */
8301 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8302 		return;
8303 
8304 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8305 		set_next_buddy(pse);
8306 		next_buddy_marked = 1;
8307 	}
8308 
8309 	/*
8310 	 * We can come here with TIF_NEED_RESCHED already set from new task
8311 	 * wake up path.
8312 	 *
8313 	 * Note: this also catches the edge-case of curr being in a throttled
8314 	 * group (e.g. via set_curr_task), since update_curr() (in the
8315 	 * enqueue of curr) will have resulted in resched being set.  This
8316 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8317 	 * below.
8318 	 */
8319 	if (test_tsk_need_resched(curr))
8320 		return;
8321 
8322 	if (!sched_feat(WAKEUP_PREEMPTION))
8323 		return;
8324 
8325 	find_matching_se(&se, &pse);
8326 	WARN_ON_ONCE(!pse);
8327 
8328 	cse_is_idle = se_is_idle(se);
8329 	pse_is_idle = se_is_idle(pse);
8330 
8331 	/*
8332 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8333 	 * in the inverse case).
8334 	 */
8335 	if (cse_is_idle && !pse_is_idle)
8336 		goto preempt;
8337 	if (cse_is_idle != pse_is_idle)
8338 		return;
8339 
8340 	/*
8341 	 * BATCH and IDLE tasks do not preempt others.
8342 	 */
8343 	if (unlikely(p->policy != SCHED_NORMAL))
8344 		return;
8345 
8346 	cfs_rq = cfs_rq_of(se);
8347 	update_curr(cfs_rq);
8348 	/*
8349 	 * XXX pick_eevdf(cfs_rq) != se ?
8350 	 */
8351 	if (pick_eevdf(cfs_rq) == pse)
8352 		goto preempt;
8353 
8354 	return;
8355 
8356 preempt:
8357 	resched_curr(rq);
8358 }
8359 
8360 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8361 static struct task_struct *pick_task_fair(struct rq *rq)
8362 {
8363 	struct sched_entity *se;
8364 	struct cfs_rq *cfs_rq;
8365 
8366 again:
8367 	cfs_rq = &rq->cfs;
8368 	if (!cfs_rq->nr_running)
8369 		return NULL;
8370 
8371 	do {
8372 		struct sched_entity *curr = cfs_rq->curr;
8373 
8374 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8375 		if (curr) {
8376 			if (curr->on_rq)
8377 				update_curr(cfs_rq);
8378 			else
8379 				curr = NULL;
8380 
8381 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8382 				goto again;
8383 		}
8384 
8385 		se = pick_next_entity(cfs_rq, curr);
8386 		cfs_rq = group_cfs_rq(se);
8387 	} while (cfs_rq);
8388 
8389 	return task_of(se);
8390 }
8391 #endif
8392 
8393 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8394 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8395 {
8396 	struct cfs_rq *cfs_rq = &rq->cfs;
8397 	struct sched_entity *se;
8398 	struct task_struct *p;
8399 	int new_tasks;
8400 
8401 again:
8402 	if (!sched_fair_runnable(rq))
8403 		goto idle;
8404 
8405 #ifdef CONFIG_FAIR_GROUP_SCHED
8406 	if (!prev || prev->sched_class != &fair_sched_class)
8407 		goto simple;
8408 
8409 	/*
8410 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8411 	 * likely that a next task is from the same cgroup as the current.
8412 	 *
8413 	 * Therefore attempt to avoid putting and setting the entire cgroup
8414 	 * hierarchy, only change the part that actually changes.
8415 	 */
8416 
8417 	do {
8418 		struct sched_entity *curr = cfs_rq->curr;
8419 
8420 		/*
8421 		 * Since we got here without doing put_prev_entity() we also
8422 		 * have to consider cfs_rq->curr. If it is still a runnable
8423 		 * entity, update_curr() will update its vruntime, otherwise
8424 		 * forget we've ever seen it.
8425 		 */
8426 		if (curr) {
8427 			if (curr->on_rq)
8428 				update_curr(cfs_rq);
8429 			else
8430 				curr = NULL;
8431 
8432 			/*
8433 			 * This call to check_cfs_rq_runtime() will do the
8434 			 * throttle and dequeue its entity in the parent(s).
8435 			 * Therefore the nr_running test will indeed
8436 			 * be correct.
8437 			 */
8438 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8439 				cfs_rq = &rq->cfs;
8440 
8441 				if (!cfs_rq->nr_running)
8442 					goto idle;
8443 
8444 				goto simple;
8445 			}
8446 		}
8447 
8448 		se = pick_next_entity(cfs_rq, curr);
8449 		cfs_rq = group_cfs_rq(se);
8450 	} while (cfs_rq);
8451 
8452 	p = task_of(se);
8453 
8454 	/*
8455 	 * Since we haven't yet done put_prev_entity and if the selected task
8456 	 * is a different task than we started out with, try and touch the
8457 	 * least amount of cfs_rqs.
8458 	 */
8459 	if (prev != p) {
8460 		struct sched_entity *pse = &prev->se;
8461 
8462 		while (!(cfs_rq = is_same_group(se, pse))) {
8463 			int se_depth = se->depth;
8464 			int pse_depth = pse->depth;
8465 
8466 			if (se_depth <= pse_depth) {
8467 				put_prev_entity(cfs_rq_of(pse), pse);
8468 				pse = parent_entity(pse);
8469 			}
8470 			if (se_depth >= pse_depth) {
8471 				set_next_entity(cfs_rq_of(se), se);
8472 				se = parent_entity(se);
8473 			}
8474 		}
8475 
8476 		put_prev_entity(cfs_rq, pse);
8477 		set_next_entity(cfs_rq, se);
8478 	}
8479 
8480 	goto done;
8481 simple:
8482 #endif
8483 	if (prev)
8484 		put_prev_task(rq, prev);
8485 
8486 	do {
8487 		se = pick_next_entity(cfs_rq, NULL);
8488 		set_next_entity(cfs_rq, se);
8489 		cfs_rq = group_cfs_rq(se);
8490 	} while (cfs_rq);
8491 
8492 	p = task_of(se);
8493 
8494 done: __maybe_unused;
8495 #ifdef CONFIG_SMP
8496 	/*
8497 	 * Move the next running task to the front of
8498 	 * the list, so our cfs_tasks list becomes MRU
8499 	 * one.
8500 	 */
8501 	list_move(&p->se.group_node, &rq->cfs_tasks);
8502 #endif
8503 
8504 	if (hrtick_enabled_fair(rq))
8505 		hrtick_start_fair(rq, p);
8506 
8507 	update_misfit_status(p, rq);
8508 	sched_fair_update_stop_tick(rq, p);
8509 
8510 	return p;
8511 
8512 idle:
8513 	if (!rf)
8514 		return NULL;
8515 
8516 	new_tasks = newidle_balance(rq, rf);
8517 
8518 	/*
8519 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8520 	 * possible for any higher priority task to appear. In that case we
8521 	 * must re-start the pick_next_entity() loop.
8522 	 */
8523 	if (new_tasks < 0)
8524 		return RETRY_TASK;
8525 
8526 	if (new_tasks > 0)
8527 		goto again;
8528 
8529 	/*
8530 	 * rq is about to be idle, check if we need to update the
8531 	 * lost_idle_time of clock_pelt
8532 	 */
8533 	update_idle_rq_clock_pelt(rq);
8534 
8535 	return NULL;
8536 }
8537 
__pick_next_task_fair(struct rq * rq)8538 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8539 {
8540 	return pick_next_task_fair(rq, NULL, NULL);
8541 }
8542 
8543 /*
8544  * Account for a descheduled task:
8545  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8546 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8547 {
8548 	struct sched_entity *se = &prev->se;
8549 	struct cfs_rq *cfs_rq;
8550 
8551 	for_each_sched_entity(se) {
8552 		cfs_rq = cfs_rq_of(se);
8553 		put_prev_entity(cfs_rq, se);
8554 	}
8555 }
8556 
8557 /*
8558  * sched_yield() is very simple
8559  */
yield_task_fair(struct rq * rq)8560 static void yield_task_fair(struct rq *rq)
8561 {
8562 	struct task_struct *curr = rq->curr;
8563 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8564 	struct sched_entity *se = &curr->se;
8565 
8566 	/*
8567 	 * Are we the only task in the tree?
8568 	 */
8569 	if (unlikely(rq->nr_running == 1))
8570 		return;
8571 
8572 	clear_buddies(cfs_rq, se);
8573 
8574 	update_rq_clock(rq);
8575 	/*
8576 	 * Update run-time statistics of the 'current'.
8577 	 */
8578 	update_curr(cfs_rq);
8579 	/*
8580 	 * Tell update_rq_clock() that we've just updated,
8581 	 * so we don't do microscopic update in schedule()
8582 	 * and double the fastpath cost.
8583 	 */
8584 	rq_clock_skip_update(rq);
8585 
8586 	se->deadline += calc_delta_fair(se->slice, se);
8587 }
8588 
yield_to_task_fair(struct rq * rq,struct task_struct * p)8589 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8590 {
8591 	struct sched_entity *se = &p->se;
8592 
8593 	/* throttled hierarchies are not runnable */
8594 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8595 		return false;
8596 
8597 	/* Tell the scheduler that we'd really like pse to run next. */
8598 	set_next_buddy(se);
8599 
8600 	yield_task_fair(rq);
8601 
8602 	return true;
8603 }
8604 
8605 #ifdef CONFIG_SMP
8606 /**************************************************
8607  * Fair scheduling class load-balancing methods.
8608  *
8609  * BASICS
8610  *
8611  * The purpose of load-balancing is to achieve the same basic fairness the
8612  * per-CPU scheduler provides, namely provide a proportional amount of compute
8613  * time to each task. This is expressed in the following equation:
8614  *
8615  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8616  *
8617  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8618  * W_i,0 is defined as:
8619  *
8620  *   W_i,0 = \Sum_j w_i,j                                             (2)
8621  *
8622  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8623  * is derived from the nice value as per sched_prio_to_weight[].
8624  *
8625  * The weight average is an exponential decay average of the instantaneous
8626  * weight:
8627  *
8628  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8629  *
8630  * C_i is the compute capacity of CPU i, typically it is the
8631  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8632  * can also include other factors [XXX].
8633  *
8634  * To achieve this balance we define a measure of imbalance which follows
8635  * directly from (1):
8636  *
8637  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8638  *
8639  * We them move tasks around to minimize the imbalance. In the continuous
8640  * function space it is obvious this converges, in the discrete case we get
8641  * a few fun cases generally called infeasible weight scenarios.
8642  *
8643  * [XXX expand on:
8644  *     - infeasible weights;
8645  *     - local vs global optima in the discrete case. ]
8646  *
8647  *
8648  * SCHED DOMAINS
8649  *
8650  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8651  * for all i,j solution, we create a tree of CPUs that follows the hardware
8652  * topology where each level pairs two lower groups (or better). This results
8653  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8654  * tree to only the first of the previous level and we decrease the frequency
8655  * of load-balance at each level inv. proportional to the number of CPUs in
8656  * the groups.
8657  *
8658  * This yields:
8659  *
8660  *     log_2 n     1     n
8661  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8662  *     i = 0      2^i   2^i
8663  *                               `- size of each group
8664  *         |         |     `- number of CPUs doing load-balance
8665  *         |         `- freq
8666  *         `- sum over all levels
8667  *
8668  * Coupled with a limit on how many tasks we can migrate every balance pass,
8669  * this makes (5) the runtime complexity of the balancer.
8670  *
8671  * An important property here is that each CPU is still (indirectly) connected
8672  * to every other CPU in at most O(log n) steps:
8673  *
8674  * The adjacency matrix of the resulting graph is given by:
8675  *
8676  *             log_2 n
8677  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8678  *             k = 0
8679  *
8680  * And you'll find that:
8681  *
8682  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8683  *
8684  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8685  * The task movement gives a factor of O(m), giving a convergence complexity
8686  * of:
8687  *
8688  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8689  *
8690  *
8691  * WORK CONSERVING
8692  *
8693  * In order to avoid CPUs going idle while there's still work to do, new idle
8694  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8695  * tree itself instead of relying on other CPUs to bring it work.
8696  *
8697  * This adds some complexity to both (5) and (8) but it reduces the total idle
8698  * time.
8699  *
8700  * [XXX more?]
8701  *
8702  *
8703  * CGROUPS
8704  *
8705  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8706  *
8707  *                                s_k,i
8708  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8709  *                                 S_k
8710  *
8711  * Where
8712  *
8713  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8714  *
8715  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8716  *
8717  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8718  * property.
8719  *
8720  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8721  *      rewrite all of this once again.]
8722  */
8723 
8724 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8725 
8726 enum fbq_type { regular, remote, all };
8727 
8728 /*
8729  * 'group_type' describes the group of CPUs at the moment of load balancing.
8730  *
8731  * The enum is ordered by pulling priority, with the group with lowest priority
8732  * first so the group_type can simply be compared when selecting the busiest
8733  * group. See update_sd_pick_busiest().
8734  */
8735 enum group_type {
8736 	/* The group has spare capacity that can be used to run more tasks.  */
8737 	group_has_spare = 0,
8738 	/*
8739 	 * The group is fully used and the tasks don't compete for more CPU
8740 	 * cycles. Nevertheless, some tasks might wait before running.
8741 	 */
8742 	group_fully_busy,
8743 	/*
8744 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8745 	 * more powerful CPU.
8746 	 */
8747 	group_misfit_task,
8748 	/*
8749 	 * Balance SMT group that's fully busy. Can benefit from migration
8750 	 * a task on SMT with busy sibling to another CPU on idle core.
8751 	 */
8752 	group_smt_balance,
8753 	/*
8754 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8755 	 * and the task should be migrated to it instead of running on the
8756 	 * current CPU.
8757 	 */
8758 	group_asym_packing,
8759 	/*
8760 	 * The tasks' affinity constraints previously prevented the scheduler
8761 	 * from balancing the load across the system.
8762 	 */
8763 	group_imbalanced,
8764 	/*
8765 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8766 	 * tasks.
8767 	 */
8768 	group_overloaded
8769 };
8770 
8771 enum migration_type {
8772 	migrate_load = 0,
8773 	migrate_util,
8774 	migrate_task,
8775 	migrate_misfit
8776 };
8777 
8778 #define LBF_ALL_PINNED	0x01
8779 #define LBF_NEED_BREAK	0x02
8780 #define LBF_DST_PINNED  0x04
8781 #define LBF_SOME_PINNED	0x08
8782 #define LBF_ACTIVE_LB	0x10
8783 
8784 struct lb_env {
8785 	struct sched_domain	*sd;
8786 
8787 	struct rq		*src_rq;
8788 	int			src_cpu;
8789 
8790 	int			dst_cpu;
8791 	struct rq		*dst_rq;
8792 
8793 	struct cpumask		*dst_grpmask;
8794 	int			new_dst_cpu;
8795 	enum cpu_idle_type	idle;
8796 	long			imbalance;
8797 	/* The set of CPUs under consideration for load-balancing */
8798 	struct cpumask		*cpus;
8799 
8800 	unsigned int		flags;
8801 
8802 	unsigned int		loop;
8803 	unsigned int		loop_break;
8804 	unsigned int		loop_max;
8805 
8806 	enum fbq_type		fbq_type;
8807 	enum migration_type	migration_type;
8808 	struct list_head	tasks;
8809 };
8810 
8811 /*
8812  * Is this task likely cache-hot:
8813  */
task_hot(struct task_struct * p,struct lb_env * env)8814 static int task_hot(struct task_struct *p, struct lb_env *env)
8815 {
8816 	s64 delta;
8817 
8818 	lockdep_assert_rq_held(env->src_rq);
8819 
8820 	if (p->sched_class != &fair_sched_class)
8821 		return 0;
8822 
8823 	if (unlikely(task_has_idle_policy(p)))
8824 		return 0;
8825 
8826 	/* SMT siblings share cache */
8827 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8828 		return 0;
8829 
8830 	/*
8831 	 * Buddy candidates are cache hot:
8832 	 */
8833 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8834 	    (&p->se == cfs_rq_of(&p->se)->next))
8835 		return 1;
8836 
8837 	if (sysctl_sched_migration_cost == -1)
8838 		return 1;
8839 
8840 	/*
8841 	 * Don't migrate task if the task's cookie does not match
8842 	 * with the destination CPU's core cookie.
8843 	 */
8844 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8845 		return 1;
8846 
8847 	if (sysctl_sched_migration_cost == 0)
8848 		return 0;
8849 
8850 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8851 
8852 	return delta < (s64)sysctl_sched_migration_cost;
8853 }
8854 
8855 #ifdef CONFIG_NUMA_BALANCING
8856 /*
8857  * Returns 1, if task migration degrades locality
8858  * Returns 0, if task migration improves locality i.e migration preferred.
8859  * Returns -1, if task migration is not affected by locality.
8860  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8861 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8862 {
8863 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8864 	unsigned long src_weight, dst_weight;
8865 	int src_nid, dst_nid, dist;
8866 
8867 	if (!static_branch_likely(&sched_numa_balancing))
8868 		return -1;
8869 
8870 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8871 		return -1;
8872 
8873 	src_nid = cpu_to_node(env->src_cpu);
8874 	dst_nid = cpu_to_node(env->dst_cpu);
8875 
8876 	if (src_nid == dst_nid)
8877 		return -1;
8878 
8879 	/* Migrating away from the preferred node is always bad. */
8880 	if (src_nid == p->numa_preferred_nid) {
8881 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8882 			return 1;
8883 		else
8884 			return -1;
8885 	}
8886 
8887 	/* Encourage migration to the preferred node. */
8888 	if (dst_nid == p->numa_preferred_nid)
8889 		return 0;
8890 
8891 	/* Leaving a core idle is often worse than degrading locality. */
8892 	if (env->idle == CPU_IDLE)
8893 		return -1;
8894 
8895 	dist = node_distance(src_nid, dst_nid);
8896 	if (numa_group) {
8897 		src_weight = group_weight(p, src_nid, dist);
8898 		dst_weight = group_weight(p, dst_nid, dist);
8899 	} else {
8900 		src_weight = task_weight(p, src_nid, dist);
8901 		dst_weight = task_weight(p, dst_nid, dist);
8902 	}
8903 
8904 	return dst_weight < src_weight;
8905 }
8906 
8907 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8908 static inline int migrate_degrades_locality(struct task_struct *p,
8909 					     struct lb_env *env)
8910 {
8911 	return -1;
8912 }
8913 #endif
8914 
8915 /*
8916  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8917  */
8918 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8919 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8920 {
8921 	int tsk_cache_hot;
8922 
8923 	lockdep_assert_rq_held(env->src_rq);
8924 
8925 	/*
8926 	 * We do not migrate tasks that are:
8927 	 * 1) throttled_lb_pair, or
8928 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8929 	 * 3) running (obviously), or
8930 	 * 4) are cache-hot on their current CPU.
8931 	 */
8932 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8933 		return 0;
8934 
8935 	/* Disregard pcpu kthreads; they are where they need to be. */
8936 	if (kthread_is_per_cpu(p))
8937 		return 0;
8938 
8939 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8940 		int cpu;
8941 
8942 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8943 
8944 		env->flags |= LBF_SOME_PINNED;
8945 
8946 		/*
8947 		 * Remember if this task can be migrated to any other CPU in
8948 		 * our sched_group. We may want to revisit it if we couldn't
8949 		 * meet load balance goals by pulling other tasks on src_cpu.
8950 		 *
8951 		 * Avoid computing new_dst_cpu
8952 		 * - for NEWLY_IDLE
8953 		 * - if we have already computed one in current iteration
8954 		 * - if it's an active balance
8955 		 */
8956 		if (env->idle == CPU_NEWLY_IDLE ||
8957 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8958 			return 0;
8959 
8960 		/* Prevent to re-select dst_cpu via env's CPUs: */
8961 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8962 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8963 				env->flags |= LBF_DST_PINNED;
8964 				env->new_dst_cpu = cpu;
8965 				break;
8966 			}
8967 		}
8968 
8969 		return 0;
8970 	}
8971 
8972 	/* Record that we found at least one task that could run on dst_cpu */
8973 	env->flags &= ~LBF_ALL_PINNED;
8974 
8975 	if (task_on_cpu(env->src_rq, p)) {
8976 		schedstat_inc(p->stats.nr_failed_migrations_running);
8977 		return 0;
8978 	}
8979 
8980 	/*
8981 	 * Aggressive migration if:
8982 	 * 1) active balance
8983 	 * 2) destination numa is preferred
8984 	 * 3) task is cache cold, or
8985 	 * 4) too many balance attempts have failed.
8986 	 */
8987 	if (env->flags & LBF_ACTIVE_LB)
8988 		return 1;
8989 
8990 	tsk_cache_hot = migrate_degrades_locality(p, env);
8991 	if (tsk_cache_hot == -1)
8992 		tsk_cache_hot = task_hot(p, env);
8993 
8994 	if (tsk_cache_hot <= 0 ||
8995 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8996 		if (tsk_cache_hot == 1) {
8997 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8998 			schedstat_inc(p->stats.nr_forced_migrations);
8999 		}
9000 		return 1;
9001 	}
9002 
9003 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9004 	return 0;
9005 }
9006 
9007 /*
9008  * detach_task() -- detach the task for the migration specified in env
9009  */
detach_task(struct task_struct * p,struct lb_env * env)9010 static void detach_task(struct task_struct *p, struct lb_env *env)
9011 {
9012 	lockdep_assert_rq_held(env->src_rq);
9013 
9014 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9015 	set_task_cpu(p, env->dst_cpu);
9016 }
9017 
9018 /*
9019  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9020  * part of active balancing operations within "domain".
9021  *
9022  * Returns a task if successful and NULL otherwise.
9023  */
detach_one_task(struct lb_env * env)9024 static struct task_struct *detach_one_task(struct lb_env *env)
9025 {
9026 	struct task_struct *p;
9027 
9028 	lockdep_assert_rq_held(env->src_rq);
9029 
9030 	list_for_each_entry_reverse(p,
9031 			&env->src_rq->cfs_tasks, se.group_node) {
9032 		if (!can_migrate_task(p, env))
9033 			continue;
9034 
9035 		detach_task(p, env);
9036 
9037 		/*
9038 		 * Right now, this is only the second place where
9039 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9040 		 * so we can safely collect stats here rather than
9041 		 * inside detach_tasks().
9042 		 */
9043 		schedstat_inc(env->sd->lb_gained[env->idle]);
9044 		return p;
9045 	}
9046 	return NULL;
9047 }
9048 
9049 /*
9050  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9051  * busiest_rq, as part of a balancing operation within domain "sd".
9052  *
9053  * Returns number of detached tasks if successful and 0 otherwise.
9054  */
detach_tasks(struct lb_env * env)9055 static int detach_tasks(struct lb_env *env)
9056 {
9057 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9058 	unsigned long util, load;
9059 	struct task_struct *p;
9060 	int detached = 0;
9061 
9062 	lockdep_assert_rq_held(env->src_rq);
9063 
9064 	/*
9065 	 * Source run queue has been emptied by another CPU, clear
9066 	 * LBF_ALL_PINNED flag as we will not test any task.
9067 	 */
9068 	if (env->src_rq->nr_running <= 1) {
9069 		env->flags &= ~LBF_ALL_PINNED;
9070 		return 0;
9071 	}
9072 
9073 	if (env->imbalance <= 0)
9074 		return 0;
9075 
9076 	while (!list_empty(tasks)) {
9077 		/*
9078 		 * We don't want to steal all, otherwise we may be treated likewise,
9079 		 * which could at worst lead to a livelock crash.
9080 		 */
9081 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9082 			break;
9083 
9084 		env->loop++;
9085 		/* We've more or less seen every task there is, call it quits */
9086 		if (env->loop > env->loop_max)
9087 			break;
9088 
9089 		/* take a breather every nr_migrate tasks */
9090 		if (env->loop > env->loop_break) {
9091 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9092 			env->flags |= LBF_NEED_BREAK;
9093 			break;
9094 		}
9095 
9096 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9097 
9098 		if (!can_migrate_task(p, env))
9099 			goto next;
9100 
9101 		switch (env->migration_type) {
9102 		case migrate_load:
9103 			/*
9104 			 * Depending of the number of CPUs and tasks and the
9105 			 * cgroup hierarchy, task_h_load() can return a null
9106 			 * value. Make sure that env->imbalance decreases
9107 			 * otherwise detach_tasks() will stop only after
9108 			 * detaching up to loop_max tasks.
9109 			 */
9110 			load = max_t(unsigned long, task_h_load(p), 1);
9111 
9112 			if (sched_feat(LB_MIN) &&
9113 			    load < 16 && !env->sd->nr_balance_failed)
9114 				goto next;
9115 
9116 			/*
9117 			 * Make sure that we don't migrate too much load.
9118 			 * Nevertheless, let relax the constraint if
9119 			 * scheduler fails to find a good waiting task to
9120 			 * migrate.
9121 			 */
9122 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9123 				goto next;
9124 
9125 			env->imbalance -= load;
9126 			break;
9127 
9128 		case migrate_util:
9129 			util = task_util_est(p);
9130 
9131 			if (util > env->imbalance)
9132 				goto next;
9133 
9134 			env->imbalance -= util;
9135 			break;
9136 
9137 		case migrate_task:
9138 			env->imbalance--;
9139 			break;
9140 
9141 		case migrate_misfit:
9142 			/* This is not a misfit task */
9143 			if (task_fits_cpu(p, env->src_cpu))
9144 				goto next;
9145 
9146 			env->imbalance = 0;
9147 			break;
9148 		}
9149 
9150 		detach_task(p, env);
9151 		list_add(&p->se.group_node, &env->tasks);
9152 
9153 		detached++;
9154 
9155 #ifdef CONFIG_PREEMPTION
9156 		/*
9157 		 * NEWIDLE balancing is a source of latency, so preemptible
9158 		 * kernels will stop after the first task is detached to minimize
9159 		 * the critical section.
9160 		 */
9161 		if (env->idle == CPU_NEWLY_IDLE)
9162 			break;
9163 #endif
9164 
9165 		/*
9166 		 * We only want to steal up to the prescribed amount of
9167 		 * load/util/tasks.
9168 		 */
9169 		if (env->imbalance <= 0)
9170 			break;
9171 
9172 		continue;
9173 next:
9174 		list_move(&p->se.group_node, tasks);
9175 	}
9176 
9177 	/*
9178 	 * Right now, this is one of only two places we collect this stat
9179 	 * so we can safely collect detach_one_task() stats here rather
9180 	 * than inside detach_one_task().
9181 	 */
9182 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9183 
9184 	return detached;
9185 }
9186 
9187 /*
9188  * attach_task() -- attach the task detached by detach_task() to its new rq.
9189  */
attach_task(struct rq * rq,struct task_struct * p)9190 static void attach_task(struct rq *rq, struct task_struct *p)
9191 {
9192 	lockdep_assert_rq_held(rq);
9193 
9194 	WARN_ON_ONCE(task_rq(p) != rq);
9195 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9196 	wakeup_preempt(rq, p, 0);
9197 }
9198 
9199 /*
9200  * attach_one_task() -- attaches the task returned from detach_one_task() to
9201  * its new rq.
9202  */
attach_one_task(struct rq * rq,struct task_struct * p)9203 static void attach_one_task(struct rq *rq, struct task_struct *p)
9204 {
9205 	struct rq_flags rf;
9206 
9207 	rq_lock(rq, &rf);
9208 	update_rq_clock(rq);
9209 	attach_task(rq, p);
9210 	rq_unlock(rq, &rf);
9211 }
9212 
9213 /*
9214  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9215  * new rq.
9216  */
attach_tasks(struct lb_env * env)9217 static void attach_tasks(struct lb_env *env)
9218 {
9219 	struct list_head *tasks = &env->tasks;
9220 	struct task_struct *p;
9221 	struct rq_flags rf;
9222 
9223 	rq_lock(env->dst_rq, &rf);
9224 	update_rq_clock(env->dst_rq);
9225 
9226 	while (!list_empty(tasks)) {
9227 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9228 		list_del_init(&p->se.group_node);
9229 
9230 		attach_task(env->dst_rq, p);
9231 	}
9232 
9233 	rq_unlock(env->dst_rq, &rf);
9234 }
9235 
9236 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9237 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9238 {
9239 	if (cfs_rq->avg.load_avg)
9240 		return true;
9241 
9242 	if (cfs_rq->avg.util_avg)
9243 		return true;
9244 
9245 	return false;
9246 }
9247 
others_have_blocked(struct rq * rq)9248 static inline bool others_have_blocked(struct rq *rq)
9249 {
9250 	if (READ_ONCE(rq->avg_rt.util_avg))
9251 		return true;
9252 
9253 	if (READ_ONCE(rq->avg_dl.util_avg))
9254 		return true;
9255 
9256 	if (thermal_load_avg(rq))
9257 		return true;
9258 
9259 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9260 	if (READ_ONCE(rq->avg_irq.util_avg))
9261 		return true;
9262 #endif
9263 
9264 	return false;
9265 }
9266 
update_blocked_load_tick(struct rq * rq)9267 static inline void update_blocked_load_tick(struct rq *rq)
9268 {
9269 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9270 }
9271 
update_blocked_load_status(struct rq * rq,bool has_blocked)9272 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9273 {
9274 	if (!has_blocked)
9275 		rq->has_blocked_load = 0;
9276 }
9277 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9278 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9279 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9280 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9281 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9282 #endif
9283 
__update_blocked_others(struct rq * rq,bool * done)9284 static bool __update_blocked_others(struct rq *rq, bool *done)
9285 {
9286 	const struct sched_class *curr_class;
9287 	u64 now = rq_clock_pelt(rq);
9288 	unsigned long thermal_pressure;
9289 	bool decayed;
9290 
9291 	/*
9292 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9293 	 * DL and IRQ signals have been updated before updating CFS.
9294 	 */
9295 	curr_class = rq->curr->sched_class;
9296 
9297 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9298 
9299 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9300 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9301 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9302 		  update_irq_load_avg(rq, 0);
9303 
9304 	if (others_have_blocked(rq))
9305 		*done = false;
9306 
9307 	return decayed;
9308 }
9309 
9310 #ifdef CONFIG_FAIR_GROUP_SCHED
9311 
__update_blocked_fair(struct rq * rq,bool * done)9312 static bool __update_blocked_fair(struct rq *rq, bool *done)
9313 {
9314 	struct cfs_rq *cfs_rq, *pos;
9315 	bool decayed = false;
9316 	int cpu = cpu_of(rq);
9317 
9318 	/*
9319 	 * Iterates the task_group tree in a bottom up fashion, see
9320 	 * list_add_leaf_cfs_rq() for details.
9321 	 */
9322 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9323 		struct sched_entity *se;
9324 
9325 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9326 			update_tg_load_avg(cfs_rq);
9327 
9328 			if (cfs_rq->nr_running == 0)
9329 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9330 
9331 			if (cfs_rq == &rq->cfs)
9332 				decayed = true;
9333 		}
9334 
9335 		/* Propagate pending load changes to the parent, if any: */
9336 		se = cfs_rq->tg->se[cpu];
9337 		if (se && !skip_blocked_update(se))
9338 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9339 
9340 		/*
9341 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9342 		 * decayed cfs_rqs linger on the list.
9343 		 */
9344 		if (cfs_rq_is_decayed(cfs_rq))
9345 			list_del_leaf_cfs_rq(cfs_rq);
9346 
9347 		/* Don't need periodic decay once load/util_avg are null */
9348 		if (cfs_rq_has_blocked(cfs_rq))
9349 			*done = false;
9350 	}
9351 
9352 	return decayed;
9353 }
9354 
9355 /*
9356  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9357  * This needs to be done in a top-down fashion because the load of a child
9358  * group is a fraction of its parents load.
9359  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9360 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9361 {
9362 	struct rq *rq = rq_of(cfs_rq);
9363 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9364 	unsigned long now = jiffies;
9365 	unsigned long load;
9366 
9367 	if (cfs_rq->last_h_load_update == now)
9368 		return;
9369 
9370 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9371 	for_each_sched_entity(se) {
9372 		cfs_rq = cfs_rq_of(se);
9373 		WRITE_ONCE(cfs_rq->h_load_next, se);
9374 		if (cfs_rq->last_h_load_update == now)
9375 			break;
9376 	}
9377 
9378 	if (!se) {
9379 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9380 		cfs_rq->last_h_load_update = now;
9381 	}
9382 
9383 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9384 		load = cfs_rq->h_load;
9385 		load = div64_ul(load * se->avg.load_avg,
9386 			cfs_rq_load_avg(cfs_rq) + 1);
9387 		cfs_rq = group_cfs_rq(se);
9388 		cfs_rq->h_load = load;
9389 		cfs_rq->last_h_load_update = now;
9390 	}
9391 }
9392 
task_h_load(struct task_struct * p)9393 static unsigned long task_h_load(struct task_struct *p)
9394 {
9395 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9396 
9397 	update_cfs_rq_h_load(cfs_rq);
9398 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9399 			cfs_rq_load_avg(cfs_rq) + 1);
9400 }
9401 #else
__update_blocked_fair(struct rq * rq,bool * done)9402 static bool __update_blocked_fair(struct rq *rq, bool *done)
9403 {
9404 	struct cfs_rq *cfs_rq = &rq->cfs;
9405 	bool decayed;
9406 
9407 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9408 	if (cfs_rq_has_blocked(cfs_rq))
9409 		*done = false;
9410 
9411 	return decayed;
9412 }
9413 
task_h_load(struct task_struct * p)9414 static unsigned long task_h_load(struct task_struct *p)
9415 {
9416 	return p->se.avg.load_avg;
9417 }
9418 #endif
9419 
update_blocked_averages(int cpu)9420 static void update_blocked_averages(int cpu)
9421 {
9422 	bool decayed = false, done = true;
9423 	struct rq *rq = cpu_rq(cpu);
9424 	struct rq_flags rf;
9425 
9426 	rq_lock_irqsave(rq, &rf);
9427 	update_blocked_load_tick(rq);
9428 	update_rq_clock(rq);
9429 
9430 	decayed |= __update_blocked_others(rq, &done);
9431 	decayed |= __update_blocked_fair(rq, &done);
9432 
9433 	update_blocked_load_status(rq, !done);
9434 	if (decayed)
9435 		cpufreq_update_util(rq, 0);
9436 	rq_unlock_irqrestore(rq, &rf);
9437 }
9438 
9439 /********** Helpers for find_busiest_group ************************/
9440 
9441 /*
9442  * sg_lb_stats - stats of a sched_group required for load_balancing
9443  */
9444 struct sg_lb_stats {
9445 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9446 	unsigned long group_load; /* Total load over the CPUs of the group */
9447 	unsigned long group_capacity;
9448 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9449 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9450 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9451 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9452 	unsigned int idle_cpus;
9453 	unsigned int group_weight;
9454 	enum group_type group_type;
9455 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9456 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9457 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9458 #ifdef CONFIG_NUMA_BALANCING
9459 	unsigned int nr_numa_running;
9460 	unsigned int nr_preferred_running;
9461 #endif
9462 };
9463 
9464 /*
9465  * sd_lb_stats - Structure to store the statistics of a sched_domain
9466  *		 during load balancing.
9467  */
9468 struct sd_lb_stats {
9469 	struct sched_group *busiest;	/* Busiest group in this sd */
9470 	struct sched_group *local;	/* Local group in this sd */
9471 	unsigned long total_load;	/* Total load of all groups in sd */
9472 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9473 	unsigned long avg_load;	/* Average load across all groups in sd */
9474 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9475 
9476 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9477 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9478 };
9479 
init_sd_lb_stats(struct sd_lb_stats * sds)9480 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9481 {
9482 	/*
9483 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9484 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9485 	 * We must however set busiest_stat::group_type and
9486 	 * busiest_stat::idle_cpus to the worst busiest group because
9487 	 * update_sd_pick_busiest() reads these before assignment.
9488 	 */
9489 	*sds = (struct sd_lb_stats){
9490 		.busiest = NULL,
9491 		.local = NULL,
9492 		.total_load = 0UL,
9493 		.total_capacity = 0UL,
9494 		.busiest_stat = {
9495 			.idle_cpus = UINT_MAX,
9496 			.group_type = group_has_spare,
9497 		},
9498 	};
9499 }
9500 
scale_rt_capacity(int cpu)9501 static unsigned long scale_rt_capacity(int cpu)
9502 {
9503 	struct rq *rq = cpu_rq(cpu);
9504 	unsigned long max = arch_scale_cpu_capacity(cpu);
9505 	unsigned long used, free;
9506 	unsigned long irq;
9507 
9508 	irq = cpu_util_irq(rq);
9509 
9510 	if (unlikely(irq >= max))
9511 		return 1;
9512 
9513 	/*
9514 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9515 	 * (running and not running) with weights 0 and 1024 respectively.
9516 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9517 	 * average uses the actual delta max capacity(load).
9518 	 */
9519 	used = READ_ONCE(rq->avg_rt.util_avg);
9520 	used += READ_ONCE(rq->avg_dl.util_avg);
9521 	used += thermal_load_avg(rq);
9522 
9523 	if (unlikely(used >= max))
9524 		return 1;
9525 
9526 	free = max - used;
9527 
9528 	return scale_irq_capacity(free, irq, max);
9529 }
9530 
update_cpu_capacity(struct sched_domain * sd,int cpu)9531 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9532 {
9533 	unsigned long capacity = scale_rt_capacity(cpu);
9534 	struct sched_group *sdg = sd->groups;
9535 
9536 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9537 
9538 	if (!capacity)
9539 		capacity = 1;
9540 
9541 	cpu_rq(cpu)->cpu_capacity = capacity;
9542 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9543 
9544 	sdg->sgc->capacity = capacity;
9545 	sdg->sgc->min_capacity = capacity;
9546 	sdg->sgc->max_capacity = capacity;
9547 }
9548 
update_group_capacity(struct sched_domain * sd,int cpu)9549 void update_group_capacity(struct sched_domain *sd, int cpu)
9550 {
9551 	struct sched_domain *child = sd->child;
9552 	struct sched_group *group, *sdg = sd->groups;
9553 	unsigned long capacity, min_capacity, max_capacity;
9554 	unsigned long interval;
9555 
9556 	interval = msecs_to_jiffies(sd->balance_interval);
9557 	interval = clamp(interval, 1UL, max_load_balance_interval);
9558 	sdg->sgc->next_update = jiffies + interval;
9559 
9560 	if (!child) {
9561 		update_cpu_capacity(sd, cpu);
9562 		return;
9563 	}
9564 
9565 	capacity = 0;
9566 	min_capacity = ULONG_MAX;
9567 	max_capacity = 0;
9568 
9569 	if (child->flags & SD_OVERLAP) {
9570 		/*
9571 		 * SD_OVERLAP domains cannot assume that child groups
9572 		 * span the current group.
9573 		 */
9574 
9575 		for_each_cpu(cpu, sched_group_span(sdg)) {
9576 			unsigned long cpu_cap = capacity_of(cpu);
9577 
9578 			capacity += cpu_cap;
9579 			min_capacity = min(cpu_cap, min_capacity);
9580 			max_capacity = max(cpu_cap, max_capacity);
9581 		}
9582 	} else  {
9583 		/*
9584 		 * !SD_OVERLAP domains can assume that child groups
9585 		 * span the current group.
9586 		 */
9587 
9588 		group = child->groups;
9589 		do {
9590 			struct sched_group_capacity *sgc = group->sgc;
9591 
9592 			capacity += sgc->capacity;
9593 			min_capacity = min(sgc->min_capacity, min_capacity);
9594 			max_capacity = max(sgc->max_capacity, max_capacity);
9595 			group = group->next;
9596 		} while (group != child->groups);
9597 	}
9598 
9599 	sdg->sgc->capacity = capacity;
9600 	sdg->sgc->min_capacity = min_capacity;
9601 	sdg->sgc->max_capacity = max_capacity;
9602 }
9603 
9604 /*
9605  * Check whether the capacity of the rq has been noticeably reduced by side
9606  * activity. The imbalance_pct is used for the threshold.
9607  * Return true is the capacity is reduced
9608  */
9609 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9610 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9611 {
9612 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9613 				(rq->cpu_capacity_orig * 100));
9614 }
9615 
9616 /*
9617  * Check whether a rq has a misfit task and if it looks like we can actually
9618  * help that task: we can migrate the task to a CPU of higher capacity, or
9619  * the task's current CPU is heavily pressured.
9620  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9621 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9622 {
9623 	return rq->misfit_task_load &&
9624 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9625 		 check_cpu_capacity(rq, sd));
9626 }
9627 
9628 /*
9629  * Group imbalance indicates (and tries to solve) the problem where balancing
9630  * groups is inadequate due to ->cpus_ptr constraints.
9631  *
9632  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9633  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9634  * Something like:
9635  *
9636  *	{ 0 1 2 3 } { 4 5 6 7 }
9637  *	        *     * * *
9638  *
9639  * If we were to balance group-wise we'd place two tasks in the first group and
9640  * two tasks in the second group. Clearly this is undesired as it will overload
9641  * cpu 3 and leave one of the CPUs in the second group unused.
9642  *
9643  * The current solution to this issue is detecting the skew in the first group
9644  * by noticing the lower domain failed to reach balance and had difficulty
9645  * moving tasks due to affinity constraints.
9646  *
9647  * When this is so detected; this group becomes a candidate for busiest; see
9648  * update_sd_pick_busiest(). And calculate_imbalance() and
9649  * find_busiest_group() avoid some of the usual balance conditions to allow it
9650  * to create an effective group imbalance.
9651  *
9652  * This is a somewhat tricky proposition since the next run might not find the
9653  * group imbalance and decide the groups need to be balanced again. A most
9654  * subtle and fragile situation.
9655  */
9656 
sg_imbalanced(struct sched_group * group)9657 static inline int sg_imbalanced(struct sched_group *group)
9658 {
9659 	return group->sgc->imbalance;
9660 }
9661 
9662 /*
9663  * group_has_capacity returns true if the group has spare capacity that could
9664  * be used by some tasks.
9665  * We consider that a group has spare capacity if the number of task is
9666  * smaller than the number of CPUs or if the utilization is lower than the
9667  * available capacity for CFS tasks.
9668  * For the latter, we use a threshold to stabilize the state, to take into
9669  * account the variance of the tasks' load and to return true if the available
9670  * capacity in meaningful for the load balancer.
9671  * As an example, an available capacity of 1% can appear but it doesn't make
9672  * any benefit for the load balance.
9673  */
9674 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9675 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9676 {
9677 	if (sgs->sum_nr_running < sgs->group_weight)
9678 		return true;
9679 
9680 	if ((sgs->group_capacity * imbalance_pct) <
9681 			(sgs->group_runnable * 100))
9682 		return false;
9683 
9684 	if ((sgs->group_capacity * 100) >
9685 			(sgs->group_util * imbalance_pct))
9686 		return true;
9687 
9688 	return false;
9689 }
9690 
9691 /*
9692  *  group_is_overloaded returns true if the group has more tasks than it can
9693  *  handle.
9694  *  group_is_overloaded is not equals to !group_has_capacity because a group
9695  *  with the exact right number of tasks, has no more spare capacity but is not
9696  *  overloaded so both group_has_capacity and group_is_overloaded return
9697  *  false.
9698  */
9699 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9700 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9701 {
9702 	if (sgs->sum_nr_running <= sgs->group_weight)
9703 		return false;
9704 
9705 	if ((sgs->group_capacity * 100) <
9706 			(sgs->group_util * imbalance_pct))
9707 		return true;
9708 
9709 	if ((sgs->group_capacity * imbalance_pct) <
9710 			(sgs->group_runnable * 100))
9711 		return true;
9712 
9713 	return false;
9714 }
9715 
9716 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9717 group_type group_classify(unsigned int imbalance_pct,
9718 			  struct sched_group *group,
9719 			  struct sg_lb_stats *sgs)
9720 {
9721 	if (group_is_overloaded(imbalance_pct, sgs))
9722 		return group_overloaded;
9723 
9724 	if (sg_imbalanced(group))
9725 		return group_imbalanced;
9726 
9727 	if (sgs->group_asym_packing)
9728 		return group_asym_packing;
9729 
9730 	if (sgs->group_smt_balance)
9731 		return group_smt_balance;
9732 
9733 	if (sgs->group_misfit_task_load)
9734 		return group_misfit_task;
9735 
9736 	if (!group_has_capacity(imbalance_pct, sgs))
9737 		return group_fully_busy;
9738 
9739 	return group_has_spare;
9740 }
9741 
9742 /**
9743  * sched_use_asym_prio - Check whether asym_packing priority must be used
9744  * @sd:		The scheduling domain of the load balancing
9745  * @cpu:	A CPU
9746  *
9747  * Always use CPU priority when balancing load between SMT siblings. When
9748  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9749  * use CPU priority if the whole core is idle.
9750  *
9751  * Returns: True if the priority of @cpu must be followed. False otherwise.
9752  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9753 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9754 {
9755 	if (!sched_smt_active())
9756 		return true;
9757 
9758 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9759 }
9760 
9761 /**
9762  * sched_asym - Check if the destination CPU can do asym_packing load balance
9763  * @env:	The load balancing environment
9764  * @sds:	Load-balancing data with statistics of the local group
9765  * @sgs:	Load-balancing statistics of the candidate busiest group
9766  * @group:	The candidate busiest group
9767  *
9768  * @env::dst_cpu can do asym_packing if it has higher priority than the
9769  * preferred CPU of @group.
9770  *
9771  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9772  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9773  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9774  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9775  *
9776  * If we are balancing load within an SMT core, or at DIE domain level, always
9777  * proceed.
9778  *
9779  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9780  * otherwise.
9781  */
9782 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9783 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9784 	   struct sched_group *group)
9785 {
9786 	/* Ensure that the whole local core is idle, if applicable. */
9787 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9788 		return false;
9789 
9790 	/*
9791 	 * CPU priorities does not make sense for SMT cores with more than one
9792 	 * busy sibling.
9793 	 */
9794 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9795 		if (sgs->group_weight - sgs->idle_cpus != 1)
9796 			return false;
9797 	}
9798 
9799 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9800 }
9801 
9802 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9803 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9804 				    struct sched_group *sg2)
9805 {
9806 	if (!sg1 || !sg2)
9807 		return false;
9808 
9809 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9810 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9811 }
9812 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9813 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9814 			       struct sched_group *group)
9815 {
9816 	if (env->idle == CPU_NOT_IDLE)
9817 		return false;
9818 
9819 	/*
9820 	 * For SMT source group, it is better to move a task
9821 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9822 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9823 	 * will not be on.
9824 	 */
9825 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9826 	    sgs->sum_h_nr_running > 1)
9827 		return true;
9828 
9829 	return false;
9830 }
9831 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9832 static inline long sibling_imbalance(struct lb_env *env,
9833 				    struct sd_lb_stats *sds,
9834 				    struct sg_lb_stats *busiest,
9835 				    struct sg_lb_stats *local)
9836 {
9837 	int ncores_busiest, ncores_local;
9838 	long imbalance;
9839 
9840 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9841 		return 0;
9842 
9843 	ncores_busiest = sds->busiest->cores;
9844 	ncores_local = sds->local->cores;
9845 
9846 	if (ncores_busiest == ncores_local) {
9847 		imbalance = busiest->sum_nr_running;
9848 		lsub_positive(&imbalance, local->sum_nr_running);
9849 		return imbalance;
9850 	}
9851 
9852 	/* Balance such that nr_running/ncores ratio are same on both groups */
9853 	imbalance = ncores_local * busiest->sum_nr_running;
9854 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9855 	/* Normalize imbalance and do rounding on normalization */
9856 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9857 	imbalance /= ncores_local + ncores_busiest;
9858 
9859 	/* Take advantage of resource in an empty sched group */
9860 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9861 	    busiest->sum_nr_running > 1)
9862 		imbalance = 2;
9863 
9864 	return imbalance;
9865 }
9866 
9867 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9868 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9869 {
9870 	/*
9871 	 * When there is more than 1 task, the group_overloaded case already
9872 	 * takes care of cpu with reduced capacity
9873 	 */
9874 	if (rq->cfs.h_nr_running != 1)
9875 		return false;
9876 
9877 	return check_cpu_capacity(rq, sd);
9878 }
9879 
9880 /**
9881  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9882  * @env: The load balancing environment.
9883  * @sds: Load-balancing data with statistics of the local group.
9884  * @group: sched_group whose statistics are to be updated.
9885  * @sgs: variable to hold the statistics for this group.
9886  * @sg_status: Holds flag indicating the status of the sched_group
9887  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9888 static inline void update_sg_lb_stats(struct lb_env *env,
9889 				      struct sd_lb_stats *sds,
9890 				      struct sched_group *group,
9891 				      struct sg_lb_stats *sgs,
9892 				      int *sg_status)
9893 {
9894 	int i, nr_running, local_group;
9895 
9896 	memset(sgs, 0, sizeof(*sgs));
9897 
9898 	local_group = group == sds->local;
9899 
9900 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9901 		struct rq *rq = cpu_rq(i);
9902 		unsigned long load = cpu_load(rq);
9903 
9904 		sgs->group_load += load;
9905 		sgs->group_util += cpu_util_cfs(i);
9906 		sgs->group_runnable += cpu_runnable(rq);
9907 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9908 
9909 		nr_running = rq->nr_running;
9910 		sgs->sum_nr_running += nr_running;
9911 
9912 		if (nr_running > 1)
9913 			*sg_status |= SG_OVERLOAD;
9914 
9915 		if (cpu_overutilized(i))
9916 			*sg_status |= SG_OVERUTILIZED;
9917 
9918 #ifdef CONFIG_NUMA_BALANCING
9919 		sgs->nr_numa_running += rq->nr_numa_running;
9920 		sgs->nr_preferred_running += rq->nr_preferred_running;
9921 #endif
9922 		/*
9923 		 * No need to call idle_cpu() if nr_running is not 0
9924 		 */
9925 		if (!nr_running && idle_cpu(i)) {
9926 			sgs->idle_cpus++;
9927 			/* Idle cpu can't have misfit task */
9928 			continue;
9929 		}
9930 
9931 		if (local_group)
9932 			continue;
9933 
9934 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9935 			/* Check for a misfit task on the cpu */
9936 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9937 				sgs->group_misfit_task_load = rq->misfit_task_load;
9938 				*sg_status |= SG_OVERLOAD;
9939 			}
9940 		} else if ((env->idle != CPU_NOT_IDLE) &&
9941 			   sched_reduced_capacity(rq, env->sd)) {
9942 			/* Check for a task running on a CPU with reduced capacity */
9943 			if (sgs->group_misfit_task_load < load)
9944 				sgs->group_misfit_task_load = load;
9945 		}
9946 	}
9947 
9948 	sgs->group_capacity = group->sgc->capacity;
9949 
9950 	sgs->group_weight = group->group_weight;
9951 
9952 	/* Check if dst CPU is idle and preferred to this group */
9953 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9954 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9955 	    sched_asym(env, sds, sgs, group)) {
9956 		sgs->group_asym_packing = 1;
9957 	}
9958 
9959 	/* Check for loaded SMT group to be balanced to dst CPU */
9960 	if (!local_group && smt_balance(env, sgs, group))
9961 		sgs->group_smt_balance = 1;
9962 
9963 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9964 
9965 	/* Computing avg_load makes sense only when group is overloaded */
9966 	if (sgs->group_type == group_overloaded)
9967 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9968 				sgs->group_capacity;
9969 }
9970 
9971 /**
9972  * update_sd_pick_busiest - return 1 on busiest group
9973  * @env: The load balancing environment.
9974  * @sds: sched_domain statistics
9975  * @sg: sched_group candidate to be checked for being the busiest
9976  * @sgs: sched_group statistics
9977  *
9978  * Determine if @sg is a busier group than the previously selected
9979  * busiest group.
9980  *
9981  * Return: %true if @sg is a busier group than the previously selected
9982  * busiest group. %false otherwise.
9983  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9984 static bool update_sd_pick_busiest(struct lb_env *env,
9985 				   struct sd_lb_stats *sds,
9986 				   struct sched_group *sg,
9987 				   struct sg_lb_stats *sgs)
9988 {
9989 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9990 
9991 	/* Make sure that there is at least one task to pull */
9992 	if (!sgs->sum_h_nr_running)
9993 		return false;
9994 
9995 	/*
9996 	 * Don't try to pull misfit tasks we can't help.
9997 	 * We can use max_capacity here as reduction in capacity on some
9998 	 * CPUs in the group should either be possible to resolve
9999 	 * internally or be covered by avg_load imbalance (eventually).
10000 	 */
10001 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10002 	    (sgs->group_type == group_misfit_task) &&
10003 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10004 	     sds->local_stat.group_type != group_has_spare))
10005 		return false;
10006 
10007 	if (sgs->group_type > busiest->group_type)
10008 		return true;
10009 
10010 	if (sgs->group_type < busiest->group_type)
10011 		return false;
10012 
10013 	/*
10014 	 * The candidate and the current busiest group are the same type of
10015 	 * group. Let check which one is the busiest according to the type.
10016 	 */
10017 
10018 	switch (sgs->group_type) {
10019 	case group_overloaded:
10020 		/* Select the overloaded group with highest avg_load. */
10021 		if (sgs->avg_load <= busiest->avg_load)
10022 			return false;
10023 		break;
10024 
10025 	case group_imbalanced:
10026 		/*
10027 		 * Select the 1st imbalanced group as we don't have any way to
10028 		 * choose one more than another.
10029 		 */
10030 		return false;
10031 
10032 	case group_asym_packing:
10033 		/* Prefer to move from lowest priority CPU's work */
10034 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10035 			return false;
10036 		break;
10037 
10038 	case group_misfit_task:
10039 		/*
10040 		 * If we have more than one misfit sg go with the biggest
10041 		 * misfit.
10042 		 */
10043 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10044 			return false;
10045 		break;
10046 
10047 	case group_smt_balance:
10048 		/*
10049 		 * Check if we have spare CPUs on either SMT group to
10050 		 * choose has spare or fully busy handling.
10051 		 */
10052 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10053 			goto has_spare;
10054 
10055 		fallthrough;
10056 
10057 	case group_fully_busy:
10058 		/*
10059 		 * Select the fully busy group with highest avg_load. In
10060 		 * theory, there is no need to pull task from such kind of
10061 		 * group because tasks have all compute capacity that they need
10062 		 * but we can still improve the overall throughput by reducing
10063 		 * contention when accessing shared HW resources.
10064 		 *
10065 		 * XXX for now avg_load is not computed and always 0 so we
10066 		 * select the 1st one, except if @sg is composed of SMT
10067 		 * siblings.
10068 		 */
10069 
10070 		if (sgs->avg_load < busiest->avg_load)
10071 			return false;
10072 
10073 		if (sgs->avg_load == busiest->avg_load) {
10074 			/*
10075 			 * SMT sched groups need more help than non-SMT groups.
10076 			 * If @sg happens to also be SMT, either choice is good.
10077 			 */
10078 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10079 				return false;
10080 		}
10081 
10082 		break;
10083 
10084 	case group_has_spare:
10085 		/*
10086 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10087 		 * as we do not want to pull task off SMT core with one task
10088 		 * and make the core idle.
10089 		 */
10090 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10091 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10092 				return false;
10093 			else
10094 				return true;
10095 		}
10096 has_spare:
10097 
10098 		/*
10099 		 * Select not overloaded group with lowest number of idle cpus
10100 		 * and highest number of running tasks. We could also compare
10101 		 * the spare capacity which is more stable but it can end up
10102 		 * that the group has less spare capacity but finally more idle
10103 		 * CPUs which means less opportunity to pull tasks.
10104 		 */
10105 		if (sgs->idle_cpus > busiest->idle_cpus)
10106 			return false;
10107 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10108 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10109 			return false;
10110 
10111 		break;
10112 	}
10113 
10114 	/*
10115 	 * Candidate sg has no more than one task per CPU and has higher
10116 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10117 	 * throughput. Maximize throughput, power/energy consequences are not
10118 	 * considered.
10119 	 */
10120 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10121 	    (sgs->group_type <= group_fully_busy) &&
10122 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10123 		return false;
10124 
10125 	return true;
10126 }
10127 
10128 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10129 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10130 {
10131 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10132 		return regular;
10133 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10134 		return remote;
10135 	return all;
10136 }
10137 
fbq_classify_rq(struct rq * rq)10138 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10139 {
10140 	if (rq->nr_running > rq->nr_numa_running)
10141 		return regular;
10142 	if (rq->nr_running > rq->nr_preferred_running)
10143 		return remote;
10144 	return all;
10145 }
10146 #else
fbq_classify_group(struct sg_lb_stats * sgs)10147 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10148 {
10149 	return all;
10150 }
10151 
fbq_classify_rq(struct rq * rq)10152 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10153 {
10154 	return regular;
10155 }
10156 #endif /* CONFIG_NUMA_BALANCING */
10157 
10158 
10159 struct sg_lb_stats;
10160 
10161 /*
10162  * task_running_on_cpu - return 1 if @p is running on @cpu.
10163  */
10164 
task_running_on_cpu(int cpu,struct task_struct * p)10165 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10166 {
10167 	/* Task has no contribution or is new */
10168 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10169 		return 0;
10170 
10171 	if (task_on_rq_queued(p))
10172 		return 1;
10173 
10174 	return 0;
10175 }
10176 
10177 /**
10178  * idle_cpu_without - would a given CPU be idle without p ?
10179  * @cpu: the processor on which idleness is tested.
10180  * @p: task which should be ignored.
10181  *
10182  * Return: 1 if the CPU would be idle. 0 otherwise.
10183  */
idle_cpu_without(int cpu,struct task_struct * p)10184 static int idle_cpu_without(int cpu, struct task_struct *p)
10185 {
10186 	struct rq *rq = cpu_rq(cpu);
10187 
10188 	if (rq->curr != rq->idle && rq->curr != p)
10189 		return 0;
10190 
10191 	/*
10192 	 * rq->nr_running can't be used but an updated version without the
10193 	 * impact of p on cpu must be used instead. The updated nr_running
10194 	 * be computed and tested before calling idle_cpu_without().
10195 	 */
10196 
10197 #ifdef CONFIG_SMP
10198 	if (rq->ttwu_pending)
10199 		return 0;
10200 #endif
10201 
10202 	return 1;
10203 }
10204 
10205 /*
10206  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10207  * @sd: The sched_domain level to look for idlest group.
10208  * @group: sched_group whose statistics are to be updated.
10209  * @sgs: variable to hold the statistics for this group.
10210  * @p: The task for which we look for the idlest group/CPU.
10211  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10212 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10213 					  struct sched_group *group,
10214 					  struct sg_lb_stats *sgs,
10215 					  struct task_struct *p)
10216 {
10217 	int i, nr_running;
10218 
10219 	memset(sgs, 0, sizeof(*sgs));
10220 
10221 	/* Assume that task can't fit any CPU of the group */
10222 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10223 		sgs->group_misfit_task_load = 1;
10224 
10225 	for_each_cpu(i, sched_group_span(group)) {
10226 		struct rq *rq = cpu_rq(i);
10227 		unsigned int local;
10228 
10229 		sgs->group_load += cpu_load_without(rq, p);
10230 		sgs->group_util += cpu_util_without(i, p);
10231 		sgs->group_runnable += cpu_runnable_without(rq, p);
10232 		local = task_running_on_cpu(i, p);
10233 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10234 
10235 		nr_running = rq->nr_running - local;
10236 		sgs->sum_nr_running += nr_running;
10237 
10238 		/*
10239 		 * No need to call idle_cpu_without() if nr_running is not 0
10240 		 */
10241 		if (!nr_running && idle_cpu_without(i, p))
10242 			sgs->idle_cpus++;
10243 
10244 		/* Check if task fits in the CPU */
10245 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10246 		    sgs->group_misfit_task_load &&
10247 		    task_fits_cpu(p, i))
10248 			sgs->group_misfit_task_load = 0;
10249 
10250 	}
10251 
10252 	sgs->group_capacity = group->sgc->capacity;
10253 
10254 	sgs->group_weight = group->group_weight;
10255 
10256 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10257 
10258 	/*
10259 	 * Computing avg_load makes sense only when group is fully busy or
10260 	 * overloaded
10261 	 */
10262 	if (sgs->group_type == group_fully_busy ||
10263 		sgs->group_type == group_overloaded)
10264 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10265 				sgs->group_capacity;
10266 }
10267 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10268 static bool update_pick_idlest(struct sched_group *idlest,
10269 			       struct sg_lb_stats *idlest_sgs,
10270 			       struct sched_group *group,
10271 			       struct sg_lb_stats *sgs)
10272 {
10273 	if (sgs->group_type < idlest_sgs->group_type)
10274 		return true;
10275 
10276 	if (sgs->group_type > idlest_sgs->group_type)
10277 		return false;
10278 
10279 	/*
10280 	 * The candidate and the current idlest group are the same type of
10281 	 * group. Let check which one is the idlest according to the type.
10282 	 */
10283 
10284 	switch (sgs->group_type) {
10285 	case group_overloaded:
10286 	case group_fully_busy:
10287 		/* Select the group with lowest avg_load. */
10288 		if (idlest_sgs->avg_load <= sgs->avg_load)
10289 			return false;
10290 		break;
10291 
10292 	case group_imbalanced:
10293 	case group_asym_packing:
10294 	case group_smt_balance:
10295 		/* Those types are not used in the slow wakeup path */
10296 		return false;
10297 
10298 	case group_misfit_task:
10299 		/* Select group with the highest max capacity */
10300 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10301 			return false;
10302 		break;
10303 
10304 	case group_has_spare:
10305 		/* Select group with most idle CPUs */
10306 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10307 			return false;
10308 
10309 		/* Select group with lowest group_util */
10310 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10311 			idlest_sgs->group_util <= sgs->group_util)
10312 			return false;
10313 
10314 		break;
10315 	}
10316 
10317 	return true;
10318 }
10319 
10320 /*
10321  * find_idlest_group() finds and returns the least busy CPU group within the
10322  * domain.
10323  *
10324  * Assumes p is allowed on at least one CPU in sd.
10325  */
10326 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10327 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10328 {
10329 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10330 	struct sg_lb_stats local_sgs, tmp_sgs;
10331 	struct sg_lb_stats *sgs;
10332 	unsigned long imbalance;
10333 	struct sg_lb_stats idlest_sgs = {
10334 			.avg_load = UINT_MAX,
10335 			.group_type = group_overloaded,
10336 	};
10337 
10338 	do {
10339 		int local_group;
10340 
10341 		/* Skip over this group if it has no CPUs allowed */
10342 		if (!cpumask_intersects(sched_group_span(group),
10343 					p->cpus_ptr))
10344 			continue;
10345 
10346 		/* Skip over this group if no cookie matched */
10347 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10348 			continue;
10349 
10350 		local_group = cpumask_test_cpu(this_cpu,
10351 					       sched_group_span(group));
10352 
10353 		if (local_group) {
10354 			sgs = &local_sgs;
10355 			local = group;
10356 		} else {
10357 			sgs = &tmp_sgs;
10358 		}
10359 
10360 		update_sg_wakeup_stats(sd, group, sgs, p);
10361 
10362 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10363 			idlest = group;
10364 			idlest_sgs = *sgs;
10365 		}
10366 
10367 	} while (group = group->next, group != sd->groups);
10368 
10369 
10370 	/* There is no idlest group to push tasks to */
10371 	if (!idlest)
10372 		return NULL;
10373 
10374 	/* The local group has been skipped because of CPU affinity */
10375 	if (!local)
10376 		return idlest;
10377 
10378 	/*
10379 	 * If the local group is idler than the selected idlest group
10380 	 * don't try and push the task.
10381 	 */
10382 	if (local_sgs.group_type < idlest_sgs.group_type)
10383 		return NULL;
10384 
10385 	/*
10386 	 * If the local group is busier than the selected idlest group
10387 	 * try and push the task.
10388 	 */
10389 	if (local_sgs.group_type > idlest_sgs.group_type)
10390 		return idlest;
10391 
10392 	switch (local_sgs.group_type) {
10393 	case group_overloaded:
10394 	case group_fully_busy:
10395 
10396 		/* Calculate allowed imbalance based on load */
10397 		imbalance = scale_load_down(NICE_0_LOAD) *
10398 				(sd->imbalance_pct-100) / 100;
10399 
10400 		/*
10401 		 * When comparing groups across NUMA domains, it's possible for
10402 		 * the local domain to be very lightly loaded relative to the
10403 		 * remote domains but "imbalance" skews the comparison making
10404 		 * remote CPUs look much more favourable. When considering
10405 		 * cross-domain, add imbalance to the load on the remote node
10406 		 * and consider staying local.
10407 		 */
10408 
10409 		if ((sd->flags & SD_NUMA) &&
10410 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10411 			return NULL;
10412 
10413 		/*
10414 		 * If the local group is less loaded than the selected
10415 		 * idlest group don't try and push any tasks.
10416 		 */
10417 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10418 			return NULL;
10419 
10420 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10421 			return NULL;
10422 		break;
10423 
10424 	case group_imbalanced:
10425 	case group_asym_packing:
10426 	case group_smt_balance:
10427 		/* Those type are not used in the slow wakeup path */
10428 		return NULL;
10429 
10430 	case group_misfit_task:
10431 		/* Select group with the highest max capacity */
10432 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10433 			return NULL;
10434 		break;
10435 
10436 	case group_has_spare:
10437 #ifdef CONFIG_NUMA
10438 		if (sd->flags & SD_NUMA) {
10439 			int imb_numa_nr = sd->imb_numa_nr;
10440 #ifdef CONFIG_NUMA_BALANCING
10441 			int idlest_cpu;
10442 			/*
10443 			 * If there is spare capacity at NUMA, try to select
10444 			 * the preferred node
10445 			 */
10446 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10447 				return NULL;
10448 
10449 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10450 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10451 				return idlest;
10452 #endif /* CONFIG_NUMA_BALANCING */
10453 			/*
10454 			 * Otherwise, keep the task close to the wakeup source
10455 			 * and improve locality if the number of running tasks
10456 			 * would remain below threshold where an imbalance is
10457 			 * allowed while accounting for the possibility the
10458 			 * task is pinned to a subset of CPUs. If there is a
10459 			 * real need of migration, periodic load balance will
10460 			 * take care of it.
10461 			 */
10462 			if (p->nr_cpus_allowed != NR_CPUS) {
10463 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10464 
10465 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10466 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10467 			}
10468 
10469 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10470 			if (!adjust_numa_imbalance(imbalance,
10471 						   local_sgs.sum_nr_running + 1,
10472 						   imb_numa_nr)) {
10473 				return NULL;
10474 			}
10475 		}
10476 #endif /* CONFIG_NUMA */
10477 
10478 		/*
10479 		 * Select group with highest number of idle CPUs. We could also
10480 		 * compare the utilization which is more stable but it can end
10481 		 * up that the group has less spare capacity but finally more
10482 		 * idle CPUs which means more opportunity to run task.
10483 		 */
10484 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10485 			return NULL;
10486 		break;
10487 	}
10488 
10489 	return idlest;
10490 }
10491 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10492 static void update_idle_cpu_scan(struct lb_env *env,
10493 				 unsigned long sum_util)
10494 {
10495 	struct sched_domain_shared *sd_share;
10496 	int llc_weight, pct;
10497 	u64 x, y, tmp;
10498 	/*
10499 	 * Update the number of CPUs to scan in LLC domain, which could
10500 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10501 	 * could be expensive because it is within a shared cache line.
10502 	 * So the write of this hint only occurs during periodic load
10503 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10504 	 * can fire way more frequently than the former.
10505 	 */
10506 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10507 		return;
10508 
10509 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10510 	if (env->sd->span_weight != llc_weight)
10511 		return;
10512 
10513 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10514 	if (!sd_share)
10515 		return;
10516 
10517 	/*
10518 	 * The number of CPUs to search drops as sum_util increases, when
10519 	 * sum_util hits 85% or above, the scan stops.
10520 	 * The reason to choose 85% as the threshold is because this is the
10521 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10522 	 *
10523 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10524 	 * and y'= y / SCHED_CAPACITY_SCALE
10525 	 *
10526 	 * x is the ratio of sum_util compared to the CPU capacity:
10527 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10528 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10529 	 * and the number of CPUs to scan is calculated by:
10530 	 *
10531 	 * nr_scan = llc_weight * y'                                    [2]
10532 	 *
10533 	 * When x hits the threshold of overloaded, AKA, when
10534 	 * x = 100 / pct, y drops to 0. According to [1],
10535 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10536 	 *
10537 	 * Scale x by SCHED_CAPACITY_SCALE:
10538 	 * x' = sum_util / llc_weight;                                  [3]
10539 	 *
10540 	 * and finally [1] becomes:
10541 	 * y = SCHED_CAPACITY_SCALE -
10542 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10543 	 *
10544 	 */
10545 	/* equation [3] */
10546 	x = sum_util;
10547 	do_div(x, llc_weight);
10548 
10549 	/* equation [4] */
10550 	pct = env->sd->imbalance_pct;
10551 	tmp = x * x * pct * pct;
10552 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10553 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10554 	y = SCHED_CAPACITY_SCALE - tmp;
10555 
10556 	/* equation [2] */
10557 	y *= llc_weight;
10558 	do_div(y, SCHED_CAPACITY_SCALE);
10559 	if ((int)y != sd_share->nr_idle_scan)
10560 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10561 }
10562 
10563 /**
10564  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10565  * @env: The load balancing environment.
10566  * @sds: variable to hold the statistics for this sched_domain.
10567  */
10568 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10569 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10570 {
10571 	struct sched_group *sg = env->sd->groups;
10572 	struct sg_lb_stats *local = &sds->local_stat;
10573 	struct sg_lb_stats tmp_sgs;
10574 	unsigned long sum_util = 0;
10575 	int sg_status = 0;
10576 
10577 	do {
10578 		struct sg_lb_stats *sgs = &tmp_sgs;
10579 		int local_group;
10580 
10581 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10582 		if (local_group) {
10583 			sds->local = sg;
10584 			sgs = local;
10585 
10586 			if (env->idle != CPU_NEWLY_IDLE ||
10587 			    time_after_eq(jiffies, sg->sgc->next_update))
10588 				update_group_capacity(env->sd, env->dst_cpu);
10589 		}
10590 
10591 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10592 
10593 		if (local_group)
10594 			goto next_group;
10595 
10596 
10597 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10598 			sds->busiest = sg;
10599 			sds->busiest_stat = *sgs;
10600 		}
10601 
10602 next_group:
10603 		/* Now, start updating sd_lb_stats */
10604 		sds->total_load += sgs->group_load;
10605 		sds->total_capacity += sgs->group_capacity;
10606 
10607 		sum_util += sgs->group_util;
10608 		sg = sg->next;
10609 	} while (sg != env->sd->groups);
10610 
10611 	/*
10612 	 * Indicate that the child domain of the busiest group prefers tasks
10613 	 * go to a child's sibling domains first. NB the flags of a sched group
10614 	 * are those of the child domain.
10615 	 */
10616 	if (sds->busiest)
10617 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10618 
10619 
10620 	if (env->sd->flags & SD_NUMA)
10621 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10622 
10623 	if (!env->sd->parent) {
10624 		/* update overload indicator if we are at root domain */
10625 		WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10626 
10627 		/* Update over-utilization (tipping point, U >= 0) indicator */
10628 		set_rd_overutilized_status(env->dst_rq->rd,
10629 					   sg_status & SG_OVERUTILIZED);
10630 	} else if (sg_status & SG_OVERUTILIZED) {
10631 		set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10632 	}
10633 
10634 	update_idle_cpu_scan(env, sum_util);
10635 }
10636 
10637 /**
10638  * calculate_imbalance - Calculate the amount of imbalance present within the
10639  *			 groups of a given sched_domain during load balance.
10640  * @env: load balance environment
10641  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10642  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10643 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10644 {
10645 	struct sg_lb_stats *local, *busiest;
10646 
10647 	local = &sds->local_stat;
10648 	busiest = &sds->busiest_stat;
10649 
10650 	if (busiest->group_type == group_misfit_task) {
10651 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10652 			/* Set imbalance to allow misfit tasks to be balanced. */
10653 			env->migration_type = migrate_misfit;
10654 			env->imbalance = 1;
10655 		} else {
10656 			/*
10657 			 * Set load imbalance to allow moving task from cpu
10658 			 * with reduced capacity.
10659 			 */
10660 			env->migration_type = migrate_load;
10661 			env->imbalance = busiest->group_misfit_task_load;
10662 		}
10663 		return;
10664 	}
10665 
10666 	if (busiest->group_type == group_asym_packing) {
10667 		/*
10668 		 * In case of asym capacity, we will try to migrate all load to
10669 		 * the preferred CPU.
10670 		 */
10671 		env->migration_type = migrate_task;
10672 		env->imbalance = busiest->sum_h_nr_running;
10673 		return;
10674 	}
10675 
10676 	if (busiest->group_type == group_smt_balance) {
10677 		/* Reduce number of tasks sharing CPU capacity */
10678 		env->migration_type = migrate_task;
10679 		env->imbalance = 1;
10680 		return;
10681 	}
10682 
10683 	if (busiest->group_type == group_imbalanced) {
10684 		/*
10685 		 * In the group_imb case we cannot rely on group-wide averages
10686 		 * to ensure CPU-load equilibrium, try to move any task to fix
10687 		 * the imbalance. The next load balance will take care of
10688 		 * balancing back the system.
10689 		 */
10690 		env->migration_type = migrate_task;
10691 		env->imbalance = 1;
10692 		return;
10693 	}
10694 
10695 	/*
10696 	 * Try to use spare capacity of local group without overloading it or
10697 	 * emptying busiest.
10698 	 */
10699 	if (local->group_type == group_has_spare) {
10700 		if ((busiest->group_type > group_fully_busy) &&
10701 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10702 			/*
10703 			 * If busiest is overloaded, try to fill spare
10704 			 * capacity. This might end up creating spare capacity
10705 			 * in busiest or busiest still being overloaded but
10706 			 * there is no simple way to directly compute the
10707 			 * amount of load to migrate in order to balance the
10708 			 * system.
10709 			 */
10710 			env->migration_type = migrate_util;
10711 			env->imbalance = max(local->group_capacity, local->group_util) -
10712 					 local->group_util;
10713 
10714 			/*
10715 			 * In some cases, the group's utilization is max or even
10716 			 * higher than capacity because of migrations but the
10717 			 * local CPU is (newly) idle. There is at least one
10718 			 * waiting task in this overloaded busiest group. Let's
10719 			 * try to pull it.
10720 			 */
10721 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10722 				env->migration_type = migrate_task;
10723 				env->imbalance = 1;
10724 			}
10725 
10726 			return;
10727 		}
10728 
10729 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10730 			/*
10731 			 * When prefer sibling, evenly spread running tasks on
10732 			 * groups.
10733 			 */
10734 			env->migration_type = migrate_task;
10735 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10736 		} else {
10737 
10738 			/*
10739 			 * If there is no overload, we just want to even the number of
10740 			 * idle cpus.
10741 			 */
10742 			env->migration_type = migrate_task;
10743 			env->imbalance = max_t(long, 0,
10744 					       (local->idle_cpus - busiest->idle_cpus));
10745 		}
10746 
10747 #ifdef CONFIG_NUMA
10748 		/* Consider allowing a small imbalance between NUMA groups */
10749 		if (env->sd->flags & SD_NUMA) {
10750 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10751 							       local->sum_nr_running + 1,
10752 							       env->sd->imb_numa_nr);
10753 		}
10754 #endif
10755 
10756 		/* Number of tasks to move to restore balance */
10757 		env->imbalance >>= 1;
10758 
10759 		return;
10760 	}
10761 
10762 	/*
10763 	 * Local is fully busy but has to take more load to relieve the
10764 	 * busiest group
10765 	 */
10766 	if (local->group_type < group_overloaded) {
10767 		/*
10768 		 * Local will become overloaded so the avg_load metrics are
10769 		 * finally needed.
10770 		 */
10771 
10772 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10773 				  local->group_capacity;
10774 
10775 		/*
10776 		 * If the local group is more loaded than the selected
10777 		 * busiest group don't try to pull any tasks.
10778 		 */
10779 		if (local->avg_load >= busiest->avg_load) {
10780 			env->imbalance = 0;
10781 			return;
10782 		}
10783 
10784 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10785 				sds->total_capacity;
10786 
10787 		/*
10788 		 * If the local group is more loaded than the average system
10789 		 * load, don't try to pull any tasks.
10790 		 */
10791 		if (local->avg_load >= sds->avg_load) {
10792 			env->imbalance = 0;
10793 			return;
10794 		}
10795 
10796 	}
10797 
10798 	/*
10799 	 * Both group are or will become overloaded and we're trying to get all
10800 	 * the CPUs to the average_load, so we don't want to push ourselves
10801 	 * above the average load, nor do we wish to reduce the max loaded CPU
10802 	 * below the average load. At the same time, we also don't want to
10803 	 * reduce the group load below the group capacity. Thus we look for
10804 	 * the minimum possible imbalance.
10805 	 */
10806 	env->migration_type = migrate_load;
10807 	env->imbalance = min(
10808 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10809 		(sds->avg_load - local->avg_load) * local->group_capacity
10810 	) / SCHED_CAPACITY_SCALE;
10811 }
10812 
10813 /******* find_busiest_group() helpers end here *********************/
10814 
10815 /*
10816  * Decision matrix according to the local and busiest group type:
10817  *
10818  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10819  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10820  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10821  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10822  * asym_packing     force     force      N/A    N/A  force      force
10823  * imbalanced       force     force      N/A    N/A  force      force
10824  * overloaded       force     force      N/A    N/A  force      avg_load
10825  *
10826  * N/A :      Not Applicable because already filtered while updating
10827  *            statistics.
10828  * balanced : The system is balanced for these 2 groups.
10829  * force :    Calculate the imbalance as load migration is probably needed.
10830  * avg_load : Only if imbalance is significant enough.
10831  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10832  *            different in groups.
10833  */
10834 
10835 /**
10836  * find_busiest_group - Returns the busiest group within the sched_domain
10837  * if there is an imbalance.
10838  * @env: The load balancing environment.
10839  *
10840  * Also calculates the amount of runnable load which should be moved
10841  * to restore balance.
10842  *
10843  * Return:	- The busiest group if imbalance exists.
10844  */
find_busiest_group(struct lb_env * env)10845 static struct sched_group *find_busiest_group(struct lb_env *env)
10846 {
10847 	struct sg_lb_stats *local, *busiest;
10848 	struct sd_lb_stats sds;
10849 
10850 	init_sd_lb_stats(&sds);
10851 
10852 	/*
10853 	 * Compute the various statistics relevant for load balancing at
10854 	 * this level.
10855 	 */
10856 	update_sd_lb_stats(env, &sds);
10857 
10858 	/* There is no busy sibling group to pull tasks from */
10859 	if (!sds.busiest)
10860 		goto out_balanced;
10861 
10862 	busiest = &sds.busiest_stat;
10863 
10864 	/* Misfit tasks should be dealt with regardless of the avg load */
10865 	if (busiest->group_type == group_misfit_task)
10866 		goto force_balance;
10867 
10868 	if (sched_energy_enabled()) {
10869 		struct root_domain *rd = env->dst_rq->rd;
10870 
10871 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10872 			goto out_balanced;
10873 	}
10874 
10875 	/* ASYM feature bypasses nice load balance check */
10876 	if (busiest->group_type == group_asym_packing)
10877 		goto force_balance;
10878 
10879 	/*
10880 	 * If the busiest group is imbalanced the below checks don't
10881 	 * work because they assume all things are equal, which typically
10882 	 * isn't true due to cpus_ptr constraints and the like.
10883 	 */
10884 	if (busiest->group_type == group_imbalanced)
10885 		goto force_balance;
10886 
10887 	local = &sds.local_stat;
10888 	/*
10889 	 * If the local group is busier than the selected busiest group
10890 	 * don't try and pull any tasks.
10891 	 */
10892 	if (local->group_type > busiest->group_type)
10893 		goto out_balanced;
10894 
10895 	/*
10896 	 * When groups are overloaded, use the avg_load to ensure fairness
10897 	 * between tasks.
10898 	 */
10899 	if (local->group_type == group_overloaded) {
10900 		/*
10901 		 * If the local group is more loaded than the selected
10902 		 * busiest group don't try to pull any tasks.
10903 		 */
10904 		if (local->avg_load >= busiest->avg_load)
10905 			goto out_balanced;
10906 
10907 		/* XXX broken for overlapping NUMA groups */
10908 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10909 				sds.total_capacity;
10910 
10911 		/*
10912 		 * Don't pull any tasks if this group is already above the
10913 		 * domain average load.
10914 		 */
10915 		if (local->avg_load >= sds.avg_load)
10916 			goto out_balanced;
10917 
10918 		/*
10919 		 * If the busiest group is more loaded, use imbalance_pct to be
10920 		 * conservative.
10921 		 */
10922 		if (100 * busiest->avg_load <=
10923 				env->sd->imbalance_pct * local->avg_load)
10924 			goto out_balanced;
10925 	}
10926 
10927 	/*
10928 	 * Try to move all excess tasks to a sibling domain of the busiest
10929 	 * group's child domain.
10930 	 */
10931 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10932 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10933 		goto force_balance;
10934 
10935 	if (busiest->group_type != group_overloaded) {
10936 		if (env->idle == CPU_NOT_IDLE) {
10937 			/*
10938 			 * If the busiest group is not overloaded (and as a
10939 			 * result the local one too) but this CPU is already
10940 			 * busy, let another idle CPU try to pull task.
10941 			 */
10942 			goto out_balanced;
10943 		}
10944 
10945 		if (busiest->group_type == group_smt_balance &&
10946 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10947 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10948 			goto force_balance;
10949 		}
10950 
10951 		if (busiest->group_weight > 1 &&
10952 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10953 			/*
10954 			 * If the busiest group is not overloaded
10955 			 * and there is no imbalance between this and busiest
10956 			 * group wrt idle CPUs, it is balanced. The imbalance
10957 			 * becomes significant if the diff is greater than 1
10958 			 * otherwise we might end up to just move the imbalance
10959 			 * on another group. Of course this applies only if
10960 			 * there is more than 1 CPU per group.
10961 			 */
10962 			goto out_balanced;
10963 		}
10964 
10965 		if (busiest->sum_h_nr_running == 1) {
10966 			/*
10967 			 * busiest doesn't have any tasks waiting to run
10968 			 */
10969 			goto out_balanced;
10970 		}
10971 	}
10972 
10973 force_balance:
10974 	/* Looks like there is an imbalance. Compute it */
10975 	calculate_imbalance(env, &sds);
10976 	return env->imbalance ? sds.busiest : NULL;
10977 
10978 out_balanced:
10979 	env->imbalance = 0;
10980 	return NULL;
10981 }
10982 
10983 /*
10984  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10985  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10986 static struct rq *find_busiest_queue(struct lb_env *env,
10987 				     struct sched_group *group)
10988 {
10989 	struct rq *busiest = NULL, *rq;
10990 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10991 	unsigned int busiest_nr = 0;
10992 	int i;
10993 
10994 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10995 		unsigned long capacity, load, util;
10996 		unsigned int nr_running;
10997 		enum fbq_type rt;
10998 
10999 		rq = cpu_rq(i);
11000 		rt = fbq_classify_rq(rq);
11001 
11002 		/*
11003 		 * We classify groups/runqueues into three groups:
11004 		 *  - regular: there are !numa tasks
11005 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11006 		 *  - all:     there is no distinction
11007 		 *
11008 		 * In order to avoid migrating ideally placed numa tasks,
11009 		 * ignore those when there's better options.
11010 		 *
11011 		 * If we ignore the actual busiest queue to migrate another
11012 		 * task, the next balance pass can still reduce the busiest
11013 		 * queue by moving tasks around inside the node.
11014 		 *
11015 		 * If we cannot move enough load due to this classification
11016 		 * the next pass will adjust the group classification and
11017 		 * allow migration of more tasks.
11018 		 *
11019 		 * Both cases only affect the total convergence complexity.
11020 		 */
11021 		if (rt > env->fbq_type)
11022 			continue;
11023 
11024 		nr_running = rq->cfs.h_nr_running;
11025 		if (!nr_running)
11026 			continue;
11027 
11028 		capacity = capacity_of(i);
11029 
11030 		/*
11031 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11032 		 * eventually lead to active_balancing high->low capacity.
11033 		 * Higher per-CPU capacity is considered better than balancing
11034 		 * average load.
11035 		 */
11036 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11037 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11038 		    nr_running == 1)
11039 			continue;
11040 
11041 		/*
11042 		 * Make sure we only pull tasks from a CPU of lower priority
11043 		 * when balancing between SMT siblings.
11044 		 *
11045 		 * If balancing between cores, let lower priority CPUs help
11046 		 * SMT cores with more than one busy sibling.
11047 		 */
11048 		if ((env->sd->flags & SD_ASYM_PACKING) &&
11049 		    sched_use_asym_prio(env->sd, i) &&
11050 		    sched_asym_prefer(i, env->dst_cpu) &&
11051 		    nr_running == 1)
11052 			continue;
11053 
11054 		switch (env->migration_type) {
11055 		case migrate_load:
11056 			/*
11057 			 * When comparing with load imbalance, use cpu_load()
11058 			 * which is not scaled with the CPU capacity.
11059 			 */
11060 			load = cpu_load(rq);
11061 
11062 			if (nr_running == 1 && load > env->imbalance &&
11063 			    !check_cpu_capacity(rq, env->sd))
11064 				break;
11065 
11066 			/*
11067 			 * For the load comparisons with the other CPUs,
11068 			 * consider the cpu_load() scaled with the CPU
11069 			 * capacity, so that the load can be moved away
11070 			 * from the CPU that is potentially running at a
11071 			 * lower capacity.
11072 			 *
11073 			 * Thus we're looking for max(load_i / capacity_i),
11074 			 * crosswise multiplication to rid ourselves of the
11075 			 * division works out to:
11076 			 * load_i * capacity_j > load_j * capacity_i;
11077 			 * where j is our previous maximum.
11078 			 */
11079 			if (load * busiest_capacity > busiest_load * capacity) {
11080 				busiest_load = load;
11081 				busiest_capacity = capacity;
11082 				busiest = rq;
11083 			}
11084 			break;
11085 
11086 		case migrate_util:
11087 			util = cpu_util_cfs_boost(i);
11088 
11089 			/*
11090 			 * Don't try to pull utilization from a CPU with one
11091 			 * running task. Whatever its utilization, we will fail
11092 			 * detach the task.
11093 			 */
11094 			if (nr_running <= 1)
11095 				continue;
11096 
11097 			if (busiest_util < util) {
11098 				busiest_util = util;
11099 				busiest = rq;
11100 			}
11101 			break;
11102 
11103 		case migrate_task:
11104 			if (busiest_nr < nr_running) {
11105 				busiest_nr = nr_running;
11106 				busiest = rq;
11107 			}
11108 			break;
11109 
11110 		case migrate_misfit:
11111 			/*
11112 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11113 			 * simply seek the "biggest" misfit task.
11114 			 */
11115 			if (rq->misfit_task_load > busiest_load) {
11116 				busiest_load = rq->misfit_task_load;
11117 				busiest = rq;
11118 			}
11119 
11120 			break;
11121 
11122 		}
11123 	}
11124 
11125 	return busiest;
11126 }
11127 
11128 /*
11129  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11130  * so long as it is large enough.
11131  */
11132 #define MAX_PINNED_INTERVAL	512
11133 
11134 static inline bool
asym_active_balance(struct lb_env * env)11135 asym_active_balance(struct lb_env *env)
11136 {
11137 	/*
11138 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11139 	 * priority CPUs in order to pack all tasks in the highest priority
11140 	 * CPUs. When done between cores, do it only if the whole core if the
11141 	 * whole core is idle.
11142 	 *
11143 	 * If @env::src_cpu is an SMT core with busy siblings, let
11144 	 * the lower priority @env::dst_cpu help it. Do not follow
11145 	 * CPU priority.
11146 	 */
11147 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11148 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11149 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11150 		!sched_use_asym_prio(env->sd, env->src_cpu));
11151 }
11152 
11153 static inline bool
imbalanced_active_balance(struct lb_env * env)11154 imbalanced_active_balance(struct lb_env *env)
11155 {
11156 	struct sched_domain *sd = env->sd;
11157 
11158 	/*
11159 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11160 	 * distribution of the load on the system but also the even distribution of the
11161 	 * threads on a system with spare capacity
11162 	 */
11163 	if ((env->migration_type == migrate_task) &&
11164 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11165 		return 1;
11166 
11167 	return 0;
11168 }
11169 
need_active_balance(struct lb_env * env)11170 static int need_active_balance(struct lb_env *env)
11171 {
11172 	struct sched_domain *sd = env->sd;
11173 
11174 	if (asym_active_balance(env))
11175 		return 1;
11176 
11177 	if (imbalanced_active_balance(env))
11178 		return 1;
11179 
11180 	/*
11181 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11182 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11183 	 * because of other sched_class or IRQs if more capacity stays
11184 	 * available on dst_cpu.
11185 	 */
11186 	if ((env->idle != CPU_NOT_IDLE) &&
11187 	    (env->src_rq->cfs.h_nr_running == 1)) {
11188 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11189 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11190 			return 1;
11191 	}
11192 
11193 	if (env->migration_type == migrate_misfit)
11194 		return 1;
11195 
11196 	return 0;
11197 }
11198 
11199 static int active_load_balance_cpu_stop(void *data);
11200 
should_we_balance(struct lb_env * env)11201 static int should_we_balance(struct lb_env *env)
11202 {
11203 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11204 	struct sched_group *sg = env->sd->groups;
11205 	int cpu, idle_smt = -1;
11206 
11207 	/*
11208 	 * Ensure the balancing environment is consistent; can happen
11209 	 * when the softirq triggers 'during' hotplug.
11210 	 */
11211 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11212 		return 0;
11213 
11214 	/*
11215 	 * In the newly idle case, we will allow all the CPUs
11216 	 * to do the newly idle load balance.
11217 	 *
11218 	 * However, we bail out if we already have tasks or a wakeup pending,
11219 	 * to optimize wakeup latency.
11220 	 */
11221 	if (env->idle == CPU_NEWLY_IDLE) {
11222 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11223 			return 0;
11224 		return 1;
11225 	}
11226 
11227 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11228 	/* Try to find first idle CPU */
11229 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11230 		if (!idle_cpu(cpu))
11231 			continue;
11232 
11233 		/*
11234 		 * Don't balance to idle SMT in busy core right away when
11235 		 * balancing cores, but remember the first idle SMT CPU for
11236 		 * later consideration.  Find CPU on an idle core first.
11237 		 */
11238 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11239 			if (idle_smt == -1)
11240 				idle_smt = cpu;
11241 			/*
11242 			 * If the core is not idle, and first SMT sibling which is
11243 			 * idle has been found, then its not needed to check other
11244 			 * SMT siblings for idleness:
11245 			 */
11246 #ifdef CONFIG_SCHED_SMT
11247 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11248 #endif
11249 			continue;
11250 		}
11251 
11252 		/*
11253 		 * Are we the first idle core in a non-SMT domain or higher,
11254 		 * or the first idle CPU in a SMT domain?
11255 		 */
11256 		return cpu == env->dst_cpu;
11257 	}
11258 
11259 	/* Are we the first idle CPU with busy siblings? */
11260 	if (idle_smt != -1)
11261 		return idle_smt == env->dst_cpu;
11262 
11263 	/* Are we the first CPU of this group ? */
11264 	return group_balance_cpu(sg) == env->dst_cpu;
11265 }
11266 
11267 /*
11268  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11269  * tasks if there is an imbalance.
11270  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11271 static int load_balance(int this_cpu, struct rq *this_rq,
11272 			struct sched_domain *sd, enum cpu_idle_type idle,
11273 			int *continue_balancing)
11274 {
11275 	int ld_moved, cur_ld_moved, active_balance = 0;
11276 	struct sched_domain *sd_parent = sd->parent;
11277 	struct sched_group *group;
11278 	struct rq *busiest;
11279 	struct rq_flags rf;
11280 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11281 	struct lb_env env = {
11282 		.sd		= sd,
11283 		.dst_cpu	= this_cpu,
11284 		.dst_rq		= this_rq,
11285 		.dst_grpmask    = group_balance_mask(sd->groups),
11286 		.idle		= idle,
11287 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11288 		.cpus		= cpus,
11289 		.fbq_type	= all,
11290 		.tasks		= LIST_HEAD_INIT(env.tasks),
11291 	};
11292 
11293 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11294 
11295 	schedstat_inc(sd->lb_count[idle]);
11296 
11297 redo:
11298 	if (!should_we_balance(&env)) {
11299 		*continue_balancing = 0;
11300 		goto out_balanced;
11301 	}
11302 
11303 	group = find_busiest_group(&env);
11304 	if (!group) {
11305 		schedstat_inc(sd->lb_nobusyg[idle]);
11306 		goto out_balanced;
11307 	}
11308 
11309 	busiest = find_busiest_queue(&env, group);
11310 	if (!busiest) {
11311 		schedstat_inc(sd->lb_nobusyq[idle]);
11312 		goto out_balanced;
11313 	}
11314 
11315 	WARN_ON_ONCE(busiest == env.dst_rq);
11316 
11317 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11318 
11319 	env.src_cpu = busiest->cpu;
11320 	env.src_rq = busiest;
11321 
11322 	ld_moved = 0;
11323 	/* Clear this flag as soon as we find a pullable task */
11324 	env.flags |= LBF_ALL_PINNED;
11325 	if (busiest->nr_running > 1) {
11326 		/*
11327 		 * Attempt to move tasks. If find_busiest_group has found
11328 		 * an imbalance but busiest->nr_running <= 1, the group is
11329 		 * still unbalanced. ld_moved simply stays zero, so it is
11330 		 * correctly treated as an imbalance.
11331 		 */
11332 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11333 
11334 more_balance:
11335 		rq_lock_irqsave(busiest, &rf);
11336 		update_rq_clock(busiest);
11337 
11338 		/*
11339 		 * cur_ld_moved - load moved in current iteration
11340 		 * ld_moved     - cumulative load moved across iterations
11341 		 */
11342 		cur_ld_moved = detach_tasks(&env);
11343 
11344 		/*
11345 		 * We've detached some tasks from busiest_rq. Every
11346 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11347 		 * unlock busiest->lock, and we are able to be sure
11348 		 * that nobody can manipulate the tasks in parallel.
11349 		 * See task_rq_lock() family for the details.
11350 		 */
11351 
11352 		rq_unlock(busiest, &rf);
11353 
11354 		if (cur_ld_moved) {
11355 			attach_tasks(&env);
11356 			ld_moved += cur_ld_moved;
11357 		}
11358 
11359 		local_irq_restore(rf.flags);
11360 
11361 		if (env.flags & LBF_NEED_BREAK) {
11362 			env.flags &= ~LBF_NEED_BREAK;
11363 			goto more_balance;
11364 		}
11365 
11366 		/*
11367 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11368 		 * us and move them to an alternate dst_cpu in our sched_group
11369 		 * where they can run. The upper limit on how many times we
11370 		 * iterate on same src_cpu is dependent on number of CPUs in our
11371 		 * sched_group.
11372 		 *
11373 		 * This changes load balance semantics a bit on who can move
11374 		 * load to a given_cpu. In addition to the given_cpu itself
11375 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11376 		 * nohz-idle), we now have balance_cpu in a position to move
11377 		 * load to given_cpu. In rare situations, this may cause
11378 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11379 		 * _independently_ and at _same_ time to move some load to
11380 		 * given_cpu) causing excess load to be moved to given_cpu.
11381 		 * This however should not happen so much in practice and
11382 		 * moreover subsequent load balance cycles should correct the
11383 		 * excess load moved.
11384 		 */
11385 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11386 
11387 			/* Prevent to re-select dst_cpu via env's CPUs */
11388 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11389 
11390 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11391 			env.dst_cpu	 = env.new_dst_cpu;
11392 			env.flags	&= ~LBF_DST_PINNED;
11393 			env.loop	 = 0;
11394 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11395 
11396 			/*
11397 			 * Go back to "more_balance" rather than "redo" since we
11398 			 * need to continue with same src_cpu.
11399 			 */
11400 			goto more_balance;
11401 		}
11402 
11403 		/*
11404 		 * We failed to reach balance because of affinity.
11405 		 */
11406 		if (sd_parent) {
11407 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11408 
11409 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11410 				*group_imbalance = 1;
11411 		}
11412 
11413 		/* All tasks on this runqueue were pinned by CPU affinity */
11414 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11415 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11416 			/*
11417 			 * Attempting to continue load balancing at the current
11418 			 * sched_domain level only makes sense if there are
11419 			 * active CPUs remaining as possible busiest CPUs to
11420 			 * pull load from which are not contained within the
11421 			 * destination group that is receiving any migrated
11422 			 * load.
11423 			 */
11424 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11425 				env.loop = 0;
11426 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11427 				goto redo;
11428 			}
11429 			goto out_all_pinned;
11430 		}
11431 	}
11432 
11433 	if (!ld_moved) {
11434 		schedstat_inc(sd->lb_failed[idle]);
11435 		/*
11436 		 * Increment the failure counter only on periodic balance.
11437 		 * We do not want newidle balance, which can be very
11438 		 * frequent, pollute the failure counter causing
11439 		 * excessive cache_hot migrations and active balances.
11440 		 */
11441 		if (idle != CPU_NEWLY_IDLE)
11442 			sd->nr_balance_failed++;
11443 
11444 		if (need_active_balance(&env)) {
11445 			unsigned long flags;
11446 
11447 			raw_spin_rq_lock_irqsave(busiest, flags);
11448 
11449 			/*
11450 			 * Don't kick the active_load_balance_cpu_stop,
11451 			 * if the curr task on busiest CPU can't be
11452 			 * moved to this_cpu:
11453 			 */
11454 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11455 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11456 				goto out_one_pinned;
11457 			}
11458 
11459 			/* Record that we found at least one task that could run on this_cpu */
11460 			env.flags &= ~LBF_ALL_PINNED;
11461 
11462 			/*
11463 			 * ->active_balance synchronizes accesses to
11464 			 * ->active_balance_work.  Once set, it's cleared
11465 			 * only after active load balance is finished.
11466 			 */
11467 			if (!busiest->active_balance) {
11468 				busiest->active_balance = 1;
11469 				busiest->push_cpu = this_cpu;
11470 				active_balance = 1;
11471 			}
11472 
11473 			preempt_disable();
11474 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11475 			if (active_balance) {
11476 				stop_one_cpu_nowait(cpu_of(busiest),
11477 					active_load_balance_cpu_stop, busiest,
11478 					&busiest->active_balance_work);
11479 			}
11480 			preempt_enable();
11481 		}
11482 	} else {
11483 		sd->nr_balance_failed = 0;
11484 	}
11485 
11486 	if (likely(!active_balance) || need_active_balance(&env)) {
11487 		/* We were unbalanced, so reset the balancing interval */
11488 		sd->balance_interval = sd->min_interval;
11489 	}
11490 
11491 	goto out;
11492 
11493 out_balanced:
11494 	/*
11495 	 * We reach balance although we may have faced some affinity
11496 	 * constraints. Clear the imbalance flag only if other tasks got
11497 	 * a chance to move and fix the imbalance.
11498 	 */
11499 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11500 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11501 
11502 		if (*group_imbalance)
11503 			*group_imbalance = 0;
11504 	}
11505 
11506 out_all_pinned:
11507 	/*
11508 	 * We reach balance because all tasks are pinned at this level so
11509 	 * we can't migrate them. Let the imbalance flag set so parent level
11510 	 * can try to migrate them.
11511 	 */
11512 	schedstat_inc(sd->lb_balanced[idle]);
11513 
11514 	sd->nr_balance_failed = 0;
11515 
11516 out_one_pinned:
11517 	ld_moved = 0;
11518 
11519 	/*
11520 	 * newidle_balance() disregards balance intervals, so we could
11521 	 * repeatedly reach this code, which would lead to balance_interval
11522 	 * skyrocketing in a short amount of time. Skip the balance_interval
11523 	 * increase logic to avoid that.
11524 	 */
11525 	if (env.idle == CPU_NEWLY_IDLE)
11526 		goto out;
11527 
11528 	/* tune up the balancing interval */
11529 	if ((env.flags & LBF_ALL_PINNED &&
11530 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11531 	    sd->balance_interval < sd->max_interval)
11532 		sd->balance_interval *= 2;
11533 out:
11534 	return ld_moved;
11535 }
11536 
11537 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11538 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11539 {
11540 	unsigned long interval = sd->balance_interval;
11541 
11542 	if (cpu_busy)
11543 		interval *= sd->busy_factor;
11544 
11545 	/* scale ms to jiffies */
11546 	interval = msecs_to_jiffies(interval);
11547 
11548 	/*
11549 	 * Reduce likelihood of busy balancing at higher domains racing with
11550 	 * balancing at lower domains by preventing their balancing periods
11551 	 * from being multiples of each other.
11552 	 */
11553 	if (cpu_busy)
11554 		interval -= 1;
11555 
11556 	interval = clamp(interval, 1UL, max_load_balance_interval);
11557 
11558 	return interval;
11559 }
11560 
11561 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11562 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11563 {
11564 	unsigned long interval, next;
11565 
11566 	/* used by idle balance, so cpu_busy = 0 */
11567 	interval = get_sd_balance_interval(sd, 0);
11568 	next = sd->last_balance + interval;
11569 
11570 	if (time_after(*next_balance, next))
11571 		*next_balance = next;
11572 }
11573 
11574 /*
11575  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11576  * running tasks off the busiest CPU onto idle CPUs. It requires at
11577  * least 1 task to be running on each physical CPU where possible, and
11578  * avoids physical / logical imbalances.
11579  */
active_load_balance_cpu_stop(void * data)11580 static int active_load_balance_cpu_stop(void *data)
11581 {
11582 	struct rq *busiest_rq = data;
11583 	int busiest_cpu = cpu_of(busiest_rq);
11584 	int target_cpu = busiest_rq->push_cpu;
11585 	struct rq *target_rq = cpu_rq(target_cpu);
11586 	struct sched_domain *sd;
11587 	struct task_struct *p = NULL;
11588 	struct rq_flags rf;
11589 
11590 	rq_lock_irq(busiest_rq, &rf);
11591 	/*
11592 	 * Between queueing the stop-work and running it is a hole in which
11593 	 * CPUs can become inactive. We should not move tasks from or to
11594 	 * inactive CPUs.
11595 	 */
11596 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11597 		goto out_unlock;
11598 
11599 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11600 	if (unlikely(busiest_cpu != smp_processor_id() ||
11601 		     !busiest_rq->active_balance))
11602 		goto out_unlock;
11603 
11604 	/* Is there any task to move? */
11605 	if (busiest_rq->nr_running <= 1)
11606 		goto out_unlock;
11607 
11608 	/*
11609 	 * This condition is "impossible", if it occurs
11610 	 * we need to fix it. Originally reported by
11611 	 * Bjorn Helgaas on a 128-CPU setup.
11612 	 */
11613 	WARN_ON_ONCE(busiest_rq == target_rq);
11614 
11615 	/* Search for an sd spanning us and the target CPU. */
11616 	rcu_read_lock();
11617 	for_each_domain(target_cpu, sd) {
11618 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11619 			break;
11620 	}
11621 
11622 	if (likely(sd)) {
11623 		struct lb_env env = {
11624 			.sd		= sd,
11625 			.dst_cpu	= target_cpu,
11626 			.dst_rq		= target_rq,
11627 			.src_cpu	= busiest_rq->cpu,
11628 			.src_rq		= busiest_rq,
11629 			.idle		= CPU_IDLE,
11630 			.flags		= LBF_ACTIVE_LB,
11631 		};
11632 
11633 		schedstat_inc(sd->alb_count);
11634 		update_rq_clock(busiest_rq);
11635 
11636 		p = detach_one_task(&env);
11637 		if (p) {
11638 			schedstat_inc(sd->alb_pushed);
11639 			/* Active balancing done, reset the failure counter. */
11640 			sd->nr_balance_failed = 0;
11641 		} else {
11642 			schedstat_inc(sd->alb_failed);
11643 		}
11644 	}
11645 	rcu_read_unlock();
11646 out_unlock:
11647 	busiest_rq->active_balance = 0;
11648 	rq_unlock(busiest_rq, &rf);
11649 
11650 	if (p)
11651 		attach_one_task(target_rq, p);
11652 
11653 	local_irq_enable();
11654 
11655 	return 0;
11656 }
11657 
11658 static DEFINE_SPINLOCK(balancing);
11659 
11660 /*
11661  * Scale the max load_balance interval with the number of CPUs in the system.
11662  * This trades load-balance latency on larger machines for less cross talk.
11663  */
update_max_interval(void)11664 void update_max_interval(void)
11665 {
11666 	max_load_balance_interval = HZ*num_online_cpus()/10;
11667 }
11668 
update_newidle_cost(struct sched_domain * sd,u64 cost)11669 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11670 {
11671 	if (cost > sd->max_newidle_lb_cost) {
11672 		/*
11673 		 * Track max cost of a domain to make sure to not delay the
11674 		 * next wakeup on the CPU.
11675 		 */
11676 		sd->max_newidle_lb_cost = cost;
11677 		sd->last_decay_max_lb_cost = jiffies;
11678 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11679 		/*
11680 		 * Decay the newidle max times by ~1% per second to ensure that
11681 		 * it is not outdated and the current max cost is actually
11682 		 * shorter.
11683 		 */
11684 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11685 		sd->last_decay_max_lb_cost = jiffies;
11686 
11687 		return true;
11688 	}
11689 
11690 	return false;
11691 }
11692 
11693 /*
11694  * It checks each scheduling domain to see if it is due to be balanced,
11695  * and initiates a balancing operation if so.
11696  *
11697  * Balancing parameters are set up in init_sched_domains.
11698  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11699 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11700 {
11701 	int continue_balancing = 1;
11702 	int cpu = rq->cpu;
11703 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11704 	unsigned long interval;
11705 	struct sched_domain *sd;
11706 	/* Earliest time when we have to do rebalance again */
11707 	unsigned long next_balance = jiffies + 60*HZ;
11708 	int update_next_balance = 0;
11709 	int need_serialize, need_decay = 0;
11710 	u64 max_cost = 0;
11711 
11712 	rcu_read_lock();
11713 	for_each_domain(cpu, sd) {
11714 		/*
11715 		 * Decay the newidle max times here because this is a regular
11716 		 * visit to all the domains.
11717 		 */
11718 		need_decay = update_newidle_cost(sd, 0);
11719 		max_cost += sd->max_newidle_lb_cost;
11720 
11721 		/*
11722 		 * Stop the load balance at this level. There is another
11723 		 * CPU in our sched group which is doing load balancing more
11724 		 * actively.
11725 		 */
11726 		if (!continue_balancing) {
11727 			if (need_decay)
11728 				continue;
11729 			break;
11730 		}
11731 
11732 		interval = get_sd_balance_interval(sd, busy);
11733 
11734 		need_serialize = sd->flags & SD_SERIALIZE;
11735 		if (need_serialize) {
11736 			if (!spin_trylock(&balancing))
11737 				goto out;
11738 		}
11739 
11740 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11741 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11742 				/*
11743 				 * The LBF_DST_PINNED logic could have changed
11744 				 * env->dst_cpu, so we can't know our idle
11745 				 * state even if we migrated tasks. Update it.
11746 				 */
11747 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11748 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11749 			}
11750 			sd->last_balance = jiffies;
11751 			interval = get_sd_balance_interval(sd, busy);
11752 		}
11753 		if (need_serialize)
11754 			spin_unlock(&balancing);
11755 out:
11756 		if (time_after(next_balance, sd->last_balance + interval)) {
11757 			next_balance = sd->last_balance + interval;
11758 			update_next_balance = 1;
11759 		}
11760 	}
11761 	if (need_decay) {
11762 		/*
11763 		 * Ensure the rq-wide value also decays but keep it at a
11764 		 * reasonable floor to avoid funnies with rq->avg_idle.
11765 		 */
11766 		rq->max_idle_balance_cost =
11767 			max((u64)sysctl_sched_migration_cost, max_cost);
11768 	}
11769 	rcu_read_unlock();
11770 
11771 	/*
11772 	 * next_balance will be updated only when there is a need.
11773 	 * When the cpu is attached to null domain for ex, it will not be
11774 	 * updated.
11775 	 */
11776 	if (likely(update_next_balance))
11777 		rq->next_balance = next_balance;
11778 
11779 }
11780 
on_null_domain(struct rq * rq)11781 static inline int on_null_domain(struct rq *rq)
11782 {
11783 	return unlikely(!rcu_dereference_sched(rq->sd));
11784 }
11785 
11786 #ifdef CONFIG_NO_HZ_COMMON
11787 /*
11788  * idle load balancing details
11789  * - When one of the busy CPUs notice that there may be an idle rebalancing
11790  *   needed, they will kick the idle load balancer, which then does idle
11791  *   load balancing for all the idle CPUs.
11792  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11793  *   anywhere yet.
11794  */
11795 
find_new_ilb(void)11796 static inline int find_new_ilb(void)
11797 {
11798 	int ilb;
11799 	const struct cpumask *hk_mask;
11800 
11801 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11802 
11803 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11804 
11805 		if (ilb == smp_processor_id())
11806 			continue;
11807 
11808 		if (idle_cpu(ilb))
11809 			return ilb;
11810 	}
11811 
11812 	return nr_cpu_ids;
11813 }
11814 
11815 /*
11816  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11817  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11818  */
kick_ilb(unsigned int flags)11819 static void kick_ilb(unsigned int flags)
11820 {
11821 	int ilb_cpu;
11822 
11823 	/*
11824 	 * Increase nohz.next_balance only when if full ilb is triggered but
11825 	 * not if we only update stats.
11826 	 */
11827 	if (flags & NOHZ_BALANCE_KICK)
11828 		nohz.next_balance = jiffies+1;
11829 
11830 	ilb_cpu = find_new_ilb();
11831 
11832 	if (ilb_cpu >= nr_cpu_ids)
11833 		return;
11834 
11835 	/*
11836 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11837 	 * the first flag owns it; cleared by nohz_csd_func().
11838 	 */
11839 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11840 	if (flags & NOHZ_KICK_MASK)
11841 		return;
11842 
11843 	/*
11844 	 * This way we generate an IPI on the target CPU which
11845 	 * is idle. And the softirq performing nohz idle load balance
11846 	 * will be run before returning from the IPI.
11847 	 */
11848 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11849 }
11850 
11851 /*
11852  * Current decision point for kicking the idle load balancer in the presence
11853  * of idle CPUs in the system.
11854  */
nohz_balancer_kick(struct rq * rq)11855 static void nohz_balancer_kick(struct rq *rq)
11856 {
11857 	unsigned long now = jiffies;
11858 	struct sched_domain_shared *sds;
11859 	struct sched_domain *sd;
11860 	int nr_busy, i, cpu = rq->cpu;
11861 	unsigned int flags = 0;
11862 
11863 	if (unlikely(rq->idle_balance))
11864 		return;
11865 
11866 	/*
11867 	 * We may be recently in ticked or tickless idle mode. At the first
11868 	 * busy tick after returning from idle, we will update the busy stats.
11869 	 */
11870 	nohz_balance_exit_idle(rq);
11871 
11872 	/*
11873 	 * None are in tickless mode and hence no need for NOHZ idle load
11874 	 * balancing.
11875 	 */
11876 	if (likely(!atomic_read(&nohz.nr_cpus)))
11877 		return;
11878 
11879 	if (READ_ONCE(nohz.has_blocked) &&
11880 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11881 		flags = NOHZ_STATS_KICK;
11882 
11883 	if (time_before(now, nohz.next_balance))
11884 		goto out;
11885 
11886 	if (rq->nr_running >= 2) {
11887 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11888 		goto out;
11889 	}
11890 
11891 	rcu_read_lock();
11892 
11893 	sd = rcu_dereference(rq->sd);
11894 	if (sd) {
11895 		/*
11896 		 * If there's a CFS task and the current CPU has reduced
11897 		 * capacity; kick the ILB to see if there's a better CPU to run
11898 		 * on.
11899 		 */
11900 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11901 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11902 			goto unlock;
11903 		}
11904 	}
11905 
11906 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11907 	if (sd) {
11908 		/*
11909 		 * When ASYM_PACKING; see if there's a more preferred CPU
11910 		 * currently idle; in which case, kick the ILB to move tasks
11911 		 * around.
11912 		 *
11913 		 * When balancing betwen cores, all the SMT siblings of the
11914 		 * preferred CPU must be idle.
11915 		 */
11916 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11917 			if (sched_use_asym_prio(sd, i) &&
11918 			    sched_asym_prefer(i, cpu)) {
11919 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11920 				goto unlock;
11921 			}
11922 		}
11923 	}
11924 
11925 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11926 	if (sd) {
11927 		/*
11928 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11929 		 * to run the misfit task on.
11930 		 */
11931 		if (check_misfit_status(rq, sd)) {
11932 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11933 			goto unlock;
11934 		}
11935 
11936 		/*
11937 		 * For asymmetric systems, we do not want to nicely balance
11938 		 * cache use, instead we want to embrace asymmetry and only
11939 		 * ensure tasks have enough CPU capacity.
11940 		 *
11941 		 * Skip the LLC logic because it's not relevant in that case.
11942 		 */
11943 		goto unlock;
11944 	}
11945 
11946 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11947 	if (sds) {
11948 		/*
11949 		 * If there is an imbalance between LLC domains (IOW we could
11950 		 * increase the overall cache use), we need some less-loaded LLC
11951 		 * domain to pull some load. Likewise, we may need to spread
11952 		 * load within the current LLC domain (e.g. packed SMT cores but
11953 		 * other CPUs are idle). We can't really know from here how busy
11954 		 * the others are - so just get a nohz balance going if it looks
11955 		 * like this LLC domain has tasks we could move.
11956 		 */
11957 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11958 		if (nr_busy > 1) {
11959 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11960 			goto unlock;
11961 		}
11962 	}
11963 unlock:
11964 	rcu_read_unlock();
11965 out:
11966 	if (READ_ONCE(nohz.needs_update))
11967 		flags |= NOHZ_NEXT_KICK;
11968 
11969 	if (flags)
11970 		kick_ilb(flags);
11971 }
11972 
set_cpu_sd_state_busy(int cpu)11973 static void set_cpu_sd_state_busy(int cpu)
11974 {
11975 	struct sched_domain *sd;
11976 
11977 	rcu_read_lock();
11978 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11979 
11980 	if (!sd || !sd->nohz_idle)
11981 		goto unlock;
11982 	sd->nohz_idle = 0;
11983 
11984 	atomic_inc(&sd->shared->nr_busy_cpus);
11985 unlock:
11986 	rcu_read_unlock();
11987 }
11988 
nohz_balance_exit_idle(struct rq * rq)11989 void nohz_balance_exit_idle(struct rq *rq)
11990 {
11991 	SCHED_WARN_ON(rq != this_rq());
11992 
11993 	if (likely(!rq->nohz_tick_stopped))
11994 		return;
11995 
11996 	rq->nohz_tick_stopped = 0;
11997 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11998 	atomic_dec(&nohz.nr_cpus);
11999 
12000 	set_cpu_sd_state_busy(rq->cpu);
12001 }
12002 
set_cpu_sd_state_idle(int cpu)12003 static void set_cpu_sd_state_idle(int cpu)
12004 {
12005 	struct sched_domain *sd;
12006 
12007 	rcu_read_lock();
12008 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12009 
12010 	if (!sd || sd->nohz_idle)
12011 		goto unlock;
12012 	sd->nohz_idle = 1;
12013 
12014 	atomic_dec(&sd->shared->nr_busy_cpus);
12015 unlock:
12016 	rcu_read_unlock();
12017 }
12018 
12019 /*
12020  * This routine will record that the CPU is going idle with tick stopped.
12021  * This info will be used in performing idle load balancing in the future.
12022  */
nohz_balance_enter_idle(int cpu)12023 void nohz_balance_enter_idle(int cpu)
12024 {
12025 	struct rq *rq = cpu_rq(cpu);
12026 
12027 	SCHED_WARN_ON(cpu != smp_processor_id());
12028 
12029 	/* If this CPU is going down, then nothing needs to be done: */
12030 	if (!cpu_active(cpu))
12031 		return;
12032 
12033 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12034 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12035 		return;
12036 
12037 	/*
12038 	 * Can be set safely without rq->lock held
12039 	 * If a clear happens, it will have evaluated last additions because
12040 	 * rq->lock is held during the check and the clear
12041 	 */
12042 	rq->has_blocked_load = 1;
12043 
12044 	/*
12045 	 * The tick is still stopped but load could have been added in the
12046 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12047 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12048 	 * of nohz.has_blocked can only happen after checking the new load
12049 	 */
12050 	if (rq->nohz_tick_stopped)
12051 		goto out;
12052 
12053 	/* If we're a completely isolated CPU, we don't play: */
12054 	if (on_null_domain(rq))
12055 		return;
12056 
12057 	rq->nohz_tick_stopped = 1;
12058 
12059 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12060 	atomic_inc(&nohz.nr_cpus);
12061 
12062 	/*
12063 	 * Ensures that if nohz_idle_balance() fails to observe our
12064 	 * @idle_cpus_mask store, it must observe the @has_blocked
12065 	 * and @needs_update stores.
12066 	 */
12067 	smp_mb__after_atomic();
12068 
12069 	set_cpu_sd_state_idle(cpu);
12070 
12071 	WRITE_ONCE(nohz.needs_update, 1);
12072 out:
12073 	/*
12074 	 * Each time a cpu enter idle, we assume that it has blocked load and
12075 	 * enable the periodic update of the load of idle cpus
12076 	 */
12077 	WRITE_ONCE(nohz.has_blocked, 1);
12078 }
12079 
update_nohz_stats(struct rq * rq)12080 static bool update_nohz_stats(struct rq *rq)
12081 {
12082 	unsigned int cpu = rq->cpu;
12083 
12084 	if (!rq->has_blocked_load)
12085 		return false;
12086 
12087 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12088 		return false;
12089 
12090 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12091 		return true;
12092 
12093 	update_blocked_averages(cpu);
12094 
12095 	return rq->has_blocked_load;
12096 }
12097 
12098 /*
12099  * Internal function that runs load balance for all idle cpus. The load balance
12100  * can be a simple update of blocked load or a complete load balance with
12101  * tasks movement depending of flags.
12102  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12103 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12104 {
12105 	/* Earliest time when we have to do rebalance again */
12106 	unsigned long now = jiffies;
12107 	unsigned long next_balance = now + 60*HZ;
12108 	bool has_blocked_load = false;
12109 	int update_next_balance = 0;
12110 	int this_cpu = this_rq->cpu;
12111 	int balance_cpu;
12112 	struct rq *rq;
12113 
12114 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12115 
12116 	/*
12117 	 * We assume there will be no idle load after this update and clear
12118 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12119 	 * set the has_blocked flag and trigger another update of idle load.
12120 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12121 	 * setting the flag, we are sure to not clear the state and not
12122 	 * check the load of an idle cpu.
12123 	 *
12124 	 * Same applies to idle_cpus_mask vs needs_update.
12125 	 */
12126 	if (flags & NOHZ_STATS_KICK)
12127 		WRITE_ONCE(nohz.has_blocked, 0);
12128 	if (flags & NOHZ_NEXT_KICK)
12129 		WRITE_ONCE(nohz.needs_update, 0);
12130 
12131 	/*
12132 	 * Ensures that if we miss the CPU, we must see the has_blocked
12133 	 * store from nohz_balance_enter_idle().
12134 	 */
12135 	smp_mb();
12136 
12137 	/*
12138 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12139 	 * chance for other idle cpu to pull load.
12140 	 */
12141 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12142 		if (!idle_cpu(balance_cpu))
12143 			continue;
12144 
12145 		/*
12146 		 * If this CPU gets work to do, stop the load balancing
12147 		 * work being done for other CPUs. Next load
12148 		 * balancing owner will pick it up.
12149 		 */
12150 		if (!idle_cpu(this_cpu) && need_resched()) {
12151 			if (flags & NOHZ_STATS_KICK)
12152 				has_blocked_load = true;
12153 			if (flags & NOHZ_NEXT_KICK)
12154 				WRITE_ONCE(nohz.needs_update, 1);
12155 			goto abort;
12156 		}
12157 
12158 		rq = cpu_rq(balance_cpu);
12159 
12160 		if (flags & NOHZ_STATS_KICK)
12161 			has_blocked_load |= update_nohz_stats(rq);
12162 
12163 		/*
12164 		 * If time for next balance is due,
12165 		 * do the balance.
12166 		 */
12167 		if (time_after_eq(jiffies, rq->next_balance)) {
12168 			struct rq_flags rf;
12169 
12170 			rq_lock_irqsave(rq, &rf);
12171 			update_rq_clock(rq);
12172 			rq_unlock_irqrestore(rq, &rf);
12173 
12174 			if (flags & NOHZ_BALANCE_KICK)
12175 				rebalance_domains(rq, CPU_IDLE);
12176 		}
12177 
12178 		if (time_after(next_balance, rq->next_balance)) {
12179 			next_balance = rq->next_balance;
12180 			update_next_balance = 1;
12181 		}
12182 	}
12183 
12184 	/*
12185 	 * next_balance will be updated only when there is a need.
12186 	 * When the CPU is attached to null domain for ex, it will not be
12187 	 * updated.
12188 	 */
12189 	if (likely(update_next_balance))
12190 		nohz.next_balance = next_balance;
12191 
12192 	if (flags & NOHZ_STATS_KICK)
12193 		WRITE_ONCE(nohz.next_blocked,
12194 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12195 
12196 abort:
12197 	/* There is still blocked load, enable periodic update */
12198 	if (has_blocked_load)
12199 		WRITE_ONCE(nohz.has_blocked, 1);
12200 }
12201 
12202 /*
12203  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12204  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12205  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12206 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12207 {
12208 	unsigned int flags = this_rq->nohz_idle_balance;
12209 
12210 	if (!flags)
12211 		return false;
12212 
12213 	this_rq->nohz_idle_balance = 0;
12214 
12215 	if (idle != CPU_IDLE)
12216 		return false;
12217 
12218 	_nohz_idle_balance(this_rq, flags);
12219 
12220 	return true;
12221 }
12222 
12223 /*
12224  * Check if we need to run the ILB for updating blocked load before entering
12225  * idle state.
12226  */
nohz_run_idle_balance(int cpu)12227 void nohz_run_idle_balance(int cpu)
12228 {
12229 	unsigned int flags;
12230 
12231 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12232 
12233 	/*
12234 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12235 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12236 	 */
12237 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12238 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12239 }
12240 
nohz_newidle_balance(struct rq * this_rq)12241 static void nohz_newidle_balance(struct rq *this_rq)
12242 {
12243 	int this_cpu = this_rq->cpu;
12244 
12245 	/*
12246 	 * This CPU doesn't want to be disturbed by scheduler
12247 	 * housekeeping
12248 	 */
12249 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12250 		return;
12251 
12252 	/* Will wake up very soon. No time for doing anything else*/
12253 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12254 		return;
12255 
12256 	/* Don't need to update blocked load of idle CPUs*/
12257 	if (!READ_ONCE(nohz.has_blocked) ||
12258 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12259 		return;
12260 
12261 	/*
12262 	 * Set the need to trigger ILB in order to update blocked load
12263 	 * before entering idle state.
12264 	 */
12265 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12266 }
12267 
12268 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12269 static inline void nohz_balancer_kick(struct rq *rq) { }
12270 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12271 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12272 {
12273 	return false;
12274 }
12275 
nohz_newidle_balance(struct rq * this_rq)12276 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12277 #endif /* CONFIG_NO_HZ_COMMON */
12278 
12279 /*
12280  * newidle_balance is called by schedule() if this_cpu is about to become
12281  * idle. Attempts to pull tasks from other CPUs.
12282  *
12283  * Returns:
12284  *   < 0 - we released the lock and there are !fair tasks present
12285  *     0 - failed, no new tasks
12286  *   > 0 - success, new (fair) tasks present
12287  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12288 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12289 {
12290 	unsigned long next_balance = jiffies + HZ;
12291 	int this_cpu = this_rq->cpu;
12292 	u64 t0, t1, curr_cost = 0;
12293 	struct sched_domain *sd;
12294 	int pulled_task = 0;
12295 
12296 	update_misfit_status(NULL, this_rq);
12297 
12298 	/*
12299 	 * There is a task waiting to run. No need to search for one.
12300 	 * Return 0; the task will be enqueued when switching to idle.
12301 	 */
12302 	if (this_rq->ttwu_pending)
12303 		return 0;
12304 
12305 	/*
12306 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12307 	 * measure the duration of idle_balance() as idle time.
12308 	 */
12309 	this_rq->idle_stamp = rq_clock(this_rq);
12310 
12311 	/*
12312 	 * Do not pull tasks towards !active CPUs...
12313 	 */
12314 	if (!cpu_active(this_cpu))
12315 		return 0;
12316 
12317 	/*
12318 	 * This is OK, because current is on_cpu, which avoids it being picked
12319 	 * for load-balance and preemption/IRQs are still disabled avoiding
12320 	 * further scheduler activity on it and we're being very careful to
12321 	 * re-start the picking loop.
12322 	 */
12323 	rq_unpin_lock(this_rq, rf);
12324 
12325 	rcu_read_lock();
12326 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12327 
12328 	if (!READ_ONCE(this_rq->rd->overload) ||
12329 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12330 
12331 		if (sd)
12332 			update_next_balance(sd, &next_balance);
12333 		rcu_read_unlock();
12334 
12335 		goto out;
12336 	}
12337 	rcu_read_unlock();
12338 
12339 	raw_spin_rq_unlock(this_rq);
12340 
12341 	t0 = sched_clock_cpu(this_cpu);
12342 	update_blocked_averages(this_cpu);
12343 
12344 	rcu_read_lock();
12345 	for_each_domain(this_cpu, sd) {
12346 		int continue_balancing = 1;
12347 		u64 domain_cost;
12348 
12349 		update_next_balance(sd, &next_balance);
12350 
12351 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12352 			break;
12353 
12354 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12355 
12356 			pulled_task = load_balance(this_cpu, this_rq,
12357 						   sd, CPU_NEWLY_IDLE,
12358 						   &continue_balancing);
12359 
12360 			t1 = sched_clock_cpu(this_cpu);
12361 			domain_cost = t1 - t0;
12362 			update_newidle_cost(sd, domain_cost);
12363 
12364 			curr_cost += domain_cost;
12365 			t0 = t1;
12366 		}
12367 
12368 		/*
12369 		 * Stop searching for tasks to pull if there are
12370 		 * now runnable tasks on this rq.
12371 		 */
12372 		if (pulled_task || this_rq->nr_running > 0 ||
12373 		    this_rq->ttwu_pending)
12374 			break;
12375 	}
12376 	rcu_read_unlock();
12377 
12378 	raw_spin_rq_lock(this_rq);
12379 
12380 	if (curr_cost > this_rq->max_idle_balance_cost)
12381 		this_rq->max_idle_balance_cost = curr_cost;
12382 
12383 	/*
12384 	 * While browsing the domains, we released the rq lock, a task could
12385 	 * have been enqueued in the meantime. Since we're not going idle,
12386 	 * pretend we pulled a task.
12387 	 */
12388 	if (this_rq->cfs.h_nr_running && !pulled_task)
12389 		pulled_task = 1;
12390 
12391 	/* Is there a task of a high priority class? */
12392 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12393 		pulled_task = -1;
12394 
12395 out:
12396 	/* Move the next balance forward */
12397 	if (time_after(this_rq->next_balance, next_balance))
12398 		this_rq->next_balance = next_balance;
12399 
12400 	if (pulled_task)
12401 		this_rq->idle_stamp = 0;
12402 	else
12403 		nohz_newidle_balance(this_rq);
12404 
12405 	rq_repin_lock(this_rq, rf);
12406 
12407 	return pulled_task;
12408 }
12409 
12410 /*
12411  * run_rebalance_domains is triggered when needed from the scheduler tick.
12412  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12413  */
run_rebalance_domains(struct softirq_action * h)12414 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12415 {
12416 	struct rq *this_rq = this_rq();
12417 	enum cpu_idle_type idle = this_rq->idle_balance ?
12418 						CPU_IDLE : CPU_NOT_IDLE;
12419 
12420 	/*
12421 	 * If this CPU has a pending nohz_balance_kick, then do the
12422 	 * balancing on behalf of the other idle CPUs whose ticks are
12423 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12424 	 * give the idle CPUs a chance to load balance. Else we may
12425 	 * load balance only within the local sched_domain hierarchy
12426 	 * and abort nohz_idle_balance altogether if we pull some load.
12427 	 */
12428 	if (nohz_idle_balance(this_rq, idle))
12429 		return;
12430 
12431 	/* normal load balance */
12432 	update_blocked_averages(this_rq->cpu);
12433 	rebalance_domains(this_rq, idle);
12434 }
12435 
12436 /*
12437  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12438  */
trigger_load_balance(struct rq * rq)12439 void trigger_load_balance(struct rq *rq)
12440 {
12441 	/*
12442 	 * Don't need to rebalance while attached to NULL domain or
12443 	 * runqueue CPU is not active
12444 	 */
12445 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12446 		return;
12447 
12448 	if (time_after_eq(jiffies, rq->next_balance))
12449 		raise_softirq(SCHED_SOFTIRQ);
12450 
12451 	nohz_balancer_kick(rq);
12452 }
12453 
rq_online_fair(struct rq * rq)12454 static void rq_online_fair(struct rq *rq)
12455 {
12456 	update_sysctl();
12457 
12458 	update_runtime_enabled(rq);
12459 }
12460 
rq_offline_fair(struct rq * rq)12461 static void rq_offline_fair(struct rq *rq)
12462 {
12463 	update_sysctl();
12464 
12465 	/* Ensure any throttled groups are reachable by pick_next_task */
12466 	unthrottle_offline_cfs_rqs(rq);
12467 }
12468 
12469 #endif /* CONFIG_SMP */
12470 
12471 #ifdef CONFIG_SCHED_CORE
12472 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12473 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12474 {
12475 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12476 	u64 slice = se->slice;
12477 
12478 	return (rtime * min_nr_tasks > slice);
12479 }
12480 
12481 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12482 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12483 {
12484 	if (!sched_core_enabled(rq))
12485 		return;
12486 
12487 	/*
12488 	 * If runqueue has only one task which used up its slice and
12489 	 * if the sibling is forced idle, then trigger schedule to
12490 	 * give forced idle task a chance.
12491 	 *
12492 	 * sched_slice() considers only this active rq and it gets the
12493 	 * whole slice. But during force idle, we have siblings acting
12494 	 * like a single runqueue and hence we need to consider runnable
12495 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12496 	 * go through the forced idle rq, but that would be a perf hit.
12497 	 * We can assume that the forced idle CPU has at least
12498 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12499 	 * if we need to give up the CPU.
12500 	 */
12501 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12502 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12503 		resched_curr(rq);
12504 }
12505 
12506 /*
12507  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12508  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12509 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12510 			 bool forceidle)
12511 {
12512 	for_each_sched_entity(se) {
12513 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12514 
12515 		if (forceidle) {
12516 			if (cfs_rq->forceidle_seq == fi_seq)
12517 				break;
12518 			cfs_rq->forceidle_seq = fi_seq;
12519 		}
12520 
12521 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12522 	}
12523 }
12524 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12525 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12526 {
12527 	struct sched_entity *se = &p->se;
12528 
12529 	if (p->sched_class != &fair_sched_class)
12530 		return;
12531 
12532 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12533 }
12534 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12535 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12536 			bool in_fi)
12537 {
12538 	struct rq *rq = task_rq(a);
12539 	const struct sched_entity *sea = &a->se;
12540 	const struct sched_entity *seb = &b->se;
12541 	struct cfs_rq *cfs_rqa;
12542 	struct cfs_rq *cfs_rqb;
12543 	s64 delta;
12544 
12545 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12546 
12547 #ifdef CONFIG_FAIR_GROUP_SCHED
12548 	/*
12549 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12550 	 * are immediate siblings.
12551 	 */
12552 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12553 		int sea_depth = sea->depth;
12554 		int seb_depth = seb->depth;
12555 
12556 		if (sea_depth >= seb_depth)
12557 			sea = parent_entity(sea);
12558 		if (sea_depth <= seb_depth)
12559 			seb = parent_entity(seb);
12560 	}
12561 
12562 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12563 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12564 
12565 	cfs_rqa = sea->cfs_rq;
12566 	cfs_rqb = seb->cfs_rq;
12567 #else
12568 	cfs_rqa = &task_rq(a)->cfs;
12569 	cfs_rqb = &task_rq(b)->cfs;
12570 #endif
12571 
12572 	/*
12573 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12574 	 * min_vruntime_fi, which would have been updated in prior calls
12575 	 * to se_fi_update().
12576 	 */
12577 	delta = (s64)(sea->vruntime - seb->vruntime) +
12578 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12579 
12580 	return delta > 0;
12581 }
12582 
task_is_throttled_fair(struct task_struct * p,int cpu)12583 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12584 {
12585 	struct cfs_rq *cfs_rq;
12586 
12587 #ifdef CONFIG_FAIR_GROUP_SCHED
12588 	cfs_rq = task_group(p)->cfs_rq[cpu];
12589 #else
12590 	cfs_rq = &cpu_rq(cpu)->cfs;
12591 #endif
12592 	return throttled_hierarchy(cfs_rq);
12593 }
12594 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12595 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12596 #endif
12597 
12598 /*
12599  * scheduler tick hitting a task of our scheduling class.
12600  *
12601  * NOTE: This function can be called remotely by the tick offload that
12602  * goes along full dynticks. Therefore no local assumption can be made
12603  * and everything must be accessed through the @rq and @curr passed in
12604  * parameters.
12605  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12606 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12607 {
12608 	struct cfs_rq *cfs_rq;
12609 	struct sched_entity *se = &curr->se;
12610 
12611 	for_each_sched_entity(se) {
12612 		cfs_rq = cfs_rq_of(se);
12613 		entity_tick(cfs_rq, se, queued);
12614 	}
12615 
12616 	if (static_branch_unlikely(&sched_numa_balancing))
12617 		task_tick_numa(rq, curr);
12618 
12619 	update_misfit_status(curr, rq);
12620 	check_update_overutilized_status(task_rq(curr));
12621 
12622 	task_tick_core(rq, curr);
12623 }
12624 
12625 /*
12626  * called on fork with the child task as argument from the parent's context
12627  *  - child not yet on the tasklist
12628  *  - preemption disabled
12629  */
task_fork_fair(struct task_struct * p)12630 static void task_fork_fair(struct task_struct *p)
12631 {
12632 	struct sched_entity *se = &p->se, *curr;
12633 	struct cfs_rq *cfs_rq;
12634 	struct rq *rq = this_rq();
12635 	struct rq_flags rf;
12636 
12637 	rq_lock(rq, &rf);
12638 	update_rq_clock(rq);
12639 
12640 	cfs_rq = task_cfs_rq(current);
12641 	curr = cfs_rq->curr;
12642 	if (curr)
12643 		update_curr(cfs_rq);
12644 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12645 	rq_unlock(rq, &rf);
12646 }
12647 
12648 /*
12649  * Priority of the task has changed. Check to see if we preempt
12650  * the current task.
12651  */
12652 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12653 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12654 {
12655 	if (!task_on_rq_queued(p))
12656 		return;
12657 
12658 	if (rq->cfs.nr_running == 1)
12659 		return;
12660 
12661 	/*
12662 	 * Reschedule if we are currently running on this runqueue and
12663 	 * our priority decreased, or if we are not currently running on
12664 	 * this runqueue and our priority is higher than the current's
12665 	 */
12666 	if (task_current(rq, p)) {
12667 		if (p->prio > oldprio)
12668 			resched_curr(rq);
12669 	} else
12670 		wakeup_preempt(rq, p, 0);
12671 }
12672 
12673 #ifdef CONFIG_FAIR_GROUP_SCHED
12674 /*
12675  * Propagate the changes of the sched_entity across the tg tree to make it
12676  * visible to the root
12677  */
propagate_entity_cfs_rq(struct sched_entity * se)12678 static void propagate_entity_cfs_rq(struct sched_entity *se)
12679 {
12680 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12681 
12682 	if (cfs_rq_throttled(cfs_rq))
12683 		return;
12684 
12685 	if (!throttled_hierarchy(cfs_rq))
12686 		list_add_leaf_cfs_rq(cfs_rq);
12687 
12688 	/* Start to propagate at parent */
12689 	se = se->parent;
12690 
12691 	for_each_sched_entity(se) {
12692 		cfs_rq = cfs_rq_of(se);
12693 
12694 		update_load_avg(cfs_rq, se, UPDATE_TG);
12695 
12696 		if (cfs_rq_throttled(cfs_rq))
12697 			break;
12698 
12699 		if (!throttled_hierarchy(cfs_rq))
12700 			list_add_leaf_cfs_rq(cfs_rq);
12701 	}
12702 }
12703 #else
propagate_entity_cfs_rq(struct sched_entity * se)12704 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12705 #endif
12706 
detach_entity_cfs_rq(struct sched_entity * se)12707 static void detach_entity_cfs_rq(struct sched_entity *se)
12708 {
12709 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12710 
12711 #ifdef CONFIG_SMP
12712 	/*
12713 	 * In case the task sched_avg hasn't been attached:
12714 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12715 	 * - A task which has been woken up by try_to_wake_up() but is
12716 	 *   waiting for actually being woken up by sched_ttwu_pending().
12717 	 */
12718 	if (!se->avg.last_update_time)
12719 		return;
12720 #endif
12721 
12722 	/* Catch up with the cfs_rq and remove our load when we leave */
12723 	update_load_avg(cfs_rq, se, 0);
12724 	detach_entity_load_avg(cfs_rq, se);
12725 	update_tg_load_avg(cfs_rq);
12726 	propagate_entity_cfs_rq(se);
12727 }
12728 
attach_entity_cfs_rq(struct sched_entity * se)12729 static void attach_entity_cfs_rq(struct sched_entity *se)
12730 {
12731 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12732 
12733 	/* Synchronize entity with its cfs_rq */
12734 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12735 	attach_entity_load_avg(cfs_rq, se);
12736 	update_tg_load_avg(cfs_rq);
12737 	propagate_entity_cfs_rq(se);
12738 }
12739 
detach_task_cfs_rq(struct task_struct * p)12740 static void detach_task_cfs_rq(struct task_struct *p)
12741 {
12742 	struct sched_entity *se = &p->se;
12743 
12744 	detach_entity_cfs_rq(se);
12745 }
12746 
attach_task_cfs_rq(struct task_struct * p)12747 static void attach_task_cfs_rq(struct task_struct *p)
12748 {
12749 	struct sched_entity *se = &p->se;
12750 
12751 	attach_entity_cfs_rq(se);
12752 }
12753 
switched_from_fair(struct rq * rq,struct task_struct * p)12754 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12755 {
12756 	detach_task_cfs_rq(p);
12757 }
12758 
switched_to_fair(struct rq * rq,struct task_struct * p)12759 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12760 {
12761 	attach_task_cfs_rq(p);
12762 
12763 	if (task_on_rq_queued(p)) {
12764 		/*
12765 		 * We were most likely switched from sched_rt, so
12766 		 * kick off the schedule if running, otherwise just see
12767 		 * if we can still preempt the current task.
12768 		 */
12769 		if (task_current(rq, p))
12770 			resched_curr(rq);
12771 		else
12772 			wakeup_preempt(rq, p, 0);
12773 	}
12774 }
12775 
12776 /* Account for a task changing its policy or group.
12777  *
12778  * This routine is mostly called to set cfs_rq->curr field when a task
12779  * migrates between groups/classes.
12780  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12781 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12782 {
12783 	struct sched_entity *se = &p->se;
12784 
12785 #ifdef CONFIG_SMP
12786 	if (task_on_rq_queued(p)) {
12787 		/*
12788 		 * Move the next running task to the front of the list, so our
12789 		 * cfs_tasks list becomes MRU one.
12790 		 */
12791 		list_move(&se->group_node, &rq->cfs_tasks);
12792 	}
12793 #endif
12794 
12795 	for_each_sched_entity(se) {
12796 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12797 
12798 		set_next_entity(cfs_rq, se);
12799 		/* ensure bandwidth has been allocated on our new cfs_rq */
12800 		account_cfs_rq_runtime(cfs_rq, 0);
12801 	}
12802 }
12803 
init_cfs_rq(struct cfs_rq * cfs_rq)12804 void init_cfs_rq(struct cfs_rq *cfs_rq)
12805 {
12806 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12807 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12808 #ifdef CONFIG_SMP
12809 	raw_spin_lock_init(&cfs_rq->removed.lock);
12810 #endif
12811 }
12812 
12813 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12814 static void task_change_group_fair(struct task_struct *p)
12815 {
12816 	/*
12817 	 * We couldn't detach or attach a forked task which
12818 	 * hasn't been woken up by wake_up_new_task().
12819 	 */
12820 	if (READ_ONCE(p->__state) == TASK_NEW)
12821 		return;
12822 
12823 	detach_task_cfs_rq(p);
12824 
12825 #ifdef CONFIG_SMP
12826 	/* Tell se's cfs_rq has been changed -- migrated */
12827 	p->se.avg.last_update_time = 0;
12828 #endif
12829 	set_task_rq(p, task_cpu(p));
12830 	attach_task_cfs_rq(p);
12831 }
12832 
free_fair_sched_group(struct task_group * tg)12833 void free_fair_sched_group(struct task_group *tg)
12834 {
12835 	int i;
12836 
12837 	for_each_possible_cpu(i) {
12838 		if (tg->cfs_rq)
12839 			kfree(tg->cfs_rq[i]);
12840 		if (tg->se)
12841 			kfree(tg->se[i]);
12842 	}
12843 
12844 	kfree(tg->cfs_rq);
12845 	kfree(tg->se);
12846 }
12847 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12848 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12849 {
12850 	struct sched_entity *se;
12851 	struct cfs_rq *cfs_rq;
12852 	int i;
12853 
12854 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12855 	if (!tg->cfs_rq)
12856 		goto err;
12857 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12858 	if (!tg->se)
12859 		goto err;
12860 
12861 	tg->shares = NICE_0_LOAD;
12862 
12863 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12864 
12865 	for_each_possible_cpu(i) {
12866 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12867 				      GFP_KERNEL, cpu_to_node(i));
12868 		if (!cfs_rq)
12869 			goto err;
12870 
12871 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12872 				  GFP_KERNEL, cpu_to_node(i));
12873 		if (!se)
12874 			goto err_free_rq;
12875 
12876 		init_cfs_rq(cfs_rq);
12877 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12878 		init_entity_runnable_average(se);
12879 	}
12880 
12881 	return 1;
12882 
12883 err_free_rq:
12884 	kfree(cfs_rq);
12885 err:
12886 	return 0;
12887 }
12888 
online_fair_sched_group(struct task_group * tg)12889 void online_fair_sched_group(struct task_group *tg)
12890 {
12891 	struct sched_entity *se;
12892 	struct rq_flags rf;
12893 	struct rq *rq;
12894 	int i;
12895 
12896 	for_each_possible_cpu(i) {
12897 		rq = cpu_rq(i);
12898 		se = tg->se[i];
12899 		rq_lock_irq(rq, &rf);
12900 		update_rq_clock(rq);
12901 		attach_entity_cfs_rq(se);
12902 		sync_throttle(tg, i);
12903 		rq_unlock_irq(rq, &rf);
12904 	}
12905 }
12906 
unregister_fair_sched_group(struct task_group * tg)12907 void unregister_fair_sched_group(struct task_group *tg)
12908 {
12909 	unsigned long flags;
12910 	struct rq *rq;
12911 	int cpu;
12912 
12913 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12914 
12915 	for_each_possible_cpu(cpu) {
12916 		if (tg->se[cpu])
12917 			remove_entity_load_avg(tg->se[cpu]);
12918 
12919 		/*
12920 		 * Only empty task groups can be destroyed; so we can speculatively
12921 		 * check on_list without danger of it being re-added.
12922 		 */
12923 		if (!tg->cfs_rq[cpu]->on_list)
12924 			continue;
12925 
12926 		rq = cpu_rq(cpu);
12927 
12928 		raw_spin_rq_lock_irqsave(rq, flags);
12929 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12930 		raw_spin_rq_unlock_irqrestore(rq, flags);
12931 	}
12932 }
12933 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12934 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12935 			struct sched_entity *se, int cpu,
12936 			struct sched_entity *parent)
12937 {
12938 	struct rq *rq = cpu_rq(cpu);
12939 
12940 	cfs_rq->tg = tg;
12941 	cfs_rq->rq = rq;
12942 	init_cfs_rq_runtime(cfs_rq);
12943 
12944 	tg->cfs_rq[cpu] = cfs_rq;
12945 	tg->se[cpu] = se;
12946 
12947 	/* se could be NULL for root_task_group */
12948 	if (!se)
12949 		return;
12950 
12951 	if (!parent) {
12952 		se->cfs_rq = &rq->cfs;
12953 		se->depth = 0;
12954 	} else {
12955 		se->cfs_rq = parent->my_q;
12956 		se->depth = parent->depth + 1;
12957 	}
12958 
12959 	se->my_q = cfs_rq;
12960 	/* guarantee group entities always have weight */
12961 	update_load_set(&se->load, NICE_0_LOAD);
12962 	se->parent = parent;
12963 }
12964 
12965 static DEFINE_MUTEX(shares_mutex);
12966 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12967 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12968 {
12969 	int i;
12970 
12971 	lockdep_assert_held(&shares_mutex);
12972 
12973 	/*
12974 	 * We can't change the weight of the root cgroup.
12975 	 */
12976 	if (!tg->se[0])
12977 		return -EINVAL;
12978 
12979 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12980 
12981 	if (tg->shares == shares)
12982 		return 0;
12983 
12984 	tg->shares = shares;
12985 	for_each_possible_cpu(i) {
12986 		struct rq *rq = cpu_rq(i);
12987 		struct sched_entity *se = tg->se[i];
12988 		struct rq_flags rf;
12989 
12990 		/* Propagate contribution to hierarchy */
12991 		rq_lock_irqsave(rq, &rf);
12992 		update_rq_clock(rq);
12993 		for_each_sched_entity(se) {
12994 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12995 			update_cfs_group(se);
12996 		}
12997 		rq_unlock_irqrestore(rq, &rf);
12998 	}
12999 
13000 	return 0;
13001 }
13002 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13003 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13004 {
13005 	int ret;
13006 
13007 	mutex_lock(&shares_mutex);
13008 	if (tg_is_idle(tg))
13009 		ret = -EINVAL;
13010 	else
13011 		ret = __sched_group_set_shares(tg, shares);
13012 	mutex_unlock(&shares_mutex);
13013 
13014 	return ret;
13015 }
13016 
sched_group_set_idle(struct task_group * tg,long idle)13017 int sched_group_set_idle(struct task_group *tg, long idle)
13018 {
13019 	int i;
13020 
13021 	if (tg == &root_task_group)
13022 		return -EINVAL;
13023 
13024 	if (idle < 0 || idle > 1)
13025 		return -EINVAL;
13026 
13027 	mutex_lock(&shares_mutex);
13028 
13029 	if (tg->idle == idle) {
13030 		mutex_unlock(&shares_mutex);
13031 		return 0;
13032 	}
13033 
13034 	tg->idle = idle;
13035 
13036 	for_each_possible_cpu(i) {
13037 		struct rq *rq = cpu_rq(i);
13038 		struct sched_entity *se = tg->se[i];
13039 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13040 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13041 		long idle_task_delta;
13042 		struct rq_flags rf;
13043 
13044 		rq_lock_irqsave(rq, &rf);
13045 
13046 		grp_cfs_rq->idle = idle;
13047 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13048 			goto next_cpu;
13049 
13050 		if (se->on_rq) {
13051 			parent_cfs_rq = cfs_rq_of(se);
13052 			if (cfs_rq_is_idle(grp_cfs_rq))
13053 				parent_cfs_rq->idle_nr_running++;
13054 			else
13055 				parent_cfs_rq->idle_nr_running--;
13056 		}
13057 
13058 		idle_task_delta = grp_cfs_rq->h_nr_running -
13059 				  grp_cfs_rq->idle_h_nr_running;
13060 		if (!cfs_rq_is_idle(grp_cfs_rq))
13061 			idle_task_delta *= -1;
13062 
13063 		for_each_sched_entity(se) {
13064 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13065 
13066 			if (!se->on_rq)
13067 				break;
13068 
13069 			cfs_rq->idle_h_nr_running += idle_task_delta;
13070 
13071 			/* Already accounted at parent level and above. */
13072 			if (cfs_rq_is_idle(cfs_rq))
13073 				break;
13074 		}
13075 
13076 next_cpu:
13077 		rq_unlock_irqrestore(rq, &rf);
13078 	}
13079 
13080 	/* Idle groups have minimum weight. */
13081 	if (tg_is_idle(tg))
13082 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13083 	else
13084 		__sched_group_set_shares(tg, NICE_0_LOAD);
13085 
13086 	mutex_unlock(&shares_mutex);
13087 	return 0;
13088 }
13089 
13090 #else /* CONFIG_FAIR_GROUP_SCHED */
13091 
free_fair_sched_group(struct task_group * tg)13092 void free_fair_sched_group(struct task_group *tg) { }
13093 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13094 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13095 {
13096 	return 1;
13097 }
13098 
online_fair_sched_group(struct task_group * tg)13099 void online_fair_sched_group(struct task_group *tg) { }
13100 
unregister_fair_sched_group(struct task_group * tg)13101 void unregister_fair_sched_group(struct task_group *tg) { }
13102 
13103 #endif /* CONFIG_FAIR_GROUP_SCHED */
13104 
13105 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13106 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13107 {
13108 	struct sched_entity *se = &task->se;
13109 	unsigned int rr_interval = 0;
13110 
13111 	/*
13112 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13113 	 * idle runqueue:
13114 	 */
13115 	if (rq->cfs.load.weight)
13116 		rr_interval = NS_TO_JIFFIES(se->slice);
13117 
13118 	return rr_interval;
13119 }
13120 
13121 /*
13122  * All the scheduling class methods:
13123  */
13124 DEFINE_SCHED_CLASS(fair) = {
13125 
13126 	.enqueue_task		= enqueue_task_fair,
13127 	.dequeue_task		= dequeue_task_fair,
13128 	.yield_task		= yield_task_fair,
13129 	.yield_to_task		= yield_to_task_fair,
13130 
13131 	.wakeup_preempt		= check_preempt_wakeup_fair,
13132 
13133 	.pick_next_task		= __pick_next_task_fair,
13134 	.put_prev_task		= put_prev_task_fair,
13135 	.set_next_task          = set_next_task_fair,
13136 
13137 #ifdef CONFIG_SMP
13138 	.balance		= balance_fair,
13139 	.pick_task		= pick_task_fair,
13140 	.select_task_rq		= select_task_rq_fair,
13141 	.migrate_task_rq	= migrate_task_rq_fair,
13142 
13143 	.rq_online		= rq_online_fair,
13144 	.rq_offline		= rq_offline_fair,
13145 
13146 	.task_dead		= task_dead_fair,
13147 	.set_cpus_allowed	= set_cpus_allowed_common,
13148 #endif
13149 
13150 	.task_tick		= task_tick_fair,
13151 	.task_fork		= task_fork_fair,
13152 
13153 	.prio_changed		= prio_changed_fair,
13154 	.switched_from		= switched_from_fair,
13155 	.switched_to		= switched_to_fair,
13156 
13157 	.get_rr_interval	= get_rr_interval_fair,
13158 
13159 	.update_curr		= update_curr_fair,
13160 
13161 #ifdef CONFIG_FAIR_GROUP_SCHED
13162 	.task_change_group	= task_change_group_fair,
13163 #endif
13164 
13165 #ifdef CONFIG_SCHED_CORE
13166 	.task_is_throttled	= task_is_throttled_fair,
13167 #endif
13168 
13169 #ifdef CONFIG_UCLAMP_TASK
13170 	.uclamp_enabled		= 1,
13171 #endif
13172 };
13173 
13174 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13175 void print_cfs_stats(struct seq_file *m, int cpu)
13176 {
13177 	struct cfs_rq *cfs_rq, *pos;
13178 
13179 	rcu_read_lock();
13180 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13181 		print_cfs_rq(m, cpu, cfs_rq);
13182 	rcu_read_unlock();
13183 }
13184 
13185 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13186 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13187 {
13188 	int node;
13189 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13190 	struct numa_group *ng;
13191 
13192 	rcu_read_lock();
13193 	ng = rcu_dereference(p->numa_group);
13194 	for_each_online_node(node) {
13195 		if (p->numa_faults) {
13196 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13197 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13198 		}
13199 		if (ng) {
13200 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13201 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13202 		}
13203 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13204 	}
13205 	rcu_read_unlock();
13206 }
13207 #endif /* CONFIG_NUMA_BALANCING */
13208 #endif /* CONFIG_SCHED_DEBUG */
13209 
init_sched_fair_class(void)13210 __init void init_sched_fair_class(void)
13211 {
13212 #ifdef CONFIG_SMP
13213 	int i;
13214 
13215 	for_each_possible_cpu(i) {
13216 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13217 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13218 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13219 					GFP_KERNEL, cpu_to_node(i));
13220 
13221 #ifdef CONFIG_CFS_BANDWIDTH
13222 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13223 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13224 #endif
13225 	}
13226 
13227 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13228 
13229 #ifdef CONFIG_NO_HZ_COMMON
13230 	nohz.next_balance = jiffies;
13231 	nohz.next_blocked = jiffies;
13232 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13233 #endif
13234 #endif /* SMP */
13235 
13236 }
13237