1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "system/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "system/replay.h"
41 #include "qemu/units.h"
42
43 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
44 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
45
46 /* Maximum read size for checking if data reads as zero, in bytes */
47 #define MAX_ZERO_CHECK_BUFFER (128 * KiB)
48
49 static void coroutine_fn GRAPH_RDLOCK
50 bdrv_parent_cb_resize(BlockDriverState *bs);
51
52 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
53 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
54
55 static void GRAPH_RDLOCK
bdrv_parent_drained_begin(BlockDriverState * bs,BdrvChild * ignore)56 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
57 {
58 BdrvChild *c, *next;
59 IO_OR_GS_CODE();
60 assert_bdrv_graph_readable();
61
62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63 if (c == ignore) {
64 continue;
65 }
66 bdrv_parent_drained_begin_single(c);
67 }
68 }
69
bdrv_parent_drained_end_single(BdrvChild * c)70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72 GLOBAL_STATE_CODE();
73
74 assert(c->quiesced_parent);
75 c->quiesced_parent = false;
76
77 if (c->klass->drained_end) {
78 c->klass->drained_end(c);
79 }
80 }
81
82 static void GRAPH_RDLOCK
bdrv_parent_drained_end(BlockDriverState * bs,BdrvChild * ignore)83 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
84 {
85 BdrvChild *c;
86 IO_OR_GS_CODE();
87 assert_bdrv_graph_readable();
88
89 QLIST_FOREACH(c, &bs->parents, next_parent) {
90 if (c == ignore) {
91 continue;
92 }
93 bdrv_parent_drained_end_single(c);
94 }
95 }
96
bdrv_parent_drained_poll_single(BdrvChild * c)97 bool bdrv_parent_drained_poll_single(BdrvChild *c)
98 {
99 IO_OR_GS_CODE();
100
101 if (c->klass->drained_poll) {
102 return c->klass->drained_poll(c);
103 }
104 return false;
105 }
106
107 static bool GRAPH_RDLOCK
bdrv_parent_drained_poll(BlockDriverState * bs,BdrvChild * ignore,bool ignore_bds_parents)108 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
109 bool ignore_bds_parents)
110 {
111 BdrvChild *c, *next;
112 bool busy = false;
113 IO_OR_GS_CODE();
114 assert_bdrv_graph_readable();
115
116 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
117 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
118 continue;
119 }
120 busy |= bdrv_parent_drained_poll_single(c);
121 }
122
123 return busy;
124 }
125
bdrv_parent_drained_begin_single(BdrvChild * c)126 void bdrv_parent_drained_begin_single(BdrvChild *c)
127 {
128 GLOBAL_STATE_CODE();
129
130 assert(!c->quiesced_parent);
131 c->quiesced_parent = true;
132
133 if (c->klass->drained_begin) {
134 /* called with rdlock taken, but it doesn't really need it. */
135 c->klass->drained_begin(c);
136 }
137 }
138
bdrv_merge_limits(BlockLimits * dst,const BlockLimits * src)139 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
140 {
141 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
142 src->pdiscard_alignment);
143 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
144 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
145 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
146 src->max_hw_transfer);
147 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
148 src->opt_mem_alignment);
149 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
150 src->min_mem_alignment);
151 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
152 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
153 }
154
155 typedef struct BdrvRefreshLimitsState {
156 BlockDriverState *bs;
157 BlockLimits old_bl;
158 } BdrvRefreshLimitsState;
159
bdrv_refresh_limits_abort(void * opaque)160 static void bdrv_refresh_limits_abort(void *opaque)
161 {
162 BdrvRefreshLimitsState *s = opaque;
163
164 s->bs->bl = s->old_bl;
165 }
166
167 static TransactionActionDrv bdrv_refresh_limits_drv = {
168 .abort = bdrv_refresh_limits_abort,
169 .clean = g_free,
170 };
171
172 /* @tran is allowed to be NULL, in this case no rollback is possible. */
bdrv_refresh_limits(BlockDriverState * bs,Transaction * tran,Error ** errp)173 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
174 {
175 ERRP_GUARD();
176 BlockDriver *drv = bs->drv;
177 BdrvChild *c;
178 bool have_limits;
179
180 GLOBAL_STATE_CODE();
181
182 if (tran) {
183 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
184 *s = (BdrvRefreshLimitsState) {
185 .bs = bs,
186 .old_bl = bs->bl,
187 };
188 tran_add(tran, &bdrv_refresh_limits_drv, s);
189 }
190
191 memset(&bs->bl, 0, sizeof(bs->bl));
192
193 if (!drv) {
194 return;
195 }
196
197 /* Default alignment based on whether driver has byte interface */
198 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
199 drv->bdrv_aio_preadv ||
200 drv->bdrv_co_preadv_part) ? 1 : 512;
201
202 /* Take some limits from the children as a default */
203 have_limits = false;
204 QLIST_FOREACH(c, &bs->children, next) {
205 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
206 {
207 bdrv_merge_limits(&bs->bl, &c->bs->bl);
208 have_limits = true;
209 }
210
211 if (c->role & BDRV_CHILD_FILTERED) {
212 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
213 }
214 }
215
216 if (!have_limits) {
217 bs->bl.min_mem_alignment = 512;
218 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
219
220 /* Safe default since most protocols use readv()/writev()/etc */
221 bs->bl.max_iov = IOV_MAX;
222 }
223
224 /* Then let the driver override it */
225 if (drv->bdrv_refresh_limits) {
226 drv->bdrv_refresh_limits(bs, errp);
227 if (*errp) {
228 return;
229 }
230 }
231
232 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
233 error_setg(errp, "Driver requires too large request alignment");
234 }
235 }
236
237 /**
238 * The copy-on-read flag is actually a reference count so multiple users may
239 * use the feature without worrying about clobbering its previous state.
240 * Copy-on-read stays enabled until all users have called to disable it.
241 */
bdrv_enable_copy_on_read(BlockDriverState * bs)242 void bdrv_enable_copy_on_read(BlockDriverState *bs)
243 {
244 IO_CODE();
245 qatomic_inc(&bs->copy_on_read);
246 }
247
bdrv_disable_copy_on_read(BlockDriverState * bs)248 void bdrv_disable_copy_on_read(BlockDriverState *bs)
249 {
250 int old = qatomic_fetch_dec(&bs->copy_on_read);
251 IO_CODE();
252 assert(old >= 1);
253 }
254
255 typedef struct {
256 Coroutine *co;
257 BlockDriverState *bs;
258 bool done;
259 bool begin;
260 bool poll;
261 BdrvChild *parent;
262 } BdrvCoDrainData;
263
264 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bdrv_drain_poll(BlockDriverState * bs,BdrvChild * ignore_parent,bool ignore_bds_parents)265 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
266 bool ignore_bds_parents)
267 {
268 GLOBAL_STATE_CODE();
269
270 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
271 return true;
272 }
273
274 if (qatomic_read(&bs->in_flight)) {
275 return true;
276 }
277
278 return false;
279 }
280
bdrv_drain_poll_top_level(BlockDriverState * bs,BdrvChild * ignore_parent)281 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
282 BdrvChild *ignore_parent)
283 {
284 GLOBAL_STATE_CODE();
285 GRAPH_RDLOCK_GUARD_MAINLOOP();
286
287 return bdrv_drain_poll(bs, ignore_parent, false);
288 }
289
290 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
291 bool poll);
292 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
293
bdrv_co_drain_bh_cb(void * opaque)294 static void bdrv_co_drain_bh_cb(void *opaque)
295 {
296 BdrvCoDrainData *data = opaque;
297 Coroutine *co = data->co;
298 BlockDriverState *bs = data->bs;
299
300 if (bs) {
301 bdrv_dec_in_flight(bs);
302 if (data->begin) {
303 bdrv_do_drained_begin(bs, data->parent, data->poll);
304 } else {
305 assert(!data->poll);
306 bdrv_do_drained_end(bs, data->parent);
307 }
308 } else {
309 assert(data->begin);
310 bdrv_drain_all_begin();
311 }
312
313 data->done = true;
314 aio_co_wake(co);
315 }
316
bdrv_co_yield_to_drain(BlockDriverState * bs,bool begin,BdrvChild * parent,bool poll)317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318 bool begin,
319 BdrvChild *parent,
320 bool poll)
321 {
322 BdrvCoDrainData data;
323 Coroutine *self = qemu_coroutine_self();
324
325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326 * other coroutines run if they were queued by aio_co_enter(). */
327
328 assert(qemu_in_coroutine());
329 data = (BdrvCoDrainData) {
330 .co = self,
331 .bs = bs,
332 .done = false,
333 .begin = begin,
334 .parent = parent,
335 .poll = poll,
336 };
337
338 if (bs) {
339 bdrv_inc_in_flight(bs);
340 }
341
342 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
343 bdrv_co_drain_bh_cb, &data);
344
345 qemu_coroutine_yield();
346 /* If we are resumed from some other event (such as an aio completion or a
347 * timer callback), it is a bug in the caller that should be fixed. */
348 assert(data.done);
349 }
350
bdrv_do_drained_begin(BlockDriverState * bs,BdrvChild * parent,bool poll)351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (bs->quiesce_counter++ == 0) {
365 GRAPH_RDLOCK_GUARD_MAINLOOP();
366 bdrv_parent_drained_begin(bs, parent);
367 if (bs->drv && bs->drv->bdrv_drain_begin) {
368 bs->drv->bdrv_drain_begin(bs);
369 }
370 }
371
372 /*
373 * Wait for drained requests to finish.
374 *
375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
376 * call is needed so things in this AioContext can make progress even
377 * though we don't return to the main AioContext loop - this automatically
378 * includes other nodes in the same AioContext and therefore all child
379 * nodes.
380 */
381 if (poll) {
382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
383 }
384 }
385
bdrv_do_drained_begin_quiesce(BlockDriverState * bs,BdrvChild * parent)386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
387 {
388 bdrv_do_drained_begin(bs, parent, false);
389 }
390
391 void coroutine_mixed_fn
bdrv_drained_begin(BlockDriverState * bs)392 bdrv_drained_begin(BlockDriverState *bs)
393 {
394 IO_OR_GS_CODE();
395 bdrv_do_drained_begin(bs, NULL, true);
396 }
397
398 /**
399 * This function does not poll, nor must any of its recursively called
400 * functions.
401 */
bdrv_do_drained_end(BlockDriverState * bs,BdrvChild * parent)402 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
403 {
404 IO_OR_GS_CODE();
405
406 if (qemu_in_coroutine()) {
407 bdrv_co_yield_to_drain(bs, false, parent, false);
408 return;
409 }
410
411 /* At this point, we should be always running in the main loop. */
412 GLOBAL_STATE_CODE();
413 assert(bs->quiesce_counter > 0);
414
415 /* Re-enable things in child-to-parent order */
416 if (--bs->quiesce_counter == 0) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
420 }
421 bdrv_parent_drained_end(bs, parent);
422 }
423 }
424
bdrv_drained_end(BlockDriverState * bs)425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
429 }
430
bdrv_drain(BlockDriverState * bs)431 void bdrv_drain(BlockDriverState *bs)
432 {
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
436 }
437
bdrv_drain_assert_idle(BlockDriverState * bs)438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
443
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
447 }
448 }
449
450 unsigned int bdrv_drain_all_count = 0;
451
bdrv_drain_all_poll(void)452 static bool bdrv_drain_all_poll(void)
453 {
454 BlockDriverState *bs = NULL;
455 bool result = false;
456
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
459
460 /*
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
463 */
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
466 }
467
468 return result;
469 }
470
471 /*
472 * Wait for pending requests to complete across all BlockDriverStates
473 *
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
476 *
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
479 *
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482 */
bdrv_drain_all_begin_nopoll(void)483 void bdrv_drain_all_begin_nopoll(void)
484 {
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
487
488 /*
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
492 */
493 if (replay_events_enabled()) {
494 return;
495 }
496
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
502
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
507 }
508 }
509
bdrv_drain_all_begin(void)510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512 BlockDriverState *bs = NULL;
513
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
517 }
518
519 /*
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
523 */
524 if (replay_events_enabled()) {
525 return;
526 }
527
528 bdrv_drain_all_begin_nopoll();
529
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
535 }
536 }
537
bdrv_drain_all_end_quiesce(BlockDriverState * bs)538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540 GLOBAL_STATE_CODE();
541
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
544
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
547 }
548 }
549
bdrv_drain_all_end(void)550 void bdrv_drain_all_end(void)
551 {
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
554
555 /*
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
559 */
560 if (replay_events_enabled()) {
561 return;
562 }
563
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
566 }
567
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
571 }
572
bdrv_drain_all(void)573 void bdrv_drain_all(void)
574 {
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
578 }
579
580 /**
581 * Remove an active request from the tracked requests list
582 *
583 * This function should be called when a tracked request is completing.
584 */
tracked_request_end(BdrvTrackedRequest * req)585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
589 }
590
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
594
595 /*
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
599 */
600 qemu_co_queue_restart_all(&req->wait_queue);
601 }
602
603 /**
604 * Add an active request to the tracked requests list
605 */
tracked_request_begin(BdrvTrackedRequest * req,BlockDriverState * bs,int64_t offset,int64_t bytes,enum BdrvTrackedRequestType type)606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
611 {
612 bdrv_check_request(offset, bytes, &error_abort);
613
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
623 };
624
625 qemu_co_queue_init(&req->wait_queue);
626
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
630 }
631
tracked_request_overlaps(BdrvTrackedRequest * req,int64_t offset,int64_t bytes)632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
634 {
635 bdrv_check_request(offset, bytes, &error_abort);
636
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
640 }
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
644 }
645 return true;
646 }
647
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
bdrv_find_conflicting_request(BdrvTrackedRequest * self)650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652 BdrvTrackedRequest *req;
653
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
657 }
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
660 {
661 /*
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
665 */
666 assert(qemu_coroutine_self() != req->co);
667
668 /*
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
672 */
673 if (!req->waiting_for) {
674 return req;
675 }
676 }
677 }
678
679 return NULL;
680 }
681
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
bdrv_wait_serialising_requests_locked(BdrvTrackedRequest * self)684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686 BdrvTrackedRequest *req;
687
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
692 }
693 }
694
695 /* Called with req->bs->reqs_lock held */
tracked_request_set_serialising(BdrvTrackedRequest * req,uint64_t align)696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
698 {
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
704
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
708 }
709
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713
714 /**
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
717 */
bdrv_co_get_self_request(BlockDriverState * bs)718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
723
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
727 }
728 }
729
730 return NULL;
731 }
732
733 /**
734 * Round a region to subcluster (if supported) or cluster boundaries
735 */
736 void coroutine_fn GRAPH_RDLOCK
bdrv_round_to_subclusters(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * align_offset,int64_t * align_bytes)737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
739 {
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749 }
750 }
751
bdrv_get_cluster_size(BlockDriverState * bs)752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754 BlockDriverInfo bdi;
755 int ret;
756
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
762 }
763 }
764
bdrv_inc_in_flight(BlockDriverState * bs)765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
769 }
770
bdrv_wakeup(BlockDriverState * bs)771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773 IO_CODE();
774 aio_wait_kick();
775 }
776
bdrv_dec_in_flight(BlockDriverState * bs)777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
782 }
783
784 static void coroutine_fn
bdrv_wait_serialising_requests(BdrvTrackedRequest * self)785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787 BlockDriverState *bs = self->bs;
788
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
791 }
792
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
796 }
797
bdrv_make_request_serialising(BdrvTrackedRequest * req,uint64_t align)798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
800 {
801 IO_CODE();
802
803 qemu_mutex_lock(&req->bs->reqs_lock);
804
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
807
808 qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810
bdrv_check_qiov_request(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,Error ** errp)811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
814 {
815 /*
816 * Check generic offset/bytes correctness
817 */
818
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
822 }
823
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
827 }
828
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
833 }
834
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
839 }
840
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
846 }
847
848 if (!qiov) {
849 return 0;
850 }
851
852 /*
853 * Check qiov and qiov_offset
854 */
855
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
860 }
861
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
866 }
867
868 return 0;
869 }
870
bdrv_check_request(int64_t offset,int64_t bytes,Error ** errp)871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875
bdrv_check_request32(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
882 }
883
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
886 }
887
888 return 0;
889 }
890
891 /*
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
897 *
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899 */
bdrv_make_zero(BdrvChild * child,BdrvRequestFlags flags)900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
906
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
910 }
911
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
916 }
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
920 }
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
924 }
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
928 }
929 offset += bytes;
930 }
931 }
932
933 /*
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
936 *
937 * Returns 0 on success, -errno in error cases.
938 */
bdrv_co_pwrite_sync(BdrvChild * child,int64_t offset,int64_t bytes,const void * buf,BdrvRequestFlags flags)939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
942 {
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
946
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
950 }
951
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
955 }
956
957 return 0;
958 }
959
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
964
bdrv_co_io_em_complete(void * opaque,int ret)965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967 CoroutineIOCompletion *co = opaque;
968
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
971 }
972
973 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
983
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
986
987 if (!drv) {
988 return -ENOMEDIUM;
989 }
990
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
994 }
995
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
999 }
1000
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1004 }
1005
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1010 };
1011
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1021 }
1022 }
1023
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1031
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1037 }
1038
1039 return ret;
1040 }
1041
1042 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1046 {
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1054
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056
1057 if (!drv) {
1058 return -ENOMEDIUM;
1059 }
1060
1061 if (bs->open_flags & BDRV_O_NO_FLUSH) {
1062 flags &= ~BDRV_REQ_FUA;
1063 }
1064
1065 if ((flags & BDRV_REQ_FUA) &&
1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1067 flags &= ~BDRV_REQ_FUA;
1068 emulate_fua = true;
1069 }
1070
1071 flags &= bs->supported_write_flags;
1072
1073 if (drv->bdrv_co_pwritev_part) {
1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1075 flags);
1076 goto emulate_flags;
1077 }
1078
1079 if (qiov_offset > 0 || bytes != qiov->size) {
1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1081 qiov = &local_qiov;
1082 }
1083
1084 if (drv->bdrv_co_pwritev) {
1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1086 goto emulate_flags;
1087 }
1088
1089 if (drv->bdrv_aio_pwritev) {
1090 BlockAIOCB *acb;
1091 CoroutineIOCompletion co = {
1092 .coroutine = qemu_coroutine_self(),
1093 };
1094
1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1096 bdrv_co_io_em_complete, &co);
1097 if (acb == NULL) {
1098 ret = -EIO;
1099 } else {
1100 qemu_coroutine_yield();
1101 ret = co.ret;
1102 }
1103 goto emulate_flags;
1104 }
1105
1106 sector_num = offset >> BDRV_SECTOR_BITS;
1107 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1108
1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1112
1113 assert(drv->bdrv_co_writev);
1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1115
1116 emulate_flags:
1117 if (ret == 0 && emulate_fua) {
1118 ret = bdrv_co_flush(bs);
1119 }
1120
1121 if (qiov == &local_qiov) {
1122 qemu_iovec_destroy(&local_qiov);
1123 }
1124
1125 return ret;
1126 }
1127
1128 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev_compressed(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1130 int64_t bytes, QEMUIOVector *qiov,
1131 size_t qiov_offset)
1132 {
1133 BlockDriver *drv = bs->drv;
1134 QEMUIOVector local_qiov;
1135 int ret;
1136 assert_bdrv_graph_readable();
1137
1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1139
1140 if (!drv) {
1141 return -ENOMEDIUM;
1142 }
1143
1144 if (!block_driver_can_compress(drv)) {
1145 return -ENOTSUP;
1146 }
1147
1148 if (drv->bdrv_co_pwritev_compressed_part) {
1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1150 qiov, qiov_offset);
1151 }
1152
1153 if (qiov_offset == 0) {
1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1155 }
1156
1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1159 qemu_iovec_destroy(&local_qiov);
1160
1161 return ret;
1162 }
1163
1164 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_copy_on_readv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1166 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1167 {
1168 BlockDriverState *bs = child->bs;
1169
1170 /* Perform I/O through a temporary buffer so that users who scribble over
1171 * their read buffer while the operation is in progress do not end up
1172 * modifying the image file. This is critical for zero-copy guest I/O
1173 * where anything might happen inside guest memory.
1174 */
1175 void *bounce_buffer = NULL;
1176
1177 BlockDriver *drv = bs->drv;
1178 int64_t align_offset;
1179 int64_t align_bytes;
1180 int64_t skip_bytes;
1181 int ret;
1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1183 BDRV_REQUEST_MAX_BYTES);
1184 int64_t progress = 0;
1185 bool skip_write;
1186
1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1188
1189 if (!drv) {
1190 return -ENOMEDIUM;
1191 }
1192
1193 /*
1194 * Do not write anything when the BDS is inactive. That is not
1195 * allowed, and it would not help.
1196 */
1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1198
1199 /* FIXME We cannot require callers to have write permissions when all they
1200 * are doing is a read request. If we did things right, write permissions
1201 * would be obtained anyway, but internally by the copy-on-read code. As
1202 * long as it is implemented here rather than in a separate filter driver,
1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1204 * it could request permissions. Therefore we have to bypass the permission
1205 * system for the moment. */
1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1207
1208 /* Cover entire cluster so no additional backing file I/O is required when
1209 * allocating cluster in the image file. Note that this value may exceed
1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1211 * is one reason we loop rather than doing it all at once.
1212 */
1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1214 skip_bytes = offset - align_offset;
1215
1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1217 align_offset, align_bytes);
1218
1219 while (align_bytes) {
1220 int64_t pnum;
1221
1222 if (skip_write) {
1223 ret = 1; /* "already allocated", so nothing will be copied */
1224 pnum = MIN(align_bytes, max_transfer);
1225 } else {
1226 ret = bdrv_co_is_allocated(bs, align_offset,
1227 MIN(align_bytes, max_transfer), &pnum);
1228 if (ret < 0) {
1229 /*
1230 * Safe to treat errors in querying allocation as if
1231 * unallocated; we'll probably fail again soon on the
1232 * read, but at least that will set a decent errno.
1233 */
1234 pnum = MIN(align_bytes, max_transfer);
1235 }
1236
1237 /* Stop at EOF if the image ends in the middle of the cluster */
1238 if (ret == 0 && pnum == 0) {
1239 assert(progress >= bytes);
1240 break;
1241 }
1242
1243 assert(skip_bytes < pnum);
1244 }
1245
1246 if (ret <= 0) {
1247 QEMUIOVector local_qiov;
1248
1249 /* Must copy-on-read; use the bounce buffer */
1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1251 if (!bounce_buffer) {
1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1255
1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1257 if (!bounce_buffer) {
1258 ret = -ENOMEM;
1259 goto err;
1260 }
1261 }
1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1263
1264 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1265 &local_qiov, 0, 0);
1266 if (ret < 0) {
1267 goto err;
1268 }
1269
1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1271 if (drv->bdrv_co_pwrite_zeroes &&
1272 buffer_is_zero(bounce_buffer, pnum)) {
1273 /* FIXME: Should we (perhaps conditionally) be setting
1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1275 * that still correctly reads as zero? */
1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1277 BDRV_REQ_WRITE_UNCHANGED);
1278 } else {
1279 /* This does not change the data on the disk, it is not
1280 * necessary to flush even in cache=writethrough mode.
1281 */
1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1283 &local_qiov, 0,
1284 BDRV_REQ_WRITE_UNCHANGED);
1285 }
1286
1287 if (ret < 0) {
1288 /* It might be okay to ignore write errors for guest
1289 * requests. If this is a deliberate copy-on-read
1290 * then we don't want to ignore the error. Simply
1291 * report it in all cases.
1292 */
1293 goto err;
1294 }
1295
1296 if (!(flags & BDRV_REQ_PREFETCH)) {
1297 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1298 bounce_buffer + skip_bytes,
1299 MIN(pnum - skip_bytes, bytes - progress));
1300 }
1301 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1302 /* Read directly into the destination */
1303 ret = bdrv_driver_preadv(bs, offset + progress,
1304 MIN(pnum - skip_bytes, bytes - progress),
1305 qiov, qiov_offset + progress, 0);
1306 if (ret < 0) {
1307 goto err;
1308 }
1309 }
1310
1311 align_offset += pnum;
1312 align_bytes -= pnum;
1313 progress += pnum - skip_bytes;
1314 skip_bytes = 0;
1315 }
1316 ret = 0;
1317
1318 err:
1319 qemu_vfree(bounce_buffer);
1320 return ret;
1321 }
1322
1323 /*
1324 * Forwards an already correctly aligned request to the BlockDriver. This
1325 * handles copy on read, zeroing after EOF, and fragmentation of large
1326 * reads; any other features must be implemented by the caller.
1327 */
1328 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_preadv(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,int flags)1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1330 int64_t offset, int64_t bytes, int64_t align,
1331 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1332 {
1333 BlockDriverState *bs = child->bs;
1334 int64_t total_bytes, max_bytes;
1335 int ret = 0;
1336 int64_t bytes_remaining = bytes;
1337 int max_transfer;
1338
1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1340 assert(is_power_of_2(align));
1341 assert((offset & (align - 1)) == 0);
1342 assert((bytes & (align - 1)) == 0);
1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1345 align);
1346
1347 /*
1348 * TODO: We would need a per-BDS .supported_read_flags and
1349 * potential fallback support, if we ever implement any read flags
1350 * to pass through to drivers. For now, there aren't any
1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1352 */
1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1354 BDRV_REQ_REGISTERED_BUF)));
1355
1356 /* Handle Copy on Read and associated serialisation */
1357 if (flags & BDRV_REQ_COPY_ON_READ) {
1358 /* If we touch the same cluster it counts as an overlap. This
1359 * guarantees that allocating writes will be serialized and not race
1360 * with each other for the same cluster. For example, in copy-on-read
1361 * it ensures that the CoR read and write operations are atomic and
1362 * guest writes cannot interleave between them. */
1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1364 } else {
1365 bdrv_wait_serialising_requests(req);
1366 }
1367
1368 if (flags & BDRV_REQ_COPY_ON_READ) {
1369 int64_t pnum;
1370
1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1372 flags &= ~BDRV_REQ_COPY_ON_READ;
1373
1374 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1375 if (ret < 0) {
1376 goto out;
1377 }
1378
1379 if (!ret || pnum != bytes) {
1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1381 qiov, qiov_offset, flags);
1382 goto out;
1383 } else if (flags & BDRV_REQ_PREFETCH) {
1384 goto out;
1385 }
1386 }
1387
1388 /* Forward the request to the BlockDriver, possibly fragmenting it */
1389 total_bytes = bdrv_co_getlength(bs);
1390 if (total_bytes < 0) {
1391 ret = total_bytes;
1392 goto out;
1393 }
1394
1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1396
1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1398 if (bytes <= max_bytes && bytes <= max_transfer) {
1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1400 goto out;
1401 }
1402
1403 while (bytes_remaining) {
1404 int64_t num;
1405
1406 if (max_bytes) {
1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1408 assert(num);
1409
1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1411 num, qiov,
1412 qiov_offset + bytes - bytes_remaining,
1413 flags);
1414 max_bytes -= num;
1415 } else {
1416 num = bytes_remaining;
1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1418 0, bytes_remaining);
1419 }
1420 if (ret < 0) {
1421 goto out;
1422 }
1423 bytes_remaining -= num;
1424 }
1425
1426 out:
1427 return ret < 0 ? ret : 0;
1428 }
1429
1430 /*
1431 * Request padding
1432 *
1433 * |<---- align ----->| |<----- align ---->|
1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1435 * | | | | | |
1436 * -*----------$-------*-------- ... --------*-----$------------*---
1437 * | | | | | |
1438 * | offset | | end |
1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1440 * [buf ... ) [tail_buf )
1441 *
1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1443 * is placed at the beginning of @buf and @tail at the @end.
1444 *
1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1446 * around tail, if tail exists.
1447 *
1448 * @merge_reads is true for small requests,
1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1450 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1451 *
1452 * @write is true for write requests, false for read requests.
1453 *
1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1457 * I/O vector elements so for read requests, the data can be copied back after
1458 * the read is done.
1459 */
1460 typedef struct BdrvRequestPadding {
1461 uint8_t *buf;
1462 size_t buf_len;
1463 uint8_t *tail_buf;
1464 size_t head;
1465 size_t tail;
1466 bool merge_reads;
1467 bool write;
1468 QEMUIOVector local_qiov;
1469
1470 uint8_t *collapse_bounce_buf;
1471 size_t collapse_len;
1472 QEMUIOVector pre_collapse_qiov;
1473 } BdrvRequestPadding;
1474
bdrv_init_padding(BlockDriverState * bs,int64_t offset,int64_t bytes,bool write,BdrvRequestPadding * pad)1475 static bool bdrv_init_padding(BlockDriverState *bs,
1476 int64_t offset, int64_t bytes,
1477 bool write,
1478 BdrvRequestPadding *pad)
1479 {
1480 int64_t align = bs->bl.request_alignment;
1481 int64_t sum;
1482
1483 bdrv_check_request(offset, bytes, &error_abort);
1484 assert(align <= INT_MAX); /* documented in block/block_int.h */
1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1486
1487 memset(pad, 0, sizeof(*pad));
1488
1489 pad->head = offset & (align - 1);
1490 pad->tail = ((offset + bytes) & (align - 1));
1491 if (pad->tail) {
1492 pad->tail = align - pad->tail;
1493 }
1494
1495 if (!pad->head && !pad->tail) {
1496 return false;
1497 }
1498
1499 assert(bytes); /* Nothing good in aligning zero-length requests */
1500
1501 sum = pad->head + bytes + pad->tail;
1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1503 pad->buf = qemu_blockalign(bs, pad->buf_len);
1504 pad->merge_reads = sum == pad->buf_len;
1505 if (pad->tail) {
1506 pad->tail_buf = pad->buf + pad->buf_len - align;
1507 }
1508
1509 pad->write = write;
1510
1511 return true;
1512 }
1513
1514 static int coroutine_fn GRAPH_RDLOCK
bdrv_padding_rmw_read(BdrvChild * child,BdrvTrackedRequest * req,BdrvRequestPadding * pad,bool zero_middle)1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1516 BdrvRequestPadding *pad, bool zero_middle)
1517 {
1518 QEMUIOVector local_qiov;
1519 BlockDriverState *bs = child->bs;
1520 uint64_t align = bs->bl.request_alignment;
1521 int ret;
1522
1523 assert(req->serialising && pad->buf);
1524
1525 if (pad->head || pad->merge_reads) {
1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1527
1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1529
1530 if (pad->head) {
1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1532 }
1533 if (pad->merge_reads && pad->tail) {
1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1535 }
1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1537 align, &local_qiov, 0, 0);
1538 if (ret < 0) {
1539 return ret;
1540 }
1541 if (pad->head) {
1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1543 }
1544 if (pad->merge_reads && pad->tail) {
1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1546 }
1547
1548 if (pad->merge_reads) {
1549 goto zero_mem;
1550 }
1551 }
1552
1553 if (pad->tail) {
1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1555
1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1557 ret = bdrv_aligned_preadv(
1558 child, req,
1559 req->overlap_offset + req->overlap_bytes - align,
1560 align, align, &local_qiov, 0, 0);
1561 if (ret < 0) {
1562 return ret;
1563 }
1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1565 }
1566
1567 zero_mem:
1568 if (zero_middle) {
1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1570 }
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * Free *pad's associated buffers, and perform any necessary finalization steps.
1577 */
bdrv_padding_finalize(BdrvRequestPadding * pad)1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1579 {
1580 if (pad->collapse_bounce_buf) {
1581 if (!pad->write) {
1582 /*
1583 * If padding required elements in the vector to be collapsed into a
1584 * bounce buffer, copy the bounce buffer content back
1585 */
1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1587 pad->collapse_bounce_buf, pad->collapse_len);
1588 }
1589 qemu_vfree(pad->collapse_bounce_buf);
1590 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1591 }
1592 if (pad->buf) {
1593 qemu_vfree(pad->buf);
1594 qemu_iovec_destroy(&pad->local_qiov);
1595 }
1596 memset(pad, 0, sizeof(*pad));
1597 }
1598
1599 /*
1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1601 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1602 *
1603 * To ensure this, when necessary, the first two or three elements of @iov are
1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1605 * bounce buffer in pad->local_qiov.
1606 *
1607 * After performing a read request, the data from the bounce buffer must be
1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1609 */
bdrv_create_padded_qiov(BlockDriverState * bs,BdrvRequestPadding * pad,struct iovec * iov,int niov,size_t iov_offset,size_t bytes)1610 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1611 BdrvRequestPadding *pad,
1612 struct iovec *iov, int niov,
1613 size_t iov_offset, size_t bytes)
1614 {
1615 int padded_niov, surplus_count, collapse_count;
1616
1617 /* Assert this invariant */
1618 assert(niov <= IOV_MAX);
1619
1620 /*
1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1622 * to the guest is not ideal, but there is little else we can do. At least
1623 * this will practically never happen on 64-bit systems.
1624 */
1625 if (SIZE_MAX - pad->head < bytes ||
1626 SIZE_MAX - pad->head - bytes < pad->tail)
1627 {
1628 return -EINVAL;
1629 }
1630
1631 /* Length of the resulting IOV if we just concatenated everything */
1632 padded_niov = !!pad->head + niov + !!pad->tail;
1633
1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1635
1636 if (pad->head) {
1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1638 }
1639
1640 /*
1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1642 * Instead, merge the first two or three elements of @iov to reduce the
1643 * number of vector elements as necessary.
1644 */
1645 if (padded_niov > IOV_MAX) {
1646 /*
1647 * Only head and tail can have lead to the number of entries exceeding
1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1649 * to reduce the number of elements by `surplus_count`, so we merge that
1650 * many elements plus one into one element.
1651 */
1652 surplus_count = padded_niov - IOV_MAX;
1653 assert(surplus_count <= !!pad->head + !!pad->tail);
1654 collapse_count = surplus_count + 1;
1655
1656 /*
1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1658 * advance `iov` (and associated variables) by those elements.
1659 */
1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1662 collapse_count, iov_offset, SIZE_MAX);
1663 iov += collapse_count;
1664 iov_offset = 0;
1665 niov -= collapse_count;
1666 bytes -= pad->pre_collapse_qiov.size;
1667
1668 /*
1669 * Construct the bounce buffer to match the length of the to-collapse
1670 * vector elements, and for write requests, initialize it with the data
1671 * from those elements. Then add it to `pad->local_qiov`.
1672 */
1673 pad->collapse_len = pad->pre_collapse_qiov.size;
1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1675 if (pad->write) {
1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1677 pad->collapse_bounce_buf, pad->collapse_len);
1678 }
1679 qemu_iovec_add(&pad->local_qiov,
1680 pad->collapse_bounce_buf, pad->collapse_len);
1681 }
1682
1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1684
1685 if (pad->tail) {
1686 qemu_iovec_add(&pad->local_qiov,
1687 pad->buf + pad->buf_len - pad->tail, pad->tail);
1688 }
1689
1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1691 return 0;
1692 }
1693
1694 /*
1695 * bdrv_pad_request
1696 *
1697 * Exchange request parameters with padded request if needed. Don't include RMW
1698 * read of padding, bdrv_padding_rmw_read() should be called separately if
1699 * needed.
1700 *
1701 * @write is true for write requests, false for read requests.
1702 *
1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1704 * - on function start they represent original request
1705 * - on failure or when padding is not needed they are unchanged
1706 * - on success when padding is needed they represent padded request
1707 */
bdrv_pad_request(BlockDriverState * bs,QEMUIOVector ** qiov,size_t * qiov_offset,int64_t * offset,int64_t * bytes,bool write,BdrvRequestPadding * pad,bool * padded,BdrvRequestFlags * flags)1708 static int bdrv_pad_request(BlockDriverState *bs,
1709 QEMUIOVector **qiov, size_t *qiov_offset,
1710 int64_t *offset, int64_t *bytes,
1711 bool write,
1712 BdrvRequestPadding *pad, bool *padded,
1713 BdrvRequestFlags *flags)
1714 {
1715 int ret;
1716 struct iovec *sliced_iov;
1717 int sliced_niov;
1718 size_t sliced_head, sliced_tail;
1719
1720 /* Should have been checked by the caller already */
1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725
1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1727 if (padded) {
1728 *padded = false;
1729 }
1730 return 0;
1731 }
1732
1733 /*
1734 * For prefetching in stream_populate(), no qiov is passed along, because
1735 * only copy-on-read matters.
1736 */
1737 if (*qiov) {
1738 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1739 &sliced_head, &sliced_tail,
1740 &sliced_niov);
1741
1742 /* Guaranteed by bdrv_check_request32() */
1743 assert(*bytes <= SIZE_MAX);
1744 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1745 sliced_head, *bytes);
1746 if (ret < 0) {
1747 bdrv_padding_finalize(pad);
1748 return ret;
1749 }
1750 *qiov = &pad->local_qiov;
1751 *qiov_offset = 0;
1752 }
1753
1754 *bytes += pad->head + pad->tail;
1755 *offset -= pad->head;
1756 if (padded) {
1757 *padded = true;
1758 }
1759 if (flags) {
1760 /* Can't use optimization hint with bounce buffer */
1761 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1762 }
1763
1764 return 0;
1765 }
1766
bdrv_co_preadv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1767 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1768 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1769 BdrvRequestFlags flags)
1770 {
1771 IO_CODE();
1772 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1773 }
1774
bdrv_co_preadv_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1775 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1776 int64_t offset, int64_t bytes,
1777 QEMUIOVector *qiov, size_t qiov_offset,
1778 BdrvRequestFlags flags)
1779 {
1780 BlockDriverState *bs = child->bs;
1781 BdrvTrackedRequest req;
1782 BdrvRequestPadding pad;
1783 int ret;
1784 IO_CODE();
1785
1786 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1787
1788 if (!bdrv_co_is_inserted(bs)) {
1789 return -ENOMEDIUM;
1790 }
1791
1792 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1793 if (ret < 0) {
1794 return ret;
1795 }
1796
1797 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1798 /*
1799 * Aligning zero request is nonsense. Even if driver has special meaning
1800 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1801 * it to driver due to request_alignment.
1802 *
1803 * Still, no reason to return an error if someone do unaligned
1804 * zero-length read occasionally.
1805 */
1806 return 0;
1807 }
1808
1809 bdrv_inc_in_flight(bs);
1810
1811 /* Don't do copy-on-read if we read data before write operation */
1812 if (qatomic_read(&bs->copy_on_read)) {
1813 flags |= BDRV_REQ_COPY_ON_READ;
1814 }
1815
1816 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1817 &pad, NULL, &flags);
1818 if (ret < 0) {
1819 goto fail;
1820 }
1821
1822 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1823 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1824 bs->bl.request_alignment,
1825 qiov, qiov_offset, flags);
1826 tracked_request_end(&req);
1827 bdrv_padding_finalize(&pad);
1828
1829 fail:
1830 bdrv_dec_in_flight(bs);
1831
1832 return ret;
1833 }
1834
1835 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1836 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1837 BdrvRequestFlags flags)
1838 {
1839 BlockDriver *drv = bs->drv;
1840 QEMUIOVector qiov;
1841 void *buf = NULL;
1842 int ret = 0;
1843 bool need_flush = false;
1844 int head = 0;
1845 int tail = 0;
1846
1847 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1848 INT64_MAX);
1849 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1850 bs->bl.request_alignment);
1851 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1852
1853 assert_bdrv_graph_readable();
1854 bdrv_check_request(offset, bytes, &error_abort);
1855
1856 if (!drv) {
1857 return -ENOMEDIUM;
1858 }
1859
1860 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1861 return -ENOTSUP;
1862 }
1863
1864 /* By definition there is no user buffer so this flag doesn't make sense */
1865 if (flags & BDRV_REQ_REGISTERED_BUF) {
1866 return -EINVAL;
1867 }
1868
1869 /* If opened with discard=off we should never unmap. */
1870 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1871 flags &= ~BDRV_REQ_MAY_UNMAP;
1872 }
1873
1874 /* Invalidate the cached block-status data range if this write overlaps */
1875 bdrv_bsc_invalidate_range(bs, offset, bytes);
1876
1877 assert(alignment % bs->bl.request_alignment == 0);
1878 head = offset % alignment;
1879 tail = (offset + bytes) % alignment;
1880 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1881 assert(max_write_zeroes >= bs->bl.request_alignment);
1882
1883 while (bytes > 0 && !ret) {
1884 int64_t num = bytes;
1885
1886 /* Align request. Block drivers can expect the "bulk" of the request
1887 * to be aligned, and that unaligned requests do not cross cluster
1888 * boundaries.
1889 */
1890 if (head) {
1891 /* Make a small request up to the first aligned sector. For
1892 * convenience, limit this request to max_transfer even if
1893 * we don't need to fall back to writes. */
1894 num = MIN(MIN(bytes, max_transfer), alignment - head);
1895 head = (head + num) % alignment;
1896 assert(num < max_write_zeroes);
1897 } else if (tail && num > alignment) {
1898 /* Shorten the request to the last aligned sector. */
1899 num -= tail;
1900 }
1901
1902 /* limit request size */
1903 if (num > max_write_zeroes) {
1904 num = max_write_zeroes;
1905 }
1906
1907 ret = -ENOTSUP;
1908 /* First try the efficient write zeroes operation */
1909 if (drv->bdrv_co_pwrite_zeroes) {
1910 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1911 flags & bs->supported_zero_flags);
1912 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1913 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1914 need_flush = true;
1915 }
1916 } else {
1917 assert(!bs->supported_zero_flags);
1918 }
1919
1920 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1921 /* Fall back to bounce buffer if write zeroes is unsupported */
1922 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1923
1924 if ((flags & BDRV_REQ_FUA) &&
1925 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1926 /* No need for bdrv_driver_pwrite() to do a fallback
1927 * flush on each chunk; use just one at the end */
1928 write_flags &= ~BDRV_REQ_FUA;
1929 need_flush = true;
1930 }
1931 num = MIN(num, max_transfer);
1932 if (buf == NULL) {
1933 buf = qemu_try_blockalign0(bs, num);
1934 if (buf == NULL) {
1935 ret = -ENOMEM;
1936 goto fail;
1937 }
1938 }
1939 qemu_iovec_init_buf(&qiov, buf, num);
1940
1941 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1942
1943 /* Keep bounce buffer around if it is big enough for all
1944 * all future requests.
1945 */
1946 if (num < max_transfer) {
1947 qemu_vfree(buf);
1948 buf = NULL;
1949 }
1950 }
1951
1952 offset += num;
1953 bytes -= num;
1954 }
1955
1956 fail:
1957 if (ret == 0 && need_flush) {
1958 ret = bdrv_co_flush(bs);
1959 }
1960 qemu_vfree(buf);
1961 return ret;
1962 }
1963
1964 static inline int coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_prepare(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int flags)1965 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1966 BdrvTrackedRequest *req, int flags)
1967 {
1968 BlockDriverState *bs = child->bs;
1969
1970 bdrv_check_request(offset, bytes, &error_abort);
1971
1972 if (bdrv_is_read_only(bs)) {
1973 return -EPERM;
1974 }
1975
1976 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1977 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1978 assert(!(flags & ~BDRV_REQ_MASK));
1979 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1980
1981 if (flags & BDRV_REQ_SERIALISING) {
1982 QEMU_LOCK_GUARD(&bs->reqs_lock);
1983
1984 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1985
1986 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1987 return -EBUSY;
1988 }
1989
1990 bdrv_wait_serialising_requests_locked(req);
1991 } else {
1992 bdrv_wait_serialising_requests(req);
1993 }
1994
1995 assert(req->overlap_offset <= offset);
1996 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1997 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1998 child->perm & BLK_PERM_RESIZE);
1999
2000 switch (req->type) {
2001 case BDRV_TRACKED_WRITE:
2002 case BDRV_TRACKED_DISCARD:
2003 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2004 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2005 } else {
2006 assert(child->perm & BLK_PERM_WRITE);
2007 }
2008 bdrv_write_threshold_check_write(bs, offset, bytes);
2009 return 0;
2010 case BDRV_TRACKED_TRUNCATE:
2011 assert(child->perm & BLK_PERM_RESIZE);
2012 return 0;
2013 default:
2014 abort();
2015 }
2016 }
2017
2018 static inline void coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_finish(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int ret)2019 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2020 BdrvTrackedRequest *req, int ret)
2021 {
2022 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2023 BlockDriverState *bs = child->bs;
2024
2025 bdrv_check_request(offset, bytes, &error_abort);
2026
2027 qatomic_inc(&bs->write_gen);
2028
2029 /*
2030 * Discard cannot extend the image, but in error handling cases, such as
2031 * when reverting a qcow2 cluster allocation, the discarded range can pass
2032 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2033 * here. Instead, just skip it, since semantically a discard request
2034 * beyond EOF cannot expand the image anyway.
2035 */
2036 if (ret == 0 &&
2037 (req->type == BDRV_TRACKED_TRUNCATE ||
2038 end_sector > bs->total_sectors) &&
2039 req->type != BDRV_TRACKED_DISCARD) {
2040 bs->total_sectors = end_sector;
2041 bdrv_parent_cb_resize(bs);
2042 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2043 }
2044 if (req->bytes) {
2045 switch (req->type) {
2046 case BDRV_TRACKED_WRITE:
2047 stat64_max(&bs->wr_highest_offset, offset + bytes);
2048 /* fall through, to set dirty bits */
2049 case BDRV_TRACKED_DISCARD:
2050 bdrv_set_dirty(bs, offset, bytes);
2051 break;
2052 default:
2053 break;
2054 }
2055 }
2056 }
2057
2058 /*
2059 * Forwards an already correctly aligned write request to the BlockDriver,
2060 * after possibly fragmenting it.
2061 */
2062 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_pwritev(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2063 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2064 int64_t offset, int64_t bytes, int64_t align,
2065 QEMUIOVector *qiov, size_t qiov_offset,
2066 BdrvRequestFlags flags)
2067 {
2068 BlockDriverState *bs = child->bs;
2069 BlockDriver *drv = bs->drv;
2070 int ret;
2071
2072 int64_t bytes_remaining = bytes;
2073 int max_transfer;
2074
2075 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2076
2077 if (!drv) {
2078 return -ENOMEDIUM;
2079 }
2080
2081 if (bdrv_has_readonly_bitmaps(bs)) {
2082 return -EPERM;
2083 }
2084
2085 assert(is_power_of_2(align));
2086 assert((offset & (align - 1)) == 0);
2087 assert((bytes & (align - 1)) == 0);
2088 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2089 align);
2090
2091 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2092
2093 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2094 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2095 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2096 flags |= BDRV_REQ_ZERO_WRITE;
2097 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2098 flags |= BDRV_REQ_MAY_UNMAP;
2099 }
2100
2101 /* Can't use optimization hint with bufferless zero write */
2102 flags &= ~BDRV_REQ_REGISTERED_BUF;
2103 }
2104
2105 if (ret < 0) {
2106 /* Do nothing, write notifier decided to fail this request */
2107 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2108 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2109 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2110 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2111 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2112 qiov, qiov_offset);
2113 } else if (bytes <= max_transfer) {
2114 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2115 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2116 } else {
2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2118 while (bytes_remaining) {
2119 int num = MIN(bytes_remaining, max_transfer);
2120 int local_flags = flags;
2121
2122 assert(num);
2123 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2124 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2125 /* If FUA is going to be emulated by flush, we only
2126 * need to flush on the last iteration */
2127 local_flags &= ~BDRV_REQ_FUA;
2128 }
2129
2130 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2131 num, qiov,
2132 qiov_offset + bytes - bytes_remaining,
2133 local_flags);
2134 if (ret < 0) {
2135 break;
2136 }
2137 bytes_remaining -= num;
2138 }
2139 }
2140 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2141
2142 if (ret >= 0) {
2143 ret = 0;
2144 }
2145 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2146
2147 return ret;
2148 }
2149
2150 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_zero_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags,BdrvTrackedRequest * req)2151 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2152 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2153 {
2154 BlockDriverState *bs = child->bs;
2155 QEMUIOVector local_qiov;
2156 uint64_t align = bs->bl.request_alignment;
2157 int ret = 0;
2158 bool padding;
2159 BdrvRequestPadding pad;
2160
2161 /* This flag doesn't make sense for padding or zero writes */
2162 flags &= ~BDRV_REQ_REGISTERED_BUF;
2163
2164 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2165 if (padding) {
2166 assert(!(flags & BDRV_REQ_NO_WAIT));
2167 bdrv_make_request_serialising(req, align);
2168
2169 bdrv_padding_rmw_read(child, req, &pad, true);
2170
2171 if (pad.head || pad.merge_reads) {
2172 int64_t aligned_offset = offset & ~(align - 1);
2173 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2174
2175 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2176 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2177 align, &local_qiov, 0,
2178 flags & ~BDRV_REQ_ZERO_WRITE);
2179 if (ret < 0 || pad.merge_reads) {
2180 /* Error or all work is done */
2181 goto out;
2182 }
2183 offset += write_bytes - pad.head;
2184 bytes -= write_bytes - pad.head;
2185 }
2186 }
2187
2188 assert(!bytes || (offset & (align - 1)) == 0);
2189 if (bytes >= align) {
2190 /* Write the aligned part in the middle. */
2191 int64_t aligned_bytes = bytes & ~(align - 1);
2192 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2193 NULL, 0, flags);
2194 if (ret < 0) {
2195 goto out;
2196 }
2197 bytes -= aligned_bytes;
2198 offset += aligned_bytes;
2199 }
2200
2201 assert(!bytes || (offset & (align - 1)) == 0);
2202 if (bytes) {
2203 assert(align == pad.tail + bytes);
2204
2205 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2206 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2207 &local_qiov, 0,
2208 flags & ~BDRV_REQ_ZERO_WRITE);
2209 }
2210
2211 out:
2212 bdrv_padding_finalize(&pad);
2213
2214 return ret;
2215 }
2216
2217 /*
2218 * Handle a write request in coroutine context
2219 */
bdrv_co_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)2220 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2221 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2222 BdrvRequestFlags flags)
2223 {
2224 IO_CODE();
2225 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2226 }
2227
bdrv_co_pwritev_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2228 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2229 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2230 BdrvRequestFlags flags)
2231 {
2232 BlockDriverState *bs = child->bs;
2233 BdrvTrackedRequest req;
2234 uint64_t align = bs->bl.request_alignment;
2235 BdrvRequestPadding pad;
2236 int ret;
2237 bool padded = false;
2238 IO_CODE();
2239
2240 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2241
2242 if (!bdrv_co_is_inserted(bs)) {
2243 return -ENOMEDIUM;
2244 }
2245
2246 if (flags & BDRV_REQ_ZERO_WRITE) {
2247 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2248 } else {
2249 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2250 }
2251 if (ret < 0) {
2252 return ret;
2253 }
2254
2255 /* If the request is misaligned then we can't make it efficient */
2256 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2257 !QEMU_IS_ALIGNED(offset | bytes, align))
2258 {
2259 return -ENOTSUP;
2260 }
2261
2262 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2263 /*
2264 * Aligning zero request is nonsense. Even if driver has special meaning
2265 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2266 * it to driver due to request_alignment.
2267 *
2268 * Still, no reason to return an error if someone do unaligned
2269 * zero-length write occasionally.
2270 */
2271 return 0;
2272 }
2273
2274 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2275 /*
2276 * Pad request for following read-modify-write cycle.
2277 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2278 * alignment only if there is no ZERO flag.
2279 */
2280 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2281 &pad, &padded, &flags);
2282 if (ret < 0) {
2283 return ret;
2284 }
2285 }
2286
2287 bdrv_inc_in_flight(bs);
2288 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2289
2290 if (flags & BDRV_REQ_ZERO_WRITE) {
2291 assert(!padded);
2292 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2293 goto out;
2294 }
2295
2296 if (padded) {
2297 /*
2298 * Request was unaligned to request_alignment and therefore
2299 * padded. We are going to do read-modify-write, and must
2300 * serialize the request to prevent interactions of the
2301 * widened region with other transactions.
2302 */
2303 assert(!(flags & BDRV_REQ_NO_WAIT));
2304 bdrv_make_request_serialising(&req, align);
2305 bdrv_padding_rmw_read(child, &req, &pad, false);
2306 }
2307
2308 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2309 qiov, qiov_offset, flags);
2310
2311 bdrv_padding_finalize(&pad);
2312
2313 out:
2314 tracked_request_end(&req);
2315 bdrv_dec_in_flight(bs);
2316
2317 return ret;
2318 }
2319
bdrv_co_pwrite_zeroes(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags)2320 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2321 int64_t bytes, BdrvRequestFlags flags)
2322 {
2323 IO_CODE();
2324 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2325 assert_bdrv_graph_readable();
2326
2327 return bdrv_co_pwritev(child, offset, bytes, NULL,
2328 BDRV_REQ_ZERO_WRITE | flags);
2329 }
2330
2331 /*
2332 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2333 */
bdrv_flush_all(void)2334 int bdrv_flush_all(void)
2335 {
2336 BdrvNextIterator it;
2337 BlockDriverState *bs = NULL;
2338 int result = 0;
2339
2340 GLOBAL_STATE_CODE();
2341 GRAPH_RDLOCK_GUARD_MAINLOOP();
2342
2343 /*
2344 * bdrv queue is managed by record/replay,
2345 * creating new flush request for stopping
2346 * the VM may break the determinism
2347 */
2348 if (replay_events_enabled()) {
2349 return result;
2350 }
2351
2352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2353 int ret = bdrv_flush(bs);
2354 if (ret < 0 && !result) {
2355 result = ret;
2356 }
2357 }
2358
2359 return result;
2360 }
2361
2362 /*
2363 * Returns the allocation status of the specified sectors.
2364 * Drivers not implementing the functionality are assumed to not support
2365 * backing files, hence all their sectors are reported as allocated.
2366 *
2367 * 'mode' serves as a hint as to which results are favored; see the
2368 * BDRV_WANT_* macros for details.
2369 *
2370 * If 'offset' is beyond the end of the disk image the return value is
2371 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2372 *
2373 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2374 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2375 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2376 *
2377 * 'pnum' is set to the number of bytes (including and immediately
2378 * following the specified offset) that are easily known to be in the
2379 * same allocated/unallocated state. Note that a second call starting
2380 * at the original offset plus returned pnum may have the same status.
2381 * The returned value is non-zero on success except at end-of-file.
2382 *
2383 * Returns negative errno on failure. Otherwise, if the
2384 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2385 * set to the host mapping and BDS corresponding to the guest offset.
2386 */
2387 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_block_status(BlockDriverState * bs,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2388 bdrv_co_do_block_status(BlockDriverState *bs, unsigned int mode,
2389 int64_t offset, int64_t bytes,
2390 int64_t *pnum, int64_t *map, BlockDriverState **file)
2391 {
2392 int64_t total_size;
2393 int64_t n; /* bytes */
2394 int ret;
2395 int64_t local_map = 0;
2396 BlockDriverState *local_file = NULL;
2397 int64_t aligned_offset, aligned_bytes;
2398 uint32_t align;
2399 bool has_filtered_child;
2400
2401 assert(pnum);
2402 assert_bdrv_graph_readable();
2403 *pnum = 0;
2404 total_size = bdrv_co_getlength(bs);
2405 if (total_size < 0) {
2406 ret = total_size;
2407 goto early_out;
2408 }
2409
2410 if (offset >= total_size) {
2411 ret = BDRV_BLOCK_EOF;
2412 goto early_out;
2413 }
2414 if (!bytes) {
2415 ret = 0;
2416 goto early_out;
2417 }
2418
2419 n = total_size - offset;
2420 if (n < bytes) {
2421 bytes = n;
2422 }
2423
2424 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2425 assert(bs->drv);
2426 has_filtered_child = bdrv_filter_child(bs);
2427 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2428 *pnum = bytes;
2429 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2430 if (offset + bytes == total_size) {
2431 ret |= BDRV_BLOCK_EOF;
2432 }
2433 if (bs->drv->protocol_name) {
2434 ret |= BDRV_BLOCK_OFFSET_VALID;
2435 local_map = offset;
2436 local_file = bs;
2437 }
2438 goto early_out;
2439 }
2440
2441 bdrv_inc_in_flight(bs);
2442
2443 /* Round out to request_alignment boundaries */
2444 align = bs->bl.request_alignment;
2445 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2446 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2447
2448 if (bs->drv->bdrv_co_block_status) {
2449 /*
2450 * Use the block-status cache only for protocol nodes: Format
2451 * drivers are generally quick to inquire the status, but protocol
2452 * drivers often need to get information from outside of qemu, so
2453 * we do not have control over the actual implementation. There
2454 * have been cases where inquiring the status took an unreasonably
2455 * long time, and we can do nothing in qemu to fix it.
2456 * This is especially problematic for images with large data areas,
2457 * because finding the few holes in them and giving them special
2458 * treatment does not gain much performance. Therefore, we try to
2459 * cache the last-identified data region.
2460 *
2461 * Second, limiting ourselves to protocol nodes allows us to assume
2462 * the block status for data regions to be DATA | OFFSET_VALID, and
2463 * that the host offset is the same as the guest offset.
2464 *
2465 * Note that it is possible that external writers zero parts of
2466 * the cached regions without the cache being invalidated, and so
2467 * we may report zeroes as data. This is not catastrophic,
2468 * however, because reporting zeroes as data is fine.
2469 */
2470 if (QLIST_EMPTY(&bs->children) &&
2471 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2472 {
2473 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2474 local_file = bs;
2475 local_map = aligned_offset;
2476 } else {
2477 ret = bs->drv->bdrv_co_block_status(bs, mode, aligned_offset,
2478 aligned_bytes, pnum, &local_map,
2479 &local_file);
2480
2481 /*
2482 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2483 * the cache is queried above. Technically, we do not need to check
2484 * it here; the worst that can happen is that we fill the cache for
2485 * non-protocol nodes, and then it is never used. However, filling
2486 * the cache requires an RCU update, so double check here to avoid
2487 * such an update if possible.
2488 *
2489 * Check mode, because we only want to update the cache when we
2490 * have accurate information about what is zero and what is data.
2491 */
2492 if (mode == BDRV_WANT_PRECISE &&
2493 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2494 QLIST_EMPTY(&bs->children))
2495 {
2496 /*
2497 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2498 * returned local_map value must be the same as the offset we
2499 * have passed (aligned_offset), and local_bs must be the node
2500 * itself.
2501 * Assert this, because we follow this rule when reading from
2502 * the cache (see the `local_file = bs` and
2503 * `local_map = aligned_offset` assignments above), and the
2504 * result the cache delivers must be the same as the driver
2505 * would deliver.
2506 */
2507 assert(local_file == bs);
2508 assert(local_map == aligned_offset);
2509 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2510 }
2511 }
2512 } else {
2513 /* Default code for filters */
2514
2515 local_file = bdrv_filter_bs(bs);
2516 assert(local_file);
2517
2518 *pnum = aligned_bytes;
2519 local_map = aligned_offset;
2520 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2521 }
2522 if (ret < 0) {
2523 *pnum = 0;
2524 goto out;
2525 }
2526
2527 /*
2528 * The driver's result must be a non-zero multiple of request_alignment.
2529 * Clamp pnum and adjust map to original request.
2530 */
2531 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2532 align > offset - aligned_offset);
2533 if (ret & BDRV_BLOCK_RECURSE) {
2534 assert(ret & BDRV_BLOCK_DATA);
2535 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2536 assert(!(ret & BDRV_BLOCK_ZERO));
2537 }
2538
2539 *pnum -= offset - aligned_offset;
2540 if (*pnum > bytes) {
2541 *pnum = bytes;
2542 }
2543 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2544 local_map += offset - aligned_offset;
2545 }
2546
2547 if (ret & BDRV_BLOCK_RAW) {
2548 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2549 ret = bdrv_co_do_block_status(local_file, mode, local_map,
2550 *pnum, pnum, &local_map, &local_file);
2551 goto out;
2552 }
2553
2554 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2555 ret |= BDRV_BLOCK_ALLOCATED;
2556 } else if (bs->drv->supports_backing) {
2557 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2558
2559 if (!cow_bs) {
2560 ret |= BDRV_BLOCK_ZERO;
2561 } else if (mode == BDRV_WANT_PRECISE) {
2562 int64_t size2 = bdrv_co_getlength(cow_bs);
2563
2564 if (size2 >= 0 && offset >= size2) {
2565 ret |= BDRV_BLOCK_ZERO;
2566 }
2567 }
2568 }
2569
2570 if (mode == BDRV_WANT_PRECISE && ret & BDRV_BLOCK_RECURSE &&
2571 local_file && local_file != bs &&
2572 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2573 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2574 int64_t file_pnum;
2575 int ret2;
2576
2577 ret2 = bdrv_co_do_block_status(local_file, mode, local_map,
2578 *pnum, &file_pnum, NULL, NULL);
2579 if (ret2 >= 0) {
2580 /* Ignore errors. This is just providing extra information, it
2581 * is useful but not necessary.
2582 */
2583 if (ret2 & BDRV_BLOCK_EOF &&
2584 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2585 /*
2586 * It is valid for the format block driver to read
2587 * beyond the end of the underlying file's current
2588 * size; such areas read as zero.
2589 */
2590 ret |= BDRV_BLOCK_ZERO;
2591 } else {
2592 /* Limit request to the range reported by the protocol driver */
2593 *pnum = file_pnum;
2594 ret |= (ret2 & BDRV_BLOCK_ZERO);
2595 }
2596 }
2597
2598 /*
2599 * Now that the recursive search was done, clear the flag. Otherwise,
2600 * with more complicated block graphs like snapshot-access ->
2601 * copy-before-write -> qcow2, where the return value will be propagated
2602 * further up to a parent bdrv_co_do_block_status() call, both the
2603 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2604 * not allowed.
2605 */
2606 ret &= ~BDRV_BLOCK_RECURSE;
2607 }
2608
2609 out:
2610 bdrv_dec_in_flight(bs);
2611 if (ret >= 0 && offset + *pnum == total_size) {
2612 ret |= BDRV_BLOCK_EOF;
2613 }
2614 early_out:
2615 if (file) {
2616 *file = local_file;
2617 }
2618 if (map) {
2619 *map = local_map;
2620 }
2621 return ret;
2622 }
2623
2624 int coroutine_fn
bdrv_co_common_block_status_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file,int * depth)2625 bdrv_co_common_block_status_above(BlockDriverState *bs,
2626 BlockDriverState *base,
2627 bool include_base,
2628 unsigned int mode,
2629 int64_t offset,
2630 int64_t bytes,
2631 int64_t *pnum,
2632 int64_t *map,
2633 BlockDriverState **file,
2634 int *depth)
2635 {
2636 int ret;
2637 BlockDriverState *p;
2638 int64_t eof = 0;
2639 int dummy;
2640 IO_CODE();
2641
2642 assert(!include_base || base); /* Can't include NULL base */
2643 assert_bdrv_graph_readable();
2644
2645 if (!depth) {
2646 depth = &dummy;
2647 }
2648 *depth = 0;
2649
2650 if (!include_base && bs == base) {
2651 *pnum = bytes;
2652 return 0;
2653 }
2654
2655 ret = bdrv_co_do_block_status(bs, mode, offset, bytes, pnum,
2656 map, file);
2657 ++*depth;
2658 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2659 return ret;
2660 }
2661
2662 if (ret & BDRV_BLOCK_EOF) {
2663 eof = offset + *pnum;
2664 }
2665
2666 assert(*pnum <= bytes);
2667 bytes = *pnum;
2668
2669 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2670 p = bdrv_filter_or_cow_bs(p))
2671 {
2672 ret = bdrv_co_do_block_status(p, mode, offset, bytes, pnum,
2673 map, file);
2674 ++*depth;
2675 if (ret < 0) {
2676 return ret;
2677 }
2678 if (*pnum == 0) {
2679 /*
2680 * The top layer deferred to this layer, and because this layer is
2681 * short, any zeroes that we synthesize beyond EOF behave as if they
2682 * were allocated at this layer.
2683 *
2684 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2685 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2686 * below.
2687 */
2688 assert(ret & BDRV_BLOCK_EOF);
2689 *pnum = bytes;
2690 if (file) {
2691 *file = p;
2692 }
2693 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2694 break;
2695 }
2696 if (ret & BDRV_BLOCK_ALLOCATED) {
2697 /*
2698 * We've found the node and the status, we must break.
2699 *
2700 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2701 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2702 * below.
2703 */
2704 ret &= ~BDRV_BLOCK_EOF;
2705 break;
2706 }
2707
2708 if (p == base) {
2709 assert(include_base);
2710 break;
2711 }
2712
2713 /*
2714 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2715 * let's continue the diving.
2716 */
2717 assert(*pnum <= bytes);
2718 bytes = *pnum;
2719 }
2720
2721 if (offset + *pnum == eof) {
2722 ret |= BDRV_BLOCK_EOF;
2723 }
2724
2725 return ret;
2726 }
2727
bdrv_co_block_status_above(BlockDriverState * bs,BlockDriverState * base,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2728 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2729 BlockDriverState *base,
2730 int64_t offset, int64_t bytes,
2731 int64_t *pnum, int64_t *map,
2732 BlockDriverState **file)
2733 {
2734 IO_CODE();
2735 return bdrv_co_common_block_status_above(bs, base, false,
2736 BDRV_WANT_PRECISE, offset,
2737 bytes, pnum, map, file, NULL);
2738 }
2739
bdrv_co_block_status(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2740 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2741 int64_t bytes, int64_t *pnum,
2742 int64_t *map, BlockDriverState **file)
2743 {
2744 IO_CODE();
2745 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2746 offset, bytes, pnum, map, file);
2747 }
2748
2749 /*
2750 * Check @bs (and its backing chain) to see if the range defined
2751 * by @offset and @bytes is known to read as zeroes.
2752 * Return 1 if that is the case, 0 otherwise and -errno on error.
2753 * This test is meant to be fast rather than accurate so returning 0
2754 * does not guarantee non-zero data; but a return of 1 is reliable.
2755 */
bdrv_co_is_zero_fast(BlockDriverState * bs,int64_t offset,int64_t bytes)2756 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2757 int64_t bytes)
2758 {
2759 int ret;
2760 int64_t pnum;
2761 IO_CODE();
2762
2763 while (bytes) {
2764 ret = bdrv_co_common_block_status_above(bs, NULL, false,
2765 BDRV_WANT_ZERO, offset, bytes,
2766 &pnum, NULL, NULL, NULL);
2767
2768 if (ret < 0) {
2769 return ret;
2770 }
2771 if (!(ret & BDRV_BLOCK_ZERO)) {
2772 return 0;
2773 }
2774 offset += pnum;
2775 bytes -= pnum;
2776 }
2777
2778 return 1;
2779 }
2780
2781 /*
2782 * Check @bs (and its backing chain) to see if the entire image is known
2783 * to read as zeroes.
2784 * Return 1 if that is the case, 0 otherwise and -errno on error.
2785 * This test is meant to be fast rather than accurate so returning 0
2786 * does not guarantee non-zero data; however, a return of 1 is reliable,
2787 * and this function can report 1 in more cases than bdrv_co_is_zero_fast.
2788 */
bdrv_co_is_all_zeroes(BlockDriverState * bs)2789 int coroutine_fn bdrv_co_is_all_zeroes(BlockDriverState *bs)
2790 {
2791 int ret;
2792 int64_t pnum, bytes;
2793 char *buf;
2794 QEMUIOVector local_qiov;
2795 IO_CODE();
2796
2797 bytes = bdrv_co_getlength(bs);
2798 if (bytes < 0) {
2799 return bytes;
2800 }
2801
2802 /* First probe - see if the entire image reads as zero */
2803 ret = bdrv_co_common_block_status_above(bs, NULL, false, BDRV_WANT_ZERO,
2804 0, bytes, &pnum, NULL, NULL,
2805 NULL);
2806 if (ret < 0) {
2807 return ret;
2808 }
2809 if (ret & BDRV_BLOCK_ZERO) {
2810 return bdrv_co_is_zero_fast(bs, pnum, bytes - pnum);
2811 }
2812
2813 /*
2814 * Because of the way 'blockdev-create' works, raw files tend to
2815 * be created with a non-sparse region at the front to make
2816 * alignment probing easier. If the block starts with only a
2817 * small allocated region, it is still worth the effort to see if
2818 * the rest of the image is still sparse, coupled with manually
2819 * reading the first region to see if it reads zero after all.
2820 */
2821 if (pnum > MAX_ZERO_CHECK_BUFFER) {
2822 return 0;
2823 }
2824 ret = bdrv_co_is_zero_fast(bs, pnum, bytes - pnum);
2825 if (ret <= 0) {
2826 return ret;
2827 }
2828 /* Only the head of the image is unknown, and it's small. Read it. */
2829 buf = qemu_blockalign(bs, pnum);
2830 qemu_iovec_init_buf(&local_qiov, buf, pnum);
2831 ret = bdrv_driver_preadv(bs, 0, pnum, &local_qiov, 0, 0);
2832 if (ret >= 0) {
2833 ret = buffer_is_zero(buf, pnum);
2834 }
2835 qemu_vfree(buf);
2836 return ret;
2837 }
2838
bdrv_co_is_allocated(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum)2839 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2840 int64_t bytes, int64_t *pnum)
2841 {
2842 int ret;
2843 int64_t dummy;
2844 IO_CODE();
2845
2846 ret = bdrv_co_common_block_status_above(bs, bs, true, BDRV_WANT_ALLOCATED,
2847 offset, bytes, pnum ? pnum : &dummy,
2848 NULL, NULL, NULL);
2849 if (ret < 0) {
2850 return ret;
2851 }
2852 return !!(ret & BDRV_BLOCK_ALLOCATED);
2853 }
2854
2855 /*
2856 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2857 *
2858 * Return a positive depth if (a prefix of) the given range is allocated
2859 * in any image between BASE and TOP (BASE is only included if include_base
2860 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2861 * BASE can be NULL to check if the given offset is allocated in any
2862 * image of the chain. Return 0 otherwise, or negative errno on
2863 * failure.
2864 *
2865 * 'pnum' is set to the number of bytes (including and immediately
2866 * following the specified offset) that are known to be in the same
2867 * allocated/unallocated state. Note that a subsequent call starting
2868 * at 'offset + *pnum' may return the same allocation status (in other
2869 * words, the result is not necessarily the maximum possible range);
2870 * but 'pnum' will only be 0 when end of file is reached.
2871 */
bdrv_co_is_allocated_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,int64_t offset,int64_t bytes,int64_t * pnum)2872 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2873 BlockDriverState *base,
2874 bool include_base, int64_t offset,
2875 int64_t bytes, int64_t *pnum)
2876 {
2877 int depth;
2878 int ret;
2879 IO_CODE();
2880
2881 ret = bdrv_co_common_block_status_above(bs, base, include_base,
2882 BDRV_WANT_ALLOCATED,
2883 offset, bytes, pnum, NULL, NULL,
2884 &depth);
2885 if (ret < 0) {
2886 return ret;
2887 }
2888
2889 if (ret & BDRV_BLOCK_ALLOCATED) {
2890 return depth;
2891 }
2892 return 0;
2893 }
2894
2895 int coroutine_fn
bdrv_co_readv_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2896 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2897 {
2898 BlockDriver *drv = bs->drv;
2899 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2900 int ret;
2901 IO_CODE();
2902 assert_bdrv_graph_readable();
2903
2904 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2905 if (ret < 0) {
2906 return ret;
2907 }
2908
2909 if (!drv) {
2910 return -ENOMEDIUM;
2911 }
2912
2913 bdrv_inc_in_flight(bs);
2914
2915 if (drv->bdrv_co_load_vmstate) {
2916 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2917 } else if (child_bs) {
2918 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2919 } else {
2920 ret = -ENOTSUP;
2921 }
2922
2923 bdrv_dec_in_flight(bs);
2924
2925 return ret;
2926 }
2927
2928 int coroutine_fn
bdrv_co_writev_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2929 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2930 {
2931 BlockDriver *drv = bs->drv;
2932 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2933 int ret;
2934 IO_CODE();
2935 assert_bdrv_graph_readable();
2936
2937 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2938 if (ret < 0) {
2939 return ret;
2940 }
2941
2942 if (!drv) {
2943 return -ENOMEDIUM;
2944 }
2945
2946 bdrv_inc_in_flight(bs);
2947
2948 if (drv->bdrv_co_save_vmstate) {
2949 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2950 } else if (child_bs) {
2951 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2952 } else {
2953 ret = -ENOTSUP;
2954 }
2955
2956 bdrv_dec_in_flight(bs);
2957
2958 return ret;
2959 }
2960
bdrv_save_vmstate(BlockDriverState * bs,const uint8_t * buf,int64_t pos,int size)2961 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2962 int64_t pos, int size)
2963 {
2964 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2965 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2966 IO_CODE();
2967
2968 return ret < 0 ? ret : size;
2969 }
2970
bdrv_load_vmstate(BlockDriverState * bs,uint8_t * buf,int64_t pos,int size)2971 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2972 int64_t pos, int size)
2973 {
2974 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2975 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2976 IO_CODE();
2977
2978 return ret < 0 ? ret : size;
2979 }
2980
2981 /**************************************************************/
2982 /* async I/Os */
2983
2984 /**
2985 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2986 * must be processed with the BQL held too (IOThreads are not allowed).
2987 *
2988 * Use bdrv_aio_cancel_async() instead when possible.
2989 */
bdrv_aio_cancel(BlockAIOCB * acb)2990 void bdrv_aio_cancel(BlockAIOCB *acb)
2991 {
2992 GLOBAL_STATE_CODE();
2993 qemu_aio_ref(acb);
2994 bdrv_aio_cancel_async(acb);
2995 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2996 qemu_aio_unref(acb);
2997 }
2998
2999 /* Async version of aio cancel. The caller is not blocked if the acb implements
3000 * cancel_async, otherwise we do nothing and let the request normally complete.
3001 * In either case the completion callback must be called. */
bdrv_aio_cancel_async(BlockAIOCB * acb)3002 void bdrv_aio_cancel_async(BlockAIOCB *acb)
3003 {
3004 IO_CODE();
3005 if (acb->aiocb_info->cancel_async) {
3006 acb->aiocb_info->cancel_async(acb);
3007 }
3008 }
3009
3010 /**************************************************************/
3011 /* Coroutine block device emulation */
3012
bdrv_co_flush(BlockDriverState * bs)3013 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3014 {
3015 BdrvChild *primary_child = bdrv_primary_child(bs);
3016 BdrvChild *child;
3017 int current_gen;
3018 int ret = 0;
3019 IO_CODE();
3020
3021 assert_bdrv_graph_readable();
3022 bdrv_inc_in_flight(bs);
3023
3024 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
3025 bdrv_is_sg(bs)) {
3026 goto early_exit;
3027 }
3028
3029 qemu_mutex_lock(&bs->reqs_lock);
3030 current_gen = qatomic_read(&bs->write_gen);
3031
3032 /* Wait until any previous flushes are completed */
3033 while (bs->active_flush_req) {
3034 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3035 }
3036
3037 /* Flushes reach this point in nondecreasing current_gen order. */
3038 bs->active_flush_req = true;
3039 qemu_mutex_unlock(&bs->reqs_lock);
3040
3041 /* Write back all layers by calling one driver function */
3042 if (bs->drv->bdrv_co_flush) {
3043 ret = bs->drv->bdrv_co_flush(bs);
3044 goto out;
3045 }
3046
3047 /* Write back cached data to the OS even with cache=unsafe */
3048 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3049 if (bs->drv->bdrv_co_flush_to_os) {
3050 ret = bs->drv->bdrv_co_flush_to_os(bs);
3051 if (ret < 0) {
3052 goto out;
3053 }
3054 }
3055
3056 /* But don't actually force it to the disk with cache=unsafe */
3057 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3058 goto flush_children;
3059 }
3060
3061 /* Check if we really need to flush anything */
3062 if (bs->flushed_gen == current_gen) {
3063 goto flush_children;
3064 }
3065
3066 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3067 if (!bs->drv) {
3068 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3069 * (even in case of apparent success) */
3070 ret = -ENOMEDIUM;
3071 goto out;
3072 }
3073 if (bs->drv->bdrv_co_flush_to_disk) {
3074 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3075 } else if (bs->drv->bdrv_aio_flush) {
3076 BlockAIOCB *acb;
3077 CoroutineIOCompletion co = {
3078 .coroutine = qemu_coroutine_self(),
3079 };
3080
3081 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3082 if (acb == NULL) {
3083 ret = -EIO;
3084 } else {
3085 qemu_coroutine_yield();
3086 ret = co.ret;
3087 }
3088 } else {
3089 /*
3090 * Some block drivers always operate in either writethrough or unsafe
3091 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3092 * know how the server works (because the behaviour is hardcoded or
3093 * depends on server-side configuration), so we can't ensure that
3094 * everything is safe on disk. Returning an error doesn't work because
3095 * that would break guests even if the server operates in writethrough
3096 * mode.
3097 *
3098 * Let's hope the user knows what he's doing.
3099 */
3100 ret = 0;
3101 }
3102
3103 if (ret < 0) {
3104 goto out;
3105 }
3106
3107 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3108 * in the case of cache=unsafe, so there are no useless flushes.
3109 */
3110 flush_children:
3111 ret = 0;
3112 QLIST_FOREACH(child, &bs->children, next) {
3113 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3114 int this_child_ret = bdrv_co_flush(child->bs);
3115 if (!ret) {
3116 ret = this_child_ret;
3117 }
3118 }
3119 }
3120
3121 out:
3122 /* Notify any pending flushes that we have completed */
3123 if (ret == 0) {
3124 bs->flushed_gen = current_gen;
3125 }
3126
3127 qemu_mutex_lock(&bs->reqs_lock);
3128 bs->active_flush_req = false;
3129 /* Return value is ignored - it's ok if wait queue is empty */
3130 qemu_co_queue_next(&bs->flush_queue);
3131 qemu_mutex_unlock(&bs->reqs_lock);
3132
3133 early_exit:
3134 bdrv_dec_in_flight(bs);
3135 return ret;
3136 }
3137
bdrv_co_pdiscard(BdrvChild * child,int64_t offset,int64_t bytes)3138 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3139 int64_t bytes)
3140 {
3141 BdrvTrackedRequest req;
3142 int ret;
3143 int64_t max_pdiscard;
3144 int head, tail, align;
3145 BlockDriverState *bs = child->bs;
3146 IO_CODE();
3147 assert_bdrv_graph_readable();
3148
3149 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3150 return -ENOMEDIUM;
3151 }
3152
3153 if (bdrv_has_readonly_bitmaps(bs)) {
3154 return -EPERM;
3155 }
3156
3157 ret = bdrv_check_request(offset, bytes, NULL);
3158 if (ret < 0) {
3159 return ret;
3160 }
3161
3162 /* Do nothing if disabled. */
3163 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3164 return 0;
3165 }
3166
3167 if (!bs->drv->bdrv_co_pdiscard) {
3168 return 0;
3169 }
3170
3171 /* Invalidate the cached block-status data range if this discard overlaps */
3172 bdrv_bsc_invalidate_range(bs, offset, bytes);
3173
3174 /*
3175 * Discard is advisory, but some devices track and coalesce
3176 * unaligned requests, so we must pass everything down rather than
3177 * round here. Still, most devices reject unaligned requests with
3178 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly.
3179 */
3180 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3181 assert(align % bs->bl.request_alignment == 0);
3182 head = offset % align;
3183 tail = (offset + bytes) % align;
3184
3185 bdrv_inc_in_flight(bs);
3186 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3187
3188 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3189 if (ret < 0) {
3190 goto out;
3191 }
3192
3193 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3194 align);
3195 assert(max_pdiscard >= bs->bl.request_alignment);
3196
3197 while (bytes > 0) {
3198 int64_t num = bytes;
3199
3200 if (head) {
3201 /* Make small requests to get to alignment boundaries. */
3202 num = MIN(bytes, align - head);
3203 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3204 num %= bs->bl.request_alignment;
3205 }
3206 head = (head + num) % align;
3207 assert(num < max_pdiscard);
3208 } else if (tail) {
3209 if (num > align) {
3210 /* Shorten the request to the last aligned cluster. */
3211 num -= tail;
3212 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3213 tail > bs->bl.request_alignment) {
3214 tail %= bs->bl.request_alignment;
3215 num -= tail;
3216 }
3217 }
3218 /* limit request size */
3219 if (num > max_pdiscard) {
3220 num = max_pdiscard;
3221 }
3222
3223 if (!bs->drv) {
3224 ret = -ENOMEDIUM;
3225 goto out;
3226 }
3227
3228 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3229 if (ret && ret != -ENOTSUP) {
3230 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) {
3231 /* Silently skip rejected unaligned head/tail requests */
3232 } else {
3233 goto out; /* bail out */
3234 }
3235 }
3236
3237 offset += num;
3238 bytes -= num;
3239 }
3240 ret = 0;
3241 out:
3242 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3243 tracked_request_end(&req);
3244 bdrv_dec_in_flight(bs);
3245 return ret;
3246 }
3247
bdrv_co_ioctl(BlockDriverState * bs,int req,void * buf)3248 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3249 {
3250 BlockDriver *drv = bs->drv;
3251 CoroutineIOCompletion co = {
3252 .coroutine = qemu_coroutine_self(),
3253 };
3254 BlockAIOCB *acb;
3255 IO_CODE();
3256 assert_bdrv_graph_readable();
3257
3258 bdrv_inc_in_flight(bs);
3259 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3260 co.ret = -ENOTSUP;
3261 goto out;
3262 }
3263
3264 if (drv->bdrv_co_ioctl) {
3265 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3266 } else {
3267 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3268 if (!acb) {
3269 co.ret = -ENOTSUP;
3270 goto out;
3271 }
3272 qemu_coroutine_yield();
3273 }
3274 out:
3275 bdrv_dec_in_flight(bs);
3276 return co.ret;
3277 }
3278
bdrv_co_zone_report(BlockDriverState * bs,int64_t offset,unsigned int * nr_zones,BlockZoneDescriptor * zones)3279 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3280 unsigned int *nr_zones,
3281 BlockZoneDescriptor *zones)
3282 {
3283 BlockDriver *drv = bs->drv;
3284 CoroutineIOCompletion co = {
3285 .coroutine = qemu_coroutine_self(),
3286 };
3287 IO_CODE();
3288
3289 bdrv_inc_in_flight(bs);
3290 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3291 co.ret = -ENOTSUP;
3292 goto out;
3293 }
3294 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3295 out:
3296 bdrv_dec_in_flight(bs);
3297 return co.ret;
3298 }
3299
bdrv_co_zone_mgmt(BlockDriverState * bs,BlockZoneOp op,int64_t offset,int64_t len)3300 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3301 int64_t offset, int64_t len)
3302 {
3303 BlockDriver *drv = bs->drv;
3304 CoroutineIOCompletion co = {
3305 .coroutine = qemu_coroutine_self(),
3306 };
3307 IO_CODE();
3308
3309 bdrv_inc_in_flight(bs);
3310 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3311 co.ret = -ENOTSUP;
3312 goto out;
3313 }
3314 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3315 out:
3316 bdrv_dec_in_flight(bs);
3317 return co.ret;
3318 }
3319
bdrv_co_zone_append(BlockDriverState * bs,int64_t * offset,QEMUIOVector * qiov,BdrvRequestFlags flags)3320 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3321 QEMUIOVector *qiov,
3322 BdrvRequestFlags flags)
3323 {
3324 int ret;
3325 BlockDriver *drv = bs->drv;
3326 CoroutineIOCompletion co = {
3327 .coroutine = qemu_coroutine_self(),
3328 };
3329 IO_CODE();
3330
3331 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3332 if (ret < 0) {
3333 return ret;
3334 }
3335
3336 bdrv_inc_in_flight(bs);
3337 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3338 co.ret = -ENOTSUP;
3339 goto out;
3340 }
3341 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3342 out:
3343 bdrv_dec_in_flight(bs);
3344 return co.ret;
3345 }
3346
qemu_blockalign(BlockDriverState * bs,size_t size)3347 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3348 {
3349 IO_CODE();
3350 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3351 }
3352
qemu_blockalign0(BlockDriverState * bs,size_t size)3353 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3354 {
3355 IO_CODE();
3356 return memset(qemu_blockalign(bs, size), 0, size);
3357 }
3358
qemu_try_blockalign(BlockDriverState * bs,size_t size)3359 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3360 {
3361 size_t align = bdrv_opt_mem_align(bs);
3362 IO_CODE();
3363
3364 /* Ensure that NULL is never returned on success */
3365 assert(align > 0);
3366 if (size == 0) {
3367 size = align;
3368 }
3369
3370 return qemu_try_memalign(align, size);
3371 }
3372
qemu_try_blockalign0(BlockDriverState * bs,size_t size)3373 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3374 {
3375 void *mem = qemu_try_blockalign(bs, size);
3376 IO_CODE();
3377
3378 if (mem) {
3379 memset(mem, 0, size);
3380 }
3381
3382 return mem;
3383 }
3384
3385 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3386 static void GRAPH_RDLOCK
bdrv_register_buf_rollback(BlockDriverState * bs,void * host,size_t size,BdrvChild * final_child)3387 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3388 BdrvChild *final_child)
3389 {
3390 BdrvChild *child;
3391
3392 GLOBAL_STATE_CODE();
3393 assert_bdrv_graph_readable();
3394
3395 QLIST_FOREACH(child, &bs->children, next) {
3396 if (child == final_child) {
3397 break;
3398 }
3399
3400 bdrv_unregister_buf(child->bs, host, size);
3401 }
3402
3403 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3404 bs->drv->bdrv_unregister_buf(bs, host, size);
3405 }
3406 }
3407
bdrv_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)3408 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3409 Error **errp)
3410 {
3411 BdrvChild *child;
3412
3413 GLOBAL_STATE_CODE();
3414 GRAPH_RDLOCK_GUARD_MAINLOOP();
3415
3416 if (bs->drv && bs->drv->bdrv_register_buf) {
3417 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3418 return false;
3419 }
3420 }
3421 QLIST_FOREACH(child, &bs->children, next) {
3422 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3423 bdrv_register_buf_rollback(bs, host, size, child);
3424 return false;
3425 }
3426 }
3427 return true;
3428 }
3429
bdrv_unregister_buf(BlockDriverState * bs,void * host,size_t size)3430 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3431 {
3432 BdrvChild *child;
3433
3434 GLOBAL_STATE_CODE();
3435 GRAPH_RDLOCK_GUARD_MAINLOOP();
3436
3437 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3438 bs->drv->bdrv_unregister_buf(bs, host, size);
3439 }
3440 QLIST_FOREACH(child, &bs->children, next) {
3441 bdrv_unregister_buf(child->bs, host, size);
3442 }
3443 }
3444
bdrv_co_copy_range_internal(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags,bool recurse_src)3445 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3446 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3447 int64_t dst_offset, int64_t bytes,
3448 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3449 bool recurse_src)
3450 {
3451 BdrvTrackedRequest req;
3452 int ret;
3453 assert_bdrv_graph_readable();
3454
3455 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3456 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3457 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3458 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3459 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3460
3461 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3462 return -ENOMEDIUM;
3463 }
3464 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3465 if (ret) {
3466 return ret;
3467 }
3468 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3469 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3470 }
3471
3472 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3473 return -ENOMEDIUM;
3474 }
3475 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3476 if (ret) {
3477 return ret;
3478 }
3479
3480 if (!src->bs->drv->bdrv_co_copy_range_from
3481 || !dst->bs->drv->bdrv_co_copy_range_to
3482 || src->bs->encrypted || dst->bs->encrypted) {
3483 return -ENOTSUP;
3484 }
3485
3486 if (recurse_src) {
3487 bdrv_inc_in_flight(src->bs);
3488 tracked_request_begin(&req, src->bs, src_offset, bytes,
3489 BDRV_TRACKED_READ);
3490
3491 /* BDRV_REQ_SERIALISING is only for write operation */
3492 assert(!(read_flags & BDRV_REQ_SERIALISING));
3493 bdrv_wait_serialising_requests(&req);
3494
3495 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3496 src, src_offset,
3497 dst, dst_offset,
3498 bytes,
3499 read_flags, write_flags);
3500
3501 tracked_request_end(&req);
3502 bdrv_dec_in_flight(src->bs);
3503 } else {
3504 bdrv_inc_in_flight(dst->bs);
3505 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3506 BDRV_TRACKED_WRITE);
3507 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3508 write_flags);
3509 if (!ret) {
3510 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3511 src, src_offset,
3512 dst, dst_offset,
3513 bytes,
3514 read_flags, write_flags);
3515 }
3516 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3517 tracked_request_end(&req);
3518 bdrv_dec_in_flight(dst->bs);
3519 }
3520
3521 return ret;
3522 }
3523
3524 /* Copy range from @src to @dst.
3525 *
3526 * See the comment of bdrv_co_copy_range for the parameter and return value
3527 * semantics. */
bdrv_co_copy_range_from(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3528 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3529 BdrvChild *dst, int64_t dst_offset,
3530 int64_t bytes,
3531 BdrvRequestFlags read_flags,
3532 BdrvRequestFlags write_flags)
3533 {
3534 IO_CODE();
3535 assert_bdrv_graph_readable();
3536 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3537 read_flags, write_flags);
3538 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3539 bytes, read_flags, write_flags, true);
3540 }
3541
3542 /* Copy range from @src to @dst.
3543 *
3544 * See the comment of bdrv_co_copy_range for the parameter and return value
3545 * semantics. */
bdrv_co_copy_range_to(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3546 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3547 BdrvChild *dst, int64_t dst_offset,
3548 int64_t bytes,
3549 BdrvRequestFlags read_flags,
3550 BdrvRequestFlags write_flags)
3551 {
3552 IO_CODE();
3553 assert_bdrv_graph_readable();
3554 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3555 read_flags, write_flags);
3556 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3557 bytes, read_flags, write_flags, false);
3558 }
3559
bdrv_co_copy_range(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3560 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3561 BdrvChild *dst, int64_t dst_offset,
3562 int64_t bytes, BdrvRequestFlags read_flags,
3563 BdrvRequestFlags write_flags)
3564 {
3565 IO_CODE();
3566 assert_bdrv_graph_readable();
3567
3568 return bdrv_co_copy_range_from(src, src_offset,
3569 dst, dst_offset,
3570 bytes, read_flags, write_flags);
3571 }
3572
3573 static void coroutine_fn GRAPH_RDLOCK
bdrv_parent_cb_resize(BlockDriverState * bs)3574 bdrv_parent_cb_resize(BlockDriverState *bs)
3575 {
3576 BdrvChild *c;
3577
3578 assert_bdrv_graph_readable();
3579
3580 QLIST_FOREACH(c, &bs->parents, next_parent) {
3581 if (c->klass->resize) {
3582 c->klass->resize(c);
3583 }
3584 }
3585 }
3586
3587 /**
3588 * Truncate file to 'offset' bytes (needed only for file protocols)
3589 *
3590 * If 'exact' is true, the file must be resized to exactly the given
3591 * 'offset'. Otherwise, it is sufficient for the node to be at least
3592 * 'offset' bytes in length.
3593 */
bdrv_co_truncate(BdrvChild * child,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)3594 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3595 PreallocMode prealloc, BdrvRequestFlags flags,
3596 Error **errp)
3597 {
3598 BlockDriverState *bs = child->bs;
3599 BdrvChild *filtered, *backing;
3600 BlockDriver *drv = bs->drv;
3601 BdrvTrackedRequest req;
3602 int64_t old_size, new_bytes;
3603 int ret;
3604 IO_CODE();
3605 assert_bdrv_graph_readable();
3606
3607 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3608 if (!drv) {
3609 error_setg(errp, "No medium inserted");
3610 return -ENOMEDIUM;
3611 }
3612 if (offset < 0) {
3613 error_setg(errp, "Image size cannot be negative");
3614 return -EINVAL;
3615 }
3616
3617 ret = bdrv_check_request(offset, 0, errp);
3618 if (ret < 0) {
3619 return ret;
3620 }
3621
3622 old_size = bdrv_co_getlength(bs);
3623 if (old_size < 0) {
3624 error_setg_errno(errp, -old_size, "Failed to get old image size");
3625 return old_size;
3626 }
3627
3628 if (bdrv_is_read_only(bs)) {
3629 error_setg(errp, "Image is read-only");
3630 return -EACCES;
3631 }
3632
3633 if (offset > old_size) {
3634 new_bytes = offset - old_size;
3635 } else {
3636 new_bytes = 0;
3637 }
3638
3639 bdrv_inc_in_flight(bs);
3640 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3641 BDRV_TRACKED_TRUNCATE);
3642
3643 /* If we are growing the image and potentially using preallocation for the
3644 * new area, we need to make sure that no write requests are made to it
3645 * concurrently or they might be overwritten by preallocation. */
3646 if (new_bytes) {
3647 bdrv_make_request_serialising(&req, 1);
3648 }
3649 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3650 0);
3651 if (ret < 0) {
3652 error_setg_errno(errp, -ret,
3653 "Failed to prepare request for truncation");
3654 goto out;
3655 }
3656
3657 filtered = bdrv_filter_child(bs);
3658 backing = bdrv_cow_child(bs);
3659
3660 /*
3661 * If the image has a backing file that is large enough that it would
3662 * provide data for the new area, we cannot leave it unallocated because
3663 * then the backing file content would become visible. Instead, zero-fill
3664 * the new area.
3665 *
3666 * Note that if the image has a backing file, but was opened without the
3667 * backing file, taking care of keeping things consistent with that backing
3668 * file is the user's responsibility.
3669 */
3670 if (new_bytes && backing) {
3671 int64_t backing_len;
3672
3673 backing_len = bdrv_co_getlength(backing->bs);
3674 if (backing_len < 0) {
3675 ret = backing_len;
3676 error_setg_errno(errp, -ret, "Could not get backing file size");
3677 goto out;
3678 }
3679
3680 if (backing_len > old_size) {
3681 flags |= BDRV_REQ_ZERO_WRITE;
3682 }
3683 }
3684
3685 if (drv->bdrv_co_truncate) {
3686 if (flags & ~bs->supported_truncate_flags) {
3687 error_setg(errp, "Block driver does not support requested flags");
3688 ret = -ENOTSUP;
3689 goto out;
3690 }
3691 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3692 } else if (filtered) {
3693 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3694 } else {
3695 error_setg(errp, "Image format driver does not support resize");
3696 ret = -ENOTSUP;
3697 goto out;
3698 }
3699 if (ret < 0) {
3700 goto out;
3701 }
3702
3703 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3704 if (ret < 0) {
3705 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3706 } else {
3707 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3708 }
3709 /*
3710 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3711 * failed, but the latter doesn't affect how we should finish the request.
3712 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3713 */
3714 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3715
3716 out:
3717 tracked_request_end(&req);
3718 bdrv_dec_in_flight(bs);
3719
3720 return ret;
3721 }
3722
bdrv_cancel_in_flight(BlockDriverState * bs)3723 void bdrv_cancel_in_flight(BlockDriverState *bs)
3724 {
3725 GLOBAL_STATE_CODE();
3726 GRAPH_RDLOCK_GUARD_MAINLOOP();
3727
3728 if (!bs || !bs->drv) {
3729 return;
3730 }
3731
3732 if (bs->drv->bdrv_cancel_in_flight) {
3733 bs->drv->bdrv_cancel_in_flight(bs);
3734 }
3735 }
3736
3737 int coroutine_fn
bdrv_co_preadv_snapshot(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)3738 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3739 QEMUIOVector *qiov, size_t qiov_offset)
3740 {
3741 BlockDriverState *bs = child->bs;
3742 BlockDriver *drv = bs->drv;
3743 int ret;
3744 IO_CODE();
3745 assert_bdrv_graph_readable();
3746
3747 if (!drv) {
3748 return -ENOMEDIUM;
3749 }
3750
3751 if (!drv->bdrv_co_preadv_snapshot) {
3752 return -ENOTSUP;
3753 }
3754
3755 bdrv_inc_in_flight(bs);
3756 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3757 bdrv_dec_in_flight(bs);
3758
3759 return ret;
3760 }
3761
3762 int coroutine_fn
bdrv_co_snapshot_block_status(BlockDriverState * bs,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)3763 bdrv_co_snapshot_block_status(BlockDriverState *bs, unsigned int mode,
3764 int64_t offset, int64_t bytes,
3765 int64_t *pnum, int64_t *map,
3766 BlockDriverState **file)
3767 {
3768 BlockDriver *drv = bs->drv;
3769 int ret;
3770 IO_CODE();
3771 assert_bdrv_graph_readable();
3772
3773 if (!drv) {
3774 return -ENOMEDIUM;
3775 }
3776
3777 if (!drv->bdrv_co_snapshot_block_status) {
3778 return -ENOTSUP;
3779 }
3780
3781 bdrv_inc_in_flight(bs);
3782 ret = drv->bdrv_co_snapshot_block_status(bs, mode, offset, bytes,
3783 pnum, map, file);
3784 bdrv_dec_in_flight(bs);
3785
3786 return ret;
3787 }
3788
3789 int coroutine_fn
bdrv_co_pdiscard_snapshot(BlockDriverState * bs,int64_t offset,int64_t bytes)3790 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3791 {
3792 BlockDriver *drv = bs->drv;
3793 int ret;
3794 IO_CODE();
3795 assert_bdrv_graph_readable();
3796
3797 if (!drv) {
3798 return -ENOMEDIUM;
3799 }
3800
3801 if (!drv->bdrv_co_pdiscard_snapshot) {
3802 return -ENOTSUP;
3803 }
3804
3805 bdrv_inc_in_flight(bs);
3806 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3807 bdrv_dec_in_flight(bs);
3808
3809 return ret;
3810 }
3811