1 /*
2 // Copyright (c) 2018 Intel Corporation
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 */
16 /// \file fru_utils.cpp
17
18 #include "fru_utils.hpp"
19
20 #include <phosphor-logging/lg2.hpp>
21
22 #include <array>
23 #include <cstddef>
24 #include <cstdint>
25 #include <filesystem>
26 #include <iomanip>
27 #include <iostream>
28 #include <numeric>
29 #include <set>
30 #include <sstream>
31 #include <string>
32 #include <vector>
33
34 extern "C"
35 {
36 // Include for I2C_SMBUS_BLOCK_MAX
37 #include <linux/i2c.h>
38 }
39
40 constexpr size_t fruVersion = 1; // Current FRU spec version number is 1
41
intelEpoch()42 std::tm intelEpoch()
43 {
44 std::tm val = {};
45 val.tm_year = 1996 - 1900;
46 val.tm_mday = 1;
47 return val;
48 }
49
sixBitToChar(uint8_t val)50 char sixBitToChar(uint8_t val)
51 {
52 return static_cast<char>((val & 0x3f) + ' ');
53 }
54
bcdPlusToChar(uint8_t val)55 char bcdPlusToChar(uint8_t val)
56 {
57 val &= 0xf;
58 return (val < 10) ? static_cast<char>(val + '0') : bcdHighChars[val - 10];
59 }
60
61 enum FRUDataEncoding
62 {
63 binary = 0x0,
64 bcdPlus = 0x1,
65 sixBitASCII = 0x2,
66 languageDependent = 0x3,
67 };
68
69 enum MultiRecordType : uint8_t
70 {
71 powerSupplyInfo = 0x00,
72 dcOutput = 0x01,
73 dcLoad = 0x02,
74 managementAccessRecord = 0x03,
75 baseCompatibilityRecord = 0x04,
76 extendedCompatibilityRecord = 0x05,
77 resvASFSMBusDeviceRecord = 0x06,
78 resvASFLegacyDeviceAlerts = 0x07,
79 resvASFRemoteControl = 0x08,
80 extendedDCOutput = 0x09,
81 extendedDCLoad = 0x0A
82 };
83
84 enum SubManagementAccessRecord : uint8_t
85 {
86 systemManagementURL = 0x01,
87 systemName = 0x02,
88 systemPingAddress = 0x03,
89 componentManagementURL = 0x04,
90 componentName = 0x05,
91 componentPingAddress = 0x06,
92 systemUniqueID = 0x07
93 };
94
95 /* Decode FRU data into a std::string, given an input iterator and end. If the
96 * state returned is fruDataOk, then the resulting string is the decoded FRU
97 * data. The input iterator is advanced past the data consumed.
98 *
99 * On fruDataErr, we have lost synchronisation with the length bytes, so the
100 * iterator is no longer usable.
101 */
decodeFRUData(std::vector<uint8_t>::const_iterator & iter,const std::vector<uint8_t>::const_iterator & end,bool isLangEng)102 std::pair<DecodeState, std::string> decodeFRUData(
103 std::vector<uint8_t>::const_iterator& iter,
104 const std::vector<uint8_t>::const_iterator& end, bool isLangEng)
105 {
106 std::string value;
107 unsigned int i = 0;
108
109 /* we need at least one byte to decode the type/len header */
110 if (iter == end)
111 {
112 std::cerr << "Truncated FRU data\n";
113 return make_pair(DecodeState::err, value);
114 }
115
116 uint8_t c = *(iter++);
117
118 /* 0xc1 is the end marker */
119 if (c == 0xc1)
120 {
121 return make_pair(DecodeState::end, value);
122 }
123
124 /* decode type/len byte */
125 uint8_t type = static_cast<uint8_t>(c >> 6);
126 uint8_t len = static_cast<uint8_t>(c & 0x3f);
127
128 /* we should have at least len bytes of data available overall */
129 if (iter + len > end)
130 {
131 std::cerr << "FRU data field extends past end of FRU area data\n";
132 return make_pair(DecodeState::err, value);
133 }
134
135 switch (type)
136 {
137 case FRUDataEncoding::binary:
138 {
139 std::stringstream ss;
140 ss << std::hex << std::setfill('0');
141 for (i = 0; i < len; i++, iter++)
142 {
143 uint8_t val = static_cast<uint8_t>(*iter);
144 ss << std::setw(2) << static_cast<int>(val);
145 }
146 value = ss.str();
147 break;
148 }
149 case FRUDataEncoding::languageDependent:
150 /* For language-code dependent encodings, assume 8-bit ASCII */
151 value = std::string(iter, iter + len);
152 iter += len;
153
154 /* English text is encoded in 8-bit ASCII + Latin 1. All other
155 * languages are required to use 2-byte unicode. FruDevice does not
156 * handle unicode.
157 */
158 if (!isLangEng)
159 {
160 std::cerr << "Error: Non english string is not supported \n";
161 return make_pair(DecodeState::err, value);
162 }
163
164 break;
165
166 case FRUDataEncoding::bcdPlus:
167 value = std::string();
168 for (i = 0; i < len; i++, iter++)
169 {
170 uint8_t val = *iter;
171 value.push_back(bcdPlusToChar(val >> 4));
172 value.push_back(bcdPlusToChar(val & 0xf));
173 }
174 break;
175
176 case FRUDataEncoding::sixBitASCII:
177 {
178 unsigned int accum = 0;
179 unsigned int accumBitLen = 0;
180 value = std::string();
181 for (i = 0; i < len; i++, iter++)
182 {
183 accum |= *iter << accumBitLen;
184 accumBitLen += 8;
185 while (accumBitLen >= 6)
186 {
187 value.push_back(sixBitToChar(accum & 0x3f));
188 accum >>= 6;
189 accumBitLen -= 6;
190 }
191 }
192 }
193 break;
194
195 default:
196 {
197 return make_pair(DecodeState::err, value);
198 }
199 }
200
201 return make_pair(DecodeState::ok, value);
202 }
203
checkLangEng(uint8_t lang)204 bool checkLangEng(uint8_t lang)
205 {
206 // If Lang is not English then the encoding is defined as 2-byte UNICODE,
207 // but we don't support that.
208 if ((lang != 0U) && lang != 25)
209 {
210 std::cerr << "Warning: languages other than English is not "
211 "supported\n";
212 // Return language flag as non english
213 return false;
214 }
215 return true;
216 }
217
218 /* This function verifies for other offsets to check if they are not
219 * falling under other field area
220 *
221 * fruBytes: Start of Fru data
222 * currentArea: Index of current area offset to be compared against all area
223 * offset and it is a multiple of 8 bytes as per specification
224 * len: Length of current area space and it is a multiple of 8 bytes
225 * as per specification
226 */
verifyOffset(const std::vector<uint8_t> & fruBytes,fruAreas currentArea,uint8_t len)227 bool verifyOffset(const std::vector<uint8_t>& fruBytes, fruAreas currentArea,
228 uint8_t len)
229 {
230 unsigned int fruBytesSize = fruBytes.size();
231
232 // check if Fru data has at least 8 byte header
233 if (fruBytesSize <= fruBlockSize)
234 {
235 std::cerr << "Error: trying to parse empty FRU\n";
236 return false;
237 }
238
239 // Check range of passed currentArea value
240 if (currentArea > fruAreas::fruAreaMultirecord)
241 {
242 std::cerr << "Error: Fru area is out of range\n";
243 return false;
244 }
245
246 unsigned int currentAreaIndex = getHeaderAreaFieldOffset(currentArea);
247 if (currentAreaIndex > fruBytesSize)
248 {
249 std::cerr << "Error: Fru area index is out of range\n";
250 return false;
251 }
252
253 unsigned int start = fruBytes[currentAreaIndex];
254 unsigned int end = start + len;
255
256 /* Verify each offset within the range of start and end */
257 for (fruAreas area = fruAreas::fruAreaInternal;
258 area <= fruAreas::fruAreaMultirecord; ++area)
259 {
260 // skip the current offset
261 if (area == currentArea)
262 {
263 continue;
264 }
265
266 unsigned int areaIndex = getHeaderAreaFieldOffset(area);
267 if (areaIndex > fruBytesSize)
268 {
269 std::cerr << "Error: Fru area index is out of range\n";
270 return false;
271 }
272
273 unsigned int areaOffset = fruBytes[areaIndex];
274 // if areaOffset is 0 means this area is not available so skip
275 if (areaOffset == 0)
276 {
277 continue;
278 }
279
280 // check for overlapping of current offset with given areaoffset
281 if (areaOffset == start || (areaOffset > start && areaOffset < end))
282 {
283 std::cerr << getFruAreaName(currentArea)
284 << " offset is overlapping with " << getFruAreaName(area)
285 << " offset\n";
286 return false;
287 }
288 }
289 return true;
290 }
291
parseMultirecordUUID(const std::vector<uint8_t> & device,boost::container::flat_map<std::string,std::string> & result)292 static void parseMultirecordUUID(
293 const std::vector<uint8_t>& device,
294 boost::container::flat_map<std::string, std::string>& result)
295 {
296 constexpr size_t uuidDataLen = 16;
297 constexpr size_t multiRecordHeaderLen = 5;
298 /* UUID record data, plus one to skip past the sub-record type byte */
299 constexpr size_t uuidRecordData = multiRecordHeaderLen + 1;
300 constexpr size_t multiRecordEndOfListMask = 0x80;
301 /* The UUID {00112233-4455-6677-8899-AABBCCDDEEFF} would thus be represented
302 * as: 0x33 0x22 0x11 0x00 0x55 0x44 0x77 0x66 0x88 0x99 0xAA 0xBB 0xCC 0xDD
303 * 0xEE 0xFF
304 */
305 const std::array<uint8_t, uuidDataLen> uuidCharOrder = {
306 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
307 uint32_t areaOffset =
308 device.at(getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord));
309
310 if (areaOffset == 0)
311 {
312 return;
313 }
314
315 areaOffset *= fruBlockSize;
316 std::vector<uint8_t>::const_iterator fruBytesIter =
317 device.begin() + areaOffset;
318
319 /* Verify area offset */
320 if (!verifyOffset(device, fruAreas::fruAreaMultirecord, *fruBytesIter))
321 {
322 return;
323 }
324 while (areaOffset + uuidRecordData + uuidDataLen <= device.size())
325 {
326 if ((areaOffset < device.size()) &&
327 (device[areaOffset] ==
328 (uint8_t)MultiRecordType::managementAccessRecord))
329 {
330 if ((areaOffset + multiRecordHeaderLen < device.size()) &&
331 (device[areaOffset + multiRecordHeaderLen] ==
332 (uint8_t)SubManagementAccessRecord::systemUniqueID))
333 {
334 /* Layout of UUID:
335 * source: https://www.ietf.org/rfc/rfc4122.txt
336 *
337 * UUID binary format (16 bytes):
338 * 4B-2B-2B-2B-6B (big endian)
339 *
340 * UUID string is 36 length of characters (36 bytes):
341 * 0 9 14 19 24
342 * xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
343 * be be be be be
344 * be means it should be converted to big endian.
345 */
346 /* Get UUID bytes to UUID string */
347 std::stringstream tmp;
348 tmp << std::hex << std::setfill('0');
349 for (size_t i = 0; i < uuidDataLen; i++)
350 {
351 tmp << std::setw(2)
352 << static_cast<uint16_t>(
353 device[areaOffset + uuidRecordData +
354 uuidCharOrder[i]]);
355 }
356 std::string uuidStr = tmp.str();
357 result["MULTIRECORD_UUID"] =
358 uuidStr.substr(0, 8) + '-' + uuidStr.substr(8, 4) + '-' +
359 uuidStr.substr(12, 4) + '-' + uuidStr.substr(16, 4) + '-' +
360 uuidStr.substr(20, 12);
361 break;
362 }
363 }
364 if ((device[areaOffset + 1] & multiRecordEndOfListMask) != 0)
365 {
366 break;
367 }
368 areaOffset = areaOffset + device[areaOffset + 2] + multiRecordHeaderLen;
369 }
370 }
371
372 resCodes
formatIPMIFRU(const std::vector<uint8_t> & fruBytes,boost::container::flat_map<std::string,std::string> & result)373 formatIPMIFRU(const std::vector<uint8_t>& fruBytes,
374 boost::container::flat_map<std::string, std::string>& result)
375 {
376 resCodes ret = resCodes::resOK;
377 if (fruBytes.size() <= fruBlockSize)
378 {
379 std::cerr << "Error: trying to parse empty FRU \n";
380 return resCodes::resErr;
381 }
382 result["Common_Format_Version"] =
383 std::to_string(static_cast<int>(*fruBytes.begin()));
384
385 const std::vector<std::string>* fruAreaFieldNames = nullptr;
386
387 // Don't parse Internal and Multirecord areas
388 for (fruAreas area = fruAreas::fruAreaChassis;
389 area <= fruAreas::fruAreaProduct; ++area)
390 {
391 size_t offset = *(fruBytes.begin() + getHeaderAreaFieldOffset(area));
392 if (offset == 0)
393 {
394 continue;
395 }
396 offset *= fruBlockSize;
397 std::vector<uint8_t>::const_iterator fruBytesIter =
398 fruBytes.begin() + offset;
399 if (fruBytesIter + fruBlockSize >= fruBytes.end())
400 {
401 std::cerr << "Not enough data to parse \n";
402 return resCodes::resErr;
403 }
404 // check for format version 1
405 if (*fruBytesIter != 0x01)
406 {
407 std::cerr << "Unexpected version " << *fruBytesIter << "\n";
408 return resCodes::resErr;
409 }
410 ++fruBytesIter;
411
412 /* Verify other area offset for overlap with current area by passing
413 * length of current area offset pointed by *fruBytesIter
414 */
415 if (!verifyOffset(fruBytes, area, *fruBytesIter))
416 {
417 return resCodes::resErr;
418 }
419
420 size_t fruAreaSize = *fruBytesIter * fruBlockSize;
421 std::vector<uint8_t>::const_iterator fruBytesIterEndArea =
422 fruBytes.begin() + offset + fruAreaSize - 1;
423 ++fruBytesIter;
424
425 uint8_t fruComputedChecksum =
426 calculateChecksum(fruBytes.begin() + offset, fruBytesIterEndArea);
427 if (fruComputedChecksum != *fruBytesIterEndArea)
428 {
429 std::stringstream ss;
430 ss << std::hex << std::setfill('0');
431 ss << "Checksum error in FRU area " << getFruAreaName(area) << "\n";
432 ss << "\tComputed checksum: 0x" << std::setw(2)
433 << static_cast<int>(fruComputedChecksum) << "\n";
434 ss << "\tThe read checksum: 0x" << std::setw(2)
435 << static_cast<int>(*fruBytesIterEndArea) << "\n";
436 std::cerr << ss.str();
437 ret = resCodes::resWarn;
438 }
439
440 /* Set default language flag to true as Chassis Fru area are always
441 * encoded in English defined in Section 10 of Fru specification
442 */
443
444 bool isLangEng = true;
445 switch (area)
446 {
447 case fruAreas::fruAreaChassis:
448 {
449 result["CHASSIS_TYPE"] =
450 std::to_string(static_cast<int>(*fruBytesIter));
451 fruBytesIter += 1;
452 fruAreaFieldNames = &chassisFruAreas;
453 break;
454 }
455 case fruAreas::fruAreaBoard:
456 {
457 uint8_t lang = *fruBytesIter;
458 result["BOARD_LANGUAGE_CODE"] =
459 std::to_string(static_cast<int>(lang));
460 isLangEng = checkLangEng(lang);
461 fruBytesIter += 1;
462
463 unsigned int minutes =
464 *fruBytesIter | *(fruBytesIter + 1) << 8 |
465 *(fruBytesIter + 2) << 16;
466 std::tm fruTime = intelEpoch();
467 std::time_t timeValue = timegm(&fruTime);
468 timeValue += static_cast<long>(minutes) * 60;
469 fruTime = *std::gmtime(&timeValue);
470
471 // Tue Nov 20 23:08:00 2018
472 std::array<char, 32> timeString = {};
473 auto bytes = std::strftime(timeString.data(), timeString.size(),
474 "%Y%m%dT%H%M%SZ", &fruTime);
475 if (bytes == 0)
476 {
477 std::cerr << "invalid time string encountered\n";
478 return resCodes::resErr;
479 }
480
481 result["BOARD_MANUFACTURE_DATE"] =
482 std::string_view(timeString.data(), bytes);
483 fruBytesIter += 3;
484 fruAreaFieldNames = &boardFruAreas;
485 break;
486 }
487 case fruAreas::fruAreaProduct:
488 {
489 uint8_t lang = *fruBytesIter;
490 result["PRODUCT_LANGUAGE_CODE"] =
491 std::to_string(static_cast<int>(lang));
492 isLangEng = checkLangEng(lang);
493 fruBytesIter += 1;
494 fruAreaFieldNames = &productFruAreas;
495 break;
496 }
497 default:
498 {
499 std::cerr << "Internal error: unexpected FRU area index: "
500 << static_cast<int>(area) << " \n";
501 return resCodes::resErr;
502 }
503 }
504 size_t fieldIndex = 0;
505 DecodeState state = DecodeState::ok;
506 do
507 {
508 auto res =
509 decodeFRUData(fruBytesIter, fruBytesIterEndArea, isLangEng);
510 state = res.first;
511 std::string value = res.second;
512 std::string name;
513 if (fieldIndex < fruAreaFieldNames->size())
514 {
515 name = std::string(getFruAreaName(area)) + "_" +
516 fruAreaFieldNames->at(fieldIndex);
517 }
518 else
519 {
520 name =
521 std::string(getFruAreaName(area)) + "_" +
522 fruCustomFieldName +
523 std::to_string(fieldIndex - fruAreaFieldNames->size() + 1);
524 }
525
526 if (state == DecodeState::ok)
527 {
528 // Strip non null characters and trailing spaces from the end
529 value.erase(std::find_if(value.rbegin(), value.rend(),
530 [](char ch) {
531 return ((ch != 0) && (ch != ' '));
532 })
533 .base(),
534 value.end());
535
536 result[name] = std::move(value);
537 ++fieldIndex;
538 }
539 else if (state == DecodeState::err)
540 {
541 std::cerr << "Error while parsing " << name << "\n";
542 ret = resCodes::resWarn;
543 // Cancel decoding if failed to parse any of mandatory
544 // fields
545 if (fieldIndex < fruAreaFieldNames->size())
546 {
547 std::cerr << "Failed to parse mandatory field \n";
548 return resCodes::resErr;
549 }
550 }
551 else
552 {
553 if (fieldIndex < fruAreaFieldNames->size())
554 {
555 std::cerr
556 << "Mandatory fields absent in FRU area "
557 << getFruAreaName(area) << " after " << name << "\n";
558 ret = resCodes::resWarn;
559 }
560 }
561 } while (state == DecodeState::ok);
562 for (; fruBytesIter < fruBytesIterEndArea; fruBytesIter++)
563 {
564 uint8_t c = *fruBytesIter;
565 if (c != 0U)
566 {
567 std::cerr << "Non-zero byte after EndOfFields in FRU area "
568 << getFruAreaName(area) << "\n";
569 ret = resCodes::resWarn;
570 break;
571 }
572 }
573 }
574
575 /* Parsing the Multirecord UUID */
576 parseMultirecordUUID(fruBytes, result);
577
578 return ret;
579 }
580
581 // Calculate new checksum for fru info area
calculateChecksum(std::vector<uint8_t>::const_iterator iter,std::vector<uint8_t>::const_iterator end)582 uint8_t calculateChecksum(std::vector<uint8_t>::const_iterator iter,
583 std::vector<uint8_t>::const_iterator end)
584 {
585 constexpr int checksumMod = 256;
586 uint8_t sum = std::accumulate(iter, end, static_cast<uint8_t>(0));
587 return (checksumMod - sum) % checksumMod;
588 }
589
calculateChecksum(std::vector<uint8_t> & fruAreaData)590 uint8_t calculateChecksum(std::vector<uint8_t>& fruAreaData)
591 {
592 return calculateChecksum(fruAreaData.begin(), fruAreaData.end());
593 }
594
595 // Update new fru area length &
596 // Update checksum at new checksum location
597 // Return the offset of the area checksum byte
updateFRUAreaLenAndChecksum(std::vector<uint8_t> & fruData,size_t fruAreaStart,size_t fruAreaEndOfFieldsOffset,size_t fruAreaEndOffset)598 unsigned int updateFRUAreaLenAndChecksum(
599 std::vector<uint8_t>& fruData, size_t fruAreaStart,
600 size_t fruAreaEndOfFieldsOffset, size_t fruAreaEndOffset)
601 {
602 size_t traverseFRUAreaIndex = fruAreaEndOfFieldsOffset - fruAreaStart;
603
604 // fill zeros for any remaining unused space
605 std::fill(fruData.begin() + fruAreaEndOfFieldsOffset,
606 fruData.begin() + fruAreaEndOffset, 0);
607
608 size_t mod = traverseFRUAreaIndex % fruBlockSize;
609 size_t checksumLoc = 0;
610 if (mod == 0U)
611 {
612 traverseFRUAreaIndex += (fruBlockSize);
613 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - 1);
614 }
615 else
616 {
617 traverseFRUAreaIndex += (fruBlockSize - mod);
618 checksumLoc = fruAreaEndOfFieldsOffset + (fruBlockSize - mod - 1);
619 }
620
621 size_t newFRUAreaLen =
622 (traverseFRUAreaIndex / fruBlockSize) +
623 static_cast<unsigned long>((traverseFRUAreaIndex % fruBlockSize) != 0);
624 size_t fruAreaLengthLoc = fruAreaStart + 1;
625 fruData[fruAreaLengthLoc] = static_cast<uint8_t>(newFRUAreaLen);
626
627 // Calculate new checksum
628 std::vector<uint8_t> finalFRUData;
629 std::copy_n(fruData.begin() + fruAreaStart, checksumLoc - fruAreaStart,
630 std::back_inserter(finalFRUData));
631
632 fruData[checksumLoc] = calculateChecksum(finalFRUData);
633 return checksumLoc;
634 }
635
getFieldLength(uint8_t fruFieldTypeLenValue)636 ssize_t getFieldLength(uint8_t fruFieldTypeLenValue)
637 {
638 constexpr uint8_t typeLenMask = 0x3F;
639 constexpr uint8_t endOfFields = 0xC1;
640 if (fruFieldTypeLenValue == endOfFields)
641 {
642 return -1;
643 }
644 return fruFieldTypeLenValue & typeLenMask;
645 }
646
validateHeader(const std::array<uint8_t,I2C_SMBUS_BLOCK_MAX> & blockData)647 bool validateHeader(const std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData)
648 {
649 // ipmi spec format version number is currently at 1, verify it
650 if (blockData[0] != fruVersion)
651 {
652 lg2::debug(
653 "FRU spec version {VERSION} not supported. Supported version is {SUPPORTED_VERSION}",
654 "VERSION", lg2::hex, blockData[0], "SUPPORTED_VERSION", lg2::hex,
655 fruVersion);
656 return false;
657 }
658
659 // verify pad is set to 0
660 if (blockData[6] != 0x0)
661 {
662 lg2::debug("Pad value in header is non zero, value is {VALUE}", "VALUE",
663 lg2::hex, blockData[6]);
664 return false;
665 }
666
667 // verify offsets are 0, or don't point to another offset
668 std::set<uint8_t> foundOffsets;
669 for (int ii = 1; ii < 6; ii++)
670 {
671 if (blockData[ii] == 0)
672 {
673 continue;
674 }
675 auto inserted = foundOffsets.insert(blockData[ii]);
676 if (!inserted.second)
677 {
678 return false;
679 }
680 }
681
682 // validate checksum
683 size_t sum = 0;
684 for (int jj = 0; jj < 7; jj++)
685 {
686 sum += blockData[jj];
687 }
688 sum = (256 - sum) & 0xFF;
689
690 if (sum != blockData[7])
691 {
692 lg2::debug(
693 "Checksum {CHECKSUM} is invalid. calculated checksum is {CALCULATED_CHECKSUM}",
694 "CHECKSUM", lg2::hex, blockData[7], "CALCULATED_CHECKSUM", lg2::hex,
695 sum);
696 return false;
697 }
698 return true;
699 }
700
findFRUHeader(FRUReader & reader,const std::string & errorHelp,std::array<uint8_t,I2C_SMBUS_BLOCK_MAX> & blockData,off_t & baseOffset)701 bool findFRUHeader(FRUReader& reader, const std::string& errorHelp,
702 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX>& blockData,
703 off_t& baseOffset)
704 {
705 if (reader.read(baseOffset, 0x8, blockData.data()) < 0)
706 {
707 std::cerr << "failed to read " << errorHelp << " base offset "
708 << baseOffset << "\n";
709 return false;
710 }
711
712 // check the header checksum
713 if (validateHeader(blockData))
714 {
715 return true;
716 }
717
718 // only continue the search if we just looked at 0x0.
719 if (baseOffset != 0)
720 {
721 return false;
722 }
723
724 // now check for special cases where the IPMI data is at an offset
725
726 // check if blockData starts with tyanHeader
727 const std::vector<uint8_t> tyanHeader = {'$', 'T', 'Y', 'A', 'N', '$'};
728 if (blockData.size() >= tyanHeader.size() &&
729 std::equal(tyanHeader.begin(), tyanHeader.end(), blockData.begin()))
730 {
731 // look for the FRU header at offset 0x6000
732 baseOffset = 0x6000;
733 return findFRUHeader(reader, errorHelp, blockData, baseOffset);
734 }
735
736 lg2::debug("Illegal header {HEADER} base offset {OFFSET}", "HEADER",
737 errorHelp, "OFFSET", baseOffset);
738
739 return false;
740 }
741
742 std::pair<std::vector<uint8_t>, bool>
readFRUContents(FRUReader & reader,const std::string & errorHelp)743 readFRUContents(FRUReader& reader, const std::string& errorHelp)
744 {
745 std::array<uint8_t, I2C_SMBUS_BLOCK_MAX> blockData{};
746 off_t baseOffset = 0x0;
747
748 if (!findFRUHeader(reader, errorHelp, blockData, baseOffset))
749 {
750 return {{}, false};
751 }
752
753 std::vector<uint8_t> device;
754 device.insert(device.end(), blockData.begin(), blockData.begin() + 8);
755
756 bool hasMultiRecords = false;
757 size_t fruLength = fruBlockSize; // At least FRU header is present
758 unsigned int prevOffset = 0;
759 for (fruAreas area = fruAreas::fruAreaInternal;
760 area <= fruAreas::fruAreaMultirecord; ++area)
761 {
762 // Offset value can be 255.
763 unsigned int areaOffset = device[getHeaderAreaFieldOffset(area)];
764 if (areaOffset == 0)
765 {
766 continue;
767 }
768
769 /* Check for offset order, as per Section 17 of FRU specification, FRU
770 * information areas are required to be in order in FRU data layout
771 * which means all offset value should be in increasing order or can be
772 * 0 if that area is not present
773 */
774 if (areaOffset <= prevOffset)
775 {
776 std::cerr << "Fru area offsets are not in required order as per "
777 "Section 17 of Fru specification\n";
778 return {{}, true};
779 }
780 prevOffset = areaOffset;
781
782 // MultiRecords are different. area is not tracking section, it's
783 // walking the common header.
784 if (area == fruAreas::fruAreaMultirecord)
785 {
786 hasMultiRecords = true;
787 break;
788 }
789
790 areaOffset *= fruBlockSize;
791
792 if (reader.read(baseOffset + areaOffset, 0x2, blockData.data()) < 0)
793 {
794 std::cerr << "failed to read " << errorHelp << " base offset "
795 << baseOffset << "\n";
796 return {{}, true};
797 }
798
799 // Ignore data type (blockData is already unsigned).
800 size_t length = blockData[1] * fruBlockSize;
801 areaOffset += length;
802 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
803 }
804
805 if (hasMultiRecords)
806 {
807 // device[area count] is the index to the last area because the 0th
808 // entry is not an offset in the common header.
809 unsigned int areaOffset =
810 device[getHeaderAreaFieldOffset(fruAreas::fruAreaMultirecord)];
811 areaOffset *= fruBlockSize;
812
813 // the multi-area record header is 5 bytes long.
814 constexpr size_t multiRecordHeaderSize = 5;
815 constexpr uint8_t multiRecordEndOfListMask = 0x80;
816
817 // Sanity hard-limit to 64KB.
818 while (areaOffset < std::numeric_limits<uint16_t>::max())
819 {
820 // In multi-area, the area offset points to the 0th record, each
821 // record has 3 bytes of the header we care about.
822 if (reader.read(baseOffset + areaOffset, 0x3, blockData.data()) < 0)
823 {
824 std::cerr << "failed to read " << errorHelp << " base offset "
825 << baseOffset << "\n";
826 return {{}, true};
827 }
828
829 // Ok, let's check the record length, which is in bytes (unsigned,
830 // up to 255, so blockData should hold uint8_t not char)
831 size_t recordLength = blockData[2];
832 areaOffset += (recordLength + multiRecordHeaderSize);
833 fruLength = (areaOffset > fruLength) ? areaOffset : fruLength;
834
835 // If this is the end of the list bail.
836 if ((blockData[1] & multiRecordEndOfListMask) != 0)
837 {
838 break;
839 }
840 }
841 }
842
843 // You already copied these first 8 bytes (the ipmi fru header size)
844 fruLength -= std::min(fruBlockSize, fruLength);
845
846 int readOffset = fruBlockSize;
847
848 while (fruLength > 0)
849 {
850 size_t requestLength =
851 std::min(static_cast<size_t>(I2C_SMBUS_BLOCK_MAX), fruLength);
852
853 if (reader.read(baseOffset + readOffset, requestLength,
854 blockData.data()) < 0)
855 {
856 std::cerr << "failed to read " << errorHelp << " base offset "
857 << baseOffset << "\n";
858 return {{}, true};
859 }
860
861 device.insert(device.end(), blockData.begin(),
862 blockData.begin() + requestLength);
863
864 readOffset += requestLength;
865 fruLength -= std::min(requestLength, fruLength);
866 }
867
868 return {device, true};
869 }
870
getHeaderAreaFieldOffset(fruAreas area)871 unsigned int getHeaderAreaFieldOffset(fruAreas area)
872 {
873 return static_cast<unsigned int>(area) + 1;
874 }
875
getFRUInfo(const uint16_t & bus,const uint8_t & address)876 std::vector<uint8_t>& getFRUInfo(const uint16_t& bus, const uint8_t& address)
877 {
878 auto deviceMap = busMap.find(bus);
879 if (deviceMap == busMap.end())
880 {
881 throw std::invalid_argument("Invalid Bus.");
882 }
883 auto device = deviceMap->second->find(address);
884 if (device == deviceMap->second->end())
885 {
886 throw std::invalid_argument("Invalid Address.");
887 }
888 std::vector<uint8_t>& ret = device->second;
889
890 return ret;
891 }
892
893 // Iterate FruArea Names and find start and size of the fru area that contains
894 // the propertyName and the field start location for the property. fruAreaParams
895 // struct values fruAreaStart, fruAreaSize, fruAreaEnd, fieldLoc values gets
896 // updated/returned if successful.
897
findFruAreaLocationAndField(std::vector<uint8_t> & fruData,const std::string & propertyName,struct FruArea & fruAreaParams)898 bool findFruAreaLocationAndField(std::vector<uint8_t>& fruData,
899 const std::string& propertyName,
900 struct FruArea& fruAreaParams)
901 {
902 const std::vector<std::string>* fruAreaFieldNames = nullptr;
903
904 uint8_t fruAreaOffsetFieldValue = 0;
905 size_t offset = 0;
906 std::string areaName = propertyName.substr(0, propertyName.find('_'));
907 std::string propertyNamePrefix = areaName + "_";
908 auto it = std::find(fruAreaNames.begin(), fruAreaNames.end(), areaName);
909 if (it == fruAreaNames.end())
910 {
911 std::cerr << "Can't parse area name for property " << propertyName
912 << " \n";
913 return false;
914 }
915 fruAreas fruAreaToUpdate = static_cast<fruAreas>(it - fruAreaNames.begin());
916 fruAreaOffsetFieldValue =
917 fruData[getHeaderAreaFieldOffset(fruAreaToUpdate)];
918 switch (fruAreaToUpdate)
919 {
920 case fruAreas::fruAreaChassis:
921 offset = 3; // chassis part number offset. Skip fixed first 3 bytes
922 fruAreaFieldNames = &chassisFruAreas;
923 break;
924 case fruAreas::fruAreaBoard:
925 offset = 6; // board manufacturer offset. Skip fixed first 6 bytes
926 fruAreaFieldNames = &boardFruAreas;
927 break;
928 case fruAreas::fruAreaProduct:
929 // Manufacturer name offset. Skip fixed first 3 product fru bytes
930 // i.e. version, area length and language code
931 offset = 3;
932 fruAreaFieldNames = &productFruAreas;
933 break;
934 default:
935 std::cerr << "Invalid PropertyName " << propertyName << " \n";
936 return false;
937 }
938 if (fruAreaOffsetFieldValue == 0)
939 {
940 std::cerr << "FRU Area for " << propertyName << " not present \n";
941 return false;
942 }
943
944 fruAreaParams.start = fruAreaOffsetFieldValue * fruBlockSize;
945 fruAreaParams.size = fruData[fruAreaParams.start + 1] * fruBlockSize;
946 fruAreaParams.end = fruAreaParams.start + fruAreaParams.size;
947 size_t fruDataIter = fruAreaParams.start + offset;
948 size_t skipToFRUUpdateField = 0;
949 ssize_t fieldLength = 0;
950
951 bool found = false;
952 for (const auto& field : *fruAreaFieldNames)
953 {
954 skipToFRUUpdateField++;
955 if (propertyName == propertyNamePrefix + field)
956 {
957 found = true;
958 break;
959 }
960 }
961 if (!found)
962 {
963 std::size_t pos = propertyName.find(fruCustomFieldName);
964 if (pos == std::string::npos)
965 {
966 std::cerr << "PropertyName doesn't exist in FRU Area Vectors: "
967 << propertyName << "\n";
968 return false;
969 }
970 std::string fieldNumStr =
971 propertyName.substr(pos + fruCustomFieldName.length());
972 size_t fieldNum = std::stoi(fieldNumStr);
973 if (fieldNum == 0)
974 {
975 std::cerr << "PropertyName not recognized: " << propertyName
976 << "\n";
977 return false;
978 }
979 skipToFRUUpdateField += fieldNum;
980 }
981
982 for (size_t i = 1; i < skipToFRUUpdateField; i++)
983 {
984 if (fruDataIter < fruData.size())
985 {
986 fieldLength = getFieldLength(fruData[fruDataIter]);
987
988 if (fieldLength < 0)
989 {
990 break;
991 }
992 fruDataIter += 1 + fieldLength;
993 }
994 }
995 fruAreaParams.updateFieldLoc = fruDataIter;
996
997 return true;
998 }
999
1000 // Copy the FRU Area fields and properties into restFRUAreaFieldsData vector.
1001 // Return true for success and false for failure.
1002
copyRestFRUArea(std::vector<uint8_t> & fruData,const std::string & propertyName,struct FruArea & fruAreaParams,std::vector<uint8_t> & restFRUAreaFieldsData)1003 bool copyRestFRUArea(std::vector<uint8_t>& fruData,
1004 const std::string& propertyName,
1005 struct FruArea& fruAreaParams,
1006 std::vector<uint8_t>& restFRUAreaFieldsData)
1007 {
1008 size_t fieldLoc = fruAreaParams.updateFieldLoc;
1009 size_t start = fruAreaParams.start;
1010 size_t fruAreaSize = fruAreaParams.size;
1011
1012 // Push post update fru field bytes to a vector
1013 ssize_t fieldLength = getFieldLength(fruData[fieldLoc]);
1014 if (fieldLength < 0)
1015 {
1016 std::cerr << "Property " << propertyName << " not present \n";
1017 return false;
1018 }
1019
1020 size_t fruDataIter = 0;
1021 fruDataIter = fieldLoc;
1022 fruDataIter += 1 + fieldLength;
1023 size_t restFRUFieldsLoc = fruDataIter;
1024 size_t endOfFieldsLoc = 0;
1025
1026 if (fruDataIter < fruData.size())
1027 {
1028 while ((fieldLength = getFieldLength(fruData[fruDataIter])) >= 0)
1029 {
1030 if (fruDataIter >= (start + fruAreaSize))
1031 {
1032 fruDataIter = start + fruAreaSize;
1033 break;
1034 }
1035 fruDataIter += 1 + fieldLength;
1036 }
1037 endOfFieldsLoc = fruDataIter;
1038 }
1039
1040 std::copy_n(fruData.begin() + restFRUFieldsLoc,
1041 endOfFieldsLoc - restFRUFieldsLoc + 1,
1042 std::back_inserter(restFRUAreaFieldsData));
1043
1044 fruAreaParams.restFieldsLoc = restFRUFieldsLoc;
1045 fruAreaParams.restFieldsEnd = endOfFieldsLoc;
1046
1047 return true;
1048 }
1049
1050 // Get all device dbus path and match path with product name using
1051 // regular expression and find the device index for all devices.
1052
findIndexForFRU(boost::container::flat_map<std::pair<size_t,size_t>,std::shared_ptr<sdbusplus::asio::dbus_interface>> & dbusInterfaceMap,std::string & productName)1053 std::optional<int> findIndexForFRU(
1054 boost::container::flat_map<
1055 std::pair<size_t, size_t>,
1056 std::shared_ptr<sdbusplus::asio::dbus_interface>>& dbusInterfaceMap,
1057 std::string& productName)
1058 {
1059 int highest = -1;
1060 bool found = false;
1061
1062 for (const auto& busIface : dbusInterfaceMap)
1063 {
1064 std::string path = busIface.second->get_object_path();
1065 if (std::regex_match(path, std::regex(productName + "(_\\d+|)$")))
1066 {
1067 // Check if the match named has extra information.
1068 found = true;
1069 std::smatch baseMatch;
1070
1071 bool match = std::regex_match(path, baseMatch,
1072 std::regex(productName + "_(\\d+)$"));
1073 if (match)
1074 {
1075 if (baseMatch.size() == 2)
1076 {
1077 std::ssub_match baseSubMatch = baseMatch[1];
1078 std::string base = baseSubMatch.str();
1079
1080 int value = std::stoi(base);
1081 highest = (value > highest) ? value : highest;
1082 }
1083 }
1084 }
1085 } // end searching objects
1086
1087 if (!found)
1088 {
1089 return std::nullopt;
1090 }
1091 return highest;
1092 }
1093
1094 // This function does format fru data as per IPMI format and find the
1095 // productName in the formatted fru data, get that productName and return
1096 // productName if found or return NULL.
1097
getProductName(std::vector<uint8_t> & device,boost::container::flat_map<std::string,std::string> & formattedFRU,uint32_t bus,uint32_t address,size_t & unknownBusObjectCount)1098 std::optional<std::string> getProductName(
1099 std::vector<uint8_t>& device,
1100 boost::container::flat_map<std::string, std::string>& formattedFRU,
1101 uint32_t bus, uint32_t address, size_t& unknownBusObjectCount)
1102 {
1103 std::string productName;
1104
1105 resCodes res = formatIPMIFRU(device, formattedFRU);
1106 if (res == resCodes::resErr)
1107 {
1108 std::cerr << "failed to parse FRU for device at bus " << bus
1109 << " address " << address << "\n";
1110 return std::nullopt;
1111 }
1112 if (res == resCodes::resWarn)
1113 {
1114 std::cerr << "Warnings while parsing FRU for device at bus " << bus
1115 << " address " << address << "\n";
1116 }
1117
1118 auto productNameFind = formattedFRU.find("BOARD_PRODUCT_NAME");
1119 // Not found under Board section or an empty string.
1120 if (productNameFind == formattedFRU.end() ||
1121 productNameFind->second.empty())
1122 {
1123 productNameFind = formattedFRU.find("PRODUCT_PRODUCT_NAME");
1124 }
1125 // Found under Product section and not an empty string.
1126 if (productNameFind != formattedFRU.end() &&
1127 !productNameFind->second.empty())
1128 {
1129 productName = productNameFind->second;
1130 std::regex illegalObject("[^A-Za-z0-9_]");
1131 productName = std::regex_replace(productName, illegalObject, "_");
1132 }
1133 else
1134 {
1135 productName = "UNKNOWN" + std::to_string(unknownBusObjectCount);
1136 unknownBusObjectCount++;
1137 }
1138 return productName;
1139 }
1140
getFruData(std::vector<uint8_t> & fruData,uint32_t bus,uint32_t address)1141 bool getFruData(std::vector<uint8_t>& fruData, uint32_t bus, uint32_t address)
1142 {
1143 try
1144 {
1145 fruData = getFRUInfo(static_cast<uint16_t>(bus),
1146 static_cast<uint8_t>(address));
1147 }
1148 catch (const std::invalid_argument& e)
1149 {
1150 std::cerr << "Failure getting FRU Info" << e.what() << "\n";
1151 return false;
1152 }
1153
1154 return !fruData.empty();
1155 }
1156