xref: /openbmc/linux/kernel/events/ring_buffer.c (revision 2e905e60)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending_irq);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct perf_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct perf_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_sample_data *data,
151 		    struct perf_event *event, unsigned int size,
152 		    bool backward)
153 {
154 	struct perf_buffer *rb;
155 	unsigned long tail, offset, head;
156 	int have_lost, page_shift;
157 	struct {
158 		struct perf_event_header header;
159 		u64			 id;
160 		u64			 lost;
161 	} lost_event;
162 
163 	rcu_read_lock();
164 	/*
165 	 * For inherited events we send all the output towards the parent.
166 	 */
167 	if (event->parent)
168 		event = event->parent;
169 
170 	rb = rcu_dereference(event->rb);
171 	if (unlikely(!rb))
172 		goto out;
173 
174 	if (unlikely(rb->paused)) {
175 		if (rb->nr_pages) {
176 			local_inc(&rb->lost);
177 			atomic64_inc(&event->lost_samples);
178 		}
179 		goto out;
180 	}
181 
182 	handle->rb    = rb;
183 	handle->event = event;
184 
185 	have_lost = local_read(&rb->lost);
186 	if (unlikely(have_lost)) {
187 		size += sizeof(lost_event);
188 		if (event->attr.sample_id_all)
189 			size += event->id_header_size;
190 	}
191 
192 	perf_output_get_handle(handle);
193 
194 	offset = local_read(&rb->head);
195 	do {
196 		head = offset;
197 		tail = READ_ONCE(rb->user_page->data_tail);
198 		if (!rb->overwrite) {
199 			if (unlikely(!ring_buffer_has_space(head, tail,
200 							    perf_data_size(rb),
201 							    size, backward)))
202 				goto fail;
203 		}
204 
205 		/*
206 		 * The above forms a control dependency barrier separating the
207 		 * @tail load above from the data stores below. Since the @tail
208 		 * load is required to compute the branch to fail below.
209 		 *
210 		 * A, matches D; the full memory barrier userspace SHOULD issue
211 		 * after reading the data and before storing the new tail
212 		 * position.
213 		 *
214 		 * See perf_output_put_handle().
215 		 */
216 
217 		if (!backward)
218 			head += size;
219 		else
220 			head -= size;
221 	} while (!local_try_cmpxchg(&rb->head, &offset, head));
222 
223 	if (backward) {
224 		offset = head;
225 		head = (u64)(-head);
226 	}
227 
228 	/*
229 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
230 	 * none of the data stores below can be lifted up by the compiler.
231 	 */
232 
233 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
234 		local_add(rb->watermark, &rb->wakeup);
235 
236 	page_shift = PAGE_SHIFT + page_order(rb);
237 
238 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
239 	offset &= (1UL << page_shift) - 1;
240 	handle->addr = rb->data_pages[handle->page] + offset;
241 	handle->size = (1UL << page_shift) - offset;
242 
243 	if (unlikely(have_lost)) {
244 		lost_event.header.size = sizeof(lost_event);
245 		lost_event.header.type = PERF_RECORD_LOST;
246 		lost_event.header.misc = 0;
247 		lost_event.id          = event->id;
248 		lost_event.lost        = local_xchg(&rb->lost, 0);
249 
250 		/* XXX mostly redundant; @data is already fully initializes */
251 		perf_event_header__init_id(&lost_event.header, data, event);
252 		perf_output_put(handle, lost_event);
253 		perf_event__output_id_sample(event, handle, data);
254 	}
255 
256 	return 0;
257 
258 fail:
259 	local_inc(&rb->lost);
260 	atomic64_inc(&event->lost_samples);
261 	perf_output_put_handle(handle);
262 out:
263 	rcu_read_unlock();
264 
265 	return -ENOSPC;
266 }
267 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)268 int perf_output_begin_forward(struct perf_output_handle *handle,
269 			      struct perf_sample_data *data,
270 			      struct perf_event *event, unsigned int size)
271 {
272 	return __perf_output_begin(handle, data, event, size, false);
273 }
274 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)275 int perf_output_begin_backward(struct perf_output_handle *handle,
276 			       struct perf_sample_data *data,
277 			       struct perf_event *event, unsigned int size)
278 {
279 	return __perf_output_begin(handle, data, event, size, true);
280 }
281 
perf_output_begin(struct perf_output_handle * handle,struct perf_sample_data * data,struct perf_event * event,unsigned int size)282 int perf_output_begin(struct perf_output_handle *handle,
283 		      struct perf_sample_data *data,
284 		      struct perf_event *event, unsigned int size)
285 {
286 
287 	return __perf_output_begin(handle, data, event, size,
288 				   unlikely(is_write_backward(event)));
289 }
290 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)291 unsigned int perf_output_copy(struct perf_output_handle *handle,
292 		      const void *buf, unsigned int len)
293 {
294 	return __output_copy(handle, buf, len);
295 }
296 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)297 unsigned int perf_output_skip(struct perf_output_handle *handle,
298 			      unsigned int len)
299 {
300 	return __output_skip(handle, NULL, len);
301 }
302 
perf_output_end(struct perf_output_handle * handle)303 void perf_output_end(struct perf_output_handle *handle)
304 {
305 	perf_output_put_handle(handle);
306 	rcu_read_unlock();
307 }
308 
309 static void
ring_buffer_init(struct perf_buffer * rb,long watermark,int flags)310 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
311 {
312 	long max_size = perf_data_size(rb);
313 
314 	if (watermark)
315 		rb->watermark = min(max_size, watermark);
316 
317 	if (!rb->watermark)
318 		rb->watermark = max_size / 2;
319 
320 	if (flags & RING_BUFFER_WRITABLE)
321 		rb->overwrite = 0;
322 	else
323 		rb->overwrite = 1;
324 
325 	refcount_set(&rb->refcount, 1);
326 
327 	INIT_LIST_HEAD(&rb->event_list);
328 	spin_lock_init(&rb->event_lock);
329 
330 	/*
331 	 * perf_output_begin() only checks rb->paused, therefore
332 	 * rb->paused must be true if we have no pages for output.
333 	 */
334 	if (!rb->nr_pages)
335 		rb->paused = 1;
336 }
337 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)338 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
339 {
340 	/*
341 	 * OVERWRITE is determined by perf_aux_output_end() and can't
342 	 * be passed in directly.
343 	 */
344 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
345 		return;
346 
347 	handle->aux_flags |= flags;
348 }
349 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
350 
351 /*
352  * This is called before hardware starts writing to the AUX area to
353  * obtain an output handle and make sure there's room in the buffer.
354  * When the capture completes, call perf_aux_output_end() to commit
355  * the recorded data to the buffer.
356  *
357  * The ordering is similar to that of perf_output_{begin,end}, with
358  * the exception of (B), which should be taken care of by the pmu
359  * driver, since ordering rules will differ depending on hardware.
360  *
361  * Call this from pmu::start(); see the comment in perf_aux_output_end()
362  * about its use in pmu callbacks. Both can also be called from the PMI
363  * handler if needed.
364  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)365 void *perf_aux_output_begin(struct perf_output_handle *handle,
366 			    struct perf_event *event)
367 {
368 	struct perf_event *output_event = event;
369 	unsigned long aux_head, aux_tail;
370 	struct perf_buffer *rb;
371 	unsigned int nest;
372 
373 	if (output_event->parent)
374 		output_event = output_event->parent;
375 
376 	/*
377 	 * Since this will typically be open across pmu::add/pmu::del, we
378 	 * grab ring_buffer's refcount instead of holding rcu read lock
379 	 * to make sure it doesn't disappear under us.
380 	 */
381 	rb = ring_buffer_get(output_event);
382 	if (!rb)
383 		return NULL;
384 
385 	if (!rb_has_aux(rb))
386 		goto err;
387 
388 	/*
389 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
390 	 * about to get freed, so we leave immediately.
391 	 *
392 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
393 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
394 	 * aux pages in this path, which is a bug, because in_atomic().
395 	 */
396 	if (!atomic_read(&rb->aux_mmap_count))
397 		goto err;
398 
399 	if (!refcount_inc_not_zero(&rb->aux_refcount))
400 		goto err;
401 
402 	nest = READ_ONCE(rb->aux_nest);
403 	/*
404 	 * Nesting is not supported for AUX area, make sure nested
405 	 * writers are caught early
406 	 */
407 	if (WARN_ON_ONCE(nest))
408 		goto err_put;
409 
410 	WRITE_ONCE(rb->aux_nest, nest + 1);
411 
412 	aux_head = rb->aux_head;
413 
414 	handle->rb = rb;
415 	handle->event = event;
416 	handle->head = aux_head;
417 	handle->size = 0;
418 	handle->aux_flags = 0;
419 
420 	/*
421 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
422 	 * therefore (A) control dependency barrier does not exist. The
423 	 * (B) <-> (C) ordering is still observed by the pmu driver.
424 	 */
425 	if (!rb->aux_overwrite) {
426 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
427 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
428 		if (aux_head - aux_tail < perf_aux_size(rb))
429 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
430 
431 		/*
432 		 * handle->size computation depends on aux_tail load; this forms a
433 		 * control dependency barrier separating aux_tail load from aux data
434 		 * store that will be enabled on successful return
435 		 */
436 		if (!handle->size) { /* A, matches D */
437 			event->pending_disable = smp_processor_id();
438 			perf_output_wakeup(handle);
439 			WRITE_ONCE(rb->aux_nest, 0);
440 			goto err_put;
441 		}
442 	}
443 
444 	return handle->rb->aux_priv;
445 
446 err_put:
447 	/* can't be last */
448 	rb_free_aux(rb);
449 
450 err:
451 	ring_buffer_put(rb);
452 	handle->event = NULL;
453 
454 	return NULL;
455 }
456 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
457 
rb_need_aux_wakeup(struct perf_buffer * rb)458 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
459 {
460 	if (rb->aux_overwrite)
461 		return false;
462 
463 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
464 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
465 		return true;
466 	}
467 
468 	return false;
469 }
470 
471 /*
472  * Commit the data written by hardware into the ring buffer by adjusting
473  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
474  * pmu driver's responsibility to observe ordering rules of the hardware,
475  * so that all the data is externally visible before this is called.
476  *
477  * Note: this has to be called from pmu::stop() callback, as the assumption
478  * of the AUX buffer management code is that after pmu::stop(), the AUX
479  * transaction must be stopped and therefore drop the AUX reference count.
480  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)481 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
482 {
483 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
484 	struct perf_buffer *rb = handle->rb;
485 	unsigned long aux_head;
486 
487 	/* in overwrite mode, driver provides aux_head via handle */
488 	if (rb->aux_overwrite) {
489 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
490 
491 		aux_head = handle->head;
492 		rb->aux_head = aux_head;
493 	} else {
494 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
495 
496 		aux_head = rb->aux_head;
497 		rb->aux_head += size;
498 	}
499 
500 	/*
501 	 * Only send RECORD_AUX if we have something useful to communicate
502 	 *
503 	 * Note: the OVERWRITE records by themselves are not considered
504 	 * useful, as they don't communicate any *new* information,
505 	 * aside from the short-lived offset, that becomes history at
506 	 * the next event sched-in and therefore isn't useful.
507 	 * The userspace that needs to copy out AUX data in overwrite
508 	 * mode should know to use user_page::aux_head for the actual
509 	 * offset. So, from now on we don't output AUX records that
510 	 * have *only* OVERWRITE flag set.
511 	 */
512 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
513 		perf_event_aux_event(handle->event, aux_head, size,
514 				     handle->aux_flags);
515 
516 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
517 	if (rb_need_aux_wakeup(rb))
518 		wakeup = true;
519 
520 	if (wakeup) {
521 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
522 			handle->event->pending_disable = smp_processor_id();
523 		perf_output_wakeup(handle);
524 	}
525 
526 	handle->event = NULL;
527 
528 	WRITE_ONCE(rb->aux_nest, 0);
529 	/* can't be last */
530 	rb_free_aux(rb);
531 	ring_buffer_put(rb);
532 }
533 EXPORT_SYMBOL_GPL(perf_aux_output_end);
534 
535 /*
536  * Skip over a given number of bytes in the AUX buffer, due to, for example,
537  * hardware's alignment constraints.
538  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)539 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
540 {
541 	struct perf_buffer *rb = handle->rb;
542 
543 	if (size > handle->size)
544 		return -ENOSPC;
545 
546 	rb->aux_head += size;
547 
548 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
549 	if (rb_need_aux_wakeup(rb)) {
550 		perf_output_wakeup(handle);
551 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
552 	}
553 
554 	handle->head = rb->aux_head;
555 	handle->size -= size;
556 
557 	return 0;
558 }
559 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
560 
perf_get_aux(struct perf_output_handle * handle)561 void *perf_get_aux(struct perf_output_handle *handle)
562 {
563 	/* this is only valid between perf_aux_output_begin and *_end */
564 	if (!handle->event)
565 		return NULL;
566 
567 	return handle->rb->aux_priv;
568 }
569 EXPORT_SYMBOL_GPL(perf_get_aux);
570 
571 /*
572  * Copy out AUX data from an AUX handle.
573  */
perf_output_copy_aux(struct perf_output_handle * aux_handle,struct perf_output_handle * handle,unsigned long from,unsigned long to)574 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
575 			  struct perf_output_handle *handle,
576 			  unsigned long from, unsigned long to)
577 {
578 	struct perf_buffer *rb = aux_handle->rb;
579 	unsigned long tocopy, remainder, len = 0;
580 	void *addr;
581 
582 	from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
583 	to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
584 
585 	do {
586 		tocopy = PAGE_SIZE - offset_in_page(from);
587 		if (to > from)
588 			tocopy = min(tocopy, to - from);
589 		if (!tocopy)
590 			break;
591 
592 		addr = rb->aux_pages[from >> PAGE_SHIFT];
593 		addr += offset_in_page(from);
594 
595 		remainder = perf_output_copy(handle, addr, tocopy);
596 		if (remainder)
597 			return -EFAULT;
598 
599 		len += tocopy;
600 		from += tocopy;
601 		from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
602 	} while (to != from);
603 
604 	return len;
605 }
606 
607 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
608 
rb_alloc_aux_page(int node,int order)609 static struct page *rb_alloc_aux_page(int node, int order)
610 {
611 	struct page *page;
612 
613 	if (order > MAX_ORDER)
614 		order = MAX_ORDER;
615 
616 	do {
617 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
618 	} while (!page && order--);
619 
620 	if (page && order) {
621 		/*
622 		 * Communicate the allocation size to the driver:
623 		 * if we managed to secure a high-order allocation,
624 		 * set its first page's private to this order;
625 		 * !PagePrivate(page) means it's just a normal page.
626 		 */
627 		split_page(page, order);
628 		SetPagePrivate(page);
629 		set_page_private(page, order);
630 	}
631 
632 	return page;
633 }
634 
rb_free_aux_page(struct perf_buffer * rb,int idx)635 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
636 {
637 	struct page *page = virt_to_page(rb->aux_pages[idx]);
638 
639 	ClearPagePrivate(page);
640 	page->mapping = NULL;
641 	__free_page(page);
642 }
643 
__rb_free_aux(struct perf_buffer * rb)644 static void __rb_free_aux(struct perf_buffer *rb)
645 {
646 	int pg;
647 
648 	/*
649 	 * Should never happen, the last reference should be dropped from
650 	 * perf_mmap_close() path, which first stops aux transactions (which
651 	 * in turn are the atomic holders of aux_refcount) and then does the
652 	 * last rb_free_aux().
653 	 */
654 	WARN_ON_ONCE(in_atomic());
655 
656 	if (rb->aux_priv) {
657 		rb->free_aux(rb->aux_priv);
658 		rb->free_aux = NULL;
659 		rb->aux_priv = NULL;
660 	}
661 
662 	if (rb->aux_nr_pages) {
663 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
664 			rb_free_aux_page(rb, pg);
665 
666 		kfree(rb->aux_pages);
667 		rb->aux_nr_pages = 0;
668 	}
669 }
670 
rb_alloc_aux(struct perf_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)671 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
672 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
673 {
674 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
675 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
676 	int ret = -ENOMEM, max_order;
677 
678 	if (!has_aux(event))
679 		return -EOPNOTSUPP;
680 
681 	if (!overwrite) {
682 		/*
683 		 * Watermark defaults to half the buffer, and so does the
684 		 * max_order, to aid PMU drivers in double buffering.
685 		 */
686 		if (!watermark)
687 			watermark = nr_pages << (PAGE_SHIFT - 1);
688 
689 		/*
690 		 * Use aux_watermark as the basis for chunking to
691 		 * help PMU drivers honor the watermark.
692 		 */
693 		max_order = get_order(watermark);
694 	} else {
695 		/*
696 		 * We need to start with the max_order that fits in nr_pages,
697 		 * not the other way around, hence ilog2() and not get_order.
698 		 */
699 		max_order = ilog2(nr_pages);
700 		watermark = 0;
701 	}
702 
703 	/*
704 	 * kcalloc_node() is unable to allocate buffer if the size is larger
705 	 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
706 	 */
707 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
708 		return -ENOMEM;
709 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
710 				     node);
711 	if (!rb->aux_pages)
712 		return -ENOMEM;
713 
714 	rb->free_aux = event->pmu->free_aux;
715 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
716 		struct page *page;
717 		int last, order;
718 
719 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
720 		page = rb_alloc_aux_page(node, order);
721 		if (!page)
722 			goto out;
723 
724 		for (last = rb->aux_nr_pages + (1 << page_private(page));
725 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
726 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
727 	}
728 
729 	/*
730 	 * In overwrite mode, PMUs that don't support SG may not handle more
731 	 * than one contiguous allocation, since they rely on PMI to do double
732 	 * buffering. In this case, the entire buffer has to be one contiguous
733 	 * chunk.
734 	 */
735 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
736 	    overwrite) {
737 		struct page *page = virt_to_page(rb->aux_pages[0]);
738 
739 		if (page_private(page) != max_order)
740 			goto out;
741 	}
742 
743 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
744 					     overwrite);
745 	if (!rb->aux_priv)
746 		goto out;
747 
748 	ret = 0;
749 
750 	/*
751 	 * aux_pages (and pmu driver's private data, aux_priv) will be
752 	 * referenced in both producer's and consumer's contexts, thus
753 	 * we keep a refcount here to make sure either of the two can
754 	 * reference them safely.
755 	 */
756 	refcount_set(&rb->aux_refcount, 1);
757 
758 	rb->aux_overwrite = overwrite;
759 	rb->aux_watermark = watermark;
760 
761 out:
762 	if (!ret)
763 		rb->aux_pgoff = pgoff;
764 	else
765 		__rb_free_aux(rb);
766 
767 	return ret;
768 }
769 
rb_free_aux(struct perf_buffer * rb)770 void rb_free_aux(struct perf_buffer *rb)
771 {
772 	if (refcount_dec_and_test(&rb->aux_refcount))
773 		__rb_free_aux(rb);
774 }
775 
776 #ifndef CONFIG_PERF_USE_VMALLOC
777 
778 /*
779  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
780  */
781 
782 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)783 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
784 {
785 	if (pgoff > rb->nr_pages)
786 		return NULL;
787 
788 	if (pgoff == 0)
789 		return virt_to_page(rb->user_page);
790 
791 	return virt_to_page(rb->data_pages[pgoff - 1]);
792 }
793 
perf_mmap_alloc_page(int cpu)794 static void *perf_mmap_alloc_page(int cpu)
795 {
796 	struct page *page;
797 	int node;
798 
799 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
800 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
801 	if (!page)
802 		return NULL;
803 
804 	return page_address(page);
805 }
806 
perf_mmap_free_page(void * addr)807 static void perf_mmap_free_page(void *addr)
808 {
809 	struct page *page = virt_to_page(addr);
810 
811 	page->mapping = NULL;
812 	__free_page(page);
813 }
814 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)815 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
816 {
817 	struct perf_buffer *rb;
818 	unsigned long size;
819 	int i, node;
820 
821 	size = sizeof(struct perf_buffer);
822 	size += nr_pages * sizeof(void *);
823 
824 	if (order_base_2(size) > PAGE_SHIFT+MAX_ORDER)
825 		goto fail;
826 
827 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
828 	rb = kzalloc_node(size, GFP_KERNEL, node);
829 	if (!rb)
830 		goto fail;
831 
832 	rb->user_page = perf_mmap_alloc_page(cpu);
833 	if (!rb->user_page)
834 		goto fail_user_page;
835 
836 	for (i = 0; i < nr_pages; i++) {
837 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
838 		if (!rb->data_pages[i])
839 			goto fail_data_pages;
840 	}
841 
842 	rb->nr_pages = nr_pages;
843 
844 	ring_buffer_init(rb, watermark, flags);
845 
846 	return rb;
847 
848 fail_data_pages:
849 	for (i--; i >= 0; i--)
850 		perf_mmap_free_page(rb->data_pages[i]);
851 
852 	perf_mmap_free_page(rb->user_page);
853 
854 fail_user_page:
855 	kfree(rb);
856 
857 fail:
858 	return NULL;
859 }
860 
rb_free(struct perf_buffer * rb)861 void rb_free(struct perf_buffer *rb)
862 {
863 	int i;
864 
865 	perf_mmap_free_page(rb->user_page);
866 	for (i = 0; i < rb->nr_pages; i++)
867 		perf_mmap_free_page(rb->data_pages[i]);
868 	kfree(rb);
869 }
870 
871 #else
872 static struct page *
__perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)873 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
874 {
875 	/* The '>' counts in the user page. */
876 	if (pgoff > data_page_nr(rb))
877 		return NULL;
878 
879 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
880 }
881 
perf_mmap_unmark_page(void * addr)882 static void perf_mmap_unmark_page(void *addr)
883 {
884 	struct page *page = vmalloc_to_page(addr);
885 
886 	page->mapping = NULL;
887 }
888 
rb_free_work(struct work_struct * work)889 static void rb_free_work(struct work_struct *work)
890 {
891 	struct perf_buffer *rb;
892 	void *base;
893 	int i, nr;
894 
895 	rb = container_of(work, struct perf_buffer, work);
896 	nr = data_page_nr(rb);
897 
898 	base = rb->user_page;
899 	/* The '<=' counts in the user page. */
900 	for (i = 0; i <= nr; i++)
901 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
902 
903 	vfree(base);
904 	kfree(rb);
905 }
906 
rb_free(struct perf_buffer * rb)907 void rb_free(struct perf_buffer *rb)
908 {
909 	schedule_work(&rb->work);
910 }
911 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)912 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
913 {
914 	struct perf_buffer *rb;
915 	unsigned long size;
916 	void *all_buf;
917 	int node;
918 
919 	size = sizeof(struct perf_buffer);
920 	size += sizeof(void *);
921 
922 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
923 	rb = kzalloc_node(size, GFP_KERNEL, node);
924 	if (!rb)
925 		goto fail;
926 
927 	INIT_WORK(&rb->work, rb_free_work);
928 
929 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
930 	if (!all_buf)
931 		goto fail_all_buf;
932 
933 	rb->user_page = all_buf;
934 	rb->data_pages[0] = all_buf + PAGE_SIZE;
935 	if (nr_pages) {
936 		rb->nr_pages = 1;
937 		rb->page_order = ilog2(nr_pages);
938 	}
939 
940 	ring_buffer_init(rb, watermark, flags);
941 
942 	return rb;
943 
944 fail_all_buf:
945 	kfree(rb);
946 
947 fail:
948 	return NULL;
949 }
950 
951 #endif
952 
953 struct page *
perf_mmap_to_page(struct perf_buffer * rb,unsigned long pgoff)954 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
955 {
956 	if (rb->aux_nr_pages) {
957 		/* above AUX space */
958 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
959 			return NULL;
960 
961 		/* AUX space */
962 		if (pgoff >= rb->aux_pgoff) {
963 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
964 			return virt_to_page(rb->aux_pages[aux_pgoff]);
965 		}
966 	}
967 
968 	return __perf_mmap_to_page(rb, pgoff);
969 }
970