1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SATA specific part of ATA helper library
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 * Copyright 2006 Tejun Heo <htejun@gmail.com>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <scsi/scsi_cmnd.h>
13 #include <scsi/scsi_device.h>
14 #include <scsi/scsi_eh.h>
15 #include <linux/libata.h>
16 #include <asm/unaligned.h>
17
18 #include "libata.h"
19 #include "libata-transport.h"
20
21 /* debounce timing parameters in msecs { interval, duration, timeout } */
22 const unsigned int sata_deb_timing_normal[] = { 5, 100, 2000 };
23 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
24 const unsigned int sata_deb_timing_hotplug[] = { 25, 500, 2000 };
25 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
26 const unsigned int sata_deb_timing_long[] = { 100, 2000, 5000 };
27 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
28
29 /**
30 * sata_scr_valid - test whether SCRs are accessible
31 * @link: ATA link to test SCR accessibility for
32 *
33 * Test whether SCRs are accessible for @link.
34 *
35 * LOCKING:
36 * None.
37 *
38 * RETURNS:
39 * 1 if SCRs are accessible, 0 otherwise.
40 */
sata_scr_valid(struct ata_link * link)41 int sata_scr_valid(struct ata_link *link)
42 {
43 struct ata_port *ap = link->ap;
44
45 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
46 }
47 EXPORT_SYMBOL_GPL(sata_scr_valid);
48
49 /**
50 * sata_scr_read - read SCR register of the specified port
51 * @link: ATA link to read SCR for
52 * @reg: SCR to read
53 * @val: Place to store read value
54 *
55 * Read SCR register @reg of @link into *@val. This function is
56 * guaranteed to succeed if @link is ap->link, the cable type of
57 * the port is SATA and the port implements ->scr_read.
58 *
59 * LOCKING:
60 * None if @link is ap->link. Kernel thread context otherwise.
61 *
62 * RETURNS:
63 * 0 on success, negative errno on failure.
64 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)65 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
66 {
67 if (ata_is_host_link(link)) {
68 if (sata_scr_valid(link))
69 return link->ap->ops->scr_read(link, reg, val);
70 return -EOPNOTSUPP;
71 }
72
73 return sata_pmp_scr_read(link, reg, val);
74 }
75 EXPORT_SYMBOL_GPL(sata_scr_read);
76
77 /**
78 * sata_scr_write - write SCR register of the specified port
79 * @link: ATA link to write SCR for
80 * @reg: SCR to write
81 * @val: value to write
82 *
83 * Write @val to SCR register @reg of @link. This function is
84 * guaranteed to succeed if @link is ap->link, the cable type of
85 * the port is SATA and the port implements ->scr_read.
86 *
87 * LOCKING:
88 * None if @link is ap->link. Kernel thread context otherwise.
89 *
90 * RETURNS:
91 * 0 on success, negative errno on failure.
92 */
sata_scr_write(struct ata_link * link,int reg,u32 val)93 int sata_scr_write(struct ata_link *link, int reg, u32 val)
94 {
95 if (ata_is_host_link(link)) {
96 if (sata_scr_valid(link))
97 return link->ap->ops->scr_write(link, reg, val);
98 return -EOPNOTSUPP;
99 }
100
101 return sata_pmp_scr_write(link, reg, val);
102 }
103 EXPORT_SYMBOL_GPL(sata_scr_write);
104
105 /**
106 * sata_scr_write_flush - write SCR register of the specified port and flush
107 * @link: ATA link to write SCR for
108 * @reg: SCR to write
109 * @val: value to write
110 *
111 * This function is identical to sata_scr_write() except that this
112 * function performs flush after writing to the register.
113 *
114 * LOCKING:
115 * None if @link is ap->link. Kernel thread context otherwise.
116 *
117 * RETURNS:
118 * 0 on success, negative errno on failure.
119 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)120 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
121 {
122 if (ata_is_host_link(link)) {
123 int rc;
124
125 if (sata_scr_valid(link)) {
126 rc = link->ap->ops->scr_write(link, reg, val);
127 if (rc == 0)
128 rc = link->ap->ops->scr_read(link, reg, &val);
129 return rc;
130 }
131 return -EOPNOTSUPP;
132 }
133
134 return sata_pmp_scr_write(link, reg, val);
135 }
136 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
137
138 /**
139 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
140 * @tf: Taskfile to convert
141 * @pmp: Port multiplier port
142 * @is_cmd: This FIS is for command
143 * @fis: Buffer into which data will output
144 *
145 * Converts a standard ATA taskfile to a Serial ATA
146 * FIS structure (Register - Host to Device).
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)151 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
152 {
153 fis[0] = 0x27; /* Register - Host to Device FIS */
154 fis[1] = pmp & 0xf; /* Port multiplier number*/
155 if (is_cmd)
156 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
157
158 fis[2] = tf->command;
159 fis[3] = tf->feature;
160
161 fis[4] = tf->lbal;
162 fis[5] = tf->lbam;
163 fis[6] = tf->lbah;
164 fis[7] = tf->device;
165
166 fis[8] = tf->hob_lbal;
167 fis[9] = tf->hob_lbam;
168 fis[10] = tf->hob_lbah;
169 fis[11] = tf->hob_feature;
170
171 fis[12] = tf->nsect;
172 fis[13] = tf->hob_nsect;
173 fis[14] = 0;
174 fis[15] = tf->ctl;
175
176 fis[16] = tf->auxiliary & 0xff;
177 fis[17] = (tf->auxiliary >> 8) & 0xff;
178 fis[18] = (tf->auxiliary >> 16) & 0xff;
179 fis[19] = (tf->auxiliary >> 24) & 0xff;
180 }
181 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
182
183 /**
184 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
185 * @fis: Buffer from which data will be input
186 * @tf: Taskfile to output
187 *
188 * Converts a serial ATA FIS structure to a standard ATA taskfile.
189 *
190 * LOCKING:
191 * Inherited from caller.
192 */
193
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)194 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
195 {
196 tf->status = fis[2];
197 tf->error = fis[3];
198
199 tf->lbal = fis[4];
200 tf->lbam = fis[5];
201 tf->lbah = fis[6];
202 tf->device = fis[7];
203
204 tf->hob_lbal = fis[8];
205 tf->hob_lbam = fis[9];
206 tf->hob_lbah = fis[10];
207
208 tf->nsect = fis[12];
209 tf->hob_nsect = fis[13];
210 }
211 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
212
213 /**
214 * sata_link_debounce - debounce SATA phy status
215 * @link: ATA link to debounce SATA phy status for
216 * @params: timing parameters { interval, duration, timeout } in msec
217 * @deadline: deadline jiffies for the operation
218 *
219 * Make sure SStatus of @link reaches stable state, determined by
220 * holding the same value where DET is not 1 for @duration polled
221 * every @interval, before @timeout. Timeout constraints the
222 * beginning of the stable state. Because DET gets stuck at 1 on
223 * some controllers after hot unplugging, this functions waits
224 * until timeout then returns 0 if DET is stable at 1.
225 *
226 * @timeout is further limited by @deadline. The sooner of the
227 * two is used.
228 *
229 * LOCKING:
230 * Kernel thread context (may sleep)
231 *
232 * RETURNS:
233 * 0 on success, -errno on failure.
234 */
sata_link_debounce(struct ata_link * link,const unsigned int * params,unsigned long deadline)235 int sata_link_debounce(struct ata_link *link, const unsigned int *params,
236 unsigned long deadline)
237 {
238 unsigned int interval = params[0];
239 unsigned int duration = params[1];
240 unsigned long last_jiffies, t;
241 u32 last, cur;
242 int rc;
243
244 t = ata_deadline(jiffies, params[2]);
245 if (time_before(t, deadline))
246 deadline = t;
247
248 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
249 return rc;
250 cur &= 0xf;
251
252 last = cur;
253 last_jiffies = jiffies;
254
255 while (1) {
256 ata_msleep(link->ap, interval);
257 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
258 return rc;
259 cur &= 0xf;
260
261 /* DET stable? */
262 if (cur == last) {
263 if (cur == 1 && time_before(jiffies, deadline))
264 continue;
265 if (time_after(jiffies,
266 ata_deadline(last_jiffies, duration)))
267 return 0;
268 continue;
269 }
270
271 /* unstable, start over */
272 last = cur;
273 last_jiffies = jiffies;
274
275 /* Check deadline. If debouncing failed, return
276 * -EPIPE to tell upper layer to lower link speed.
277 */
278 if (time_after(jiffies, deadline))
279 return -EPIPE;
280 }
281 }
282 EXPORT_SYMBOL_GPL(sata_link_debounce);
283
284 /**
285 * sata_link_resume - resume SATA link
286 * @link: ATA link to resume SATA
287 * @params: timing parameters { interval, duration, timeout } in msec
288 * @deadline: deadline jiffies for the operation
289 *
290 * Resume SATA phy @link and debounce it.
291 *
292 * LOCKING:
293 * Kernel thread context (may sleep)
294 *
295 * RETURNS:
296 * 0 on success, -errno on failure.
297 */
sata_link_resume(struct ata_link * link,const unsigned int * params,unsigned long deadline)298 int sata_link_resume(struct ata_link *link, const unsigned int *params,
299 unsigned long deadline)
300 {
301 int tries = ATA_LINK_RESUME_TRIES;
302 u32 scontrol, serror;
303 int rc;
304
305 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
306 return rc;
307
308 /*
309 * Writes to SControl sometimes get ignored under certain
310 * controllers (ata_piix SIDPR). Make sure DET actually is
311 * cleared.
312 */
313 do {
314 scontrol = (scontrol & 0x0f0) | 0x300;
315 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
316 return rc;
317 /*
318 * Some PHYs react badly if SStatus is pounded
319 * immediately after resuming. Delay 200ms before
320 * debouncing.
321 */
322 if (!(link->flags & ATA_LFLAG_NO_DEBOUNCE_DELAY))
323 ata_msleep(link->ap, 200);
324
325 /* is SControl restored correctly? */
326 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
327 return rc;
328 } while ((scontrol & 0xf0f) != 0x300 && --tries);
329
330 if ((scontrol & 0xf0f) != 0x300) {
331 ata_link_warn(link, "failed to resume link (SControl %X)\n",
332 scontrol);
333 return 0;
334 }
335
336 if (tries < ATA_LINK_RESUME_TRIES)
337 ata_link_warn(link, "link resume succeeded after %d retries\n",
338 ATA_LINK_RESUME_TRIES - tries);
339
340 if ((rc = sata_link_debounce(link, params, deadline)))
341 return rc;
342
343 /* clear SError, some PHYs require this even for SRST to work */
344 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
345 rc = sata_scr_write(link, SCR_ERROR, serror);
346
347 return rc != -EINVAL ? rc : 0;
348 }
349 EXPORT_SYMBOL_GPL(sata_link_resume);
350
351 /**
352 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
353 * @link: ATA link to manipulate SControl for
354 * @policy: LPM policy to configure
355 * @spm_wakeup: initiate LPM transition to active state
356 *
357 * Manipulate the IPM field of the SControl register of @link
358 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
359 * @spm_wakeup is %true, the SPM field is manipulated to wake up
360 * the link. This function also clears PHYRDY_CHG before
361 * returning.
362 *
363 * LOCKING:
364 * EH context.
365 *
366 * RETURNS:
367 * 0 on success, -errno otherwise.
368 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)369 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
370 bool spm_wakeup)
371 {
372 struct ata_eh_context *ehc = &link->eh_context;
373 bool woken_up = false;
374 u32 scontrol;
375 int rc;
376
377 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
378 if (rc)
379 return rc;
380
381 switch (policy) {
382 case ATA_LPM_MAX_POWER:
383 /* disable all LPM transitions */
384 scontrol |= (0x7 << 8);
385 /* initiate transition to active state */
386 if (spm_wakeup) {
387 scontrol |= (0x4 << 12);
388 woken_up = true;
389 }
390 break;
391 case ATA_LPM_MED_POWER:
392 /* allow LPM to PARTIAL */
393 scontrol &= ~(0x1 << 8);
394 scontrol |= (0x6 << 8);
395 break;
396 case ATA_LPM_MED_POWER_WITH_DIPM:
397 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
398 case ATA_LPM_MIN_POWER:
399 if (ata_link_nr_enabled(link) > 0) {
400 /* assume no restrictions on LPM transitions */
401 scontrol &= ~(0x7 << 8);
402
403 /*
404 * If the controller does not support partial, slumber,
405 * or devsleep, then disallow these transitions.
406 */
407 if (link->ap->host->flags & ATA_HOST_NO_PART)
408 scontrol |= (0x1 << 8);
409
410 if (link->ap->host->flags & ATA_HOST_NO_SSC)
411 scontrol |= (0x2 << 8);
412
413 if (link->ap->host->flags & ATA_HOST_NO_DEVSLP)
414 scontrol |= (0x4 << 8);
415 } else {
416 /* empty port, power off */
417 scontrol &= ~0xf;
418 scontrol |= (0x1 << 2);
419 }
420 break;
421 default:
422 WARN_ON(1);
423 }
424
425 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
426 if (rc)
427 return rc;
428
429 /* give the link time to transit out of LPM state */
430 if (woken_up)
431 msleep(10);
432
433 /* clear PHYRDY_CHG from SError */
434 ehc->i.serror &= ~SERR_PHYRDY_CHG;
435 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
436 }
437 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
438
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)439 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
440 {
441 struct ata_link *host_link = &link->ap->link;
442 u32 limit, target, spd;
443
444 limit = link->sata_spd_limit;
445
446 /* Don't configure downstream link faster than upstream link.
447 * It doesn't speed up anything and some PMPs choke on such
448 * configuration.
449 */
450 if (!ata_is_host_link(link) && host_link->sata_spd)
451 limit &= (1 << host_link->sata_spd) - 1;
452
453 if (limit == UINT_MAX)
454 target = 0;
455 else
456 target = fls(limit);
457
458 spd = (*scontrol >> 4) & 0xf;
459 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
460
461 return spd != target;
462 }
463
464 /**
465 * sata_set_spd_needed - is SATA spd configuration needed
466 * @link: Link in question
467 *
468 * Test whether the spd limit in SControl matches
469 * @link->sata_spd_limit. This function is used to determine
470 * whether hardreset is necessary to apply SATA spd
471 * configuration.
472 *
473 * LOCKING:
474 * Inherited from caller.
475 *
476 * RETURNS:
477 * 1 if SATA spd configuration is needed, 0 otherwise.
478 */
sata_set_spd_needed(struct ata_link * link)479 static int sata_set_spd_needed(struct ata_link *link)
480 {
481 u32 scontrol;
482
483 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
484 return 1;
485
486 return __sata_set_spd_needed(link, &scontrol);
487 }
488
489 /**
490 * sata_set_spd - set SATA spd according to spd limit
491 * @link: Link to set SATA spd for
492 *
493 * Set SATA spd of @link according to sata_spd_limit.
494 *
495 * LOCKING:
496 * Inherited from caller.
497 *
498 * RETURNS:
499 * 0 if spd doesn't need to be changed, 1 if spd has been
500 * changed. Negative errno if SCR registers are inaccessible.
501 */
sata_set_spd(struct ata_link * link)502 int sata_set_spd(struct ata_link *link)
503 {
504 u32 scontrol;
505 int rc;
506
507 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
508 return rc;
509
510 if (!__sata_set_spd_needed(link, &scontrol))
511 return 0;
512
513 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
514 return rc;
515
516 return 1;
517 }
518 EXPORT_SYMBOL_GPL(sata_set_spd);
519
520 /**
521 * sata_link_hardreset - reset link via SATA phy reset
522 * @link: link to reset
523 * @timing: timing parameters { interval, duration, timeout } in msec
524 * @deadline: deadline jiffies for the operation
525 * @online: optional out parameter indicating link onlineness
526 * @check_ready: optional callback to check link readiness
527 *
528 * SATA phy-reset @link using DET bits of SControl register.
529 * After hardreset, link readiness is waited upon using
530 * ata_wait_ready() if @check_ready is specified. LLDs are
531 * allowed to not specify @check_ready and wait itself after this
532 * function returns. Device classification is LLD's
533 * responsibility.
534 *
535 * *@online is set to one iff reset succeeded and @link is online
536 * after reset.
537 *
538 * LOCKING:
539 * Kernel thread context (may sleep)
540 *
541 * RETURNS:
542 * 0 on success, -errno otherwise.
543 */
sata_link_hardreset(struct ata_link * link,const unsigned int * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))544 int sata_link_hardreset(struct ata_link *link, const unsigned int *timing,
545 unsigned long deadline,
546 bool *online, int (*check_ready)(struct ata_link *))
547 {
548 u32 scontrol;
549 int rc;
550
551 if (online)
552 *online = false;
553
554 if (sata_set_spd_needed(link)) {
555 /* SATA spec says nothing about how to reconfigure
556 * spd. To be on the safe side, turn off phy during
557 * reconfiguration. This works for at least ICH7 AHCI
558 * and Sil3124.
559 */
560 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
561 goto out;
562
563 scontrol = (scontrol & 0x0f0) | 0x304;
564
565 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
566 goto out;
567
568 sata_set_spd(link);
569 }
570
571 /* issue phy wake/reset */
572 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
573 goto out;
574
575 scontrol = (scontrol & 0x0f0) | 0x301;
576
577 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
578 goto out;
579
580 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
581 * 10.4.2 says at least 1 ms.
582 */
583 ata_msleep(link->ap, 1);
584
585 /* bring link back */
586 rc = sata_link_resume(link, timing, deadline);
587 if (rc)
588 goto out;
589 /* if link is offline nothing more to do */
590 if (ata_phys_link_offline(link))
591 goto out;
592
593 /* Link is online. From this point, -ENODEV too is an error. */
594 if (online)
595 *online = true;
596
597 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
598 /* If PMP is supported, we have to do follow-up SRST.
599 * Some PMPs don't send D2H Reg FIS after hardreset if
600 * the first port is empty. Wait only for
601 * ATA_TMOUT_PMP_SRST_WAIT.
602 */
603 if (check_ready) {
604 unsigned long pmp_deadline;
605
606 pmp_deadline = ata_deadline(jiffies,
607 ATA_TMOUT_PMP_SRST_WAIT);
608 if (time_after(pmp_deadline, deadline))
609 pmp_deadline = deadline;
610 ata_wait_ready(link, pmp_deadline, check_ready);
611 }
612 rc = -EAGAIN;
613 goto out;
614 }
615
616 rc = 0;
617 if (check_ready)
618 rc = ata_wait_ready(link, deadline, check_ready);
619 out:
620 if (rc && rc != -EAGAIN) {
621 /* online is set iff link is online && reset succeeded */
622 if (online)
623 *online = false;
624 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
625 }
626 return rc;
627 }
628 EXPORT_SYMBOL_GPL(sata_link_hardreset);
629
630 /**
631 * ata_qc_complete_multiple - Complete multiple qcs successfully
632 * @ap: port in question
633 * @qc_active: new qc_active mask
634 *
635 * Complete in-flight commands. This functions is meant to be
636 * called from low-level driver's interrupt routine to complete
637 * requests normally. ap->qc_active and @qc_active is compared
638 * and commands are completed accordingly.
639 *
640 * Always use this function when completing multiple NCQ commands
641 * from IRQ handlers instead of calling ata_qc_complete()
642 * multiple times to keep IRQ expect status properly in sync.
643 *
644 * LOCKING:
645 * spin_lock_irqsave(host lock)
646 *
647 * RETURNS:
648 * Number of completed commands on success, -errno otherwise.
649 */
ata_qc_complete_multiple(struct ata_port * ap,u64 qc_active)650 int ata_qc_complete_multiple(struct ata_port *ap, u64 qc_active)
651 {
652 u64 done_mask, ap_qc_active = ap->qc_active;
653 int nr_done = 0;
654
655 /*
656 * If the internal tag is set on ap->qc_active, then we care about
657 * bit0 on the passed in qc_active mask. Move that bit up to match
658 * the internal tag.
659 */
660 if (ap_qc_active & (1ULL << ATA_TAG_INTERNAL)) {
661 qc_active |= (qc_active & 0x01) << ATA_TAG_INTERNAL;
662 qc_active ^= qc_active & 0x01;
663 }
664
665 done_mask = ap_qc_active ^ qc_active;
666
667 if (unlikely(done_mask & qc_active)) {
668 ata_port_err(ap, "illegal qc_active transition (%08llx->%08llx)\n",
669 ap->qc_active, qc_active);
670 return -EINVAL;
671 }
672
673 if (ap->ops->qc_ncq_fill_rtf)
674 ap->ops->qc_ncq_fill_rtf(ap, done_mask);
675
676 while (done_mask) {
677 struct ata_queued_cmd *qc;
678 unsigned int tag = __ffs64(done_mask);
679
680 qc = ata_qc_from_tag(ap, tag);
681 if (qc) {
682 ata_qc_complete(qc);
683 nr_done++;
684 }
685 done_mask &= ~(1ULL << tag);
686 }
687
688 return nr_done;
689 }
690 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
691
692 /**
693 * ata_slave_link_init - initialize slave link
694 * @ap: port to initialize slave link for
695 *
696 * Create and initialize slave link for @ap. This enables slave
697 * link handling on the port.
698 *
699 * In libata, a port contains links and a link contains devices.
700 * There is single host link but if a PMP is attached to it,
701 * there can be multiple fan-out links. On SATA, there's usually
702 * a single device connected to a link but PATA and SATA
703 * controllers emulating TF based interface can have two - master
704 * and slave.
705 *
706 * However, there are a few controllers which don't fit into this
707 * abstraction too well - SATA controllers which emulate TF
708 * interface with both master and slave devices but also have
709 * separate SCR register sets for each device. These controllers
710 * need separate links for physical link handling
711 * (e.g. onlineness, link speed) but should be treated like a
712 * traditional M/S controller for everything else (e.g. command
713 * issue, softreset).
714 *
715 * slave_link is libata's way of handling this class of
716 * controllers without impacting core layer too much. For
717 * anything other than physical link handling, the default host
718 * link is used for both master and slave. For physical link
719 * handling, separate @ap->slave_link is used. All dirty details
720 * are implemented inside libata core layer. From LLD's POV, the
721 * only difference is that prereset, hardreset and postreset are
722 * called once more for the slave link, so the reset sequence
723 * looks like the following.
724 *
725 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
726 * softreset(M) -> postreset(M) -> postreset(S)
727 *
728 * Note that softreset is called only for the master. Softreset
729 * resets both M/S by definition, so SRST on master should handle
730 * both (the standard method will work just fine).
731 *
732 * LOCKING:
733 * Should be called before host is registered.
734 *
735 * RETURNS:
736 * 0 on success, -errno on failure.
737 */
ata_slave_link_init(struct ata_port * ap)738 int ata_slave_link_init(struct ata_port *ap)
739 {
740 struct ata_link *link;
741
742 WARN_ON(ap->slave_link);
743 WARN_ON(ap->flags & ATA_FLAG_PMP);
744
745 link = kzalloc(sizeof(*link), GFP_KERNEL);
746 if (!link)
747 return -ENOMEM;
748
749 ata_link_init(ap, link, 1);
750 ap->slave_link = link;
751 return 0;
752 }
753 EXPORT_SYMBOL_GPL(ata_slave_link_init);
754
755 /**
756 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
757 * @link: Link receiving the event
758 *
759 * Test whether the received PHY event has to be ignored or not.
760 *
761 * LOCKING:
762 * None:
763 *
764 * RETURNS:
765 * True if the event has to be ignored.
766 */
sata_lpm_ignore_phy_events(struct ata_link * link)767 bool sata_lpm_ignore_phy_events(struct ata_link *link)
768 {
769 unsigned long lpm_timeout = link->last_lpm_change +
770 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
771
772 /* if LPM is enabled, PHYRDY doesn't mean anything */
773 if (link->lpm_policy > ATA_LPM_MAX_POWER)
774 return true;
775
776 /* ignore the first PHY event after the LPM policy changed
777 * as it is might be spurious
778 */
779 if ((link->flags & ATA_LFLAG_CHANGED) &&
780 time_before(jiffies, lpm_timeout))
781 return true;
782
783 return false;
784 }
785 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
786
787 static const char *ata_lpm_policy_names[] = {
788 [ATA_LPM_UNKNOWN] = "max_performance",
789 [ATA_LPM_MAX_POWER] = "max_performance",
790 [ATA_LPM_MED_POWER] = "medium_power",
791 [ATA_LPM_MED_POWER_WITH_DIPM] = "med_power_with_dipm",
792 [ATA_LPM_MIN_POWER_WITH_PARTIAL] = "min_power_with_partial",
793 [ATA_LPM_MIN_POWER] = "min_power",
794 };
795
ata_scsi_lpm_store(struct device * device,struct device_attribute * attr,const char * buf,size_t count)796 static ssize_t ata_scsi_lpm_store(struct device *device,
797 struct device_attribute *attr,
798 const char *buf, size_t count)
799 {
800 struct Scsi_Host *shost = class_to_shost(device);
801 struct ata_port *ap = ata_shost_to_port(shost);
802 struct ata_link *link;
803 struct ata_device *dev;
804 enum ata_lpm_policy policy;
805 unsigned long flags;
806
807 /* UNKNOWN is internal state, iterate from MAX_POWER */
808 for (policy = ATA_LPM_MAX_POWER;
809 policy < ARRAY_SIZE(ata_lpm_policy_names); policy++) {
810 const char *name = ata_lpm_policy_names[policy];
811
812 if (strncmp(name, buf, strlen(name)) == 0)
813 break;
814 }
815 if (policy == ARRAY_SIZE(ata_lpm_policy_names))
816 return -EINVAL;
817
818 spin_lock_irqsave(ap->lock, flags);
819
820 ata_for_each_link(link, ap, EDGE) {
821 ata_for_each_dev(dev, &ap->link, ENABLED) {
822 if (dev->horkage & ATA_HORKAGE_NOLPM) {
823 count = -EOPNOTSUPP;
824 goto out_unlock;
825 }
826 }
827 }
828
829 ap->target_lpm_policy = policy;
830 ata_port_schedule_eh(ap);
831 out_unlock:
832 spin_unlock_irqrestore(ap->lock, flags);
833 return count;
834 }
835
ata_scsi_lpm_show(struct device * dev,struct device_attribute * attr,char * buf)836 static ssize_t ata_scsi_lpm_show(struct device *dev,
837 struct device_attribute *attr, char *buf)
838 {
839 struct Scsi_Host *shost = class_to_shost(dev);
840 struct ata_port *ap = ata_shost_to_port(shost);
841
842 if (ap->target_lpm_policy >= ARRAY_SIZE(ata_lpm_policy_names))
843 return -EINVAL;
844
845 return sysfs_emit(buf, "%s\n",
846 ata_lpm_policy_names[ap->target_lpm_policy]);
847 }
848 DEVICE_ATTR(link_power_management_policy, S_IRUGO | S_IWUSR,
849 ata_scsi_lpm_show, ata_scsi_lpm_store);
850 EXPORT_SYMBOL_GPL(dev_attr_link_power_management_policy);
851
ata_ncq_prio_supported_show(struct device * device,struct device_attribute * attr,char * buf)852 static ssize_t ata_ncq_prio_supported_show(struct device *device,
853 struct device_attribute *attr,
854 char *buf)
855 {
856 struct scsi_device *sdev = to_scsi_device(device);
857 struct ata_port *ap = ata_shost_to_port(sdev->host);
858 struct ata_device *dev;
859 bool ncq_prio_supported;
860 int rc = 0;
861
862 spin_lock_irq(ap->lock);
863 dev = ata_scsi_find_dev(ap, sdev);
864 if (!dev)
865 rc = -ENODEV;
866 else
867 ncq_prio_supported = dev->flags & ATA_DFLAG_NCQ_PRIO;
868 spin_unlock_irq(ap->lock);
869
870 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_supported);
871 }
872
873 DEVICE_ATTR(ncq_prio_supported, S_IRUGO, ata_ncq_prio_supported_show, NULL);
874 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_supported);
875
ata_ncq_prio_enable_show(struct device * device,struct device_attribute * attr,char * buf)876 static ssize_t ata_ncq_prio_enable_show(struct device *device,
877 struct device_attribute *attr,
878 char *buf)
879 {
880 struct scsi_device *sdev = to_scsi_device(device);
881 struct ata_port *ap = ata_shost_to_port(sdev->host);
882 struct ata_device *dev;
883 bool ncq_prio_enable;
884 int rc = 0;
885
886 spin_lock_irq(ap->lock);
887 dev = ata_scsi_find_dev(ap, sdev);
888 if (!dev)
889 rc = -ENODEV;
890 else
891 ncq_prio_enable = dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED;
892 spin_unlock_irq(ap->lock);
893
894 return rc ? rc : sysfs_emit(buf, "%u\n", ncq_prio_enable);
895 }
896
ata_ncq_prio_enable_store(struct device * device,struct device_attribute * attr,const char * buf,size_t len)897 static ssize_t ata_ncq_prio_enable_store(struct device *device,
898 struct device_attribute *attr,
899 const char *buf, size_t len)
900 {
901 struct scsi_device *sdev = to_scsi_device(device);
902 struct ata_port *ap;
903 struct ata_device *dev;
904 long int input;
905 int rc = 0;
906
907 rc = kstrtol(buf, 10, &input);
908 if (rc)
909 return rc;
910 if ((input < 0) || (input > 1))
911 return -EINVAL;
912
913 ap = ata_shost_to_port(sdev->host);
914 dev = ata_scsi_find_dev(ap, sdev);
915 if (unlikely(!dev))
916 return -ENODEV;
917
918 spin_lock_irq(ap->lock);
919
920 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO)) {
921 rc = -EINVAL;
922 goto unlock;
923 }
924
925 if (input) {
926 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
927 ata_dev_err(dev,
928 "CDL must be disabled to enable NCQ priority\n");
929 rc = -EINVAL;
930 goto unlock;
931 }
932 dev->flags |= ATA_DFLAG_NCQ_PRIO_ENABLED;
933 } else {
934 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
935 }
936
937 unlock:
938 spin_unlock_irq(ap->lock);
939
940 return rc ? rc : len;
941 }
942
943 DEVICE_ATTR(ncq_prio_enable, S_IRUGO | S_IWUSR,
944 ata_ncq_prio_enable_show, ata_ncq_prio_enable_store);
945 EXPORT_SYMBOL_GPL(dev_attr_ncq_prio_enable);
946
947 static struct attribute *ata_ncq_sdev_attrs[] = {
948 &dev_attr_unload_heads.attr,
949 &dev_attr_ncq_prio_enable.attr,
950 &dev_attr_ncq_prio_supported.attr,
951 NULL
952 };
953
954 static const struct attribute_group ata_ncq_sdev_attr_group = {
955 .attrs = ata_ncq_sdev_attrs
956 };
957
958 const struct attribute_group *ata_ncq_sdev_groups[] = {
959 &ata_ncq_sdev_attr_group,
960 NULL
961 };
962 EXPORT_SYMBOL_GPL(ata_ncq_sdev_groups);
963
964 static ssize_t
ata_scsi_em_message_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)965 ata_scsi_em_message_store(struct device *dev, struct device_attribute *attr,
966 const char *buf, size_t count)
967 {
968 struct Scsi_Host *shost = class_to_shost(dev);
969 struct ata_port *ap = ata_shost_to_port(shost);
970 if (ap->ops->em_store && (ap->flags & ATA_FLAG_EM))
971 return ap->ops->em_store(ap, buf, count);
972 return -EINVAL;
973 }
974
975 static ssize_t
ata_scsi_em_message_show(struct device * dev,struct device_attribute * attr,char * buf)976 ata_scsi_em_message_show(struct device *dev, struct device_attribute *attr,
977 char *buf)
978 {
979 struct Scsi_Host *shost = class_to_shost(dev);
980 struct ata_port *ap = ata_shost_to_port(shost);
981
982 if (ap->ops->em_show && (ap->flags & ATA_FLAG_EM))
983 return ap->ops->em_show(ap, buf);
984 return -EINVAL;
985 }
986 DEVICE_ATTR(em_message, S_IRUGO | S_IWUSR,
987 ata_scsi_em_message_show, ata_scsi_em_message_store);
988 EXPORT_SYMBOL_GPL(dev_attr_em_message);
989
990 static ssize_t
ata_scsi_em_message_type_show(struct device * dev,struct device_attribute * attr,char * buf)991 ata_scsi_em_message_type_show(struct device *dev, struct device_attribute *attr,
992 char *buf)
993 {
994 struct Scsi_Host *shost = class_to_shost(dev);
995 struct ata_port *ap = ata_shost_to_port(shost);
996
997 return sysfs_emit(buf, "%d\n", ap->em_message_type);
998 }
999 DEVICE_ATTR(em_message_type, S_IRUGO,
1000 ata_scsi_em_message_type_show, NULL);
1001 EXPORT_SYMBOL_GPL(dev_attr_em_message_type);
1002
1003 static ssize_t
ata_scsi_activity_show(struct device * dev,struct device_attribute * attr,char * buf)1004 ata_scsi_activity_show(struct device *dev, struct device_attribute *attr,
1005 char *buf)
1006 {
1007 struct scsi_device *sdev = to_scsi_device(dev);
1008 struct ata_port *ap = ata_shost_to_port(sdev->host);
1009 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
1010
1011 if (atadev && ap->ops->sw_activity_show &&
1012 (ap->flags & ATA_FLAG_SW_ACTIVITY))
1013 return ap->ops->sw_activity_show(atadev, buf);
1014 return -EINVAL;
1015 }
1016
1017 static ssize_t
ata_scsi_activity_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1018 ata_scsi_activity_store(struct device *dev, struct device_attribute *attr,
1019 const char *buf, size_t count)
1020 {
1021 struct scsi_device *sdev = to_scsi_device(dev);
1022 struct ata_port *ap = ata_shost_to_port(sdev->host);
1023 struct ata_device *atadev = ata_scsi_find_dev(ap, sdev);
1024 enum sw_activity val;
1025 int rc;
1026
1027 if (atadev && ap->ops->sw_activity_store &&
1028 (ap->flags & ATA_FLAG_SW_ACTIVITY)) {
1029 val = simple_strtoul(buf, NULL, 0);
1030 switch (val) {
1031 case OFF: case BLINK_ON: case BLINK_OFF:
1032 rc = ap->ops->sw_activity_store(atadev, val);
1033 if (!rc)
1034 return count;
1035 else
1036 return rc;
1037 }
1038 }
1039 return -EINVAL;
1040 }
1041 DEVICE_ATTR(sw_activity, S_IWUSR | S_IRUGO, ata_scsi_activity_show,
1042 ata_scsi_activity_store);
1043 EXPORT_SYMBOL_GPL(dev_attr_sw_activity);
1044
1045 /**
1046 * ata_change_queue_depth - Set a device maximum queue depth
1047 * @ap: ATA port of the target device
1048 * @sdev: SCSI device to configure queue depth for
1049 * @queue_depth: new queue depth
1050 *
1051 * Helper to set a device maximum queue depth, usable with both libsas
1052 * and libata.
1053 *
1054 */
ata_change_queue_depth(struct ata_port * ap,struct scsi_device * sdev,int queue_depth)1055 int ata_change_queue_depth(struct ata_port *ap, struct scsi_device *sdev,
1056 int queue_depth)
1057 {
1058 struct ata_device *dev;
1059 unsigned long flags;
1060 int max_queue_depth;
1061
1062 spin_lock_irqsave(ap->lock, flags);
1063
1064 dev = ata_scsi_find_dev(ap, sdev);
1065 if (!dev || queue_depth < 1 || queue_depth == sdev->queue_depth) {
1066 spin_unlock_irqrestore(ap->lock, flags);
1067 return sdev->queue_depth;
1068 }
1069
1070 /*
1071 * Make sure that the queue depth requested does not exceed the device
1072 * capabilities.
1073 */
1074 max_queue_depth = min(ATA_MAX_QUEUE, sdev->host->can_queue);
1075 max_queue_depth = min(max_queue_depth, ata_id_queue_depth(dev->id));
1076 if (queue_depth > max_queue_depth) {
1077 spin_unlock_irqrestore(ap->lock, flags);
1078 return -EINVAL;
1079 }
1080
1081 /*
1082 * If NCQ is not supported by the device or if the target queue depth
1083 * is 1 (to disable drive side command queueing), turn off NCQ.
1084 */
1085 if (queue_depth == 1 || !ata_ncq_supported(dev)) {
1086 dev->flags |= ATA_DFLAG_NCQ_OFF;
1087 queue_depth = 1;
1088 } else {
1089 dev->flags &= ~ATA_DFLAG_NCQ_OFF;
1090 }
1091
1092 spin_unlock_irqrestore(ap->lock, flags);
1093
1094 if (queue_depth == sdev->queue_depth)
1095 return sdev->queue_depth;
1096
1097 return scsi_change_queue_depth(sdev, queue_depth);
1098 }
1099 EXPORT_SYMBOL_GPL(ata_change_queue_depth);
1100
1101 /**
1102 * ata_scsi_change_queue_depth - SCSI callback for queue depth config
1103 * @sdev: SCSI device to configure queue depth for
1104 * @queue_depth: new queue depth
1105 *
1106 * This is libata standard hostt->change_queue_depth callback.
1107 * SCSI will call into this callback when user tries to set queue
1108 * depth via sysfs.
1109 *
1110 * LOCKING:
1111 * SCSI layer (we don't care)
1112 *
1113 * RETURNS:
1114 * Newly configured queue depth.
1115 */
ata_scsi_change_queue_depth(struct scsi_device * sdev,int queue_depth)1116 int ata_scsi_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1117 {
1118 struct ata_port *ap = ata_shost_to_port(sdev->host);
1119
1120 return ata_change_queue_depth(ap, sdev, queue_depth);
1121 }
1122 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1123
1124 /**
1125 * ata_sas_port_alloc - Allocate port for a SAS attached SATA device
1126 * @host: ATA host container for all SAS ports
1127 * @port_info: Information from low-level host driver
1128 * @shost: SCSI host that the scsi device is attached to
1129 *
1130 * LOCKING:
1131 * PCI/etc. bus probe sem.
1132 *
1133 * RETURNS:
1134 * ata_port pointer on success / NULL on failure.
1135 */
1136
ata_sas_port_alloc(struct ata_host * host,struct ata_port_info * port_info,struct Scsi_Host * shost)1137 struct ata_port *ata_sas_port_alloc(struct ata_host *host,
1138 struct ata_port_info *port_info,
1139 struct Scsi_Host *shost)
1140 {
1141 struct ata_port *ap;
1142
1143 ap = ata_port_alloc(host);
1144 if (!ap)
1145 return NULL;
1146
1147 ap->port_no = 0;
1148 ap->lock = &host->lock;
1149 ap->pio_mask = port_info->pio_mask;
1150 ap->mwdma_mask = port_info->mwdma_mask;
1151 ap->udma_mask = port_info->udma_mask;
1152 ap->flags |= port_info->flags;
1153 ap->ops = port_info->port_ops;
1154 ap->cbl = ATA_CBL_SATA;
1155 ap->print_id = atomic_inc_return(&ata_print_id);
1156
1157 return ap;
1158 }
1159 EXPORT_SYMBOL_GPL(ata_sas_port_alloc);
1160
ata_sas_tport_add(struct device * parent,struct ata_port * ap)1161 int ata_sas_tport_add(struct device *parent, struct ata_port *ap)
1162 {
1163 return ata_tport_add(parent, ap);
1164 }
1165 EXPORT_SYMBOL_GPL(ata_sas_tport_add);
1166
ata_sas_tport_delete(struct ata_port * ap)1167 void ata_sas_tport_delete(struct ata_port *ap)
1168 {
1169 ata_tport_delete(ap);
1170 }
1171 EXPORT_SYMBOL_GPL(ata_sas_tport_delete);
1172
1173 /**
1174 * ata_sas_slave_configure - Default slave_config routine for libata devices
1175 * @sdev: SCSI device to configure
1176 * @ap: ATA port to which SCSI device is attached
1177 *
1178 * RETURNS:
1179 * Zero.
1180 */
1181
ata_sas_slave_configure(struct scsi_device * sdev,struct ata_port * ap)1182 int ata_sas_slave_configure(struct scsi_device *sdev, struct ata_port *ap)
1183 {
1184 ata_scsi_sdev_config(sdev);
1185 ata_scsi_dev_config(sdev, ap->link.device);
1186 return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(ata_sas_slave_configure);
1189
1190 /**
1191 * ata_sas_queuecmd - Issue SCSI cdb to libata-managed device
1192 * @cmd: SCSI command to be sent
1193 * @ap: ATA port to which the command is being sent
1194 *
1195 * RETURNS:
1196 * Return value from __ata_scsi_queuecmd() if @cmd can be queued,
1197 * 0 otherwise.
1198 */
1199
ata_sas_queuecmd(struct scsi_cmnd * cmd,struct ata_port * ap)1200 int ata_sas_queuecmd(struct scsi_cmnd *cmd, struct ata_port *ap)
1201 {
1202 int rc = 0;
1203
1204 if (likely(ata_dev_enabled(ap->link.device)))
1205 rc = __ata_scsi_queuecmd(cmd, ap->link.device);
1206 else {
1207 cmd->result = (DID_BAD_TARGET << 16);
1208 scsi_done(cmd);
1209 }
1210 return rc;
1211 }
1212 EXPORT_SYMBOL_GPL(ata_sas_queuecmd);
1213
1214 /**
1215 * sata_async_notification - SATA async notification handler
1216 * @ap: ATA port where async notification is received
1217 *
1218 * Handler to be called when async notification via SDB FIS is
1219 * received. This function schedules EH if necessary.
1220 *
1221 * LOCKING:
1222 * spin_lock_irqsave(host lock)
1223 *
1224 * RETURNS:
1225 * 1 if EH is scheduled, 0 otherwise.
1226 */
sata_async_notification(struct ata_port * ap)1227 int sata_async_notification(struct ata_port *ap)
1228 {
1229 u32 sntf;
1230 int rc;
1231
1232 if (!(ap->flags & ATA_FLAG_AN))
1233 return 0;
1234
1235 rc = sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf);
1236 if (rc == 0)
1237 sata_scr_write(&ap->link, SCR_NOTIFICATION, sntf);
1238
1239 if (!sata_pmp_attached(ap) || rc) {
1240 /* PMP is not attached or SNTF is not available */
1241 if (!sata_pmp_attached(ap)) {
1242 /* PMP is not attached. Check whether ATAPI
1243 * AN is configured. If so, notify media
1244 * change.
1245 */
1246 struct ata_device *dev = ap->link.device;
1247
1248 if ((dev->class == ATA_DEV_ATAPI) &&
1249 (dev->flags & ATA_DFLAG_AN))
1250 ata_scsi_media_change_notify(dev);
1251 return 0;
1252 } else {
1253 /* PMP is attached but SNTF is not available.
1254 * ATAPI async media change notification is
1255 * not used. The PMP must be reporting PHY
1256 * status change, schedule EH.
1257 */
1258 ata_port_schedule_eh(ap);
1259 return 1;
1260 }
1261 } else {
1262 /* PMP is attached and SNTF is available */
1263 struct ata_link *link;
1264
1265 /* check and notify ATAPI AN */
1266 ata_for_each_link(link, ap, EDGE) {
1267 if (!(sntf & (1 << link->pmp)))
1268 continue;
1269
1270 if ((link->device->class == ATA_DEV_ATAPI) &&
1271 (link->device->flags & ATA_DFLAG_AN))
1272 ata_scsi_media_change_notify(link->device);
1273 }
1274
1275 /* If PMP is reporting that PHY status of some
1276 * downstream ports has changed, schedule EH.
1277 */
1278 if (sntf & (1 << SATA_PMP_CTRL_PORT)) {
1279 ata_port_schedule_eh(ap);
1280 return 1;
1281 }
1282
1283 return 0;
1284 }
1285 }
1286 EXPORT_SYMBOL_GPL(sata_async_notification);
1287
1288 /**
1289 * ata_eh_read_log_10h - Read log page 10h for NCQ error details
1290 * @dev: Device to read log page 10h from
1291 * @tag: Resulting tag of the failed command
1292 * @tf: Resulting taskfile registers of the failed command
1293 *
1294 * Read log page 10h to obtain NCQ error details and clear error
1295 * condition.
1296 *
1297 * LOCKING:
1298 * Kernel thread context (may sleep).
1299 *
1300 * RETURNS:
1301 * 0 on success, -errno otherwise.
1302 */
ata_eh_read_log_10h(struct ata_device * dev,int * tag,struct ata_taskfile * tf)1303 static int ata_eh_read_log_10h(struct ata_device *dev,
1304 int *tag, struct ata_taskfile *tf)
1305 {
1306 u8 *buf = dev->link->ap->sector_buf;
1307 unsigned int err_mask;
1308 u8 csum;
1309 int i;
1310
1311 err_mask = ata_read_log_page(dev, ATA_LOG_SATA_NCQ, 0, buf, 1);
1312 if (err_mask)
1313 return -EIO;
1314
1315 csum = 0;
1316 for (i = 0; i < ATA_SECT_SIZE; i++)
1317 csum += buf[i];
1318 if (csum)
1319 ata_dev_warn(dev, "invalid checksum 0x%x on log page 10h\n",
1320 csum);
1321
1322 if (buf[0] & 0x80)
1323 return -ENOENT;
1324
1325 *tag = buf[0] & 0x1f;
1326
1327 tf->status = buf[2];
1328 tf->error = buf[3];
1329 tf->lbal = buf[4];
1330 tf->lbam = buf[5];
1331 tf->lbah = buf[6];
1332 tf->device = buf[7];
1333 tf->hob_lbal = buf[8];
1334 tf->hob_lbam = buf[9];
1335 tf->hob_lbah = buf[10];
1336 tf->nsect = buf[12];
1337 tf->hob_nsect = buf[13];
1338 if (ata_id_has_ncq_autosense(dev->id) && (tf->status & ATA_SENSE))
1339 tf->auxiliary = buf[14] << 16 | buf[15] << 8 | buf[16];
1340
1341 return 0;
1342 }
1343
1344 /**
1345 * ata_eh_read_sense_success_ncq_log - Read the sense data for successful
1346 * NCQ commands log
1347 * @link: ATA link to get sense data for
1348 *
1349 * Read the sense data for successful NCQ commands log page to obtain
1350 * sense data for all NCQ commands that completed successfully with
1351 * the sense data available bit set.
1352 *
1353 * LOCKING:
1354 * Kernel thread context (may sleep).
1355 *
1356 * RETURNS:
1357 * 0 on success, -errno otherwise.
1358 */
ata_eh_read_sense_success_ncq_log(struct ata_link * link)1359 int ata_eh_read_sense_success_ncq_log(struct ata_link *link)
1360 {
1361 struct ata_device *dev = link->device;
1362 struct ata_port *ap = dev->link->ap;
1363 u8 *buf = ap->ncq_sense_buf;
1364 struct ata_queued_cmd *qc;
1365 unsigned int err_mask, tag;
1366 u8 *sense, sk = 0, asc = 0, ascq = 0;
1367 u64 sense_valid, val;
1368 u16 extended_sense;
1369 bool aux_icc_valid;
1370 int ret = 0;
1371
1372 err_mask = ata_read_log_page(dev, ATA_LOG_SENSE_NCQ, 0, buf, 2);
1373 if (err_mask) {
1374 ata_dev_err(dev,
1375 "Failed to read Sense Data for Successful NCQ Commands log\n");
1376 return -EIO;
1377 }
1378
1379 /* Check the log header */
1380 val = get_unaligned_le64(&buf[0]);
1381 if ((val & 0xffff) != 1 || ((val >> 16) & 0xff) != 0x0f) {
1382 ata_dev_err(dev,
1383 "Invalid Sense Data for Successful NCQ Commands log\n");
1384 return -EIO;
1385 }
1386
1387 sense_valid = (u64)buf[8] | ((u64)buf[9] << 8) |
1388 ((u64)buf[10] << 16) | ((u64)buf[11] << 24);
1389 extended_sense = get_unaligned_le16(&buf[14]);
1390 aux_icc_valid = extended_sense & BIT(15);
1391
1392 ata_qc_for_each_raw(ap, qc, tag) {
1393 if (!(qc->flags & ATA_QCFLAG_EH) ||
1394 !(qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD) ||
1395 qc->err_mask ||
1396 ata_dev_phys_link(qc->dev) != link)
1397 continue;
1398
1399 /*
1400 * If the command does not have any sense data, clear ATA_SENSE.
1401 * Keep ATA_QCFLAG_EH_SUCCESS_CMD so that command is finished.
1402 */
1403 if (!(sense_valid & (1ULL << tag))) {
1404 qc->result_tf.status &= ~ATA_SENSE;
1405 continue;
1406 }
1407
1408 sense = &buf[32 + 24 * tag];
1409 sk = sense[0];
1410 asc = sense[1];
1411 ascq = sense[2];
1412
1413 if (!ata_scsi_sense_is_valid(sk, asc, ascq)) {
1414 ret = -EIO;
1415 continue;
1416 }
1417
1418 qc->result_tf.nsect = sense[6];
1419 qc->result_tf.hob_nsect = sense[7];
1420 qc->result_tf.lbal = sense[8];
1421 qc->result_tf.lbam = sense[9];
1422 qc->result_tf.lbah = sense[10];
1423 qc->result_tf.hob_lbal = sense[11];
1424 qc->result_tf.hob_lbam = sense[12];
1425 qc->result_tf.hob_lbah = sense[13];
1426 if (aux_icc_valid)
1427 qc->result_tf.auxiliary = get_unaligned_le32(&sense[16]);
1428
1429 /* Set sense without also setting scsicmd->result */
1430 scsi_build_sense_buffer(dev->flags & ATA_DFLAG_D_SENSE,
1431 qc->scsicmd->sense_buffer, sk,
1432 asc, ascq);
1433 qc->flags |= ATA_QCFLAG_SENSE_VALID;
1434
1435 /*
1436 * If we have sense data, call scsi_check_sense() in order to
1437 * set the correct SCSI ML byte (if any). No point in checking
1438 * the return value, since the command has already completed
1439 * successfully.
1440 */
1441 scsi_check_sense(qc->scsicmd);
1442 }
1443
1444 return ret;
1445 }
1446 EXPORT_SYMBOL_GPL(ata_eh_read_sense_success_ncq_log);
1447
1448 /**
1449 * ata_eh_analyze_ncq_error - analyze NCQ error
1450 * @link: ATA link to analyze NCQ error for
1451 *
1452 * Read log page 10h, determine the offending qc and acquire
1453 * error status TF. For NCQ device errors, all LLDDs have to do
1454 * is setting AC_ERR_DEV in ehi->err_mask. This function takes
1455 * care of the rest.
1456 *
1457 * LOCKING:
1458 * Kernel thread context (may sleep).
1459 */
ata_eh_analyze_ncq_error(struct ata_link * link)1460 void ata_eh_analyze_ncq_error(struct ata_link *link)
1461 {
1462 struct ata_port *ap = link->ap;
1463 struct ata_eh_context *ehc = &link->eh_context;
1464 struct ata_device *dev = link->device;
1465 struct ata_queued_cmd *qc;
1466 struct ata_taskfile tf;
1467 int tag, rc;
1468
1469 /* if frozen, we can't do much */
1470 if (ata_port_is_frozen(ap))
1471 return;
1472
1473 /* is it NCQ device error? */
1474 if (!link->sactive || !(ehc->i.err_mask & AC_ERR_DEV))
1475 return;
1476
1477 /* has LLDD analyzed already? */
1478 ata_qc_for_each_raw(ap, qc, tag) {
1479 if (!(qc->flags & ATA_QCFLAG_EH))
1480 continue;
1481
1482 if (qc->err_mask)
1483 return;
1484 }
1485
1486 /* okay, this error is ours */
1487 memset(&tf, 0, sizeof(tf));
1488 rc = ata_eh_read_log_10h(dev, &tag, &tf);
1489 if (rc) {
1490 ata_link_err(link, "failed to read log page 10h (errno=%d)\n",
1491 rc);
1492 return;
1493 }
1494
1495 if (!(link->sactive & (1 << tag))) {
1496 ata_link_err(link, "log page 10h reported inactive tag %d\n",
1497 tag);
1498 return;
1499 }
1500
1501 /* we've got the perpetrator, condemn it */
1502 qc = __ata_qc_from_tag(ap, tag);
1503 memcpy(&qc->result_tf, &tf, sizeof(tf));
1504 qc->result_tf.flags = ATA_TFLAG_ISADDR | ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
1505 qc->err_mask |= AC_ERR_DEV | AC_ERR_NCQ;
1506
1507 /*
1508 * If the device supports NCQ autosense, ata_eh_read_log_10h() will have
1509 * stored the sense data in qc->result_tf.auxiliary.
1510 */
1511 if (qc->result_tf.auxiliary) {
1512 char sense_key, asc, ascq;
1513
1514 sense_key = (qc->result_tf.auxiliary >> 16) & 0xff;
1515 asc = (qc->result_tf.auxiliary >> 8) & 0xff;
1516 ascq = qc->result_tf.auxiliary & 0xff;
1517 if (ata_scsi_sense_is_valid(sense_key, asc, ascq)) {
1518 ata_scsi_set_sense(dev, qc->scsicmd, sense_key, asc,
1519 ascq);
1520 ata_scsi_set_sense_information(dev, qc->scsicmd,
1521 &qc->result_tf);
1522 qc->flags |= ATA_QCFLAG_SENSE_VALID;
1523 }
1524 }
1525
1526 ata_qc_for_each_raw(ap, qc, tag) {
1527 if (!(qc->flags & ATA_QCFLAG_EH) ||
1528 qc->flags & ATA_QCFLAG_EH_SUCCESS_CMD ||
1529 ata_dev_phys_link(qc->dev) != link)
1530 continue;
1531
1532 /* Skip the single QC which caused the NCQ error. */
1533 if (qc->err_mask)
1534 continue;
1535
1536 /*
1537 * For SATA, the STATUS and ERROR fields are shared for all NCQ
1538 * commands that were completed with the same SDB FIS.
1539 * Therefore, we have to clear the ATA_ERR bit for all QCs
1540 * except the one that caused the NCQ error.
1541 */
1542 qc->result_tf.status &= ~ATA_ERR;
1543 qc->result_tf.error = 0;
1544
1545 /*
1546 * If we get a NCQ error, that means that a single command was
1547 * aborted. All other failed commands for our link should be
1548 * retried and has no business of going though further scrutiny
1549 * by ata_eh_link_autopsy().
1550 */
1551 qc->flags |= ATA_QCFLAG_RETRY;
1552 }
1553
1554 ehc->i.err_mask &= ~AC_ERR_DEV;
1555 }
1556 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
1557