xref: /openbmc/linux/drivers/ata/libata-core.c (revision c0fbc959)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  libata-core.c - helper library for ATA
4  *
5  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
6  *  Copyright 2003-2004 Jeff Garzik
7  *
8  *  libata documentation is available via 'make {ps|pdf}docs',
9  *  as Documentation/driver-api/libata.rst
10  *
11  *  Hardware documentation available from http://www.t13.org/ and
12  *  http://www.sata-io.org/
13  *
14  *  Standards documents from:
15  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
16  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
17  *	http://www.sata-io.org (SATA)
18  *	http://www.compactflash.org (CF)
19  *	http://www.qic.org (QIC157 - Tape and DSC)
20  *	http://www.ce-ata.org (CE-ATA: not supported)
21  *
22  * libata is essentially a library of internal helper functions for
23  * low-level ATA host controller drivers.  As such, the API/ABI is
24  * likely to change as new drivers are added and updated.
25  * Do not depend on ABI/API stability.
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63 
64 #include "libata.h"
65 #include "libata-transport.h"
66 
67 const struct ata_port_operations ata_base_port_ops = {
68 	.prereset		= ata_std_prereset,
69 	.postreset		= ata_std_postreset,
70 	.error_handler		= ata_std_error_handler,
71 	.sched_eh		= ata_std_sched_eh,
72 	.end_eh			= ata_std_end_eh,
73 };
74 
75 const struct ata_port_operations sata_port_ops = {
76 	.inherits		= &ata_base_port_ops,
77 
78 	.qc_defer		= ata_std_qc_defer,
79 	.hardreset		= sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82 
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 					u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88 
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90 
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 	const char	*name;
94 	u8		cbl;
95 	u8		spd_limit;
96 	unsigned int	xfer_mask;
97 	unsigned int	horkage_on;
98 	unsigned int	horkage_off;
99 	u16		lflags_on;
100 	u16		lflags_off;
101 };
102 
103 struct ata_force_ent {
104 	int			port;
105 	int			device;
106 	struct ata_force_param	param;
107 };
108 
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111 
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117 
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121 
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125 
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129 
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133 
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137 
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141 
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145 
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149 
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153 
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157 
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162 
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 	struct ata_eh_context *ehc = &dev->link->eh_context;
166 
167 	return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169 
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 	return (sstatus & 0xf) == 0x3;
173 }
174 
175 /**
176  *	ata_link_next - link iteration helper
177  *	@link: the previous link, NULL to start
178  *	@ap: ATA port containing links to iterate
179  *	@mode: iteration mode, one of ATA_LITER_*
180  *
181  *	LOCKING:
182  *	Host lock or EH context.
183  *
184  *	RETURNS:
185  *	Pointer to the next link.
186  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 			       enum ata_link_iter_mode mode)
189 {
190 	BUG_ON(mode != ATA_LITER_EDGE &&
191 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192 
193 	/* NULL link indicates start of iteration */
194 	if (!link)
195 		switch (mode) {
196 		case ATA_LITER_EDGE:
197 		case ATA_LITER_PMP_FIRST:
198 			if (sata_pmp_attached(ap))
199 				return ap->pmp_link;
200 			fallthrough;
201 		case ATA_LITER_HOST_FIRST:
202 			return &ap->link;
203 		}
204 
205 	/* we just iterated over the host link, what's next? */
206 	if (link == &ap->link)
207 		switch (mode) {
208 		case ATA_LITER_HOST_FIRST:
209 			if (sata_pmp_attached(ap))
210 				return ap->pmp_link;
211 			fallthrough;
212 		case ATA_LITER_PMP_FIRST:
213 			if (unlikely(ap->slave_link))
214 				return ap->slave_link;
215 			fallthrough;
216 		case ATA_LITER_EDGE:
217 			return NULL;
218 		}
219 
220 	/* slave_link excludes PMP */
221 	if (unlikely(link == ap->slave_link))
222 		return NULL;
223 
224 	/* we were over a PMP link */
225 	if (++link < ap->pmp_link + ap->nr_pmp_links)
226 		return link;
227 
228 	if (mode == ATA_LITER_PMP_FIRST)
229 		return &ap->link;
230 
231 	return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234 
235 /**
236  *	ata_dev_next - device iteration helper
237  *	@dev: the previous device, NULL to start
238  *	@link: ATA link containing devices to iterate
239  *	@mode: iteration mode, one of ATA_DITER_*
240  *
241  *	LOCKING:
242  *	Host lock or EH context.
243  *
244  *	RETURNS:
245  *	Pointer to the next device.
246  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 				enum ata_dev_iter_mode mode)
249 {
250 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252 
253 	/* NULL dev indicates start of iteration */
254 	if (!dev)
255 		switch (mode) {
256 		case ATA_DITER_ENABLED:
257 		case ATA_DITER_ALL:
258 			dev = link->device;
259 			goto check;
260 		case ATA_DITER_ENABLED_REVERSE:
261 		case ATA_DITER_ALL_REVERSE:
262 			dev = link->device + ata_link_max_devices(link) - 1;
263 			goto check;
264 		}
265 
266  next:
267 	/* move to the next one */
268 	switch (mode) {
269 	case ATA_DITER_ENABLED:
270 	case ATA_DITER_ALL:
271 		if (++dev < link->device + ata_link_max_devices(link))
272 			goto check;
273 		return NULL;
274 	case ATA_DITER_ENABLED_REVERSE:
275 	case ATA_DITER_ALL_REVERSE:
276 		if (--dev >= link->device)
277 			goto check;
278 		return NULL;
279 	}
280 
281  check:
282 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 	    !ata_dev_enabled(dev))
284 		goto next;
285 	return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288 
289 /**
290  *	ata_dev_phys_link - find physical link for a device
291  *	@dev: ATA device to look up physical link for
292  *
293  *	Look up physical link which @dev is attached to.  Note that
294  *	this is different from @dev->link only when @dev is on slave
295  *	link.  For all other cases, it's the same as @dev->link.
296  *
297  *	LOCKING:
298  *	Don't care.
299  *
300  *	RETURNS:
301  *	Pointer to the found physical link.
302  */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 	struct ata_port *ap = dev->link->ap;
306 
307 	if (!ap->slave_link)
308 		return dev->link;
309 	if (!dev->devno)
310 		return &ap->link;
311 	return ap->slave_link;
312 }
313 
314 #ifdef CONFIG_ATA_FORCE
315 /**
316  *	ata_force_cbl - force cable type according to libata.force
317  *	@ap: ATA port of interest
318  *
319  *	Force cable type according to libata.force and whine about it.
320  *	The last entry which has matching port number is used, so it
321  *	can be specified as part of device force parameters.  For
322  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323  *	same effect.
324  *
325  *	LOCKING:
326  *	EH context.
327  */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 	int i;
331 
332 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 		const struct ata_force_ent *fe = &ata_force_tbl[i];
334 
335 		if (fe->port != -1 && fe->port != ap->print_id)
336 			continue;
337 
338 		if (fe->param.cbl == ATA_CBL_NONE)
339 			continue;
340 
341 		ap->cbl = fe->param.cbl;
342 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 		return;
344 	}
345 }
346 
347 /**
348  *	ata_force_link_limits - force link limits according to libata.force
349  *	@link: ATA link of interest
350  *
351  *	Force link flags and SATA spd limit according to libata.force
352  *	and whine about it.  When only the port part is specified
353  *	(e.g. 1:), the limit applies to all links connected to both
354  *	the host link and all fan-out ports connected via PMP.  If the
355  *	device part is specified as 0 (e.g. 1.00:), it specifies the
356  *	first fan-out link not the host link.  Device number 15 always
357  *	points to the host link whether PMP is attached or not.  If the
358  *	controller has slave link, device number 16 points to it.
359  *
360  *	LOCKING:
361  *	EH context.
362  */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 	bool did_spd = false;
366 	int linkno = link->pmp;
367 	int i;
368 
369 	if (ata_is_host_link(link))
370 		linkno += 15;
371 
372 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 		const struct ata_force_ent *fe = &ata_force_tbl[i];
374 
375 		if (fe->port != -1 && fe->port != link->ap->print_id)
376 			continue;
377 
378 		if (fe->device != -1 && fe->device != linkno)
379 			continue;
380 
381 		/* only honor the first spd limit */
382 		if (!did_spd && fe->param.spd_limit) {
383 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 					fe->param.name);
386 			did_spd = true;
387 		}
388 
389 		/* let lflags stack */
390 		if (fe->param.lflags_on) {
391 			link->flags |= fe->param.lflags_on;
392 			ata_link_notice(link,
393 					"FORCE: link flag 0x%x forced -> 0x%x\n",
394 					fe->param.lflags_on, link->flags);
395 		}
396 		if (fe->param.lflags_off) {
397 			link->flags &= ~fe->param.lflags_off;
398 			ata_link_notice(link,
399 				"FORCE: link flag 0x%x cleared -> 0x%x\n",
400 				fe->param.lflags_off, link->flags);
401 		}
402 	}
403 }
404 
405 /**
406  *	ata_force_xfermask - force xfermask according to libata.force
407  *	@dev: ATA device of interest
408  *
409  *	Force xfer_mask according to libata.force and whine about it.
410  *	For consistency with link selection, device number 15 selects
411  *	the first device connected to the host link.
412  *
413  *	LOCKING:
414  *	EH context.
415  */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 	int devno = dev->link->pmp + dev->devno;
419 	int alt_devno = devno;
420 	int i;
421 
422 	/* allow n.15/16 for devices attached to host port */
423 	if (ata_is_host_link(dev->link))
424 		alt_devno += 15;
425 
426 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 		const struct ata_force_ent *fe = &ata_force_tbl[i];
428 		unsigned int pio_mask, mwdma_mask, udma_mask;
429 
430 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 			continue;
432 
433 		if (fe->device != -1 && fe->device != devno &&
434 		    fe->device != alt_devno)
435 			continue;
436 
437 		if (!fe->param.xfer_mask)
438 			continue;
439 
440 		ata_unpack_xfermask(fe->param.xfer_mask,
441 				    &pio_mask, &mwdma_mask, &udma_mask);
442 		if (udma_mask)
443 			dev->udma_mask = udma_mask;
444 		else if (mwdma_mask) {
445 			dev->udma_mask = 0;
446 			dev->mwdma_mask = mwdma_mask;
447 		} else {
448 			dev->udma_mask = 0;
449 			dev->mwdma_mask = 0;
450 			dev->pio_mask = pio_mask;
451 		}
452 
453 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 			       fe->param.name);
455 		return;
456 	}
457 }
458 
459 /**
460  *	ata_force_horkage - force horkage according to libata.force
461  *	@dev: ATA device of interest
462  *
463  *	Force horkage according to libata.force and whine about it.
464  *	For consistency with link selection, device number 15 selects
465  *	the first device connected to the host link.
466  *
467  *	LOCKING:
468  *	EH context.
469  */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 	int devno = dev->link->pmp + dev->devno;
473 	int alt_devno = devno;
474 	int i;
475 
476 	/* allow n.15/16 for devices attached to host port */
477 	if (ata_is_host_link(dev->link))
478 		alt_devno += 15;
479 
480 	for (i = 0; i < ata_force_tbl_size; i++) {
481 		const struct ata_force_ent *fe = &ata_force_tbl[i];
482 
483 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 			continue;
485 
486 		if (fe->device != -1 && fe->device != devno &&
487 		    fe->device != alt_devno)
488 			continue;
489 
490 		if (!(~dev->horkage & fe->param.horkage_on) &&
491 		    !(dev->horkage & fe->param.horkage_off))
492 			continue;
493 
494 		dev->horkage |= fe->param.horkage_on;
495 		dev->horkage &= ~fe->param.horkage_off;
496 
497 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 			       fe->param.name);
499 	}
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506 
507 /**
508  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509  *	@opcode: SCSI opcode
510  *
511  *	Determine ATAPI command type from @opcode.
512  *
513  *	LOCKING:
514  *	None.
515  *
516  *	RETURNS:
517  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518  */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 	switch (opcode) {
522 	case GPCMD_READ_10:
523 	case GPCMD_READ_12:
524 		return ATAPI_READ;
525 
526 	case GPCMD_WRITE_10:
527 	case GPCMD_WRITE_12:
528 	case GPCMD_WRITE_AND_VERIFY_10:
529 		return ATAPI_WRITE;
530 
531 	case GPCMD_READ_CD:
532 	case GPCMD_READ_CD_MSF:
533 		return ATAPI_READ_CD;
534 
535 	case ATA_16:
536 	case ATA_12:
537 		if (atapi_passthru16)
538 			return ATAPI_PASS_THRU;
539 		fallthrough;
540 	default:
541 		return ATAPI_MISC;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545 
546 static const u8 ata_rw_cmds[] = {
547 	/* pio multi */
548 	ATA_CMD_READ_MULTI,
549 	ATA_CMD_WRITE_MULTI,
550 	ATA_CMD_READ_MULTI_EXT,
551 	ATA_CMD_WRITE_MULTI_EXT,
552 	0,
553 	0,
554 	0,
555 	0,
556 	/* pio */
557 	ATA_CMD_PIO_READ,
558 	ATA_CMD_PIO_WRITE,
559 	ATA_CMD_PIO_READ_EXT,
560 	ATA_CMD_PIO_WRITE_EXT,
561 	0,
562 	0,
563 	0,
564 	0,
565 	/* dma */
566 	ATA_CMD_READ,
567 	ATA_CMD_WRITE,
568 	ATA_CMD_READ_EXT,
569 	ATA_CMD_WRITE_EXT,
570 	0,
571 	0,
572 	0,
573 	ATA_CMD_WRITE_FUA_EXT
574 };
575 
576 /**
577  *	ata_set_rwcmd_protocol - set taskfile r/w command and protocol
578  *	@dev: target device for the taskfile
579  *	@tf: taskfile to examine and configure
580  *
581  *	Examine the device configuration and tf->flags to determine
582  *	the proper read/write command and protocol to use for @tf.
583  *
584  *	LOCKING:
585  *	caller.
586  */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)587 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
588 				   struct ata_taskfile *tf)
589 {
590 	u8 cmd;
591 
592 	int index, fua, lba48, write;
593 
594 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
595 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
596 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
597 
598 	if (dev->flags & ATA_DFLAG_PIO) {
599 		tf->protocol = ATA_PROT_PIO;
600 		index = dev->multi_count ? 0 : 8;
601 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
602 		/* Unable to use DMA due to host limitation */
603 		tf->protocol = ATA_PROT_PIO;
604 		index = dev->multi_count ? 0 : 8;
605 	} else {
606 		tf->protocol = ATA_PROT_DMA;
607 		index = 16;
608 	}
609 
610 	cmd = ata_rw_cmds[index + fua + lba48 + write];
611 	if (!cmd)
612 		return false;
613 
614 	tf->command = cmd;
615 
616 	return true;
617 }
618 
619 /**
620  *	ata_tf_read_block - Read block address from ATA taskfile
621  *	@tf: ATA taskfile of interest
622  *	@dev: ATA device @tf belongs to
623  *
624  *	LOCKING:
625  *	None.
626  *
627  *	Read block address from @tf.  This function can handle all
628  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
629  *	flags select the address format to use.
630  *
631  *	RETURNS:
632  *	Block address read from @tf.
633  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)634 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
635 {
636 	u64 block = 0;
637 
638 	if (tf->flags & ATA_TFLAG_LBA) {
639 		if (tf->flags & ATA_TFLAG_LBA48) {
640 			block |= (u64)tf->hob_lbah << 40;
641 			block |= (u64)tf->hob_lbam << 32;
642 			block |= (u64)tf->hob_lbal << 24;
643 		} else
644 			block |= (tf->device & 0xf) << 24;
645 
646 		block |= tf->lbah << 16;
647 		block |= tf->lbam << 8;
648 		block |= tf->lbal;
649 	} else {
650 		u32 cyl, head, sect;
651 
652 		cyl = tf->lbam | (tf->lbah << 8);
653 		head = tf->device & 0xf;
654 		sect = tf->lbal;
655 
656 		if (!sect) {
657 			ata_dev_warn(dev,
658 				     "device reported invalid CHS sector 0\n");
659 			return U64_MAX;
660 		}
661 
662 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
663 	}
664 
665 	return block;
666 }
667 
668 /*
669  * Set a taskfile command duration limit index.
670  */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)671 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
672 {
673 	struct ata_taskfile *tf = &qc->tf;
674 
675 	if (tf->protocol == ATA_PROT_NCQ)
676 		tf->auxiliary |= cdl;
677 	else
678 		tf->feature |= cdl;
679 
680 	/*
681 	 * Mark this command as having a CDL and request the result
682 	 * task file so that we can inspect the sense data available
683 	 * bit on completion.
684 	 */
685 	qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
686 }
687 
688 /**
689  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
690  *	@qc: Metadata associated with the taskfile to build
691  *	@block: Block address
692  *	@n_block: Number of blocks
693  *	@tf_flags: RW/FUA etc...
694  *	@cdl: Command duration limit index
695  *	@class: IO priority class
696  *
697  *	LOCKING:
698  *	None.
699  *
700  *	Build ATA taskfile for the command @qc for read/write request described
701  *	by @block, @n_block, @tf_flags and @class.
702  *
703  *	RETURNS:
704  *
705  *	0 on success, -ERANGE if the request is too large for @dev,
706  *	-EINVAL if the request is invalid.
707  */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)708 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
709 		    unsigned int tf_flags, int cdl, int class)
710 {
711 	struct ata_taskfile *tf = &qc->tf;
712 	struct ata_device *dev = qc->dev;
713 
714 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
715 	tf->flags |= tf_flags;
716 
717 	if (ata_ncq_enabled(dev)) {
718 		/* yay, NCQ */
719 		if (!lba_48_ok(block, n_block))
720 			return -ERANGE;
721 
722 		tf->protocol = ATA_PROT_NCQ;
723 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
724 
725 		if (tf->flags & ATA_TFLAG_WRITE)
726 			tf->command = ATA_CMD_FPDMA_WRITE;
727 		else
728 			tf->command = ATA_CMD_FPDMA_READ;
729 
730 		tf->nsect = qc->hw_tag << 3;
731 		tf->hob_feature = (n_block >> 8) & 0xff;
732 		tf->feature = n_block & 0xff;
733 
734 		tf->hob_lbah = (block >> 40) & 0xff;
735 		tf->hob_lbam = (block >> 32) & 0xff;
736 		tf->hob_lbal = (block >> 24) & 0xff;
737 		tf->lbah = (block >> 16) & 0xff;
738 		tf->lbam = (block >> 8) & 0xff;
739 		tf->lbal = block & 0xff;
740 
741 		tf->device = ATA_LBA;
742 		if (tf->flags & ATA_TFLAG_FUA)
743 			tf->device |= 1 << 7;
744 
745 		if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
746 		    class == IOPRIO_CLASS_RT)
747 			tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
748 
749 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
750 			ata_set_tf_cdl(qc, cdl);
751 
752 	} else if (dev->flags & ATA_DFLAG_LBA) {
753 		tf->flags |= ATA_TFLAG_LBA;
754 
755 		if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
756 			ata_set_tf_cdl(qc, cdl);
757 
758 		/* Both FUA writes and a CDL index require 48-bit commands */
759 		if (!(tf->flags & ATA_TFLAG_FUA) &&
760 		    !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
761 		    lba_28_ok(block, n_block)) {
762 			/* use LBA28 */
763 			tf->device |= (block >> 24) & 0xf;
764 		} else if (lba_48_ok(block, n_block)) {
765 			if (!(dev->flags & ATA_DFLAG_LBA48))
766 				return -ERANGE;
767 
768 			/* use LBA48 */
769 			tf->flags |= ATA_TFLAG_LBA48;
770 
771 			tf->hob_nsect = (n_block >> 8) & 0xff;
772 
773 			tf->hob_lbah = (block >> 40) & 0xff;
774 			tf->hob_lbam = (block >> 32) & 0xff;
775 			tf->hob_lbal = (block >> 24) & 0xff;
776 		} else {
777 			/* request too large even for LBA48 */
778 			return -ERANGE;
779 		}
780 
781 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
782 			return -EINVAL;
783 
784 		tf->nsect = n_block & 0xff;
785 
786 		tf->lbah = (block >> 16) & 0xff;
787 		tf->lbam = (block >> 8) & 0xff;
788 		tf->lbal = block & 0xff;
789 
790 		tf->device |= ATA_LBA;
791 	} else {
792 		/* CHS */
793 		u32 sect, head, cyl, track;
794 
795 		/* The request -may- be too large for CHS addressing. */
796 		if (!lba_28_ok(block, n_block))
797 			return -ERANGE;
798 
799 		if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 			return -EINVAL;
801 
802 		/* Convert LBA to CHS */
803 		track = (u32)block / dev->sectors;
804 		cyl   = track / dev->heads;
805 		head  = track % dev->heads;
806 		sect  = (u32)block % dev->sectors + 1;
807 
808 		/* Check whether the converted CHS can fit.
809 		   Cylinder: 0-65535
810 		   Head: 0-15
811 		   Sector: 1-255*/
812 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
813 			return -ERANGE;
814 
815 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
816 		tf->lbal = sect;
817 		tf->lbam = cyl;
818 		tf->lbah = cyl >> 8;
819 		tf->device |= head;
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
827  *	@pio_mask: pio_mask
828  *	@mwdma_mask: mwdma_mask
829  *	@udma_mask: udma_mask
830  *
831  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
832  *	unsigned int xfer_mask.
833  *
834  *	LOCKING:
835  *	None.
836  *
837  *	RETURNS:
838  *	Packed xfer_mask.
839  */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)840 unsigned int ata_pack_xfermask(unsigned int pio_mask,
841 			       unsigned int mwdma_mask,
842 			       unsigned int udma_mask)
843 {
844 	return	((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
845 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
846 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
847 }
848 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
849 
850 /**
851  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
852  *	@xfer_mask: xfer_mask to unpack
853  *	@pio_mask: resulting pio_mask
854  *	@mwdma_mask: resulting mwdma_mask
855  *	@udma_mask: resulting udma_mask
856  *
857  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
858  *	Any NULL destination masks will be ignored.
859  */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)860 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
861 			 unsigned int *mwdma_mask, unsigned int *udma_mask)
862 {
863 	if (pio_mask)
864 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
865 	if (mwdma_mask)
866 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
867 	if (udma_mask)
868 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
869 }
870 
871 static const struct ata_xfer_ent {
872 	int shift, bits;
873 	u8 base;
874 } ata_xfer_tbl[] = {
875 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
876 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
877 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
878 	{ -1, },
879 };
880 
881 /**
882  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
883  *	@xfer_mask: xfer_mask of interest
884  *
885  *	Return matching XFER_* value for @xfer_mask.  Only the highest
886  *	bit of @xfer_mask is considered.
887  *
888  *	LOCKING:
889  *	None.
890  *
891  *	RETURNS:
892  *	Matching XFER_* value, 0xff if no match found.
893  */
ata_xfer_mask2mode(unsigned int xfer_mask)894 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
895 {
896 	int highbit = fls(xfer_mask) - 1;
897 	const struct ata_xfer_ent *ent;
898 
899 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
900 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
901 			return ent->base + highbit - ent->shift;
902 	return 0xff;
903 }
904 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
905 
906 /**
907  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
908  *	@xfer_mode: XFER_* of interest
909  *
910  *	Return matching xfer_mask for @xfer_mode.
911  *
912  *	LOCKING:
913  *	None.
914  *
915  *	RETURNS:
916  *	Matching xfer_mask, 0 if no match found.
917  */
ata_xfer_mode2mask(u8 xfer_mode)918 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
919 {
920 	const struct ata_xfer_ent *ent;
921 
922 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
923 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
924 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
925 				& ~((1 << ent->shift) - 1);
926 	return 0;
927 }
928 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
929 
930 /**
931  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
932  *	@xfer_mode: XFER_* of interest
933  *
934  *	Return matching xfer_shift for @xfer_mode.
935  *
936  *	LOCKING:
937  *	None.
938  *
939  *	RETURNS:
940  *	Matching xfer_shift, -1 if no match found.
941  */
ata_xfer_mode2shift(u8 xfer_mode)942 int ata_xfer_mode2shift(u8 xfer_mode)
943 {
944 	const struct ata_xfer_ent *ent;
945 
946 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 			return ent->shift;
949 	return -1;
950 }
951 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
952 
953 /**
954  *	ata_mode_string - convert xfer_mask to string
955  *	@xfer_mask: mask of bits supported; only highest bit counts.
956  *
957  *	Determine string which represents the highest speed
958  *	(highest bit in @modemask).
959  *
960  *	LOCKING:
961  *	None.
962  *
963  *	RETURNS:
964  *	Constant C string representing highest speed listed in
965  *	@mode_mask, or the constant C string "<n/a>".
966  */
ata_mode_string(unsigned int xfer_mask)967 const char *ata_mode_string(unsigned int xfer_mask)
968 {
969 	static const char * const xfer_mode_str[] = {
970 		"PIO0",
971 		"PIO1",
972 		"PIO2",
973 		"PIO3",
974 		"PIO4",
975 		"PIO5",
976 		"PIO6",
977 		"MWDMA0",
978 		"MWDMA1",
979 		"MWDMA2",
980 		"MWDMA3",
981 		"MWDMA4",
982 		"UDMA/16",
983 		"UDMA/25",
984 		"UDMA/33",
985 		"UDMA/44",
986 		"UDMA/66",
987 		"UDMA/100",
988 		"UDMA/133",
989 		"UDMA7",
990 	};
991 	int highbit;
992 
993 	highbit = fls(xfer_mask) - 1;
994 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
995 		return xfer_mode_str[highbit];
996 	return "<n/a>";
997 }
998 EXPORT_SYMBOL_GPL(ata_mode_string);
999 
sata_spd_string(unsigned int spd)1000 const char *sata_spd_string(unsigned int spd)
1001 {
1002 	static const char * const spd_str[] = {
1003 		"1.5 Gbps",
1004 		"3.0 Gbps",
1005 		"6.0 Gbps",
1006 	};
1007 
1008 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1009 		return "<unknown>";
1010 	return spd_str[spd - 1];
1011 }
1012 
1013 /**
1014  *	ata_dev_classify - determine device type based on ATA-spec signature
1015  *	@tf: ATA taskfile register set for device to be identified
1016  *
1017  *	Determine from taskfile register contents whether a device is
1018  *	ATA or ATAPI, as per "Signature and persistence" section
1019  *	of ATA/PI spec (volume 1, sect 5.14).
1020  *
1021  *	LOCKING:
1022  *	None.
1023  *
1024  *	RETURNS:
1025  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1026  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1027  */
ata_dev_classify(const struct ata_taskfile * tf)1028 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1029 {
1030 	/* Apple's open source Darwin code hints that some devices only
1031 	 * put a proper signature into the LBA mid/high registers,
1032 	 * So, we only check those.  It's sufficient for uniqueness.
1033 	 *
1034 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1035 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1036 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1037 	 * spec has never mentioned about using different signatures
1038 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1039 	 * Multiplier specification began to use 0x69/0x96 to identify
1040 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1041 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1042 	 * 0x69/0x96 shortly and described them as reserved for
1043 	 * SerialATA.
1044 	 *
1045 	 * We follow the current spec and consider that 0x69/0x96
1046 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1047 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1048 	 * SEMB signature.  This is worked around in
1049 	 * ata_dev_read_id().
1050 	 */
1051 	if (tf->lbam == 0 && tf->lbah == 0)
1052 		return ATA_DEV_ATA;
1053 
1054 	if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1055 		return ATA_DEV_ATAPI;
1056 
1057 	if (tf->lbam == 0x69 && tf->lbah == 0x96)
1058 		return ATA_DEV_PMP;
1059 
1060 	if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1061 		return ATA_DEV_SEMB;
1062 
1063 	if (tf->lbam == 0xcd && tf->lbah == 0xab)
1064 		return ATA_DEV_ZAC;
1065 
1066 	return ATA_DEV_UNKNOWN;
1067 }
1068 EXPORT_SYMBOL_GPL(ata_dev_classify);
1069 
1070 /**
1071  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1072  *	@id: IDENTIFY DEVICE results we will examine
1073  *	@s: string into which data is output
1074  *	@ofs: offset into identify device page
1075  *	@len: length of string to return. must be an even number.
1076  *
1077  *	The strings in the IDENTIFY DEVICE page are broken up into
1078  *	16-bit chunks.  Run through the string, and output each
1079  *	8-bit chunk linearly, regardless of platform.
1080  *
1081  *	LOCKING:
1082  *	caller.
1083  */
1084 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1085 void ata_id_string(const u16 *id, unsigned char *s,
1086 		   unsigned int ofs, unsigned int len)
1087 {
1088 	unsigned int c;
1089 
1090 	BUG_ON(len & 1);
1091 
1092 	while (len > 0) {
1093 		c = id[ofs] >> 8;
1094 		*s = c;
1095 		s++;
1096 
1097 		c = id[ofs] & 0xff;
1098 		*s = c;
1099 		s++;
1100 
1101 		ofs++;
1102 		len -= 2;
1103 	}
1104 }
1105 EXPORT_SYMBOL_GPL(ata_id_string);
1106 
1107 /**
1108  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1109  *	@id: IDENTIFY DEVICE results we will examine
1110  *	@s: string into which data is output
1111  *	@ofs: offset into identify device page
1112  *	@len: length of string to return. must be an odd number.
1113  *
1114  *	This function is identical to ata_id_string except that it
1115  *	trims trailing spaces and terminates the resulting string with
1116  *	null.  @len must be actual maximum length (even number) + 1.
1117  *
1118  *	LOCKING:
1119  *	caller.
1120  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1121 void ata_id_c_string(const u16 *id, unsigned char *s,
1122 		     unsigned int ofs, unsigned int len)
1123 {
1124 	unsigned char *p;
1125 
1126 	ata_id_string(id, s, ofs, len - 1);
1127 
1128 	p = s + strnlen(s, len - 1);
1129 	while (p > s && p[-1] == ' ')
1130 		p--;
1131 	*p = '\0';
1132 }
1133 EXPORT_SYMBOL_GPL(ata_id_c_string);
1134 
ata_id_n_sectors(const u16 * id)1135 static u64 ata_id_n_sectors(const u16 *id)
1136 {
1137 	if (ata_id_has_lba(id)) {
1138 		if (ata_id_has_lba48(id))
1139 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1140 
1141 		return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1142 	}
1143 
1144 	if (ata_id_current_chs_valid(id))
1145 		return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1146 		       (u32)id[ATA_ID_CUR_SECTORS];
1147 
1148 	return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1149 	       (u32)id[ATA_ID_SECTORS];
1150 }
1151 
ata_tf_to_lba48(const struct ata_taskfile * tf)1152 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1153 {
1154 	u64 sectors = 0;
1155 
1156 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1157 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1158 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1159 	sectors |= (tf->lbah & 0xff) << 16;
1160 	sectors |= (tf->lbam & 0xff) << 8;
1161 	sectors |= (tf->lbal & 0xff);
1162 
1163 	return sectors;
1164 }
1165 
ata_tf_to_lba(const struct ata_taskfile * tf)1166 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1167 {
1168 	u64 sectors = 0;
1169 
1170 	sectors |= (tf->device & 0x0f) << 24;
1171 	sectors |= (tf->lbah & 0xff) << 16;
1172 	sectors |= (tf->lbam & 0xff) << 8;
1173 	sectors |= (tf->lbal & 0xff);
1174 
1175 	return sectors;
1176 }
1177 
1178 /**
1179  *	ata_read_native_max_address - Read native max address
1180  *	@dev: target device
1181  *	@max_sectors: out parameter for the result native max address
1182  *
1183  *	Perform an LBA48 or LBA28 native size query upon the device in
1184  *	question.
1185  *
1186  *	RETURNS:
1187  *	0 on success, -EACCES if command is aborted by the drive.
1188  *	-EIO on other errors.
1189  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1190 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1191 {
1192 	unsigned int err_mask;
1193 	struct ata_taskfile tf;
1194 	int lba48 = ata_id_has_lba48(dev->id);
1195 
1196 	ata_tf_init(dev, &tf);
1197 
1198 	/* always clear all address registers */
1199 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1200 
1201 	if (lba48) {
1202 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1203 		tf.flags |= ATA_TFLAG_LBA48;
1204 	} else
1205 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1206 
1207 	tf.protocol = ATA_PROT_NODATA;
1208 	tf.device |= ATA_LBA;
1209 
1210 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1211 	if (err_mask) {
1212 		ata_dev_warn(dev,
1213 			     "failed to read native max address (err_mask=0x%x)\n",
1214 			     err_mask);
1215 		if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1216 			return -EACCES;
1217 		return -EIO;
1218 	}
1219 
1220 	if (lba48)
1221 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1222 	else
1223 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1224 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1225 		(*max_sectors)--;
1226 	return 0;
1227 }
1228 
1229 /**
1230  *	ata_set_max_sectors - Set max sectors
1231  *	@dev: target device
1232  *	@new_sectors: new max sectors value to set for the device
1233  *
1234  *	Set max sectors of @dev to @new_sectors.
1235  *
1236  *	RETURNS:
1237  *	0 on success, -EACCES if command is aborted or denied (due to
1238  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1239  *	errors.
1240  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1241 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1242 {
1243 	unsigned int err_mask;
1244 	struct ata_taskfile tf;
1245 	int lba48 = ata_id_has_lba48(dev->id);
1246 
1247 	new_sectors--;
1248 
1249 	ata_tf_init(dev, &tf);
1250 
1251 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1252 
1253 	if (lba48) {
1254 		tf.command = ATA_CMD_SET_MAX_EXT;
1255 		tf.flags |= ATA_TFLAG_LBA48;
1256 
1257 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1258 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1259 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1260 	} else {
1261 		tf.command = ATA_CMD_SET_MAX;
1262 
1263 		tf.device |= (new_sectors >> 24) & 0xf;
1264 	}
1265 
1266 	tf.protocol = ATA_PROT_NODATA;
1267 	tf.device |= ATA_LBA;
1268 
1269 	tf.lbal = (new_sectors >> 0) & 0xff;
1270 	tf.lbam = (new_sectors >> 8) & 0xff;
1271 	tf.lbah = (new_sectors >> 16) & 0xff;
1272 
1273 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1274 	if (err_mask) {
1275 		ata_dev_warn(dev,
1276 			     "failed to set max address (err_mask=0x%x)\n",
1277 			     err_mask);
1278 		if (err_mask == AC_ERR_DEV &&
1279 		    (tf.error & (ATA_ABORTED | ATA_IDNF)))
1280 			return -EACCES;
1281 		return -EIO;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  *	ata_hpa_resize		-	Resize a device with an HPA set
1289  *	@dev: Device to resize
1290  *
1291  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1292  *	it if required to the full size of the media. The caller must check
1293  *	the drive has the HPA feature set enabled.
1294  *
1295  *	RETURNS:
1296  *	0 on success, -errno on failure.
1297  */
ata_hpa_resize(struct ata_device * dev)1298 static int ata_hpa_resize(struct ata_device *dev)
1299 {
1300 	bool print_info = ata_dev_print_info(dev);
1301 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1302 	u64 sectors = ata_id_n_sectors(dev->id);
1303 	u64 native_sectors;
1304 	int rc;
1305 
1306 	/* do we need to do it? */
1307 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1308 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1309 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1310 		return 0;
1311 
1312 	/* read native max address */
1313 	rc = ata_read_native_max_address(dev, &native_sectors);
1314 	if (rc) {
1315 		/* If device aborted the command or HPA isn't going to
1316 		 * be unlocked, skip HPA resizing.
1317 		 */
1318 		if (rc == -EACCES || !unlock_hpa) {
1319 			ata_dev_warn(dev,
1320 				     "HPA support seems broken, skipping HPA handling\n");
1321 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1322 
1323 			/* we can continue if device aborted the command */
1324 			if (rc == -EACCES)
1325 				rc = 0;
1326 		}
1327 
1328 		return rc;
1329 	}
1330 	dev->n_native_sectors = native_sectors;
1331 
1332 	/* nothing to do? */
1333 	if (native_sectors <= sectors || !unlock_hpa) {
1334 		if (!print_info || native_sectors == sectors)
1335 			return 0;
1336 
1337 		if (native_sectors > sectors)
1338 			ata_dev_info(dev,
1339 				"HPA detected: current %llu, native %llu\n",
1340 				(unsigned long long)sectors,
1341 				(unsigned long long)native_sectors);
1342 		else if (native_sectors < sectors)
1343 			ata_dev_warn(dev,
1344 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1345 				(unsigned long long)native_sectors,
1346 				(unsigned long long)sectors);
1347 		return 0;
1348 	}
1349 
1350 	/* let's unlock HPA */
1351 	rc = ata_set_max_sectors(dev, native_sectors);
1352 	if (rc == -EACCES) {
1353 		/* if device aborted the command, skip HPA resizing */
1354 		ata_dev_warn(dev,
1355 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1356 			     (unsigned long long)sectors,
1357 			     (unsigned long long)native_sectors);
1358 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1359 		return 0;
1360 	} else if (rc)
1361 		return rc;
1362 
1363 	/* re-read IDENTIFY data */
1364 	rc = ata_dev_reread_id(dev, 0);
1365 	if (rc) {
1366 		ata_dev_err(dev,
1367 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1368 		return rc;
1369 	}
1370 
1371 	if (print_info) {
1372 		u64 new_sectors = ata_id_n_sectors(dev->id);
1373 		ata_dev_info(dev,
1374 			"HPA unlocked: %llu -> %llu, native %llu\n",
1375 			(unsigned long long)sectors,
1376 			(unsigned long long)new_sectors,
1377 			(unsigned long long)native_sectors);
1378 	}
1379 
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1385  *	@dev: device from which the information is fetched
1386  *	@id: IDENTIFY DEVICE page to dump
1387  *
1388  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1389  *	page.
1390  *
1391  *	LOCKING:
1392  *	caller.
1393  */
1394 
ata_dump_id(struct ata_device * dev,const u16 * id)1395 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1396 {
1397 	ata_dev_dbg(dev,
1398 		"49==0x%04x  53==0x%04x  63==0x%04x  64==0x%04x  75==0x%04x\n"
1399 		"80==0x%04x  81==0x%04x  82==0x%04x  83==0x%04x  84==0x%04x\n"
1400 		"88==0x%04x  93==0x%04x\n",
1401 		id[49], id[53], id[63], id[64], id[75], id[80],
1402 		id[81], id[82], id[83], id[84], id[88], id[93]);
1403 }
1404 
1405 /**
1406  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1407  *	@id: IDENTIFY data to compute xfer mask from
1408  *
1409  *	Compute the xfermask for this device. This is not as trivial
1410  *	as it seems if we must consider early devices correctly.
1411  *
1412  *	FIXME: pre IDE drive timing (do we care ?).
1413  *
1414  *	LOCKING:
1415  *	None.
1416  *
1417  *	RETURNS:
1418  *	Computed xfermask
1419  */
ata_id_xfermask(const u16 * id)1420 unsigned int ata_id_xfermask(const u16 *id)
1421 {
1422 	unsigned int pio_mask, mwdma_mask, udma_mask;
1423 
1424 	/* Usual case. Word 53 indicates word 64 is valid */
1425 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1426 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1427 		pio_mask <<= 3;
1428 		pio_mask |= 0x7;
1429 	} else {
1430 		/* If word 64 isn't valid then Word 51 high byte holds
1431 		 * the PIO timing number for the maximum. Turn it into
1432 		 * a mask.
1433 		 */
1434 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1435 		if (mode < 5)	/* Valid PIO range */
1436 			pio_mask = (2 << mode) - 1;
1437 		else
1438 			pio_mask = 1;
1439 
1440 		/* But wait.. there's more. Design your standards by
1441 		 * committee and you too can get a free iordy field to
1442 		 * process. However it is the speeds not the modes that
1443 		 * are supported... Note drivers using the timing API
1444 		 * will get this right anyway
1445 		 */
1446 	}
1447 
1448 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1449 
1450 	if (ata_id_is_cfa(id)) {
1451 		/*
1452 		 *	Process compact flash extended modes
1453 		 */
1454 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1455 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1456 
1457 		if (pio)
1458 			pio_mask |= (1 << 5);
1459 		if (pio > 1)
1460 			pio_mask |= (1 << 6);
1461 		if (dma)
1462 			mwdma_mask |= (1 << 3);
1463 		if (dma > 1)
1464 			mwdma_mask |= (1 << 4);
1465 	}
1466 
1467 	udma_mask = 0;
1468 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1469 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1470 
1471 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1472 }
1473 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1474 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1475 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1476 {
1477 	struct completion *waiting = qc->private_data;
1478 
1479 	complete(waiting);
1480 }
1481 
1482 /**
1483  *	ata_exec_internal_sg - execute libata internal command
1484  *	@dev: Device to which the command is sent
1485  *	@tf: Taskfile registers for the command and the result
1486  *	@cdb: CDB for packet command
1487  *	@dma_dir: Data transfer direction of the command
1488  *	@sgl: sg list for the data buffer of the command
1489  *	@n_elem: Number of sg entries
1490  *	@timeout: Timeout in msecs (0 for default)
1491  *
1492  *	Executes libata internal command with timeout.  @tf contains
1493  *	command on entry and result on return.  Timeout and error
1494  *	conditions are reported via return value.  No recovery action
1495  *	is taken after a command times out.  It's caller's duty to
1496  *	clean up after timeout.
1497  *
1498  *	LOCKING:
1499  *	None.  Should be called with kernel context, might sleep.
1500  *
1501  *	RETURNS:
1502  *	Zero on success, AC_ERR_* mask on failure
1503  */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1504 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1505 				     struct ata_taskfile *tf, const u8 *cdb,
1506 				     int dma_dir, struct scatterlist *sgl,
1507 				     unsigned int n_elem, unsigned int timeout)
1508 {
1509 	struct ata_link *link = dev->link;
1510 	struct ata_port *ap = link->ap;
1511 	u8 command = tf->command;
1512 	int auto_timeout = 0;
1513 	struct ata_queued_cmd *qc;
1514 	unsigned int preempted_tag;
1515 	u32 preempted_sactive;
1516 	u64 preempted_qc_active;
1517 	int preempted_nr_active_links;
1518 	DECLARE_COMPLETION_ONSTACK(wait);
1519 	unsigned long flags;
1520 	unsigned int err_mask;
1521 	int rc;
1522 
1523 	spin_lock_irqsave(ap->lock, flags);
1524 
1525 	/* no internal command while frozen */
1526 	if (ata_port_is_frozen(ap)) {
1527 		spin_unlock_irqrestore(ap->lock, flags);
1528 		return AC_ERR_SYSTEM;
1529 	}
1530 
1531 	/* initialize internal qc */
1532 	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1533 
1534 	qc->tag = ATA_TAG_INTERNAL;
1535 	qc->hw_tag = 0;
1536 	qc->scsicmd = NULL;
1537 	qc->ap = ap;
1538 	qc->dev = dev;
1539 	ata_qc_reinit(qc);
1540 
1541 	preempted_tag = link->active_tag;
1542 	preempted_sactive = link->sactive;
1543 	preempted_qc_active = ap->qc_active;
1544 	preempted_nr_active_links = ap->nr_active_links;
1545 	link->active_tag = ATA_TAG_POISON;
1546 	link->sactive = 0;
1547 	ap->qc_active = 0;
1548 	ap->nr_active_links = 0;
1549 
1550 	/* prepare & issue qc */
1551 	qc->tf = *tf;
1552 	if (cdb)
1553 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1554 
1555 	/* some SATA bridges need us to indicate data xfer direction */
1556 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1557 	    dma_dir == DMA_FROM_DEVICE)
1558 		qc->tf.feature |= ATAPI_DMADIR;
1559 
1560 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1561 	qc->dma_dir = dma_dir;
1562 	if (dma_dir != DMA_NONE) {
1563 		unsigned int i, buflen = 0;
1564 		struct scatterlist *sg;
1565 
1566 		for_each_sg(sgl, sg, n_elem, i)
1567 			buflen += sg->length;
1568 
1569 		ata_sg_init(qc, sgl, n_elem);
1570 		qc->nbytes = buflen;
1571 	}
1572 
1573 	qc->private_data = &wait;
1574 	qc->complete_fn = ata_qc_complete_internal;
1575 
1576 	ata_qc_issue(qc);
1577 
1578 	spin_unlock_irqrestore(ap->lock, flags);
1579 
1580 	if (!timeout) {
1581 		if (ata_probe_timeout)
1582 			timeout = ata_probe_timeout * 1000;
1583 		else {
1584 			timeout = ata_internal_cmd_timeout(dev, command);
1585 			auto_timeout = 1;
1586 		}
1587 	}
1588 
1589 	ata_eh_release(ap);
1590 
1591 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1592 
1593 	ata_eh_acquire(ap);
1594 
1595 	ata_sff_flush_pio_task(ap);
1596 
1597 	if (!rc) {
1598 		spin_lock_irqsave(ap->lock, flags);
1599 
1600 		/* We're racing with irq here.  If we lose, the
1601 		 * following test prevents us from completing the qc
1602 		 * twice.  If we win, the port is frozen and will be
1603 		 * cleaned up by ->post_internal_cmd().
1604 		 */
1605 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1606 			qc->err_mask |= AC_ERR_TIMEOUT;
1607 
1608 			ata_port_freeze(ap);
1609 
1610 			ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1611 				     timeout, command);
1612 		}
1613 
1614 		spin_unlock_irqrestore(ap->lock, flags);
1615 	}
1616 
1617 	/* do post_internal_cmd */
1618 	if (ap->ops->post_internal_cmd)
1619 		ap->ops->post_internal_cmd(qc);
1620 
1621 	/* perform minimal error analysis */
1622 	if (qc->flags & ATA_QCFLAG_EH) {
1623 		if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1624 			qc->err_mask |= AC_ERR_DEV;
1625 
1626 		if (!qc->err_mask)
1627 			qc->err_mask |= AC_ERR_OTHER;
1628 
1629 		if (qc->err_mask & ~AC_ERR_OTHER)
1630 			qc->err_mask &= ~AC_ERR_OTHER;
1631 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1632 		qc->result_tf.status |= ATA_SENSE;
1633 	}
1634 
1635 	/* finish up */
1636 	spin_lock_irqsave(ap->lock, flags);
1637 
1638 	*tf = qc->result_tf;
1639 	err_mask = qc->err_mask;
1640 
1641 	ata_qc_free(qc);
1642 	link->active_tag = preempted_tag;
1643 	link->sactive = preempted_sactive;
1644 	ap->qc_active = preempted_qc_active;
1645 	ap->nr_active_links = preempted_nr_active_links;
1646 
1647 	spin_unlock_irqrestore(ap->lock, flags);
1648 
1649 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1650 		ata_internal_cmd_timed_out(dev, command);
1651 
1652 	return err_mask;
1653 }
1654 
1655 /**
1656  *	ata_exec_internal - execute libata internal command
1657  *	@dev: Device to which the command is sent
1658  *	@tf: Taskfile registers for the command and the result
1659  *	@cdb: CDB for packet command
1660  *	@dma_dir: Data transfer direction of the command
1661  *	@buf: Data buffer of the command
1662  *	@buflen: Length of data buffer
1663  *	@timeout: Timeout in msecs (0 for default)
1664  *
1665  *	Wrapper around ata_exec_internal_sg() which takes simple
1666  *	buffer instead of sg list.
1667  *
1668  *	LOCKING:
1669  *	None.  Should be called with kernel context, might sleep.
1670  *
1671  *	RETURNS:
1672  *	Zero on success, AC_ERR_* mask on failure
1673  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1674 unsigned ata_exec_internal(struct ata_device *dev,
1675 			   struct ata_taskfile *tf, const u8 *cdb,
1676 			   int dma_dir, void *buf, unsigned int buflen,
1677 			   unsigned int timeout)
1678 {
1679 	struct scatterlist *psg = NULL, sg;
1680 	unsigned int n_elem = 0;
1681 
1682 	if (dma_dir != DMA_NONE) {
1683 		WARN_ON(!buf);
1684 		sg_init_one(&sg, buf, buflen);
1685 		psg = &sg;
1686 		n_elem++;
1687 	}
1688 
1689 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1690 				    timeout);
1691 }
1692 
1693 /**
1694  *	ata_pio_need_iordy	-	check if iordy needed
1695  *	@adev: ATA device
1696  *
1697  *	Check if the current speed of the device requires IORDY. Used
1698  *	by various controllers for chip configuration.
1699  */
ata_pio_need_iordy(const struct ata_device * adev)1700 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1701 {
1702 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1703 	 * lead to controller lock up on certain controllers if the
1704 	 * port is not occupied.  See bko#11703 for details.
1705 	 */
1706 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1707 		return 0;
1708 	/* Controller doesn't support IORDY.  Probably a pointless
1709 	 * check as the caller should know this.
1710 	 */
1711 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1712 		return 0;
1713 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1714 	if (ata_id_is_cfa(adev->id)
1715 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1716 		return 0;
1717 	/* PIO3 and higher it is mandatory */
1718 	if (adev->pio_mode > XFER_PIO_2)
1719 		return 1;
1720 	/* We turn it on when possible */
1721 	if (ata_id_has_iordy(adev->id))
1722 		return 1;
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1726 
1727 /**
1728  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1729  *	@adev: ATA device
1730  *
1731  *	Compute the highest mode possible if we are not using iordy. Return
1732  *	-1 if no iordy mode is available.
1733  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1734 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1735 {
1736 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1737 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1738 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1739 		/* Is the speed faster than the drive allows non IORDY ? */
1740 		if (pio) {
1741 			/* This is cycle times not frequency - watch the logic! */
1742 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1743 				return 3 << ATA_SHIFT_PIO;
1744 			return 7 << ATA_SHIFT_PIO;
1745 		}
1746 	}
1747 	return 3 << ATA_SHIFT_PIO;
1748 }
1749 
1750 /**
1751  *	ata_do_dev_read_id		-	default ID read method
1752  *	@dev: device
1753  *	@tf: proposed taskfile
1754  *	@id: data buffer
1755  *
1756  *	Issue the identify taskfile and hand back the buffer containing
1757  *	identify data. For some RAID controllers and for pre ATA devices
1758  *	this function is wrapped or replaced by the driver
1759  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1760 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1761 				struct ata_taskfile *tf, __le16 *id)
1762 {
1763 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1764 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1765 }
1766 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1767 
1768 /**
1769  *	ata_dev_read_id - Read ID data from the specified device
1770  *	@dev: target device
1771  *	@p_class: pointer to class of the target device (may be changed)
1772  *	@flags: ATA_READID_* flags
1773  *	@id: buffer to read IDENTIFY data into
1774  *
1775  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1776  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1777  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1778  *	for pre-ATA4 drives.
1779  *
1780  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1781  *	now we abort if we hit that case.
1782  *
1783  *	LOCKING:
1784  *	Kernel thread context (may sleep)
1785  *
1786  *	RETURNS:
1787  *	0 on success, -errno otherwise.
1788  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1789 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1790 		    unsigned int flags, u16 *id)
1791 {
1792 	struct ata_port *ap = dev->link->ap;
1793 	unsigned int class = *p_class;
1794 	struct ata_taskfile tf;
1795 	unsigned int err_mask = 0;
1796 	const char *reason;
1797 	bool is_semb = class == ATA_DEV_SEMB;
1798 	int may_fallback = 1, tried_spinup = 0;
1799 	int rc;
1800 
1801 retry:
1802 	ata_tf_init(dev, &tf);
1803 
1804 	switch (class) {
1805 	case ATA_DEV_SEMB:
1806 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1807 		fallthrough;
1808 	case ATA_DEV_ATA:
1809 	case ATA_DEV_ZAC:
1810 		tf.command = ATA_CMD_ID_ATA;
1811 		break;
1812 	case ATA_DEV_ATAPI:
1813 		tf.command = ATA_CMD_ID_ATAPI;
1814 		break;
1815 	default:
1816 		rc = -ENODEV;
1817 		reason = "unsupported class";
1818 		goto err_out;
1819 	}
1820 
1821 	tf.protocol = ATA_PROT_PIO;
1822 
1823 	/* Some devices choke if TF registers contain garbage.  Make
1824 	 * sure those are properly initialized.
1825 	 */
1826 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1827 
1828 	/* Device presence detection is unreliable on some
1829 	 * controllers.  Always poll IDENTIFY if available.
1830 	 */
1831 	tf.flags |= ATA_TFLAG_POLLING;
1832 
1833 	if (ap->ops->read_id)
1834 		err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1835 	else
1836 		err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1837 
1838 	if (err_mask) {
1839 		if (err_mask & AC_ERR_NODEV_HINT) {
1840 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1841 			return -ENOENT;
1842 		}
1843 
1844 		if (is_semb) {
1845 			ata_dev_info(dev,
1846 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1847 			/* SEMB is not supported yet */
1848 			*p_class = ATA_DEV_SEMB_UNSUP;
1849 			return 0;
1850 		}
1851 
1852 		if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1853 			/* Device or controller might have reported
1854 			 * the wrong device class.  Give a shot at the
1855 			 * other IDENTIFY if the current one is
1856 			 * aborted by the device.
1857 			 */
1858 			if (may_fallback) {
1859 				may_fallback = 0;
1860 
1861 				if (class == ATA_DEV_ATA)
1862 					class = ATA_DEV_ATAPI;
1863 				else
1864 					class = ATA_DEV_ATA;
1865 				goto retry;
1866 			}
1867 
1868 			/* Control reaches here iff the device aborted
1869 			 * both flavors of IDENTIFYs which happens
1870 			 * sometimes with phantom devices.
1871 			 */
1872 			ata_dev_dbg(dev,
1873 				    "both IDENTIFYs aborted, assuming NODEV\n");
1874 			return -ENOENT;
1875 		}
1876 
1877 		rc = -EIO;
1878 		reason = "I/O error";
1879 		goto err_out;
1880 	}
1881 
1882 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1883 		ata_dev_info(dev, "dumping IDENTIFY data, "
1884 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1885 			    class, may_fallback, tried_spinup);
1886 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1887 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1888 	}
1889 
1890 	/* Falling back doesn't make sense if ID data was read
1891 	 * successfully at least once.
1892 	 */
1893 	may_fallback = 0;
1894 
1895 	swap_buf_le16(id, ATA_ID_WORDS);
1896 
1897 	/* sanity check */
1898 	rc = -EINVAL;
1899 	reason = "device reports invalid type";
1900 
1901 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1902 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1903 			goto err_out;
1904 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1905 							ata_id_is_ata(id)) {
1906 			ata_dev_dbg(dev,
1907 				"host indicates ignore ATA devices, ignored\n");
1908 			return -ENOENT;
1909 		}
1910 	} else {
1911 		if (ata_id_is_ata(id))
1912 			goto err_out;
1913 	}
1914 
1915 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1916 		tried_spinup = 1;
1917 		/*
1918 		 * Drive powered-up in standby mode, and requires a specific
1919 		 * SET_FEATURES spin-up subcommand before it will accept
1920 		 * anything other than the original IDENTIFY command.
1921 		 */
1922 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1923 		if (err_mask && id[2] != 0x738c) {
1924 			rc = -EIO;
1925 			reason = "SPINUP failed";
1926 			goto err_out;
1927 		}
1928 		/*
1929 		 * If the drive initially returned incomplete IDENTIFY info,
1930 		 * we now must reissue the IDENTIFY command.
1931 		 */
1932 		if (id[2] == 0x37c8)
1933 			goto retry;
1934 	}
1935 
1936 	if ((flags & ATA_READID_POSTRESET) &&
1937 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1938 		/*
1939 		 * The exact sequence expected by certain pre-ATA4 drives is:
1940 		 * SRST RESET
1941 		 * IDENTIFY (optional in early ATA)
1942 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1943 		 * anything else..
1944 		 * Some drives were very specific about that exact sequence.
1945 		 *
1946 		 * Note that ATA4 says lba is mandatory so the second check
1947 		 * should never trigger.
1948 		 */
1949 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1950 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1951 			if (err_mask) {
1952 				rc = -EIO;
1953 				reason = "INIT_DEV_PARAMS failed";
1954 				goto err_out;
1955 			}
1956 
1957 			/* current CHS translation info (id[53-58]) might be
1958 			 * changed. reread the identify device info.
1959 			 */
1960 			flags &= ~ATA_READID_POSTRESET;
1961 			goto retry;
1962 		}
1963 	}
1964 
1965 	*p_class = class;
1966 
1967 	return 0;
1968 
1969  err_out:
1970 	ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971 		     reason, err_mask);
1972 	return rc;
1973 }
1974 
1975 /**
1976  *	ata_dev_power_set_standby - Set a device power mode to standby
1977  *	@dev: target device
1978  *
1979  *	Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1980  *	For an HDD device, this spins down the disks.
1981  *
1982  *	LOCKING:
1983  *	Kernel thread context (may sleep).
1984  */
ata_dev_power_set_standby(struct ata_device * dev)1985 void ata_dev_power_set_standby(struct ata_device *dev)
1986 {
1987 	unsigned long ap_flags = dev->link->ap->flags;
1988 	struct ata_taskfile tf;
1989 	unsigned int err_mask;
1990 
1991 	/* Issue STANDBY IMMEDIATE command only if supported by the device */
1992 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1993 		return;
1994 
1995 	/*
1996 	 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997 	 * causing some drives to spin up and down again. For these, do nothing
1998 	 * if we are being called on shutdown.
1999 	 */
2000 	if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001 	    system_state == SYSTEM_POWER_OFF)
2002 		return;
2003 
2004 	if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005 	    system_entering_hibernation())
2006 		return;
2007 
2008 	ata_tf_init(dev, &tf);
2009 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2010 	tf.protocol = ATA_PROT_NODATA;
2011 	tf.command = ATA_CMD_STANDBYNOW1;
2012 
2013 	ata_dev_notice(dev, "Entering standby power mode\n");
2014 
2015 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2016 	if (err_mask)
2017 		ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2018 			    err_mask);
2019 }
2020 
2021 /**
2022  *	ata_dev_power_set_active -  Set a device power mode to active
2023  *	@dev: target device
2024  *
2025  *	Issue a VERIFY command to enter to ensure that the device is in the
2026  *	active power mode. For a spun-down HDD (standby or idle power mode),
2027  *	the VERIFY command will complete after the disk spins up.
2028  *
2029  *	LOCKING:
2030  *	Kernel thread context (may sleep).
2031  */
ata_dev_power_set_active(struct ata_device * dev)2032 void ata_dev_power_set_active(struct ata_device *dev)
2033 {
2034 	struct ata_taskfile tf;
2035 	unsigned int err_mask;
2036 
2037 	/* If the device is already sleeping, do nothing. */
2038 	if (dev->flags & ATA_DFLAG_SLEEPING)
2039 		return;
2040 
2041 	/*
2042 	 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2043 	 * if supported by the device.
2044 	 */
2045 	if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
2046 		return;
2047 
2048 	ata_tf_init(dev, &tf);
2049 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
2050 	tf.protocol = ATA_PROT_NODATA;
2051 	tf.command = ATA_CMD_VERIFY;
2052 	tf.nsect = 1;
2053 	if (dev->flags & ATA_DFLAG_LBA) {
2054 		tf.flags |= ATA_TFLAG_LBA;
2055 		tf.device |= ATA_LBA;
2056 	} else {
2057 		/* CHS */
2058 		tf.lbal = 0x1; /* sect */
2059 	}
2060 
2061 	ata_dev_notice(dev, "Entering active power mode\n");
2062 
2063 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2064 	if (err_mask)
2065 		ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2066 			    err_mask);
2067 }
2068 
2069 /**
2070  *	ata_read_log_page - read a specific log page
2071  *	@dev: target device
2072  *	@log: log to read
2073  *	@page: page to read
2074  *	@buf: buffer to store read page
2075  *	@sectors: number of sectors to read
2076  *
2077  *	Read log page using READ_LOG_EXT command.
2078  *
2079  *	LOCKING:
2080  *	Kernel thread context (may sleep).
2081  *
2082  *	RETURNS:
2083  *	0 on success, AC_ERR_* mask otherwise.
2084  */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2085 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2086 			       u8 page, void *buf, unsigned int sectors)
2087 {
2088 	unsigned long ap_flags = dev->link->ap->flags;
2089 	struct ata_taskfile tf;
2090 	unsigned int err_mask;
2091 	bool dma = false;
2092 
2093 	ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2094 
2095 	/*
2096 	 * Return error without actually issuing the command on controllers
2097 	 * which e.g. lockup on a read log page.
2098 	 */
2099 	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2100 		return AC_ERR_DEV;
2101 
2102 retry:
2103 	ata_tf_init(dev, &tf);
2104 	if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2105 	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2106 		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2107 		tf.protocol = ATA_PROT_DMA;
2108 		dma = true;
2109 	} else {
2110 		tf.command = ATA_CMD_READ_LOG_EXT;
2111 		tf.protocol = ATA_PROT_PIO;
2112 		dma = false;
2113 	}
2114 	tf.lbal = log;
2115 	tf.lbam = page;
2116 	tf.nsect = sectors;
2117 	tf.hob_nsect = sectors >> 8;
2118 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2119 
2120 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2121 				     buf, sectors * ATA_SECT_SIZE, 0);
2122 
2123 	if (err_mask) {
2124 		if (dma) {
2125 			dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2126 			if (!ata_port_is_frozen(dev->link->ap))
2127 				goto retry;
2128 		}
2129 		ata_dev_err(dev,
2130 			    "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2131 			    (unsigned int)log, (unsigned int)page, err_mask);
2132 	}
2133 
2134 	return err_mask;
2135 }
2136 
ata_log_supported(struct ata_device * dev,u8 log)2137 static int ata_log_supported(struct ata_device *dev, u8 log)
2138 {
2139 	struct ata_port *ap = dev->link->ap;
2140 
2141 	if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2142 		return 0;
2143 
2144 	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2145 		return 0;
2146 	return get_unaligned_le16(&ap->sector_buf[log * 2]);
2147 }
2148 
ata_identify_page_supported(struct ata_device * dev,u8 page)2149 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2150 {
2151 	struct ata_port *ap = dev->link->ap;
2152 	unsigned int err, i;
2153 
2154 	if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2155 		return false;
2156 
2157 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2158 		/*
2159 		 * IDENTIFY DEVICE data log is defined as mandatory starting
2160 		 * with ACS-3 (ATA version 10). Warn about the missing log
2161 		 * for drives which implement this ATA level or above.
2162 		 */
2163 		if (ata_id_major_version(dev->id) >= 10)
2164 			ata_dev_warn(dev,
2165 				"ATA Identify Device Log not supported\n");
2166 		dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2167 		return false;
2168 	}
2169 
2170 	/*
2171 	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2172 	 * supported.
2173 	 */
2174 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2175 				1);
2176 	if (err)
2177 		return false;
2178 
2179 	for (i = 0; i < ap->sector_buf[8]; i++) {
2180 		if (ap->sector_buf[9 + i] == page)
2181 			return true;
2182 	}
2183 
2184 	return false;
2185 }
2186 
ata_do_link_spd_horkage(struct ata_device * dev)2187 static int ata_do_link_spd_horkage(struct ata_device *dev)
2188 {
2189 	struct ata_link *plink = ata_dev_phys_link(dev);
2190 	u32 target, target_limit;
2191 
2192 	if (!sata_scr_valid(plink))
2193 		return 0;
2194 
2195 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2196 		target = 1;
2197 	else
2198 		return 0;
2199 
2200 	target_limit = (1 << target) - 1;
2201 
2202 	/* if already on stricter limit, no need to push further */
2203 	if (plink->sata_spd_limit <= target_limit)
2204 		return 0;
2205 
2206 	plink->sata_spd_limit = target_limit;
2207 
2208 	/* Request another EH round by returning -EAGAIN if link is
2209 	 * going faster than the target speed.  Forward progress is
2210 	 * guaranteed by setting sata_spd_limit to target_limit above.
2211 	 */
2212 	if (plink->sata_spd > target) {
2213 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2214 			     sata_spd_string(target));
2215 		return -EAGAIN;
2216 	}
2217 	return 0;
2218 }
2219 
ata_dev_knobble(struct ata_device * dev)2220 static inline u8 ata_dev_knobble(struct ata_device *dev)
2221 {
2222 	struct ata_port *ap = dev->link->ap;
2223 
2224 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2225 		return 0;
2226 
2227 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2228 }
2229 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2230 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2231 {
2232 	struct ata_port *ap = dev->link->ap;
2233 	unsigned int err_mask;
2234 
2235 	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2236 		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2237 		return;
2238 	}
2239 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2240 				     0, ap->sector_buf, 1);
2241 	if (!err_mask) {
2242 		u8 *cmds = dev->ncq_send_recv_cmds;
2243 
2244 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2245 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2246 
2247 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2248 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2249 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2250 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2251 		}
2252 	}
2253 }
2254 
ata_dev_config_ncq_non_data(struct ata_device * dev)2255 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2256 {
2257 	struct ata_port *ap = dev->link->ap;
2258 	unsigned int err_mask;
2259 
2260 	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2261 		ata_dev_warn(dev,
2262 			     "NCQ Send/Recv Log not supported\n");
2263 		return;
2264 	}
2265 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2266 				     0, ap->sector_buf, 1);
2267 	if (!err_mask) {
2268 		u8 *cmds = dev->ncq_non_data_cmds;
2269 
2270 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2271 	}
2272 }
2273 
ata_dev_config_ncq_prio(struct ata_device * dev)2274 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2275 {
2276 	struct ata_port *ap = dev->link->ap;
2277 	unsigned int err_mask;
2278 
2279 	if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2280 		return;
2281 
2282 	err_mask = ata_read_log_page(dev,
2283 				     ATA_LOG_IDENTIFY_DEVICE,
2284 				     ATA_LOG_SATA_SETTINGS,
2285 				     ap->sector_buf,
2286 				     1);
2287 	if (err_mask)
2288 		goto not_supported;
2289 
2290 	if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2291 		goto not_supported;
2292 
2293 	dev->flags |= ATA_DFLAG_NCQ_PRIO;
2294 
2295 	return;
2296 
2297 not_supported:
2298 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2299 	dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2300 }
2301 
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2302 static bool ata_dev_check_adapter(struct ata_device *dev,
2303 				  unsigned short vendor_id)
2304 {
2305 	struct pci_dev *pcidev = NULL;
2306 	struct device *parent_dev = NULL;
2307 
2308 	for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2309 	     parent_dev = parent_dev->parent) {
2310 		if (dev_is_pci(parent_dev)) {
2311 			pcidev = to_pci_dev(parent_dev);
2312 			if (pcidev->vendor == vendor_id)
2313 				return true;
2314 			break;
2315 		}
2316 	}
2317 
2318 	return false;
2319 }
2320 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2321 static int ata_dev_config_ncq(struct ata_device *dev,
2322 			       char *desc, size_t desc_sz)
2323 {
2324 	struct ata_port *ap = dev->link->ap;
2325 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2326 	unsigned int err_mask;
2327 	char *aa_desc = "";
2328 
2329 	if (!ata_id_has_ncq(dev->id)) {
2330 		desc[0] = '\0';
2331 		return 0;
2332 	}
2333 	if (!IS_ENABLED(CONFIG_SATA_HOST))
2334 		return 0;
2335 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2336 		snprintf(desc, desc_sz, "NCQ (not used)");
2337 		return 0;
2338 	}
2339 
2340 	if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2341 	    ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2342 		snprintf(desc, desc_sz, "NCQ (not used)");
2343 		return 0;
2344 	}
2345 
2346 	if (ap->flags & ATA_FLAG_NCQ) {
2347 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2348 		dev->flags |= ATA_DFLAG_NCQ;
2349 	}
2350 
2351 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2352 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2353 		ata_id_has_fpdma_aa(dev->id)) {
2354 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2355 			SATA_FPDMA_AA);
2356 		if (err_mask) {
2357 			ata_dev_err(dev,
2358 				    "failed to enable AA (error_mask=0x%x)\n",
2359 				    err_mask);
2360 			if (err_mask != AC_ERR_DEV) {
2361 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2362 				return -EIO;
2363 			}
2364 		} else
2365 			aa_desc = ", AA";
2366 	}
2367 
2368 	if (hdepth >= ddepth)
2369 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2370 	else
2371 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2372 			ddepth, aa_desc);
2373 
2374 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2375 		if (ata_id_has_ncq_send_and_recv(dev->id))
2376 			ata_dev_config_ncq_send_recv(dev);
2377 		if (ata_id_has_ncq_non_data(dev->id))
2378 			ata_dev_config_ncq_non_data(dev);
2379 		if (ata_id_has_ncq_prio(dev->id))
2380 			ata_dev_config_ncq_prio(dev);
2381 	}
2382 
2383 	return 0;
2384 }
2385 
ata_dev_config_sense_reporting(struct ata_device * dev)2386 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2387 {
2388 	unsigned int err_mask;
2389 
2390 	if (!ata_id_has_sense_reporting(dev->id))
2391 		return;
2392 
2393 	if (ata_id_sense_reporting_enabled(dev->id))
2394 		return;
2395 
2396 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2397 	if (err_mask) {
2398 		ata_dev_dbg(dev,
2399 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2400 			    err_mask);
2401 	}
2402 }
2403 
ata_dev_config_zac(struct ata_device * dev)2404 static void ata_dev_config_zac(struct ata_device *dev)
2405 {
2406 	struct ata_port *ap = dev->link->ap;
2407 	unsigned int err_mask;
2408 	u8 *identify_buf = ap->sector_buf;
2409 
2410 	dev->zac_zones_optimal_open = U32_MAX;
2411 	dev->zac_zones_optimal_nonseq = U32_MAX;
2412 	dev->zac_zones_max_open = U32_MAX;
2413 
2414 	/*
2415 	 * Always set the 'ZAC' flag for Host-managed devices.
2416 	 */
2417 	if (dev->class == ATA_DEV_ZAC)
2418 		dev->flags |= ATA_DFLAG_ZAC;
2419 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2420 		/*
2421 		 * Check for host-aware devices.
2422 		 */
2423 		dev->flags |= ATA_DFLAG_ZAC;
2424 
2425 	if (!(dev->flags & ATA_DFLAG_ZAC))
2426 		return;
2427 
2428 	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2429 		ata_dev_warn(dev,
2430 			     "ATA Zoned Information Log not supported\n");
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2436 	 */
2437 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2438 				     ATA_LOG_ZONED_INFORMATION,
2439 				     identify_buf, 1);
2440 	if (!err_mask) {
2441 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2442 
2443 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2444 		if ((zoned_cap >> 63))
2445 			dev->zac_zoned_cap = (zoned_cap & 1);
2446 		opt_open = get_unaligned_le64(&identify_buf[24]);
2447 		if ((opt_open >> 63))
2448 			dev->zac_zones_optimal_open = (u32)opt_open;
2449 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2450 		if ((opt_nonseq >> 63))
2451 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2452 		max_open = get_unaligned_le64(&identify_buf[40]);
2453 		if ((max_open >> 63))
2454 			dev->zac_zones_max_open = (u32)max_open;
2455 	}
2456 }
2457 
ata_dev_config_trusted(struct ata_device * dev)2458 static void ata_dev_config_trusted(struct ata_device *dev)
2459 {
2460 	struct ata_port *ap = dev->link->ap;
2461 	u64 trusted_cap;
2462 	unsigned int err;
2463 
2464 	if (!ata_id_has_trusted(dev->id))
2465 		return;
2466 
2467 	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2468 		ata_dev_warn(dev,
2469 			     "Security Log not supported\n");
2470 		return;
2471 	}
2472 
2473 	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2474 			ap->sector_buf, 1);
2475 	if (err)
2476 		return;
2477 
2478 	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2479 	if (!(trusted_cap & (1ULL << 63))) {
2480 		ata_dev_dbg(dev,
2481 			    "Trusted Computing capability qword not valid!\n");
2482 		return;
2483 	}
2484 
2485 	if (trusted_cap & (1 << 0))
2486 		dev->flags |= ATA_DFLAG_TRUSTED;
2487 }
2488 
ata_dev_config_cdl(struct ata_device * dev)2489 static void ata_dev_config_cdl(struct ata_device *dev)
2490 {
2491 	struct ata_port *ap = dev->link->ap;
2492 	unsigned int err_mask;
2493 	bool cdl_enabled;
2494 	u64 val;
2495 
2496 	if (ata_id_major_version(dev->id) < 11)
2497 		goto not_supported;
2498 
2499 	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2500 	    !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2501 	    !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2502 		goto not_supported;
2503 
2504 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2505 				     ATA_LOG_SUPPORTED_CAPABILITIES,
2506 				     ap->sector_buf, 1);
2507 	if (err_mask)
2508 		goto not_supported;
2509 
2510 	/* Check Command Duration Limit Supported bits */
2511 	val = get_unaligned_le64(&ap->sector_buf[168]);
2512 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2513 		goto not_supported;
2514 
2515 	/* Warn the user if command duration guideline is not supported */
2516 	if (!(val & BIT_ULL(1)))
2517 		ata_dev_warn(dev,
2518 			"Command duration guideline is not supported\n");
2519 
2520 	/*
2521 	 * We must have support for the sense data for successful NCQ commands
2522 	 * log indicated by the successful NCQ command sense data supported bit.
2523 	 */
2524 	val = get_unaligned_le64(&ap->sector_buf[8]);
2525 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2526 		ata_dev_warn(dev,
2527 			"CDL supported but Successful NCQ Command Sense Data is not supported\n");
2528 		goto not_supported;
2529 	}
2530 
2531 	/* Without NCQ autosense, the successful NCQ commands log is useless. */
2532 	if (!ata_id_has_ncq_autosense(dev->id)) {
2533 		ata_dev_warn(dev,
2534 			"CDL supported but NCQ autosense is not supported\n");
2535 		goto not_supported;
2536 	}
2537 
2538 	/*
2539 	 * If CDL is marked as enabled, make sure the feature is enabled too.
2540 	 * Conversely, if CDL is disabled, make sure the feature is turned off.
2541 	 */
2542 	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2543 				     ATA_LOG_CURRENT_SETTINGS,
2544 				     ap->sector_buf, 1);
2545 	if (err_mask)
2546 		goto not_supported;
2547 
2548 	val = get_unaligned_le64(&ap->sector_buf[8]);
2549 	cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2550 	if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2551 		if (!cdl_enabled) {
2552 			/* Enable CDL on the device */
2553 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2554 			if (err_mask) {
2555 				ata_dev_err(dev,
2556 					    "Enable CDL feature failed\n");
2557 				goto not_supported;
2558 			}
2559 		}
2560 	} else {
2561 		if (cdl_enabled) {
2562 			/* Disable CDL on the device */
2563 			err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2564 			if (err_mask) {
2565 				ata_dev_err(dev,
2566 					    "Disable CDL feature failed\n");
2567 				goto not_supported;
2568 			}
2569 		}
2570 	}
2571 
2572 	/*
2573 	 * While CDL itself has to be enabled using sysfs, CDL requires that
2574 	 * sense data for successful NCQ commands is enabled to work properly.
2575 	 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2576 	 * if supported.
2577 	 */
2578 	if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2579 		err_mask = ata_dev_set_feature(dev,
2580 					SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2581 		if (err_mask) {
2582 			ata_dev_warn(dev,
2583 				     "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2584 				     err_mask);
2585 			goto not_supported;
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * Allocate a buffer to handle reading the sense data for successful
2591 	 * NCQ Commands log page for commands using a CDL with one of the limit
2592 	 * policy set to 0xD (successful completion with sense data available
2593 	 * bit set).
2594 	 */
2595 	if (!ap->ncq_sense_buf) {
2596 		ap->ncq_sense_buf = kmalloc(ATA_LOG_SENSE_NCQ_SIZE, GFP_KERNEL);
2597 		if (!ap->ncq_sense_buf)
2598 			goto not_supported;
2599 	}
2600 
2601 	/*
2602 	 * Command duration limits is supported: cache the CDL log page 18h
2603 	 * (command duration descriptors).
2604 	 */
2605 	err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, ap->sector_buf, 1);
2606 	if (err_mask) {
2607 		ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2608 		goto not_supported;
2609 	}
2610 
2611 	memcpy(dev->cdl, ap->sector_buf, ATA_LOG_CDL_SIZE);
2612 	dev->flags |= ATA_DFLAG_CDL;
2613 
2614 	return;
2615 
2616 not_supported:
2617 	dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2618 	kfree(ap->ncq_sense_buf);
2619 	ap->ncq_sense_buf = NULL;
2620 }
2621 
ata_dev_config_lba(struct ata_device * dev)2622 static int ata_dev_config_lba(struct ata_device *dev)
2623 {
2624 	const u16 *id = dev->id;
2625 	const char *lba_desc;
2626 	char ncq_desc[32];
2627 	int ret;
2628 
2629 	dev->flags |= ATA_DFLAG_LBA;
2630 
2631 	if (ata_id_has_lba48(id)) {
2632 		lba_desc = "LBA48";
2633 		dev->flags |= ATA_DFLAG_LBA48;
2634 		if (dev->n_sectors >= (1UL << 28) &&
2635 		    ata_id_has_flush_ext(id))
2636 			dev->flags |= ATA_DFLAG_FLUSH_EXT;
2637 	} else {
2638 		lba_desc = "LBA";
2639 	}
2640 
2641 	/* config NCQ */
2642 	ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2643 
2644 	/* print device info to dmesg */
2645 	if (ata_dev_print_info(dev))
2646 		ata_dev_info(dev,
2647 			     "%llu sectors, multi %u: %s %s\n",
2648 			     (unsigned long long)dev->n_sectors,
2649 			     dev->multi_count, lba_desc, ncq_desc);
2650 
2651 	return ret;
2652 }
2653 
ata_dev_config_chs(struct ata_device * dev)2654 static void ata_dev_config_chs(struct ata_device *dev)
2655 {
2656 	const u16 *id = dev->id;
2657 
2658 	if (ata_id_current_chs_valid(id)) {
2659 		/* Current CHS translation is valid. */
2660 		dev->cylinders = id[54];
2661 		dev->heads     = id[55];
2662 		dev->sectors   = id[56];
2663 	} else {
2664 		/* Default translation */
2665 		dev->cylinders	= id[1];
2666 		dev->heads	= id[3];
2667 		dev->sectors	= id[6];
2668 	}
2669 
2670 	/* print device info to dmesg */
2671 	if (ata_dev_print_info(dev))
2672 		ata_dev_info(dev,
2673 			     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2674 			     (unsigned long long)dev->n_sectors,
2675 			     dev->multi_count, dev->cylinders,
2676 			     dev->heads, dev->sectors);
2677 }
2678 
ata_dev_config_fua(struct ata_device * dev)2679 static void ata_dev_config_fua(struct ata_device *dev)
2680 {
2681 	/* Ignore FUA support if its use is disabled globally */
2682 	if (!libata_fua)
2683 		goto nofua;
2684 
2685 	/* Ignore devices without support for WRITE DMA FUA EXT */
2686 	if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2687 		goto nofua;
2688 
2689 	/* Ignore known bad devices and devices that lack NCQ support */
2690 	if (!ata_ncq_supported(dev) || (dev->horkage & ATA_HORKAGE_NO_FUA))
2691 		goto nofua;
2692 
2693 	dev->flags |= ATA_DFLAG_FUA;
2694 
2695 	return;
2696 
2697 nofua:
2698 	dev->flags &= ~ATA_DFLAG_FUA;
2699 }
2700 
ata_dev_config_devslp(struct ata_device * dev)2701 static void ata_dev_config_devslp(struct ata_device *dev)
2702 {
2703 	u8 *sata_setting = dev->link->ap->sector_buf;
2704 	unsigned int err_mask;
2705 	int i, j;
2706 
2707 	/*
2708 	 * Check device sleep capability. Get DevSlp timing variables
2709 	 * from SATA Settings page of Identify Device Data Log.
2710 	 */
2711 	if (!ata_id_has_devslp(dev->id) ||
2712 	    !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2713 		return;
2714 
2715 	err_mask = ata_read_log_page(dev,
2716 				     ATA_LOG_IDENTIFY_DEVICE,
2717 				     ATA_LOG_SATA_SETTINGS,
2718 				     sata_setting, 1);
2719 	if (err_mask)
2720 		return;
2721 
2722 	dev->flags |= ATA_DFLAG_DEVSLP;
2723 	for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2724 		j = ATA_LOG_DEVSLP_OFFSET + i;
2725 		dev->devslp_timing[i] = sata_setting[j];
2726 	}
2727 }
2728 
ata_dev_config_cpr(struct ata_device * dev)2729 static void ata_dev_config_cpr(struct ata_device *dev)
2730 {
2731 	unsigned int err_mask;
2732 	size_t buf_len;
2733 	int i, nr_cpr = 0;
2734 	struct ata_cpr_log *cpr_log = NULL;
2735 	u8 *desc, *buf = NULL;
2736 
2737 	if (ata_id_major_version(dev->id) < 11)
2738 		goto out;
2739 
2740 	buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2741 	if (buf_len == 0)
2742 		goto out;
2743 
2744 	/*
2745 	 * Read the concurrent positioning ranges log (0x47). We can have at
2746 	 * most 255 32B range descriptors plus a 64B header. This log varies in
2747 	 * size, so use the size reported in the GPL directory. Reading beyond
2748 	 * the supported length will result in an error.
2749 	 */
2750 	buf_len <<= 9;
2751 	buf = kzalloc(buf_len, GFP_KERNEL);
2752 	if (!buf)
2753 		goto out;
2754 
2755 	err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2756 				     0, buf, buf_len >> 9);
2757 	if (err_mask)
2758 		goto out;
2759 
2760 	nr_cpr = buf[0];
2761 	if (!nr_cpr)
2762 		goto out;
2763 
2764 	cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2765 	if (!cpr_log)
2766 		goto out;
2767 
2768 	cpr_log->nr_cpr = nr_cpr;
2769 	desc = &buf[64];
2770 	for (i = 0; i < nr_cpr; i++, desc += 32) {
2771 		cpr_log->cpr[i].num = desc[0];
2772 		cpr_log->cpr[i].num_storage_elements = desc[1];
2773 		cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2774 		cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2775 	}
2776 
2777 out:
2778 	swap(dev->cpr_log, cpr_log);
2779 	kfree(cpr_log);
2780 	kfree(buf);
2781 }
2782 
ata_dev_print_features(struct ata_device * dev)2783 static void ata_dev_print_features(struct ata_device *dev)
2784 {
2785 	if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2786 		return;
2787 
2788 	ata_dev_info(dev,
2789 		     "Features:%s%s%s%s%s%s%s%s\n",
2790 		     dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2791 		     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2792 		     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2793 		     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2794 		     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2795 		     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2796 		     dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2797 		     dev->cpr_log ? " CPR" : "");
2798 }
2799 
2800 /**
2801  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2802  *	@dev: Target device to configure
2803  *
2804  *	Configure @dev according to @dev->id.  Generic and low-level
2805  *	driver specific fixups are also applied.
2806  *
2807  *	LOCKING:
2808  *	Kernel thread context (may sleep)
2809  *
2810  *	RETURNS:
2811  *	0 on success, -errno otherwise
2812  */
ata_dev_configure(struct ata_device * dev)2813 int ata_dev_configure(struct ata_device *dev)
2814 {
2815 	struct ata_port *ap = dev->link->ap;
2816 	bool print_info = ata_dev_print_info(dev);
2817 	const u16 *id = dev->id;
2818 	unsigned int xfer_mask;
2819 	unsigned int err_mask;
2820 	char revbuf[7];		/* XYZ-99\0 */
2821 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2822 	char modelbuf[ATA_ID_PROD_LEN+1];
2823 	int rc;
2824 
2825 	if (!ata_dev_enabled(dev)) {
2826 		ata_dev_dbg(dev, "no device\n");
2827 		return 0;
2828 	}
2829 
2830 	/* set horkage */
2831 	dev->horkage |= ata_dev_blacklisted(dev);
2832 	ata_force_horkage(dev);
2833 
2834 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2835 		ata_dev_info(dev, "unsupported device, disabling\n");
2836 		ata_dev_disable(dev);
2837 		return 0;
2838 	}
2839 
2840 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2841 	    dev->class == ATA_DEV_ATAPI) {
2842 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2843 			     atapi_enabled ? "not supported with this driver"
2844 			     : "disabled");
2845 		ata_dev_disable(dev);
2846 		return 0;
2847 	}
2848 
2849 	rc = ata_do_link_spd_horkage(dev);
2850 	if (rc)
2851 		return rc;
2852 
2853 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2854 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2855 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2856 		dev->horkage |= ATA_HORKAGE_NOLPM;
2857 
2858 	if (ap->flags & ATA_FLAG_NO_LPM)
2859 		dev->horkage |= ATA_HORKAGE_NOLPM;
2860 
2861 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2862 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2863 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2864 	}
2865 
2866 	/* let ACPI work its magic */
2867 	rc = ata_acpi_on_devcfg(dev);
2868 	if (rc)
2869 		return rc;
2870 
2871 	/* massage HPA, do it early as it might change IDENTIFY data */
2872 	rc = ata_hpa_resize(dev);
2873 	if (rc)
2874 		return rc;
2875 
2876 	/* print device capabilities */
2877 	ata_dev_dbg(dev,
2878 		    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2879 		    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2880 		    __func__,
2881 		    id[49], id[82], id[83], id[84],
2882 		    id[85], id[86], id[87], id[88]);
2883 
2884 	/* initialize to-be-configured parameters */
2885 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2886 	dev->max_sectors = 0;
2887 	dev->cdb_len = 0;
2888 	dev->n_sectors = 0;
2889 	dev->cylinders = 0;
2890 	dev->heads = 0;
2891 	dev->sectors = 0;
2892 	dev->multi_count = 0;
2893 
2894 	/*
2895 	 * common ATA, ATAPI feature tests
2896 	 */
2897 
2898 	/* find max transfer mode; for printk only */
2899 	xfer_mask = ata_id_xfermask(id);
2900 
2901 	ata_dump_id(dev, id);
2902 
2903 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2904 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2905 			sizeof(fwrevbuf));
2906 
2907 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2908 			sizeof(modelbuf));
2909 
2910 	/* ATA-specific feature tests */
2911 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2912 		if (ata_id_is_cfa(id)) {
2913 			/* CPRM may make this media unusable */
2914 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2915 				ata_dev_warn(dev,
2916 	"supports DRM functions and may not be fully accessible\n");
2917 			snprintf(revbuf, 7, "CFA");
2918 		} else {
2919 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2920 			/* Warn the user if the device has TPM extensions */
2921 			if (ata_id_has_tpm(id))
2922 				ata_dev_warn(dev,
2923 	"supports DRM functions and may not be fully accessible\n");
2924 		}
2925 
2926 		dev->n_sectors = ata_id_n_sectors(id);
2927 
2928 		/* get current R/W Multiple count setting */
2929 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2930 			unsigned int max = dev->id[47] & 0xff;
2931 			unsigned int cnt = dev->id[59] & 0xff;
2932 			/* only recognize/allow powers of two here */
2933 			if (is_power_of_2(max) && is_power_of_2(cnt))
2934 				if (cnt <= max)
2935 					dev->multi_count = cnt;
2936 		}
2937 
2938 		/* print device info to dmesg */
2939 		if (print_info)
2940 			ata_dev_info(dev, "%s: %s, %s, max %s\n",
2941 				     revbuf, modelbuf, fwrevbuf,
2942 				     ata_mode_string(xfer_mask));
2943 
2944 		if (ata_id_has_lba(id)) {
2945 			rc = ata_dev_config_lba(dev);
2946 			if (rc)
2947 				return rc;
2948 		} else {
2949 			ata_dev_config_chs(dev);
2950 		}
2951 
2952 		ata_dev_config_fua(dev);
2953 		ata_dev_config_devslp(dev);
2954 		ata_dev_config_sense_reporting(dev);
2955 		ata_dev_config_zac(dev);
2956 		ata_dev_config_trusted(dev);
2957 		ata_dev_config_cpr(dev);
2958 		ata_dev_config_cdl(dev);
2959 		dev->cdb_len = 32;
2960 
2961 		if (print_info)
2962 			ata_dev_print_features(dev);
2963 	}
2964 
2965 	/* ATAPI-specific feature tests */
2966 	else if (dev->class == ATA_DEV_ATAPI) {
2967 		const char *cdb_intr_string = "";
2968 		const char *atapi_an_string = "";
2969 		const char *dma_dir_string = "";
2970 		u32 sntf;
2971 
2972 		rc = atapi_cdb_len(id);
2973 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2974 			ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2975 			rc = -EINVAL;
2976 			goto err_out_nosup;
2977 		}
2978 		dev->cdb_len = (unsigned int) rc;
2979 
2980 		/* Enable ATAPI AN if both the host and device have
2981 		 * the support.  If PMP is attached, SNTF is required
2982 		 * to enable ATAPI AN to discern between PHY status
2983 		 * changed notifications and ATAPI ANs.
2984 		 */
2985 		if (atapi_an &&
2986 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2987 		    (!sata_pmp_attached(ap) ||
2988 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2989 			/* issue SET feature command to turn this on */
2990 			err_mask = ata_dev_set_feature(dev,
2991 					SETFEATURES_SATA_ENABLE, SATA_AN);
2992 			if (err_mask)
2993 				ata_dev_err(dev,
2994 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2995 					    err_mask);
2996 			else {
2997 				dev->flags |= ATA_DFLAG_AN;
2998 				atapi_an_string = ", ATAPI AN";
2999 			}
3000 		}
3001 
3002 		if (ata_id_cdb_intr(dev->id)) {
3003 			dev->flags |= ATA_DFLAG_CDB_INTR;
3004 			cdb_intr_string = ", CDB intr";
3005 		}
3006 
3007 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
3008 			dev->flags |= ATA_DFLAG_DMADIR;
3009 			dma_dir_string = ", DMADIR";
3010 		}
3011 
3012 		if (ata_id_has_da(dev->id)) {
3013 			dev->flags |= ATA_DFLAG_DA;
3014 			zpodd_init(dev);
3015 		}
3016 
3017 		/* print device info to dmesg */
3018 		if (print_info)
3019 			ata_dev_info(dev,
3020 				     "ATAPI: %s, %s, max %s%s%s%s\n",
3021 				     modelbuf, fwrevbuf,
3022 				     ata_mode_string(xfer_mask),
3023 				     cdb_intr_string, atapi_an_string,
3024 				     dma_dir_string);
3025 	}
3026 
3027 	/* determine max_sectors */
3028 	dev->max_sectors = ATA_MAX_SECTORS;
3029 	if (dev->flags & ATA_DFLAG_LBA48)
3030 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3031 
3032 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
3033 	   200 sectors */
3034 	if (ata_dev_knobble(dev)) {
3035 		if (print_info)
3036 			ata_dev_info(dev, "applying bridge limits\n");
3037 		dev->udma_mask &= ATA_UDMA5;
3038 		dev->max_sectors = ATA_MAX_SECTORS;
3039 	}
3040 
3041 	if ((dev->class == ATA_DEV_ATAPI) &&
3042 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
3043 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3044 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
3045 	}
3046 
3047 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
3048 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3049 					 dev->max_sectors);
3050 
3051 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
3052 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3053 					 dev->max_sectors);
3054 
3055 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
3056 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3057 
3058 	if (ap->ops->dev_config)
3059 		ap->ops->dev_config(dev);
3060 
3061 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
3062 		/* Let the user know. We don't want to disallow opens for
3063 		   rescue purposes, or in case the vendor is just a blithering
3064 		   idiot. Do this after the dev_config call as some controllers
3065 		   with buggy firmware may want to avoid reporting false device
3066 		   bugs */
3067 
3068 		if (print_info) {
3069 			ata_dev_warn(dev,
3070 "Drive reports diagnostics failure. This may indicate a drive\n");
3071 			ata_dev_warn(dev,
3072 "fault or invalid emulation. Contact drive vendor for information.\n");
3073 		}
3074 	}
3075 
3076 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
3077 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3078 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
3079 	}
3080 
3081 	return 0;
3082 
3083 err_out_nosup:
3084 	return rc;
3085 }
3086 
3087 /**
3088  *	ata_cable_40wire	-	return 40 wire cable type
3089  *	@ap: port
3090  *
3091  *	Helper method for drivers which want to hardwire 40 wire cable
3092  *	detection.
3093  */
3094 
ata_cable_40wire(struct ata_port * ap)3095 int ata_cable_40wire(struct ata_port *ap)
3096 {
3097 	return ATA_CBL_PATA40;
3098 }
3099 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3100 
3101 /**
3102  *	ata_cable_80wire	-	return 80 wire cable type
3103  *	@ap: port
3104  *
3105  *	Helper method for drivers which want to hardwire 80 wire cable
3106  *	detection.
3107  */
3108 
ata_cable_80wire(struct ata_port * ap)3109 int ata_cable_80wire(struct ata_port *ap)
3110 {
3111 	return ATA_CBL_PATA80;
3112 }
3113 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3114 
3115 /**
3116  *	ata_cable_unknown	-	return unknown PATA cable.
3117  *	@ap: port
3118  *
3119  *	Helper method for drivers which have no PATA cable detection.
3120  */
3121 
ata_cable_unknown(struct ata_port * ap)3122 int ata_cable_unknown(struct ata_port *ap)
3123 {
3124 	return ATA_CBL_PATA_UNK;
3125 }
3126 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3127 
3128 /**
3129  *	ata_cable_ignore	-	return ignored PATA cable.
3130  *	@ap: port
3131  *
3132  *	Helper method for drivers which don't use cable type to limit
3133  *	transfer mode.
3134  */
ata_cable_ignore(struct ata_port * ap)3135 int ata_cable_ignore(struct ata_port *ap)
3136 {
3137 	return ATA_CBL_PATA_IGN;
3138 }
3139 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3140 
3141 /**
3142  *	ata_cable_sata	-	return SATA cable type
3143  *	@ap: port
3144  *
3145  *	Helper method for drivers which have SATA cables
3146  */
3147 
ata_cable_sata(struct ata_port * ap)3148 int ata_cable_sata(struct ata_port *ap)
3149 {
3150 	return ATA_CBL_SATA;
3151 }
3152 EXPORT_SYMBOL_GPL(ata_cable_sata);
3153 
3154 /**
3155  *	sata_print_link_status - Print SATA link status
3156  *	@link: SATA link to printk link status about
3157  *
3158  *	This function prints link speed and status of a SATA link.
3159  *
3160  *	LOCKING:
3161  *	None.
3162  */
sata_print_link_status(struct ata_link * link)3163 static void sata_print_link_status(struct ata_link *link)
3164 {
3165 	u32 sstatus, scontrol, tmp;
3166 
3167 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
3168 		return;
3169 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3170 		return;
3171 
3172 	if (ata_phys_link_online(link)) {
3173 		tmp = (sstatus >> 4) & 0xf;
3174 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3175 			      sata_spd_string(tmp), sstatus, scontrol);
3176 	} else {
3177 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3178 			      sstatus, scontrol);
3179 	}
3180 }
3181 
3182 /**
3183  *	ata_dev_pair		-	return other device on cable
3184  *	@adev: device
3185  *
3186  *	Obtain the other device on the same cable, or if none is
3187  *	present NULL is returned
3188  */
3189 
ata_dev_pair(struct ata_device * adev)3190 struct ata_device *ata_dev_pair(struct ata_device *adev)
3191 {
3192 	struct ata_link *link = adev->link;
3193 	struct ata_device *pair = &link->device[1 - adev->devno];
3194 	if (!ata_dev_enabled(pair))
3195 		return NULL;
3196 	return pair;
3197 }
3198 EXPORT_SYMBOL_GPL(ata_dev_pair);
3199 
3200 /**
3201  *	sata_down_spd_limit - adjust SATA spd limit downward
3202  *	@link: Link to adjust SATA spd limit for
3203  *	@spd_limit: Additional limit
3204  *
3205  *	Adjust SATA spd limit of @link downward.  Note that this
3206  *	function only adjusts the limit.  The change must be applied
3207  *	using sata_set_spd().
3208  *
3209  *	If @spd_limit is non-zero, the speed is limited to equal to or
3210  *	lower than @spd_limit if such speed is supported.  If
3211  *	@spd_limit is slower than any supported speed, only the lowest
3212  *	supported speed is allowed.
3213  *
3214  *	LOCKING:
3215  *	Inherited from caller.
3216  *
3217  *	RETURNS:
3218  *	0 on success, negative errno on failure
3219  */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3220 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3221 {
3222 	u32 sstatus, spd, mask;
3223 	int rc, bit;
3224 
3225 	if (!sata_scr_valid(link))
3226 		return -EOPNOTSUPP;
3227 
3228 	/* If SCR can be read, use it to determine the current SPD.
3229 	 * If not, use cached value in link->sata_spd.
3230 	 */
3231 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3232 	if (rc == 0 && ata_sstatus_online(sstatus))
3233 		spd = (sstatus >> 4) & 0xf;
3234 	else
3235 		spd = link->sata_spd;
3236 
3237 	mask = link->sata_spd_limit;
3238 	if (mask <= 1)
3239 		return -EINVAL;
3240 
3241 	/* unconditionally mask off the highest bit */
3242 	bit = fls(mask) - 1;
3243 	mask &= ~(1 << bit);
3244 
3245 	/*
3246 	 * Mask off all speeds higher than or equal to the current one.  At
3247 	 * this point, if current SPD is not available and we previously
3248 	 * recorded the link speed from SStatus, the driver has already
3249 	 * masked off the highest bit so mask should already be 1 or 0.
3250 	 * Otherwise, we should not force 1.5Gbps on a link where we have
3251 	 * not previously recorded speed from SStatus.  Just return in this
3252 	 * case.
3253 	 */
3254 	if (spd > 1)
3255 		mask &= (1 << (spd - 1)) - 1;
3256 	else if (link->sata_spd)
3257 		return -EINVAL;
3258 
3259 	/* were we already at the bottom? */
3260 	if (!mask)
3261 		return -EINVAL;
3262 
3263 	if (spd_limit) {
3264 		if (mask & ((1 << spd_limit) - 1))
3265 			mask &= (1 << spd_limit) - 1;
3266 		else {
3267 			bit = ffs(mask) - 1;
3268 			mask = 1 << bit;
3269 		}
3270 	}
3271 
3272 	link->sata_spd_limit = mask;
3273 
3274 	ata_link_warn(link, "limiting SATA link speed to %s\n",
3275 		      sata_spd_string(fls(mask)));
3276 
3277 	return 0;
3278 }
3279 
3280 #ifdef CONFIG_ATA_ACPI
3281 /**
3282  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3283  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3284  *	@cycle: cycle duration in ns
3285  *
3286  *	Return matching xfer mode for @cycle.  The returned mode is of
3287  *	the transfer type specified by @xfer_shift.  If @cycle is too
3288  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3289  *	than the fastest known mode, the fasted mode is returned.
3290  *
3291  *	LOCKING:
3292  *	None.
3293  *
3294  *	RETURNS:
3295  *	Matching xfer_mode, 0xff if no match found.
3296  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3297 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3298 {
3299 	u8 base_mode = 0xff, last_mode = 0xff;
3300 	const struct ata_xfer_ent *ent;
3301 	const struct ata_timing *t;
3302 
3303 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3304 		if (ent->shift == xfer_shift)
3305 			base_mode = ent->base;
3306 
3307 	for (t = ata_timing_find_mode(base_mode);
3308 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3309 		unsigned short this_cycle;
3310 
3311 		switch (xfer_shift) {
3312 		case ATA_SHIFT_PIO:
3313 		case ATA_SHIFT_MWDMA:
3314 			this_cycle = t->cycle;
3315 			break;
3316 		case ATA_SHIFT_UDMA:
3317 			this_cycle = t->udma;
3318 			break;
3319 		default:
3320 			return 0xff;
3321 		}
3322 
3323 		if (cycle > this_cycle)
3324 			break;
3325 
3326 		last_mode = t->mode;
3327 	}
3328 
3329 	return last_mode;
3330 }
3331 #endif
3332 
3333 /**
3334  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3335  *	@dev: Device to adjust xfer masks
3336  *	@sel: ATA_DNXFER_* selector
3337  *
3338  *	Adjust xfer masks of @dev downward.  Note that this function
3339  *	does not apply the change.  Invoking ata_set_mode() afterwards
3340  *	will apply the limit.
3341  *
3342  *	LOCKING:
3343  *	Inherited from caller.
3344  *
3345  *	RETURNS:
3346  *	0 on success, negative errno on failure
3347  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3348 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3349 {
3350 	char buf[32];
3351 	unsigned int orig_mask, xfer_mask;
3352 	unsigned int pio_mask, mwdma_mask, udma_mask;
3353 	int quiet, highbit;
3354 
3355 	quiet = !!(sel & ATA_DNXFER_QUIET);
3356 	sel &= ~ATA_DNXFER_QUIET;
3357 
3358 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3359 						  dev->mwdma_mask,
3360 						  dev->udma_mask);
3361 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3362 
3363 	switch (sel) {
3364 	case ATA_DNXFER_PIO:
3365 		highbit = fls(pio_mask) - 1;
3366 		pio_mask &= ~(1 << highbit);
3367 		break;
3368 
3369 	case ATA_DNXFER_DMA:
3370 		if (udma_mask) {
3371 			highbit = fls(udma_mask) - 1;
3372 			udma_mask &= ~(1 << highbit);
3373 			if (!udma_mask)
3374 				return -ENOENT;
3375 		} else if (mwdma_mask) {
3376 			highbit = fls(mwdma_mask) - 1;
3377 			mwdma_mask &= ~(1 << highbit);
3378 			if (!mwdma_mask)
3379 				return -ENOENT;
3380 		}
3381 		break;
3382 
3383 	case ATA_DNXFER_40C:
3384 		udma_mask &= ATA_UDMA_MASK_40C;
3385 		break;
3386 
3387 	case ATA_DNXFER_FORCE_PIO0:
3388 		pio_mask &= 1;
3389 		fallthrough;
3390 	case ATA_DNXFER_FORCE_PIO:
3391 		mwdma_mask = 0;
3392 		udma_mask = 0;
3393 		break;
3394 
3395 	default:
3396 		BUG();
3397 	}
3398 
3399 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3400 
3401 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3402 		return -ENOENT;
3403 
3404 	if (!quiet) {
3405 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3406 			snprintf(buf, sizeof(buf), "%s:%s",
3407 				 ata_mode_string(xfer_mask),
3408 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3409 		else
3410 			snprintf(buf, sizeof(buf), "%s",
3411 				 ata_mode_string(xfer_mask));
3412 
3413 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3414 	}
3415 
3416 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3417 			    &dev->udma_mask);
3418 
3419 	return 0;
3420 }
3421 
ata_dev_set_mode(struct ata_device * dev)3422 static int ata_dev_set_mode(struct ata_device *dev)
3423 {
3424 	struct ata_port *ap = dev->link->ap;
3425 	struct ata_eh_context *ehc = &dev->link->eh_context;
3426 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3427 	const char *dev_err_whine = "";
3428 	int ign_dev_err = 0;
3429 	unsigned int err_mask = 0;
3430 	int rc;
3431 
3432 	dev->flags &= ~ATA_DFLAG_PIO;
3433 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3434 		dev->flags |= ATA_DFLAG_PIO;
3435 
3436 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3437 		dev_err_whine = " (SET_XFERMODE skipped)";
3438 	else {
3439 		if (nosetxfer)
3440 			ata_dev_warn(dev,
3441 				     "NOSETXFER but PATA detected - can't "
3442 				     "skip SETXFER, might malfunction\n");
3443 		err_mask = ata_dev_set_xfermode(dev);
3444 	}
3445 
3446 	if (err_mask & ~AC_ERR_DEV)
3447 		goto fail;
3448 
3449 	/* revalidate */
3450 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3451 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3452 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3453 	if (rc)
3454 		return rc;
3455 
3456 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3457 		/* Old CFA may refuse this command, which is just fine */
3458 		if (ata_id_is_cfa(dev->id))
3459 			ign_dev_err = 1;
3460 		/* Catch several broken garbage emulations plus some pre
3461 		   ATA devices */
3462 		if (ata_id_major_version(dev->id) == 0 &&
3463 					dev->pio_mode <= XFER_PIO_2)
3464 			ign_dev_err = 1;
3465 		/* Some very old devices and some bad newer ones fail
3466 		   any kind of SET_XFERMODE request but support PIO0-2
3467 		   timings and no IORDY */
3468 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3469 			ign_dev_err = 1;
3470 	}
3471 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3474 	    dev->dma_mode == XFER_MW_DMA_0 &&
3475 	    (dev->id[63] >> 8) & 1)
3476 		ign_dev_err = 1;
3477 
3478 	/* if the device is actually configured correctly, ignore dev err */
3479 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3480 		ign_dev_err = 1;
3481 
3482 	if (err_mask & AC_ERR_DEV) {
3483 		if (!ign_dev_err)
3484 			goto fail;
3485 		else
3486 			dev_err_whine = " (device error ignored)";
3487 	}
3488 
3489 	ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3490 		    dev->xfer_shift, (int)dev->xfer_mode);
3491 
3492 	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3493 	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3494 		ata_dev_info(dev, "configured for %s%s\n",
3495 			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3496 			     dev_err_whine);
3497 
3498 	return 0;
3499 
3500  fail:
3501 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3502 	return -EIO;
3503 }
3504 
3505 /**
3506  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3507  *	@link: link on which timings will be programmed
3508  *	@r_failed_dev: out parameter for failed device
3509  *
3510  *	Standard implementation of the function used to tune and set
3511  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3512  *	ata_dev_set_mode() fails, pointer to the failing device is
3513  *	returned in @r_failed_dev.
3514  *
3515  *	LOCKING:
3516  *	PCI/etc. bus probe sem.
3517  *
3518  *	RETURNS:
3519  *	0 on success, negative errno otherwise
3520  */
3521 
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3522 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3523 {
3524 	struct ata_port *ap = link->ap;
3525 	struct ata_device *dev;
3526 	int rc = 0, used_dma = 0, found = 0;
3527 
3528 	/* step 1: calculate xfer_mask */
3529 	ata_for_each_dev(dev, link, ENABLED) {
3530 		unsigned int pio_mask, dma_mask;
3531 		unsigned int mode_mask;
3532 
3533 		mode_mask = ATA_DMA_MASK_ATA;
3534 		if (dev->class == ATA_DEV_ATAPI)
3535 			mode_mask = ATA_DMA_MASK_ATAPI;
3536 		else if (ata_id_is_cfa(dev->id))
3537 			mode_mask = ATA_DMA_MASK_CFA;
3538 
3539 		ata_dev_xfermask(dev);
3540 		ata_force_xfermask(dev);
3541 
3542 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3543 
3544 		if (libata_dma_mask & mode_mask)
3545 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3546 						     dev->udma_mask);
3547 		else
3548 			dma_mask = 0;
3549 
3550 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3551 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3552 
3553 		found = 1;
3554 		if (ata_dma_enabled(dev))
3555 			used_dma = 1;
3556 	}
3557 	if (!found)
3558 		goto out;
3559 
3560 	/* step 2: always set host PIO timings */
3561 	ata_for_each_dev(dev, link, ENABLED) {
3562 		if (dev->pio_mode == 0xff) {
3563 			ata_dev_warn(dev, "no PIO support\n");
3564 			rc = -EINVAL;
3565 			goto out;
3566 		}
3567 
3568 		dev->xfer_mode = dev->pio_mode;
3569 		dev->xfer_shift = ATA_SHIFT_PIO;
3570 		if (ap->ops->set_piomode)
3571 			ap->ops->set_piomode(ap, dev);
3572 	}
3573 
3574 	/* step 3: set host DMA timings */
3575 	ata_for_each_dev(dev, link, ENABLED) {
3576 		if (!ata_dma_enabled(dev))
3577 			continue;
3578 
3579 		dev->xfer_mode = dev->dma_mode;
3580 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3581 		if (ap->ops->set_dmamode)
3582 			ap->ops->set_dmamode(ap, dev);
3583 	}
3584 
3585 	/* step 4: update devices' xfer mode */
3586 	ata_for_each_dev(dev, link, ENABLED) {
3587 		rc = ata_dev_set_mode(dev);
3588 		if (rc)
3589 			goto out;
3590 	}
3591 
3592 	/* Record simplex status. If we selected DMA then the other
3593 	 * host channels are not permitted to do so.
3594 	 */
3595 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3596 		ap->host->simplex_claimed = ap;
3597 
3598  out:
3599 	if (rc)
3600 		*r_failed_dev = dev;
3601 	return rc;
3602 }
3603 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3604 
3605 /**
3606  *	ata_wait_ready - wait for link to become ready
3607  *	@link: link to be waited on
3608  *	@deadline: deadline jiffies for the operation
3609  *	@check_ready: callback to check link readiness
3610  *
3611  *	Wait for @link to become ready.  @check_ready should return
3612  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3613  *	link doesn't seem to be occupied, other errno for other error
3614  *	conditions.
3615  *
3616  *	Transient -ENODEV conditions are allowed for
3617  *	ATA_TMOUT_FF_WAIT.
3618  *
3619  *	LOCKING:
3620  *	EH context.
3621  *
3622  *	RETURNS:
3623  *	0 if @link is ready before @deadline; otherwise, -errno.
3624  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3625 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3626 		   int (*check_ready)(struct ata_link *link))
3627 {
3628 	unsigned long start = jiffies;
3629 	unsigned long nodev_deadline;
3630 	int warned = 0;
3631 
3632 	/* choose which 0xff timeout to use, read comment in libata.h */
3633 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3634 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3635 	else
3636 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3637 
3638 	/* Slave readiness can't be tested separately from master.  On
3639 	 * M/S emulation configuration, this function should be called
3640 	 * only on the master and it will handle both master and slave.
3641 	 */
3642 	WARN_ON(link == link->ap->slave_link);
3643 
3644 	if (time_after(nodev_deadline, deadline))
3645 		nodev_deadline = deadline;
3646 
3647 	while (1) {
3648 		unsigned long now = jiffies;
3649 		int ready, tmp;
3650 
3651 		ready = tmp = check_ready(link);
3652 		if (ready > 0)
3653 			return 0;
3654 
3655 		/*
3656 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3657 		 * is online.  Also, some SATA devices take a long
3658 		 * time to clear 0xff after reset.  Wait for
3659 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3660 		 * offline.
3661 		 *
3662 		 * Note that some PATA controllers (pata_ali) explode
3663 		 * if status register is read more than once when
3664 		 * there's no device attached.
3665 		 */
3666 		if (ready == -ENODEV) {
3667 			if (ata_link_online(link))
3668 				ready = 0;
3669 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3670 				 !ata_link_offline(link) &&
3671 				 time_before(now, nodev_deadline))
3672 				ready = 0;
3673 		}
3674 
3675 		if (ready)
3676 			return ready;
3677 		if (time_after(now, deadline))
3678 			return -EBUSY;
3679 
3680 		if (!warned && time_after(now, start + 5 * HZ) &&
3681 		    (deadline - now > 3 * HZ)) {
3682 			ata_link_warn(link,
3683 				"link is slow to respond, please be patient "
3684 				"(ready=%d)\n", tmp);
3685 			warned = 1;
3686 		}
3687 
3688 		ata_msleep(link->ap, 50);
3689 	}
3690 }
3691 
3692 /**
3693  *	ata_wait_after_reset - wait for link to become ready after reset
3694  *	@link: link to be waited on
3695  *	@deadline: deadline jiffies for the operation
3696  *	@check_ready: callback to check link readiness
3697  *
3698  *	Wait for @link to become ready after reset.
3699  *
3700  *	LOCKING:
3701  *	EH context.
3702  *
3703  *	RETURNS:
3704  *	0 if @link is ready before @deadline; otherwise, -errno.
3705  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3706 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3707 				int (*check_ready)(struct ata_link *link))
3708 {
3709 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3710 
3711 	return ata_wait_ready(link, deadline, check_ready);
3712 }
3713 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3714 
3715 /**
3716  *	ata_std_prereset - prepare for reset
3717  *	@link: ATA link to be reset
3718  *	@deadline: deadline jiffies for the operation
3719  *
3720  *	@link is about to be reset.  Initialize it.  Failure from
3721  *	prereset makes libata abort whole reset sequence and give up
3722  *	that port, so prereset should be best-effort.  It does its
3723  *	best to prepare for reset sequence but if things go wrong, it
3724  *	should just whine, not fail.
3725  *
3726  *	LOCKING:
3727  *	Kernel thread context (may sleep)
3728  *
3729  *	RETURNS:
3730  *	Always 0.
3731  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3732 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3733 {
3734 	struct ata_port *ap = link->ap;
3735 	struct ata_eh_context *ehc = &link->eh_context;
3736 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
3737 	int rc;
3738 
3739 	/* if we're about to do hardreset, nothing more to do */
3740 	if (ehc->i.action & ATA_EH_HARDRESET)
3741 		return 0;
3742 
3743 	/* if SATA, resume link */
3744 	if (ap->flags & ATA_FLAG_SATA) {
3745 		rc = sata_link_resume(link, timing, deadline);
3746 		/* whine about phy resume failure but proceed */
3747 		if (rc && rc != -EOPNOTSUPP)
3748 			ata_link_warn(link,
3749 				      "failed to resume link for reset (errno=%d)\n",
3750 				      rc);
3751 	}
3752 
3753 	/* no point in trying softreset on offline link */
3754 	if (ata_phys_link_offline(link))
3755 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3756 
3757 	return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(ata_std_prereset);
3760 
3761 /**
3762  *	sata_std_hardreset - COMRESET w/o waiting or classification
3763  *	@link: link to reset
3764  *	@class: resulting class of attached device
3765  *	@deadline: deadline jiffies for the operation
3766  *
3767  *	Standard SATA COMRESET w/o waiting or classification.
3768  *
3769  *	LOCKING:
3770  *	Kernel thread context (may sleep)
3771  *
3772  *	RETURNS:
3773  *	0 if link offline, -EAGAIN if link online, -errno on errors.
3774  */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3775 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3776 		       unsigned long deadline)
3777 {
3778 	const unsigned int *timing = sata_ehc_deb_timing(&link->eh_context);
3779 	bool online;
3780 	int rc;
3781 
3782 	/* do hardreset */
3783 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3784 	return online ? -EAGAIN : rc;
3785 }
3786 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3787 
3788 /**
3789  *	ata_std_postreset - standard postreset callback
3790  *	@link: the target ata_link
3791  *	@classes: classes of attached devices
3792  *
3793  *	This function is invoked after a successful reset.  Note that
3794  *	the device might have been reset more than once using
3795  *	different reset methods before postreset is invoked.
3796  *
3797  *	LOCKING:
3798  *	Kernel thread context (may sleep)
3799  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3800 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3801 {
3802 	u32 serror;
3803 
3804 	/* reset complete, clear SError */
3805 	if (!sata_scr_read(link, SCR_ERROR, &serror))
3806 		sata_scr_write(link, SCR_ERROR, serror);
3807 
3808 	/* print link status */
3809 	sata_print_link_status(link);
3810 }
3811 EXPORT_SYMBOL_GPL(ata_std_postreset);
3812 
3813 /**
3814  *	ata_dev_same_device - Determine whether new ID matches configured device
3815  *	@dev: device to compare against
3816  *	@new_class: class of the new device
3817  *	@new_id: IDENTIFY page of the new device
3818  *
3819  *	Compare @new_class and @new_id against @dev and determine
3820  *	whether @dev is the device indicated by @new_class and
3821  *	@new_id.
3822  *
3823  *	LOCKING:
3824  *	None.
3825  *
3826  *	RETURNS:
3827  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3828  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3829 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3830 			       const u16 *new_id)
3831 {
3832 	const u16 *old_id = dev->id;
3833 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3834 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3835 
3836 	if (dev->class != new_class) {
3837 		ata_dev_info(dev, "class mismatch %d != %d\n",
3838 			     dev->class, new_class);
3839 		return 0;
3840 	}
3841 
3842 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3843 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3844 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3845 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3846 
3847 	if (strcmp(model[0], model[1])) {
3848 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3849 			     model[0], model[1]);
3850 		return 0;
3851 	}
3852 
3853 	if (strcmp(serial[0], serial[1])) {
3854 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3855 			     serial[0], serial[1]);
3856 		return 0;
3857 	}
3858 
3859 	return 1;
3860 }
3861 
3862 /**
3863  *	ata_dev_reread_id - Re-read IDENTIFY data
3864  *	@dev: target ATA device
3865  *	@readid_flags: read ID flags
3866  *
3867  *	Re-read IDENTIFY page and make sure @dev is still attached to
3868  *	the port.
3869  *
3870  *	LOCKING:
3871  *	Kernel thread context (may sleep)
3872  *
3873  *	RETURNS:
3874  *	0 on success, negative errno otherwise
3875  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3876 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3877 {
3878 	unsigned int class = dev->class;
3879 	u16 *id = (void *)dev->link->ap->sector_buf;
3880 	int rc;
3881 
3882 	/* read ID data */
3883 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3884 	if (rc)
3885 		return rc;
3886 
3887 	/* is the device still there? */
3888 	if (!ata_dev_same_device(dev, class, id))
3889 		return -ENODEV;
3890 
3891 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3892 	return 0;
3893 }
3894 
3895 /**
3896  *	ata_dev_revalidate - Revalidate ATA device
3897  *	@dev: device to revalidate
3898  *	@new_class: new class code
3899  *	@readid_flags: read ID flags
3900  *
3901  *	Re-read IDENTIFY page, make sure @dev is still attached to the
3902  *	port and reconfigure it according to the new IDENTIFY page.
3903  *
3904  *	LOCKING:
3905  *	Kernel thread context (may sleep)
3906  *
3907  *	RETURNS:
3908  *	0 on success, negative errno otherwise
3909  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3910 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3911 		       unsigned int readid_flags)
3912 {
3913 	u64 n_sectors = dev->n_sectors;
3914 	u64 n_native_sectors = dev->n_native_sectors;
3915 	int rc;
3916 
3917 	if (!ata_dev_enabled(dev))
3918 		return -ENODEV;
3919 
3920 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3921 	if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3922 		ata_dev_info(dev, "class mismatch %u != %u\n",
3923 			     dev->class, new_class);
3924 		rc = -ENODEV;
3925 		goto fail;
3926 	}
3927 
3928 	/* re-read ID */
3929 	rc = ata_dev_reread_id(dev, readid_flags);
3930 	if (rc)
3931 		goto fail;
3932 
3933 	/* configure device according to the new ID */
3934 	rc = ata_dev_configure(dev);
3935 	if (rc)
3936 		goto fail;
3937 
3938 	/* verify n_sectors hasn't changed */
3939 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3940 	    dev->n_sectors == n_sectors)
3941 		return 0;
3942 
3943 	/* n_sectors has changed */
3944 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3945 		     (unsigned long long)n_sectors,
3946 		     (unsigned long long)dev->n_sectors);
3947 
3948 	/*
3949 	 * Something could have caused HPA to be unlocked
3950 	 * involuntarily.  If n_native_sectors hasn't changed and the
3951 	 * new size matches it, keep the device.
3952 	 */
3953 	if (dev->n_native_sectors == n_native_sectors &&
3954 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3955 		ata_dev_warn(dev,
3956 			     "new n_sectors matches native, probably "
3957 			     "late HPA unlock, n_sectors updated\n");
3958 		/* use the larger n_sectors */
3959 		return 0;
3960 	}
3961 
3962 	/*
3963 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3964 	 * unlocking HPA in those cases.
3965 	 *
3966 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3967 	 */
3968 	if (dev->n_native_sectors == n_native_sectors &&
3969 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3970 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3971 		ata_dev_warn(dev,
3972 			     "old n_sectors matches native, probably "
3973 			     "late HPA lock, will try to unlock HPA\n");
3974 		/* try unlocking HPA */
3975 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3976 		rc = -EIO;
3977 	} else
3978 		rc = -ENODEV;
3979 
3980 	/* restore original n_[native_]sectors and fail */
3981 	dev->n_native_sectors = n_native_sectors;
3982 	dev->n_sectors = n_sectors;
3983  fail:
3984 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3985 	return rc;
3986 }
3987 
3988 struct ata_blacklist_entry {
3989 	const char *model_num;
3990 	const char *model_rev;
3991 	unsigned long horkage;
3992 };
3993 
3994 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3995 	/* Devices with DMA related problems under Linux */
3996 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3997 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3998 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3999 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4000 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4001 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4002 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4003 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4004 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4005 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4006 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4007 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4008 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4009 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4010 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4011 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4012 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4013 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4014 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4015 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4016 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4017 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4018 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4019 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4020 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4021 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4022 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4023 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4024 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4025 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4026 	/* Odd clown on sil3726/4726 PMPs */
4027 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4028 	/* Similar story with ASMedia 1092 */
4029 	{ "ASMT109x- Config",	NULL,		ATA_HORKAGE_DISABLE },
4030 
4031 	/* Weird ATAPI devices */
4032 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4033 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4034 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4035 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4036 
4037 	/*
4038 	 * Causes silent data corruption with higher max sects.
4039 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4040 	 */
4041 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4042 
4043 	/*
4044 	 * These devices time out with higher max sects.
4045 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4046 	 */
4047 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4048 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4049 
4050 	/* Devices we expect to fail diagnostics */
4051 
4052 	/* Devices where NCQ should be avoided */
4053 	/* NCQ is slow */
4054 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4055 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ },
4056 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4057 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4058 	/* NCQ is broken */
4059 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4060 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4061 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4062 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4063 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4064 
4065 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4066 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4067 						ATA_HORKAGE_FIRMWARE_WARN },
4068 
4069 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4070 						ATA_HORKAGE_FIRMWARE_WARN },
4071 
4072 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4073 						ATA_HORKAGE_FIRMWARE_WARN },
4074 
4075 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4076 						ATA_HORKAGE_FIRMWARE_WARN },
4077 
4078 	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
4079 	   the ST disks also have LPM issues */
4080 	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
4081 						ATA_HORKAGE_NOLPM },
4082 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4083 
4084 	/* Blacklist entries taken from Silicon Image 3124/3132
4085 	   Windows driver .inf file - also several Linux problem reports */
4086 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ },
4087 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ },
4088 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ },
4089 
4090 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4091 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ },
4092 
4093 	/* Sandisk SD7/8/9s lock up hard on large trims */
4094 	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M },
4095 
4096 	/* devices which puke on READ_NATIVE_MAX */
4097 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA },
4098 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4099 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4100 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4101 
4102 	/* this one allows HPA unlocking but fails IOs on the area */
4103 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4104 
4105 	/* Devices which report 1 sector over size HPA */
4106 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4107 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4108 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE },
4109 
4110 	/* Devices which get the IVB wrong */
4111 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
4112 	/* Maybe we should just blacklist TSSTcorp... */
4113 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB },
4114 
4115 	/* Devices that do not need bridging limits applied */
4116 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4117 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK },
4118 
4119 	/* Devices which aren't very happy with higher link speeds */
4120 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS },
4121 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS },
4122 
4123 	/*
4124 	 * Devices which choke on SETXFER.  Applies only if both the
4125 	 * device and controller are SATA.
4126 	 */
4127 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4128 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4129 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4130 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4131 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4132 
4133 	/* These specific Pioneer models have LPM issues */
4134 	{ "PIONEER BD-RW   BDR-207M",	NULL,	ATA_HORKAGE_NOLPM },
4135 	{ "PIONEER BD-RW   BDR-205",	NULL,	ATA_HORKAGE_NOLPM },
4136 
4137 	/* Crucial BX100 SSD 500GB has broken LPM support */
4138 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4139 
4140 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4141 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4142 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4143 						ATA_HORKAGE_NOLPM },
4144 	/* 512GB MX100 with newer firmware has only LPM issues */
4145 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4146 						ATA_HORKAGE_NOLPM },
4147 
4148 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4149 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4150 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4151 						ATA_HORKAGE_NOLPM },
4152 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4153 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4154 						ATA_HORKAGE_NOLPM },
4155 
4156 	/* These specific Samsung models/firmware-revs do not handle LPM well */
4157 	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4158 	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM },
4159 	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM },
4160 	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4161 
4162 	/* devices that don't properly handle queued TRIM commands */
4163 	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4164 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4165 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4166 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4167 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4168 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4169 	{ "Micron_1100_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4170 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4171 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4172 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4173 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4174 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4175 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4176 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4177 	{ "Samsung SSD 840 EVO*",	NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4178 						ATA_HORKAGE_NO_DMA_LOG |
4179 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4180 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4181 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4182 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4183 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4184 	{ "Samsung SSD 860*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4185 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4186 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4187 	{ "Samsung SSD 870*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4188 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4189 						ATA_HORKAGE_NO_NCQ_ON_ATI },
4190 	{ "SAMSUNG*MZ7LH*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4191 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4192 						ATA_HORKAGE_NO_NCQ_ON_ATI, },
4193 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4194 						ATA_HORKAGE_ZERO_AFTER_TRIM },
4195 
4196 	/* devices that don't properly handle TRIM commands */
4197 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM },
4198 	{ "M88V29*",			NULL,	ATA_HORKAGE_NOTRIM },
4199 
4200 	/*
4201 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4202 	 * (Return Zero After Trim) flags in the ATA Command Set are
4203 	 * unreliable in the sense that they only define what happens if
4204 	 * the device successfully executed the DSM TRIM command. TRIM
4205 	 * is only advisory, however, and the device is free to silently
4206 	 * ignore all or parts of the request.
4207 	 *
4208 	 * Whitelist drives that are known to reliably return zeroes
4209 	 * after TRIM.
4210 	 */
4211 
4212 	/*
4213 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4214 	 * that model before whitelisting all other intel SSDs.
4215 	 */
4216 	{ "INTEL*SSDSC2MH*",		NULL,	0 },
4217 
4218 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4219 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4220 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4221 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4222 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4223 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4224 	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4225 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM },
4226 
4227 	/*
4228 	 * Some WD SATA-I drives spin up and down erratically when the link
4229 	 * is put into the slumber mode.  We don't have full list of the
4230 	 * affected devices.  Disable LPM if the device matches one of the
4231 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4232 	 * lost too.
4233 	 *
4234 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4235 	 */
4236 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4237 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4238 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4239 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4240 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4241 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4242 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4243 
4244 	/*
4245 	 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4246 	 * log page is accessed. Ensure we never ask for this log page with
4247 	 * these devices.
4248 	 */
4249 	{ "SATADOM-ML 3ME",		NULL,	ATA_HORKAGE_NO_LOG_DIR },
4250 
4251 	/* Buggy FUA */
4252 	{ "Maxtor",		"BANC1G10",	ATA_HORKAGE_NO_FUA },
4253 	{ "WDC*WD2500J*",	NULL,		ATA_HORKAGE_NO_FUA },
4254 	{ "OCZ-VERTEX*",	NULL,		ATA_HORKAGE_NO_FUA },
4255 	{ "INTEL*SSDSC2CT*",	NULL,		ATA_HORKAGE_NO_FUA },
4256 
4257 	/* End Marker */
4258 	{ }
4259 };
4260 
ata_dev_blacklisted(const struct ata_device * dev)4261 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4262 {
4263 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4264 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4265 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4266 
4267 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4268 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4269 
4270 	while (ad->model_num) {
4271 		if (glob_match(ad->model_num, model_num)) {
4272 			if (ad->model_rev == NULL)
4273 				return ad->horkage;
4274 			if (glob_match(ad->model_rev, model_rev))
4275 				return ad->horkage;
4276 		}
4277 		ad++;
4278 	}
4279 	return 0;
4280 }
4281 
ata_dma_blacklisted(const struct ata_device * dev)4282 static int ata_dma_blacklisted(const struct ata_device *dev)
4283 {
4284 	/* We don't support polling DMA.
4285 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4286 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4287 	 */
4288 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4289 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4290 		return 1;
4291 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4292 }
4293 
4294 /**
4295  *	ata_is_40wire		-	check drive side detection
4296  *	@dev: device
4297  *
4298  *	Perform drive side detection decoding, allowing for device vendors
4299  *	who can't follow the documentation.
4300  */
4301 
ata_is_40wire(struct ata_device * dev)4302 static int ata_is_40wire(struct ata_device *dev)
4303 {
4304 	if (dev->horkage & ATA_HORKAGE_IVB)
4305 		return ata_drive_40wire_relaxed(dev->id);
4306 	return ata_drive_40wire(dev->id);
4307 }
4308 
4309 /**
4310  *	cable_is_40wire		-	40/80/SATA decider
4311  *	@ap: port to consider
4312  *
4313  *	This function encapsulates the policy for speed management
4314  *	in one place. At the moment we don't cache the result but
4315  *	there is a good case for setting ap->cbl to the result when
4316  *	we are called with unknown cables (and figuring out if it
4317  *	impacts hotplug at all).
4318  *
4319  *	Return 1 if the cable appears to be 40 wire.
4320  */
4321 
cable_is_40wire(struct ata_port * ap)4322 static int cable_is_40wire(struct ata_port *ap)
4323 {
4324 	struct ata_link *link;
4325 	struct ata_device *dev;
4326 
4327 	/* If the controller thinks we are 40 wire, we are. */
4328 	if (ap->cbl == ATA_CBL_PATA40)
4329 		return 1;
4330 
4331 	/* If the controller thinks we are 80 wire, we are. */
4332 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4333 		return 0;
4334 
4335 	/* If the system is known to be 40 wire short cable (eg
4336 	 * laptop), then we allow 80 wire modes even if the drive
4337 	 * isn't sure.
4338 	 */
4339 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4340 		return 0;
4341 
4342 	/* If the controller doesn't know, we scan.
4343 	 *
4344 	 * Note: We look for all 40 wire detects at this point.  Any
4345 	 *       80 wire detect is taken to be 80 wire cable because
4346 	 * - in many setups only the one drive (slave if present) will
4347 	 *   give a valid detect
4348 	 * - if you have a non detect capable drive you don't want it
4349 	 *   to colour the choice
4350 	 */
4351 	ata_for_each_link(link, ap, EDGE) {
4352 		ata_for_each_dev(dev, link, ENABLED) {
4353 			if (!ata_is_40wire(dev))
4354 				return 0;
4355 		}
4356 	}
4357 	return 1;
4358 }
4359 
4360 /**
4361  *	ata_dev_xfermask - Compute supported xfermask of the given device
4362  *	@dev: Device to compute xfermask for
4363  *
4364  *	Compute supported xfermask of @dev and store it in
4365  *	dev->*_mask.  This function is responsible for applying all
4366  *	known limits including host controller limits, device
4367  *	blacklist, etc...
4368  *
4369  *	LOCKING:
4370  *	None.
4371  */
ata_dev_xfermask(struct ata_device * dev)4372 static void ata_dev_xfermask(struct ata_device *dev)
4373 {
4374 	struct ata_link *link = dev->link;
4375 	struct ata_port *ap = link->ap;
4376 	struct ata_host *host = ap->host;
4377 	unsigned int xfer_mask;
4378 
4379 	/* controller modes available */
4380 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4381 				      ap->mwdma_mask, ap->udma_mask);
4382 
4383 	/* drive modes available */
4384 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4385 				       dev->mwdma_mask, dev->udma_mask);
4386 	xfer_mask &= ata_id_xfermask(dev->id);
4387 
4388 	/*
4389 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4390 	 *	cable
4391 	 */
4392 	if (ata_dev_pair(dev)) {
4393 		/* No PIO5 or PIO6 */
4394 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4395 		/* No MWDMA3 or MWDMA 4 */
4396 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4397 	}
4398 
4399 	if (ata_dma_blacklisted(dev)) {
4400 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4401 		ata_dev_warn(dev,
4402 			     "device is on DMA blacklist, disabling DMA\n");
4403 	}
4404 
4405 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4406 	    host->simplex_claimed && host->simplex_claimed != ap) {
4407 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4408 		ata_dev_warn(dev,
4409 			     "simplex DMA is claimed by other device, disabling DMA\n");
4410 	}
4411 
4412 	if (ap->flags & ATA_FLAG_NO_IORDY)
4413 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4414 
4415 	if (ap->ops->mode_filter)
4416 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4417 
4418 	/* Apply cable rule here.  Don't apply it early because when
4419 	 * we handle hot plug the cable type can itself change.
4420 	 * Check this last so that we know if the transfer rate was
4421 	 * solely limited by the cable.
4422 	 * Unknown or 80 wire cables reported host side are checked
4423 	 * drive side as well. Cases where we know a 40wire cable
4424 	 * is used safely for 80 are not checked here.
4425 	 */
4426 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4427 		/* UDMA/44 or higher would be available */
4428 		if (cable_is_40wire(ap)) {
4429 			ata_dev_warn(dev,
4430 				     "limited to UDMA/33 due to 40-wire cable\n");
4431 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4432 		}
4433 
4434 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4435 			    &dev->mwdma_mask, &dev->udma_mask);
4436 }
4437 
4438 /**
4439  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4440  *	@dev: Device to which command will be sent
4441  *
4442  *	Issue SET FEATURES - XFER MODE command to device @dev
4443  *	on port @ap.
4444  *
4445  *	LOCKING:
4446  *	PCI/etc. bus probe sem.
4447  *
4448  *	RETURNS:
4449  *	0 on success, AC_ERR_* mask otherwise.
4450  */
4451 
ata_dev_set_xfermode(struct ata_device * dev)4452 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4453 {
4454 	struct ata_taskfile tf;
4455 
4456 	/* set up set-features taskfile */
4457 	ata_dev_dbg(dev, "set features - xfer mode\n");
4458 
4459 	/* Some controllers and ATAPI devices show flaky interrupt
4460 	 * behavior after setting xfer mode.  Use polling instead.
4461 	 */
4462 	ata_tf_init(dev, &tf);
4463 	tf.command = ATA_CMD_SET_FEATURES;
4464 	tf.feature = SETFEATURES_XFER;
4465 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4466 	tf.protocol = ATA_PROT_NODATA;
4467 	/* If we are using IORDY we must send the mode setting command */
4468 	if (ata_pio_need_iordy(dev))
4469 		tf.nsect = dev->xfer_mode;
4470 	/* If the device has IORDY and the controller does not - turn it off */
4471  	else if (ata_id_has_iordy(dev->id))
4472 		tf.nsect = 0x01;
4473 	else /* In the ancient relic department - skip all of this */
4474 		return 0;
4475 
4476 	/*
4477 	 * On some disks, this command causes spin-up, so we need longer
4478 	 * timeout.
4479 	 */
4480 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4481 }
4482 
4483 /**
4484  *	ata_dev_set_feature - Issue SET FEATURES
4485  *	@dev: Device to which command will be sent
4486  *	@subcmd: The SET FEATURES subcommand to be sent
4487  *	@action: The sector count represents a subcommand specific action
4488  *
4489  *	Issue SET FEATURES command to device @dev on port @ap with sector count
4490  *
4491  *	LOCKING:
4492  *	PCI/etc. bus probe sem.
4493  *
4494  *	RETURNS:
4495  *	0 on success, AC_ERR_* mask otherwise.
4496  */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4497 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4498 {
4499 	struct ata_taskfile tf;
4500 	unsigned int timeout = 0;
4501 
4502 	/* set up set-features taskfile */
4503 	ata_dev_dbg(dev, "set features\n");
4504 
4505 	ata_tf_init(dev, &tf);
4506 	tf.command = ATA_CMD_SET_FEATURES;
4507 	tf.feature = subcmd;
4508 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4509 	tf.protocol = ATA_PROT_NODATA;
4510 	tf.nsect = action;
4511 
4512 	if (subcmd == SETFEATURES_SPINUP)
4513 		timeout = ata_probe_timeout ?
4514 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4515 
4516 	return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4517 }
4518 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4519 
4520 /**
4521  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4522  *	@dev: Device to which command will be sent
4523  *	@heads: Number of heads (taskfile parameter)
4524  *	@sectors: Number of sectors (taskfile parameter)
4525  *
4526  *	LOCKING:
4527  *	Kernel thread context (may sleep)
4528  *
4529  *	RETURNS:
4530  *	0 on success, AC_ERR_* mask otherwise.
4531  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4532 static unsigned int ata_dev_init_params(struct ata_device *dev,
4533 					u16 heads, u16 sectors)
4534 {
4535 	struct ata_taskfile tf;
4536 	unsigned int err_mask;
4537 
4538 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4539 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4540 		return AC_ERR_INVALID;
4541 
4542 	/* set up init dev params taskfile */
4543 	ata_dev_dbg(dev, "init dev params \n");
4544 
4545 	ata_tf_init(dev, &tf);
4546 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4547 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4548 	tf.protocol = ATA_PROT_NODATA;
4549 	tf.nsect = sectors;
4550 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4551 
4552 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4553 	/* A clean abort indicates an original or just out of spec drive
4554 	   and we should continue as we issue the setup based on the
4555 	   drive reported working geometry */
4556 	if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4557 		err_mask = 0;
4558 
4559 	return err_mask;
4560 }
4561 
4562 /**
4563  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4564  *	@qc: Metadata associated with taskfile to check
4565  *
4566  *	Allow low-level driver to filter ATA PACKET commands, returning
4567  *	a status indicating whether or not it is OK to use DMA for the
4568  *	supplied PACKET command.
4569  *
4570  *	LOCKING:
4571  *	spin_lock_irqsave(host lock)
4572  *
4573  *	RETURNS: 0 when ATAPI DMA can be used
4574  *               nonzero otherwise
4575  */
atapi_check_dma(struct ata_queued_cmd * qc)4576 int atapi_check_dma(struct ata_queued_cmd *qc)
4577 {
4578 	struct ata_port *ap = qc->ap;
4579 
4580 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4581 	 * few ATAPI devices choke on such DMA requests.
4582 	 */
4583 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4584 	    unlikely(qc->nbytes & 15))
4585 		return 1;
4586 
4587 	if (ap->ops->check_atapi_dma)
4588 		return ap->ops->check_atapi_dma(qc);
4589 
4590 	return 0;
4591 }
4592 
4593 /**
4594  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4595  *	@qc: ATA command in question
4596  *
4597  *	Non-NCQ commands cannot run with any other command, NCQ or
4598  *	not.  As upper layer only knows the queue depth, we are
4599  *	responsible for maintaining exclusion.  This function checks
4600  *	whether a new command @qc can be issued.
4601  *
4602  *	LOCKING:
4603  *	spin_lock_irqsave(host lock)
4604  *
4605  *	RETURNS:
4606  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4607  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4608 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4609 {
4610 	struct ata_link *link = qc->dev->link;
4611 
4612 	if (ata_is_ncq(qc->tf.protocol)) {
4613 		if (!ata_tag_valid(link->active_tag))
4614 			return 0;
4615 	} else {
4616 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4617 			return 0;
4618 	}
4619 
4620 	return ATA_DEFER_LINK;
4621 }
4622 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4623 
ata_noop_qc_prep(struct ata_queued_cmd * qc)4624 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4625 {
4626 	return AC_ERR_OK;
4627 }
4628 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4629 
4630 /**
4631  *	ata_sg_init - Associate command with scatter-gather table.
4632  *	@qc: Command to be associated
4633  *	@sg: Scatter-gather table.
4634  *	@n_elem: Number of elements in s/g table.
4635  *
4636  *	Initialize the data-related elements of queued_cmd @qc
4637  *	to point to a scatter-gather table @sg, containing @n_elem
4638  *	elements.
4639  *
4640  *	LOCKING:
4641  *	spin_lock_irqsave(host lock)
4642  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4643 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4644 		 unsigned int n_elem)
4645 {
4646 	qc->sg = sg;
4647 	qc->n_elem = n_elem;
4648 	qc->cursg = qc->sg;
4649 }
4650 
4651 #ifdef CONFIG_HAS_DMA
4652 
4653 /**
4654  *	ata_sg_clean - Unmap DMA memory associated with command
4655  *	@qc: Command containing DMA memory to be released
4656  *
4657  *	Unmap all mapped DMA memory associated with this command.
4658  *
4659  *	LOCKING:
4660  *	spin_lock_irqsave(host lock)
4661  */
ata_sg_clean(struct ata_queued_cmd * qc)4662 static void ata_sg_clean(struct ata_queued_cmd *qc)
4663 {
4664 	struct ata_port *ap = qc->ap;
4665 	struct scatterlist *sg = qc->sg;
4666 	int dir = qc->dma_dir;
4667 
4668 	WARN_ON_ONCE(sg == NULL);
4669 
4670 	if (qc->n_elem)
4671 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4672 
4673 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4674 	qc->sg = NULL;
4675 }
4676 
4677 /**
4678  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4679  *	@qc: Command with scatter-gather table to be mapped.
4680  *
4681  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4682  *
4683  *	LOCKING:
4684  *	spin_lock_irqsave(host lock)
4685  *
4686  *	RETURNS:
4687  *	Zero on success, negative on error.
4688  *
4689  */
ata_sg_setup(struct ata_queued_cmd * qc)4690 static int ata_sg_setup(struct ata_queued_cmd *qc)
4691 {
4692 	struct ata_port *ap = qc->ap;
4693 	unsigned int n_elem;
4694 
4695 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4696 	if (n_elem < 1)
4697 		return -1;
4698 
4699 	qc->orig_n_elem = qc->n_elem;
4700 	qc->n_elem = n_elem;
4701 	qc->flags |= ATA_QCFLAG_DMAMAP;
4702 
4703 	return 0;
4704 }
4705 
4706 #else /* !CONFIG_HAS_DMA */
4707 
ata_sg_clean(struct ata_queued_cmd * qc)4708 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4709 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4710 
4711 #endif /* !CONFIG_HAS_DMA */
4712 
4713 /**
4714  *	swap_buf_le16 - swap halves of 16-bit words in place
4715  *	@buf:  Buffer to swap
4716  *	@buf_words:  Number of 16-bit words in buffer.
4717  *
4718  *	Swap halves of 16-bit words if needed to convert from
4719  *	little-endian byte order to native cpu byte order, or
4720  *	vice-versa.
4721  *
4722  *	LOCKING:
4723  *	Inherited from caller.
4724  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4725 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4726 {
4727 #ifdef __BIG_ENDIAN
4728 	unsigned int i;
4729 
4730 	for (i = 0; i < buf_words; i++)
4731 		buf[i] = le16_to_cpu(buf[i]);
4732 #endif /* __BIG_ENDIAN */
4733 }
4734 
4735 /**
4736  *	ata_qc_free - free unused ata_queued_cmd
4737  *	@qc: Command to complete
4738  *
4739  *	Designed to free unused ata_queued_cmd object
4740  *	in case something prevents using it.
4741  *
4742  *	LOCKING:
4743  *	spin_lock_irqsave(host lock)
4744  */
ata_qc_free(struct ata_queued_cmd * qc)4745 void ata_qc_free(struct ata_queued_cmd *qc)
4746 {
4747 	qc->flags = 0;
4748 	if (ata_tag_valid(qc->tag))
4749 		qc->tag = ATA_TAG_POISON;
4750 }
4751 
__ata_qc_complete(struct ata_queued_cmd * qc)4752 void __ata_qc_complete(struct ata_queued_cmd *qc)
4753 {
4754 	struct ata_port *ap;
4755 	struct ata_link *link;
4756 
4757 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4758 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4759 	ap = qc->ap;
4760 	link = qc->dev->link;
4761 
4762 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4763 		ata_sg_clean(qc);
4764 
4765 	/* command should be marked inactive atomically with qc completion */
4766 	if (ata_is_ncq(qc->tf.protocol)) {
4767 		link->sactive &= ~(1 << qc->hw_tag);
4768 		if (!link->sactive)
4769 			ap->nr_active_links--;
4770 	} else {
4771 		link->active_tag = ATA_TAG_POISON;
4772 		ap->nr_active_links--;
4773 	}
4774 
4775 	/* clear exclusive status */
4776 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4777 		     ap->excl_link == link))
4778 		ap->excl_link = NULL;
4779 
4780 	/* atapi: mark qc as inactive to prevent the interrupt handler
4781 	 * from completing the command twice later, before the error handler
4782 	 * is called. (when rc != 0 and atapi request sense is needed)
4783 	 */
4784 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4785 	ap->qc_active &= ~(1ULL << qc->tag);
4786 
4787 	/* call completion callback */
4788 	qc->complete_fn(qc);
4789 }
4790 
fill_result_tf(struct ata_queued_cmd * qc)4791 static void fill_result_tf(struct ata_queued_cmd *qc)
4792 {
4793 	struct ata_port *ap = qc->ap;
4794 
4795 	qc->result_tf.flags = qc->tf.flags;
4796 	ap->ops->qc_fill_rtf(qc);
4797 }
4798 
ata_verify_xfer(struct ata_queued_cmd * qc)4799 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4800 {
4801 	struct ata_device *dev = qc->dev;
4802 
4803 	if (!ata_is_data(qc->tf.protocol))
4804 		return;
4805 
4806 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4807 		return;
4808 
4809 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4810 }
4811 
4812 /**
4813  *	ata_qc_complete - Complete an active ATA command
4814  *	@qc: Command to complete
4815  *
4816  *	Indicate to the mid and upper layers that an ATA command has
4817  *	completed, with either an ok or not-ok status.
4818  *
4819  *	Refrain from calling this function multiple times when
4820  *	successfully completing multiple NCQ commands.
4821  *	ata_qc_complete_multiple() should be used instead, which will
4822  *	properly update IRQ expect state.
4823  *
4824  *	LOCKING:
4825  *	spin_lock_irqsave(host lock)
4826  */
ata_qc_complete(struct ata_queued_cmd * qc)4827 void ata_qc_complete(struct ata_queued_cmd *qc)
4828 {
4829 	struct ata_port *ap = qc->ap;
4830 	struct ata_device *dev = qc->dev;
4831 	struct ata_eh_info *ehi = &dev->link->eh_info;
4832 
4833 	/* Trigger the LED (if available) */
4834 	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4835 
4836 	/*
4837 	 * In order to synchronize EH with the regular execution path, a qc that
4838 	 * is owned by EH is marked with ATA_QCFLAG_EH.
4839 	 *
4840 	 * The normal execution path is responsible for not accessing a qc owned
4841 	 * by EH.  libata core enforces the rule by returning NULL from
4842 	 * ata_qc_from_tag() for qcs owned by EH.
4843 	 */
4844 	if (unlikely(qc->err_mask))
4845 		qc->flags |= ATA_QCFLAG_EH;
4846 
4847 	/*
4848 	 * Finish internal commands without any further processing and always
4849 	 * with the result TF filled.
4850 	 */
4851 	if (unlikely(ata_tag_internal(qc->tag))) {
4852 		fill_result_tf(qc);
4853 		trace_ata_qc_complete_internal(qc);
4854 		__ata_qc_complete(qc);
4855 		return;
4856 	}
4857 
4858 	/* Non-internal qc has failed.  Fill the result TF and summon EH. */
4859 	if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4860 		fill_result_tf(qc);
4861 		trace_ata_qc_complete_failed(qc);
4862 		ata_qc_schedule_eh(qc);
4863 		return;
4864 	}
4865 
4866 	WARN_ON_ONCE(ata_port_is_frozen(ap));
4867 
4868 	/* read result TF if requested */
4869 	if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 		fill_result_tf(qc);
4871 
4872 	trace_ata_qc_complete_done(qc);
4873 
4874 	/*
4875 	 * For CDL commands that completed without an error, check if we have
4876 	 * sense data (ATA_SENSE is set). If we do, then the command may have
4877 	 * been aborted by the device due to a limit timeout using the policy
4878 	 * 0xD. For these commands, invoke EH to get the command sense data.
4879 	 */
4880 	if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4881 	    qc->result_tf.status & ATA_SENSE) {
4882 		/*
4883 		 * Tell SCSI EH to not overwrite scmd->result even if this
4884 		 * command is finished with result SAM_STAT_GOOD.
4885 		 */
4886 		qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4887 		qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4888 		ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4889 
4890 		/*
4891 		 * set pending so that ata_qc_schedule_eh() does not trigger
4892 		 * fast drain, and freeze the port.
4893 		 */
4894 		ap->pflags |= ATA_PFLAG_EH_PENDING;
4895 		ata_qc_schedule_eh(qc);
4896 		return;
4897 	}
4898 
4899 	/* Some commands need post-processing after successful completion. */
4900 	switch (qc->tf.command) {
4901 	case ATA_CMD_SET_FEATURES:
4902 		if (qc->tf.feature != SETFEATURES_WC_ON &&
4903 		    qc->tf.feature != SETFEATURES_WC_OFF &&
4904 		    qc->tf.feature != SETFEATURES_RA_ON &&
4905 		    qc->tf.feature != SETFEATURES_RA_OFF)
4906 			break;
4907 		fallthrough;
4908 	case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4909 	case ATA_CMD_SET_MULTI: /* multi_count changed */
4910 		/* revalidate device */
4911 		ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4912 		ata_port_schedule_eh(ap);
4913 		break;
4914 
4915 	case ATA_CMD_SLEEP:
4916 		dev->flags |= ATA_DFLAG_SLEEPING;
4917 		break;
4918 	}
4919 
4920 	if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4921 		ata_verify_xfer(qc);
4922 
4923 	__ata_qc_complete(qc);
4924 }
4925 EXPORT_SYMBOL_GPL(ata_qc_complete);
4926 
4927 /**
4928  *	ata_qc_get_active - get bitmask of active qcs
4929  *	@ap: port in question
4930  *
4931  *	LOCKING:
4932  *	spin_lock_irqsave(host lock)
4933  *
4934  *	RETURNS:
4935  *	Bitmask of active qcs
4936  */
ata_qc_get_active(struct ata_port * ap)4937 u64 ata_qc_get_active(struct ata_port *ap)
4938 {
4939 	u64 qc_active = ap->qc_active;
4940 
4941 	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4942 	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4943 		qc_active |= (1 << 0);
4944 		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4945 	}
4946 
4947 	return qc_active;
4948 }
4949 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4950 
4951 /**
4952  *	ata_qc_issue - issue taskfile to device
4953  *	@qc: command to issue to device
4954  *
4955  *	Prepare an ATA command to submission to device.
4956  *	This includes mapping the data into a DMA-able
4957  *	area, filling in the S/G table, and finally
4958  *	writing the taskfile to hardware, starting the command.
4959  *
4960  *	LOCKING:
4961  *	spin_lock_irqsave(host lock)
4962  */
ata_qc_issue(struct ata_queued_cmd * qc)4963 void ata_qc_issue(struct ata_queued_cmd *qc)
4964 {
4965 	struct ata_port *ap = qc->ap;
4966 	struct ata_link *link = qc->dev->link;
4967 	u8 prot = qc->tf.protocol;
4968 
4969 	/* Make sure only one non-NCQ command is outstanding. */
4970 	WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4971 
4972 	if (ata_is_ncq(prot)) {
4973 		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4974 
4975 		if (!link->sactive)
4976 			ap->nr_active_links++;
4977 		link->sactive |= 1 << qc->hw_tag;
4978 	} else {
4979 		WARN_ON_ONCE(link->sactive);
4980 
4981 		ap->nr_active_links++;
4982 		link->active_tag = qc->tag;
4983 	}
4984 
4985 	qc->flags |= ATA_QCFLAG_ACTIVE;
4986 	ap->qc_active |= 1ULL << qc->tag;
4987 
4988 	/*
4989 	 * We guarantee to LLDs that they will have at least one
4990 	 * non-zero sg if the command is a data command.
4991 	 */
4992 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4993 		goto sys_err;
4994 
4995 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4996 				 (ap->flags & ATA_FLAG_PIO_DMA)))
4997 		if (ata_sg_setup(qc))
4998 			goto sys_err;
4999 
5000 	/* if device is sleeping, schedule reset and abort the link */
5001 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5002 		link->eh_info.action |= ATA_EH_RESET;
5003 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5004 		ata_link_abort(link);
5005 		return;
5006 	}
5007 
5008 	trace_ata_qc_prep(qc);
5009 	qc->err_mask |= ap->ops->qc_prep(qc);
5010 	if (unlikely(qc->err_mask))
5011 		goto err;
5012 	trace_ata_qc_issue(qc);
5013 	qc->err_mask |= ap->ops->qc_issue(qc);
5014 	if (unlikely(qc->err_mask))
5015 		goto err;
5016 	return;
5017 
5018 sys_err:
5019 	qc->err_mask |= AC_ERR_SYSTEM;
5020 err:
5021 	ata_qc_complete(qc);
5022 }
5023 
5024 /**
5025  *	ata_phys_link_online - test whether the given link is online
5026  *	@link: ATA link to test
5027  *
5028  *	Test whether @link is online.  Note that this function returns
5029  *	0 if online status of @link cannot be obtained, so
5030  *	ata_link_online(link) != !ata_link_offline(link).
5031  *
5032  *	LOCKING:
5033  *	None.
5034  *
5035  *	RETURNS:
5036  *	True if the port online status is available and online.
5037  */
ata_phys_link_online(struct ata_link * link)5038 bool ata_phys_link_online(struct ata_link *link)
5039 {
5040 	u32 sstatus;
5041 
5042 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5043 	    ata_sstatus_online(sstatus))
5044 		return true;
5045 	return false;
5046 }
5047 
5048 /**
5049  *	ata_phys_link_offline - test whether the given link is offline
5050  *	@link: ATA link to test
5051  *
5052  *	Test whether @link is offline.  Note that this function
5053  *	returns 0 if offline status of @link cannot be obtained, so
5054  *	ata_link_online(link) != !ata_link_offline(link).
5055  *
5056  *	LOCKING:
5057  *	None.
5058  *
5059  *	RETURNS:
5060  *	True if the port offline status is available and offline.
5061  */
ata_phys_link_offline(struct ata_link * link)5062 bool ata_phys_link_offline(struct ata_link *link)
5063 {
5064 	u32 sstatus;
5065 
5066 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5067 	    !ata_sstatus_online(sstatus))
5068 		return true;
5069 	return false;
5070 }
5071 
5072 /**
5073  *	ata_link_online - test whether the given link is online
5074  *	@link: ATA link to test
5075  *
5076  *	Test whether @link is online.  This is identical to
5077  *	ata_phys_link_online() when there's no slave link.  When
5078  *	there's a slave link, this function should only be called on
5079  *	the master link and will return true if any of M/S links is
5080  *	online.
5081  *
5082  *	LOCKING:
5083  *	None.
5084  *
5085  *	RETURNS:
5086  *	True if the port online status is available and online.
5087  */
ata_link_online(struct ata_link * link)5088 bool ata_link_online(struct ata_link *link)
5089 {
5090 	struct ata_link *slave = link->ap->slave_link;
5091 
5092 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5093 
5094 	return ata_phys_link_online(link) ||
5095 		(slave && ata_phys_link_online(slave));
5096 }
5097 EXPORT_SYMBOL_GPL(ata_link_online);
5098 
5099 /**
5100  *	ata_link_offline - test whether the given link is offline
5101  *	@link: ATA link to test
5102  *
5103  *	Test whether @link is offline.  This is identical to
5104  *	ata_phys_link_offline() when there's no slave link.  When
5105  *	there's a slave link, this function should only be called on
5106  *	the master link and will return true if both M/S links are
5107  *	offline.
5108  *
5109  *	LOCKING:
5110  *	None.
5111  *
5112  *	RETURNS:
5113  *	True if the port offline status is available and offline.
5114  */
ata_link_offline(struct ata_link * link)5115 bool ata_link_offline(struct ata_link *link)
5116 {
5117 	struct ata_link *slave = link->ap->slave_link;
5118 
5119 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5120 
5121 	return ata_phys_link_offline(link) &&
5122 		(!slave || ata_phys_link_offline(slave));
5123 }
5124 EXPORT_SYMBOL_GPL(ata_link_offline);
5125 
5126 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5127 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5128 				unsigned int action, unsigned int ehi_flags,
5129 				bool async)
5130 {
5131 	struct ata_link *link;
5132 	unsigned long flags;
5133 
5134 	spin_lock_irqsave(ap->lock, flags);
5135 
5136 	/*
5137 	 * A previous PM operation might still be in progress. Wait for
5138 	 * ATA_PFLAG_PM_PENDING to clear.
5139 	 */
5140 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5141 		spin_unlock_irqrestore(ap->lock, flags);
5142 		ata_port_wait_eh(ap);
5143 		spin_lock_irqsave(ap->lock, flags);
5144 	}
5145 
5146 	/* Request PM operation to EH */
5147 	ap->pm_mesg = mesg;
5148 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5149 	ata_for_each_link(link, ap, HOST_FIRST) {
5150 		link->eh_info.action |= action;
5151 		link->eh_info.flags |= ehi_flags;
5152 	}
5153 
5154 	ata_port_schedule_eh(ap);
5155 
5156 	spin_unlock_irqrestore(ap->lock, flags);
5157 
5158 	if (!async)
5159 		ata_port_wait_eh(ap);
5160 }
5161 
5162 /*
5163  * On some hardware, device fails to respond after spun down for suspend.  As
5164  * the device won't be used before being resumed, we don't need to touch the
5165  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5166  *
5167  * http://thread.gmane.org/gmane.linux.ide/46764
5168  */
5169 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5170 						 | ATA_EHI_NO_AUTOPSY
5171 						 | ATA_EHI_NO_RECOVERY;
5172 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5173 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5174 {
5175 	/*
5176 	 * We are about to suspend the port, so we do not care about
5177 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5178 	 * The next resume will schedule the rescan again. So cancel any rescan
5179 	 * that is not done yet.
5180 	 */
5181 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5182 
5183 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5184 }
5185 
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5186 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5187 {
5188 	/*
5189 	 * We are about to suspend the port, so we do not care about
5190 	 * scsi_rescan_device() calls scheduled by previous resume operations.
5191 	 * The next resume will schedule the rescan again. So cancel any rescan
5192 	 * that is not done yet.
5193 	 */
5194 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
5195 
5196 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5197 }
5198 
ata_port_pm_suspend(struct device * dev)5199 static int ata_port_pm_suspend(struct device *dev)
5200 {
5201 	struct ata_port *ap = to_ata_port(dev);
5202 
5203 	if (pm_runtime_suspended(dev))
5204 		return 0;
5205 
5206 	ata_port_suspend(ap, PMSG_SUSPEND);
5207 	return 0;
5208 }
5209 
ata_port_pm_freeze(struct device * dev)5210 static int ata_port_pm_freeze(struct device *dev)
5211 {
5212 	struct ata_port *ap = to_ata_port(dev);
5213 
5214 	if (pm_runtime_suspended(dev))
5215 		return 0;
5216 
5217 	ata_port_suspend(ap, PMSG_FREEZE);
5218 	return 0;
5219 }
5220 
ata_port_pm_poweroff(struct device * dev)5221 static int ata_port_pm_poweroff(struct device *dev)
5222 {
5223 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5224 	return 0;
5225 }
5226 
5227 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5228 						| ATA_EHI_QUIET;
5229 
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5230 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5231 {
5232 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5233 }
5234 
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5235 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5236 {
5237 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5238 }
5239 
ata_port_pm_resume(struct device * dev)5240 static int ata_port_pm_resume(struct device *dev)
5241 {
5242 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5243 	pm_runtime_disable(dev);
5244 	pm_runtime_set_active(dev);
5245 	pm_runtime_enable(dev);
5246 	return 0;
5247 }
5248 
5249 /*
5250  * For ODDs, the upper layer will poll for media change every few seconds,
5251  * which will make it enter and leave suspend state every few seconds. And
5252  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5253  * is very little and the ODD may malfunction after constantly being reset.
5254  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5255  * ODD is attached to the port.
5256  */
ata_port_runtime_idle(struct device * dev)5257 static int ata_port_runtime_idle(struct device *dev)
5258 {
5259 	struct ata_port *ap = to_ata_port(dev);
5260 	struct ata_link *link;
5261 	struct ata_device *adev;
5262 
5263 	ata_for_each_link(link, ap, HOST_FIRST) {
5264 		ata_for_each_dev(adev, link, ENABLED)
5265 			if (adev->class == ATA_DEV_ATAPI &&
5266 			    !zpodd_dev_enabled(adev))
5267 				return -EBUSY;
5268 	}
5269 
5270 	return 0;
5271 }
5272 
ata_port_runtime_suspend(struct device * dev)5273 static int ata_port_runtime_suspend(struct device *dev)
5274 {
5275 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5276 	return 0;
5277 }
5278 
ata_port_runtime_resume(struct device * dev)5279 static int ata_port_runtime_resume(struct device *dev)
5280 {
5281 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5282 	return 0;
5283 }
5284 
5285 static const struct dev_pm_ops ata_port_pm_ops = {
5286 	.suspend = ata_port_pm_suspend,
5287 	.resume = ata_port_pm_resume,
5288 	.freeze = ata_port_pm_freeze,
5289 	.thaw = ata_port_pm_resume,
5290 	.poweroff = ata_port_pm_poweroff,
5291 	.restore = ata_port_pm_resume,
5292 
5293 	.runtime_suspend = ata_port_runtime_suspend,
5294 	.runtime_resume = ata_port_runtime_resume,
5295 	.runtime_idle = ata_port_runtime_idle,
5296 };
5297 
5298 /* sas ports don't participate in pm runtime management of ata_ports,
5299  * and need to resume ata devices at the domain level, not the per-port
5300  * level. sas suspend/resume is async to allow parallel port recovery
5301  * since sas has multiple ata_port instances per Scsi_Host.
5302  */
ata_sas_port_suspend(struct ata_port * ap)5303 void ata_sas_port_suspend(struct ata_port *ap)
5304 {
5305 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5306 }
5307 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5308 
ata_sas_port_resume(struct ata_port * ap)5309 void ata_sas_port_resume(struct ata_port *ap)
5310 {
5311 	ata_port_resume_async(ap, PMSG_RESUME);
5312 }
5313 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5314 
5315 /**
5316  *	ata_host_suspend - suspend host
5317  *	@host: host to suspend
5318  *	@mesg: PM message
5319  *
5320  *	Suspend @host.  Actual operation is performed by port suspend.
5321  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5322 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5323 {
5324 	host->dev->power.power_state = mesg;
5325 }
5326 EXPORT_SYMBOL_GPL(ata_host_suspend);
5327 
5328 /**
5329  *	ata_host_resume - resume host
5330  *	@host: host to resume
5331  *
5332  *	Resume @host.  Actual operation is performed by port resume.
5333  */
ata_host_resume(struct ata_host * host)5334 void ata_host_resume(struct ata_host *host)
5335 {
5336 	host->dev->power.power_state = PMSG_ON;
5337 }
5338 EXPORT_SYMBOL_GPL(ata_host_resume);
5339 #endif
5340 
5341 const struct device_type ata_port_type = {
5342 	.name = ATA_PORT_TYPE_NAME,
5343 #ifdef CONFIG_PM
5344 	.pm = &ata_port_pm_ops,
5345 #endif
5346 };
5347 
5348 /**
5349  *	ata_dev_init - Initialize an ata_device structure
5350  *	@dev: Device structure to initialize
5351  *
5352  *	Initialize @dev in preparation for probing.
5353  *
5354  *	LOCKING:
5355  *	Inherited from caller.
5356  */
ata_dev_init(struct ata_device * dev)5357 void ata_dev_init(struct ata_device *dev)
5358 {
5359 	struct ata_link *link = ata_dev_phys_link(dev);
5360 	struct ata_port *ap = link->ap;
5361 	unsigned long flags;
5362 
5363 	/* SATA spd limit is bound to the attached device, reset together */
5364 	link->sata_spd_limit = link->hw_sata_spd_limit;
5365 	link->sata_spd = 0;
5366 
5367 	/* High bits of dev->flags are used to record warm plug
5368 	 * requests which occur asynchronously.  Synchronize using
5369 	 * host lock.
5370 	 */
5371 	spin_lock_irqsave(ap->lock, flags);
5372 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5373 	dev->horkage = 0;
5374 	spin_unlock_irqrestore(ap->lock, flags);
5375 
5376 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5377 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5378 	dev->pio_mask = UINT_MAX;
5379 	dev->mwdma_mask = UINT_MAX;
5380 	dev->udma_mask = UINT_MAX;
5381 }
5382 
5383 /**
5384  *	ata_link_init - Initialize an ata_link structure
5385  *	@ap: ATA port link is attached to
5386  *	@link: Link structure to initialize
5387  *	@pmp: Port multiplier port number
5388  *
5389  *	Initialize @link.
5390  *
5391  *	LOCKING:
5392  *	Kernel thread context (may sleep)
5393  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5394 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5395 {
5396 	int i;
5397 
5398 	/* clear everything except for devices */
5399 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5400 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5401 
5402 	link->ap = ap;
5403 	link->pmp = pmp;
5404 	link->active_tag = ATA_TAG_POISON;
5405 	link->hw_sata_spd_limit = UINT_MAX;
5406 
5407 	/* can't use iterator, ap isn't initialized yet */
5408 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5409 		struct ata_device *dev = &link->device[i];
5410 
5411 		dev->link = link;
5412 		dev->devno = dev - link->device;
5413 #ifdef CONFIG_ATA_ACPI
5414 		dev->gtf_filter = ata_acpi_gtf_filter;
5415 #endif
5416 		ata_dev_init(dev);
5417 	}
5418 }
5419 
5420 /**
5421  *	sata_link_init_spd - Initialize link->sata_spd_limit
5422  *	@link: Link to configure sata_spd_limit for
5423  *
5424  *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5425  *	configured value.
5426  *
5427  *	LOCKING:
5428  *	Kernel thread context (may sleep).
5429  *
5430  *	RETURNS:
5431  *	0 on success, -errno on failure.
5432  */
sata_link_init_spd(struct ata_link * link)5433 int sata_link_init_spd(struct ata_link *link)
5434 {
5435 	u8 spd;
5436 	int rc;
5437 
5438 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5439 	if (rc)
5440 		return rc;
5441 
5442 	spd = (link->saved_scontrol >> 4) & 0xf;
5443 	if (spd)
5444 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5445 
5446 	ata_force_link_limits(link);
5447 
5448 	link->sata_spd_limit = link->hw_sata_spd_limit;
5449 
5450 	return 0;
5451 }
5452 
5453 /**
5454  *	ata_port_alloc - allocate and initialize basic ATA port resources
5455  *	@host: ATA host this allocated port belongs to
5456  *
5457  *	Allocate and initialize basic ATA port resources.
5458  *
5459  *	RETURNS:
5460  *	Allocate ATA port on success, NULL on failure.
5461  *
5462  *	LOCKING:
5463  *	Inherited from calling layer (may sleep).
5464  */
ata_port_alloc(struct ata_host * host)5465 struct ata_port *ata_port_alloc(struct ata_host *host)
5466 {
5467 	struct ata_port *ap;
5468 
5469 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5470 	if (!ap)
5471 		return NULL;
5472 
5473 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5474 	ap->lock = &host->lock;
5475 	ap->print_id = -1;
5476 	ap->local_port_no = -1;
5477 	ap->host = host;
5478 	ap->dev = host->dev;
5479 
5480 	mutex_init(&ap->scsi_scan_mutex);
5481 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5482 	INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5483 	INIT_LIST_HEAD(&ap->eh_done_q);
5484 	init_waitqueue_head(&ap->eh_wait_q);
5485 	init_completion(&ap->park_req_pending);
5486 	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5487 		    TIMER_DEFERRABLE);
5488 
5489 	ap->cbl = ATA_CBL_NONE;
5490 
5491 	ata_link_init(ap, &ap->link, 0);
5492 
5493 #ifdef ATA_IRQ_TRAP
5494 	ap->stats.unhandled_irq = 1;
5495 	ap->stats.idle_irq = 1;
5496 #endif
5497 	ata_sff_port_init(ap);
5498 
5499 	return ap;
5500 }
5501 
ata_port_free(struct ata_port * ap)5502 void ata_port_free(struct ata_port *ap)
5503 {
5504 	if (!ap)
5505 		return;
5506 
5507 	kfree(ap->pmp_link);
5508 	kfree(ap->slave_link);
5509 	kfree(ap->ncq_sense_buf);
5510 	kfree(ap);
5511 }
5512 EXPORT_SYMBOL_GPL(ata_port_free);
5513 
ata_devres_release(struct device * gendev,void * res)5514 static void ata_devres_release(struct device *gendev, void *res)
5515 {
5516 	struct ata_host *host = dev_get_drvdata(gendev);
5517 	int i;
5518 
5519 	for (i = 0; i < host->n_ports; i++) {
5520 		struct ata_port *ap = host->ports[i];
5521 
5522 		if (!ap)
5523 			continue;
5524 
5525 		if (ap->scsi_host)
5526 			scsi_host_put(ap->scsi_host);
5527 
5528 	}
5529 
5530 	dev_set_drvdata(gendev, NULL);
5531 	ata_host_put(host);
5532 }
5533 
ata_host_release(struct kref * kref)5534 static void ata_host_release(struct kref *kref)
5535 {
5536 	struct ata_host *host = container_of(kref, struct ata_host, kref);
5537 	int i;
5538 
5539 	for (i = 0; i < host->n_ports; i++) {
5540 		ata_port_free(host->ports[i]);
5541 		host->ports[i] = NULL;
5542 	}
5543 	kfree(host);
5544 }
5545 
ata_host_get(struct ata_host * host)5546 void ata_host_get(struct ata_host *host)
5547 {
5548 	kref_get(&host->kref);
5549 }
5550 
ata_host_put(struct ata_host * host)5551 void ata_host_put(struct ata_host *host)
5552 {
5553 	kref_put(&host->kref, ata_host_release);
5554 }
5555 EXPORT_SYMBOL_GPL(ata_host_put);
5556 
5557 /**
5558  *	ata_host_alloc - allocate and init basic ATA host resources
5559  *	@dev: generic device this host is associated with
5560  *	@max_ports: maximum number of ATA ports associated with this host
5561  *
5562  *	Allocate and initialize basic ATA host resources.  LLD calls
5563  *	this function to allocate a host, initializes it fully and
5564  *	attaches it using ata_host_register().
5565  *
5566  *	@max_ports ports are allocated and host->n_ports is
5567  *	initialized to @max_ports.  The caller is allowed to decrease
5568  *	host->n_ports before calling ata_host_register().  The unused
5569  *	ports will be automatically freed on registration.
5570  *
5571  *	RETURNS:
5572  *	Allocate ATA host on success, NULL on failure.
5573  *
5574  *	LOCKING:
5575  *	Inherited from calling layer (may sleep).
5576  */
ata_host_alloc(struct device * dev,int max_ports)5577 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5578 {
5579 	struct ata_host *host;
5580 	size_t sz;
5581 	int i;
5582 	void *dr;
5583 
5584 	/* alloc a container for our list of ATA ports (buses) */
5585 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5586 	host = kzalloc(sz, GFP_KERNEL);
5587 	if (!host)
5588 		return NULL;
5589 
5590 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5591 		kfree(host);
5592 		return NULL;
5593 	}
5594 
5595 	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5596 	if (!dr) {
5597 		kfree(host);
5598 		goto err_out;
5599 	}
5600 
5601 	devres_add(dev, dr);
5602 	dev_set_drvdata(dev, host);
5603 
5604 	spin_lock_init(&host->lock);
5605 	mutex_init(&host->eh_mutex);
5606 	host->dev = dev;
5607 	host->n_ports = max_ports;
5608 	kref_init(&host->kref);
5609 
5610 	/* allocate ports bound to this host */
5611 	for (i = 0; i < max_ports; i++) {
5612 		struct ata_port *ap;
5613 
5614 		ap = ata_port_alloc(host);
5615 		if (!ap)
5616 			goto err_out;
5617 
5618 		ap->port_no = i;
5619 		host->ports[i] = ap;
5620 	}
5621 
5622 	devres_remove_group(dev, NULL);
5623 	return host;
5624 
5625  err_out:
5626 	devres_release_group(dev, NULL);
5627 	return NULL;
5628 }
5629 EXPORT_SYMBOL_GPL(ata_host_alloc);
5630 
5631 /**
5632  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5633  *	@dev: generic device this host is associated with
5634  *	@ppi: array of ATA port_info to initialize host with
5635  *	@n_ports: number of ATA ports attached to this host
5636  *
5637  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5638  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5639  *	last entry will be used for the remaining ports.
5640  *
5641  *	RETURNS:
5642  *	Allocate ATA host on success, NULL on failure.
5643  *
5644  *	LOCKING:
5645  *	Inherited from calling layer (may sleep).
5646  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5647 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5648 				      const struct ata_port_info * const * ppi,
5649 				      int n_ports)
5650 {
5651 	const struct ata_port_info *pi = &ata_dummy_port_info;
5652 	struct ata_host *host;
5653 	int i, j;
5654 
5655 	host = ata_host_alloc(dev, n_ports);
5656 	if (!host)
5657 		return NULL;
5658 
5659 	for (i = 0, j = 0; i < host->n_ports; i++) {
5660 		struct ata_port *ap = host->ports[i];
5661 
5662 		if (ppi[j])
5663 			pi = ppi[j++];
5664 
5665 		ap->pio_mask = pi->pio_mask;
5666 		ap->mwdma_mask = pi->mwdma_mask;
5667 		ap->udma_mask = pi->udma_mask;
5668 		ap->flags |= pi->flags;
5669 		ap->link.flags |= pi->link_flags;
5670 		ap->ops = pi->port_ops;
5671 
5672 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5673 			host->ops = pi->port_ops;
5674 	}
5675 
5676 	return host;
5677 }
5678 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5679 
ata_host_stop(struct device * gendev,void * res)5680 static void ata_host_stop(struct device *gendev, void *res)
5681 {
5682 	struct ata_host *host = dev_get_drvdata(gendev);
5683 	int i;
5684 
5685 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5686 
5687 	for (i = 0; i < host->n_ports; i++) {
5688 		struct ata_port *ap = host->ports[i];
5689 
5690 		if (ap->ops->port_stop)
5691 			ap->ops->port_stop(ap);
5692 	}
5693 
5694 	if (host->ops->host_stop)
5695 		host->ops->host_stop(host);
5696 }
5697 
5698 /**
5699  *	ata_finalize_port_ops - finalize ata_port_operations
5700  *	@ops: ata_port_operations to finalize
5701  *
5702  *	An ata_port_operations can inherit from another ops and that
5703  *	ops can again inherit from another.  This can go on as many
5704  *	times as necessary as long as there is no loop in the
5705  *	inheritance chain.
5706  *
5707  *	Ops tables are finalized when the host is started.  NULL or
5708  *	unspecified entries are inherited from the closet ancestor
5709  *	which has the method and the entry is populated with it.
5710  *	After finalization, the ops table directly points to all the
5711  *	methods and ->inherits is no longer necessary and cleared.
5712  *
5713  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5714  *
5715  *	LOCKING:
5716  *	None.
5717  */
ata_finalize_port_ops(struct ata_port_operations * ops)5718 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5719 {
5720 	static DEFINE_SPINLOCK(lock);
5721 	const struct ata_port_operations *cur;
5722 	void **begin = (void **)ops;
5723 	void **end = (void **)&ops->inherits;
5724 	void **pp;
5725 
5726 	if (!ops || !ops->inherits)
5727 		return;
5728 
5729 	spin_lock(&lock);
5730 
5731 	for (cur = ops->inherits; cur; cur = cur->inherits) {
5732 		void **inherit = (void **)cur;
5733 
5734 		for (pp = begin; pp < end; pp++, inherit++)
5735 			if (!*pp)
5736 				*pp = *inherit;
5737 	}
5738 
5739 	for (pp = begin; pp < end; pp++)
5740 		if (IS_ERR(*pp))
5741 			*pp = NULL;
5742 
5743 	ops->inherits = NULL;
5744 
5745 	spin_unlock(&lock);
5746 }
5747 
5748 /**
5749  *	ata_host_start - start and freeze ports of an ATA host
5750  *	@host: ATA host to start ports for
5751  *
5752  *	Start and then freeze ports of @host.  Started status is
5753  *	recorded in host->flags, so this function can be called
5754  *	multiple times.  Ports are guaranteed to get started only
5755  *	once.  If host->ops is not initialized yet, it is set to the
5756  *	first non-dummy port ops.
5757  *
5758  *	LOCKING:
5759  *	Inherited from calling layer (may sleep).
5760  *
5761  *	RETURNS:
5762  *	0 if all ports are started successfully, -errno otherwise.
5763  */
ata_host_start(struct ata_host * host)5764 int ata_host_start(struct ata_host *host)
5765 {
5766 	int have_stop = 0;
5767 	void *start_dr = NULL;
5768 	int i, rc;
5769 
5770 	if (host->flags & ATA_HOST_STARTED)
5771 		return 0;
5772 
5773 	ata_finalize_port_ops(host->ops);
5774 
5775 	for (i = 0; i < host->n_ports; i++) {
5776 		struct ata_port *ap = host->ports[i];
5777 
5778 		ata_finalize_port_ops(ap->ops);
5779 
5780 		if (!host->ops && !ata_port_is_dummy(ap))
5781 			host->ops = ap->ops;
5782 
5783 		if (ap->ops->port_stop)
5784 			have_stop = 1;
5785 	}
5786 
5787 	if (host->ops && host->ops->host_stop)
5788 		have_stop = 1;
5789 
5790 	if (have_stop) {
5791 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5792 		if (!start_dr)
5793 			return -ENOMEM;
5794 	}
5795 
5796 	for (i = 0; i < host->n_ports; i++) {
5797 		struct ata_port *ap = host->ports[i];
5798 
5799 		if (ap->ops->port_start) {
5800 			rc = ap->ops->port_start(ap);
5801 			if (rc) {
5802 				if (rc != -ENODEV)
5803 					dev_err(host->dev,
5804 						"failed to start port %d (errno=%d)\n",
5805 						i, rc);
5806 				goto err_out;
5807 			}
5808 		}
5809 		ata_eh_freeze_port(ap);
5810 	}
5811 
5812 	if (start_dr)
5813 		devres_add(host->dev, start_dr);
5814 	host->flags |= ATA_HOST_STARTED;
5815 	return 0;
5816 
5817  err_out:
5818 	while (--i >= 0) {
5819 		struct ata_port *ap = host->ports[i];
5820 
5821 		if (ap->ops->port_stop)
5822 			ap->ops->port_stop(ap);
5823 	}
5824 	devres_free(start_dr);
5825 	return rc;
5826 }
5827 EXPORT_SYMBOL_GPL(ata_host_start);
5828 
5829 /**
5830  *	ata_host_init - Initialize a host struct for sas (ipr, libsas)
5831  *	@host:	host to initialize
5832  *	@dev:	device host is attached to
5833  *	@ops:	port_ops
5834  *
5835  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5836 void ata_host_init(struct ata_host *host, struct device *dev,
5837 		   struct ata_port_operations *ops)
5838 {
5839 	spin_lock_init(&host->lock);
5840 	mutex_init(&host->eh_mutex);
5841 	host->n_tags = ATA_MAX_QUEUE;
5842 	host->dev = dev;
5843 	host->ops = ops;
5844 	kref_init(&host->kref);
5845 }
5846 EXPORT_SYMBOL_GPL(ata_host_init);
5847 
ata_port_probe(struct ata_port * ap)5848 void ata_port_probe(struct ata_port *ap)
5849 {
5850 	struct ata_eh_info *ehi = &ap->link.eh_info;
5851 	unsigned long flags;
5852 
5853 	/* kick EH for boot probing */
5854 	spin_lock_irqsave(ap->lock, flags);
5855 
5856 	ehi->probe_mask |= ATA_ALL_DEVICES;
5857 	ehi->action |= ATA_EH_RESET;
5858 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5859 
5860 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5861 	ap->pflags |= ATA_PFLAG_LOADING;
5862 	ata_port_schedule_eh(ap);
5863 
5864 	spin_unlock_irqrestore(ap->lock, flags);
5865 }
5866 EXPORT_SYMBOL_GPL(ata_port_probe);
5867 
async_port_probe(void * data,async_cookie_t cookie)5868 static void async_port_probe(void *data, async_cookie_t cookie)
5869 {
5870 	struct ata_port *ap = data;
5871 
5872 	/*
5873 	 * If we're not allowed to scan this host in parallel,
5874 	 * we need to wait until all previous scans have completed
5875 	 * before going further.
5876 	 * Jeff Garzik says this is only within a controller, so we
5877 	 * don't need to wait for port 0, only for later ports.
5878 	 */
5879 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5880 		async_synchronize_cookie(cookie);
5881 
5882 	ata_port_probe(ap);
5883 	ata_port_wait_eh(ap);
5884 
5885 	/* in order to keep device order, we need to synchronize at this point */
5886 	async_synchronize_cookie(cookie);
5887 
5888 	ata_scsi_scan_host(ap, 1);
5889 }
5890 
5891 /**
5892  *	ata_host_register - register initialized ATA host
5893  *	@host: ATA host to register
5894  *	@sht: template for SCSI host
5895  *
5896  *	Register initialized ATA host.  @host is allocated using
5897  *	ata_host_alloc() and fully initialized by LLD.  This function
5898  *	starts ports, registers @host with ATA and SCSI layers and
5899  *	probe registered devices.
5900  *
5901  *	LOCKING:
5902  *	Inherited from calling layer (may sleep).
5903  *
5904  *	RETURNS:
5905  *	0 on success, -errno otherwise.
5906  */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5907 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5908 {
5909 	int i, rc;
5910 
5911 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5912 
5913 	/* host must have been started */
5914 	if (!(host->flags & ATA_HOST_STARTED)) {
5915 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5916 		WARN_ON(1);
5917 		return -EINVAL;
5918 	}
5919 
5920 	/* Blow away unused ports.  This happens when LLD can't
5921 	 * determine the exact number of ports to allocate at
5922 	 * allocation time.
5923 	 */
5924 	for (i = host->n_ports; host->ports[i]; i++)
5925 		ata_port_free(host->ports[i]);
5926 
5927 	/* give ports names and add SCSI hosts */
5928 	for (i = 0; i < host->n_ports; i++) {
5929 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5930 		host->ports[i]->local_port_no = i + 1;
5931 	}
5932 
5933 	/* Create associated sysfs transport objects  */
5934 	for (i = 0; i < host->n_ports; i++) {
5935 		rc = ata_tport_add(host->dev,host->ports[i]);
5936 		if (rc) {
5937 			goto err_tadd;
5938 		}
5939 	}
5940 
5941 	rc = ata_scsi_add_hosts(host, sht);
5942 	if (rc)
5943 		goto err_tadd;
5944 
5945 	/* set cable, sata_spd_limit and report */
5946 	for (i = 0; i < host->n_ports; i++) {
5947 		struct ata_port *ap = host->ports[i];
5948 		unsigned int xfer_mask;
5949 
5950 		/* set SATA cable type if still unset */
5951 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5952 			ap->cbl = ATA_CBL_SATA;
5953 
5954 		/* init sata_spd_limit to the current value */
5955 		sata_link_init_spd(&ap->link);
5956 		if (ap->slave_link)
5957 			sata_link_init_spd(ap->slave_link);
5958 
5959 		/* print per-port info to dmesg */
5960 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5961 					      ap->udma_mask);
5962 
5963 		if (!ata_port_is_dummy(ap)) {
5964 			ata_port_info(ap, "%cATA max %s %s\n",
5965 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5966 				      ata_mode_string(xfer_mask),
5967 				      ap->link.eh_info.desc);
5968 			ata_ehi_clear_desc(&ap->link.eh_info);
5969 		} else
5970 			ata_port_info(ap, "DUMMY\n");
5971 	}
5972 
5973 	/* perform each probe asynchronously */
5974 	for (i = 0; i < host->n_ports; i++) {
5975 		struct ata_port *ap = host->ports[i];
5976 		ap->cookie = async_schedule(async_port_probe, ap);
5977 	}
5978 
5979 	return 0;
5980 
5981  err_tadd:
5982 	while (--i >= 0) {
5983 		ata_tport_delete(host->ports[i]);
5984 	}
5985 	return rc;
5986 
5987 }
5988 EXPORT_SYMBOL_GPL(ata_host_register);
5989 
5990 /**
5991  *	ata_host_activate - start host, request IRQ and register it
5992  *	@host: target ATA host
5993  *	@irq: IRQ to request
5994  *	@irq_handler: irq_handler used when requesting IRQ
5995  *	@irq_flags: irq_flags used when requesting IRQ
5996  *	@sht: scsi_host_template to use when registering the host
5997  *
5998  *	After allocating an ATA host and initializing it, most libata
5999  *	LLDs perform three steps to activate the host - start host,
6000  *	request IRQ and register it.  This helper takes necessary
6001  *	arguments and performs the three steps in one go.
6002  *
6003  *	An invalid IRQ skips the IRQ registration and expects the host to
6004  *	have set polling mode on the port. In this case, @irq_handler
6005  *	should be NULL.
6006  *
6007  *	LOCKING:
6008  *	Inherited from calling layer (may sleep).
6009  *
6010  *	RETURNS:
6011  *	0 on success, -errno otherwise.
6012  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6013 int ata_host_activate(struct ata_host *host, int irq,
6014 		      irq_handler_t irq_handler, unsigned long irq_flags,
6015 		      const struct scsi_host_template *sht)
6016 {
6017 	int i, rc;
6018 	char *irq_desc;
6019 
6020 	rc = ata_host_start(host);
6021 	if (rc)
6022 		return rc;
6023 
6024 	/* Special case for polling mode */
6025 	if (!irq) {
6026 		WARN_ON(irq_handler);
6027 		return ata_host_register(host, sht);
6028 	}
6029 
6030 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6031 				  dev_driver_string(host->dev),
6032 				  dev_name(host->dev));
6033 	if (!irq_desc)
6034 		return -ENOMEM;
6035 
6036 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6037 			      irq_desc, host);
6038 	if (rc)
6039 		return rc;
6040 
6041 	for (i = 0; i < host->n_ports; i++)
6042 		ata_port_desc(host->ports[i], "irq %d", irq);
6043 
6044 	rc = ata_host_register(host, sht);
6045 	/* if failed, just free the IRQ and leave ports alone */
6046 	if (rc)
6047 		devm_free_irq(host->dev, irq, host);
6048 
6049 	return rc;
6050 }
6051 EXPORT_SYMBOL_GPL(ata_host_activate);
6052 
6053 /**
6054  *	ata_port_detach - Detach ATA port in preparation of device removal
6055  *	@ap: ATA port to be detached
6056  *
6057  *	Detach all ATA devices and the associated SCSI devices of @ap;
6058  *	then, remove the associated SCSI host.  @ap is guaranteed to
6059  *	be quiescent on return from this function.
6060  *
6061  *	LOCKING:
6062  *	Kernel thread context (may sleep).
6063  */
ata_port_detach(struct ata_port * ap)6064 static void ata_port_detach(struct ata_port *ap)
6065 {
6066 	unsigned long flags;
6067 	struct ata_link *link;
6068 	struct ata_device *dev;
6069 
6070 	/* Wait for any ongoing EH */
6071 	ata_port_wait_eh(ap);
6072 
6073 	mutex_lock(&ap->scsi_scan_mutex);
6074 	spin_lock_irqsave(ap->lock, flags);
6075 
6076 	/* Remove scsi devices */
6077 	ata_for_each_link(link, ap, HOST_FIRST) {
6078 		ata_for_each_dev(dev, link, ALL) {
6079 			if (dev->sdev) {
6080 				spin_unlock_irqrestore(ap->lock, flags);
6081 				scsi_remove_device(dev->sdev);
6082 				spin_lock_irqsave(ap->lock, flags);
6083 				dev->sdev = NULL;
6084 			}
6085 		}
6086 	}
6087 
6088 	/* Tell EH to disable all devices */
6089 	ap->pflags |= ATA_PFLAG_UNLOADING;
6090 	ata_port_schedule_eh(ap);
6091 
6092 	spin_unlock_irqrestore(ap->lock, flags);
6093 	mutex_unlock(&ap->scsi_scan_mutex);
6094 
6095 	/* wait till EH commits suicide */
6096 	ata_port_wait_eh(ap);
6097 
6098 	/* it better be dead now */
6099 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6100 
6101 	cancel_delayed_work_sync(&ap->hotplug_task);
6102 	cancel_delayed_work_sync(&ap->scsi_rescan_task);
6103 
6104 	/* clean up zpodd on port removal */
6105 	ata_for_each_link(link, ap, HOST_FIRST) {
6106 		ata_for_each_dev(dev, link, ALL) {
6107 			if (zpodd_dev_enabled(dev))
6108 				zpodd_exit(dev);
6109 		}
6110 	}
6111 	if (ap->pmp_link) {
6112 		int i;
6113 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6114 			ata_tlink_delete(&ap->pmp_link[i]);
6115 	}
6116 	/* remove the associated SCSI host */
6117 	scsi_remove_host(ap->scsi_host);
6118 	ata_tport_delete(ap);
6119 }
6120 
6121 /**
6122  *	ata_host_detach - Detach all ports of an ATA host
6123  *	@host: Host to detach
6124  *
6125  *	Detach all ports of @host.
6126  *
6127  *	LOCKING:
6128  *	Kernel thread context (may sleep).
6129  */
ata_host_detach(struct ata_host * host)6130 void ata_host_detach(struct ata_host *host)
6131 {
6132 	int i;
6133 
6134 	for (i = 0; i < host->n_ports; i++) {
6135 		/* Ensure ata_port probe has completed */
6136 		async_synchronize_cookie(host->ports[i]->cookie + 1);
6137 		ata_port_detach(host->ports[i]);
6138 	}
6139 
6140 	/* the host is dead now, dissociate ACPI */
6141 	ata_acpi_dissociate(host);
6142 }
6143 EXPORT_SYMBOL_GPL(ata_host_detach);
6144 
6145 #ifdef CONFIG_PCI
6146 
6147 /**
6148  *	ata_pci_remove_one - PCI layer callback for device removal
6149  *	@pdev: PCI device that was removed
6150  *
6151  *	PCI layer indicates to libata via this hook that hot-unplug or
6152  *	module unload event has occurred.  Detach all ports.  Resource
6153  *	release is handled via devres.
6154  *
6155  *	LOCKING:
6156  *	Inherited from PCI layer (may sleep).
6157  */
ata_pci_remove_one(struct pci_dev * pdev)6158 void ata_pci_remove_one(struct pci_dev *pdev)
6159 {
6160 	struct ata_host *host = pci_get_drvdata(pdev);
6161 
6162 	ata_host_detach(host);
6163 }
6164 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6165 
ata_pci_shutdown_one(struct pci_dev * pdev)6166 void ata_pci_shutdown_one(struct pci_dev *pdev)
6167 {
6168 	struct ata_host *host = pci_get_drvdata(pdev);
6169 	int i;
6170 
6171 	for (i = 0; i < host->n_ports; i++) {
6172 		struct ata_port *ap = host->ports[i];
6173 
6174 		ap->pflags |= ATA_PFLAG_FROZEN;
6175 
6176 		/* Disable port interrupts */
6177 		if (ap->ops->freeze)
6178 			ap->ops->freeze(ap);
6179 
6180 		/* Stop the port DMA engines */
6181 		if (ap->ops->port_stop)
6182 			ap->ops->port_stop(ap);
6183 	}
6184 }
6185 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6186 
6187 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6188 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6189 {
6190 	unsigned long tmp = 0;
6191 
6192 	switch (bits->width) {
6193 	case 1: {
6194 		u8 tmp8 = 0;
6195 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6196 		tmp = tmp8;
6197 		break;
6198 	}
6199 	case 2: {
6200 		u16 tmp16 = 0;
6201 		pci_read_config_word(pdev, bits->reg, &tmp16);
6202 		tmp = tmp16;
6203 		break;
6204 	}
6205 	case 4: {
6206 		u32 tmp32 = 0;
6207 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6208 		tmp = tmp32;
6209 		break;
6210 	}
6211 
6212 	default:
6213 		return -EINVAL;
6214 	}
6215 
6216 	tmp &= bits->mask;
6217 
6218 	return (tmp == bits->val) ? 1 : 0;
6219 }
6220 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6221 
6222 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6223 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6224 {
6225 	pci_save_state(pdev);
6226 	pci_disable_device(pdev);
6227 
6228 	if (mesg.event & PM_EVENT_SLEEP)
6229 		pci_set_power_state(pdev, PCI_D3hot);
6230 }
6231 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6232 
ata_pci_device_do_resume(struct pci_dev * pdev)6233 int ata_pci_device_do_resume(struct pci_dev *pdev)
6234 {
6235 	int rc;
6236 
6237 	pci_set_power_state(pdev, PCI_D0);
6238 	pci_restore_state(pdev);
6239 
6240 	rc = pcim_enable_device(pdev);
6241 	if (rc) {
6242 		dev_err(&pdev->dev,
6243 			"failed to enable device after resume (%d)\n", rc);
6244 		return rc;
6245 	}
6246 
6247 	pci_set_master(pdev);
6248 	return 0;
6249 }
6250 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6251 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6252 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6253 {
6254 	struct ata_host *host = pci_get_drvdata(pdev);
6255 
6256 	ata_host_suspend(host, mesg);
6257 
6258 	ata_pci_device_do_suspend(pdev, mesg);
6259 
6260 	return 0;
6261 }
6262 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6263 
ata_pci_device_resume(struct pci_dev * pdev)6264 int ata_pci_device_resume(struct pci_dev *pdev)
6265 {
6266 	struct ata_host *host = pci_get_drvdata(pdev);
6267 	int rc;
6268 
6269 	rc = ata_pci_device_do_resume(pdev);
6270 	if (rc == 0)
6271 		ata_host_resume(host);
6272 	return rc;
6273 }
6274 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6275 #endif /* CONFIG_PM */
6276 #endif /* CONFIG_PCI */
6277 
6278 /**
6279  *	ata_platform_remove_one - Platform layer callback for device removal
6280  *	@pdev: Platform device that was removed
6281  *
6282  *	Platform layer indicates to libata via this hook that hot-unplug or
6283  *	module unload event has occurred.  Detach all ports.  Resource
6284  *	release is handled via devres.
6285  *
6286  *	LOCKING:
6287  *	Inherited from platform layer (may sleep).
6288  */
ata_platform_remove_one(struct platform_device * pdev)6289 void ata_platform_remove_one(struct platform_device *pdev)
6290 {
6291 	struct ata_host *host = platform_get_drvdata(pdev);
6292 
6293 	ata_host_detach(host);
6294 }
6295 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6296 
6297 #ifdef CONFIG_ATA_FORCE
6298 
6299 #define force_cbl(name, flag)				\
6300 	{ #name,	.cbl		= (flag) }
6301 
6302 #define force_spd_limit(spd, val)			\
6303 	{ #spd,	.spd_limit		= (val) }
6304 
6305 #define force_xfer(mode, shift)				\
6306 	{ #mode,	.xfer_mask	= (1UL << (shift)) }
6307 
6308 #define force_lflag_on(name, flags)			\
6309 	{ #name,	.lflags_on	= (flags) }
6310 
6311 #define force_lflag_onoff(name, flags)			\
6312 	{ "no" #name,	.lflags_on	= (flags) },	\
6313 	{ #name,	.lflags_off	= (flags) }
6314 
6315 #define force_horkage_on(name, flag)			\
6316 	{ #name,	.horkage_on	= (flag) }
6317 
6318 #define force_horkage_onoff(name, flag)			\
6319 	{ "no" #name,	.horkage_on	= (flag) },	\
6320 	{ #name,	.horkage_off	= (flag) }
6321 
6322 static const struct ata_force_param force_tbl[] __initconst = {
6323 	force_cbl(40c,			ATA_CBL_PATA40),
6324 	force_cbl(80c,			ATA_CBL_PATA80),
6325 	force_cbl(short40c,		ATA_CBL_PATA40_SHORT),
6326 	force_cbl(unk,			ATA_CBL_PATA_UNK),
6327 	force_cbl(ign,			ATA_CBL_PATA_IGN),
6328 	force_cbl(sata,			ATA_CBL_SATA),
6329 
6330 	force_spd_limit(1.5Gbps,	1),
6331 	force_spd_limit(3.0Gbps,	2),
6332 
6333 	force_xfer(pio0,		ATA_SHIFT_PIO + 0),
6334 	force_xfer(pio1,		ATA_SHIFT_PIO + 1),
6335 	force_xfer(pio2,		ATA_SHIFT_PIO + 2),
6336 	force_xfer(pio3,		ATA_SHIFT_PIO + 3),
6337 	force_xfer(pio4,		ATA_SHIFT_PIO + 4),
6338 	force_xfer(pio5,		ATA_SHIFT_PIO + 5),
6339 	force_xfer(pio6,		ATA_SHIFT_PIO + 6),
6340 	force_xfer(mwdma0,		ATA_SHIFT_MWDMA + 0),
6341 	force_xfer(mwdma1,		ATA_SHIFT_MWDMA + 1),
6342 	force_xfer(mwdma2,		ATA_SHIFT_MWDMA + 2),
6343 	force_xfer(mwdma3,		ATA_SHIFT_MWDMA + 3),
6344 	force_xfer(mwdma4,		ATA_SHIFT_MWDMA + 4),
6345 	force_xfer(udma0,		ATA_SHIFT_UDMA + 0),
6346 	force_xfer(udma16,		ATA_SHIFT_UDMA + 0),
6347 	force_xfer(udma/16,		ATA_SHIFT_UDMA + 0),
6348 	force_xfer(udma1,		ATA_SHIFT_UDMA + 1),
6349 	force_xfer(udma25,		ATA_SHIFT_UDMA + 1),
6350 	force_xfer(udma/25,		ATA_SHIFT_UDMA + 1),
6351 	force_xfer(udma2,		ATA_SHIFT_UDMA + 2),
6352 	force_xfer(udma33,		ATA_SHIFT_UDMA + 2),
6353 	force_xfer(udma/33,		ATA_SHIFT_UDMA + 2),
6354 	force_xfer(udma3,		ATA_SHIFT_UDMA + 3),
6355 	force_xfer(udma44,		ATA_SHIFT_UDMA + 3),
6356 	force_xfer(udma/44,		ATA_SHIFT_UDMA + 3),
6357 	force_xfer(udma4,		ATA_SHIFT_UDMA + 4),
6358 	force_xfer(udma66,		ATA_SHIFT_UDMA + 4),
6359 	force_xfer(udma/66,		ATA_SHIFT_UDMA + 4),
6360 	force_xfer(udma5,		ATA_SHIFT_UDMA + 5),
6361 	force_xfer(udma100,		ATA_SHIFT_UDMA + 5),
6362 	force_xfer(udma/100,		ATA_SHIFT_UDMA + 5),
6363 	force_xfer(udma6,		ATA_SHIFT_UDMA + 6),
6364 	force_xfer(udma133,		ATA_SHIFT_UDMA + 6),
6365 	force_xfer(udma/133,		ATA_SHIFT_UDMA + 6),
6366 	force_xfer(udma7,		ATA_SHIFT_UDMA + 7),
6367 
6368 	force_lflag_on(nohrst,		ATA_LFLAG_NO_HRST),
6369 	force_lflag_on(nosrst,		ATA_LFLAG_NO_SRST),
6370 	force_lflag_on(norst,		ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6371 	force_lflag_on(rstonce,		ATA_LFLAG_RST_ONCE),
6372 	force_lflag_onoff(dbdelay,	ATA_LFLAG_NO_DEBOUNCE_DELAY),
6373 
6374 	force_horkage_onoff(ncq,	ATA_HORKAGE_NONCQ),
6375 	force_horkage_onoff(ncqtrim,	ATA_HORKAGE_NO_NCQ_TRIM),
6376 	force_horkage_onoff(ncqati,	ATA_HORKAGE_NO_NCQ_ON_ATI),
6377 
6378 	force_horkage_onoff(trim,	ATA_HORKAGE_NOTRIM),
6379 	force_horkage_on(trim_zero,	ATA_HORKAGE_ZERO_AFTER_TRIM),
6380 	force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6381 
6382 	force_horkage_onoff(dma,	ATA_HORKAGE_NODMA),
6383 	force_horkage_on(atapi_dmadir,	ATA_HORKAGE_ATAPI_DMADIR),
6384 	force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6385 
6386 	force_horkage_onoff(dmalog,	ATA_HORKAGE_NO_DMA_LOG),
6387 	force_horkage_onoff(iddevlog,	ATA_HORKAGE_NO_ID_DEV_LOG),
6388 	force_horkage_onoff(logdir,	ATA_HORKAGE_NO_LOG_DIR),
6389 
6390 	force_horkage_on(max_sec_128,	ATA_HORKAGE_MAX_SEC_128),
6391 	force_horkage_on(max_sec_1024,	ATA_HORKAGE_MAX_SEC_1024),
6392 	force_horkage_on(max_sec_lba48,	ATA_HORKAGE_MAX_SEC_LBA48),
6393 
6394 	force_horkage_onoff(lpm,	ATA_HORKAGE_NOLPM),
6395 	force_horkage_onoff(setxfer,	ATA_HORKAGE_NOSETXFER),
6396 	force_horkage_on(dump_id,	ATA_HORKAGE_DUMP_ID),
6397 	force_horkage_onoff(fua,	ATA_HORKAGE_NO_FUA),
6398 
6399 	force_horkage_on(disable,	ATA_HORKAGE_DISABLE),
6400 };
6401 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6402 static int __init ata_parse_force_one(char **cur,
6403 				      struct ata_force_ent *force_ent,
6404 				      const char **reason)
6405 {
6406 	char *start = *cur, *p = *cur;
6407 	char *id, *val, *endp;
6408 	const struct ata_force_param *match_fp = NULL;
6409 	int nr_matches = 0, i;
6410 
6411 	/* find where this param ends and update *cur */
6412 	while (*p != '\0' && *p != ',')
6413 		p++;
6414 
6415 	if (*p == '\0')
6416 		*cur = p;
6417 	else
6418 		*cur = p + 1;
6419 
6420 	*p = '\0';
6421 
6422 	/* parse */
6423 	p = strchr(start, ':');
6424 	if (!p) {
6425 		val = strstrip(start);
6426 		goto parse_val;
6427 	}
6428 	*p = '\0';
6429 
6430 	id = strstrip(start);
6431 	val = strstrip(p + 1);
6432 
6433 	/* parse id */
6434 	p = strchr(id, '.');
6435 	if (p) {
6436 		*p++ = '\0';
6437 		force_ent->device = simple_strtoul(p, &endp, 10);
6438 		if (p == endp || *endp != '\0') {
6439 			*reason = "invalid device";
6440 			return -EINVAL;
6441 		}
6442 	}
6443 
6444 	force_ent->port = simple_strtoul(id, &endp, 10);
6445 	if (id == endp || *endp != '\0') {
6446 		*reason = "invalid port/link";
6447 		return -EINVAL;
6448 	}
6449 
6450  parse_val:
6451 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6452 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6453 		const struct ata_force_param *fp = &force_tbl[i];
6454 
6455 		if (strncasecmp(val, fp->name, strlen(val)))
6456 			continue;
6457 
6458 		nr_matches++;
6459 		match_fp = fp;
6460 
6461 		if (strcasecmp(val, fp->name) == 0) {
6462 			nr_matches = 1;
6463 			break;
6464 		}
6465 	}
6466 
6467 	if (!nr_matches) {
6468 		*reason = "unknown value";
6469 		return -EINVAL;
6470 	}
6471 	if (nr_matches > 1) {
6472 		*reason = "ambiguous value";
6473 		return -EINVAL;
6474 	}
6475 
6476 	force_ent->param = *match_fp;
6477 
6478 	return 0;
6479 }
6480 
ata_parse_force_param(void)6481 static void __init ata_parse_force_param(void)
6482 {
6483 	int idx = 0, size = 1;
6484 	int last_port = -1, last_device = -1;
6485 	char *p, *cur, *next;
6486 
6487 	/* Calculate maximum number of params and allocate ata_force_tbl */
6488 	for (p = ata_force_param_buf; *p; p++)
6489 		if (*p == ',')
6490 			size++;
6491 
6492 	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6493 	if (!ata_force_tbl) {
6494 		printk(KERN_WARNING "ata: failed to extend force table, "
6495 		       "libata.force ignored\n");
6496 		return;
6497 	}
6498 
6499 	/* parse and populate the table */
6500 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6501 		const char *reason = "";
6502 		struct ata_force_ent te = { .port = -1, .device = -1 };
6503 
6504 		next = cur;
6505 		if (ata_parse_force_one(&next, &te, &reason)) {
6506 			printk(KERN_WARNING "ata: failed to parse force "
6507 			       "parameter \"%s\" (%s)\n",
6508 			       cur, reason);
6509 			continue;
6510 		}
6511 
6512 		if (te.port == -1) {
6513 			te.port = last_port;
6514 			te.device = last_device;
6515 		}
6516 
6517 		ata_force_tbl[idx++] = te;
6518 
6519 		last_port = te.port;
6520 		last_device = te.device;
6521 	}
6522 
6523 	ata_force_tbl_size = idx;
6524 }
6525 
ata_free_force_param(void)6526 static void ata_free_force_param(void)
6527 {
6528 	kfree(ata_force_tbl);
6529 }
6530 #else
ata_parse_force_param(void)6531 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6532 static inline void ata_free_force_param(void) { }
6533 #endif
6534 
ata_init(void)6535 static int __init ata_init(void)
6536 {
6537 	int rc;
6538 
6539 	ata_parse_force_param();
6540 
6541 	rc = ata_sff_init();
6542 	if (rc) {
6543 		ata_free_force_param();
6544 		return rc;
6545 	}
6546 
6547 	libata_transport_init();
6548 	ata_scsi_transport_template = ata_attach_transport();
6549 	if (!ata_scsi_transport_template) {
6550 		ata_sff_exit();
6551 		rc = -ENOMEM;
6552 		goto err_out;
6553 	}
6554 
6555 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6556 	return 0;
6557 
6558 err_out:
6559 	return rc;
6560 }
6561 
ata_exit(void)6562 static void __exit ata_exit(void)
6563 {
6564 	ata_release_transport(ata_scsi_transport_template);
6565 	libata_transport_exit();
6566 	ata_sff_exit();
6567 	ata_free_force_param();
6568 }
6569 
6570 subsys_initcall(ata_init);
6571 module_exit(ata_exit);
6572 
6573 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6574 
ata_ratelimit(void)6575 int ata_ratelimit(void)
6576 {
6577 	return __ratelimit(&ratelimit);
6578 }
6579 EXPORT_SYMBOL_GPL(ata_ratelimit);
6580 
6581 /**
6582  *	ata_msleep - ATA EH owner aware msleep
6583  *	@ap: ATA port to attribute the sleep to
6584  *	@msecs: duration to sleep in milliseconds
6585  *
6586  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6587  *	ownership is released before going to sleep and reacquired
6588  *	after the sleep is complete.  IOW, other ports sharing the
6589  *	@ap->host will be allowed to own the EH while this task is
6590  *	sleeping.
6591  *
6592  *	LOCKING:
6593  *	Might sleep.
6594  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6595 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6596 {
6597 	bool owns_eh = ap && ap->host->eh_owner == current;
6598 
6599 	if (owns_eh)
6600 		ata_eh_release(ap);
6601 
6602 	if (msecs < 20) {
6603 		unsigned long usecs = msecs * USEC_PER_MSEC;
6604 		usleep_range(usecs, usecs + 50);
6605 	} else {
6606 		msleep(msecs);
6607 	}
6608 
6609 	if (owns_eh)
6610 		ata_eh_acquire(ap);
6611 }
6612 EXPORT_SYMBOL_GPL(ata_msleep);
6613 
6614 /**
6615  *	ata_wait_register - wait until register value changes
6616  *	@ap: ATA port to wait register for, can be NULL
6617  *	@reg: IO-mapped register
6618  *	@mask: Mask to apply to read register value
6619  *	@val: Wait condition
6620  *	@interval: polling interval in milliseconds
6621  *	@timeout: timeout in milliseconds
6622  *
6623  *	Waiting for some bits of register to change is a common
6624  *	operation for ATA controllers.  This function reads 32bit LE
6625  *	IO-mapped register @reg and tests for the following condition.
6626  *
6627  *	(*@reg & mask) != val
6628  *
6629  *	If the condition is met, it returns; otherwise, the process is
6630  *	repeated after @interval_msec until timeout.
6631  *
6632  *	LOCKING:
6633  *	Kernel thread context (may sleep)
6634  *
6635  *	RETURNS:
6636  *	The final register value.
6637  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6638 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6639 		      unsigned int interval, unsigned int timeout)
6640 {
6641 	unsigned long deadline;
6642 	u32 tmp;
6643 
6644 	tmp = ioread32(reg);
6645 
6646 	/* Calculate timeout _after_ the first read to make sure
6647 	 * preceding writes reach the controller before starting to
6648 	 * eat away the timeout.
6649 	 */
6650 	deadline = ata_deadline(jiffies, timeout);
6651 
6652 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6653 		ata_msleep(ap, interval);
6654 		tmp = ioread32(reg);
6655 	}
6656 
6657 	return tmp;
6658 }
6659 EXPORT_SYMBOL_GPL(ata_wait_register);
6660 
6661 /*
6662  * Dummy port_ops
6663  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6664 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6665 {
6666 	return AC_ERR_SYSTEM;
6667 }
6668 
ata_dummy_error_handler(struct ata_port * ap)6669 static void ata_dummy_error_handler(struct ata_port *ap)
6670 {
6671 	/* truly dummy */
6672 }
6673 
6674 struct ata_port_operations ata_dummy_port_ops = {
6675 	.qc_prep		= ata_noop_qc_prep,
6676 	.qc_issue		= ata_dummy_qc_issue,
6677 	.error_handler		= ata_dummy_error_handler,
6678 	.sched_eh		= ata_std_sched_eh,
6679 	.end_eh			= ata_std_end_eh,
6680 };
6681 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6682 
6683 const struct ata_port_info ata_dummy_port_info = {
6684 	.port_ops		= &ata_dummy_port_ops,
6685 };
6686 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6687 
ata_print_version(const struct device * dev,const char * version)6688 void ata_print_version(const struct device *dev, const char *version)
6689 {
6690 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6691 }
6692 EXPORT_SYMBOL(ata_print_version);
6693 
6694 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6695 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6696 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6697 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6698 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6699