1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "tls.h"
42 #include "trace.h"
43
44 /* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47 static DECLARE_RWSEM(device_offload_lock);
48
49 static struct workqueue_struct *destruct_wq __read_mostly;
50
51 static LIST_HEAD(tls_device_list);
52 static LIST_HEAD(tls_device_down_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static struct page *dummy_page;
56
tls_device_free_ctx(struct tls_context * ctx)57 static void tls_device_free_ctx(struct tls_context *ctx)
58 {
59 if (ctx->tx_conf == TLS_HW) {
60 kfree(tls_offload_ctx_tx(ctx));
61 kfree(ctx->tx.rec_seq);
62 kfree(ctx->tx.iv);
63 }
64
65 if (ctx->rx_conf == TLS_HW)
66 kfree(tls_offload_ctx_rx(ctx));
67
68 tls_ctx_free(NULL, ctx);
69 }
70
tls_device_tx_del_task(struct work_struct * work)71 static void tls_device_tx_del_task(struct work_struct *work)
72 {
73 struct tls_offload_context_tx *offload_ctx =
74 container_of(work, struct tls_offload_context_tx, destruct_work);
75 struct tls_context *ctx = offload_ctx->ctx;
76 struct net_device *netdev;
77
78 /* Safe, because this is the destroy flow, refcount is 0, so
79 * tls_device_down can't store this field in parallel.
80 */
81 netdev = rcu_dereference_protected(ctx->netdev,
82 !refcount_read(&ctx->refcount));
83
84 netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
85 dev_put(netdev);
86 ctx->netdev = NULL;
87 tls_device_free_ctx(ctx);
88 }
89
tls_device_queue_ctx_destruction(struct tls_context * ctx)90 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
91 {
92 struct net_device *netdev;
93 unsigned long flags;
94 bool async_cleanup;
95
96 spin_lock_irqsave(&tls_device_lock, flags);
97 if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
98 spin_unlock_irqrestore(&tls_device_lock, flags);
99 return;
100 }
101
102 list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
103
104 /* Safe, because this is the destroy flow, refcount is 0, so
105 * tls_device_down can't store this field in parallel.
106 */
107 netdev = rcu_dereference_protected(ctx->netdev,
108 !refcount_read(&ctx->refcount));
109
110 async_cleanup = netdev && ctx->tx_conf == TLS_HW;
111 if (async_cleanup) {
112 struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
113
114 /* queue_work inside the spinlock
115 * to make sure tls_device_down waits for that work.
116 */
117 queue_work(destruct_wq, &offload_ctx->destruct_work);
118 }
119 spin_unlock_irqrestore(&tls_device_lock, flags);
120
121 if (!async_cleanup)
122 tls_device_free_ctx(ctx);
123 }
124
125 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)126 static struct net_device *get_netdev_for_sock(struct sock *sk)
127 {
128 struct dst_entry *dst = sk_dst_get(sk);
129 struct net_device *netdev = NULL;
130
131 if (likely(dst)) {
132 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
133 dev_hold(netdev);
134 }
135
136 dst_release(dst);
137
138 return netdev;
139 }
140
destroy_record(struct tls_record_info * record)141 static void destroy_record(struct tls_record_info *record)
142 {
143 int i;
144
145 for (i = 0; i < record->num_frags; i++)
146 __skb_frag_unref(&record->frags[i], false);
147 kfree(record);
148 }
149
delete_all_records(struct tls_offload_context_tx * offload_ctx)150 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151 {
152 struct tls_record_info *info, *temp;
153
154 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155 list_del(&info->list);
156 destroy_record(info);
157 }
158
159 offload_ctx->retransmit_hint = NULL;
160 }
161
tls_icsk_clean_acked(struct sock * sk,u32 acked_seq)162 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
163 {
164 struct tls_context *tls_ctx = tls_get_ctx(sk);
165 struct tls_record_info *info, *temp;
166 struct tls_offload_context_tx *ctx;
167 u64 deleted_records = 0;
168 unsigned long flags;
169
170 if (!tls_ctx)
171 return;
172
173 ctx = tls_offload_ctx_tx(tls_ctx);
174
175 spin_lock_irqsave(&ctx->lock, flags);
176 info = ctx->retransmit_hint;
177 if (info && !before(acked_seq, info->end_seq))
178 ctx->retransmit_hint = NULL;
179
180 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181 if (before(acked_seq, info->end_seq))
182 break;
183 list_del(&info->list);
184
185 destroy_record(info);
186 deleted_records++;
187 }
188
189 ctx->unacked_record_sn += deleted_records;
190 spin_unlock_irqrestore(&ctx->lock, flags);
191 }
192
193 /* At this point, there should be no references on this
194 * socket and no in-flight SKBs associated with this
195 * socket, so it is safe to free all the resources.
196 */
tls_device_sk_destruct(struct sock * sk)197 void tls_device_sk_destruct(struct sock *sk)
198 {
199 struct tls_context *tls_ctx = tls_get_ctx(sk);
200 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201
202 tls_ctx->sk_destruct(sk);
203
204 if (tls_ctx->tx_conf == TLS_HW) {
205 if (ctx->open_record)
206 destroy_record(ctx->open_record);
207 delete_all_records(ctx);
208 crypto_free_aead(ctx->aead_send);
209 clean_acked_data_disable(inet_csk(sk));
210 }
211
212 tls_device_queue_ctx_destruction(tls_ctx);
213 }
214 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215
tls_device_free_resources_tx(struct sock * sk)216 void tls_device_free_resources_tx(struct sock *sk)
217 {
218 struct tls_context *tls_ctx = tls_get_ctx(sk);
219
220 tls_free_partial_record(sk, tls_ctx);
221 }
222
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)223 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224 {
225 struct tls_context *tls_ctx = tls_get_ctx(sk);
226
227 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229 }
230 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)232 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233 u32 seq)
234 {
235 struct net_device *netdev;
236 struct sk_buff *skb;
237 int err = 0;
238 u8 *rcd_sn;
239
240 skb = tcp_write_queue_tail(sk);
241 if (skb)
242 TCP_SKB_CB(skb)->eor = 1;
243
244 rcd_sn = tls_ctx->tx.rec_seq;
245
246 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
247 down_read(&device_offload_lock);
248 netdev = rcu_dereference_protected(tls_ctx->netdev,
249 lockdep_is_held(&device_offload_lock));
250 if (netdev)
251 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
252 rcd_sn,
253 TLS_OFFLOAD_CTX_DIR_TX);
254 up_read(&device_offload_lock);
255 if (err)
256 return;
257
258 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
259 }
260
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)261 static void tls_append_frag(struct tls_record_info *record,
262 struct page_frag *pfrag,
263 int size)
264 {
265 skb_frag_t *frag;
266
267 frag = &record->frags[record->num_frags - 1];
268 if (skb_frag_page(frag) == pfrag->page &&
269 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
270 skb_frag_size_add(frag, size);
271 } else {
272 ++frag;
273 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
274 size);
275 ++record->num_frags;
276 get_page(pfrag->page);
277 }
278
279 pfrag->offset += size;
280 record->len += size;
281 }
282
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)283 static int tls_push_record(struct sock *sk,
284 struct tls_context *ctx,
285 struct tls_offload_context_tx *offload_ctx,
286 struct tls_record_info *record,
287 int flags)
288 {
289 struct tls_prot_info *prot = &ctx->prot_info;
290 struct tcp_sock *tp = tcp_sk(sk);
291 skb_frag_t *frag;
292 int i;
293
294 record->end_seq = tp->write_seq + record->len;
295 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
296 offload_ctx->open_record = NULL;
297
298 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
299 tls_device_resync_tx(sk, ctx, tp->write_seq);
300
301 tls_advance_record_sn(sk, prot, &ctx->tx);
302
303 for (i = 0; i < record->num_frags; i++) {
304 frag = &record->frags[i];
305 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
306 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
307 skb_frag_size(frag), skb_frag_off(frag));
308 sk_mem_charge(sk, skb_frag_size(frag));
309 get_page(skb_frag_page(frag));
310 }
311 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
312
313 /* all ready, send */
314 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
315 }
316
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)317 static void tls_device_record_close(struct sock *sk,
318 struct tls_context *ctx,
319 struct tls_record_info *record,
320 struct page_frag *pfrag,
321 unsigned char record_type)
322 {
323 struct tls_prot_info *prot = &ctx->prot_info;
324 struct page_frag dummy_tag_frag;
325
326 /* append tag
327 * device will fill in the tag, we just need to append a placeholder
328 * use socket memory to improve coalescing (re-using a single buffer
329 * increases frag count)
330 * if we can't allocate memory now use the dummy page
331 */
332 if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
333 !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
334 dummy_tag_frag.page = dummy_page;
335 dummy_tag_frag.offset = 0;
336 pfrag = &dummy_tag_frag;
337 }
338 tls_append_frag(record, pfrag, prot->tag_size);
339
340 /* fill prepend */
341 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
342 record->len - prot->overhead_size,
343 record_type);
344 }
345
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)346 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
347 struct page_frag *pfrag,
348 size_t prepend_size)
349 {
350 struct tls_record_info *record;
351 skb_frag_t *frag;
352
353 record = kmalloc(sizeof(*record), GFP_KERNEL);
354 if (!record)
355 return -ENOMEM;
356
357 frag = &record->frags[0];
358 skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
359 prepend_size);
360
361 get_page(pfrag->page);
362 pfrag->offset += prepend_size;
363
364 record->num_frags = 1;
365 record->len = prepend_size;
366 offload_ctx->open_record = record;
367 return 0;
368 }
369
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)370 static int tls_do_allocation(struct sock *sk,
371 struct tls_offload_context_tx *offload_ctx,
372 struct page_frag *pfrag,
373 size_t prepend_size)
374 {
375 int ret;
376
377 if (!offload_ctx->open_record) {
378 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
379 sk->sk_allocation))) {
380 READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
381 sk_stream_moderate_sndbuf(sk);
382 return -ENOMEM;
383 }
384
385 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
386 if (ret)
387 return ret;
388
389 if (pfrag->size > pfrag->offset)
390 return 0;
391 }
392
393 if (!sk_page_frag_refill(sk, pfrag))
394 return -ENOMEM;
395
396 return 0;
397 }
398
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)399 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 size_t pre_copy, nocache;
402
403 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
404 if (pre_copy) {
405 pre_copy = min(pre_copy, bytes);
406 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
407 return -EFAULT;
408 bytes -= pre_copy;
409 addr += pre_copy;
410 }
411
412 nocache = round_down(bytes, SMP_CACHE_BYTES);
413 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
414 return -EFAULT;
415 bytes -= nocache;
416 addr += nocache;
417
418 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
419 return -EFAULT;
420
421 return 0;
422 }
423
tls_push_data(struct sock * sk,struct iov_iter * iter,size_t size,int flags,unsigned char record_type)424 static int tls_push_data(struct sock *sk,
425 struct iov_iter *iter,
426 size_t size, int flags,
427 unsigned char record_type)
428 {
429 struct tls_context *tls_ctx = tls_get_ctx(sk);
430 struct tls_prot_info *prot = &tls_ctx->prot_info;
431 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
432 struct tls_record_info *record;
433 int tls_push_record_flags;
434 struct page_frag *pfrag;
435 size_t orig_size = size;
436 u32 max_open_record_len;
437 bool more = false;
438 bool done = false;
439 int copy, rc = 0;
440 long timeo;
441
442 if (flags &
443 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
444 MSG_SPLICE_PAGES | MSG_EOR))
445 return -EOPNOTSUPP;
446
447 if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
448 return -EINVAL;
449
450 if (unlikely(sk->sk_err))
451 return -sk->sk_err;
452
453 flags |= MSG_SENDPAGE_DECRYPTED;
454 tls_push_record_flags = flags | MSG_MORE;
455
456 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
457 if (tls_is_partially_sent_record(tls_ctx)) {
458 rc = tls_push_partial_record(sk, tls_ctx, flags);
459 if (rc < 0)
460 return rc;
461 }
462
463 pfrag = sk_page_frag(sk);
464
465 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
466 * we need to leave room for an authentication tag.
467 */
468 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
469 prot->prepend_size;
470 do {
471 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
472 if (unlikely(rc)) {
473 rc = sk_stream_wait_memory(sk, &timeo);
474 if (!rc)
475 continue;
476
477 record = ctx->open_record;
478 if (!record)
479 break;
480 handle_error:
481 if (record_type != TLS_RECORD_TYPE_DATA) {
482 /* avoid sending partial
483 * record with type !=
484 * application_data
485 */
486 size = orig_size;
487 destroy_record(record);
488 ctx->open_record = NULL;
489 } else if (record->len > prot->prepend_size) {
490 goto last_record;
491 }
492
493 break;
494 }
495
496 record = ctx->open_record;
497
498 copy = min_t(size_t, size, max_open_record_len - record->len);
499 if (copy && (flags & MSG_SPLICE_PAGES)) {
500 struct page_frag zc_pfrag;
501 struct page **pages = &zc_pfrag.page;
502 size_t off;
503
504 rc = iov_iter_extract_pages(iter, &pages,
505 copy, 1, 0, &off);
506 if (rc <= 0) {
507 if (rc == 0)
508 rc = -EIO;
509 goto handle_error;
510 }
511 copy = rc;
512
513 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
514 iov_iter_revert(iter, copy);
515 rc = -EIO;
516 goto handle_error;
517 }
518
519 zc_pfrag.offset = off;
520 zc_pfrag.size = copy;
521 tls_append_frag(record, &zc_pfrag, copy);
522 } else if (copy) {
523 copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
524
525 rc = tls_device_copy_data(page_address(pfrag->page) +
526 pfrag->offset, copy,
527 iter);
528 if (rc)
529 goto handle_error;
530 tls_append_frag(record, pfrag, copy);
531 }
532
533 size -= copy;
534 if (!size) {
535 last_record:
536 tls_push_record_flags = flags;
537 if (flags & MSG_MORE) {
538 more = true;
539 break;
540 }
541
542 done = true;
543 }
544
545 if (done || record->len >= max_open_record_len ||
546 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
547 tls_device_record_close(sk, tls_ctx, record,
548 pfrag, record_type);
549
550 rc = tls_push_record(sk,
551 tls_ctx,
552 ctx,
553 record,
554 tls_push_record_flags);
555 if (rc < 0)
556 break;
557 }
558 } while (!done);
559
560 tls_ctx->pending_open_record_frags = more;
561
562 if (orig_size - size > 0)
563 rc = orig_size - size;
564
565 return rc;
566 }
567
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)568 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
569 {
570 unsigned char record_type = TLS_RECORD_TYPE_DATA;
571 struct tls_context *tls_ctx = tls_get_ctx(sk);
572 int rc;
573
574 if (!tls_ctx->zerocopy_sendfile)
575 msg->msg_flags &= ~MSG_SPLICE_PAGES;
576
577 mutex_lock(&tls_ctx->tx_lock);
578 lock_sock(sk);
579
580 if (unlikely(msg->msg_controllen)) {
581 rc = tls_process_cmsg(sk, msg, &record_type);
582 if (rc)
583 goto out;
584 }
585
586 rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
587 record_type);
588
589 out:
590 release_sock(sk);
591 mutex_unlock(&tls_ctx->tx_lock);
592 return rc;
593 }
594
tls_device_splice_eof(struct socket * sock)595 void tls_device_splice_eof(struct socket *sock)
596 {
597 struct sock *sk = sock->sk;
598 struct tls_context *tls_ctx = tls_get_ctx(sk);
599 struct iov_iter iter = {};
600
601 if (!tls_is_partially_sent_record(tls_ctx))
602 return;
603
604 mutex_lock(&tls_ctx->tx_lock);
605 lock_sock(sk);
606
607 if (tls_is_partially_sent_record(tls_ctx)) {
608 iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
609 tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
610 }
611
612 release_sock(sk);
613 mutex_unlock(&tls_ctx->tx_lock);
614 }
615
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)616 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
617 u32 seq, u64 *p_record_sn)
618 {
619 u64 record_sn = context->hint_record_sn;
620 struct tls_record_info *info, *last;
621
622 info = context->retransmit_hint;
623 if (!info ||
624 before(seq, info->end_seq - info->len)) {
625 /* if retransmit_hint is irrelevant start
626 * from the beginning of the list
627 */
628 info = list_first_entry_or_null(&context->records_list,
629 struct tls_record_info, list);
630 if (!info)
631 return NULL;
632 /* send the start_marker record if seq number is before the
633 * tls offload start marker sequence number. This record is
634 * required to handle TCP packets which are before TLS offload
635 * started.
636 * And if it's not start marker, look if this seq number
637 * belongs to the list.
638 */
639 if (likely(!tls_record_is_start_marker(info))) {
640 /* we have the first record, get the last record to see
641 * if this seq number belongs to the list.
642 */
643 last = list_last_entry(&context->records_list,
644 struct tls_record_info, list);
645
646 if (!between(seq, tls_record_start_seq(info),
647 last->end_seq))
648 return NULL;
649 }
650 record_sn = context->unacked_record_sn;
651 }
652
653 /* We just need the _rcu for the READ_ONCE() */
654 rcu_read_lock();
655 list_for_each_entry_from_rcu(info, &context->records_list, list) {
656 if (before(seq, info->end_seq)) {
657 if (!context->retransmit_hint ||
658 after(info->end_seq,
659 context->retransmit_hint->end_seq)) {
660 context->hint_record_sn = record_sn;
661 context->retransmit_hint = info;
662 }
663 *p_record_sn = record_sn;
664 goto exit_rcu_unlock;
665 }
666 record_sn++;
667 }
668 info = NULL;
669
670 exit_rcu_unlock:
671 rcu_read_unlock();
672 return info;
673 }
674 EXPORT_SYMBOL(tls_get_record);
675
tls_device_push_pending_record(struct sock * sk,int flags)676 static int tls_device_push_pending_record(struct sock *sk, int flags)
677 {
678 struct iov_iter iter;
679
680 iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
681 return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
682 }
683
tls_device_write_space(struct sock * sk,struct tls_context * ctx)684 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
685 {
686 if (tls_is_partially_sent_record(ctx)) {
687 gfp_t sk_allocation = sk->sk_allocation;
688
689 WARN_ON_ONCE(sk->sk_write_pending);
690
691 sk->sk_allocation = GFP_ATOMIC;
692 tls_push_partial_record(sk, ctx,
693 MSG_DONTWAIT | MSG_NOSIGNAL |
694 MSG_SENDPAGE_DECRYPTED);
695 sk->sk_allocation = sk_allocation;
696 }
697 }
698
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)699 static void tls_device_resync_rx(struct tls_context *tls_ctx,
700 struct sock *sk, u32 seq, u8 *rcd_sn)
701 {
702 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
703 struct net_device *netdev;
704
705 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
706 rcu_read_lock();
707 netdev = rcu_dereference(tls_ctx->netdev);
708 if (netdev)
709 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
710 TLS_OFFLOAD_CTX_DIR_RX);
711 rcu_read_unlock();
712 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
713 }
714
715 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)716 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
717 s64 resync_req, u32 *seq, u16 *rcd_delta)
718 {
719 u32 is_async = resync_req & RESYNC_REQ_ASYNC;
720 u32 req_seq = resync_req >> 32;
721 u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
722 u16 i;
723
724 *rcd_delta = 0;
725
726 if (is_async) {
727 /* shouldn't get to wraparound:
728 * too long in async stage, something bad happened
729 */
730 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
731 return false;
732
733 /* asynchronous stage: log all headers seq such that
734 * req_seq <= seq <= end_seq, and wait for real resync request
735 */
736 if (before(*seq, req_seq))
737 return false;
738 if (!after(*seq, req_end) &&
739 resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
740 resync_async->log[resync_async->loglen++] = *seq;
741
742 resync_async->rcd_delta++;
743
744 return false;
745 }
746
747 /* synchronous stage: check against the logged entries and
748 * proceed to check the next entries if no match was found
749 */
750 for (i = 0; i < resync_async->loglen; i++)
751 if (req_seq == resync_async->log[i] &&
752 atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
753 *rcd_delta = resync_async->rcd_delta - i;
754 *seq = req_seq;
755 resync_async->loglen = 0;
756 resync_async->rcd_delta = 0;
757 return true;
758 }
759
760 resync_async->loglen = 0;
761 resync_async->rcd_delta = 0;
762
763 if (req_seq == *seq &&
764 atomic64_try_cmpxchg(&resync_async->req,
765 &resync_req, 0))
766 return true;
767
768 return false;
769 }
770
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)771 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
772 {
773 struct tls_context *tls_ctx = tls_get_ctx(sk);
774 struct tls_offload_context_rx *rx_ctx;
775 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
776 u32 sock_data, is_req_pending;
777 struct tls_prot_info *prot;
778 s64 resync_req;
779 u16 rcd_delta;
780 u32 req_seq;
781
782 if (tls_ctx->rx_conf != TLS_HW)
783 return;
784 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
785 return;
786
787 prot = &tls_ctx->prot_info;
788 rx_ctx = tls_offload_ctx_rx(tls_ctx);
789 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
790
791 switch (rx_ctx->resync_type) {
792 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
793 resync_req = atomic64_read(&rx_ctx->resync_req);
794 req_seq = resync_req >> 32;
795 seq += TLS_HEADER_SIZE - 1;
796 is_req_pending = resync_req;
797
798 if (likely(!is_req_pending) || req_seq != seq ||
799 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
800 return;
801 break;
802 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
803 if (likely(!rx_ctx->resync_nh_do_now))
804 return;
805
806 /* head of next rec is already in, note that the sock_inq will
807 * include the currently parsed message when called from parser
808 */
809 sock_data = tcp_inq(sk);
810 if (sock_data > rcd_len) {
811 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
812 rcd_len);
813 return;
814 }
815
816 rx_ctx->resync_nh_do_now = 0;
817 seq += rcd_len;
818 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
819 break;
820 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
821 resync_req = atomic64_read(&rx_ctx->resync_async->req);
822 is_req_pending = resync_req;
823 if (likely(!is_req_pending))
824 return;
825
826 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
827 resync_req, &seq, &rcd_delta))
828 return;
829 tls_bigint_subtract(rcd_sn, rcd_delta);
830 break;
831 }
832
833 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
834 }
835
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)836 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
837 struct tls_offload_context_rx *ctx,
838 struct sock *sk, struct sk_buff *skb)
839 {
840 struct strp_msg *rxm;
841
842 /* device will request resyncs by itself based on stream scan */
843 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
844 return;
845 /* already scheduled */
846 if (ctx->resync_nh_do_now)
847 return;
848 /* seen decrypted fragments since last fully-failed record */
849 if (ctx->resync_nh_reset) {
850 ctx->resync_nh_reset = 0;
851 ctx->resync_nh.decrypted_failed = 1;
852 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
853 return;
854 }
855
856 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
857 return;
858
859 /* doing resync, bump the next target in case it fails */
860 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
861 ctx->resync_nh.decrypted_tgt *= 2;
862 else
863 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
864
865 rxm = strp_msg(skb);
866
867 /* head of next rec is already in, parser will sync for us */
868 if (tcp_inq(sk) > rxm->full_len) {
869 trace_tls_device_rx_resync_nh_schedule(sk);
870 ctx->resync_nh_do_now = 1;
871 } else {
872 struct tls_prot_info *prot = &tls_ctx->prot_info;
873 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
874
875 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
876 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
877
878 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
879 rcd_sn);
880 }
881 }
882
883 static int
tls_device_reencrypt(struct sock * sk,struct tls_context * tls_ctx)884 tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
885 {
886 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
887 const struct tls_cipher_desc *cipher_desc;
888 int err, offset, copy, data_len, pos;
889 struct sk_buff *skb, *skb_iter;
890 struct scatterlist sg[1];
891 struct strp_msg *rxm;
892 char *orig_buf, *buf;
893
894 switch (tls_ctx->crypto_recv.info.cipher_type) {
895 case TLS_CIPHER_AES_GCM_128:
896 case TLS_CIPHER_AES_GCM_256:
897 break;
898 default:
899 return -EINVAL;
900 }
901 cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
902
903 rxm = strp_msg(tls_strp_msg(sw_ctx));
904 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
905 sk->sk_allocation);
906 if (!orig_buf)
907 return -ENOMEM;
908 buf = orig_buf;
909
910 err = tls_strp_msg_cow(sw_ctx);
911 if (unlikely(err))
912 goto free_buf;
913
914 skb = tls_strp_msg(sw_ctx);
915 rxm = strp_msg(skb);
916 offset = rxm->offset;
917
918 sg_init_table(sg, 1);
919 sg_set_buf(&sg[0], buf,
920 rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
921 err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
922 if (err)
923 goto free_buf;
924
925 /* We are interested only in the decrypted data not the auth */
926 err = decrypt_skb(sk, sg);
927 if (err != -EBADMSG)
928 goto free_buf;
929 else
930 err = 0;
931
932 data_len = rxm->full_len - cipher_desc->tag;
933
934 if (skb_pagelen(skb) > offset) {
935 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
936
937 if (skb->decrypted) {
938 err = skb_store_bits(skb, offset, buf, copy);
939 if (err)
940 goto free_buf;
941 }
942
943 offset += copy;
944 buf += copy;
945 }
946
947 pos = skb_pagelen(skb);
948 skb_walk_frags(skb, skb_iter) {
949 int frag_pos;
950
951 /* Practically all frags must belong to msg if reencrypt
952 * is needed with current strparser and coalescing logic,
953 * but strparser may "get optimized", so let's be safe.
954 */
955 if (pos + skb_iter->len <= offset)
956 goto done_with_frag;
957 if (pos >= data_len + rxm->offset)
958 break;
959
960 frag_pos = offset - pos;
961 copy = min_t(int, skb_iter->len - frag_pos,
962 data_len + rxm->offset - offset);
963
964 if (skb_iter->decrypted) {
965 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
966 if (err)
967 goto free_buf;
968 }
969
970 offset += copy;
971 buf += copy;
972 done_with_frag:
973 pos += skb_iter->len;
974 }
975
976 free_buf:
977 kfree(orig_buf);
978 return err;
979 }
980
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx)981 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
982 {
983 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
984 struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
985 struct sk_buff *skb = tls_strp_msg(sw_ctx);
986 struct strp_msg *rxm = strp_msg(skb);
987 int is_decrypted, is_encrypted;
988
989 if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
990 is_decrypted = skb->decrypted;
991 is_encrypted = !is_decrypted;
992 } else {
993 is_decrypted = 0;
994 is_encrypted = 0;
995 }
996
997 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
998 tls_ctx->rx.rec_seq, rxm->full_len,
999 is_encrypted, is_decrypted);
1000
1001 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1002 if (likely(is_encrypted || is_decrypted))
1003 return is_decrypted;
1004
1005 /* After tls_device_down disables the offload, the next SKB will
1006 * likely have initial fragments decrypted, and final ones not
1007 * decrypted. We need to reencrypt that single SKB.
1008 */
1009 return tls_device_reencrypt(sk, tls_ctx);
1010 }
1011
1012 /* Return immediately if the record is either entirely plaintext or
1013 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1014 * record.
1015 */
1016 if (is_decrypted) {
1017 ctx->resync_nh_reset = 1;
1018 return is_decrypted;
1019 }
1020 if (is_encrypted) {
1021 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1022 return 0;
1023 }
1024
1025 ctx->resync_nh_reset = 1;
1026 return tls_device_reencrypt(sk, tls_ctx);
1027 }
1028
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1029 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1030 struct net_device *netdev)
1031 {
1032 if (sk->sk_destruct != tls_device_sk_destruct) {
1033 refcount_set(&ctx->refcount, 1);
1034 dev_hold(netdev);
1035 RCU_INIT_POINTER(ctx->netdev, netdev);
1036 spin_lock_irq(&tls_device_lock);
1037 list_add_tail(&ctx->list, &tls_device_list);
1038 spin_unlock_irq(&tls_device_lock);
1039
1040 ctx->sk_destruct = sk->sk_destruct;
1041 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1042 }
1043 }
1044
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)1045 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1046 {
1047 struct tls_context *tls_ctx = tls_get_ctx(sk);
1048 struct tls_prot_info *prot = &tls_ctx->prot_info;
1049 const struct tls_cipher_desc *cipher_desc;
1050 struct tls_record_info *start_marker_record;
1051 struct tls_offload_context_tx *offload_ctx;
1052 struct tls_crypto_info *crypto_info;
1053 struct net_device *netdev;
1054 char *iv, *rec_seq;
1055 struct sk_buff *skb;
1056 __be64 rcd_sn;
1057 int rc;
1058
1059 if (!ctx)
1060 return -EINVAL;
1061
1062 if (ctx->priv_ctx_tx)
1063 return -EEXIST;
1064
1065 netdev = get_netdev_for_sock(sk);
1066 if (!netdev) {
1067 pr_err_ratelimited("%s: netdev not found\n", __func__);
1068 return -EINVAL;
1069 }
1070
1071 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1072 rc = -EOPNOTSUPP;
1073 goto release_netdev;
1074 }
1075
1076 crypto_info = &ctx->crypto_send.info;
1077 if (crypto_info->version != TLS_1_2_VERSION) {
1078 rc = -EOPNOTSUPP;
1079 goto release_netdev;
1080 }
1081
1082 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1083 if (!cipher_desc || !cipher_desc->offloadable) {
1084 rc = -EINVAL;
1085 goto release_netdev;
1086 }
1087
1088 iv = crypto_info_iv(crypto_info, cipher_desc);
1089 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1090
1091 prot->version = crypto_info->version;
1092 prot->cipher_type = crypto_info->cipher_type;
1093 prot->prepend_size = TLS_HEADER_SIZE + cipher_desc->iv;
1094 prot->tag_size = cipher_desc->tag;
1095 prot->overhead_size = prot->prepend_size + prot->tag_size;
1096 prot->iv_size = cipher_desc->iv;
1097 prot->salt_size = cipher_desc->salt;
1098 ctx->tx.iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
1099 if (!ctx->tx.iv) {
1100 rc = -ENOMEM;
1101 goto release_netdev;
1102 }
1103
1104 memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1105
1106 prot->rec_seq_size = cipher_desc->rec_seq;
1107 ctx->tx.rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
1108 if (!ctx->tx.rec_seq) {
1109 rc = -ENOMEM;
1110 goto free_iv;
1111 }
1112
1113 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1114 if (!start_marker_record) {
1115 rc = -ENOMEM;
1116 goto free_rec_seq;
1117 }
1118
1119 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1120 if (!offload_ctx) {
1121 rc = -ENOMEM;
1122 goto free_marker_record;
1123 }
1124
1125 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1126 if (rc)
1127 goto free_offload_ctx;
1128
1129 /* start at rec_seq - 1 to account for the start marker record */
1130 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1131 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1132
1133 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1134 start_marker_record->len = 0;
1135 start_marker_record->num_frags = 0;
1136
1137 INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1138 offload_ctx->ctx = ctx;
1139
1140 INIT_LIST_HEAD(&offload_ctx->records_list);
1141 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1142 spin_lock_init(&offload_ctx->lock);
1143 sg_init_table(offload_ctx->sg_tx_data,
1144 ARRAY_SIZE(offload_ctx->sg_tx_data));
1145
1146 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1147 ctx->push_pending_record = tls_device_push_pending_record;
1148
1149 /* TLS offload is greatly simplified if we don't send
1150 * SKBs where only part of the payload needs to be encrypted.
1151 * So mark the last skb in the write queue as end of record.
1152 */
1153 skb = tcp_write_queue_tail(sk);
1154 if (skb)
1155 TCP_SKB_CB(skb)->eor = 1;
1156
1157 /* Avoid offloading if the device is down
1158 * We don't want to offload new flows after
1159 * the NETDEV_DOWN event
1160 *
1161 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1162 * handler thus protecting from the device going down before
1163 * ctx was added to tls_device_list.
1164 */
1165 down_read(&device_offload_lock);
1166 if (!(netdev->flags & IFF_UP)) {
1167 rc = -EINVAL;
1168 goto release_lock;
1169 }
1170
1171 ctx->priv_ctx_tx = offload_ctx;
1172 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1173 &ctx->crypto_send.info,
1174 tcp_sk(sk)->write_seq);
1175 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1176 tcp_sk(sk)->write_seq, rec_seq, rc);
1177 if (rc)
1178 goto release_lock;
1179
1180 tls_device_attach(ctx, sk, netdev);
1181 up_read(&device_offload_lock);
1182
1183 /* following this assignment tls_is_skb_tx_device_offloaded
1184 * will return true and the context might be accessed
1185 * by the netdev's xmit function.
1186 */
1187 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1188 dev_put(netdev);
1189
1190 return 0;
1191
1192 release_lock:
1193 up_read(&device_offload_lock);
1194 clean_acked_data_disable(inet_csk(sk));
1195 crypto_free_aead(offload_ctx->aead_send);
1196 free_offload_ctx:
1197 kfree(offload_ctx);
1198 ctx->priv_ctx_tx = NULL;
1199 free_marker_record:
1200 kfree(start_marker_record);
1201 free_rec_seq:
1202 kfree(ctx->tx.rec_seq);
1203 free_iv:
1204 kfree(ctx->tx.iv);
1205 release_netdev:
1206 dev_put(netdev);
1207 return rc;
1208 }
1209
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1210 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1211 {
1212 struct tls12_crypto_info_aes_gcm_128 *info;
1213 struct tls_offload_context_rx *context;
1214 struct net_device *netdev;
1215 int rc = 0;
1216
1217 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1218 return -EOPNOTSUPP;
1219
1220 netdev = get_netdev_for_sock(sk);
1221 if (!netdev) {
1222 pr_err_ratelimited("%s: netdev not found\n", __func__);
1223 return -EINVAL;
1224 }
1225
1226 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1227 rc = -EOPNOTSUPP;
1228 goto release_netdev;
1229 }
1230
1231 /* Avoid offloading if the device is down
1232 * We don't want to offload new flows after
1233 * the NETDEV_DOWN event
1234 *
1235 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1236 * handler thus protecting from the device going down before
1237 * ctx was added to tls_device_list.
1238 */
1239 down_read(&device_offload_lock);
1240 if (!(netdev->flags & IFF_UP)) {
1241 rc = -EINVAL;
1242 goto release_lock;
1243 }
1244
1245 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1246 if (!context) {
1247 rc = -ENOMEM;
1248 goto release_lock;
1249 }
1250 context->resync_nh_reset = 1;
1251
1252 ctx->priv_ctx_rx = context;
1253 rc = tls_set_sw_offload(sk, ctx, 0);
1254 if (rc)
1255 goto release_ctx;
1256
1257 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1258 &ctx->crypto_recv.info,
1259 tcp_sk(sk)->copied_seq);
1260 info = (void *)&ctx->crypto_recv.info;
1261 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1262 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1263 if (rc)
1264 goto free_sw_resources;
1265
1266 tls_device_attach(ctx, sk, netdev);
1267 up_read(&device_offload_lock);
1268
1269 dev_put(netdev);
1270
1271 return 0;
1272
1273 free_sw_resources:
1274 up_read(&device_offload_lock);
1275 tls_sw_free_resources_rx(sk);
1276 down_read(&device_offload_lock);
1277 release_ctx:
1278 ctx->priv_ctx_rx = NULL;
1279 release_lock:
1280 up_read(&device_offload_lock);
1281 release_netdev:
1282 dev_put(netdev);
1283 return rc;
1284 }
1285
tls_device_offload_cleanup_rx(struct sock * sk)1286 void tls_device_offload_cleanup_rx(struct sock *sk)
1287 {
1288 struct tls_context *tls_ctx = tls_get_ctx(sk);
1289 struct net_device *netdev;
1290
1291 down_read(&device_offload_lock);
1292 netdev = rcu_dereference_protected(tls_ctx->netdev,
1293 lockdep_is_held(&device_offload_lock));
1294 if (!netdev)
1295 goto out;
1296
1297 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1298 TLS_OFFLOAD_CTX_DIR_RX);
1299
1300 if (tls_ctx->tx_conf != TLS_HW) {
1301 dev_put(netdev);
1302 rcu_assign_pointer(tls_ctx->netdev, NULL);
1303 } else {
1304 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1305 }
1306 out:
1307 up_read(&device_offload_lock);
1308 tls_sw_release_resources_rx(sk);
1309 }
1310
tls_device_down(struct net_device * netdev)1311 static int tls_device_down(struct net_device *netdev)
1312 {
1313 struct tls_context *ctx, *tmp;
1314 unsigned long flags;
1315 LIST_HEAD(list);
1316
1317 /* Request a write lock to block new offload attempts */
1318 down_write(&device_offload_lock);
1319
1320 spin_lock_irqsave(&tls_device_lock, flags);
1321 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1322 struct net_device *ctx_netdev =
1323 rcu_dereference_protected(ctx->netdev,
1324 lockdep_is_held(&device_offload_lock));
1325
1326 if (ctx_netdev != netdev ||
1327 !refcount_inc_not_zero(&ctx->refcount))
1328 continue;
1329
1330 list_move(&ctx->list, &list);
1331 }
1332 spin_unlock_irqrestore(&tls_device_lock, flags);
1333
1334 list_for_each_entry_safe(ctx, tmp, &list, list) {
1335 /* Stop offloaded TX and switch to the fallback.
1336 * tls_is_skb_tx_device_offloaded will return false.
1337 */
1338 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1339
1340 /* Stop the RX and TX resync.
1341 * tls_dev_resync must not be called after tls_dev_del.
1342 */
1343 rcu_assign_pointer(ctx->netdev, NULL);
1344
1345 /* Start skipping the RX resync logic completely. */
1346 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1347
1348 /* Sync with inflight packets. After this point:
1349 * TX: no non-encrypted packets will be passed to the driver.
1350 * RX: resync requests from the driver will be ignored.
1351 */
1352 synchronize_net();
1353
1354 /* Release the offload context on the driver side. */
1355 if (ctx->tx_conf == TLS_HW)
1356 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1357 TLS_OFFLOAD_CTX_DIR_TX);
1358 if (ctx->rx_conf == TLS_HW &&
1359 !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1360 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1361 TLS_OFFLOAD_CTX_DIR_RX);
1362
1363 dev_put(netdev);
1364
1365 /* Move the context to a separate list for two reasons:
1366 * 1. When the context is deallocated, list_del is called.
1367 * 2. It's no longer an offloaded context, so we don't want to
1368 * run offload-specific code on this context.
1369 */
1370 spin_lock_irqsave(&tls_device_lock, flags);
1371 list_move_tail(&ctx->list, &tls_device_down_list);
1372 spin_unlock_irqrestore(&tls_device_lock, flags);
1373
1374 /* Device contexts for RX and TX will be freed in on sk_destruct
1375 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1376 * Now release the ref taken above.
1377 */
1378 if (refcount_dec_and_test(&ctx->refcount)) {
1379 /* sk_destruct ran after tls_device_down took a ref, and
1380 * it returned early. Complete the destruction here.
1381 */
1382 list_del(&ctx->list);
1383 tls_device_free_ctx(ctx);
1384 }
1385 }
1386
1387 up_write(&device_offload_lock);
1388
1389 flush_workqueue(destruct_wq);
1390
1391 return NOTIFY_DONE;
1392 }
1393
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1394 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1395 void *ptr)
1396 {
1397 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1398
1399 if (!dev->tlsdev_ops &&
1400 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1401 return NOTIFY_DONE;
1402
1403 switch (event) {
1404 case NETDEV_REGISTER:
1405 case NETDEV_FEAT_CHANGE:
1406 if (netif_is_bond_master(dev))
1407 return NOTIFY_DONE;
1408 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1409 !dev->tlsdev_ops->tls_dev_resync)
1410 return NOTIFY_BAD;
1411
1412 if (dev->tlsdev_ops &&
1413 dev->tlsdev_ops->tls_dev_add &&
1414 dev->tlsdev_ops->tls_dev_del)
1415 return NOTIFY_DONE;
1416 else
1417 return NOTIFY_BAD;
1418 case NETDEV_DOWN:
1419 return tls_device_down(dev);
1420 }
1421 return NOTIFY_DONE;
1422 }
1423
1424 static struct notifier_block tls_dev_notifier = {
1425 .notifier_call = tls_dev_event,
1426 };
1427
tls_device_init(void)1428 int __init tls_device_init(void)
1429 {
1430 int err;
1431
1432 dummy_page = alloc_page(GFP_KERNEL);
1433 if (!dummy_page)
1434 return -ENOMEM;
1435
1436 destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1437 if (!destruct_wq) {
1438 err = -ENOMEM;
1439 goto err_free_dummy;
1440 }
1441
1442 err = register_netdevice_notifier(&tls_dev_notifier);
1443 if (err)
1444 goto err_destroy_wq;
1445
1446 return 0;
1447
1448 err_destroy_wq:
1449 destroy_workqueue(destruct_wq);
1450 err_free_dummy:
1451 put_page(dummy_page);
1452 return err;
1453 }
1454
tls_device_cleanup(void)1455 void __exit tls_device_cleanup(void)
1456 {
1457 unregister_netdevice_notifier(&tls_dev_notifier);
1458 destroy_workqueue(destruct_wq);
1459 clean_acked_data_flush();
1460 put_page(dummy_page);
1461 }
1462