1 /**
2 * Describes utility functions for parsing CPER into JSON IR.
3 *
4 * Author: Lawrence.Tang@arm.com
5 **/
6
7 #include <stdio.h>
8 #include <json.h>
9 #include <string.h>
10 #include <libcper/Cper.h>
11 #include <libcper/cper-utils.h>
12 #include <libcper/log.h>
13
14 //The available severity types for CPER.
15 const char *CPER_SEVERITY_TYPES[4] = { "Recoverable", "Fatal", "Corrected",
16 "Informational" };
17
18 //Converts the given generic CPER error status to JSON IR.
19 json_object *
cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS * error_status)20 cper_generic_error_status_to_ir(EFI_GENERIC_ERROR_STATUS *error_status)
21 {
22 json_object *error_status_ir = json_object_new_object();
23
24 //Error type.
25 json_object_object_add(error_status_ir, "errorType",
26 integer_to_readable_pair_with_desc(
27 error_status->Type, 18,
28 CPER_GENERIC_ERROR_TYPES_KEYS,
29 CPER_GENERIC_ERROR_TYPES_VALUES,
30 CPER_GENERIC_ERROR_TYPES_DESCRIPTIONS,
31 "Unknown (Reserved)"));
32
33 //Boolean bit fields.
34 json_object_object_add(
35 error_status_ir, "addressSignal",
36 json_object_new_boolean(error_status->AddressSignal));
37 json_object_object_add(
38 error_status_ir, "controlSignal",
39 json_object_new_boolean(error_status->ControlSignal));
40 json_object_object_add(
41 error_status_ir, "dataSignal",
42 json_object_new_boolean(error_status->DataSignal));
43 json_object_object_add(
44 error_status_ir, "detectedByResponder",
45 json_object_new_boolean(error_status->DetectedByResponder));
46 json_object_object_add(
47 error_status_ir, "detectedByRequester",
48 json_object_new_boolean(error_status->DetectedByRequester));
49 json_object_object_add(
50 error_status_ir, "firstError",
51 json_object_new_boolean(error_status->FirstError));
52 json_object_object_add(
53 error_status_ir, "overflowDroppedLogs",
54 json_object_new_boolean(error_status->OverflowNotLogged));
55
56 return error_status_ir;
57 }
58
59 //Converts the given CPER-JSON generic error status into a CPER structure.
ir_generic_error_status_to_cper(json_object * error_status,EFI_GENERIC_ERROR_STATUS * error_status_cper)60 void ir_generic_error_status_to_cper(
61 json_object *error_status, EFI_GENERIC_ERROR_STATUS *error_status_cper)
62 {
63 error_status_cper->Type = readable_pair_to_integer(
64 json_object_object_get(error_status, "errorType"));
65 error_status_cper->AddressSignal = json_object_get_boolean(
66 json_object_object_get(error_status, "addressSignal"));
67 error_status_cper->ControlSignal = json_object_get_boolean(
68 json_object_object_get(error_status, "controlSignal"));
69 error_status_cper->DataSignal = json_object_get_boolean(
70 json_object_object_get(error_status, "dataSignal"));
71 error_status_cper->DetectedByResponder = json_object_get_boolean(
72 json_object_object_get(error_status, "detectedByResponder"));
73 error_status_cper->DetectedByRequester = json_object_get_boolean(
74 json_object_object_get(error_status, "detectedByRequester"));
75 error_status_cper->FirstError = json_object_get_boolean(
76 json_object_object_get(error_status, "firstError"));
77 error_status_cper->OverflowNotLogged = json_object_get_boolean(
78 json_object_object_get(error_status, "overflowDroppedLogs"));
79 }
80
81 //Converts a single uniform struct of UINT64s into intermediate JSON IR format, given names for each field in byte order.
uniform_struct64_to_ir(UINT64 * start,int len,const char * names[])82 json_object *uniform_struct64_to_ir(UINT64 *start, int len, const char *names[])
83 {
84 json_object *result = json_object_new_object();
85
86 UINT64 *cur = start;
87 for (int i = 0; i < len; i++) {
88 json_object_object_add(result, names[i],
89 json_object_new_uint64(*cur));
90 cur++;
91 }
92
93 return result;
94 }
95
96 //Converts a single uniform struct of UINT32s into intermediate JSON IR format, given names for each field in byte order.
uniform_struct_to_ir(UINT32 * start,int len,const char * names[])97 json_object *uniform_struct_to_ir(UINT32 *start, int len, const char *names[])
98 {
99 json_object *result = json_object_new_object();
100
101 UINT32 *cur = start;
102 for (int i = 0; i < len; i++) {
103 UINT32 value;
104 memcpy(&value, cur, sizeof(UINT32));
105 json_object_object_add(result, names[i],
106 json_object_new_uint64(value));
107 cur++;
108 }
109
110 return result;
111 }
112
113 //Converts a single object containing UINT32s into a uniform struct.
ir_to_uniform_struct64(json_object * ir,UINT64 * start,int len,const char * names[])114 void ir_to_uniform_struct64(json_object *ir, UINT64 *start, int len,
115 const char *names[])
116 {
117 UINT64 *cur = start;
118 for (int i = 0; i < len; i++) {
119 *cur = json_object_get_uint64(
120 json_object_object_get(ir, names[i]));
121 cur++;
122 }
123 }
124
125 //Converts a single object containing UINT32s into a uniform struct.
ir_to_uniform_struct(json_object * ir,UINT32 * start,int len,const char * names[])126 void ir_to_uniform_struct(json_object *ir, UINT32 *start, int len,
127 const char *names[])
128 {
129 UINT32 *cur = start;
130 for (int i = 0; i < len; i++) {
131 *cur = (UINT32)json_object_get_uint64(
132 json_object_object_get(ir, names[i]));
133 cur++;
134 }
135 }
136
137 //Converts a single integer value to an object containing a value, and a readable name if possible.
integer_to_readable_pair(UINT64 value,int len,const int keys[],const char * values[],const char * default_value)138 json_object *integer_to_readable_pair(UINT64 value, int len, const int keys[],
139 const char *values[],
140 const char *default_value)
141 {
142 json_object *result = json_object_new_object();
143 json_object_object_add(result, "value", json_object_new_uint64(value));
144
145 //Search for human readable name, add.
146 const char *name = default_value;
147 for (int i = 0; i < len; i++) {
148 if ((UINT64)keys[i] == value) {
149 name = values[i];
150 }
151 }
152
153 json_object_object_add(result, "name", json_object_new_string(name));
154 return result;
155 }
156
157 //Converts a single integer value to an object containing a value, readable name and description if possible.
integer_to_readable_pair_with_desc(int value,int len,const int keys[],const char * values[],const char * descriptions[],const char * default_value)158 json_object *integer_to_readable_pair_with_desc(int value, int len,
159 const int keys[],
160 const char *values[],
161 const char *descriptions[],
162 const char *default_value)
163 {
164 json_object *result = json_object_new_object();
165 json_object_object_add(result, "value", json_object_new_int(value));
166
167 //Search for human readable name, add.
168 const char *name = default_value;
169 for (int i = 0; i < len; i++) {
170 if (keys[i] == value) {
171 name = values[i];
172 json_object_object_add(
173 result, "description",
174 json_object_new_string(descriptions[i]));
175 }
176 }
177
178 json_object_object_add(result, "name", json_object_new_string(name));
179 return result;
180 }
181
182 //Returns a single UINT64 value from the given readable pair object.
183 //Assumes the integer value is held in the "value" field.
readable_pair_to_integer(json_object * pair)184 UINT64 readable_pair_to_integer(json_object *pair)
185 {
186 return json_object_get_uint64(json_object_object_get(pair, "value"));
187 }
188
189 //Converts the given 64 bit bitfield to IR, assuming bit 0 starts on the left.
bitfield_to_ir(UINT64 bitfield,int num_fields,const char * names[])190 json_object *bitfield_to_ir(UINT64 bitfield, int num_fields,
191 const char *names[])
192 {
193 json_object *result = json_object_new_object();
194 for (int i = 0; i < num_fields; i++) {
195 json_object_object_add(result, names[i],
196 json_object_new_boolean((bitfield >> i) &
197 0x1));
198 }
199
200 return result;
201 }
202
203 //Filters properties based on Validation Bits.
204 // Refer to CPER spec for vbit_idx to be passed here.
add_to_valid_bitfield(ValidationTypes * val,int vbit_idx)205 void add_to_valid_bitfield(ValidationTypes *val, int vbit_idx)
206 {
207 switch (val->size) {
208 case UINT_8T:
209 val->value.ui8 |= (0x01 << vbit_idx);
210 break;
211 case UINT_16T:
212 val->value.ui16 |= (0x01 << vbit_idx);
213 break;
214 case UINT_32T:
215 val->value.ui32 |= (0x01 << vbit_idx);
216 break;
217 case UINT_64T:
218 val->value.ui64 |= (0x01 << vbit_idx);
219 break;
220 default:
221 cper_print_log(
222 "IR to CPER: Unknown validation bits size passed, Enum IntType=%d",
223 val->size);
224 }
225 }
226
227 //Converts the given IR bitfield into a standard UINT64 bitfield, with fields beginning from bit 0.
ir_to_bitfield(json_object * ir,int num_fields,const char * names[])228 UINT64 ir_to_bitfield(json_object *ir, int num_fields, const char *names[])
229 {
230 UINT64 result = 0x0;
231 for (int i = 0; i < num_fields; i++) {
232 if (json_object_get_boolean(
233 json_object_object_get(ir, names[i]))) {
234 result |= (0x1 << i);
235 }
236 }
237
238 return result;
239 }
240
241 // Filters properties based on Validation Bits.
242 // Refer to CPER spec for vbit_idx to be passed here.
243 // Overload function for 16, 32, 64b
isvalid_prop_to_ir(ValidationTypes * val,int vbit_idx)244 bool isvalid_prop_to_ir(ValidationTypes *val, int vbit_idx)
245 {
246 // If the option is enabled, output invalid properties
247 // as well as valid ones.
248 #ifdef OUTPUT_ALL_PROPERTIES
249 return true;
250 #endif //OUTPUT_ALL_PROPERTIES
251 UINT64 vbit_mask = 0x01 << vbit_idx;
252 switch (val->size) {
253 case UINT_16T:
254 return (vbit_mask & val->value.ui16);
255
256 case UINT_32T:
257 return (vbit_mask & val->value.ui32);
258
259 case UINT_64T:
260 return (vbit_mask & val->value.ui64);
261
262 default:
263 cper_print_log(
264 "CPER to IR:Unknown validation bits size passed. Enum IntType: %d",
265 val->size);
266 }
267 return 0;
268 }
269
print_val(ValidationTypes * val)270 void print_val(ValidationTypes *val)
271 {
272 switch (val->size) {
273 case UINT_8T:
274 cper_print_log("Validation bits: %x\n", val->value.ui8);
275 break;
276 case UINT_16T:
277 cper_print_log("Validation bits: %x\n", val->value.ui16);
278 break;
279
280 case UINT_32T:
281 cper_print_log("Validation bits: %x\n", val->value.ui32);
282 break;
283
284 case UINT_64T:
285 cper_print_log("Validation bits: %llx\n", val->value.ui64);
286 break;
287
288 default:
289 cper_print_log(
290 "CPER to IR:Unknown validation bits size passed. Enum IntType: %d",
291 val->size);
292 }
293 }
294
295 //Converts the given UINT64 array into a JSON IR array, given the length.
uint64_array_to_ir_array(UINT64 * array,int len)296 json_object *uint64_array_to_ir_array(UINT64 *array, int len)
297 {
298 json_object *array_ir = json_object_new_array();
299 for (int i = 0; i < len; i++) {
300 json_object_array_add(array_ir,
301 json_object_new_uint64(array[i]));
302 }
303 return array_ir;
304 }
305
306 //Converts a single UINT16 revision number into JSON IR representation.
revision_to_ir(UINT16 revision)307 json_object *revision_to_ir(UINT16 revision)
308 {
309 json_object *revision_info = json_object_new_object();
310 json_object_object_add(revision_info, "major",
311 json_object_new_int(revision >> 8));
312 json_object_object_add(revision_info, "minor",
313 json_object_new_int(revision & 0xFF));
314 return revision_info;
315 }
316
317 //Returns the appropriate string for the given integer severity.
severity_to_string(UINT32 severity)318 const char *severity_to_string(UINT32 severity)
319 {
320 return severity < 4 ? CPER_SEVERITY_TYPES[severity] : "Unknown";
321 }
322
323 //Converts a single EFI timestamp to string, at the given output.
324 //Output must be at least TIMESTAMP_LENGTH bytes long.
timestamp_to_string(char * out,int out_len,EFI_ERROR_TIME_STAMP * timestamp)325 int timestamp_to_string(char *out, int out_len, EFI_ERROR_TIME_STAMP *timestamp)
326 {
327 //Cannot go to three digits.
328 int century = bcd_to_int(timestamp->Century) % 100;
329 if (century >= 100) {
330 return -1;
331 }
332 int year = bcd_to_int(timestamp->Year) % 100;
333 if (year >= 100) {
334 return -1;
335 }
336 int month = bcd_to_int(timestamp->Month);
337 if (month > 12) {
338 return -1;
339 }
340 int day = bcd_to_int(timestamp->Day);
341 if (day > 31) {
342 return -1;
343 }
344 int hours = bcd_to_int(timestamp->Hours);
345 if (hours > 24) {
346 return -1;
347 }
348 int minutes = bcd_to_int(timestamp->Minutes);
349 if (minutes > 60) {
350 return -1;
351 }
352 int seconds = bcd_to_int(timestamp->Seconds);
353 if (seconds >= 60) {
354 return -1;
355 }
356 int written = snprintf(
357 out, out_len,
358 "%02hhu%02hhu-%02hhu-%02hhuT%02hhu:%02hhu:%02hhu+00:00",
359 century, year, month, day, hours, minutes, seconds);
360
361 if (written < 0 || written >= out_len) {
362 cper_print_log("Timestamp buffer of insufficient size\n");
363 return -1;
364 }
365 return 0;
366 }
367
368 //Converts a single timestamp string to an EFI timestamp.
string_to_timestamp(EFI_ERROR_TIME_STAMP * out,const char * timestamp)369 void string_to_timestamp(EFI_ERROR_TIME_STAMP *out, const char *timestamp)
370 {
371 //Ignore invalid timestamps.
372 if (timestamp == NULL) {
373 return;
374 }
375
376 sscanf(timestamp, "%2hhu%2hhu-%hhu-%hhuT%hhu:%hhu:%hhu+00:00",
377 &out->Century, &out->Year, &out->Month, &out->Day, &out->Hours,
378 &out->Minutes, &out->Seconds);
379
380 //Convert back to BCD.
381 out->Century = int_to_bcd(out->Century);
382 out->Year = int_to_bcd(out->Year);
383 out->Month = int_to_bcd(out->Month);
384 out->Day = int_to_bcd(out->Day);
385 out->Hours = int_to_bcd(out->Hours);
386 out->Minutes = int_to_bcd(out->Minutes);
387 out->Seconds = int_to_bcd(out->Seconds);
388 }
389
390 //Helper function to convert an EDK EFI GUID into a string for intermediate use.
guid_to_string(char * out,size_t out_len,EFI_GUID * guid)391 int guid_to_string(char *out, size_t out_len, EFI_GUID *guid)
392 {
393 size_t len = snprintf(
394 out, out_len,
395 "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", guid->Data1,
396 guid->Data2, guid->Data3, guid->Data4[0], guid->Data4[1],
397 guid->Data4[2], guid->Data4[3], guid->Data4[4], guid->Data4[5],
398 guid->Data4[6], guid->Data4[7]);
399 if (len != out_len) {
400 return -1;
401 }
402 return len;
403 }
404
405 //Helper function to convert a string into an EDK EFI GUID.
string_to_guid(EFI_GUID * out,const char * guid)406 void string_to_guid(EFI_GUID *out, const char *guid)
407 {
408 //Ignore invalid GUIDs.
409 if (guid == NULL) {
410 return;
411 }
412
413 sscanf(guid,
414 "%08x-%04hx-%04hx-%02hhx%02hhx-%02hhx%02hhx%02hhx%02hhx%02hhx%02hhx",
415 &out->Data1, &out->Data2, &out->Data3, out->Data4,
416 out->Data4 + 1, out->Data4 + 2, out->Data4 + 3, out->Data4 + 4,
417 out->Data4 + 5, out->Data4 + 6, out->Data4 + 7);
418 }
419
420 //Returns one if two EFI GUIDs are equal, zero otherwise.
guid_equal(EFI_GUID * a,EFI_GUID * b)421 int guid_equal(EFI_GUID *a, EFI_GUID *b)
422 {
423 //Check top base 3 components.
424 if (a->Data1 != b->Data1 || a->Data2 != b->Data2 ||
425 a->Data3 != b->Data3) {
426 return 0;
427 }
428
429 //Check Data4 array for equality.
430 for (int i = 0; i < 8; i++) {
431 if (a->Data4[i] != b->Data4[i]) {
432 return 0;
433 }
434 }
435
436 return 1;
437 }
438
select_guid_from_list(EFI_GUID * guid,EFI_GUID * guid_list[],int len)439 int select_guid_from_list(EFI_GUID *guid, EFI_GUID *guid_list[], int len)
440 {
441 int i = 0;
442 for (; i < len; i++) {
443 if (guid_equal(guid, guid_list[i])) {
444 break;
445 }
446 }
447 // It's unlikely fuzzing can reliably come up with a correct guid, given how
448 // much entropy there is. If we're in fuzzing mode, and if we haven't found
449 // a match, try to force a match so we get some coverage. Note, we still
450 // want coverage of the section failed to convert code, so treat index ==
451 // size as section failed to convert.
452 #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
453 if (i == len) {
454 i = guid->Data1 % (len + 1);
455 }
456 #endif
457
458 return i;
459 }
460
add_untrusted_string(json_object * ir,const char * field_name,const char * str,int len)461 void add_untrusted_string(json_object *ir, const char *field_name,
462 const char *str, int len)
463 {
464 int fru_text_len = 0;
465 for (; fru_text_len < len; fru_text_len++) {
466 char c = str[fru_text_len];
467 if (c < 0) {
468 fru_text_len = -1;
469 break;
470 }
471 if (c == '\0') {
472 break;
473 }
474 }
475 if (fru_text_len >= 0) {
476 json_object_object_add(
477 ir, field_name,
478 json_object_new_string_len(str, fru_text_len));
479 }
480 }
481
add_guid(json_object * ir,const char * field_name,EFI_GUID * guid)482 void add_guid(json_object *ir, const char *field_name, EFI_GUID *guid)
483 {
484 char platform_string[GUID_STRING_LENGTH + 1];
485 if (!guid_to_string(platform_string, sizeof(platform_string), guid)) {
486 return;
487 }
488 json_object_object_add(
489 ir, field_name,
490 json_object_new_string_len(platform_string,
491 sizeof(platform_string) - 1));
492 }
493