1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "migration/vmstate.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "hw/qdev-properties.h"
21 #include "system/tcg.h"
22 #include "system/runstate.h"
23 #include "target/arm/cpu.h"
24 #include "target/arm/cpu-features.h"
25 #include "exec/cputlb.h"
26 #include "exec/memop.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "trace.h"
30
31 /* IRQ number counting:
32 *
33 * the num-irq property counts the number of external IRQ lines
34 *
35 * NVICState::num_irq counts the total number of exceptions
36 * (external IRQs, the 15 internal exceptions including reset,
37 * and one for the unused exception number 0).
38 *
39 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
40 *
41 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
42 *
43 * Iterating through all exceptions should typically be done with
44 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
45 *
46 * The external qemu_irq lines are the NVIC's external IRQ lines,
47 * so line 0 is exception 16.
48 *
49 * In the terminology of the architecture manual, "interrupts" are
50 * a subcategory of exception referring to the external interrupts
51 * (which are exception numbers NVIC_FIRST_IRQ and upward).
52 * For historical reasons QEMU tends to use "interrupt" and
53 * "exception" more or less interchangeably.
54 */
55 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
56 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
57
58 /* Effective running priority of the CPU when no exception is active
59 * (higher than the highest possible priority value)
60 */
61 #define NVIC_NOEXC_PRIO 0x100
62 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
63 #define NVIC_NS_PRIO_LIMIT 0x80
64
65 static const uint8_t nvic_id[] = {
66 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
67 };
68
signal_sysresetreq(NVICState * s)69 static void signal_sysresetreq(NVICState *s)
70 {
71 if (qemu_irq_is_connected(s->sysresetreq)) {
72 qemu_irq_pulse(s->sysresetreq);
73 } else {
74 /*
75 * Default behaviour if the SoC doesn't need to wire up
76 * SYSRESETREQ (eg to a system reset controller of some kind):
77 * perform a system reset via the usual QEMU API.
78 */
79 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
80 }
81 }
82
nvic_pending_prio(NVICState * s)83 static int nvic_pending_prio(NVICState *s)
84 {
85 /* return the group priority of the current pending interrupt,
86 * or NVIC_NOEXC_PRIO if no interrupt is pending
87 */
88 return s->vectpending_prio;
89 }
90
91 /* Return the value of the ISCR RETTOBASE bit:
92 * 1 if there is exactly one active exception
93 * 0 if there is more than one active exception
94 * UNKNOWN if there are no active exceptions (we choose 1,
95 * which matches the choice Cortex-M3 is documented as making).
96 *
97 * NB: some versions of the documentation talk about this
98 * counting "active exceptions other than the one shown by IPSR";
99 * this is only different in the obscure corner case where guest
100 * code has manually deactivated an exception and is about
101 * to fail an exception-return integrity check. The definition
102 * above is the one from the v8M ARM ARM and is also in line
103 * with the behaviour documented for the Cortex-M3.
104 */
nvic_rettobase(NVICState * s)105 static bool nvic_rettobase(NVICState *s)
106 {
107 int irq, nhand = 0;
108 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
109
110 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
111 if (s->vectors[irq].active ||
112 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
113 s->sec_vectors[irq].active)) {
114 nhand++;
115 if (nhand == 2) {
116 return 0;
117 }
118 }
119 }
120
121 return 1;
122 }
123
124 /* Return the value of the ISCR ISRPENDING bit:
125 * 1 if an external interrupt is pending
126 * 0 if no external interrupt is pending
127 */
nvic_isrpending(NVICState * s)128 static bool nvic_isrpending(NVICState *s)
129 {
130 int irq;
131
132 /*
133 * We can shortcut if the highest priority pending interrupt
134 * happens to be external; if not we need to check the whole
135 * vectors[] array.
136 */
137 if (s->vectpending > NVIC_FIRST_IRQ) {
138 return true;
139 }
140
141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
142 if (s->vectors[irq].pending) {
143 return true;
144 }
145 }
146 return false;
147 }
148
exc_is_banked(int exc)149 static bool exc_is_banked(int exc)
150 {
151 /* Return true if this is one of the limited set of exceptions which
152 * are banked (and thus have state in sec_vectors[])
153 */
154 return exc == ARMV7M_EXCP_HARD ||
155 exc == ARMV7M_EXCP_MEM ||
156 exc == ARMV7M_EXCP_USAGE ||
157 exc == ARMV7M_EXCP_SVC ||
158 exc == ARMV7M_EXCP_PENDSV ||
159 exc == ARMV7M_EXCP_SYSTICK;
160 }
161
162 /* Return a mask word which clears the subpriority bits from
163 * a priority value for an M-profile exception, leaving only
164 * the group priority.
165 */
nvic_gprio_mask(NVICState * s,bool secure)166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
167 {
168 return ~0U << (s->prigroup[secure] + 1);
169 }
170
exc_targets_secure(NVICState * s,int exc)171 static bool exc_targets_secure(NVICState *s, int exc)
172 {
173 /* Return true if this non-banked exception targets Secure state. */
174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
175 return false;
176 }
177
178 if (exc >= NVIC_FIRST_IRQ) {
179 return !s->itns[exc];
180 }
181
182 /* Function shouldn't be called for banked exceptions. */
183 assert(!exc_is_banked(exc));
184
185 switch (exc) {
186 case ARMV7M_EXCP_NMI:
187 case ARMV7M_EXCP_BUS:
188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
189 case ARMV7M_EXCP_SECURE:
190 return true;
191 case ARMV7M_EXCP_DEBUG:
192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
193 return false;
194 default:
195 /* reset, and reserved (unused) low exception numbers.
196 * We'll get called by code that loops through all the exception
197 * numbers, but it doesn't matter what we return here as these
198 * non-existent exceptions will never be pended or active.
199 */
200 return true;
201 }
202 }
203
exc_group_prio(NVICState * s,int rawprio,bool targets_secure)204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
205 {
206 /* Return the group priority for this exception, given its raw
207 * (group-and-subgroup) priority value and whether it is targeting
208 * secure state or not.
209 */
210 if (rawprio < 0) {
211 return rawprio;
212 }
213 rawprio &= nvic_gprio_mask(s, targets_secure);
214 /* AIRCR.PRIS causes us to squash all NS priorities into the
215 * lower half of the total range
216 */
217 if (!targets_secure &&
218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
220 }
221 return rawprio;
222 }
223
224 /* Recompute vectpending and exception_prio for a CPU which implements
225 * the Security extension
226 */
nvic_recompute_state_secure(NVICState * s)227 static void nvic_recompute_state_secure(NVICState *s)
228 {
229 int i, bank;
230 int pend_prio = NVIC_NOEXC_PRIO;
231 int active_prio = NVIC_NOEXC_PRIO;
232 int pend_irq = 0;
233 bool pending_is_s_banked = false;
234 int pend_subprio = 0;
235
236 /* R_CQRV: precedence is by:
237 * - lowest group priority; if both the same then
238 * - lowest subpriority; if both the same then
239 * - lowest exception number; if both the same (ie banked) then
240 * - secure exception takes precedence
241 * Compare pseudocode RawExecutionPriority.
242 * Annoyingly, now we have two prigroup values (for S and NS)
243 * we can't do the loop comparison on raw priority values.
244 */
245 for (i = 1; i < s->num_irq; i++) {
246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
247 VecInfo *vec;
248 int prio, subprio;
249 bool targets_secure;
250
251 if (bank == M_REG_S) {
252 if (!exc_is_banked(i)) {
253 continue;
254 }
255 vec = &s->sec_vectors[i];
256 targets_secure = true;
257 } else {
258 vec = &s->vectors[i];
259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
260 }
261
262 prio = exc_group_prio(s, vec->prio, targets_secure);
263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
264 if (vec->enabled && vec->pending &&
265 ((prio < pend_prio) ||
266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
267 pend_prio = prio;
268 pend_subprio = subprio;
269 pend_irq = i;
270 pending_is_s_banked = (bank == M_REG_S);
271 }
272 if (vec->active && prio < active_prio) {
273 active_prio = prio;
274 }
275 }
276 }
277
278 s->vectpending_is_s_banked = pending_is_s_banked;
279 s->vectpending = pend_irq;
280 s->vectpending_prio = pend_prio;
281 s->exception_prio = active_prio;
282
283 trace_nvic_recompute_state_secure(s->vectpending,
284 s->vectpending_is_s_banked,
285 s->vectpending_prio,
286 s->exception_prio);
287 }
288
289 /* Recompute vectpending and exception_prio */
nvic_recompute_state(NVICState * s)290 static void nvic_recompute_state(NVICState *s)
291 {
292 int i;
293 int pend_prio = NVIC_NOEXC_PRIO;
294 int active_prio = NVIC_NOEXC_PRIO;
295 int pend_irq = 0;
296
297 /* In theory we could write one function that handled both
298 * the "security extension present" and "not present"; however
299 * the security related changes significantly complicate the
300 * recomputation just by themselves and mixing both cases together
301 * would be even worse, so we retain a separate non-secure-only
302 * version for CPUs which don't implement the security extension.
303 */
304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
305 nvic_recompute_state_secure(s);
306 return;
307 }
308
309 for (i = 1; i < s->num_irq; i++) {
310 VecInfo *vec = &s->vectors[i];
311
312 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
313 pend_prio = vec->prio;
314 pend_irq = i;
315 }
316 if (vec->active && vec->prio < active_prio) {
317 active_prio = vec->prio;
318 }
319 }
320
321 if (active_prio > 0) {
322 active_prio &= nvic_gprio_mask(s, false);
323 }
324
325 if (pend_prio > 0) {
326 pend_prio &= nvic_gprio_mask(s, false);
327 }
328
329 s->vectpending = pend_irq;
330 s->vectpending_prio = pend_prio;
331 s->exception_prio = active_prio;
332
333 trace_nvic_recompute_state(s->vectpending,
334 s->vectpending_prio,
335 s->exception_prio);
336 }
337
338 /* Return the current execution priority of the CPU
339 * (equivalent to the pseudocode ExecutionPriority function).
340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
341 */
nvic_exec_prio(NVICState * s)342 static inline int nvic_exec_prio(NVICState *s)
343 {
344 CPUARMState *env = &s->cpu->env;
345 int running = NVIC_NOEXC_PRIO;
346
347 if (env->v7m.basepri[M_REG_NS] > 0) {
348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
349 }
350
351 if (env->v7m.basepri[M_REG_S] > 0) {
352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
353 if (running > basepri) {
354 running = basepri;
355 }
356 }
357
358 if (env->v7m.primask[M_REG_NS]) {
359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
360 if (running > NVIC_NS_PRIO_LIMIT) {
361 running = NVIC_NS_PRIO_LIMIT;
362 }
363 } else {
364 running = 0;
365 }
366 }
367
368 if (env->v7m.primask[M_REG_S]) {
369 running = 0;
370 }
371
372 if (env->v7m.faultmask[M_REG_NS]) {
373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
374 running = -1;
375 } else {
376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
377 if (running > NVIC_NS_PRIO_LIMIT) {
378 running = NVIC_NS_PRIO_LIMIT;
379 }
380 } else {
381 running = 0;
382 }
383 }
384 }
385
386 if (env->v7m.faultmask[M_REG_S]) {
387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
388 }
389
390 /* consider priority of active handler */
391 return MIN(running, s->exception_prio);
392 }
393
armv7m_nvic_neg_prio_requested(NVICState * s,bool secure)394 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure)
395 {
396 /* Return true if the requested execution priority is negative
397 * for the specified security state, ie that security state
398 * has an active NMI or HardFault or has set its FAULTMASK.
399 * Note that this is not the same as whether the execution
400 * priority is actually negative (for instance AIRCR.PRIS may
401 * mean we don't allow FAULTMASK_NS to actually make the execution
402 * priority negative). Compare pseudocode IsReqExcPriNeg().
403 */
404 if (s->cpu->env.v7m.faultmask[secure]) {
405 return true;
406 }
407
408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
409 s->vectors[ARMV7M_EXCP_HARD].active) {
410 return true;
411 }
412
413 if (s->vectors[ARMV7M_EXCP_NMI].active &&
414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
415 return true;
416 }
417
418 return false;
419 }
420
armv7m_nvic_can_take_pending_exception(NVICState * s)421 bool armv7m_nvic_can_take_pending_exception(NVICState *s)
422 {
423 return nvic_exec_prio(s) > nvic_pending_prio(s);
424 }
425
armv7m_nvic_raw_execution_priority(NVICState * s)426 int armv7m_nvic_raw_execution_priority(NVICState *s)
427 {
428 return s->exception_prio;
429 }
430
431 /* caller must call nvic_irq_update() after this.
432 * secure indicates the bank to use for banked exceptions (we assert if
433 * we are passed secure=true for a non-banked exception).
434 */
set_prio(NVICState * s,unsigned irq,bool secure,uint8_t prio)435 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
436 {
437 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
438 assert(irq < s->num_irq);
439
440 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
441
442 if (secure) {
443 assert(exc_is_banked(irq));
444 s->sec_vectors[irq].prio = prio;
445 } else {
446 s->vectors[irq].prio = prio;
447 }
448
449 trace_nvic_set_prio(irq, secure, prio);
450 }
451
452 /* Return the current raw priority register value.
453 * secure indicates the bank to use for banked exceptions (we assert if
454 * we are passed secure=true for a non-banked exception).
455 */
get_prio(NVICState * s,unsigned irq,bool secure)456 static int get_prio(NVICState *s, unsigned irq, bool secure)
457 {
458 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
459 assert(irq < s->num_irq);
460
461 if (secure) {
462 assert(exc_is_banked(irq));
463 return s->sec_vectors[irq].prio;
464 } else {
465 return s->vectors[irq].prio;
466 }
467 }
468
469 /* Recompute state and assert irq line accordingly.
470 * Must be called after changes to:
471 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
472 * prigroup
473 */
nvic_irq_update(NVICState * s)474 static void nvic_irq_update(NVICState *s)
475 {
476 int lvl;
477 int pend_prio;
478
479 nvic_recompute_state(s);
480 pend_prio = nvic_pending_prio(s);
481
482 /* Raise NVIC output if this IRQ would be taken, except that we
483 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
484 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
485 * to those CPU registers don't cause us to recalculate the NVIC
486 * pending info.
487 */
488 lvl = (pend_prio < s->exception_prio);
489 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
490 qemu_set_irq(s->excpout, lvl);
491 }
492
493 /**
494 * armv7m_nvic_clear_pending: mark the specified exception as not pending
495 * @opaque: the NVIC
496 * @irq: the exception number to mark as not pending
497 * @secure: false for non-banked exceptions or for the nonsecure
498 * version of a banked exception, true for the secure version of a banked
499 * exception.
500 *
501 * Marks the specified exception as not pending. Note that we will assert()
502 * if @secure is true and @irq does not specify one of the fixed set
503 * of architecturally banked exceptions.
504 */
armv7m_nvic_clear_pending(NVICState * s,int irq,bool secure)505 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure)
506 {
507 VecInfo *vec;
508
509 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
510
511 if (secure) {
512 assert(exc_is_banked(irq));
513 vec = &s->sec_vectors[irq];
514 } else {
515 vec = &s->vectors[irq];
516 }
517 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
518 if (vec->pending) {
519 vec->pending = 0;
520 nvic_irq_update(s);
521 }
522 }
523
do_armv7m_nvic_set_pending(void * opaque,int irq,bool secure,bool derived)524 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
525 bool derived)
526 {
527 /* Pend an exception, including possibly escalating it to HardFault.
528 *
529 * This function handles both "normal" pending of interrupts and
530 * exceptions, and also derived exceptions (ones which occur as
531 * a result of trying to take some other exception).
532 *
533 * If derived == true, the caller guarantees that we are part way through
534 * trying to take an exception (but have not yet called
535 * armv7m_nvic_acknowledge_irq() to make it active), and so:
536 * - s->vectpending is the "original exception" we were trying to take
537 * - irq is the "derived exception"
538 * - nvic_exec_prio(s) gives the priority before exception entry
539 * Here we handle the prioritization logic which the pseudocode puts
540 * in the DerivedLateArrival() function.
541 */
542
543 NVICState *s = (NVICState *)opaque;
544 bool banked = exc_is_banked(irq);
545 VecInfo *vec;
546 bool targets_secure;
547
548 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
549 assert(!secure || banked);
550
551 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
552
553 targets_secure = banked ? secure : exc_targets_secure(s, irq);
554
555 trace_nvic_set_pending(irq, secure, targets_secure,
556 derived, vec->enabled, vec->prio);
557
558 if (derived) {
559 /* Derived exceptions are always synchronous. */
560 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
561
562 if (irq == ARMV7M_EXCP_DEBUG &&
563 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
564 /* DebugMonitorFault, but its priority is lower than the
565 * preempted exception priority: just ignore it.
566 */
567 return;
568 }
569
570 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
571 /* If this is a terminal exception (one which means we cannot
572 * take the original exception, like a failure to read its
573 * vector table entry), then we must take the derived exception.
574 * If the derived exception can't take priority over the
575 * original exception, then we go into Lockup.
576 *
577 * For QEMU, we rely on the fact that a derived exception is
578 * terminal if and only if it's reported to us as HardFault,
579 * which saves having to have an extra argument is_terminal
580 * that we'd only use in one place.
581 */
582 cpu_abort(CPU(s->cpu),
583 "Lockup: can't take terminal derived exception "
584 "(original exception priority %d)\n",
585 s->vectpending_prio);
586 }
587 /* We now continue with the same code as for a normal pending
588 * exception, which will cause us to pend the derived exception.
589 * We'll then take either the original or the derived exception
590 * based on which is higher priority by the usual mechanism
591 * for selecting the highest priority pending interrupt.
592 */
593 }
594
595 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
596 /* If a synchronous exception is pending then it may be
597 * escalated to HardFault if:
598 * * it is equal or lower priority to current execution
599 * * it is disabled
600 * (ie we need to take it immediately but we can't do so).
601 * Asynchronous exceptions (and interrupts) simply remain pending.
602 *
603 * For QEMU, we don't have any imprecise (asynchronous) faults,
604 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
605 * synchronous.
606 * Debug exceptions are awkward because only Debug exceptions
607 * resulting from the BKPT instruction should be escalated,
608 * but we don't currently implement any Debug exceptions other
609 * than those that result from BKPT, so we treat all debug exceptions
610 * as needing escalation.
611 *
612 * This all means we can identify whether to escalate based only on
613 * the exception number and don't (yet) need the caller to explicitly
614 * tell us whether this exception is synchronous or not.
615 */
616 int running = nvic_exec_prio(s);
617 bool escalate = false;
618
619 if (exc_group_prio(s, vec->prio, secure) >= running) {
620 trace_nvic_escalate_prio(irq, vec->prio, running);
621 escalate = true;
622 } else if (!vec->enabled) {
623 trace_nvic_escalate_disabled(irq);
624 escalate = true;
625 }
626
627 if (escalate) {
628
629 /* We need to escalate this exception to a synchronous HardFault.
630 * If BFHFNMINS is set then we escalate to the banked HF for
631 * the target security state of the original exception; otherwise
632 * we take a Secure HardFault.
633 */
634 irq = ARMV7M_EXCP_HARD;
635 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
636 (targets_secure ||
637 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
638 vec = &s->sec_vectors[irq];
639 } else {
640 vec = &s->vectors[irq];
641 }
642 if (running <= vec->prio) {
643 /* We want to escalate to HardFault but we can't take the
644 * synchronous HardFault at this point either. This is a
645 * Lockup condition due to a guest bug. We don't model
646 * Lockup, so report via cpu_abort() instead.
647 */
648 cpu_abort(CPU(s->cpu),
649 "Lockup: can't escalate %d to HardFault "
650 "(current priority %d)\n", irq, running);
651 }
652
653 /* HF may be banked but there is only one shared HFSR */
654 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
655 }
656 }
657
658 if (!vec->pending) {
659 vec->pending = 1;
660 nvic_irq_update(s);
661 }
662 }
663
armv7m_nvic_set_pending(NVICState * s,int irq,bool secure)664 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure)
665 {
666 do_armv7m_nvic_set_pending(s, irq, secure, false);
667 }
668
armv7m_nvic_set_pending_derived(NVICState * s,int irq,bool secure)669 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure)
670 {
671 do_armv7m_nvic_set_pending(s, irq, secure, true);
672 }
673
armv7m_nvic_set_pending_lazyfp(NVICState * s,int irq,bool secure)674 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure)
675 {
676 /*
677 * Pend an exception during lazy FP stacking. This differs
678 * from the usual exception pending because the logic for
679 * whether we should escalate depends on the saved context
680 * in the FPCCR register, not on the current state of the CPU/NVIC.
681 */
682 bool banked = exc_is_banked(irq);
683 VecInfo *vec;
684 bool targets_secure;
685 bool escalate = false;
686 /*
687 * We will only look at bits in fpccr if this is a banked exception
688 * (in which case 'secure' tells us whether it is the S or NS version).
689 * All the bits for the non-banked exceptions are in fpccr_s.
690 */
691 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
692 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
693
694 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
695 assert(!secure || banked);
696
697 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
698
699 targets_secure = banked ? secure : exc_targets_secure(s, irq);
700
701 switch (irq) {
702 case ARMV7M_EXCP_DEBUG:
703 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
704 /* Ignore DebugMonitor exception */
705 return;
706 }
707 break;
708 case ARMV7M_EXCP_MEM:
709 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
710 break;
711 case ARMV7M_EXCP_USAGE:
712 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
713 break;
714 case ARMV7M_EXCP_BUS:
715 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
716 break;
717 case ARMV7M_EXCP_SECURE:
718 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
719 break;
720 default:
721 g_assert_not_reached();
722 }
723
724 if (escalate) {
725 /*
726 * Escalate to HardFault: faults that initially targeted Secure
727 * continue to do so, even if HF normally targets NonSecure.
728 */
729 irq = ARMV7M_EXCP_HARD;
730 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
731 (targets_secure ||
732 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
733 vec = &s->sec_vectors[irq];
734 } else {
735 vec = &s->vectors[irq];
736 }
737 }
738
739 if (!vec->enabled ||
740 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
741 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
742 /*
743 * We want to escalate to HardFault but the context the
744 * FP state belongs to prevents the exception pre-empting.
745 */
746 cpu_abort(CPU(s->cpu),
747 "Lockup: can't escalate to HardFault during "
748 "lazy FP register stacking\n");
749 }
750 }
751
752 if (escalate) {
753 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
754 }
755 if (!vec->pending) {
756 vec->pending = 1;
757 /*
758 * We do not call nvic_irq_update(), because we know our caller
759 * is going to handle causing us to take the exception by
760 * raising EXCP_LAZYFP, so raising the IRQ line would be
761 * pointless extra work. We just need to recompute the
762 * priorities so that armv7m_nvic_can_take_pending_exception()
763 * returns the right answer.
764 */
765 nvic_recompute_state(s);
766 }
767 }
768
769 /* Make pending IRQ active. */
armv7m_nvic_acknowledge_irq(NVICState * s)770 void armv7m_nvic_acknowledge_irq(NVICState *s)
771 {
772 CPUARMState *env = &s->cpu->env;
773 const int pending = s->vectpending;
774 const int running = nvic_exec_prio(s);
775 VecInfo *vec;
776
777 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
778
779 if (s->vectpending_is_s_banked) {
780 vec = &s->sec_vectors[pending];
781 } else {
782 vec = &s->vectors[pending];
783 }
784
785 assert(vec->enabled);
786 assert(vec->pending);
787
788 assert(s->vectpending_prio < running);
789
790 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
791
792 vec->active = 1;
793 vec->pending = 0;
794
795 write_v7m_exception(env, s->vectpending);
796
797 nvic_irq_update(s);
798 }
799
vectpending_targets_secure(NVICState * s)800 static bool vectpending_targets_secure(NVICState *s)
801 {
802 /* Return true if s->vectpending targets Secure state */
803 if (s->vectpending_is_s_banked) {
804 return true;
805 }
806 return !exc_is_banked(s->vectpending) &&
807 exc_targets_secure(s, s->vectpending);
808 }
809
armv7m_nvic_get_pending_irq_info(NVICState * s,int * pirq,bool * ptargets_secure)810 void armv7m_nvic_get_pending_irq_info(NVICState *s,
811 int *pirq, bool *ptargets_secure)
812 {
813 const int pending = s->vectpending;
814 bool targets_secure;
815
816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
817
818 targets_secure = vectpending_targets_secure(s);
819
820 trace_nvic_get_pending_irq_info(pending, targets_secure);
821
822 *ptargets_secure = targets_secure;
823 *pirq = pending;
824 }
825
armv7m_nvic_complete_irq(NVICState * s,int irq,bool secure)826 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure)
827 {
828 VecInfo *vec = NULL;
829 int ret = 0;
830
831 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
832
833 trace_nvic_complete_irq(irq, secure);
834
835 if (secure && exc_is_banked(irq)) {
836 vec = &s->sec_vectors[irq];
837 } else {
838 vec = &s->vectors[irq];
839 }
840
841 /*
842 * Identify illegal exception return cases. We can't immediately
843 * return at this point because we still need to deactivate
844 * (either this exception or NMI/HardFault) first.
845 */
846 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
847 /*
848 * Return from a configurable exception targeting the opposite
849 * security state from the one we're trying to complete it for.
850 * Clear vec because it's not really the VecInfo for this
851 * (irq, secstate) so we mustn't deactivate it.
852 */
853 ret = -1;
854 vec = NULL;
855 } else if (!vec->active) {
856 /* Return from an inactive interrupt */
857 ret = -1;
858 } else {
859 /* Legal return, we will return the RETTOBASE bit value to the caller */
860 ret = nvic_rettobase(s);
861 }
862
863 /*
864 * For negative priorities, v8M will forcibly deactivate the appropriate
865 * NMI or HardFault regardless of what interrupt we're being asked to
866 * deactivate (compare the DeActivate() pseudocode). This is a guard
867 * against software returning from NMI or HardFault with a corrupted
868 * IPSR and leaving the CPU in a negative-priority state.
869 * v7M does not do this, but simply deactivates the requested interrupt.
870 */
871 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
872 switch (armv7m_nvic_raw_execution_priority(s)) {
873 case -1:
874 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
875 vec = &s->vectors[ARMV7M_EXCP_HARD];
876 } else {
877 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
878 }
879 break;
880 case -2:
881 vec = &s->vectors[ARMV7M_EXCP_NMI];
882 break;
883 case -3:
884 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
885 break;
886 default:
887 break;
888 }
889 }
890
891 if (!vec) {
892 return ret;
893 }
894
895 vec->active = 0;
896 if (vec->level) {
897 /* Re-pend the exception if it's still held high; only
898 * happens for external IRQs
899 */
900 assert(irq >= NVIC_FIRST_IRQ);
901 vec->pending = 1;
902 }
903
904 nvic_irq_update(s);
905
906 return ret;
907 }
908
armv7m_nvic_get_ready_status(NVICState * s,int irq,bool secure)909 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure)
910 {
911 /*
912 * Return whether an exception is "ready", i.e. it is enabled and is
913 * configured at a priority which would allow it to interrupt the
914 * current execution priority.
915 *
916 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
917 * for non-banked exceptions secure is always false; for banked exceptions
918 * it indicates which of the exceptions is required.
919 */
920 bool banked = exc_is_banked(irq);
921 VecInfo *vec;
922 int running = nvic_exec_prio(s);
923
924 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
925 assert(!secure || banked);
926
927 /*
928 * HardFault is an odd special case: we always check against -1,
929 * even if we're secure and HardFault has priority -3; we never
930 * need to check for enabled state.
931 */
932 if (irq == ARMV7M_EXCP_HARD) {
933 return running > -1;
934 }
935
936 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
937
938 return vec->enabled &&
939 exc_group_prio(s, vec->prio, secure) < running;
940 }
941
942 /* callback when external interrupt line is changed */
set_irq_level(void * opaque,int n,int level)943 static void set_irq_level(void *opaque, int n, int level)
944 {
945 NVICState *s = opaque;
946 VecInfo *vec;
947
948 n += NVIC_FIRST_IRQ;
949
950 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
951
952 trace_nvic_set_irq_level(n, level);
953
954 /* The pending status of an external interrupt is
955 * latched on rising edge and exception handler return.
956 *
957 * Pulsing the IRQ will always run the handler
958 * once, and the handler will re-run until the
959 * level is low when the handler completes.
960 */
961 vec = &s->vectors[n];
962 if (level != vec->level) {
963 vec->level = level;
964 if (level) {
965 armv7m_nvic_set_pending(s, n, false);
966 }
967 }
968 }
969
970 /* callback when external NMI line is changed */
nvic_nmi_trigger(void * opaque,int n,int level)971 static void nvic_nmi_trigger(void *opaque, int n, int level)
972 {
973 NVICState *s = opaque;
974
975 trace_nvic_set_nmi_level(level);
976
977 /*
978 * The architecture doesn't specify whether NMI should share
979 * the normal-interrupt behaviour of being resampled on
980 * exception handler return. We choose not to, so just
981 * set NMI pending here and don't track the current level.
982 */
983 if (level) {
984 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
985 }
986 }
987
nvic_readl(NVICState * s,uint32_t offset,MemTxAttrs attrs)988 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
989 {
990 ARMCPU *cpu = s->cpu;
991 ARMISARegisters *isar = &cpu->isar;
992 uint32_t val;
993
994 switch (offset) {
995 case 4: /* Interrupt Control Type. */
996 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
997 goto bad_offset;
998 }
999 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
1000 case 0xc: /* CPPWR */
1001 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1002 goto bad_offset;
1003 }
1004 /* We make the IMPDEF choice that nothing can ever go into a
1005 * non-retentive power state, which allows us to RAZ/WI this.
1006 */
1007 return 0;
1008 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1009 {
1010 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1011 int i;
1012
1013 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1014 goto bad_offset;
1015 }
1016 if (!attrs.secure) {
1017 return 0;
1018 }
1019 val = 0;
1020 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1021 if (s->itns[startvec + i]) {
1022 val |= (1 << i);
1023 }
1024 }
1025 return val;
1026 }
1027 case 0xcfc:
1028 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) {
1029 goto bad_offset;
1030 }
1031 return cpu->revidr;
1032 case 0xd00: /* CPUID Base. */
1033 return cpu->midr;
1034 case 0xd04: /* Interrupt Control State (ICSR) */
1035 /* VECTACTIVE */
1036 val = cpu->env.v7m.exception;
1037 /* VECTPENDING */
1038 if (s->vectpending) {
1039 /*
1040 * From v8.1M VECTPENDING must read as 1 if accessed as
1041 * NonSecure and the highest priority pending and enabled
1042 * exception targets Secure.
1043 */
1044 int vp = s->vectpending;
1045 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) &&
1046 vectpending_targets_secure(s)) {
1047 vp = 1;
1048 }
1049 val |= (vp & 0x1ff) << 12;
1050 }
1051 /* ISRPENDING - set if any external IRQ is pending */
1052 if (nvic_isrpending(s)) {
1053 val |= (1 << 22);
1054 }
1055 /* RETTOBASE - set if only one handler is active */
1056 if (nvic_rettobase(s)) {
1057 val |= (1 << 11);
1058 }
1059 if (attrs.secure) {
1060 /* PENDSTSET */
1061 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1062 val |= (1 << 26);
1063 }
1064 /* PENDSVSET */
1065 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1066 val |= (1 << 28);
1067 }
1068 } else {
1069 /* PENDSTSET */
1070 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1071 val |= (1 << 26);
1072 }
1073 /* PENDSVSET */
1074 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1075 val |= (1 << 28);
1076 }
1077 }
1078 /* NMIPENDSET */
1079 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1080 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1081 val |= (1 << 31);
1082 }
1083 /* ISRPREEMPT: RES0 when halting debug not implemented */
1084 /* STTNS: RES0 for the Main Extension */
1085 return val;
1086 case 0xd08: /* Vector Table Offset. */
1087 return cpu->env.v7m.vecbase[attrs.secure];
1088 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1089 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1090 if (attrs.secure) {
1091 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1092 val |= cpu->env.v7m.aircr;
1093 } else {
1094 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1095 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1096 * security isn't supported then BFHFNMINS is RAO (and
1097 * the bit in env.v7m.aircr is always set).
1098 */
1099 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1100 }
1101 }
1102 return val;
1103 case 0xd10: /* System Control. */
1104 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1105 goto bad_offset;
1106 }
1107 return cpu->env.v7m.scr[attrs.secure];
1108 case 0xd14: /* Configuration Control. */
1109 /*
1110 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register)
1111 * and TRD (stored in the S copy of the register)
1112 */
1113 val = cpu->env.v7m.ccr[attrs.secure];
1114 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1115 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */
1116 if (!attrs.secure) {
1117 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1118 val &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1119 }
1120 }
1121 return val;
1122 case 0xd24: /* System Handler Control and State (SHCSR) */
1123 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1124 goto bad_offset;
1125 }
1126 val = 0;
1127 if (attrs.secure) {
1128 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1129 val |= (1 << 0);
1130 }
1131 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1132 val |= (1 << 2);
1133 }
1134 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1135 val |= (1 << 3);
1136 }
1137 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1138 val |= (1 << 7);
1139 }
1140 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1141 val |= (1 << 10);
1142 }
1143 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1144 val |= (1 << 11);
1145 }
1146 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1147 val |= (1 << 12);
1148 }
1149 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1150 val |= (1 << 13);
1151 }
1152 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1153 val |= (1 << 15);
1154 }
1155 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1156 val |= (1 << 16);
1157 }
1158 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1159 val |= (1 << 18);
1160 }
1161 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1162 val |= (1 << 21);
1163 }
1164 /* SecureFault is not banked but is always RAZ/WI to NS */
1165 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1166 val |= (1 << 4);
1167 }
1168 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1169 val |= (1 << 19);
1170 }
1171 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1172 val |= (1 << 20);
1173 }
1174 } else {
1175 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1176 val |= (1 << 0);
1177 }
1178 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1179 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1180 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1181 val |= (1 << 2);
1182 }
1183 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1184 val |= (1 << 21);
1185 }
1186 }
1187 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1188 val |= (1 << 3);
1189 }
1190 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1191 val |= (1 << 7);
1192 }
1193 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1194 val |= (1 << 10);
1195 }
1196 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1197 val |= (1 << 11);
1198 }
1199 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1200 val |= (1 << 12);
1201 }
1202 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1203 val |= (1 << 13);
1204 }
1205 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1206 val |= (1 << 15);
1207 }
1208 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1209 val |= (1 << 16);
1210 }
1211 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1212 val |= (1 << 18);
1213 }
1214 }
1215 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1216 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1217 val |= (1 << 1);
1218 }
1219 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1220 val |= (1 << 14);
1221 }
1222 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1223 val |= (1 << 17);
1224 }
1225 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1226 s->vectors[ARMV7M_EXCP_NMI].active) {
1227 /* NMIACT is not present in v7M */
1228 val |= (1 << 5);
1229 }
1230 }
1231
1232 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1233 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1234 val |= (1 << 8);
1235 }
1236 return val;
1237 case 0xd2c: /* Hard Fault Status. */
1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1239 goto bad_offset;
1240 }
1241 return cpu->env.v7m.hfsr;
1242 case 0xd30: /* Debug Fault Status. */
1243 return cpu->env.v7m.dfsr;
1244 case 0xd34: /* MMFAR MemManage Fault Address */
1245 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1246 goto bad_offset;
1247 }
1248 return cpu->env.v7m.mmfar[attrs.secure];
1249 case 0xd38: /* Bus Fault Address. */
1250 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1251 goto bad_offset;
1252 }
1253 if (!attrs.secure &&
1254 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1255 return 0;
1256 }
1257 return cpu->env.v7m.bfar;
1258 case 0xd3c: /* Aux Fault Status. */
1259 /* TODO: Implement fault status registers. */
1260 qemu_log_mask(LOG_UNIMP,
1261 "Aux Fault status registers unimplemented\n");
1262 return 0;
1263 case 0xd40: /* PFR0. */
1264 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1265 goto bad_offset;
1266 }
1267 return GET_IDREG(isar, ID_PFR0);
1268 case 0xd44: /* PFR1. */
1269 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1270 goto bad_offset;
1271 }
1272 return GET_IDREG(isar, ID_PFR1);
1273 case 0xd48: /* DFR0. */
1274 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1275 goto bad_offset;
1276 }
1277 return GET_IDREG(isar, ID_DFR0);
1278 case 0xd4c: /* AFR0. */
1279 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1280 goto bad_offset;
1281 }
1282 return GET_IDREG(isar, ID_AFR0);
1283 case 0xd50: /* MMFR0. */
1284 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1285 goto bad_offset;
1286 }
1287 return GET_IDREG(isar, ID_MMFR0);
1288 case 0xd54: /* MMFR1. */
1289 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1290 goto bad_offset;
1291 }
1292 return GET_IDREG(isar, ID_MMFR1);
1293 case 0xd58: /* MMFR2. */
1294 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1295 goto bad_offset;
1296 }
1297 return GET_IDREG(isar, ID_MMFR2);
1298 case 0xd5c: /* MMFR3. */
1299 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1300 goto bad_offset;
1301 }
1302 return GET_IDREG(isar, ID_MMFR3);
1303 case 0xd60: /* ISAR0. */
1304 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1305 goto bad_offset;
1306 }
1307 return GET_IDREG(&cpu->isar, ID_ISAR0);
1308 case 0xd64: /* ISAR1. */
1309 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1310 goto bad_offset;
1311 }
1312 return GET_IDREG(&cpu->isar, ID_ISAR1);
1313 case 0xd68: /* ISAR2. */
1314 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1315 goto bad_offset;
1316 }
1317 return GET_IDREG(&cpu->isar, ID_ISAR2);
1318 case 0xd6c: /* ISAR3. */
1319 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1320 goto bad_offset;
1321 }
1322 return GET_IDREG(&cpu->isar, ID_ISAR3);
1323 case 0xd70: /* ISAR4. */
1324 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1325 goto bad_offset;
1326 }
1327 return GET_IDREG(&cpu->isar, ID_ISAR4);
1328 case 0xd74: /* ISAR5. */
1329 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1330 goto bad_offset;
1331 }
1332 return GET_IDREG(&cpu->isar, ID_ISAR5);
1333 case 0xd78: /* CLIDR */
1334 return GET_IDREG(&cpu->isar, CLIDR);
1335 case 0xd7c: /* CTR */
1336 return cpu->ctr;
1337 case 0xd80: /* CSSIDR */
1338 {
1339 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1340 return cpu->ccsidr[idx];
1341 }
1342 case 0xd84: /* CSSELR */
1343 return cpu->env.v7m.csselr[attrs.secure];
1344 case 0xd88: /* CPACR */
1345 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1346 return 0;
1347 }
1348 return cpu->env.v7m.cpacr[attrs.secure];
1349 case 0xd8c: /* NSACR */
1350 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) {
1351 return 0;
1352 }
1353 return cpu->env.v7m.nsacr;
1354 /* TODO: Implement debug registers. */
1355 case 0xd90: /* MPU_TYPE */
1356 /* Unified MPU; if the MPU is not present this value is zero */
1357 return cpu->pmsav7_dregion << 8;
1358 case 0xd94: /* MPU_CTRL */
1359 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1360 case 0xd98: /* MPU_RNR */
1361 return cpu->env.pmsav7.rnr[attrs.secure];
1362 case 0xd9c: /* MPU_RBAR */
1363 case 0xda4: /* MPU_RBAR_A1 */
1364 case 0xdac: /* MPU_RBAR_A2 */
1365 case 0xdb4: /* MPU_RBAR_A3 */
1366 {
1367 int region = cpu->env.pmsav7.rnr[attrs.secure];
1368
1369 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1370 /* PMSAv8M handling of the aliases is different from v7M:
1371 * aliases A1, A2, A3 override the low two bits of the region
1372 * number in MPU_RNR, and there is no 'region' field in the
1373 * RBAR register.
1374 */
1375 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1376 if (aliasno) {
1377 region = deposit32(region, 0, 2, aliasno);
1378 }
1379 if (region >= cpu->pmsav7_dregion) {
1380 return 0;
1381 }
1382 return cpu->env.pmsav8.rbar[attrs.secure][region];
1383 }
1384
1385 if (region >= cpu->pmsav7_dregion) {
1386 return 0;
1387 }
1388 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1389 }
1390 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1391 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1392 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1393 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1394 {
1395 int region = cpu->env.pmsav7.rnr[attrs.secure];
1396
1397 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1398 /* PMSAv8M handling of the aliases is different from v7M:
1399 * aliases A1, A2, A3 override the low two bits of the region
1400 * number in MPU_RNR.
1401 */
1402 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1403 if (aliasno) {
1404 region = deposit32(region, 0, 2, aliasno);
1405 }
1406 if (region >= cpu->pmsav7_dregion) {
1407 return 0;
1408 }
1409 return cpu->env.pmsav8.rlar[attrs.secure][region];
1410 }
1411
1412 if (region >= cpu->pmsav7_dregion) {
1413 return 0;
1414 }
1415 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1416 (cpu->env.pmsav7.drsr[region] & 0xffff);
1417 }
1418 case 0xdc0: /* MPU_MAIR0 */
1419 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1420 goto bad_offset;
1421 }
1422 return cpu->env.pmsav8.mair0[attrs.secure];
1423 case 0xdc4: /* MPU_MAIR1 */
1424 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1425 goto bad_offset;
1426 }
1427 return cpu->env.pmsav8.mair1[attrs.secure];
1428 case 0xdd0: /* SAU_CTRL */
1429 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1430 goto bad_offset;
1431 }
1432 if (!attrs.secure) {
1433 return 0;
1434 }
1435 return cpu->env.sau.ctrl;
1436 case 0xdd4: /* SAU_TYPE */
1437 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1438 goto bad_offset;
1439 }
1440 if (!attrs.secure) {
1441 return 0;
1442 }
1443 return cpu->sau_sregion;
1444 case 0xdd8: /* SAU_RNR */
1445 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1446 goto bad_offset;
1447 }
1448 if (!attrs.secure) {
1449 return 0;
1450 }
1451 return cpu->env.sau.rnr;
1452 case 0xddc: /* SAU_RBAR */
1453 {
1454 int region = cpu->env.sau.rnr;
1455
1456 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1457 goto bad_offset;
1458 }
1459 if (!attrs.secure) {
1460 return 0;
1461 }
1462 if (region >= cpu->sau_sregion) {
1463 return 0;
1464 }
1465 return cpu->env.sau.rbar[region];
1466 }
1467 case 0xde0: /* SAU_RLAR */
1468 {
1469 int region = cpu->env.sau.rnr;
1470
1471 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1472 goto bad_offset;
1473 }
1474 if (!attrs.secure) {
1475 return 0;
1476 }
1477 if (region >= cpu->sau_sregion) {
1478 return 0;
1479 }
1480 return cpu->env.sau.rlar[region];
1481 }
1482 case 0xde4: /* SFSR */
1483 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1484 goto bad_offset;
1485 }
1486 if (!attrs.secure) {
1487 return 0;
1488 }
1489 return cpu->env.v7m.sfsr;
1490 case 0xde8: /* SFAR */
1491 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1492 goto bad_offset;
1493 }
1494 if (!attrs.secure) {
1495 return 0;
1496 }
1497 return cpu->env.v7m.sfar;
1498 case 0xf04: /* RFSR */
1499 if (!cpu_isar_feature(aa32_ras, cpu)) {
1500 goto bad_offset;
1501 }
1502 /* We provide minimal-RAS only: RFSR is RAZ/WI */
1503 return 0;
1504 case 0xf34: /* FPCCR */
1505 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1506 return 0;
1507 }
1508 if (attrs.secure) {
1509 return cpu->env.v7m.fpccr[M_REG_S];
1510 } else {
1511 /*
1512 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1513 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1514 * other non-banked bits RAZ.
1515 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1516 */
1517 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1518 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1519 R_V7M_FPCCR_CLRONRET_MASK |
1520 R_V7M_FPCCR_MONRDY_MASK;
1521
1522 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1523 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1524 }
1525
1526 value &= mask;
1527
1528 value |= cpu->env.v7m.fpccr[M_REG_NS];
1529 return value;
1530 }
1531 case 0xf38: /* FPCAR */
1532 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1533 return 0;
1534 }
1535 return cpu->env.v7m.fpcar[attrs.secure];
1536 case 0xf3c: /* FPDSCR */
1537 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) {
1538 return 0;
1539 }
1540 return cpu->env.v7m.fpdscr[attrs.secure];
1541 case 0xf40: /* MVFR0 */
1542 return cpu->isar.mvfr0;
1543 case 0xf44: /* MVFR1 */
1544 return cpu->isar.mvfr1;
1545 case 0xf48: /* MVFR2 */
1546 return cpu->isar.mvfr2;
1547 default:
1548 bad_offset:
1549 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1550 return 0;
1551 }
1552 }
1553
nvic_writel(NVICState * s,uint32_t offset,uint32_t value,MemTxAttrs attrs)1554 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1555 MemTxAttrs attrs)
1556 {
1557 ARMCPU *cpu = s->cpu;
1558
1559 switch (offset) {
1560 case 0xc: /* CPPWR */
1561 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1562 goto bad_offset;
1563 }
1564 /* Make the IMPDEF choice to RAZ/WI this. */
1565 break;
1566 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1567 {
1568 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1569 int i;
1570
1571 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1572 goto bad_offset;
1573 }
1574 if (!attrs.secure) {
1575 break;
1576 }
1577 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1578 s->itns[startvec + i] = (value >> i) & 1;
1579 }
1580 nvic_irq_update(s);
1581 break;
1582 }
1583 case 0xd04: /* Interrupt Control State (ICSR) */
1584 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1585 if (value & (1 << 31)) {
1586 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1587 } else if (value & (1 << 30) &&
1588 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1589 /* PENDNMICLR didn't exist in v7M */
1590 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1591 }
1592 }
1593 if (value & (1 << 28)) {
1594 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1595 } else if (value & (1 << 27)) {
1596 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1597 }
1598 if (value & (1 << 26)) {
1599 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1600 } else if (value & (1 << 25)) {
1601 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1602 }
1603 break;
1604 case 0xd08: /* Vector Table Offset. */
1605 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1606 break;
1607 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1608 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1609 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1610 if (attrs.secure ||
1611 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1612 signal_sysresetreq(s);
1613 }
1614 }
1615 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1616 qemu_log_mask(LOG_GUEST_ERROR,
1617 "Setting VECTCLRACTIVE when not in DEBUG mode "
1618 "is UNPREDICTABLE\n");
1619 }
1620 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1621 /* NB: this bit is RES0 in v8M */
1622 qemu_log_mask(LOG_GUEST_ERROR,
1623 "Setting VECTRESET when not in DEBUG mode "
1624 "is UNPREDICTABLE\n");
1625 }
1626 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1627 s->prigroup[attrs.secure] =
1628 extract32(value,
1629 R_V7M_AIRCR_PRIGROUP_SHIFT,
1630 R_V7M_AIRCR_PRIGROUP_LENGTH);
1631 }
1632 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */
1633 if (attrs.secure) {
1634 /* These bits are only writable by secure */
1635 cpu->env.v7m.aircr = value &
1636 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1637 R_V7M_AIRCR_BFHFNMINS_MASK |
1638 R_V7M_AIRCR_PRIS_MASK);
1639 /* BFHFNMINS changes the priority of Secure HardFault, and
1640 * allows a pending Non-secure HardFault to preempt (which
1641 * we implement by marking it enabled).
1642 */
1643 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1644 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1645 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1646 } else {
1647 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1648 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1649 }
1650 }
1651 nvic_irq_update(s);
1652 }
1653 break;
1654 case 0xd10: /* System Control. */
1655 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1656 goto bad_offset;
1657 }
1658 /* We don't implement deep-sleep so these bits are RAZ/WI.
1659 * The other bits in the register are banked.
1660 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1661 * is architecturally permitted.
1662 */
1663 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1664 cpu->env.v7m.scr[attrs.secure] = value;
1665 break;
1666 case 0xd14: /* Configuration Control. */
1667 {
1668 uint32_t mask;
1669
1670 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1671 goto bad_offset;
1672 }
1673
1674 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1675 mask = R_V7M_CCR_STKALIGN_MASK |
1676 R_V7M_CCR_BFHFNMIGN_MASK |
1677 R_V7M_CCR_DIV_0_TRP_MASK |
1678 R_V7M_CCR_UNALIGN_TRP_MASK |
1679 R_V7M_CCR_USERSETMPEND_MASK |
1680 R_V7M_CCR_NONBASETHRDENA_MASK;
1681 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) {
1682 /* TRD is always RAZ/WI from NS */
1683 mask |= R_V7M_CCR_TRD_MASK;
1684 }
1685 value &= mask;
1686
1687 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1688 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1689 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1690 | R_V7M_CCR_STKALIGN_MASK;
1691 }
1692 if (attrs.secure) {
1693 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1694 cpu->env.v7m.ccr[M_REG_NS] =
1695 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1696 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1697 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1698 } else {
1699 /*
1700 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so
1701 * preserve the state currently in the NS element of the array
1702 */
1703 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1704 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1705 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1706 }
1707 }
1708
1709 cpu->env.v7m.ccr[attrs.secure] = value;
1710 break;
1711 }
1712 case 0xd24: /* System Handler Control and State (SHCSR) */
1713 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1714 goto bad_offset;
1715 }
1716 if (attrs.secure) {
1717 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1718 /* Secure HardFault active bit cannot be written */
1719 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1720 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1721 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1722 (value & (1 << 10)) != 0;
1723 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1724 (value & (1 << 11)) != 0;
1725 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1726 (value & (1 << 12)) != 0;
1727 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1728 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1729 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1730 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1731 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1732 (value & (1 << 18)) != 0;
1733 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1734 /* SecureFault not banked, but RAZ/WI to NS */
1735 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1736 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1737 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1738 } else {
1739 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1740 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1741 /* HARDFAULTPENDED is not present in v7M */
1742 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1743 }
1744 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1745 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1746 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1747 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1748 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1749 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1750 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1751 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1752 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1753 }
1754 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1755 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1756 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1757 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1758 }
1759 /* NMIACT can only be written if the write is of a zero, with
1760 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1761 */
1762 if (!attrs.secure && cpu->env.v7m.secure &&
1763 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1764 (value & (1 << 5)) == 0) {
1765 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1766 }
1767 /* HARDFAULTACT can only be written if the write is of a zero
1768 * to the non-secure HardFault state by the CPU in secure state.
1769 * The only case where we can be targeting the non-secure HF state
1770 * when in secure state is if this is a write via the NS alias
1771 * and BFHFNMINS is 1.
1772 */
1773 if (!attrs.secure && cpu->env.v7m.secure &&
1774 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1775 (value & (1 << 2)) == 0) {
1776 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1777 }
1778
1779 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1780 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1781 nvic_irq_update(s);
1782 break;
1783 case 0xd2c: /* Hard Fault Status. */
1784 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1785 goto bad_offset;
1786 }
1787 cpu->env.v7m.hfsr &= ~value; /* W1C */
1788 break;
1789 case 0xd30: /* Debug Fault Status. */
1790 cpu->env.v7m.dfsr &= ~value; /* W1C */
1791 break;
1792 case 0xd34: /* Mem Manage Address. */
1793 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1794 goto bad_offset;
1795 }
1796 cpu->env.v7m.mmfar[attrs.secure] = value;
1797 return;
1798 case 0xd38: /* Bus Fault Address. */
1799 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1800 goto bad_offset;
1801 }
1802 if (!attrs.secure &&
1803 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1804 return;
1805 }
1806 cpu->env.v7m.bfar = value;
1807 return;
1808 case 0xd3c: /* Aux Fault Status. */
1809 qemu_log_mask(LOG_UNIMP,
1810 "NVIC: Aux fault status registers unimplemented\n");
1811 break;
1812 case 0xd84: /* CSSELR */
1813 if (!arm_v7m_csselr_razwi(cpu)) {
1814 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1815 }
1816 break;
1817 case 0xd88: /* CPACR */
1818 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1819 /* We implement only the Floating Point extension's CP10/CP11 */
1820 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1821 }
1822 break;
1823 case 0xd8c: /* NSACR */
1824 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) {
1825 /* We implement only the Floating Point extension's CP10/CP11 */
1826 cpu->env.v7m.nsacr = value & (3 << 10);
1827 }
1828 break;
1829 case 0xd90: /* MPU_TYPE */
1830 return; /* RO */
1831 case 0xd94: /* MPU_CTRL */
1832 if ((value &
1833 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1834 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1835 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1836 "UNPREDICTABLE\n");
1837 }
1838 cpu->env.v7m.mpu_ctrl[attrs.secure]
1839 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1840 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1841 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1842 tlb_flush(CPU(cpu));
1843 break;
1844 case 0xd98: /* MPU_RNR */
1845 if (value >= cpu->pmsav7_dregion) {
1846 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1847 PRIu32 "/%" PRIu32 "\n",
1848 value, cpu->pmsav7_dregion);
1849 } else {
1850 cpu->env.pmsav7.rnr[attrs.secure] = value;
1851 }
1852 break;
1853 case 0xd9c: /* MPU_RBAR */
1854 case 0xda4: /* MPU_RBAR_A1 */
1855 case 0xdac: /* MPU_RBAR_A2 */
1856 case 0xdb4: /* MPU_RBAR_A3 */
1857 {
1858 int region;
1859
1860 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1861 /* PMSAv8M handling of the aliases is different from v7M:
1862 * aliases A1, A2, A3 override the low two bits of the region
1863 * number in MPU_RNR, and there is no 'region' field in the
1864 * RBAR register.
1865 */
1866 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1867
1868 region = cpu->env.pmsav7.rnr[attrs.secure];
1869 if (aliasno) {
1870 region = deposit32(region, 0, 2, aliasno);
1871 }
1872 if (region >= cpu->pmsav7_dregion) {
1873 return;
1874 }
1875 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1876 tlb_flush(CPU(cpu));
1877 return;
1878 }
1879
1880 if (value & (1 << 4)) {
1881 /* VALID bit means use the region number specified in this
1882 * value and also update MPU_RNR.REGION with that value.
1883 */
1884 region = extract32(value, 0, 4);
1885 if (region >= cpu->pmsav7_dregion) {
1886 qemu_log_mask(LOG_GUEST_ERROR,
1887 "MPU region out of range %u/%" PRIu32 "\n",
1888 region, cpu->pmsav7_dregion);
1889 return;
1890 }
1891 cpu->env.pmsav7.rnr[attrs.secure] = region;
1892 } else {
1893 region = cpu->env.pmsav7.rnr[attrs.secure];
1894 }
1895
1896 if (region >= cpu->pmsav7_dregion) {
1897 return;
1898 }
1899
1900 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1901 tlb_flush(CPU(cpu));
1902 break;
1903 }
1904 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1905 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1906 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1907 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1908 {
1909 int region = cpu->env.pmsav7.rnr[attrs.secure];
1910
1911 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1912 /* PMSAv8M handling of the aliases is different from v7M:
1913 * aliases A1, A2, A3 override the low two bits of the region
1914 * number in MPU_RNR.
1915 */
1916 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1917
1918 region = cpu->env.pmsav7.rnr[attrs.secure];
1919 if (aliasno) {
1920 region = deposit32(region, 0, 2, aliasno);
1921 }
1922 if (region >= cpu->pmsav7_dregion) {
1923 return;
1924 }
1925 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1926 tlb_flush(CPU(cpu));
1927 return;
1928 }
1929
1930 if (region >= cpu->pmsav7_dregion) {
1931 return;
1932 }
1933
1934 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1935 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1936 tlb_flush(CPU(cpu));
1937 break;
1938 }
1939 case 0xdc0: /* MPU_MAIR0 */
1940 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1941 goto bad_offset;
1942 }
1943 if (cpu->pmsav7_dregion) {
1944 /* Register is RES0 if no MPU regions are implemented */
1945 cpu->env.pmsav8.mair0[attrs.secure] = value;
1946 }
1947 /* We don't need to do anything else because memory attributes
1948 * only affect cacheability, and we don't implement caching.
1949 */
1950 break;
1951 case 0xdc4: /* MPU_MAIR1 */
1952 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1953 goto bad_offset;
1954 }
1955 if (cpu->pmsav7_dregion) {
1956 /* Register is RES0 if no MPU regions are implemented */
1957 cpu->env.pmsav8.mair1[attrs.secure] = value;
1958 }
1959 /* We don't need to do anything else because memory attributes
1960 * only affect cacheability, and we don't implement caching.
1961 */
1962 break;
1963 case 0xdd0: /* SAU_CTRL */
1964 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1965 goto bad_offset;
1966 }
1967 if (!attrs.secure) {
1968 return;
1969 }
1970 cpu->env.sau.ctrl = value & 3;
1971 break;
1972 case 0xdd4: /* SAU_TYPE */
1973 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1974 goto bad_offset;
1975 }
1976 break;
1977 case 0xdd8: /* SAU_RNR */
1978 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1979 goto bad_offset;
1980 }
1981 if (!attrs.secure) {
1982 return;
1983 }
1984 if (value >= cpu->sau_sregion) {
1985 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1986 PRIu32 "/%" PRIu32 "\n",
1987 value, cpu->sau_sregion);
1988 } else {
1989 cpu->env.sau.rnr = value;
1990 }
1991 break;
1992 case 0xddc: /* SAU_RBAR */
1993 {
1994 int region = cpu->env.sau.rnr;
1995
1996 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1997 goto bad_offset;
1998 }
1999 if (!attrs.secure) {
2000 return;
2001 }
2002 if (region >= cpu->sau_sregion) {
2003 return;
2004 }
2005 cpu->env.sau.rbar[region] = value & ~0x1f;
2006 tlb_flush(CPU(cpu));
2007 break;
2008 }
2009 case 0xde0: /* SAU_RLAR */
2010 {
2011 int region = cpu->env.sau.rnr;
2012
2013 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2014 goto bad_offset;
2015 }
2016 if (!attrs.secure) {
2017 return;
2018 }
2019 if (region >= cpu->sau_sregion) {
2020 return;
2021 }
2022 cpu->env.sau.rlar[region] = value & ~0x1c;
2023 tlb_flush(CPU(cpu));
2024 break;
2025 }
2026 case 0xde4: /* SFSR */
2027 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2028 goto bad_offset;
2029 }
2030 if (!attrs.secure) {
2031 return;
2032 }
2033 cpu->env.v7m.sfsr &= ~value; /* W1C */
2034 break;
2035 case 0xde8: /* SFAR */
2036 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2037 goto bad_offset;
2038 }
2039 if (!attrs.secure) {
2040 return;
2041 }
2042 cpu->env.v7m.sfsr = value;
2043 break;
2044 case 0xf00: /* Software Triggered Interrupt Register */
2045 {
2046 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
2047
2048 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
2049 goto bad_offset;
2050 }
2051
2052 if (excnum < s->num_irq) {
2053 armv7m_nvic_set_pending(s, excnum, false);
2054 }
2055 break;
2056 }
2057 case 0xf04: /* RFSR */
2058 if (!cpu_isar_feature(aa32_ras, cpu)) {
2059 goto bad_offset;
2060 }
2061 /* We provide minimal-RAS only: RFSR is RAZ/WI */
2062 break;
2063 case 0xf34: /* FPCCR */
2064 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2065 /* Not all bits here are banked. */
2066 uint32_t fpccr_s;
2067
2068 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
2069 /* Don't allow setting of bits not present in v7M */
2070 value &= (R_V7M_FPCCR_LSPACT_MASK |
2071 R_V7M_FPCCR_USER_MASK |
2072 R_V7M_FPCCR_THREAD_MASK |
2073 R_V7M_FPCCR_HFRDY_MASK |
2074 R_V7M_FPCCR_MMRDY_MASK |
2075 R_V7M_FPCCR_BFRDY_MASK |
2076 R_V7M_FPCCR_MONRDY_MASK |
2077 R_V7M_FPCCR_LSPEN_MASK |
2078 R_V7M_FPCCR_ASPEN_MASK);
2079 }
2080 value &= ~R_V7M_FPCCR_RES0_MASK;
2081
2082 if (!attrs.secure) {
2083 /* Some non-banked bits are configurably writable by NS */
2084 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
2085 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
2086 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
2087 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
2088 }
2089 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
2090 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
2091 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
2092 }
2093 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2094 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
2095 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
2097 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
2098 }
2099 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
2100 {
2101 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
2102 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
2103 }
2104
2105 /*
2106 * All other non-banked bits are RAZ/WI from NS; write
2107 * just the banked bits to fpccr[M_REG_NS].
2108 */
2109 value &= R_V7M_FPCCR_BANKED_MASK;
2110 cpu->env.v7m.fpccr[M_REG_NS] = value;
2111 } else {
2112 fpccr_s = value;
2113 }
2114 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2115 }
2116 break;
2117 case 0xf38: /* FPCAR */
2118 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2119 value &= ~7;
2120 cpu->env.v7m.fpcar[attrs.secure] = value;
2121 }
2122 break;
2123 case 0xf3c: /* FPDSCR */
2124 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
2125 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK;
2126 if (cpu_isar_feature(any_fp16, cpu)) {
2127 mask |= FPCR_FZ16;
2128 }
2129 value &= mask;
2130 if (cpu_isar_feature(aa32_lob, cpu)) {
2131 value |= 4 << FPCR_LTPSIZE_SHIFT;
2132 }
2133 cpu->env.v7m.fpdscr[attrs.secure] = value;
2134 }
2135 break;
2136 case 0xf50: /* ICIALLU */
2137 case 0xf58: /* ICIMVAU */
2138 case 0xf5c: /* DCIMVAC */
2139 case 0xf60: /* DCISW */
2140 case 0xf64: /* DCCMVAU */
2141 case 0xf68: /* DCCMVAC */
2142 case 0xf6c: /* DCCSW */
2143 case 0xf70: /* DCCIMVAC */
2144 case 0xf74: /* DCCISW */
2145 case 0xf78: /* BPIALL */
2146 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2147 break;
2148 default:
2149 bad_offset:
2150 qemu_log_mask(LOG_GUEST_ERROR,
2151 "NVIC: Bad write offset 0x%x\n", offset);
2152 }
2153 }
2154
nvic_user_access_ok(NVICState * s,hwaddr offset,MemTxAttrs attrs)2155 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2156 {
2157 /* Return true if unprivileged access to this register is permitted. */
2158 switch (offset) {
2159 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2160 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2161 * controls access even though the CPU is in Secure state (I_QDKX).
2162 */
2163 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2164 default:
2165 /* All other user accesses cause a BusFault unconditionally */
2166 return false;
2167 }
2168 }
2169
shpr_bank(NVICState * s,int exc,MemTxAttrs attrs)2170 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2171 {
2172 /* Behaviour for the SHPR register field for this exception:
2173 * return M_REG_NS to use the nonsecure vector (including for
2174 * non-banked exceptions), M_REG_S for the secure version of
2175 * a banked exception, and -1 if this field should RAZ/WI.
2176 */
2177 switch (exc) {
2178 case ARMV7M_EXCP_MEM:
2179 case ARMV7M_EXCP_USAGE:
2180 case ARMV7M_EXCP_SVC:
2181 case ARMV7M_EXCP_PENDSV:
2182 case ARMV7M_EXCP_SYSTICK:
2183 /* Banked exceptions */
2184 return attrs.secure;
2185 case ARMV7M_EXCP_BUS:
2186 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2187 if (!attrs.secure &&
2188 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2189 return -1;
2190 }
2191 return M_REG_NS;
2192 case ARMV7M_EXCP_SECURE:
2193 /* Not banked, RAZ/WI from nonsecure */
2194 if (!attrs.secure) {
2195 return -1;
2196 }
2197 return M_REG_NS;
2198 case ARMV7M_EXCP_DEBUG:
2199 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2200 return M_REG_NS;
2201 case 8 ... 10:
2202 case 13:
2203 /* RES0 */
2204 return -1;
2205 default:
2206 /* Not reachable due to decode of SHPR register addresses */
2207 g_assert_not_reached();
2208 }
2209 }
2210
nvic_sysreg_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)2211 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2212 uint64_t *data, unsigned size,
2213 MemTxAttrs attrs)
2214 {
2215 NVICState *s = (NVICState *)opaque;
2216 uint32_t offset = addr;
2217 unsigned i, startvec, end;
2218 uint32_t val;
2219
2220 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2221 /* Generate BusFault for unprivileged accesses */
2222 return MEMTX_ERROR;
2223 }
2224
2225 switch (offset) {
2226 /* reads of set and clear both return the status */
2227 case 0x100 ... 0x13f: /* NVIC Set enable */
2228 offset += 0x80;
2229 /* fall through */
2230 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2231 val = 0;
2232 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2233
2234 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2235 if (s->vectors[startvec + i].enabled &&
2236 (attrs.secure || s->itns[startvec + i])) {
2237 val |= (1 << i);
2238 }
2239 }
2240 break;
2241 case 0x200 ... 0x23f: /* NVIC Set pend */
2242 offset += 0x80;
2243 /* fall through */
2244 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2245 val = 0;
2246 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2247 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2248 if (s->vectors[startvec + i].pending &&
2249 (attrs.secure || s->itns[startvec + i])) {
2250 val |= (1 << i);
2251 }
2252 }
2253 break;
2254 case 0x300 ... 0x33f: /* NVIC Active */
2255 val = 0;
2256
2257 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2258 break;
2259 }
2260
2261 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2262
2263 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2264 if (s->vectors[startvec + i].active &&
2265 (attrs.secure || s->itns[startvec + i])) {
2266 val |= (1 << i);
2267 }
2268 }
2269 break;
2270 case 0x400 ... 0x5ef: /* NVIC Priority */
2271 val = 0;
2272 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2273
2274 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2275 if (attrs.secure || s->itns[startvec + i]) {
2276 val |= s->vectors[startvec + i].prio << (8 * i);
2277 }
2278 }
2279 break;
2280 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2281 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2282 val = 0;
2283 break;
2284 }
2285 /* fall through */
2286 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2287 val = 0;
2288 for (i = 0; i < size; i++) {
2289 unsigned hdlidx = (offset - 0xd14) + i;
2290 int sbank = shpr_bank(s, hdlidx, attrs);
2291
2292 if (sbank < 0) {
2293 continue;
2294 }
2295 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2296 }
2297 break;
2298 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2299 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2300 val = 0;
2301 break;
2302 };
2303 /*
2304 * The BFSR bits [15:8] are shared between security states
2305 * and we store them in the NS copy. They are RAZ/WI for
2306 * NS code if AIRCR.BFHFNMINS is 0.
2307 */
2308 val = s->cpu->env.v7m.cfsr[attrs.secure];
2309 if (!attrs.secure &&
2310 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2311 val &= ~R_V7M_CFSR_BFSR_MASK;
2312 } else {
2313 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2314 }
2315 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2316 break;
2317 case 0xfe0 ... 0xfff: /* ID. */
2318 if (offset & 3) {
2319 val = 0;
2320 } else {
2321 val = nvic_id[(offset - 0xfe0) >> 2];
2322 }
2323 break;
2324 default:
2325 if (size == 4) {
2326 val = nvic_readl(s, offset, attrs);
2327 } else {
2328 qemu_log_mask(LOG_GUEST_ERROR,
2329 "NVIC: Bad read of size %d at offset 0x%x\n",
2330 size, offset);
2331 val = 0;
2332 }
2333 }
2334
2335 trace_nvic_sysreg_read(addr, val, size);
2336 *data = val;
2337 return MEMTX_OK;
2338 }
2339
nvic_sysreg_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)2340 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2341 uint64_t value, unsigned size,
2342 MemTxAttrs attrs)
2343 {
2344 NVICState *s = (NVICState *)opaque;
2345 uint32_t offset = addr;
2346 unsigned i, startvec, end;
2347 unsigned setval = 0;
2348
2349 trace_nvic_sysreg_write(addr, value, size);
2350
2351 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2352 /* Generate BusFault for unprivileged accesses */
2353 return MEMTX_ERROR;
2354 }
2355
2356 switch (offset) {
2357 case 0x100 ... 0x13f: /* NVIC Set enable */
2358 offset += 0x80;
2359 setval = 1;
2360 /* fall through */
2361 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2362 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2363
2364 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2365 if (value & (1 << i) &&
2366 (attrs.secure || s->itns[startvec + i])) {
2367 s->vectors[startvec + i].enabled = setval;
2368 }
2369 }
2370 nvic_irq_update(s);
2371 goto exit_ok;
2372 case 0x200 ... 0x23f: /* NVIC Set pend */
2373 /* the special logic in armv7m_nvic_set_pending()
2374 * is not needed since IRQs are never escalated
2375 */
2376 offset += 0x80;
2377 setval = 1;
2378 /* fall through */
2379 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2380 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2381
2382 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2383 /*
2384 * Note that if the input line is still held high and the interrupt
2385 * is not active then rule R_CVJS requires that the Pending state
2386 * remains set; in that case we mustn't let it be cleared.
2387 */
2388 if (value & (1 << i) &&
2389 (attrs.secure || s->itns[startvec + i]) &&
2390 !(setval == 0 && s->vectors[startvec + i].level &&
2391 !s->vectors[startvec + i].active)) {
2392 s->vectors[startvec + i].pending = setval;
2393 }
2394 }
2395 nvic_irq_update(s);
2396 goto exit_ok;
2397 case 0x300 ... 0x33f: /* NVIC Active */
2398 goto exit_ok; /* R/O */
2399 case 0x400 ... 0x5ef: /* NVIC Priority */
2400 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2401
2402 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2403 if (attrs.secure || s->itns[startvec + i]) {
2404 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2405 }
2406 }
2407 nvic_irq_update(s);
2408 goto exit_ok;
2409 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2410 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2411 goto exit_ok;
2412 }
2413 /* fall through */
2414 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2415 for (i = 0; i < size; i++) {
2416 unsigned hdlidx = (offset - 0xd14) + i;
2417 int newprio = extract32(value, i * 8, 8);
2418 int sbank = shpr_bank(s, hdlidx, attrs);
2419
2420 if (sbank < 0) {
2421 continue;
2422 }
2423 set_prio(s, hdlidx, sbank, newprio);
2424 }
2425 nvic_irq_update(s);
2426 goto exit_ok;
2427 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2428 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2429 goto exit_ok;
2430 }
2431 /* All bits are W1C, so construct 32 bit value with 0s in
2432 * the parts not written by the access size
2433 */
2434 value <<= ((offset - 0xd28) * 8);
2435
2436 if (!attrs.secure &&
2437 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2438 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2439 value &= ~R_V7M_CFSR_BFSR_MASK;
2440 }
2441
2442 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2443 if (attrs.secure) {
2444 /* The BFSR bits [15:8] are shared between security states
2445 * and we store them in the NS copy.
2446 */
2447 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2448 }
2449 goto exit_ok;
2450 }
2451 if (size == 4) {
2452 nvic_writel(s, offset, value, attrs);
2453 goto exit_ok;
2454 }
2455 qemu_log_mask(LOG_GUEST_ERROR,
2456 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2457 /* This is UNPREDICTABLE; treat as RAZ/WI */
2458
2459 exit_ok:
2460 if (tcg_enabled()) {
2461 /* Ensure any changes made are reflected in the cached hflags. */
2462 arm_rebuild_hflags(&s->cpu->env);
2463 }
2464 return MEMTX_OK;
2465 }
2466
2467 static const MemoryRegionOps nvic_sysreg_ops = {
2468 .read_with_attrs = nvic_sysreg_read,
2469 .write_with_attrs = nvic_sysreg_write,
2470 .endianness = DEVICE_NATIVE_ENDIAN,
2471 };
2472
nvic_post_load(void * opaque,int version_id)2473 static int nvic_post_load(void *opaque, int version_id)
2474 {
2475 NVICState *s = opaque;
2476 unsigned i;
2477 int resetprio;
2478
2479 /* Check for out of range priority settings */
2480 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2481
2482 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2483 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2484 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2485 return 1;
2486 }
2487 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2488 if (s->vectors[i].prio & ~0xff) {
2489 return 1;
2490 }
2491 }
2492
2493 nvic_recompute_state(s);
2494
2495 return 0;
2496 }
2497
2498 static const VMStateDescription vmstate_VecInfo = {
2499 .name = "armv7m_nvic_info",
2500 .version_id = 1,
2501 .minimum_version_id = 1,
2502 .fields = (const VMStateField[]) {
2503 VMSTATE_INT16(prio, VecInfo),
2504 VMSTATE_UINT8(enabled, VecInfo),
2505 VMSTATE_UINT8(pending, VecInfo),
2506 VMSTATE_UINT8(active, VecInfo),
2507 VMSTATE_UINT8(level, VecInfo),
2508 VMSTATE_END_OF_LIST()
2509 }
2510 };
2511
nvic_security_needed(void * opaque)2512 static bool nvic_security_needed(void *opaque)
2513 {
2514 NVICState *s = opaque;
2515
2516 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2517 }
2518
nvic_security_post_load(void * opaque,int version_id)2519 static int nvic_security_post_load(void *opaque, int version_id)
2520 {
2521 NVICState *s = opaque;
2522 int i;
2523
2524 /* Check for out of range priority settings */
2525 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2526 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2527 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2528 * if the CPU state has been migrated yet; a mismatch won't
2529 * cause the emulation to blow up, though.
2530 */
2531 return 1;
2532 }
2533 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2534 if (s->sec_vectors[i].prio & ~0xff) {
2535 return 1;
2536 }
2537 }
2538 return 0;
2539 }
2540
2541 static const VMStateDescription vmstate_nvic_security = {
2542 .name = "armv7m_nvic/m-security",
2543 .version_id = 1,
2544 .minimum_version_id = 1,
2545 .needed = nvic_security_needed,
2546 .post_load = &nvic_security_post_load,
2547 .fields = (const VMStateField[]) {
2548 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2549 vmstate_VecInfo, VecInfo),
2550 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2551 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2552 VMSTATE_END_OF_LIST()
2553 }
2554 };
2555
2556 static const VMStateDescription vmstate_nvic = {
2557 .name = "armv7m_nvic",
2558 .version_id = 4,
2559 .minimum_version_id = 4,
2560 .post_load = &nvic_post_load,
2561 .fields = (const VMStateField[]) {
2562 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2563 vmstate_VecInfo, VecInfo),
2564 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2565 VMSTATE_END_OF_LIST()
2566 },
2567 .subsections = (const VMStateDescription * const []) {
2568 &vmstate_nvic_security,
2569 NULL
2570 }
2571 };
2572
2573 static const Property props_nvic[] = {
2574 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2575 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2576 /*
2577 * Number of the maximum priority bits that can be used. 0 means
2578 * to use a reasonable default.
2579 */
2580 DEFINE_PROP_UINT8("num-prio-bits", NVICState, num_prio_bits, 0),
2581 };
2582
armv7m_nvic_reset(DeviceState * dev)2583 static void armv7m_nvic_reset(DeviceState *dev)
2584 {
2585 int resetprio;
2586 NVICState *s = NVIC(dev);
2587
2588 memset(s->vectors, 0, sizeof(s->vectors));
2589 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2590 s->prigroup[M_REG_NS] = 0;
2591 s->prigroup[M_REG_S] = 0;
2592
2593 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2594 /* MEM, BUS, and USAGE are enabled through
2595 * the System Handler Control register
2596 */
2597 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2598 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2599 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2600
2601 /* DebugMonitor is enabled via DEMCR.MON_EN */
2602 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2603
2604 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2605 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2606 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2607 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2608
2609 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2610 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2611 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2612 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2613 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2614
2615 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2616 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2617 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2618 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2619 } else {
2620 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2621 }
2622
2623 /* Strictly speaking the reset handler should be enabled.
2624 * However, we don't simulate soft resets through the NVIC,
2625 * and the reset vector should never be pended.
2626 * So we leave it disabled to catch logic errors.
2627 */
2628
2629 s->exception_prio = NVIC_NOEXC_PRIO;
2630 s->vectpending = 0;
2631 s->vectpending_is_s_banked = false;
2632 s->vectpending_prio = NVIC_NOEXC_PRIO;
2633
2634 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2635 memset(s->itns, 0, sizeof(s->itns));
2636 } else {
2637 /* This state is constant and not guest accessible in a non-security
2638 * NVIC; we set the bits to true to avoid having to do a feature
2639 * bit check in the NVIC enable/pend/etc register accessors.
2640 */
2641 int i;
2642
2643 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2644 s->itns[i] = true;
2645 }
2646 }
2647
2648 if (tcg_enabled()) {
2649 /*
2650 * We updated state that affects the CPU's MMUidx and thus its
2651 * hflags; and we can't guarantee that we run before the CPU
2652 * reset function.
2653 */
2654 arm_rebuild_hflags(&s->cpu->env);
2655 }
2656 }
2657
nvic_systick_trigger(void * opaque,int n,int level)2658 static void nvic_systick_trigger(void *opaque, int n, int level)
2659 {
2660 NVICState *s = opaque;
2661
2662 if (level) {
2663 /* SysTick just asked us to pend its exception.
2664 * (This is different from an external interrupt line's
2665 * behaviour.)
2666 * n == 0 : NonSecure systick
2667 * n == 1 : Secure systick
2668 */
2669 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2670 }
2671 }
2672
armv7m_nvic_realize(DeviceState * dev,Error ** errp)2673 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2674 {
2675 NVICState *s = NVIC(dev);
2676
2677 /* The armv7m container object will have set our CPU pointer */
2678 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2679 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2680 return;
2681 }
2682
2683 if (s->num_irq > NVIC_MAX_IRQ) {
2684 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2685 return;
2686 }
2687
2688 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2689
2690 /* include space for internal exception vectors */
2691 s->num_irq += NVIC_FIRST_IRQ;
2692
2693 if (s->num_prio_bits == 0) {
2694 /*
2695 * If left unspecified, use 2 bits by default on Cortex-M0/M0+/M1
2696 * and 8 bits otherwise.
2697 */
2698 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2699 } else {
2700 uint8_t min_prio_bits =
2701 arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 3 : 2;
2702 if (s->num_prio_bits < min_prio_bits || s->num_prio_bits > 8) {
2703 error_setg(errp,
2704 "num-prio-bits %d is outside "
2705 "NVIC acceptable range [%d-8]",
2706 s->num_prio_bits, min_prio_bits);
2707 return;
2708 }
2709 }
2710
2711 /*
2712 * This device provides a single memory region which covers the
2713 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the
2714 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF.
2715 */
2716 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2717 "nvic_sysregs", 0x1000);
2718 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem);
2719 }
2720
armv7m_nvic_instance_init(Object * obj)2721 static void armv7m_nvic_instance_init(Object *obj)
2722 {
2723 DeviceState *dev = DEVICE(obj);
2724 NVICState *nvic = NVIC(obj);
2725 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2726
2727 sysbus_init_irq(sbd, &nvic->excpout);
2728 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2729 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2730 M_REG_NUM_BANKS);
2731 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2732 }
2733
armv7m_nvic_class_init(ObjectClass * klass,const void * data)2734 static void armv7m_nvic_class_init(ObjectClass *klass, const void *data)
2735 {
2736 DeviceClass *dc = DEVICE_CLASS(klass);
2737
2738 dc->vmsd = &vmstate_nvic;
2739 device_class_set_props(dc, props_nvic);
2740 device_class_set_legacy_reset(dc, armv7m_nvic_reset);
2741 dc->realize = armv7m_nvic_realize;
2742 }
2743
2744 static const TypeInfo armv7m_nvic_info = {
2745 .name = TYPE_NVIC,
2746 .parent = TYPE_SYS_BUS_DEVICE,
2747 .instance_init = armv7m_nvic_instance_init,
2748 .instance_size = sizeof(NVICState),
2749 .class_init = armv7m_nvic_class_init,
2750 .class_size = sizeof(SysBusDeviceClass),
2751 };
2752
armv7m_nvic_register_types(void)2753 static void armv7m_nvic_register_types(void)
2754 {
2755 type_register_static(&armv7m_nvic_info);
2756 }
2757
2758 type_init(armv7m_nvic_register_types)
2759