xref: /openbmc/qemu/hw/arm/boot.c (revision e452053097371880910c744a5d42ae2df058a4a7)
1 /*
2  * ARM kernel loader.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "cpu.h"
18 #include "exec/tswap.h"
19 #include "exec/target_page.h"
20 #include "system/kvm.h"
21 #include "system/tcg.h"
22 #include "system/system.h"
23 #include "system/memory.h"
24 #include "system/numa.h"
25 #include "hw/boards.h"
26 #include "system/reset.h"
27 #include "hw/loader.h"
28 #include "elf.h"
29 #include "system/device_tree.h"
30 #include "qemu/config-file.h"
31 #include "qemu/option.h"
32 #include "qemu/units.h"
33 #include "qemu/bswap.h"
34 
35 /* Kernel boot protocol is specified in the kernel docs
36  * Documentation/arm/Booting and Documentation/arm64/booting.txt
37  * They have different preferred image load offsets from system RAM base.
38  */
39 #define KERNEL_ARGS_ADDR   0x100
40 #define KERNEL_NOLOAD_ADDR 0x02000000
41 #define KERNEL_LOAD_ADDR   0x00010000
42 #define KERNEL64_LOAD_ADDR 0x00080000
43 
44 #define ARM64_TEXT_OFFSET_OFFSET    8
45 #define ARM64_MAGIC_OFFSET          56
46 
47 #define BOOTLOADER_MAX_SIZE         (4 * KiB)
48 
arm_boot_address_space(ARMCPU * cpu,const struct arm_boot_info * info)49 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
50                                      const struct arm_boot_info *info)
51 {
52     /* Return the address space to use for bootloader reads and writes.
53      * We prefer the secure address space if the CPU has it and we're
54      * going to boot the guest into it.
55      */
56     int asidx;
57     CPUState *cs = CPU(cpu);
58 
59     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
60         asidx = ARMASIdx_S;
61     } else {
62         asidx = ARMASIdx_NS;
63     }
64 
65     return cpu_get_address_space(cs, asidx);
66 }
67 
68 static const ARMInsnFixup bootloader_aarch64[] = {
69     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
70     { 0xaa1f03e1 }, /* mov x1, xzr */
71     { 0xaa1f03e2 }, /* mov x2, xzr */
72     { 0xaa1f03e3 }, /* mov x3, xzr */
73     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
74     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
75     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
76     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
77     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
78     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
79     { 0, FIXUP_TERMINATOR }
80 };
81 
82 /* A very small bootloader: call the board-setup code (if needed),
83  * set r0-r2, then jump to the kernel.
84  * If we're not calling boot setup code then we don't copy across
85  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
86  */
87 
88 static const ARMInsnFixup bootloader[] = {
89     { 0xe28fe004 }, /* add     lr, pc, #4 */
90     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
91     { 0, FIXUP_BOARD_SETUP },
92 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
93     { 0xe3a00000 }, /* mov     r0, #0 */
94     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
95     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
96     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
97     { 0, FIXUP_BOARDID },
98     { 0, FIXUP_ARGPTR_LO },
99     { 0, FIXUP_ENTRYPOINT_LO },
100     { 0, FIXUP_TERMINATOR }
101 };
102 
103 /* Handling for secondary CPU boot in a multicore system.
104  * Unlike the uniprocessor/primary CPU boot, this is platform
105  * dependent. The default code here is based on the secondary
106  * CPU boot protocol used on realview/vexpress boards, with
107  * some parameterisation to increase its flexibility.
108  * QEMU platform models for which this code is not appropriate
109  * should override write_secondary_boot and secondary_cpu_reset_hook
110  * instead.
111  *
112  * This code enables the interrupt controllers for the secondary
113  * CPUs and then puts all the secondary CPUs into a loop waiting
114  * for an interprocessor interrupt and polling a configurable
115  * location for the kernel secondary CPU entry point.
116  */
117 #define DSB_INSN 0xf57ff04f
118 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
119 
120 static const ARMInsnFixup smpboot[] = {
121     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
122     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
123     { 0xe3a01001 }, /* mov r1, #1 */
124     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
125     { 0xe3a010ff }, /* mov r1, #0xff */
126     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
127     { 0, FIXUP_DSB },   /* dsb */
128     { 0xe320f003 }, /* wfi */
129     { 0xe5901000 }, /* ldr     r1, [r0] */
130     { 0xe1110001 }, /* tst     r1, r1 */
131     { 0x0afffffb }, /* beq     <wfi> */
132     { 0xe12fff11 }, /* bx      r1 */
133     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
134     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
135     { 0, FIXUP_TERMINATOR }
136 };
137 
arm_write_bootloader(const char * name,AddressSpace * as,hwaddr addr,const ARMInsnFixup * insns,const uint32_t * fixupcontext)138 void arm_write_bootloader(const char *name,
139                           AddressSpace *as, hwaddr addr,
140                           const ARMInsnFixup *insns,
141                           const uint32_t *fixupcontext)
142 {
143     /* Fix up the specified bootloader fragment and write it into
144      * guest memory using rom_add_blob_fixed(). fixupcontext is
145      * an array giving the values to write in for the fixup types
146      * which write a value into the code array.
147      */
148     int i, len;
149     uint32_t *code;
150 
151     len = 0;
152     while (insns[len].fixup != FIXUP_TERMINATOR) {
153         len++;
154     }
155 
156     code = g_new0(uint32_t, len);
157 
158     for (i = 0; i < len; i++) {
159         uint32_t insn = insns[i].insn;
160         FixupType fixup = insns[i].fixup;
161 
162         switch (fixup) {
163         case FIXUP_NONE:
164             break;
165         case FIXUP_BOARDID:
166         case FIXUP_BOARD_SETUP:
167         case FIXUP_ARGPTR_LO:
168         case FIXUP_ARGPTR_HI:
169         case FIXUP_ENTRYPOINT_LO:
170         case FIXUP_ENTRYPOINT_HI:
171         case FIXUP_GIC_CPU_IF:
172         case FIXUP_BOOTREG:
173         case FIXUP_DSB:
174             insn = fixupcontext[fixup];
175             break;
176         default:
177             abort();
178         }
179         code[i] = tswap32(insn);
180     }
181 
182     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
183 
184     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
185 
186     g_free(code);
187 }
188 
default_write_secondary(ARMCPU * cpu,const struct arm_boot_info * info)189 static void default_write_secondary(ARMCPU *cpu,
190                                     const struct arm_boot_info *info)
191 {
192     uint32_t fixupcontext[FIXUP_MAX];
193     AddressSpace *as = arm_boot_address_space(cpu, info);
194 
195     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
196     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
197     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
198         fixupcontext[FIXUP_DSB] = DSB_INSN;
199     } else {
200         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
201     }
202 
203     arm_write_bootloader("smpboot", as, info->smp_loader_start,
204                          smpboot, fixupcontext);
205 }
206 
arm_write_secure_board_setup_dummy_smc(ARMCPU * cpu,const struct arm_boot_info * info,hwaddr mvbar_addr)207 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
208                                             const struct arm_boot_info *info,
209                                             hwaddr mvbar_addr)
210 {
211     AddressSpace *as = arm_boot_address_space(cpu, info);
212     int n;
213     uint32_t mvbar_blob[] = {
214         /* mvbar_addr: secure monitor vectors
215          * Default unimplemented and unused vectors to spin. Makes it
216          * easier to debug (as opposed to the CPU running away).
217          */
218         0xeafffffe, /* (spin) */
219         0xeafffffe, /* (spin) */
220         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
221         0xeafffffe, /* (spin) */
222         0xeafffffe, /* (spin) */
223         0xeafffffe, /* (spin) */
224         0xeafffffe, /* (spin) */
225         0xeafffffe, /* (spin) */
226     };
227     uint32_t board_setup_blob[] = {
228         /* board setup addr */
229         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
230         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
231         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
232         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
233         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
234         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
235         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
236         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
237         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
238         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
239         0xe1a0f001, /* mov     pc, r1                 ;return */
240     };
241 
242     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
243     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
244 
245     /* check that these blobs don't overlap */
246     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
247           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
248 
249     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
250         mvbar_blob[n] = tswap32(mvbar_blob[n]);
251     }
252     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
253                           mvbar_addr, as);
254 
255     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
256         board_setup_blob[n] = tswap32(board_setup_blob[n]);
257     }
258     rom_add_blob_fixed_as("board-setup", board_setup_blob,
259                           sizeof(board_setup_blob), info->board_setup_addr, as);
260 }
261 
default_reset_secondary(ARMCPU * cpu,const struct arm_boot_info * info)262 static void default_reset_secondary(ARMCPU *cpu,
263                                     const struct arm_boot_info *info)
264 {
265     AddressSpace *as = arm_boot_address_space(cpu, info);
266     CPUState *cs = CPU(cpu);
267 
268     address_space_stl_notdirty(as, info->smp_bootreg_addr,
269                                0, MEMTXATTRS_UNSPECIFIED, NULL);
270     cpu_set_pc(cs, info->smp_loader_start);
271 }
272 
have_dtb(const struct arm_boot_info * info)273 static inline bool have_dtb(const struct arm_boot_info *info)
274 {
275     return info->dtb_filename || info->get_dtb;
276 }
277 
278 #define WRITE_WORD(p, value) do { \
279     address_space_stl_notdirty(as, p, value, \
280                                MEMTXATTRS_UNSPECIFIED, NULL);  \
281     p += 4;                       \
282 } while (0)
283 
set_kernel_args(const struct arm_boot_info * info,AddressSpace * as)284 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
285 {
286     int initrd_size = info->initrd_size;
287     hwaddr base = info->loader_start;
288     hwaddr p;
289 
290     p = base + KERNEL_ARGS_ADDR;
291     /* ATAG_CORE */
292     WRITE_WORD(p, 5);
293     WRITE_WORD(p, 0x54410001);
294     WRITE_WORD(p, 1);
295     WRITE_WORD(p, 0x1000);
296     WRITE_WORD(p, 0);
297     /* ATAG_MEM */
298     /* TODO: handle multiple chips on one ATAG list */
299     WRITE_WORD(p, 4);
300     WRITE_WORD(p, 0x54410002);
301     WRITE_WORD(p, info->ram_size);
302     WRITE_WORD(p, info->loader_start);
303     if (initrd_size) {
304         /* ATAG_INITRD2 */
305         WRITE_WORD(p, 4);
306         WRITE_WORD(p, 0x54420005);
307         WRITE_WORD(p, info->initrd_start);
308         WRITE_WORD(p, initrd_size);
309     }
310     if (info->kernel_cmdline && *info->kernel_cmdline) {
311         /* ATAG_CMDLINE */
312         int cmdline_size;
313 
314         cmdline_size = strlen(info->kernel_cmdline);
315         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
316                             info->kernel_cmdline, cmdline_size + 1);
317         cmdline_size = (cmdline_size >> 2) + 1;
318         WRITE_WORD(p, cmdline_size + 2);
319         WRITE_WORD(p, 0x54410009);
320         p += cmdline_size * 4;
321     }
322     if (info->atag_board) {
323         /* ATAG_BOARD */
324         int atag_board_len;
325         uint8_t atag_board_buf[0x1000];
326 
327         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
328         WRITE_WORD(p, (atag_board_len + 8) >> 2);
329         WRITE_WORD(p, 0x414f4d50);
330         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
331                             atag_board_buf, atag_board_len);
332         p += atag_board_len;
333     }
334     /* ATAG_END */
335     WRITE_WORD(p, 0);
336     WRITE_WORD(p, 0);
337 }
338 
set_kernel_args_old(const struct arm_boot_info * info,AddressSpace * as)339 static void set_kernel_args_old(const struct arm_boot_info *info,
340                                 AddressSpace *as)
341 {
342     hwaddr p;
343     const char *s;
344     int initrd_size = info->initrd_size;
345     hwaddr base = info->loader_start;
346 
347     /* see linux/include/asm-arm/setup.h */
348     p = base + KERNEL_ARGS_ADDR;
349     /* page_size */
350     WRITE_WORD(p, 4096);
351     /* nr_pages */
352     WRITE_WORD(p, info->ram_size / 4096);
353     /* ramdisk_size */
354     WRITE_WORD(p, 0);
355 #define FLAG_READONLY 1
356 #define FLAG_RDLOAD   4
357 #define FLAG_RDPROMPT 8
358     /* flags */
359     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
360     /* rootdev */
361     WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
362     /* video_num_cols */
363     WRITE_WORD(p, 0);
364     /* video_num_rows */
365     WRITE_WORD(p, 0);
366     /* video_x */
367     WRITE_WORD(p, 0);
368     /* video_y */
369     WRITE_WORD(p, 0);
370     /* memc_control_reg */
371     WRITE_WORD(p, 0);
372     /* unsigned char sounddefault */
373     /* unsigned char adfsdrives */
374     /* unsigned char bytes_per_char_h */
375     /* unsigned char bytes_per_char_v */
376     WRITE_WORD(p, 0);
377     /* pages_in_bank[4] */
378     WRITE_WORD(p, 0);
379     WRITE_WORD(p, 0);
380     WRITE_WORD(p, 0);
381     WRITE_WORD(p, 0);
382     /* pages_in_vram */
383     WRITE_WORD(p, 0);
384     /* initrd_start */
385     if (initrd_size) {
386         WRITE_WORD(p, info->initrd_start);
387     } else {
388         WRITE_WORD(p, 0);
389     }
390     /* initrd_size */
391     WRITE_WORD(p, initrd_size);
392     /* rd_start */
393     WRITE_WORD(p, 0);
394     /* system_rev */
395     WRITE_WORD(p, 0);
396     /* system_serial_low */
397     WRITE_WORD(p, 0);
398     /* system_serial_high */
399     WRITE_WORD(p, 0);
400     /* mem_fclk_21285 */
401     WRITE_WORD(p, 0);
402     /* zero unused fields */
403     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
404         WRITE_WORD(p, 0);
405     }
406     s = info->kernel_cmdline;
407     if (s) {
408         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
409     } else {
410         WRITE_WORD(p, 0);
411     }
412 }
413 
fdt_add_memory_node(void * fdt,uint32_t acells,hwaddr mem_base,uint32_t scells,hwaddr mem_len,int numa_node_id)414 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
415                                uint32_t scells, hwaddr mem_len,
416                                int numa_node_id)
417 {
418     char *nodename;
419     int ret;
420 
421     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
422     qemu_fdt_add_subnode(fdt, nodename);
423     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
424     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
425                                        scells, mem_len);
426     if (ret < 0) {
427         goto out;
428     }
429 
430     /* only set the NUMA ID if it is specified */
431     if (numa_node_id >= 0) {
432         ret = qemu_fdt_setprop_cell(fdt, nodename,
433                                     "numa-node-id", numa_node_id);
434     }
435 out:
436     g_free(nodename);
437     return ret;
438 }
439 
fdt_add_psci_node(void * fdt,ARMCPU * armcpu)440 static void fdt_add_psci_node(void *fdt, ARMCPU *armcpu)
441 {
442     uint32_t cpu_suspend_fn;
443     uint32_t cpu_off_fn;
444     uint32_t cpu_on_fn;
445     uint32_t migrate_fn;
446     const char *psci_method;
447     int64_t psci_conduit;
448     int rc;
449 
450     psci_conduit = object_property_get_int(OBJECT(armcpu),
451                                            "psci-conduit",
452                                            &error_abort);
453     switch (psci_conduit) {
454     case QEMU_PSCI_CONDUIT_DISABLED:
455         return;
456     case QEMU_PSCI_CONDUIT_HVC:
457         psci_method = "hvc";
458         break;
459     case QEMU_PSCI_CONDUIT_SMC:
460         psci_method = "smc";
461         break;
462     default:
463         g_assert_not_reached();
464     }
465 
466     /*
467      * A pre-existing /psci node might specify function ID values
468      * that don't match QEMU's PSCI implementation. Delete the whole
469      * node and put our own in instead.
470      */
471     rc = fdt_path_offset(fdt, "/psci");
472     if (rc >= 0) {
473         qemu_fdt_nop_node(fdt, "/psci");
474     }
475 
476     qemu_fdt_add_subnode(fdt, "/psci");
477     if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
478         if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
479             const char comp[] = "arm,psci-0.2\0arm,psci";
480             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
481         } else {
482             const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
483             qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
484         }
485 
486         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
487         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
488             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
489             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
490             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
491         } else {
492             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
493             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
494             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
495         }
496     } else {
497         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
498 
499         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
500         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
501         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
502         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
503     }
504 
505     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
506      * to the instruction that should be used to invoke PSCI functions.
507      * However, the device tree binding uses 'method' instead, so that is
508      * what we should use here.
509      */
510     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
511 
512     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
513     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
514     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
515     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
516 }
517 
arm_load_dtb(hwaddr addr,const struct arm_boot_info * binfo,hwaddr addr_limit,AddressSpace * as,MachineState * ms,ARMCPU * cpu)518 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
519                  hwaddr addr_limit, AddressSpace *as, MachineState *ms,
520                  ARMCPU *cpu)
521 {
522     void *fdt = NULL;
523     int size, rc, n = 0;
524     uint32_t acells, scells;
525     unsigned int i;
526     hwaddr mem_base, mem_len;
527     char **node_path;
528     Error *err = NULL;
529 
530     if (binfo->dtb_filename) {
531         char *filename;
532         filename = qemu_find_file(QEMU_FILE_TYPE_DTB, binfo->dtb_filename);
533         if (!filename) {
534             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
535             goto fail;
536         }
537 
538         fdt = load_device_tree(filename, &size);
539         if (!fdt) {
540             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
541             g_free(filename);
542             goto fail;
543         }
544         g_free(filename);
545     } else {
546         fdt = binfo->get_dtb(binfo, &size);
547         if (!fdt) {
548             fprintf(stderr, "Board was unable to create a dtb blob\n");
549             goto fail;
550         }
551     }
552 
553     if (addr_limit > addr && size > (addr_limit - addr)) {
554         /* Installing the device tree blob at addr would exceed addr_limit.
555          * Whether this constitutes failure is up to the caller to decide,
556          * so just return 0 as size, i.e., no error.
557          */
558         g_free(fdt);
559         return 0;
560     }
561 
562     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
563                                    NULL, &error_fatal);
564     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
565                                    NULL, &error_fatal);
566     if (acells == 0 || scells == 0) {
567         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
568         goto fail;
569     }
570 
571     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
572         /* This is user error so deserves a friendlier error message
573          * than the failure of setprop_sized_cells would provide
574          */
575         fprintf(stderr, "qemu: dtb file not compatible with "
576                 "RAM size > 4GB\n");
577         goto fail;
578     }
579 
580     /* nop all root nodes matching /memory or /memory@unit-address */
581     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
582     if (err) {
583         error_report_err(err);
584         goto fail;
585     }
586     while (node_path[n]) {
587         if (g_str_has_prefix(node_path[n], "/memory")) {
588             qemu_fdt_nop_node(fdt, node_path[n]);
589         }
590         n++;
591     }
592     g_strfreev(node_path);
593 
594     /*
595      * We drop all the memory nodes which correspond to empty NUMA nodes
596      * from the device tree, because the Linux NUMA binding document
597      * states they should not be generated. Linux will get the NUMA node
598      * IDs of the empty NUMA nodes from the distance map if they are needed.
599      * This means QEMU users may be obliged to provide command lines which
600      * configure distance maps when the empty NUMA node IDs are needed and
601      * Linux's default distance map isn't sufficient.
602      */
603     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
604         mem_base = binfo->loader_start;
605         for (i = 0; i < ms->numa_state->num_nodes; i++) {
606             mem_len = ms->numa_state->nodes[i].node_mem;
607             if (!mem_len) {
608                 continue;
609             }
610 
611             rc = fdt_add_memory_node(fdt, acells, mem_base,
612                                      scells, mem_len, i);
613             if (rc < 0) {
614                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
615                         mem_base);
616                 goto fail;
617             }
618 
619             mem_base += mem_len;
620         }
621     } else {
622         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
623                                  scells, binfo->ram_size, -1);
624         if (rc < 0) {
625             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
626                     binfo->loader_start);
627             goto fail;
628         }
629     }
630 
631     rc = fdt_path_offset(fdt, "/chosen");
632     if (rc < 0) {
633         qemu_fdt_add_subnode(fdt, "/chosen");
634     }
635 
636     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
637         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
638                                      ms->kernel_cmdline);
639         if (rc < 0) {
640             fprintf(stderr, "couldn't set /chosen/bootargs\n");
641             goto fail;
642         }
643     }
644 
645     if (binfo->initrd_size) {
646         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
647                                           acells, binfo->initrd_start);
648         if (rc < 0) {
649             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
650             goto fail;
651         }
652 
653         rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
654                                           acells,
655                                           binfo->initrd_start +
656                                           binfo->initrd_size);
657         if (rc < 0) {
658             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
659             goto fail;
660         }
661     }
662 
663     fdt_add_psci_node(fdt, cpu);
664 
665     if (binfo->modify_dtb) {
666         binfo->modify_dtb(binfo, fdt);
667     }
668 
669     /* Put the DTB into the memory map as a ROM image: this will ensure
670      * the DTB is copied again upon reset, even if addr points into RAM.
671      */
672     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
673     qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
674                                        rom_ptr_for_as(as, addr, size));
675 
676     if (fdt != ms->fdt) {
677         g_free(ms->fdt);
678         ms->fdt = fdt;
679     }
680 
681     return size;
682 
683 fail:
684     g_free(fdt);
685     return -1;
686 }
687 
do_cpu_reset(void * opaque)688 static void do_cpu_reset(void *opaque)
689 {
690     ARMCPU *cpu = opaque;
691     CPUState *cs = CPU(cpu);
692     CPUARMState *env = &cpu->env;
693     const struct arm_boot_info *info = env->boot_info;
694 
695     cpu_reset(cs);
696     if (info) {
697         if (!info->is_linux) {
698             int i;
699             /* Jump to the entry point.  */
700             uint64_t entry = info->entry;
701 
702             switch (info->endianness) {
703             case ARM_ENDIANNESS_LE:
704                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
705                 for (i = 1; i < 4; ++i) {
706                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
707                 }
708                 env->uncached_cpsr &= ~CPSR_E;
709                 break;
710             case ARM_ENDIANNESS_BE8:
711                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
712                 for (i = 1; i < 4; ++i) {
713                     env->cp15.sctlr_el[i] |= SCTLR_EE;
714                 }
715                 env->uncached_cpsr |= CPSR_E;
716                 break;
717             case ARM_ENDIANNESS_BE32:
718                 env->cp15.sctlr_el[1] |= SCTLR_B;
719                 break;
720             case ARM_ENDIANNESS_UNKNOWN:
721                 break; /* Board's decision */
722             default:
723                 g_assert_not_reached();
724             }
725 
726             cpu_set_pc(cs, entry);
727         } else {
728             /*
729              * If we are booting Linux then we might need to do so at:
730              *  - AArch64 NS EL2 or NS EL1
731              *  - AArch32 Secure SVC (EL3)
732              *  - AArch32 NS Hyp (EL2)
733              *  - AArch32 NS SVC (EL1)
734              * Configure the CPU in the way boot firmware would do to
735              * drop us down to the appropriate level.
736              */
737             int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
738 
739             if (env->aarch64) {
740                 /*
741                  * AArch64 kernels never boot in secure mode, and we don't
742                  * support the secure_board_setup hook for AArch64.
743                  */
744                 assert(!info->secure_boot);
745                 assert(!info->secure_board_setup);
746             } else {
747                 if (arm_feature(env, ARM_FEATURE_EL3) &&
748                     (info->secure_boot ||
749                      (info->secure_board_setup && cpu == info->primary_cpu))) {
750                     /* Start this CPU in Secure SVC */
751                     target_el = 3;
752                 }
753             }
754 
755             arm_emulate_firmware_reset(cs, target_el);
756 
757             if (cpu == info->primary_cpu) {
758                 AddressSpace *as = arm_boot_address_space(cpu, info);
759 
760                 cpu_set_pc(cs, info->loader_start);
761 
762                 if (!have_dtb(info)) {
763                     if (old_param) {
764                         set_kernel_args_old(info, as);
765                     } else {
766                         set_kernel_args(info, as);
767                     }
768                 }
769             } else if (info->secondary_cpu_reset_hook) {
770                 info->secondary_cpu_reset_hook(cpu, info);
771             }
772         }
773 
774         if (tcg_enabled()) {
775             arm_rebuild_hflags(env);
776         }
777     }
778 }
779 
do_arm_linux_init(Object * obj,void * opaque)780 static int do_arm_linux_init(Object *obj, void *opaque)
781 {
782     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
783         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
784         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
785         struct arm_boot_info *info = opaque;
786 
787         if (albifc->arm_linux_init) {
788             albifc->arm_linux_init(albif, info->secure_boot);
789         }
790     }
791     return 0;
792 }
793 
arm_load_elf(struct arm_boot_info * info,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,int elf_machine,AddressSpace * as)794 static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
795                             uint64_t *lowaddr, uint64_t *highaddr,
796                             int elf_machine, AddressSpace *as)
797 {
798     bool elf_is64;
799     union {
800         Elf32_Ehdr h32;
801         Elf64_Ehdr h64;
802     } elf_header;
803     int data_swab = 0;
804     int elf_data_order;
805     ssize_t ret;
806     Error *err = NULL;
807 
808 
809     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
810     if (err) {
811         /*
812          * If the file is not an ELF file we silently return.
813          * The caller will fall back to try other formats.
814          */
815         error_free(err);
816         return -1;
817     }
818 
819     if (elf_is64) {
820         elf_data_order = elf_header.h64.e_ident[EI_DATA];
821         info->endianness = elf_data_order == ELFDATA2MSB ? ARM_ENDIANNESS_BE8
822                                                          : ARM_ENDIANNESS_LE;
823     } else {
824         elf_data_order = elf_header.h32.e_ident[EI_DATA];
825         if (elf_data_order == ELFDATA2MSB) {
826             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
827                 info->endianness = ARM_ENDIANNESS_BE8;
828             } else {
829                 info->endianness = ARM_ENDIANNESS_BE32;
830                 /* In BE32, the CPU has a different view of the per-byte
831                  * address map than the rest of the system. BE32 ELF files
832                  * are organised such that they can be programmed through
833                  * the CPU's per-word byte-reversed view of the world. QEMU
834                  * however loads ELF files independently of the CPU. So
835                  * tell the ELF loader to byte reverse the data for us.
836                  */
837                 data_swab = 2;
838             }
839         } else {
840             info->endianness = ARM_ENDIANNESS_LE;
841         }
842     }
843 
844     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
845                       pentry, lowaddr, highaddr, NULL, elf_data_order,
846                       elf_machine, 1, data_swab, as);
847     if (ret <= 0) {
848         /* The header loaded but the image didn't */
849         error_report("Couldn't load elf '%s': %s",
850                      info->kernel_filename, load_elf_strerror(ret));
851         exit(1);
852     }
853 
854     return ret;
855 }
856 
load_aarch64_image(const char * filename,hwaddr mem_base,hwaddr * entry,AddressSpace * as)857 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
858                                    hwaddr *entry, AddressSpace *as)
859 {
860     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
861     uint64_t kernel_size = 0;
862     uint8_t *buffer;
863     ssize_t size;
864 
865     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
866     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
867                                      &buffer);
868 
869     if (size < 0) {
870         gsize len;
871 
872         /* Load as raw file otherwise */
873         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
874             return -1;
875         }
876         size = len;
877 
878         /* Unpack the image if it is a EFI zboot image */
879         if (unpack_efi_zboot_image(&buffer, &size) < 0) {
880             g_free(buffer);
881             return -1;
882         }
883     }
884 
885     /* check the arm64 magic header value -- very old kernels may not have it */
886     if (size > ARM64_MAGIC_OFFSET + 4 &&
887         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
888         uint64_t hdrvals[2];
889 
890         /* The arm64 Image header has text_offset and image_size fields at 8 and
891          * 16 bytes into the Image header, respectively. The text_offset field
892          * is only valid if the image_size is non-zero.
893          */
894         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
895 
896         kernel_size = le64_to_cpu(hdrvals[1]);
897 
898         if (kernel_size != 0) {
899             kernel_load_offset = le64_to_cpu(hdrvals[0]);
900 
901             /*
902              * We write our startup "bootloader" at the very bottom of RAM,
903              * so that bit can't be used for the image. Luckily the Image
904              * format specification is that the image requests only an offset
905              * from a 2MB boundary, not an absolute load address. So if the
906              * image requests an offset that might mean it overlaps with the
907              * bootloader, we can just load it starting at 2MB+offset rather
908              * than 0MB + offset.
909              */
910             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
911                 kernel_load_offset += 2 * MiB;
912             }
913         }
914     }
915 
916     /*
917      * Kernels before v3.17 don't populate the image_size field, and
918      * raw images have no header. For those our best guess at the size
919      * is the size of the Image file itself.
920      */
921     if (kernel_size == 0) {
922         kernel_size = size;
923     }
924 
925     *entry = mem_base + kernel_load_offset;
926     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
927 
928     g_free(buffer);
929 
930     return kernel_size;
931 }
932 
arm_setup_direct_kernel_boot(ARMCPU * cpu,struct arm_boot_info * info)933 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
934                                          struct arm_boot_info *info)
935 {
936     /* Set up for a direct boot of a kernel image file. */
937     CPUState *cs;
938     AddressSpace *as = arm_boot_address_space(cpu, info);
939     ssize_t kernel_size;
940     int initrd_size;
941     int is_linux = 0;
942     uint64_t elf_entry;
943     /* Addresses of first byte used and first byte not used by the image */
944     uint64_t image_low_addr = 0, image_high_addr = 0;
945     int elf_machine;
946     hwaddr entry;
947     static const ARMInsnFixup *primary_loader;
948     uint64_t ram_end = info->loader_start + info->ram_size;
949 
950     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
951         primary_loader = bootloader_aarch64;
952         elf_machine = EM_AARCH64;
953     } else {
954         primary_loader = bootloader;
955         if (!info->write_board_setup) {
956             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
957         }
958         elf_machine = EM_ARM;
959     }
960 
961     /* Assume that raw images are linux kernels, and ELF images are not.  */
962     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
963                                &image_high_addr, elf_machine, as);
964     if (kernel_size > 0 && have_dtb(info)) {
965         /*
966          * If there is still some room left at the base of RAM, try and put
967          * the DTB there like we do for images loaded with -bios or -pflash.
968          */
969         if (image_low_addr > info->loader_start
970             || image_high_addr < info->loader_start) {
971             /*
972              * Set image_low_addr as address limit for arm_load_dtb if it may be
973              * pointing into RAM, otherwise pass '0' (no limit)
974              */
975             if (image_low_addr < info->loader_start) {
976                 image_low_addr = 0;
977             }
978             info->dtb_start = info->loader_start;
979             info->dtb_limit = image_low_addr;
980         }
981     }
982     entry = elf_entry;
983     if (kernel_size < 0) {
984         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
985         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
986                                      &is_linux, NULL, NULL, as);
987         if (kernel_size >= 0) {
988             image_low_addr = loadaddr;
989             image_high_addr = image_low_addr + kernel_size;
990         }
991     }
992     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
993         kernel_size = load_aarch64_image(info->kernel_filename,
994                                          info->loader_start, &entry, as);
995         is_linux = 1;
996         if (kernel_size >= 0) {
997             image_low_addr = entry;
998             image_high_addr = image_low_addr + kernel_size;
999         }
1000     } else if (kernel_size < 0) {
1001         /* 32-bit ARM */
1002         entry = info->loader_start + KERNEL_LOAD_ADDR;
1003         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1004                                              ram_end - KERNEL_LOAD_ADDR, as);
1005         is_linux = 1;
1006         if (kernel_size >= 0) {
1007             image_low_addr = entry;
1008             image_high_addr = image_low_addr + kernel_size;
1009         }
1010     }
1011     if (kernel_size < 0) {
1012         error_report("could not load kernel '%s'", info->kernel_filename);
1013         exit(1);
1014     }
1015 
1016     if (kernel_size > info->ram_size) {
1017         error_report("kernel '%s' is too large to fit in RAM "
1018                      "(kernel size %zd, RAM size %" PRId64 ")",
1019                      info->kernel_filename, kernel_size, info->ram_size);
1020         exit(1);
1021     }
1022 
1023     info->entry = entry;
1024 
1025     /*
1026      * We want to put the initrd far enough into RAM that when the
1027      * kernel is uncompressed it will not clobber the initrd. However
1028      * on boards without much RAM we must ensure that we still leave
1029      * enough room for a decent sized initrd, and on boards with large
1030      * amounts of RAM we must avoid the initrd being so far up in RAM
1031      * that it is outside lowmem and inaccessible to the kernel.
1032      * So for boards with less  than 256MB of RAM we put the initrd
1033      * halfway into RAM, and for boards with 256MB of RAM or more we put
1034      * the initrd at 128MB.
1035      * We also refuse to put the initrd somewhere that will definitely
1036      * overlay the kernel we just loaded, though for kernel formats which
1037      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1038      * we might still make a bad choice here.
1039      */
1040     info->initrd_start = info->loader_start +
1041         MIN(info->ram_size / 2, 128 * MiB);
1042     if (image_high_addr) {
1043         info->initrd_start = MAX(info->initrd_start, image_high_addr);
1044     }
1045     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1046 
1047     if (is_linux) {
1048         uint32_t fixupcontext[FIXUP_MAX];
1049 
1050         if (info->initrd_filename) {
1051 
1052             if (info->initrd_start >= ram_end) {
1053                 error_report("not enough space after kernel to load initrd");
1054                 exit(1);
1055             }
1056 
1057             initrd_size = load_ramdisk_as(info->initrd_filename,
1058                                           info->initrd_start,
1059                                           ram_end - info->initrd_start, as);
1060             if (initrd_size < 0) {
1061                 initrd_size = load_image_targphys_as(info->initrd_filename,
1062                                                      info->initrd_start,
1063                                                      ram_end -
1064                                                      info->initrd_start,
1065                                                      as);
1066             }
1067             if (initrd_size < 0) {
1068                 error_report("could not load initrd '%s'",
1069                              info->initrd_filename);
1070                 exit(1);
1071             }
1072             if (info->initrd_start + initrd_size > ram_end) {
1073                 error_report("could not load initrd '%s': "
1074                              "too big to fit into RAM after the kernel",
1075                              info->initrd_filename);
1076                 exit(1);
1077             }
1078         } else {
1079             initrd_size = 0;
1080         }
1081         info->initrd_size = initrd_size;
1082 
1083         fixupcontext[FIXUP_BOARDID] = info->board_id;
1084         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1085 
1086         /*
1087          * for device tree boot, we pass the DTB directly in r2. Otherwise
1088          * we point to the kernel args.
1089          */
1090         if (have_dtb(info)) {
1091             hwaddr align;
1092 
1093             if (elf_machine == EM_AARCH64) {
1094                 /*
1095                  * Some AArch64 kernels on early bootup map the fdt region as
1096                  *
1097                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1098                  *
1099                  * Let's play safe and prealign it to 2MB to give us some space.
1100                  */
1101                 align = 2 * MiB;
1102             } else {
1103                 /*
1104                  * Some 32bit kernels will trash anything in the 4K page the
1105                  * initrd ends in, so make sure the DTB isn't caught up in that.
1106                  */
1107                 align = 4 * KiB;
1108             }
1109 
1110             /* Place the DTB after the initrd in memory with alignment. */
1111             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1112                                            align);
1113             if (info->dtb_start >= ram_end) {
1114                 error_report("Not enough space for DTB after kernel/initrd");
1115                 exit(1);
1116             }
1117             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1118             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1119         } else {
1120             fixupcontext[FIXUP_ARGPTR_LO] =
1121                 info->loader_start + KERNEL_ARGS_ADDR;
1122             fixupcontext[FIXUP_ARGPTR_HI] =
1123                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1124             if (info->ram_size >= 4 * GiB) {
1125                 error_report("RAM size must be less than 4GB to boot"
1126                              " Linux kernel using ATAGS (try passing a device tree"
1127                              " using -dtb)");
1128                 exit(1);
1129             }
1130         }
1131         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1132         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1133 
1134         arm_write_bootloader("bootloader", as, info->loader_start,
1135                              primary_loader, fixupcontext);
1136 
1137         if (info->write_board_setup) {
1138             info->write_board_setup(cpu, info);
1139         }
1140 
1141         /*
1142          * Notify devices which need to fake up firmware initialization
1143          * that we're doing a direct kernel boot.
1144          */
1145         object_child_foreach_recursive(object_get_root(),
1146                                        do_arm_linux_init, info);
1147     }
1148     info->is_linux = is_linux;
1149 
1150     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1151         ARM_CPU(cs)->env.boot_info = info;
1152     }
1153 }
1154 
arm_setup_firmware_boot(ARMCPU * cpu,struct arm_boot_info * info)1155 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1156 {
1157     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1158 
1159     if (have_dtb(info)) {
1160         /*
1161          * If we have a device tree blob, but no kernel to supply it to (or
1162          * the kernel is supposed to be loaded by the bootloader), copy the
1163          * DTB to the base of RAM for the bootloader to pick up.
1164          */
1165         info->dtb_start = info->loader_start;
1166     }
1167 
1168     if (info->kernel_filename) {
1169         FWCfgState *fw_cfg;
1170         bool try_decompressing_kernel;
1171 
1172         fw_cfg = fw_cfg_find();
1173 
1174         if (!fw_cfg) {
1175             error_report("This machine type does not support loading both "
1176                          "a guest firmware/BIOS image and a guest kernel at "
1177                          "the same time. You should change your QEMU command "
1178                          "line to specify one or the other, but not both.");
1179             exit(1);
1180         }
1181 
1182         try_decompressing_kernel = arm_feature(&cpu->env,
1183                                                ARM_FEATURE_AARCH64);
1184 
1185         /*
1186          * Expose the kernel, the command line, and the initrd in fw_cfg.
1187          * We don't process them here at all, it's all left to the
1188          * firmware.
1189          */
1190         load_image_to_fw_cfg(fw_cfg,
1191                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1192                              info->kernel_filename,
1193                              try_decompressing_kernel);
1194         load_image_to_fw_cfg(fw_cfg,
1195                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1196                              info->initrd_filename, false);
1197 
1198         if (info->kernel_cmdline) {
1199             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1200                            strlen(info->kernel_cmdline) + 1);
1201             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1202                               info->kernel_cmdline);
1203         }
1204     }
1205 
1206     /*
1207      * We will start from address 0 (typically a boot ROM image) in the
1208      * same way as hardware. Leave env->boot_info NULL, so that
1209      * do_cpu_reset() knows it does not need to alter the PC on reset.
1210      */
1211 }
1212 
arm_load_kernel(ARMCPU * cpu,MachineState * ms,struct arm_boot_info * info)1213 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1214 {
1215     CPUState *cs;
1216     AddressSpace *as = arm_boot_address_space(cpu, info);
1217     int boot_el;
1218     CPUARMState *env = &cpu->env;
1219     int nb_cpus = 0;
1220 
1221     /*
1222      * CPU objects (unlike devices) are not automatically reset on system
1223      * reset, so we must always register a handler to do so. If we're
1224      * actually loading a kernel, the handler is also responsible for
1225      * arranging that we start it correctly.
1226      */
1227     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1228         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1229         nb_cpus++;
1230     }
1231 
1232     /*
1233      * The board code is not supposed to set secure_board_setup unless
1234      * running its code in secure mode is actually possible, and KVM
1235      * doesn't support secure.
1236      */
1237     assert(!(info->secure_board_setup && kvm_enabled()));
1238     info->kernel_filename = ms->kernel_filename;
1239     info->kernel_cmdline = ms->kernel_cmdline;
1240     info->initrd_filename = ms->initrd_filename;
1241     info->dtb_filename = ms->dtb;
1242     info->dtb_limit = 0;
1243 
1244     /* We assume the CPU passed as argument is the primary CPU.  */
1245     info->primary_cpu = cpu;
1246 
1247     /* Load the kernel.  */
1248     if (!info->kernel_filename || info->firmware_loaded) {
1249         arm_setup_firmware_boot(cpu, info);
1250     } else {
1251         arm_setup_direct_kernel_boot(cpu, info);
1252     }
1253 
1254     /*
1255      * Disable the PSCI conduit if it is set up to target the same
1256      * or a lower EL than the one we're going to start the guest code in.
1257      * This logic needs to agree with the code in do_cpu_reset() which
1258      * decides whether we're going to boot the guest in the highest
1259      * supported exception level or in a lower one.
1260      */
1261 
1262     /*
1263      * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1264      * are never emulated to trap into guest code. It therefore does not
1265      * make sense for the board to have a setup code fragment that runs
1266      * in Secure, because this will probably need to itself issue an SMC of some
1267      * kind as part of its operation.
1268      */
1269     assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
1270            !info->secure_board_setup);
1271 
1272     /* Boot into highest supported EL ... */
1273     if (arm_feature(env, ARM_FEATURE_EL3)) {
1274         boot_el = 3;
1275     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
1276         boot_el = 2;
1277     } else {
1278         boot_el = 1;
1279     }
1280     /* ...except that if we're booting Linux we adjust the EL we boot into */
1281     if (info->is_linux && !info->secure_boot) {
1282         boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
1283     }
1284 
1285     if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
1286         (info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
1287         info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1288     }
1289 
1290     if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1291         for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1292             Object *cpuobj = OBJECT(cs);
1293 
1294             object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
1295                                     &error_abort);
1296             /* Secondary CPUs start in PSCI powered-down state.  */
1297             if (ARM_CPU(cs) != info->primary_cpu) {
1298                 object_property_set_bool(cpuobj, "start-powered-off", true,
1299                                          &error_abort);
1300             }
1301         }
1302     }
1303 
1304     if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
1305         info->is_linux && nb_cpus > 1) {
1306         /*
1307          * We're booting Linux but not using PSCI, so for SMP we need
1308          * to write a custom secondary CPU boot loader stub, and arrange
1309          * for the secondary CPU reset to make the accompanying initialization.
1310          */
1311         if (!info->secondary_cpu_reset_hook) {
1312             info->secondary_cpu_reset_hook = default_reset_secondary;
1313         }
1314         if (!info->write_secondary_boot) {
1315             info->write_secondary_boot = default_write_secondary;
1316         }
1317         info->write_secondary_boot(cpu, info);
1318     } else {
1319         /*
1320          * No secondary boot stub; don't use the reset hook that would
1321          * have set the CPU up to call it
1322          */
1323         info->write_secondary_boot = NULL;
1324         info->secondary_cpu_reset_hook = NULL;
1325     }
1326 
1327     /*
1328      * arm_load_dtb() may add a PSCI node so it must be called after we have
1329      * decided whether to enable PSCI and set the psci-conduit CPU properties.
1330      */
1331     if (!info->skip_dtb_autoload && have_dtb(info)) {
1332         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit,
1333                          as, ms, cpu) < 0) {
1334             exit(1);
1335         }
1336     }
1337 }
1338 
1339 static const TypeInfo arm_linux_boot_if_info = {
1340     .name = TYPE_ARM_LINUX_BOOT_IF,
1341     .parent = TYPE_INTERFACE,
1342     .class_size = sizeof(ARMLinuxBootIfClass),
1343 };
1344 
arm_linux_boot_register_types(void)1345 static void arm_linux_boot_register_types(void)
1346 {
1347     type_register_static(&arm_linux_boot_if_info);
1348 }
1349 
1350 type_init(arm_linux_boot_register_types)
1351