xref: /openbmc/qemu/target/arm/cpu.c (revision e452053097371880910c744a5d42ae2df058a4a7)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "accel/tcg/cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
arm_cpu_set_pc(CPUState * cs,vaddr value)55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
arm_cpu_get_pc(CPUState * cs)69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
arm_cpu_synchronize_from_tb(CPUState * cs,const TranslationBlock * tb)82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
arm_restore_state_to_opc(CPUState * cs,const TranslationBlock * tb,const uint64_t * data)100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 
arm_cpu_mmu_index(CPUState * cs,bool ifetch)125 int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
126 {
127     return arm_env_mmu_index(cpu_env(cs));
128 }
129 
130 #endif /* CONFIG_TCG */
131 
132 #ifndef CONFIG_USER_ONLY
133 /*
134  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
135  * IRQ without Superpriority. Moreover, if the GIC is configured so that
136  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
137  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
138  * unconditionally.
139  */
arm_cpu_has_work(CPUState * cs)140 static bool arm_cpu_has_work(CPUState *cs)
141 {
142     ARMCPU *cpu = ARM_CPU(cs);
143 
144     return (cpu->power_state != PSCI_OFF)
145         && cs->interrupt_request &
146         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
147          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
148          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
149          | CPU_INTERRUPT_EXITTB);
150 }
151 #endif /* !CONFIG_USER_ONLY */
152 
arm_register_pre_el_change_hook(ARMCPU * cpu,ARMELChangeHookFn * hook,void * opaque)153 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
154                                  void *opaque)
155 {
156     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
157 
158     entry->hook = hook;
159     entry->opaque = opaque;
160 
161     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
162 }
163 
arm_register_el_change_hook(ARMCPU * cpu,ARMELChangeHookFn * hook,void * opaque)164 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
165                                  void *opaque)
166 {
167     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
168 
169     entry->hook = hook;
170     entry->opaque = opaque;
171 
172     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
173 }
174 
cp_reg_reset(gpointer key,gpointer value,gpointer opaque)175 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
176 {
177     /* Reset a single ARMCPRegInfo register */
178     ARMCPRegInfo *ri = value;
179     ARMCPU *cpu = opaque;
180 
181     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
182         return;
183     }
184 
185     if (ri->resetfn) {
186         ri->resetfn(&cpu->env, ri);
187         return;
188     }
189 
190     /* A zero offset is never possible as it would be regs[0]
191      * so we use it to indicate that reset is being handled elsewhere.
192      * This is basically only used for fields in non-core coprocessors
193      * (like the pxa2xx ones).
194      */
195     if (!ri->fieldoffset) {
196         return;
197     }
198 
199     if (cpreg_field_is_64bit(ri)) {
200         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
201     } else {
202         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
203     }
204 }
205 
cp_reg_check_reset(gpointer key,gpointer value,gpointer opaque)206 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
207 {
208     /* Purely an assertion check: we've already done reset once,
209      * so now check that running the reset for the cpreg doesn't
210      * change its value. This traps bugs where two different cpregs
211      * both try to reset the same state field but to different values.
212      */
213     ARMCPRegInfo *ri = value;
214     ARMCPU *cpu = opaque;
215     uint64_t oldvalue, newvalue;
216 
217     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
218         return;
219     }
220 
221     oldvalue = read_raw_cp_reg(&cpu->env, ri);
222     cp_reg_reset(key, value, opaque);
223     newvalue = read_raw_cp_reg(&cpu->env, ri);
224     assert(oldvalue == newvalue);
225 }
226 
arm_cpu_reset_hold(Object * obj,ResetType type)227 static void arm_cpu_reset_hold(Object *obj, ResetType type)
228 {
229     CPUState *cs = CPU(obj);
230     ARMCPU *cpu = ARM_CPU(cs);
231     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
232     CPUARMState *env = &cpu->env;
233 
234     if (acc->parent_phases.hold) {
235         acc->parent_phases.hold(obj, type);
236     }
237 
238     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
239 
240     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
241     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
242 
243     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
244     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
245     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
246     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
247 
248     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
249 
250     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
251         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
252     }
253 
254     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
255         /* 64 bit CPUs always start in 64 bit mode */
256         env->aarch64 = true;
257 #if defined(CONFIG_USER_ONLY)
258         env->pstate = PSTATE_MODE_EL0t;
259         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
260         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
261         /* Enable all PAC keys.  */
262         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
263                                   SCTLR_EnDA | SCTLR_EnDB);
264         /* Trap on btype=3 for PACIxSP. */
265         env->cp15.sctlr_el[1] |= SCTLR_BT0;
266         /* Trap on implementation defined registers. */
267         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
268             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
269         }
270         /* and to the FP/Neon instructions */
271         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
272                                          CPACR_EL1, FPEN, 3);
273         /* and to the SVE instructions, with default vector length */
274         if (cpu_isar_feature(aa64_sve, cpu)) {
275             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
276                                              CPACR_EL1, ZEN, 3);
277             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
278         }
279         /* and for SME instructions, with default vector length, and TPIDR2 */
280         if (cpu_isar_feature(aa64_sme, cpu)) {
281             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
282             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
283                                              CPACR_EL1, SMEN, 3);
284             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
285             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
286                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
287                                                  SMCR, FA64, 1);
288             }
289         }
290         /*
291          * Enable 48-bit address space (TODO: take reserved_va into account).
292          * Enable TBI0 but not TBI1.
293          * Note that this must match useronly_clean_ptr.
294          */
295         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
296 
297         /* Enable MTE */
298         if (cpu_isar_feature(aa64_mte, cpu)) {
299             /* Enable tag access, but leave TCF0 as No Effect (0). */
300             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
301             /*
302              * Exclude all tags, so that tag 0 is always used.
303              * This corresponds to Linux current->thread.gcr_incl = 0.
304              *
305              * Set RRND, so that helper_irg() will generate a seed later.
306              * Here in cpu_reset(), the crypto subsystem has not yet been
307              * initialized.
308              */
309             env->cp15.gcr_el1 = 0x1ffff;
310         }
311         /*
312          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
313          * This is not yet exposed from the Linux kernel in any way.
314          */
315         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
316         /* Disable access to Debug Communication Channel (DCC). */
317         env->cp15.mdscr_el1 |= 1 << 12;
318         /* Enable FEAT_MOPS */
319         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
320 #else
321         /* Reset into the highest available EL */
322         if (arm_feature(env, ARM_FEATURE_EL3)) {
323             env->pstate = PSTATE_MODE_EL3h;
324         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
325             env->pstate = PSTATE_MODE_EL2h;
326         } else {
327             env->pstate = PSTATE_MODE_EL1h;
328         }
329 
330         /* Sample rvbar at reset.  */
331         env->cp15.rvbar = cpu->rvbar_prop;
332         env->pc = env->cp15.rvbar;
333 #endif
334     } else {
335 #if defined(CONFIG_USER_ONLY)
336         /* Userspace expects access to cp10 and cp11 for FP/Neon */
337         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
338                                          CPACR, CP10, 3);
339         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
340                                          CPACR, CP11, 3);
341 #endif
342         if (arm_feature(env, ARM_FEATURE_V8)) {
343             env->cp15.rvbar = cpu->rvbar_prop;
344             env->regs[15] = cpu->rvbar_prop;
345         }
346     }
347 
348 #if defined(CONFIG_USER_ONLY)
349     env->uncached_cpsr = ARM_CPU_MODE_USR;
350     /* For user mode we must enable access to coprocessors */
351     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
352     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
353         env->cp15.c15_cpar = 3;
354     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
355         env->cp15.c15_cpar = 1;
356     }
357 #else
358 
359     /*
360      * If the highest available EL is EL2, AArch32 will start in Hyp
361      * mode; otherwise it starts in SVC. Note that if we start in
362      * AArch64 then these values in the uncached_cpsr will be ignored.
363      */
364     if (arm_feature(env, ARM_FEATURE_EL2) &&
365         !arm_feature(env, ARM_FEATURE_EL3)) {
366         env->uncached_cpsr = ARM_CPU_MODE_HYP;
367     } else {
368         env->uncached_cpsr = ARM_CPU_MODE_SVC;
369     }
370     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
371 
372     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
373      * executing as AArch32 then check if highvecs are enabled and
374      * adjust the PC accordingly.
375      */
376     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
377         env->regs[15] = 0xFFFF0000;
378     }
379 
380     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
381 #endif
382 
383     if (arm_feature(env, ARM_FEATURE_M)) {
384 #ifndef CONFIG_USER_ONLY
385         uint32_t initial_msp; /* Loaded from 0x0 */
386         uint32_t initial_pc; /* Loaded from 0x4 */
387         uint8_t *rom;
388         uint32_t vecbase;
389 #endif
390 
391         if (cpu_isar_feature(aa32_lob, cpu)) {
392             /*
393              * LTPSIZE is constant 4 if MVE not implemented, and resets
394              * to an UNKNOWN value if MVE is implemented. We choose to
395              * always reset to 4.
396              */
397             env->v7m.ltpsize = 4;
398             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
399             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
400             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
401         }
402 
403         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
404             env->v7m.secure = true;
405         } else {
406             /* This bit resets to 0 if security is supported, but 1 if
407              * it is not. The bit is not present in v7M, but we set it
408              * here so we can avoid having to make checks on it conditional
409              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
410              */
411             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
412             /*
413              * Set NSACR to indicate "NS access permitted to everything";
414              * this avoids having to have all the tests of it being
415              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
416              * v8.1M the guest-visible value of NSACR in a CPU without the
417              * Security Extension is 0xcff.
418              */
419             env->v7m.nsacr = 0xcff;
420         }
421 
422         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
423          * that it resets to 1, so QEMU always does that rather than making
424          * it dependent on CPU model. In v8M it is RES1.
425          */
426         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
427         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
428         if (arm_feature(env, ARM_FEATURE_V8)) {
429             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
430             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
431             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
432         }
433         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
434             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
435             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
436         }
437 
438         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
439             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
440             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
441                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
442         }
443 
444 #ifndef CONFIG_USER_ONLY
445         /* Unlike A/R profile, M profile defines the reset LR value */
446         env->regs[14] = 0xffffffff;
447 
448         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
449         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
450 
451         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
452         vecbase = env->v7m.vecbase[env->v7m.secure];
453         rom = rom_ptr_for_as(cs->as, vecbase, 8);
454         if (rom) {
455             /* Address zero is covered by ROM which hasn't yet been
456              * copied into physical memory.
457              */
458             initial_msp = ldl_p(rom);
459             initial_pc = ldl_p(rom + 4);
460         } else {
461             /* Address zero not covered by a ROM blob, or the ROM blob
462              * is in non-modifiable memory and this is a second reset after
463              * it got copied into memory. In the latter case, rom_ptr
464              * will return a NULL pointer and we should use ldl_phys instead.
465              */
466             initial_msp = ldl_phys(cs->as, vecbase);
467             initial_pc = ldl_phys(cs->as, vecbase + 4);
468         }
469 
470         qemu_log_mask(CPU_LOG_INT,
471                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
472                       initial_msp, initial_pc);
473 
474         env->regs[13] = initial_msp & 0xFFFFFFFC;
475         env->regs[15] = initial_pc & ~1;
476         env->thumb = initial_pc & 1;
477 #else
478         /*
479          * For user mode we run non-secure and with access to the FPU.
480          * The FPU context is active (ie does not need further setup)
481          * and is owned by non-secure.
482          */
483         env->v7m.secure = false;
484         env->v7m.nsacr = 0xcff;
485         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
486         env->v7m.fpccr[M_REG_S] &=
487             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
488         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
489 #endif
490     }
491 
492     /* M profile requires that reset clears the exclusive monitor;
493      * A profile does not, but clearing it makes more sense than having it
494      * set with an exclusive access on address zero.
495      */
496     arm_clear_exclusive(env);
497 
498     if (arm_feature(env, ARM_FEATURE_PMSA)) {
499         if (cpu->pmsav7_dregion > 0) {
500             if (arm_feature(env, ARM_FEATURE_V8)) {
501                 memset(env->pmsav8.rbar[M_REG_NS], 0,
502                        sizeof(*env->pmsav8.rbar[M_REG_NS])
503                        * cpu->pmsav7_dregion);
504                 memset(env->pmsav8.rlar[M_REG_NS], 0,
505                        sizeof(*env->pmsav8.rlar[M_REG_NS])
506                        * cpu->pmsav7_dregion);
507                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
508                     memset(env->pmsav8.rbar[M_REG_S], 0,
509                            sizeof(*env->pmsav8.rbar[M_REG_S])
510                            * cpu->pmsav7_dregion);
511                     memset(env->pmsav8.rlar[M_REG_S], 0,
512                            sizeof(*env->pmsav8.rlar[M_REG_S])
513                            * cpu->pmsav7_dregion);
514                 }
515             } else if (arm_feature(env, ARM_FEATURE_V7)) {
516                 memset(env->pmsav7.drbar, 0,
517                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
518                 memset(env->pmsav7.drsr, 0,
519                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
520                 memset(env->pmsav7.dracr, 0,
521                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
522             }
523         }
524 
525         if (cpu->pmsav8r_hdregion > 0) {
526             memset(env->pmsav8.hprbar, 0,
527                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
528             memset(env->pmsav8.hprlar, 0,
529                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
530         }
531 
532         env->pmsav7.rnr[M_REG_NS] = 0;
533         env->pmsav7.rnr[M_REG_S] = 0;
534         env->pmsav8.mair0[M_REG_NS] = 0;
535         env->pmsav8.mair0[M_REG_S] = 0;
536         env->pmsav8.mair1[M_REG_NS] = 0;
537         env->pmsav8.mair1[M_REG_S] = 0;
538     }
539 
540     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
541         if (cpu->sau_sregion > 0) {
542             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
543             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
544         }
545         env->sau.rnr = 0;
546         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
547          * the Cortex-M33 does.
548          */
549         env->sau.ctrl = 0;
550     }
551 
552     set_flush_to_zero(1, &env->vfp.fp_status[FPST_STD]);
553     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_STD]);
554     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD]);
555     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD_F16]);
556     set_default_nan_mode(1, &env->vfp.fp_status[FPST_ZA]);
557     set_default_nan_mode(1, &env->vfp.fp_status[FPST_ZA_F16]);
558     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32]);
559     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
560     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_ZA]);
561     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD]);
562     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32_F16]);
563     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
564     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_ZA_F16]);
565     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD_F16]);
566     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH]);
567     set_flush_to_zero(1, &env->vfp.fp_status[FPST_AH]);
568     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_AH]);
569     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH_F16]);
570 
571 #ifndef CONFIG_USER_ONLY
572     if (kvm_enabled()) {
573         kvm_arm_reset_vcpu(cpu);
574     }
575 #endif
576 
577     if (tcg_enabled()) {
578         hw_breakpoint_update_all(cpu);
579         hw_watchpoint_update_all(cpu);
580 
581         arm_rebuild_hflags(env);
582     }
583 }
584 
arm_emulate_firmware_reset(CPUState * cpustate,int target_el)585 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
586 {
587     ARMCPU *cpu = ARM_CPU(cpustate);
588     CPUARMState *env = &cpu->env;
589     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
590     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
591 
592     /*
593      * Check we have the EL we're aiming for. If that is the
594      * highest implemented EL, then cpu_reset has already done
595      * all the work.
596      */
597     switch (target_el) {
598     case 3:
599         assert(have_el3);
600         return;
601     case 2:
602         assert(have_el2);
603         if (!have_el3) {
604             return;
605         }
606         break;
607     case 1:
608         if (!have_el3 && !have_el2) {
609             return;
610         }
611         break;
612     default:
613         g_assert_not_reached();
614     }
615 
616     if (have_el3) {
617         /*
618          * Set the EL3 state so code can run at EL2. This should match
619          * the requirements set by Linux in its booting spec.
620          */
621         if (env->aarch64) {
622             env->cp15.scr_el3 |= SCR_RW;
623             if (cpu_isar_feature(aa64_pauth, cpu)) {
624                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
625             }
626             if (cpu_isar_feature(aa64_mte, cpu)) {
627                 env->cp15.scr_el3 |= SCR_ATA;
628             }
629             if (cpu_isar_feature(aa64_sve, cpu)) {
630                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
631                 env->vfp.zcr_el[3] = 0xf;
632             }
633             if (cpu_isar_feature(aa64_sme, cpu)) {
634                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
635                 env->cp15.scr_el3 |= SCR_ENTP2;
636                 env->vfp.smcr_el[3] = 0xf;
637                 if (cpu_isar_feature(aa64_sme2, cpu)) {
638                     env->vfp.smcr_el[3] |= R_SMCR_EZT0_MASK;
639                 }
640             }
641             if (cpu_isar_feature(aa64_hcx, cpu)) {
642                 env->cp15.scr_el3 |= SCR_HXEN;
643             }
644             if (cpu_isar_feature(aa64_fgt, cpu)) {
645                 env->cp15.scr_el3 |= SCR_FGTEN;
646             }
647         }
648 
649         if (target_el == 2) {
650             /* If the guest is at EL2 then Linux expects the HVC insn to work */
651             env->cp15.scr_el3 |= SCR_HCE;
652         }
653 
654         /* Put CPU into non-secure state */
655         env->cp15.scr_el3 |= SCR_NS;
656         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
657         env->cp15.nsacr |= 3 << 10;
658     }
659 
660     if (have_el2 && target_el < 2) {
661         /* Set EL2 state so code can run at EL1. */
662         if (env->aarch64) {
663             env->cp15.hcr_el2 |= HCR_RW;
664         }
665     }
666 
667     /* Set the CPU to the desired state */
668     if (env->aarch64) {
669         env->pstate = aarch64_pstate_mode(target_el, true);
670     } else {
671         static const uint32_t mode_for_el[] = {
672             0,
673             ARM_CPU_MODE_SVC,
674             ARM_CPU_MODE_HYP,
675             ARM_CPU_MODE_SVC,
676         };
677 
678         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
679     }
680 }
681 
682 
683 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
684 
arm_excp_unmasked(CPUState * cs,unsigned int excp_idx,unsigned int target_el,unsigned int cur_el,bool secure,uint64_t hcr_el2)685 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
686                                      unsigned int target_el,
687                                      unsigned int cur_el, bool secure,
688                                      uint64_t hcr_el2)
689 {
690     CPUARMState *env = cpu_env(cs);
691     bool pstate_unmasked;
692     bool unmasked = false;
693     bool allIntMask = false;
694 
695     /*
696      * Don't take exceptions if they target a lower EL.
697      * This check should catch any exceptions that would not be taken
698      * but left pending.
699      */
700     if (cur_el > target_el) {
701         return false;
702     }
703 
704     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
705         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
706         allIntMask = env->pstate & PSTATE_ALLINT ||
707                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
708                       (env->pstate & PSTATE_SP));
709     }
710 
711     switch (excp_idx) {
712     case EXCP_NMI:
713         pstate_unmasked = !allIntMask;
714         break;
715 
716     case EXCP_VINMI:
717         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
718             /* VINMIs are only taken when hypervized.  */
719             return false;
720         }
721         return !allIntMask;
722     case EXCP_VFNMI:
723         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
724             /* VFNMIs are only taken when hypervized.  */
725             return false;
726         }
727         return !allIntMask;
728     case EXCP_FIQ:
729         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
730         break;
731 
732     case EXCP_IRQ:
733         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
734         break;
735 
736     case EXCP_VFIQ:
737         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
738             /* VFIQs are only taken when hypervized.  */
739             return false;
740         }
741         return !(env->daif & PSTATE_F) && (!allIntMask);
742     case EXCP_VIRQ:
743         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
744             /* VIRQs are only taken when hypervized.  */
745             return false;
746         }
747         return !(env->daif & PSTATE_I) && (!allIntMask);
748     case EXCP_VSERR:
749         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
750             /* VIRQs are only taken when hypervized.  */
751             return false;
752         }
753         return !(env->daif & PSTATE_A);
754     default:
755         g_assert_not_reached();
756     }
757 
758     /*
759      * Use the target EL, current execution state and SCR/HCR settings to
760      * determine whether the corresponding CPSR bit is used to mask the
761      * interrupt.
762      */
763     if ((target_el > cur_el) && (target_el != 1)) {
764         /* Exceptions targeting a higher EL may not be maskable */
765         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
766             switch (target_el) {
767             case 2:
768                 /*
769                  * According to ARM DDI 0487H.a, an interrupt can be masked
770                  * when HCR_E2H and HCR_TGE are both set regardless of the
771                  * current Security state. Note that we need to revisit this
772                  * part again once we need to support NMI.
773                  */
774                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
775                         unmasked = true;
776                 }
777                 break;
778             case 3:
779                 /* Interrupt cannot be masked when the target EL is 3 */
780                 unmasked = true;
781                 break;
782             default:
783                 g_assert_not_reached();
784             }
785         } else {
786             /*
787              * The old 32-bit-only environment has a more complicated
788              * masking setup. HCR and SCR bits not only affect interrupt
789              * routing but also change the behaviour of masking.
790              */
791             bool hcr, scr;
792 
793             switch (excp_idx) {
794             case EXCP_FIQ:
795                 /*
796                  * If FIQs are routed to EL3 or EL2 then there are cases where
797                  * we override the CPSR.F in determining if the exception is
798                  * masked or not. If neither of these are set then we fall back
799                  * to the CPSR.F setting otherwise we further assess the state
800                  * below.
801                  */
802                 hcr = hcr_el2 & HCR_FMO;
803                 scr = (env->cp15.scr_el3 & SCR_FIQ);
804 
805                 /*
806                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
807                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
808                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
809                  * when non-secure but only when FIQs are only routed to EL3.
810                  */
811                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
812                 break;
813             case EXCP_IRQ:
814                 /*
815                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
816                  * we may override the CPSR.I masking when in non-secure state.
817                  * The SCR.IRQ setting has already been taken into consideration
818                  * when setting the target EL, so it does not have a further
819                  * affect here.
820                  */
821                 hcr = hcr_el2 & HCR_IMO;
822                 scr = false;
823                 break;
824             default:
825                 g_assert_not_reached();
826             }
827 
828             if ((scr || hcr) && !secure) {
829                 unmasked = true;
830             }
831         }
832     }
833 
834     /*
835      * The PSTATE bits only mask the interrupt if we have not overridden the
836      * ability above.
837      */
838     return unmasked || pstate_unmasked;
839 }
840 
arm_cpu_exec_interrupt(CPUState * cs,int interrupt_request)841 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
842 {
843     CPUARMState *env = cpu_env(cs);
844     uint32_t cur_el = arm_current_el(env);
845     bool secure = arm_is_secure(env);
846     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
847     uint32_t target_el;
848     uint32_t excp_idx;
849 
850     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
851 
852     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
853         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
854         if (interrupt_request & CPU_INTERRUPT_NMI) {
855             excp_idx = EXCP_NMI;
856             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
857             if (arm_excp_unmasked(cs, excp_idx, target_el,
858                                   cur_el, secure, hcr_el2)) {
859                 goto found;
860             }
861         }
862         if (interrupt_request & CPU_INTERRUPT_VINMI) {
863             excp_idx = EXCP_VINMI;
864             target_el = 1;
865             if (arm_excp_unmasked(cs, excp_idx, target_el,
866                                   cur_el, secure, hcr_el2)) {
867                 goto found;
868             }
869         }
870         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
871             excp_idx = EXCP_VFNMI;
872             target_el = 1;
873             if (arm_excp_unmasked(cs, excp_idx, target_el,
874                                   cur_el, secure, hcr_el2)) {
875                 goto found;
876             }
877         }
878     } else {
879         /*
880          * NMI disabled: interrupts with superpriority are handled
881          * as if they didn't have it
882          */
883         if (interrupt_request & CPU_INTERRUPT_NMI) {
884             interrupt_request |= CPU_INTERRUPT_HARD;
885         }
886         if (interrupt_request & CPU_INTERRUPT_VINMI) {
887             interrupt_request |= CPU_INTERRUPT_VIRQ;
888         }
889         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
890             interrupt_request |= CPU_INTERRUPT_VFIQ;
891         }
892     }
893 
894     if (interrupt_request & CPU_INTERRUPT_FIQ) {
895         excp_idx = EXCP_FIQ;
896         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
897         if (arm_excp_unmasked(cs, excp_idx, target_el,
898                               cur_el, secure, hcr_el2)) {
899             goto found;
900         }
901     }
902     if (interrupt_request & CPU_INTERRUPT_HARD) {
903         excp_idx = EXCP_IRQ;
904         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
905         if (arm_excp_unmasked(cs, excp_idx, target_el,
906                               cur_el, secure, hcr_el2)) {
907             goto found;
908         }
909     }
910     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
911         excp_idx = EXCP_VIRQ;
912         target_el = 1;
913         if (arm_excp_unmasked(cs, excp_idx, target_el,
914                               cur_el, secure, hcr_el2)) {
915             goto found;
916         }
917     }
918     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
919         excp_idx = EXCP_VFIQ;
920         target_el = 1;
921         if (arm_excp_unmasked(cs, excp_idx, target_el,
922                               cur_el, secure, hcr_el2)) {
923             goto found;
924         }
925     }
926     if (interrupt_request & CPU_INTERRUPT_VSERR) {
927         excp_idx = EXCP_VSERR;
928         target_el = 1;
929         if (arm_excp_unmasked(cs, excp_idx, target_el,
930                               cur_el, secure, hcr_el2)) {
931             /* Taking a virtual abort clears HCR_EL2.VSE */
932             env->cp15.hcr_el2 &= ~HCR_VSE;
933             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
934             goto found;
935         }
936     }
937     return false;
938 
939  found:
940     cs->exception_index = excp_idx;
941     env->exception.target_el = target_el;
942     cs->cc->tcg_ops->do_interrupt(cs);
943     return true;
944 }
945 
946 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
947 
arm_cpu_update_virq(ARMCPU * cpu)948 void arm_cpu_update_virq(ARMCPU *cpu)
949 {
950     /*
951      * Update the interrupt level for VIRQ, which is the logical OR of
952      * the HCR_EL2.VI bit and the input line level from the GIC.
953      */
954     CPUARMState *env = &cpu->env;
955     CPUState *cs = CPU(cpu);
956 
957     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
958         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
959         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
960 
961     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
962         if (new_state) {
963             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
964         } else {
965             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
966         }
967     }
968 }
969 
arm_cpu_update_vfiq(ARMCPU * cpu)970 void arm_cpu_update_vfiq(ARMCPU *cpu)
971 {
972     /*
973      * Update the interrupt level for VFIQ, which is the logical OR of
974      * the HCR_EL2.VF bit and the input line level from the GIC.
975      */
976     CPUARMState *env = &cpu->env;
977     CPUState *cs = CPU(cpu);
978 
979     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
980         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
981         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
982 
983     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
984         if (new_state) {
985             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
986         } else {
987             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
988         }
989     }
990 }
991 
arm_cpu_update_vinmi(ARMCPU * cpu)992 void arm_cpu_update_vinmi(ARMCPU *cpu)
993 {
994     /*
995      * Update the interrupt level for VINMI, which is the logical OR of
996      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
997      */
998     CPUARMState *env = &cpu->env;
999     CPUState *cs = CPU(cpu);
1000 
1001     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
1002                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
1003         (env->irq_line_state & CPU_INTERRUPT_VINMI);
1004 
1005     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
1006         if (new_state) {
1007             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1008         } else {
1009             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1010         }
1011     }
1012 }
1013 
arm_cpu_update_vfnmi(ARMCPU * cpu)1014 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1015 {
1016     /*
1017      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1018      */
1019     CPUARMState *env = &cpu->env;
1020     CPUState *cs = CPU(cpu);
1021 
1022     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1023                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1024 
1025     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1026         if (new_state) {
1027             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1028         } else {
1029             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1030         }
1031     }
1032 }
1033 
arm_cpu_update_vserr(ARMCPU * cpu)1034 void arm_cpu_update_vserr(ARMCPU *cpu)
1035 {
1036     /*
1037      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1038      */
1039     CPUARMState *env = &cpu->env;
1040     CPUState *cs = CPU(cpu);
1041 
1042     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1043 
1044     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1045         if (new_state) {
1046             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1047         } else {
1048             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1049         }
1050     }
1051 }
1052 
1053 #ifndef CONFIG_USER_ONLY
arm_cpu_set_irq(void * opaque,int irq,int level)1054 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1055 {
1056     ARMCPU *cpu = opaque;
1057     CPUARMState *env = &cpu->env;
1058     CPUState *cs = CPU(cpu);
1059     static const int mask[] = {
1060         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1061         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1062         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1063         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1064         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1065         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1066     };
1067 
1068     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1069         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1070         /*
1071          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1072          * have EL2 support we don't care. (Unless the guest is doing something
1073          * silly this will only be calls saying "level is still 0".)
1074          */
1075         return;
1076     }
1077 
1078     if (level) {
1079         env->irq_line_state |= mask[irq];
1080     } else {
1081         env->irq_line_state &= ~mask[irq];
1082     }
1083 
1084     switch (irq) {
1085     case ARM_CPU_VIRQ:
1086         arm_cpu_update_virq(cpu);
1087         break;
1088     case ARM_CPU_VFIQ:
1089         arm_cpu_update_vfiq(cpu);
1090         break;
1091     case ARM_CPU_VINMI:
1092         arm_cpu_update_vinmi(cpu);
1093         break;
1094     case ARM_CPU_IRQ:
1095     case ARM_CPU_FIQ:
1096     case ARM_CPU_NMI:
1097         if (level) {
1098             cpu_interrupt(cs, mask[irq]);
1099         } else {
1100             cpu_reset_interrupt(cs, mask[irq]);
1101         }
1102         break;
1103     default:
1104         g_assert_not_reached();
1105     }
1106 }
1107 
arm_cpu_virtio_is_big_endian(CPUState * cs)1108 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1109 {
1110     ARMCPU *cpu = ARM_CPU(cs);
1111     CPUARMState *env = &cpu->env;
1112 
1113     cpu_synchronize_state(cs);
1114     return arm_cpu_data_is_big_endian(env);
1115 }
1116 
1117 #ifdef CONFIG_TCG
arm_cpu_exec_halt(CPUState * cs)1118 bool arm_cpu_exec_halt(CPUState *cs)
1119 {
1120     bool leave_halt = cpu_has_work(cs);
1121 
1122     if (leave_halt) {
1123         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1124         ARMCPU *cpu = ARM_CPU(cs);
1125         if (cpu->wfxt_timer) {
1126             timer_del(cpu->wfxt_timer);
1127         }
1128     }
1129     return leave_halt;
1130 }
1131 #endif
1132 
arm_wfxt_timer_cb(void * opaque)1133 static void arm_wfxt_timer_cb(void *opaque)
1134 {
1135     ARMCPU *cpu = opaque;
1136     CPUState *cs = CPU(cpu);
1137 
1138     /*
1139      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1140      * to return true (so we will come out of halt even with no other
1141      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1142      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1143      */
1144     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1145 }
1146 #endif
1147 
arm_disas_set_info(CPUState * cpu,disassemble_info * info)1148 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1149 {
1150     ARMCPU *ac = ARM_CPU(cpu);
1151     CPUARMState *env = &ac->env;
1152     bool sctlr_b = arm_sctlr_b(env);
1153 
1154     if (is_a64(env)) {
1155         info->cap_arch = CS_ARCH_ARM64;
1156         info->cap_insn_unit = 4;
1157         info->cap_insn_split = 4;
1158     } else {
1159         int cap_mode;
1160         if (env->thumb) {
1161             info->cap_insn_unit = 2;
1162             info->cap_insn_split = 4;
1163             cap_mode = CS_MODE_THUMB;
1164         } else {
1165             info->cap_insn_unit = 4;
1166             info->cap_insn_split = 4;
1167             cap_mode = CS_MODE_ARM;
1168         }
1169         if (arm_feature(env, ARM_FEATURE_V8)) {
1170             cap_mode |= CS_MODE_V8;
1171         }
1172         if (arm_feature(env, ARM_FEATURE_M)) {
1173             cap_mode |= CS_MODE_MCLASS;
1174         }
1175         info->cap_arch = CS_ARCH_ARM;
1176         info->cap_mode = cap_mode;
1177     }
1178 
1179     info->endian = BFD_ENDIAN_LITTLE;
1180     if (bswap_code(sctlr_b)) {
1181         info->endian = target_big_endian() ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_BIG;
1182     }
1183     info->flags &= ~INSN_ARM_BE32;
1184 #ifndef CONFIG_USER_ONLY
1185     if (sctlr_b) {
1186         info->flags |= INSN_ARM_BE32;
1187     }
1188 #endif
1189 }
1190 
aarch64_cpu_dump_state(CPUState * cs,FILE * f,int flags)1191 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1192 {
1193     ARMCPU *cpu = ARM_CPU(cs);
1194     CPUARMState *env = &cpu->env;
1195     uint32_t psr = pstate_read(env);
1196     int i, j;
1197     int el = arm_current_el(env);
1198     uint64_t hcr = arm_hcr_el2_eff(env);
1199     const char *ns_status;
1200     bool sve;
1201 
1202     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1203     for (i = 0; i < 32; i++) {
1204         if (i == 31) {
1205             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1206         } else {
1207             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1208                          (i + 2) % 3 ? " " : "\n");
1209         }
1210     }
1211 
1212     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1213         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1214     } else {
1215         ns_status = "";
1216     }
1217     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1218                  psr,
1219                  psr & PSTATE_N ? 'N' : '-',
1220                  psr & PSTATE_Z ? 'Z' : '-',
1221                  psr & PSTATE_C ? 'C' : '-',
1222                  psr & PSTATE_V ? 'V' : '-',
1223                  ns_status,
1224                  el,
1225                  psr & PSTATE_SP ? 'h' : 't');
1226 
1227     if (cpu_isar_feature(aa64_sme, cpu)) {
1228         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1229                      env->svcr,
1230                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1231                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1232     }
1233     if (cpu_isar_feature(aa64_bti, cpu)) {
1234         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1235     }
1236     qemu_fprintf(f, "%s%s%s",
1237                  (hcr & HCR_NV) ? " NV" : "",
1238                  (hcr & HCR_NV1) ? " NV1" : "",
1239                  (hcr & HCR_NV2) ? " NV2" : "");
1240     if (!(flags & CPU_DUMP_FPU)) {
1241         qemu_fprintf(f, "\n");
1242         return;
1243     }
1244     if (fp_exception_el(env, el) != 0) {
1245         qemu_fprintf(f, "    FPU disabled\n");
1246         return;
1247     }
1248     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1249                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1250 
1251     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1252         sve = sme_exception_el(env, el) == 0;
1253     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1254         sve = sve_exception_el(env, el) == 0;
1255     } else {
1256         sve = false;
1257     }
1258 
1259     if (sve) {
1260         int zcr_len = sve_vqm1_for_el(env, el);
1261 
1262         for (i = 0; i <= FFR_PRED_NUM; i++) {
1263             bool eol;
1264             if (i == FFR_PRED_NUM) {
1265                 qemu_fprintf(f, "FFR=");
1266                 /* It's last, so end the line.  */
1267                 eol = true;
1268             } else {
1269                 qemu_fprintf(f, "P%02d=", i);
1270                 switch (zcr_len) {
1271                 case 0:
1272                     eol = i % 8 == 7;
1273                     break;
1274                 case 1:
1275                     eol = i % 6 == 5;
1276                     break;
1277                 case 2:
1278                 case 3:
1279                     eol = i % 3 == 2;
1280                     break;
1281                 default:
1282                     /* More than one quadword per predicate.  */
1283                     eol = true;
1284                     break;
1285                 }
1286             }
1287             for (j = zcr_len / 4; j >= 0; j--) {
1288                 int digits;
1289                 if (j * 4 + 4 <= zcr_len + 1) {
1290                     digits = 16;
1291                 } else {
1292                     digits = (zcr_len % 4 + 1) * 4;
1293                 }
1294                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1295                              env->vfp.pregs[i].p[j],
1296                              j ? ":" : eol ? "\n" : " ");
1297             }
1298         }
1299 
1300         if (zcr_len == 0) {
1301             /*
1302              * With vl=16, there are only 37 columns per register,
1303              * so output two registers per line.
1304              */
1305             for (i = 0; i < 32; i++) {
1306                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1307                              i, env->vfp.zregs[i].d[1],
1308                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1309             }
1310         } else {
1311             for (i = 0; i < 32; i++) {
1312                 qemu_fprintf(f, "Z%02d=", i);
1313                 for (j = zcr_len; j >= 0; j--) {
1314                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1315                                  env->vfp.zregs[i].d[j * 2 + 1],
1316                                  env->vfp.zregs[i].d[j * 2 + 0],
1317                                  j ? ":" : "\n");
1318                 }
1319             }
1320         }
1321     } else {
1322         for (i = 0; i < 32; i++) {
1323             uint64_t *q = aa64_vfp_qreg(env, i);
1324             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1325                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1326         }
1327     }
1328 
1329     if (cpu_isar_feature(aa64_sme, cpu) &&
1330         FIELD_EX64(env->svcr, SVCR, ZA) &&
1331         sme_exception_el(env, el) == 0) {
1332         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1333         int svl = (zcr_len + 1) * 16;
1334         int svl_lg10 = svl < 100 ? 2 : 3;
1335 
1336         for (i = 0; i < svl; i++) {
1337             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1338             for (j = zcr_len; j >= 0; --j) {
1339                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1340                              env->za_state.za[i].d[2 * j + 1],
1341                              env->za_state.za[i].d[2 * j],
1342                              j ? ':' : '\n');
1343             }
1344         }
1345     }
1346 }
1347 
arm_cpu_dump_state(CPUState * cs,FILE * f,int flags)1348 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1349 {
1350     ARMCPU *cpu = ARM_CPU(cs);
1351     CPUARMState *env = &cpu->env;
1352     int i;
1353 
1354     if (is_a64(env)) {
1355         aarch64_cpu_dump_state(cs, f, flags);
1356         return;
1357     }
1358 
1359     for (i = 0; i < 16; i++) {
1360         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1361         if ((i % 4) == 3) {
1362             qemu_fprintf(f, "\n");
1363         } else {
1364             qemu_fprintf(f, " ");
1365         }
1366     }
1367 
1368     if (arm_feature(env, ARM_FEATURE_M)) {
1369         uint32_t xpsr = xpsr_read(env);
1370         const char *mode;
1371         const char *ns_status = "";
1372 
1373         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1374             ns_status = env->v7m.secure ? "S " : "NS ";
1375         }
1376 
1377         if (xpsr & XPSR_EXCP) {
1378             mode = "handler";
1379         } else {
1380             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1381                 mode = "unpriv-thread";
1382             } else {
1383                 mode = "priv-thread";
1384             }
1385         }
1386 
1387         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1388                      xpsr,
1389                      xpsr & XPSR_N ? 'N' : '-',
1390                      xpsr & XPSR_Z ? 'Z' : '-',
1391                      xpsr & XPSR_C ? 'C' : '-',
1392                      xpsr & XPSR_V ? 'V' : '-',
1393                      xpsr & XPSR_T ? 'T' : 'A',
1394                      ns_status,
1395                      mode);
1396     } else {
1397         uint32_t psr = cpsr_read(env);
1398         const char *ns_status = "";
1399 
1400         if (arm_feature(env, ARM_FEATURE_EL3) &&
1401             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1402             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1403         }
1404 
1405         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1406                      psr,
1407                      psr & CPSR_N ? 'N' : '-',
1408                      psr & CPSR_Z ? 'Z' : '-',
1409                      psr & CPSR_C ? 'C' : '-',
1410                      psr & CPSR_V ? 'V' : '-',
1411                      psr & CPSR_T ? 'T' : 'A',
1412                      ns_status,
1413                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1414     }
1415 
1416     if (flags & CPU_DUMP_FPU) {
1417         int numvfpregs = 0;
1418         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1419             numvfpregs = 32;
1420         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1421             numvfpregs = 16;
1422         }
1423         for (i = 0; i < numvfpregs; i++) {
1424             uint64_t v = *aa32_vfp_dreg(env, i);
1425             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1426                          i * 2, (uint32_t)v,
1427                          i * 2 + 1, (uint32_t)(v >> 32),
1428                          i, v);
1429         }
1430         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1431         if (cpu_isar_feature(aa32_mve, cpu)) {
1432             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1433         }
1434     }
1435 }
1436 
arm_build_mp_affinity(int idx,uint8_t clustersz)1437 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1438 {
1439     uint32_t Aff1 = idx / clustersz;
1440     uint32_t Aff0 = idx % clustersz;
1441     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1442 }
1443 
arm_cpu_mp_affinity(ARMCPU * cpu)1444 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1445 {
1446     return cpu->mp_affinity;
1447 }
1448 
arm_cpu_initfn(Object * obj)1449 static void arm_cpu_initfn(Object *obj)
1450 {
1451     ARMCPU *cpu = ARM_CPU(obj);
1452 
1453     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1454                                          NULL, g_free);
1455 
1456     QLIST_INIT(&cpu->pre_el_change_hooks);
1457     QLIST_INIT(&cpu->el_change_hooks);
1458 
1459 #ifdef CONFIG_USER_ONLY
1460 # ifdef TARGET_AARCH64
1461     /*
1462      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1463      * These values were chosen to fit within the default signal frame.
1464      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1465      * and our corresponding cpu property.
1466      */
1467     cpu->sve_default_vq = 4;
1468     cpu->sme_default_vq = 2;
1469 # endif
1470 #else
1471     /* Our inbound IRQ and FIQ lines */
1472     if (kvm_enabled()) {
1473         /*
1474          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1475          * them to maintain the same interface as non-KVM CPUs.
1476          */
1477         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1478     } else {
1479         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1480     }
1481 
1482     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1483                        ARRAY_SIZE(cpu->gt_timer_outputs));
1484 
1485     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1486                              "gicv3-maintenance-interrupt", 1);
1487     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1488                              "pmu-interrupt", 1);
1489 #endif
1490 
1491     /* DTB consumers generally don't in fact care what the 'compatible'
1492      * string is, so always provide some string and trust that a hypothetical
1493      * picky DTB consumer will also provide a helpful error message.
1494      */
1495     cpu->dtb_compatible = "qemu,unknown";
1496     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1497     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1498 
1499     if (tcg_enabled() || hvf_enabled()) {
1500         /* TCG and HVF implement PSCI 1.1 */
1501         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1502     }
1503 }
1504 
1505 /*
1506  * 0 means "unset, use the default value". That default might vary depending
1507  * on the CPU type, and is set in the realize fn.
1508  */
1509 #ifndef CONFIG_USER_ONLY
1510 static const Property arm_cpu_gt_cntfrq_property =
1511             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1512 
1513 static const Property arm_cpu_reset_cbar_property =
1514             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1515 
1516 static const Property arm_cpu_reset_hivecs_property =
1517             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1518 
1519 static const Property arm_cpu_has_el2_property =
1520             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1521 
1522 static const Property arm_cpu_has_el3_property =
1523             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1524 #endif
1525 
1526 static const Property arm_cpu_cfgend_property =
1527             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1528 
1529 static const Property arm_cpu_has_vfp_property =
1530             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1531 
1532 static const Property arm_cpu_has_vfp_d32_property =
1533             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1534 
1535 static const Property arm_cpu_has_neon_property =
1536             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1537 
1538 static const Property arm_cpu_has_dsp_property =
1539             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1540 
1541 #ifndef CONFIG_USER_ONLY
1542 static const Property arm_cpu_has_mpu_property =
1543             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1544 
1545 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1546  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1547  * the right value for that particular CPU type, and we don't want
1548  * to override that with an incorrect constant value.
1549  */
1550 static const Property arm_cpu_pmsav7_dregion_property =
1551             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1552                                            pmsav7_dregion,
1553                                            qdev_prop_uint32, uint32_t);
1554 #endif
1555 
arm_get_pmu(Object * obj,Error ** errp)1556 static bool arm_get_pmu(Object *obj, Error **errp)
1557 {
1558     ARMCPU *cpu = ARM_CPU(obj);
1559 
1560     return cpu->has_pmu;
1561 }
1562 
arm_set_pmu(Object * obj,bool value,Error ** errp)1563 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1564 {
1565     ARMCPU *cpu = ARM_CPU(obj);
1566 
1567     if (value) {
1568         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1569             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1570             return;
1571         }
1572         set_feature(&cpu->env, ARM_FEATURE_PMU);
1573     } else {
1574         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1575     }
1576     cpu->has_pmu = value;
1577 }
1578 
aarch64_cpu_get_aarch64(Object * obj,Error ** errp)1579 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1580 {
1581     ARMCPU *cpu = ARM_CPU(obj);
1582 
1583     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1584 }
1585 
aarch64_cpu_set_aarch64(Object * obj,bool value,Error ** errp)1586 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1587 {
1588     ARMCPU *cpu = ARM_CPU(obj);
1589 
1590     /*
1591      * At this time, this property is only allowed if KVM is enabled.  This
1592      * restriction allows us to avoid fixing up functionality that assumes a
1593      * uniform execution state like do_interrupt.
1594      */
1595     if (value == false) {
1596         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1597             error_setg(errp, "'aarch64' feature cannot be disabled "
1598                              "unless KVM is enabled and 32-bit EL1 "
1599                              "is supported");
1600             return;
1601         }
1602         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1603     } else {
1604         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1605     }
1606 }
1607 
gt_cntfrq_period_ns(ARMCPU * cpu)1608 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1609 {
1610     /*
1611      * The exact approach to calculating guest ticks is:
1612      *
1613      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1614      *              NANOSECONDS_PER_SECOND);
1615      *
1616      * We don't do that. Rather we intentionally use integer division
1617      * truncation below and in the caller for the conversion of host monotonic
1618      * time to guest ticks to provide the exact inverse for the semantics of
1619      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1620      * it loses precision when representing frequencies where
1621      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1622      * provide an exact inverse leads to scheduling timers with negative
1623      * periods, which in turn leads to sticky behaviour in the guest.
1624      *
1625      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1626      * cannot become zero.
1627      */
1628     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1629       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1630 }
1631 
arm_cpu_propagate_feature_implications(ARMCPU * cpu)1632 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1633 {
1634     CPUARMState *env = &cpu->env;
1635     bool no_aa32 = false;
1636 
1637     /*
1638      * Some features automatically imply others: set the feature
1639      * bits explicitly for these cases.
1640      */
1641 
1642     if (arm_feature(env, ARM_FEATURE_M)) {
1643         set_feature(env, ARM_FEATURE_PMSA);
1644     }
1645 
1646     if (arm_feature(env, ARM_FEATURE_V8)) {
1647         if (arm_feature(env, ARM_FEATURE_M)) {
1648             set_feature(env, ARM_FEATURE_V7);
1649         } else {
1650             set_feature(env, ARM_FEATURE_V7VE);
1651         }
1652     }
1653 
1654     /*
1655      * There exist AArch64 cpus without AArch32 support.  When KVM
1656      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1657      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1658      * As a general principle, we also do not make ID register
1659      * consistency checks anywhere unless using TCG, because only
1660      * for TCG would a consistency-check failure be a QEMU bug.
1661      */
1662     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1663         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1664     }
1665 
1666     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1667         /*
1668          * v7 Virtualization Extensions. In real hardware this implies
1669          * EL2 and also the presence of the Security Extensions.
1670          * For QEMU, for backwards-compatibility we implement some
1671          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1672          * include the various other features that V7VE implies.
1673          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1674          * Security Extensions is ARM_FEATURE_EL3.
1675          */
1676         assert(!tcg_enabled() || no_aa32 ||
1677                cpu_isar_feature(aa32_arm_div, cpu));
1678         set_feature(env, ARM_FEATURE_LPAE);
1679         set_feature(env, ARM_FEATURE_V7);
1680     }
1681     if (arm_feature(env, ARM_FEATURE_V7)) {
1682         set_feature(env, ARM_FEATURE_VAPA);
1683         set_feature(env, ARM_FEATURE_THUMB2);
1684         set_feature(env, ARM_FEATURE_MPIDR);
1685         if (!arm_feature(env, ARM_FEATURE_M)) {
1686             set_feature(env, ARM_FEATURE_V6K);
1687         } else {
1688             set_feature(env, ARM_FEATURE_V6);
1689         }
1690 
1691         /*
1692          * Always define VBAR for V7 CPUs even if it doesn't exist in
1693          * non-EL3 configs. This is needed by some legacy boards.
1694          */
1695         set_feature(env, ARM_FEATURE_VBAR);
1696     }
1697     if (arm_feature(env, ARM_FEATURE_V6K)) {
1698         set_feature(env, ARM_FEATURE_V6);
1699         set_feature(env, ARM_FEATURE_MVFR);
1700     }
1701     if (arm_feature(env, ARM_FEATURE_V6)) {
1702         set_feature(env, ARM_FEATURE_V5);
1703         if (!arm_feature(env, ARM_FEATURE_M)) {
1704             assert(!tcg_enabled() || no_aa32 ||
1705                    cpu_isar_feature(aa32_jazelle, cpu));
1706             set_feature(env, ARM_FEATURE_AUXCR);
1707         }
1708     }
1709     if (arm_feature(env, ARM_FEATURE_V5)) {
1710         set_feature(env, ARM_FEATURE_V4T);
1711     }
1712     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1713         set_feature(env, ARM_FEATURE_V7MP);
1714     }
1715     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1716         set_feature(env, ARM_FEATURE_CBAR);
1717     }
1718     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1719         !arm_feature(env, ARM_FEATURE_M)) {
1720         set_feature(env, ARM_FEATURE_THUMB_DSP);
1721     }
1722 }
1723 
arm_cpu_post_init(Object * obj)1724 static void arm_cpu_post_init(Object *obj)
1725 {
1726     ARMCPU *cpu = ARM_CPU(obj);
1727 
1728     /*
1729      * Some features imply others. Figure this out now, because we
1730      * are going to look at the feature bits in deciding which
1731      * properties to add.
1732      */
1733     arm_cpu_propagate_feature_implications(cpu);
1734 
1735     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1736         object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
1737                                        aarch64_cpu_set_aarch64);
1738         object_property_set_description(obj, "aarch64",
1739                                         "Set on/off to enable/disable aarch64 "
1740                                         "execution state ");
1741     }
1742 #ifndef CONFIG_USER_ONLY
1743     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1744         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1745         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1746     }
1747 
1748     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1749         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1750     }
1751 
1752     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1753         object_property_add_uint64_ptr(obj, "rvbar",
1754                                        &cpu->rvbar_prop,
1755                                        OBJ_PROP_FLAG_READWRITE);
1756     }
1757 
1758     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1759         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1760          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1761          */
1762         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1763 
1764         object_property_add_link(obj, "secure-memory",
1765                                  TYPE_MEMORY_REGION,
1766                                  (Object **)&cpu->secure_memory,
1767                                  qdev_prop_allow_set_link_before_realize,
1768                                  OBJ_PROP_LINK_STRONG);
1769     }
1770 
1771     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1772         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1773     }
1774 #endif
1775 
1776     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1777         cpu->has_pmu = true;
1778         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1779     }
1780 
1781     /*
1782      * Allow user to turn off VFP and Neon support, but only for TCG --
1783      * KVM does not currently allow us to lie to the guest about its
1784      * ID/feature registers, so the guest always sees what the host has.
1785      */
1786     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1787         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1788             cpu->has_vfp = true;
1789             cpu->has_vfp_d32 = true;
1790             if (tcg_enabled() || qtest_enabled()) {
1791                 qdev_property_add_static(DEVICE(obj),
1792                                          &arm_cpu_has_vfp_property);
1793             }
1794         }
1795     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1796         cpu->has_vfp = true;
1797         if (tcg_enabled() || qtest_enabled()) {
1798             qdev_property_add_static(DEVICE(obj),
1799                                      &arm_cpu_has_vfp_property);
1800         }
1801         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1802             cpu->has_vfp_d32 = true;
1803             /*
1804              * The permitted values of the SIMDReg bits [3:0] on
1805              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1806              * make sure that has_vfp_d32 can not be set to false.
1807              */
1808             if ((tcg_enabled() || qtest_enabled())
1809                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1810                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1811                 qdev_property_add_static(DEVICE(obj),
1812                                          &arm_cpu_has_vfp_d32_property);
1813             }
1814         }
1815     }
1816 
1817     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1818         cpu->has_neon = true;
1819         if (!kvm_enabled()) {
1820             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1821         }
1822     }
1823 
1824     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1825         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1826         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1827     }
1828 
1829 #ifndef CONFIG_USER_ONLY
1830     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1831         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1832         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1833             qdev_property_add_static(DEVICE(obj),
1834                                      &arm_cpu_pmsav7_dregion_property);
1835         }
1836     }
1837 
1838     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1839         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1840                                  qdev_prop_allow_set_link_before_realize,
1841                                  OBJ_PROP_LINK_STRONG);
1842         /*
1843          * M profile: initial value of the Secure VTOR. We can't just use
1844          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1845          * the property to be set after realize.
1846          */
1847         object_property_add_uint32_ptr(obj, "init-svtor",
1848                                        &cpu->init_svtor,
1849                                        OBJ_PROP_FLAG_READWRITE);
1850     }
1851     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1852         /*
1853          * Initial value of the NS VTOR (for cores without the Security
1854          * extension, this is the only VTOR)
1855          */
1856         object_property_add_uint32_ptr(obj, "init-nsvtor",
1857                                        &cpu->init_nsvtor,
1858                                        OBJ_PROP_FLAG_READWRITE);
1859     }
1860 
1861     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1862     object_property_add_uint32_ptr(obj, "psci-conduit",
1863                                    &cpu->psci_conduit,
1864                                    OBJ_PROP_FLAG_READWRITE);
1865 
1866     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1867         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1868     }
1869 
1870     if (kvm_enabled()) {
1871         kvm_arm_add_vcpu_properties(cpu);
1872     }
1873 
1874     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1875         cpu_isar_feature(aa64_mte, cpu)) {
1876         object_property_add_link(obj, "tag-memory",
1877                                  TYPE_MEMORY_REGION,
1878                                  (Object **)&cpu->tag_memory,
1879                                  qdev_prop_allow_set_link_before_realize,
1880                                  OBJ_PROP_LINK_STRONG);
1881 
1882         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1883             object_property_add_link(obj, "secure-tag-memory",
1884                                      TYPE_MEMORY_REGION,
1885                                      (Object **)&cpu->secure_tag_memory,
1886                                      qdev_prop_allow_set_link_before_realize,
1887                                      OBJ_PROP_LINK_STRONG);
1888         }
1889     }
1890 #endif
1891     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1892 }
1893 
arm_cpu_finalizefn(Object * obj)1894 static void arm_cpu_finalizefn(Object *obj)
1895 {
1896     ARMCPU *cpu = ARM_CPU(obj);
1897     ARMELChangeHook *hook, *next;
1898 
1899     g_hash_table_destroy(cpu->cp_regs);
1900 
1901     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1902         QLIST_REMOVE(hook, node);
1903         g_free(hook);
1904     }
1905     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1906         QLIST_REMOVE(hook, node);
1907         g_free(hook);
1908     }
1909 #ifndef CONFIG_USER_ONLY
1910     if (cpu->pmu_timer) {
1911         timer_free(cpu->pmu_timer);
1912     }
1913     if (cpu->wfxt_timer) {
1914         timer_free(cpu->wfxt_timer);
1915     }
1916 #endif
1917 }
1918 
arm_cpu_finalize_features(ARMCPU * cpu,Error ** errp)1919 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1920 {
1921     Error *local_err = NULL;
1922 
1923     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1924         arm_cpu_sve_finalize(cpu, &local_err);
1925         if (local_err != NULL) {
1926             error_propagate(errp, local_err);
1927             return;
1928         }
1929 
1930         /*
1931          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1932          * FEAT_SME_FA64 is present). However our implementation currently
1933          * assumes it, so if the user asked for sve=off then turn off SME also.
1934          * (KVM doesn't currently support SME at all.)
1935          */
1936         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1937             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1938         }
1939 
1940         arm_cpu_sme_finalize(cpu, &local_err);
1941         if (local_err != NULL) {
1942             error_propagate(errp, local_err);
1943             return;
1944         }
1945 
1946         arm_cpu_pauth_finalize(cpu, &local_err);
1947         if (local_err != NULL) {
1948             error_propagate(errp, local_err);
1949             return;
1950         }
1951 
1952         arm_cpu_lpa2_finalize(cpu, &local_err);
1953         if (local_err != NULL) {
1954             error_propagate(errp, local_err);
1955             return;
1956         }
1957     }
1958 
1959     if (kvm_enabled()) {
1960         kvm_arm_steal_time_finalize(cpu, &local_err);
1961         if (local_err != NULL) {
1962             error_propagate(errp, local_err);
1963             return;
1964         }
1965     }
1966 }
1967 
arm_cpu_realizefn(DeviceState * dev,Error ** errp)1968 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1969 {
1970     CPUState *cs = CPU(dev);
1971     ARMCPU *cpu = ARM_CPU(dev);
1972     ARMISARegisters *isar = &cpu->isar;
1973     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1974     CPUARMState *env = &cpu->env;
1975     Error *local_err = NULL;
1976 
1977 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1978     /* Use pc-relative instructions in system-mode */
1979     tcg_cflags_set(cs, CF_PCREL);
1980 #endif
1981 
1982     /* If we needed to query the host kernel for the CPU features
1983      * then it's possible that might have failed in the initfn, but
1984      * this is the first point where we can report it.
1985      */
1986     if (cpu->host_cpu_probe_failed) {
1987         if (!kvm_enabled() && !hvf_enabled()) {
1988             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1989         } else {
1990             error_setg(errp, "Failed to retrieve host CPU features");
1991         }
1992         return;
1993     }
1994 
1995     if (!cpu->gt_cntfrq_hz) {
1996         /*
1997          * 0 means "the board didn't set a value, use the default". (We also
1998          * get here for the CONFIG_USER_ONLY case.)
1999          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
2000          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
2001          * which gives a 16ns tick period.
2002          *
2003          * We will use the back-compat value:
2004          *  - for QEMU CPU types added before we standardized on 1GHz
2005          *  - for versioned machine types with a version of 9.0 or earlier
2006          */
2007         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2008             cpu->backcompat_cntfrq) {
2009             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2010         } else {
2011             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2012         }
2013     }
2014 
2015 #ifndef CONFIG_USER_ONLY
2016     /* The NVIC and M-profile CPU are two halves of a single piece of
2017      * hardware; trying to use one without the other is a command line
2018      * error and will result in segfaults if not caught here.
2019      */
2020     if (arm_feature(env, ARM_FEATURE_M)) {
2021         if (!env->nvic) {
2022             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2023             return;
2024         }
2025     } else {
2026         if (env->nvic) {
2027             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2028             return;
2029         }
2030     }
2031 
2032     if (!tcg_enabled() && !qtest_enabled()) {
2033         /*
2034          * We assume that no accelerator except TCG (and the "not really an
2035          * accelerator" qtest) can handle these features, because Arm hardware
2036          * virtualization can't virtualize them.
2037          *
2038          * Catch all the cases which might cause us to create more than one
2039          * address space for the CPU (otherwise we will assert() later in
2040          * cpu_address_space_init()).
2041          */
2042         if (arm_feature(env, ARM_FEATURE_M)) {
2043             error_setg(errp,
2044                        "Cannot enable %s when using an M-profile guest CPU",
2045                        current_accel_name());
2046             return;
2047         }
2048         if (cpu->has_el3) {
2049             error_setg(errp,
2050                        "Cannot enable %s when guest CPU has EL3 enabled",
2051                        current_accel_name());
2052             return;
2053         }
2054         if (cpu->tag_memory) {
2055             error_setg(errp,
2056                        "Cannot enable %s when guest CPUs has MTE enabled",
2057                        current_accel_name());
2058             return;
2059         }
2060     }
2061 
2062     {
2063         uint64_t scale = gt_cntfrq_period_ns(cpu);
2064 
2065         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2066                                                arm_gt_ptimer_cb, cpu);
2067         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2068                                                arm_gt_vtimer_cb, cpu);
2069         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2070                                               arm_gt_htimer_cb, cpu);
2071         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2072                                               arm_gt_stimer_cb, cpu);
2073         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2074                                                   arm_gt_hvtimer_cb, cpu);
2075         cpu->gt_timer[GTIMER_S_EL2_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2076                                                      arm_gt_sel2timer_cb, cpu);
2077         cpu->gt_timer[GTIMER_S_EL2_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2078                                                      arm_gt_sel2vtimer_cb, cpu);
2079     }
2080 #endif
2081 
2082     cpu_exec_realizefn(cs, &local_err);
2083     if (local_err != NULL) {
2084         error_propagate(errp, local_err);
2085         return;
2086     }
2087 
2088     arm_cpu_finalize_features(cpu, &local_err);
2089     if (local_err != NULL) {
2090         error_propagate(errp, local_err);
2091         return;
2092     }
2093 
2094 #ifdef CONFIG_USER_ONLY
2095     /*
2096      * User mode relies on IC IVAU instructions to catch modification of
2097      * dual-mapped code.
2098      *
2099      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2100      * IC IVAU even if the emulated processor does not normally require it.
2101      */
2102     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2103 #endif
2104 
2105     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2106         cpu->has_vfp != cpu->has_neon) {
2107         /*
2108          * This is an architectural requirement for AArch64; AArch32 is
2109          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2110          */
2111         error_setg(errp,
2112                    "AArch64 CPUs must have both VFP and Neon or neither");
2113         return;
2114     }
2115 
2116     if (cpu->has_vfp_d32 != cpu->has_neon) {
2117         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2118         return;
2119     }
2120 
2121    if (!cpu->has_vfp_d32) {
2122         uint32_t u;
2123 
2124         u = cpu->isar.mvfr0;
2125         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2126         cpu->isar.mvfr0 = u;
2127     }
2128 
2129     if (!cpu->has_vfp) {
2130         uint32_t u;
2131 
2132         FIELD_DP64_IDREG(isar, ID_AA64ISAR1, JSCVT, 0);
2133 
2134         FIELD_DP64_IDREG(isar, ID_AA64PFR0, FP, 0xf);
2135 
2136         u = GET_IDREG(isar, ID_ISAR6);
2137         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2138         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2139         SET_IDREG(isar, ID_ISAR6, u);
2140 
2141         u = cpu->isar.mvfr0;
2142         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2143         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2144         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2145         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2146         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2147         if (!arm_feature(env, ARM_FEATURE_M)) {
2148             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2149             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2150         }
2151         cpu->isar.mvfr0 = u;
2152 
2153         u = cpu->isar.mvfr1;
2154         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2155         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2156         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2157         if (arm_feature(env, ARM_FEATURE_M)) {
2158             u = FIELD_DP32(u, MVFR1, FP16, 0);
2159         }
2160         cpu->isar.mvfr1 = u;
2161 
2162         u = cpu->isar.mvfr2;
2163         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2164         cpu->isar.mvfr2 = u;
2165     }
2166 
2167     if (!cpu->has_neon) {
2168         uint64_t t;
2169         uint32_t u;
2170 
2171         unset_feature(env, ARM_FEATURE_NEON);
2172 
2173         t = GET_IDREG(isar, ID_AA64ISAR0);
2174         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2175         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2176         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2177         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2178         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2179         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2180         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2181         SET_IDREG(isar, ID_AA64ISAR0, t);
2182 
2183         t = GET_IDREG(isar, ID_AA64ISAR1);
2184         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2185         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2186         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2187         SET_IDREG(isar, ID_AA64ISAR1, t);
2188 
2189         FIELD_DP64_IDREG(isar, ID_AA64PFR0, ADVSIMD, 0xf);
2190 
2191         u = GET_IDREG(isar, ID_ISAR5);
2192         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2193         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2194         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2195         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2196         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2197         SET_IDREG(isar, ID_ISAR5, u);
2198 
2199         u = GET_IDREG(isar, ID_ISAR6);
2200         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2201         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2202         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2203         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2204         SET_IDREG(isar, ID_ISAR6, u);
2205 
2206         if (!arm_feature(env, ARM_FEATURE_M)) {
2207             u = cpu->isar.mvfr1;
2208             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2209             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2210             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2211             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2212             cpu->isar.mvfr1 = u;
2213 
2214             u = cpu->isar.mvfr2;
2215             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2216             cpu->isar.mvfr2 = u;
2217         }
2218     }
2219 
2220     if (!cpu->has_neon && !cpu->has_vfp) {
2221         uint32_t u;
2222 
2223         FIELD_DP64_IDREG(isar, ID_AA64ISAR0, FHM, 0);
2224 
2225         FIELD_DP64_IDREG(isar, ID_AA64ISAR1, FRINTTS, 0);
2226 
2227         u = cpu->isar.mvfr0;
2228         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2229         cpu->isar.mvfr0 = u;
2230 
2231         /* Despite the name, this field covers both VFP and Neon */
2232         u = cpu->isar.mvfr1;
2233         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2234         cpu->isar.mvfr1 = u;
2235     }
2236 
2237     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2238         uint32_t u;
2239 
2240         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2241 
2242         FIELD_DP32_IDREG(isar, ID_ISAR1, EXTEND, 1);
2243 
2244         u = GET_IDREG(isar, ID_ISAR2);
2245         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2246         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2247         SET_IDREG(isar, ID_ISAR2, u);
2248 
2249         u = GET_IDREG(isar, ID_ISAR3);
2250         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2251         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2252         SET_IDREG(isar, ID_ISAR3, u);
2253     }
2254 
2255 
2256     /*
2257      * We rely on no XScale CPU having VFP so we can use the same bits in the
2258      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2259      */
2260     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2261            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2262            !arm_feature(env, ARM_FEATURE_XSCALE));
2263 
2264 #ifndef CONFIG_USER_ONLY
2265     {
2266         int pagebits;
2267         if (arm_feature(env, ARM_FEATURE_V7) &&
2268             !arm_feature(env, ARM_FEATURE_M) &&
2269             !arm_feature(env, ARM_FEATURE_PMSA)) {
2270             /*
2271              * v7VMSA drops support for the old ARMv5 tiny pages,
2272              * so we can use 4K pages.
2273              */
2274             pagebits = 12;
2275         } else {
2276             /*
2277              * For CPUs which might have tiny 1K pages, or which have an
2278              * MPU and might have small region sizes, stick with 1K pages.
2279              */
2280             pagebits = 10;
2281         }
2282         if (!set_preferred_target_page_bits(pagebits)) {
2283             /*
2284              * This can only ever happen for hotplugging a CPU, or if
2285              * the board code incorrectly creates a CPU which it has
2286              * promised via minimum_page_size that it will not.
2287              */
2288             error_setg(errp, "This CPU requires a smaller page size "
2289                        "than the system is using");
2290             return;
2291         }
2292     }
2293 #endif
2294 
2295     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2296      * We don't support setting cluster ID ([16..23]) (known as Aff2
2297      * in later ARM ARM versions), or any of the higher affinity level fields,
2298      * so these bits always RAZ.
2299      */
2300     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2301         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2302                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2303     }
2304 
2305     if (cpu->reset_hivecs) {
2306             cpu->reset_sctlr |= (1 << 13);
2307     }
2308 
2309     if (cpu->cfgend) {
2310         if (arm_feature(env, ARM_FEATURE_V7)) {
2311             cpu->reset_sctlr |= SCTLR_EE;
2312         } else {
2313             cpu->reset_sctlr |= SCTLR_B;
2314         }
2315     }
2316 
2317     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2318         /* If the has_el3 CPU property is disabled then we need to disable the
2319          * feature.
2320          */
2321         unset_feature(env, ARM_FEATURE_EL3);
2322 
2323         /*
2324          * Disable the security extension feature bits in the processor
2325          * feature registers as well.
2326          */
2327         FIELD_DP32_IDREG(isar, ID_PFR1, SECURITY, 0);
2328         FIELD_DP32_IDREG(isar, ID_DFR0, COPSDBG, 0);
2329         FIELD_DP64_IDREG(isar, ID_AA64PFR0, EL3, 0);
2330 
2331         /* Disable the realm management extension, which requires EL3. */
2332         FIELD_DP64_IDREG(isar, ID_AA64PFR0, RME, 0);
2333     }
2334 
2335     if (!cpu->has_el2) {
2336         unset_feature(env, ARM_FEATURE_EL2);
2337     }
2338 
2339     if (!cpu->has_pmu) {
2340         unset_feature(env, ARM_FEATURE_PMU);
2341     }
2342     if (arm_feature(env, ARM_FEATURE_PMU)) {
2343         pmu_init(cpu);
2344 
2345         if (!kvm_enabled()) {
2346             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2347             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2348         }
2349 
2350 #ifndef CONFIG_USER_ONLY
2351         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2352                 cpu);
2353 #endif
2354     } else {
2355         FIELD_DP64_IDREG(isar, ID_AA64DFR0, PMUVER, 0);
2356         FIELD_DP32_IDREG(isar, ID_DFR0, PERFMON, 0);
2357         cpu->pmceid0 = 0;
2358         cpu->pmceid1 = 0;
2359     }
2360 
2361     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2362         /*
2363          * Disable the hypervisor feature bits in the processor feature
2364          * registers if we don't have EL2.
2365          */
2366         FIELD_DP64_IDREG(isar, ID_AA64PFR0, EL2, 0);
2367         FIELD_DP32_IDREG(isar, ID_PFR1, VIRTUALIZATION, 0);
2368     }
2369 
2370     if (cpu_isar_feature(aa64_mte, cpu)) {
2371         /*
2372          * The architectural range of GM blocksize is 2-6, however qemu
2373          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2374          */
2375         if (tcg_enabled()) {
2376             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2377         }
2378 
2379 #ifndef CONFIG_USER_ONLY
2380         /*
2381          * If we run with TCG and do not have tag-memory provided by
2382          * the machine, then reduce MTE support to instructions enabled at EL0.
2383          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2384          */
2385         if (tcg_enabled() && cpu->tag_memory == NULL) {
2386             FIELD_DP64_IDREG(isar, ID_AA64PFR1, MTE, 1);
2387         }
2388 
2389         /*
2390          * If MTE is supported by the host, however it should not be
2391          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2392          */
2393         if (kvm_enabled() && !cpu->kvm_mte) {
2394                 FIELD_DP64_IDREG(isar, ID_AA64PFR1, MTE, 0);
2395         }
2396 #endif
2397     }
2398 
2399 #ifndef CONFIG_USER_ONLY
2400     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2401         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2402                                        arm_wfxt_timer_cb, cpu);
2403     }
2404 #endif
2405 
2406     if (tcg_enabled()) {
2407         /*
2408          * Don't report some architectural features in the ID registers
2409          * where TCG does not yet implement it (not even a minimal
2410          * stub version). This avoids guests falling over when they
2411          * try to access the non-existent system registers for them.
2412          */
2413         /* FEAT_SPE (Statistical Profiling Extension) */
2414         FIELD_DP64_IDREG(isar, ID_AA64DFR0, PMSVER, 0);
2415         /* FEAT_TRBE (Trace Buffer Extension) */
2416         FIELD_DP64_IDREG(isar, ID_AA64DFR0, TRACEBUFFER, 0);
2417         /* FEAT_TRF (Self-hosted Trace Extension) */
2418         FIELD_DP64_IDREG(isar, ID_AA64DFR0, TRACEFILT, 0);
2419         FIELD_DP32_IDREG(isar, ID_DFR0, TRACEFILT, 0);
2420         /* Trace Macrocell system register access */
2421         FIELD_DP64_IDREG(isar, ID_AA64DFR0, TRACEVER, 0);
2422         FIELD_DP32_IDREG(isar, ID_DFR0, COPTRC, 0);
2423         /* Memory mapped trace */
2424         FIELD_DP32_IDREG(isar, ID_DFR0, MMAPTRC, 0);
2425         /* FEAT_AMU (Activity Monitors Extension) */
2426         FIELD_DP64_IDREG(isar, ID_AA64PFR0, AMU, 0);
2427         FIELD_DP32_IDREG(isar, ID_PFR0, AMU, 0);
2428         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2429         FIELD_DP64_IDREG(isar, ID_AA64PFR0, MPAM, 0);
2430     }
2431 
2432     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2433      * to false or by setting pmsav7-dregion to 0.
2434      */
2435     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2436         cpu->has_mpu = false;
2437         cpu->pmsav7_dregion = 0;
2438         cpu->pmsav8r_hdregion = 0;
2439     }
2440 
2441     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2442         arm_feature(env, ARM_FEATURE_V7)) {
2443         uint32_t nr = cpu->pmsav7_dregion;
2444 
2445         if (nr > 0xff) {
2446             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2447             return;
2448         }
2449 
2450         if (nr) {
2451             if (arm_feature(env, ARM_FEATURE_V8)) {
2452                 /* PMSAv8 */
2453                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2454                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2455                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2456                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2457                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2458                 }
2459             } else {
2460                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2461                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2462                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2463             }
2464         }
2465 
2466         if (cpu->pmsav8r_hdregion > 0xff) {
2467             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2468                               cpu->pmsav8r_hdregion);
2469             return;
2470         }
2471 
2472         if (cpu->pmsav8r_hdregion) {
2473             env->pmsav8.hprbar = g_new0(uint32_t,
2474                                         cpu->pmsav8r_hdregion);
2475             env->pmsav8.hprlar = g_new0(uint32_t,
2476                                         cpu->pmsav8r_hdregion);
2477         }
2478     }
2479 
2480     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2481         uint32_t nr = cpu->sau_sregion;
2482 
2483         if (nr > 0xff) {
2484             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2485             return;
2486         }
2487 
2488         if (nr) {
2489             env->sau.rbar = g_new0(uint32_t, nr);
2490             env->sau.rlar = g_new0(uint32_t, nr);
2491         }
2492     }
2493 
2494     if (arm_feature(env, ARM_FEATURE_EL3)) {
2495         set_feature(env, ARM_FEATURE_VBAR);
2496     }
2497 
2498 #ifndef CONFIG_USER_ONLY
2499     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2500         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2501     }
2502 #endif
2503 
2504     register_cp_regs_for_features(cpu);
2505     arm_cpu_register_gdb_regs_for_features(cpu);
2506     arm_cpu_register_gdb_commands(cpu);
2507 
2508     init_cpreg_list(cpu);
2509 
2510 #ifndef CONFIG_USER_ONLY
2511     MachineState *ms = MACHINE(qdev_get_machine());
2512     unsigned int smp_cpus = ms->smp.cpus;
2513     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2514 
2515     /*
2516      * We must set cs->num_ases to the final value before
2517      * the first call to cpu_address_space_init.
2518      */
2519     if (cpu->tag_memory != NULL) {
2520         cs->num_ases = 3 + has_secure;
2521     } else {
2522         cs->num_ases = 1 + has_secure;
2523     }
2524 
2525     if (has_secure) {
2526         if (!cpu->secure_memory) {
2527             cpu->secure_memory = cs->memory;
2528         }
2529         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2530                                cpu->secure_memory);
2531     }
2532 
2533     if (cpu->tag_memory != NULL) {
2534         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2535                                cpu->tag_memory);
2536         if (has_secure) {
2537             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2538                                    cpu->secure_tag_memory);
2539         }
2540     }
2541 
2542     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2543 
2544     /* No core_count specified, default to smp_cpus. */
2545     if (cpu->core_count == -1) {
2546         cpu->core_count = smp_cpus;
2547     }
2548 #endif
2549 
2550     if (tcg_enabled()) {
2551         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2552 
2553         /*
2554          * We only support DCZ blocklen that fits on one page.
2555          *
2556          * Architectually this is always true.  However TARGET_PAGE_SIZE
2557          * is variable and, for compatibility with -machine virt-2.7,
2558          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2559          * But even then, while the largest architectural DCZ blocklen
2560          * is 2KiB, no cpu actually uses such a large blocklen.
2561          */
2562         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2563 
2564         /*
2565          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2566          * both nibbles of each byte storing tag data may be written at once.
2567          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2568          */
2569         if (cpu_isar_feature(aa64_mte, cpu)) {
2570             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2571         }
2572     }
2573 
2574     qemu_init_vcpu(cs);
2575     cpu_reset(cs);
2576 
2577     acc->parent_realize(dev, errp);
2578 }
2579 
arm_cpu_class_by_name(const char * cpu_model)2580 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2581 {
2582     ObjectClass *oc;
2583     char *typename;
2584     char **cpuname;
2585     const char *cpunamestr;
2586 
2587     cpuname = g_strsplit(cpu_model, ",", 1);
2588     cpunamestr = cpuname[0];
2589 #ifdef CONFIG_USER_ONLY
2590     /* For backwards compatibility usermode emulation allows "-cpu any",
2591      * which has the same semantics as "-cpu max".
2592      */
2593     if (!strcmp(cpunamestr, "any")) {
2594         cpunamestr = "max";
2595     }
2596 #endif
2597     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2598     oc = object_class_by_name(typename);
2599     g_strfreev(cpuname);
2600     g_free(typename);
2601 
2602     return oc;
2603 }
2604 
2605 static const Property arm_cpu_properties[] = {
2606     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2607     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2608                         mp_affinity, ARM64_AFFINITY_INVALID),
2609     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2610     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2611     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2612     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2613     DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU,
2614                       backcompat_pauth_default_use_qarma5, false),
2615 };
2616 
arm_gdb_arch_name(CPUState * cs)2617 static const gchar *arm_gdb_arch_name(CPUState *cs)
2618 {
2619     ARMCPU *cpu = ARM_CPU(cs);
2620     CPUARMState *env = &cpu->env;
2621 
2622     if (arm_gdbstub_is_aarch64(cpu)) {
2623         return "aarch64";
2624     }
2625     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2626         return "iwmmxt";
2627     }
2628     return "arm";
2629 }
2630 
arm_gdb_get_core_xml_file(CPUState * cs)2631 static const char *arm_gdb_get_core_xml_file(CPUState *cs)
2632 {
2633     ARMCPU *cpu = ARM_CPU(cs);
2634     CPUARMState *env = &cpu->env;
2635 
2636     if (arm_gdbstub_is_aarch64(cpu)) {
2637         return "aarch64-core.xml";
2638     }
2639     if (arm_feature(env, ARM_FEATURE_M)) {
2640         return "arm-m-profile.xml";
2641     }
2642     return "arm-core.xml";
2643 }
2644 
2645 #ifdef CONFIG_USER_ONLY
2646 /**
2647  * aarch64_untagged_addr:
2648  *
2649  * Remove any address tag from @x.  This is explicitly related to the
2650  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
2651  *
2652  * There should be a better place to put this, but we need this in
2653  * include/accel/tcg/cpu-ldst.h, and not some place linux-user specific.
2654  *
2655  * Note that arm-*-user will never set tagged_addr_enable.
2656  */
aarch64_untagged_addr(CPUState * cs,vaddr x)2657 static vaddr aarch64_untagged_addr(CPUState *cs, vaddr x)
2658 {
2659     CPUARMState *env = cpu_env(cs);
2660     if (env->tagged_addr_enable) {
2661         /*
2662          * TBI is enabled for userspace but not kernelspace addresses.
2663          * Only clear the tag if bit 55 is clear.
2664          */
2665         x &= sextract64(x, 0, 56);
2666     }
2667     return x;
2668 }
2669 #else
2670 #include "hw/core/sysemu-cpu-ops.h"
2671 
2672 static const struct SysemuCPUOps arm_sysemu_ops = {
2673     .has_work = arm_cpu_has_work,
2674     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2675     .asidx_from_attrs = arm_asidx_from_attrs,
2676     .write_elf32_note = arm_cpu_write_elf32_note,
2677     .write_elf64_note = arm_cpu_write_elf64_note,
2678     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2679     .legacy_vmsd = &vmstate_arm_cpu,
2680 };
2681 #endif
2682 
2683 #ifdef CONFIG_TCG
2684 #ifndef CONFIG_USER_ONLY
aprofile_pointer_wrap(CPUState * cs,int mmu_idx,vaddr result,vaddr base)2685 static vaddr aprofile_pointer_wrap(CPUState *cs, int mmu_idx,
2686                                    vaddr result, vaddr base)
2687 {
2688     /*
2689      * The Stage2 and Phys indexes are only used for ptw on arm32,
2690      * and all pte's are aligned, so we never produce a wrap for these.
2691      * Double check that we're not truncating a 40-bit physical address.
2692      */
2693     assert((unsigned)mmu_idx < (ARMMMUIdx_Stage2_S & ARM_MMU_IDX_COREIDX_MASK));
2694 
2695     if (!is_a64(cpu_env(cs))) {
2696         return (uint32_t)result;
2697     }
2698 
2699     /*
2700      * TODO: For FEAT_CPA2, decide how to we want to resolve
2701      * Unpredictable_CPACHECK in AddressIncrement.
2702      */
2703     return result;
2704 }
2705 #endif /* !CONFIG_USER_ONLY */
2706 
2707 static const TCGCPUOps arm_tcg_ops = {
2708     .mttcg_supported = true,
2709     /* ARM processors have a weak memory model */
2710     .guest_default_memory_order = 0,
2711 
2712     .initialize = arm_translate_init,
2713     .translate_code = arm_translate_code,
2714     .get_tb_cpu_state = arm_get_tb_cpu_state,
2715     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2716     .debug_excp_handler = arm_debug_excp_handler,
2717     .restore_state_to_opc = arm_restore_state_to_opc,
2718     .mmu_index = arm_cpu_mmu_index,
2719 
2720 #ifdef CONFIG_USER_ONLY
2721     .record_sigsegv = arm_cpu_record_sigsegv,
2722     .record_sigbus = arm_cpu_record_sigbus,
2723     .untagged_addr = aarch64_untagged_addr,
2724 #else
2725     .tlb_fill_align = arm_cpu_tlb_fill_align,
2726     .pointer_wrap = aprofile_pointer_wrap,
2727     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2728     .cpu_exec_halt = arm_cpu_exec_halt,
2729     .cpu_exec_reset = cpu_reset,
2730     .do_interrupt = arm_cpu_do_interrupt,
2731     .do_transaction_failed = arm_cpu_do_transaction_failed,
2732     .do_unaligned_access = arm_cpu_do_unaligned_access,
2733     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2734     .debug_check_watchpoint = arm_debug_check_watchpoint,
2735     .debug_check_breakpoint = arm_debug_check_breakpoint,
2736 #endif /* !CONFIG_USER_ONLY */
2737 };
2738 #endif /* CONFIG_TCG */
2739 
arm_cpu_class_init(ObjectClass * oc,const void * data)2740 static void arm_cpu_class_init(ObjectClass *oc, const void *data)
2741 {
2742     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2743     CPUClass *cc = CPU_CLASS(acc);
2744     DeviceClass *dc = DEVICE_CLASS(oc);
2745     ResettableClass *rc = RESETTABLE_CLASS(oc);
2746 
2747     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2748                                     &acc->parent_realize);
2749 
2750     device_class_set_props(dc, arm_cpu_properties);
2751 
2752     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2753                                        &acc->parent_phases);
2754 
2755     cc->class_by_name = arm_cpu_class_by_name;
2756     cc->dump_state = arm_cpu_dump_state;
2757     cc->set_pc = arm_cpu_set_pc;
2758     cc->get_pc = arm_cpu_get_pc;
2759     cc->gdb_read_register = arm_cpu_gdb_read_register;
2760     cc->gdb_write_register = arm_cpu_gdb_write_register;
2761 #ifndef CONFIG_USER_ONLY
2762     cc->sysemu_ops = &arm_sysemu_ops;
2763 #endif
2764     cc->gdb_arch_name = arm_gdb_arch_name;
2765     cc->gdb_get_core_xml_file = arm_gdb_get_core_xml_file;
2766     cc->gdb_stop_before_watchpoint = true;
2767     cc->disas_set_info = arm_disas_set_info;
2768 
2769 #ifdef CONFIG_TCG
2770     cc->tcg_ops = &arm_tcg_ops;
2771 #endif /* CONFIG_TCG */
2772 }
2773 
arm_cpu_instance_init(Object * obj)2774 static void arm_cpu_instance_init(Object *obj)
2775 {
2776     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2777 
2778     acc->info->initfn(obj);
2779     arm_cpu_post_init(obj);
2780 }
2781 
cpu_register_class_init(ObjectClass * oc,const void * data)2782 static void cpu_register_class_init(ObjectClass *oc, const void *data)
2783 {
2784     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2785     CPUClass *cc = CPU_CLASS(acc);
2786 
2787     acc->info = data;
2788     if (acc->info->deprecation_note) {
2789         cc->deprecation_note = acc->info->deprecation_note;
2790     }
2791 }
2792 
arm_cpu_register(const ARMCPUInfo * info)2793 void arm_cpu_register(const ARMCPUInfo *info)
2794 {
2795     TypeInfo type_info = {
2796         .parent = TYPE_ARM_CPU,
2797         .instance_init = arm_cpu_instance_init,
2798         .class_init = info->class_init ?: cpu_register_class_init,
2799         .class_data = info,
2800     };
2801 
2802     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2803     type_register_static(&type_info);
2804     g_free((void *)type_info.name);
2805 }
2806 
2807 static const TypeInfo arm_cpu_type_info = {
2808     .name = TYPE_ARM_CPU,
2809     .parent = TYPE_CPU,
2810     .instance_size = sizeof(ARMCPU),
2811     .instance_align = __alignof__(ARMCPU),
2812     .instance_init = arm_cpu_initfn,
2813     .instance_finalize = arm_cpu_finalizefn,
2814     .abstract = true,
2815     .class_size = sizeof(ARMCPUClass),
2816     .class_init = arm_cpu_class_init,
2817 };
2818 
arm_cpu_register_types(void)2819 static void arm_cpu_register_types(void)
2820 {
2821     type_register_static(&arm_cpu_type_info);
2822 }
2823 
2824 type_init(arm_cpu_register_types)
2825