xref: /openbmc/linux/arch/x86/kernel/smpboot.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/kexec.h>
57 #include <linux/numa.h>
58 #include <linux/pgtable.h>
59 #include <linux/overflow.h>
60 #include <linux/stackprotector.h>
61 #include <linux/cpuhotplug.h>
62 #include <linux/mc146818rtc.h>
63 #include <linux/acpi.h>
64 
65 #include <asm/acpi.h>
66 #include <asm/cacheinfo.h>
67 #include <asm/desc.h>
68 #include <asm/nmi.h>
69 #include <asm/irq.h>
70 #include <asm/realmode.h>
71 #include <asm/cpu.h>
72 #include <asm/numa.h>
73 #include <asm/tlbflush.h>
74 #include <asm/mtrr.h>
75 #include <asm/mwait.h>
76 #include <asm/apic.h>
77 #include <asm/io_apic.h>
78 #include <asm/fpu/api.h>
79 #include <asm/setup.h>
80 #include <asm/uv/uv.h>
81 #include <asm/microcode.h>
82 #include <asm/i8259.h>
83 #include <asm/misc.h>
84 #include <asm/qspinlock.h>
85 #include <asm/intel-family.h>
86 #include <asm/cpu_device_id.h>
87 #include <asm/spec-ctrl.h>
88 #include <asm/hw_irq.h>
89 #include <asm/stackprotector.h>
90 #include <asm/sev.h>
91 
92 /* representing HT siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
95 
96 /* representing HT and core siblings of each logical CPU */
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
98 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
99 
100 /* representing HT, core, and die siblings of each logical CPU */
101 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
102 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
103 
104 /* Per CPU bogomips and other parameters */
105 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
106 EXPORT_PER_CPU_SYMBOL(cpu_info);
107 
108 /* CPUs which are the primary SMT threads */
109 struct cpumask __cpu_primary_thread_mask __read_mostly;
110 
111 /* Representing CPUs for which sibling maps can be computed */
112 static cpumask_var_t cpu_sibling_setup_mask;
113 
114 struct mwait_cpu_dead {
115 	unsigned int	control;
116 	unsigned int	status;
117 };
118 
119 #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
120 #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
121 
122 /*
123  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
124  * that it's unlikely to be touched by other CPUs.
125  */
126 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
127 
128 /* Logical package management. We might want to allocate that dynamically */
129 unsigned int __max_logical_packages __read_mostly;
130 EXPORT_SYMBOL(__max_logical_packages);
131 static unsigned int logical_packages __read_mostly;
132 static unsigned int logical_die __read_mostly;
133 
134 /* Maximum number of SMT threads on any online core */
135 int __read_mostly __max_smt_threads = 1;
136 
137 /* Flag to indicate if a complete sched domain rebuild is required */
138 bool x86_topology_update;
139 
arch_update_cpu_topology(void)140 int arch_update_cpu_topology(void)
141 {
142 	int retval = x86_topology_update;
143 
144 	x86_topology_update = false;
145 	return retval;
146 }
147 
148 static unsigned int smpboot_warm_reset_vector_count;
149 
smpboot_setup_warm_reset_vector(unsigned long start_eip)150 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
151 {
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&rtc_lock, flags);
155 	if (!smpboot_warm_reset_vector_count++) {
156 		CMOS_WRITE(0xa, 0xf);
157 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
158 		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
159 	}
160 	spin_unlock_irqrestore(&rtc_lock, flags);
161 }
162 
smpboot_restore_warm_reset_vector(void)163 static inline void smpboot_restore_warm_reset_vector(void)
164 {
165 	unsigned long flags;
166 
167 	/*
168 	 * Paranoid:  Set warm reset code and vector here back
169 	 * to default values.
170 	 */
171 	spin_lock_irqsave(&rtc_lock, flags);
172 	if (!--smpboot_warm_reset_vector_count) {
173 		CMOS_WRITE(0, 0xf);
174 		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
175 	}
176 	spin_unlock_irqrestore(&rtc_lock, flags);
177 
178 }
179 
180 /* Run the next set of setup steps for the upcoming CPU */
ap_starting(void)181 static void ap_starting(void)
182 {
183 	int cpuid = smp_processor_id();
184 
185 	/* Mop up eventual mwait_play_dead() wreckage */
186 	this_cpu_write(mwait_cpu_dead.status, 0);
187 	this_cpu_write(mwait_cpu_dead.control, 0);
188 
189 	/*
190 	 * If woken up by an INIT in an 82489DX configuration the alive
191 	 * synchronization guarantees that the CPU does not reach this
192 	 * point before an INIT_deassert IPI reaches the local APIC, so it
193 	 * is now safe to touch the local APIC.
194 	 *
195 	 * Set up this CPU, first the APIC, which is probably redundant on
196 	 * most boards.
197 	 */
198 	apic_ap_setup();
199 
200 	/* Save the processor parameters. */
201 	smp_store_cpu_info(cpuid);
202 
203 	/*
204 	 * The topology information must be up to date before
205 	 * notify_cpu_starting().
206 	 */
207 	set_cpu_sibling_map(cpuid);
208 
209 	ap_init_aperfmperf();
210 
211 	pr_debug("Stack at about %p\n", &cpuid);
212 
213 	wmb();
214 
215 	/*
216 	 * This runs the AP through all the cpuhp states to its target
217 	 * state CPUHP_ONLINE.
218 	 */
219 	notify_cpu_starting(cpuid);
220 }
221 
ap_calibrate_delay(void)222 static void ap_calibrate_delay(void)
223 {
224 	/*
225 	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
226 	 * smp_store_cpu_info() stored a value that is close but not as
227 	 * accurate as the value just calculated.
228 	 *
229 	 * As this is invoked after the TSC synchronization check,
230 	 * calibrate_delay_is_known() will skip the calibration routine
231 	 * when TSC is synchronized across sockets.
232 	 */
233 	calibrate_delay();
234 	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
235 }
236 
237 /*
238  * Activate a secondary processor.
239  */
start_secondary(void * unused)240 static void notrace start_secondary(void *unused)
241 {
242 	/*
243 	 * Don't put *anything* except direct CPU state initialization
244 	 * before cpu_init(), SMP booting is too fragile that we want to
245 	 * limit the things done here to the most necessary things.
246 	 */
247 	cr4_init();
248 
249 	/*
250 	 * 32-bit specific. 64-bit reaches this code with the correct page
251 	 * table established. Yet another historical divergence.
252 	 */
253 	if (IS_ENABLED(CONFIG_X86_32)) {
254 		/* switch away from the initial page table */
255 		load_cr3(swapper_pg_dir);
256 		__flush_tlb_all();
257 	}
258 
259 	cpu_init_exception_handling();
260 
261 	/*
262 	 * 32-bit systems load the microcode from the ASM startup code for
263 	 * historical reasons.
264 	 *
265 	 * On 64-bit systems load it before reaching the AP alive
266 	 * synchronization point below so it is not part of the full per
267 	 * CPU serialized bringup part when "parallel" bringup is enabled.
268 	 *
269 	 * That's even safe when hyperthreading is enabled in the CPU as
270 	 * the core code starts the primary threads first and leaves the
271 	 * secondary threads waiting for SIPI. Loading microcode on
272 	 * physical cores concurrently is a safe operation.
273 	 *
274 	 * This covers both the Intel specific issue that concurrent
275 	 * microcode loading on SMT siblings must be prohibited and the
276 	 * vendor independent issue`that microcode loading which changes
277 	 * CPUID, MSRs etc. must be strictly serialized to maintain
278 	 * software state correctness.
279 	 */
280 	if (IS_ENABLED(CONFIG_X86_64))
281 		load_ucode_ap();
282 
283 	/*
284 	 * Synchronization point with the hotplug core. Sets this CPUs
285 	 * synchronization state to ALIVE and spin-waits for the control CPU to
286 	 * release this CPU for further bringup.
287 	 */
288 	cpuhp_ap_sync_alive();
289 
290 	cpu_init();
291 	fpu__init_cpu();
292 	rcu_cpu_starting(raw_smp_processor_id());
293 	x86_cpuinit.early_percpu_clock_init();
294 
295 	ap_starting();
296 
297 	/* Check TSC synchronization with the control CPU. */
298 	check_tsc_sync_target();
299 
300 	/*
301 	 * Calibrate the delay loop after the TSC synchronization check.
302 	 * This allows to skip the calibration when TSC is synchronized
303 	 * across sockets.
304 	 */
305 	ap_calibrate_delay();
306 
307 	speculative_store_bypass_ht_init();
308 
309 	/*
310 	 * Lock vector_lock, set CPU online and bring the vector
311 	 * allocator online. Online must be set with vector_lock held
312 	 * to prevent a concurrent irq setup/teardown from seeing a
313 	 * half valid vector space.
314 	 */
315 	lock_vector_lock();
316 	set_cpu_online(smp_processor_id(), true);
317 	lapic_online();
318 	unlock_vector_lock();
319 	x86_platform.nmi_init();
320 
321 	/* enable local interrupts */
322 	local_irq_enable();
323 
324 	x86_cpuinit.setup_percpu_clockev();
325 
326 	wmb();
327 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
328 }
329 
330 /**
331  * topology_phys_to_logical_pkg - Map a physical package id to a logical
332  * @phys_pkg:	The physical package id to map
333  *
334  * Returns logical package id or -1 if not found
335  */
topology_phys_to_logical_pkg(unsigned int phys_pkg)336 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
337 {
338 	int cpu;
339 
340 	for_each_possible_cpu(cpu) {
341 		struct cpuinfo_x86 *c = &cpu_data(cpu);
342 
343 		if (c->initialized && c->phys_proc_id == phys_pkg)
344 			return c->logical_proc_id;
345 	}
346 	return -1;
347 }
348 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
349 
350 /**
351  * topology_phys_to_logical_die - Map a physical die id to logical
352  * @die_id:	The physical die id to map
353  * @cur_cpu:	The CPU for which the mapping is done
354  *
355  * Returns logical die id or -1 if not found
356  */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)357 static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
358 {
359 	int cpu, proc_id = cpu_data(cur_cpu).phys_proc_id;
360 
361 	for_each_possible_cpu(cpu) {
362 		struct cpuinfo_x86 *c = &cpu_data(cpu);
363 
364 		if (c->initialized && c->cpu_die_id == die_id &&
365 		    c->phys_proc_id == proc_id)
366 			return c->logical_die_id;
367 	}
368 	return -1;
369 }
370 
371 /**
372  * topology_update_package_map - Update the physical to logical package map
373  * @pkg:	The physical package id as retrieved via CPUID
374  * @cpu:	The cpu for which this is updated
375  */
topology_update_package_map(unsigned int pkg,unsigned int cpu)376 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
377 {
378 	int new;
379 
380 	/* Already available somewhere? */
381 	new = topology_phys_to_logical_pkg(pkg);
382 	if (new >= 0)
383 		goto found;
384 
385 	new = logical_packages++;
386 	if (new != pkg) {
387 		pr_info("CPU %u Converting physical %u to logical package %u\n",
388 			cpu, pkg, new);
389 	}
390 found:
391 	cpu_data(cpu).logical_proc_id = new;
392 	return 0;
393 }
394 /**
395  * topology_update_die_map - Update the physical to logical die map
396  * @die:	The die id as retrieved via CPUID
397  * @cpu:	The cpu for which this is updated
398  */
topology_update_die_map(unsigned int die,unsigned int cpu)399 int topology_update_die_map(unsigned int die, unsigned int cpu)
400 {
401 	int new;
402 
403 	/* Already available somewhere? */
404 	new = topology_phys_to_logical_die(die, cpu);
405 	if (new >= 0)
406 		goto found;
407 
408 	new = logical_die++;
409 	if (new != die) {
410 		pr_info("CPU %u Converting physical %u to logical die %u\n",
411 			cpu, die, new);
412 	}
413 found:
414 	cpu_data(cpu).logical_die_id = new;
415 	return 0;
416 }
417 
smp_store_boot_cpu_info(void)418 static void __init smp_store_boot_cpu_info(void)
419 {
420 	int id = 0; /* CPU 0 */
421 	struct cpuinfo_x86 *c = &cpu_data(id);
422 
423 	*c = boot_cpu_data;
424 	c->cpu_index = id;
425 	topology_update_package_map(c->phys_proc_id, id);
426 	topology_update_die_map(c->cpu_die_id, id);
427 	c->initialized = true;
428 }
429 
430 /*
431  * The bootstrap kernel entry code has set these up. Save them for
432  * a given CPU
433  */
smp_store_cpu_info(int id)434 void smp_store_cpu_info(int id)
435 {
436 	struct cpuinfo_x86 *c = &cpu_data(id);
437 
438 	/* Copy boot_cpu_data only on the first bringup */
439 	if (!c->initialized)
440 		*c = boot_cpu_data;
441 	c->cpu_index = id;
442 	/*
443 	 * During boot time, CPU0 has this setup already. Save the info when
444 	 * bringing up an AP.
445 	 */
446 	identify_secondary_cpu(c);
447 	c->initialized = true;
448 }
449 
450 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)451 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
452 {
453 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
454 
455 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
456 }
457 
458 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)459 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
460 {
461 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
462 
463 	return !WARN_ONCE(!topology_same_node(c, o),
464 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
465 		"[node: %d != %d]. Ignoring dependency.\n",
466 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
467 }
468 
469 #define link_mask(mfunc, c1, c2)					\
470 do {									\
471 	cpumask_set_cpu((c1), mfunc(c2));				\
472 	cpumask_set_cpu((c2), mfunc(c1));				\
473 } while (0)
474 
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)475 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
476 {
477 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
478 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
479 
480 		if (c->phys_proc_id == o->phys_proc_id &&
481 		    c->cpu_die_id == o->cpu_die_id &&
482 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
483 			if (c->cpu_core_id == o->cpu_core_id)
484 				return topology_sane(c, o, "smt");
485 
486 			if ((c->cu_id != 0xff) &&
487 			    (o->cu_id != 0xff) &&
488 			    (c->cu_id == o->cu_id))
489 				return topology_sane(c, o, "smt");
490 		}
491 
492 	} else if (c->phys_proc_id == o->phys_proc_id &&
493 		   c->cpu_die_id == o->cpu_die_id &&
494 		   c->cpu_core_id == o->cpu_core_id) {
495 		return topology_sane(c, o, "smt");
496 	}
497 
498 	return false;
499 }
500 
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)501 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
502 {
503 	if (c->phys_proc_id == o->phys_proc_id &&
504 	    c->cpu_die_id == o->cpu_die_id)
505 		return true;
506 	return false;
507 }
508 
match_l2c(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)509 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
510 {
511 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
512 
513 	/* If the arch didn't set up l2c_id, fall back to SMT */
514 	if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
515 		return match_smt(c, o);
516 
517 	/* Do not match if L2 cache id does not match: */
518 	if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
519 		return false;
520 
521 	return topology_sane(c, o, "l2c");
522 }
523 
524 /*
525  * Unlike the other levels, we do not enforce keeping a
526  * multicore group inside a NUMA node.  If this happens, we will
527  * discard the MC level of the topology later.
528  */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)529 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
530 {
531 	if (c->phys_proc_id == o->phys_proc_id)
532 		return true;
533 	return false;
534 }
535 
536 /*
537  * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
538  *
539  * Any Intel CPU that has multiple nodes per package and does not
540  * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
541  *
542  * When in SNC mode, these CPUs enumerate an LLC that is shared
543  * by multiple NUMA nodes. The LLC is shared for off-package data
544  * access but private to the NUMA node (half of the package) for
545  * on-package access. CPUID (the source of the information about
546  * the LLC) can only enumerate the cache as shared or unshared,
547  * but not this particular configuration.
548  */
549 
550 static const struct x86_cpu_id intel_cod_cpu[] = {
551 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
552 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
553 	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
554 	{}
555 };
556 
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)557 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
558 {
559 	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
560 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
561 	bool intel_snc = id && id->driver_data;
562 
563 	/* Do not match if we do not have a valid APICID for cpu: */
564 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
565 		return false;
566 
567 	/* Do not match if LLC id does not match: */
568 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
569 		return false;
570 
571 	/*
572 	 * Allow the SNC topology without warning. Return of false
573 	 * means 'c' does not share the LLC of 'o'. This will be
574 	 * reflected to userspace.
575 	 */
576 	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
577 		return false;
578 
579 	return topology_sane(c, o, "llc");
580 }
581 
582 
x86_sched_itmt_flags(void)583 static inline int x86_sched_itmt_flags(void)
584 {
585 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
586 }
587 
588 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)589 static int x86_core_flags(void)
590 {
591 	return cpu_core_flags() | x86_sched_itmt_flags();
592 }
593 #endif
594 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)595 static int x86_smt_flags(void)
596 {
597 	return cpu_smt_flags();
598 }
599 #endif
600 #ifdef CONFIG_SCHED_CLUSTER
x86_cluster_flags(void)601 static int x86_cluster_flags(void)
602 {
603 	return cpu_cluster_flags() | x86_sched_itmt_flags();
604 }
605 #endif
606 
607 /*
608  * Set if a package/die has multiple NUMA nodes inside.
609  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
610  * Sub-NUMA Clustering have this.
611  */
612 static bool x86_has_numa_in_package;
613 
614 static struct sched_domain_topology_level x86_topology[6];
615 
build_sched_topology(void)616 static void __init build_sched_topology(void)
617 {
618 	int i = 0;
619 
620 #ifdef CONFIG_SCHED_SMT
621 	x86_topology[i++] = (struct sched_domain_topology_level){
622 		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
623 	};
624 #endif
625 #ifdef CONFIG_SCHED_CLUSTER
626 	x86_topology[i++] = (struct sched_domain_topology_level){
627 		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
628 	};
629 #endif
630 #ifdef CONFIG_SCHED_MC
631 	x86_topology[i++] = (struct sched_domain_topology_level){
632 		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
633 	};
634 #endif
635 	/*
636 	 * When there is NUMA topology inside the package skip the PKG domain
637 	 * since the NUMA domains will auto-magically create the right spanning
638 	 * domains based on the SLIT.
639 	 */
640 	if (!x86_has_numa_in_package) {
641 		x86_topology[i++] = (struct sched_domain_topology_level){
642 			cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
643 		};
644 	}
645 
646 	/*
647 	 * There must be one trailing NULL entry left.
648 	 */
649 	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
650 
651 	set_sched_topology(x86_topology);
652 }
653 
set_cpu_sibling_map(int cpu)654 void set_cpu_sibling_map(int cpu)
655 {
656 	bool has_smt = smp_num_siblings > 1;
657 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
658 	struct cpuinfo_x86 *c = &cpu_data(cpu);
659 	struct cpuinfo_x86 *o;
660 	int i, threads;
661 
662 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
663 
664 	if (!has_mp) {
665 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
666 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
667 		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
668 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
669 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
670 		c->booted_cores = 1;
671 		return;
672 	}
673 
674 	for_each_cpu(i, cpu_sibling_setup_mask) {
675 		o = &cpu_data(i);
676 
677 		if (match_pkg(c, o) && !topology_same_node(c, o))
678 			x86_has_numa_in_package = true;
679 
680 		if ((i == cpu) || (has_smt && match_smt(c, o)))
681 			link_mask(topology_sibling_cpumask, cpu, i);
682 
683 		if ((i == cpu) || (has_mp && match_llc(c, o)))
684 			link_mask(cpu_llc_shared_mask, cpu, i);
685 
686 		if ((i == cpu) || (has_mp && match_l2c(c, o)))
687 			link_mask(cpu_l2c_shared_mask, cpu, i);
688 
689 		if ((i == cpu) || (has_mp && match_die(c, o)))
690 			link_mask(topology_die_cpumask, cpu, i);
691 	}
692 
693 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
694 	if (threads > __max_smt_threads)
695 		__max_smt_threads = threads;
696 
697 	for_each_cpu(i, topology_sibling_cpumask(cpu))
698 		cpu_data(i).smt_active = threads > 1;
699 
700 	/*
701 	 * This needs a separate iteration over the cpus because we rely on all
702 	 * topology_sibling_cpumask links to be set-up.
703 	 */
704 	for_each_cpu(i, cpu_sibling_setup_mask) {
705 		o = &cpu_data(i);
706 
707 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
708 			link_mask(topology_core_cpumask, cpu, i);
709 
710 			/*
711 			 *  Does this new cpu bringup a new core?
712 			 */
713 			if (threads == 1) {
714 				/*
715 				 * for each core in package, increment
716 				 * the booted_cores for this new cpu
717 				 */
718 				if (cpumask_first(
719 				    topology_sibling_cpumask(i)) == i)
720 					c->booted_cores++;
721 				/*
722 				 * increment the core count for all
723 				 * the other cpus in this package
724 				 */
725 				if (i != cpu)
726 					cpu_data(i).booted_cores++;
727 			} else if (i != cpu && !c->booted_cores)
728 				c->booted_cores = cpu_data(i).booted_cores;
729 		}
730 	}
731 }
732 
733 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)734 const struct cpumask *cpu_coregroup_mask(int cpu)
735 {
736 	return cpu_llc_shared_mask(cpu);
737 }
738 
cpu_clustergroup_mask(int cpu)739 const struct cpumask *cpu_clustergroup_mask(int cpu)
740 {
741 	return cpu_l2c_shared_mask(cpu);
742 }
743 
impress_friends(void)744 static void impress_friends(void)
745 {
746 	int cpu;
747 	unsigned long bogosum = 0;
748 	/*
749 	 * Allow the user to impress friends.
750 	 */
751 	pr_debug("Before bogomips\n");
752 	for_each_online_cpu(cpu)
753 		bogosum += cpu_data(cpu).loops_per_jiffy;
754 
755 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
756 		num_online_cpus(),
757 		bogosum/(500000/HZ),
758 		(bogosum/(5000/HZ))%100);
759 
760 	pr_debug("Before bogocount - setting activated=1\n");
761 }
762 
763 /*
764  * The Multiprocessor Specification 1.4 (1997) example code suggests
765  * that there should be a 10ms delay between the BSP asserting INIT
766  * and de-asserting INIT, when starting a remote processor.
767  * But that slows boot and resume on modern processors, which include
768  * many cores and don't require that delay.
769  *
770  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
771  * Modern processor families are quirked to remove the delay entirely.
772  */
773 #define UDELAY_10MS_DEFAULT 10000
774 
775 static unsigned int init_udelay = UINT_MAX;
776 
cpu_init_udelay(char * str)777 static int __init cpu_init_udelay(char *str)
778 {
779 	get_option(&str, &init_udelay);
780 
781 	return 0;
782 }
783 early_param("cpu_init_udelay", cpu_init_udelay);
784 
smp_quirk_init_udelay(void)785 static void __init smp_quirk_init_udelay(void)
786 {
787 	/* if cmdline changed it from default, leave it alone */
788 	if (init_udelay != UINT_MAX)
789 		return;
790 
791 	/* if modern processor, use no delay */
792 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
793 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
794 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
795 		init_udelay = 0;
796 		return;
797 	}
798 	/* else, use legacy delay */
799 	init_udelay = UDELAY_10MS_DEFAULT;
800 }
801 
802 /*
803  * Wake up AP by INIT, INIT, STARTUP sequence.
804  */
send_init_sequence(int phys_apicid)805 static void send_init_sequence(int phys_apicid)
806 {
807 	int maxlvt = lapic_get_maxlvt();
808 
809 	/* Be paranoid about clearing APIC errors. */
810 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
811 		/* Due to the Pentium erratum 3AP.  */
812 		if (maxlvt > 3)
813 			apic_write(APIC_ESR, 0);
814 		apic_read(APIC_ESR);
815 	}
816 
817 	/* Assert INIT on the target CPU */
818 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
819 	safe_apic_wait_icr_idle();
820 
821 	udelay(init_udelay);
822 
823 	/* Deassert INIT on the target CPU */
824 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
825 	safe_apic_wait_icr_idle();
826 }
827 
828 /*
829  * Wake up AP by INIT, INIT, STARTUP sequence.
830  */
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)831 static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
832 {
833 	unsigned long send_status = 0, accept_status = 0;
834 	int num_starts, j, maxlvt;
835 
836 	preempt_disable();
837 	maxlvt = lapic_get_maxlvt();
838 	send_init_sequence(phys_apicid);
839 
840 	mb();
841 
842 	/*
843 	 * Should we send STARTUP IPIs ?
844 	 *
845 	 * Determine this based on the APIC version.
846 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
847 	 */
848 	if (APIC_INTEGRATED(boot_cpu_apic_version))
849 		num_starts = 2;
850 	else
851 		num_starts = 0;
852 
853 	/*
854 	 * Run STARTUP IPI loop.
855 	 */
856 	pr_debug("#startup loops: %d\n", num_starts);
857 
858 	for (j = 1; j <= num_starts; j++) {
859 		pr_debug("Sending STARTUP #%d\n", j);
860 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
861 			apic_write(APIC_ESR, 0);
862 		apic_read(APIC_ESR);
863 		pr_debug("After apic_write\n");
864 
865 		/*
866 		 * STARTUP IPI
867 		 */
868 
869 		/* Target chip */
870 		/* Boot on the stack */
871 		/* Kick the second */
872 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
873 			       phys_apicid);
874 
875 		/*
876 		 * Give the other CPU some time to accept the IPI.
877 		 */
878 		if (init_udelay == 0)
879 			udelay(10);
880 		else
881 			udelay(300);
882 
883 		pr_debug("Startup point 1\n");
884 
885 		pr_debug("Waiting for send to finish...\n");
886 		send_status = safe_apic_wait_icr_idle();
887 
888 		/*
889 		 * Give the other CPU some time to accept the IPI.
890 		 */
891 		if (init_udelay == 0)
892 			udelay(10);
893 		else
894 			udelay(200);
895 
896 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
897 			apic_write(APIC_ESR, 0);
898 		accept_status = (apic_read(APIC_ESR) & 0xEF);
899 		if (send_status || accept_status)
900 			break;
901 	}
902 	pr_debug("After Startup\n");
903 
904 	if (send_status)
905 		pr_err("APIC never delivered???\n");
906 	if (accept_status)
907 		pr_err("APIC delivery error (%lx)\n", accept_status);
908 
909 	preempt_enable();
910 	return (send_status | accept_status);
911 }
912 
913 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)914 static void announce_cpu(int cpu, int apicid)
915 {
916 	static int width, node_width, first = 1;
917 	static int current_node = NUMA_NO_NODE;
918 	int node = early_cpu_to_node(cpu);
919 
920 	if (!width)
921 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
922 
923 	if (!node_width)
924 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
925 
926 	if (system_state < SYSTEM_RUNNING) {
927 		if (first)
928 			pr_info("x86: Booting SMP configuration:\n");
929 
930 		if (node != current_node) {
931 			if (current_node > (-1))
932 				pr_cont("\n");
933 			current_node = node;
934 
935 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
936 			       node_width - num_digits(node), " ", node);
937 		}
938 
939 		/* Add padding for the BSP */
940 		if (first)
941 			pr_cont("%*s", width + 1, " ");
942 		first = 0;
943 
944 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
945 	} else
946 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
947 			node, cpu, apicid);
948 }
949 
common_cpu_up(unsigned int cpu,struct task_struct * idle)950 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
951 {
952 	int ret;
953 
954 	/* Just in case we booted with a single CPU. */
955 	alternatives_enable_smp();
956 
957 	per_cpu(pcpu_hot.current_task, cpu) = idle;
958 	cpu_init_stack_canary(cpu, idle);
959 
960 	/* Initialize the interrupt stack(s) */
961 	ret = irq_init_percpu_irqstack(cpu);
962 	if (ret)
963 		return ret;
964 
965 #ifdef CONFIG_X86_32
966 	/* Stack for startup_32 can be just as for start_secondary onwards */
967 	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
968 #endif
969 	return 0;
970 }
971 
972 /*
973  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
974  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
975  * Returns zero if startup was successfully sent, else error code from
976  * ->wakeup_secondary_cpu.
977  */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle)978 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
979 {
980 	unsigned long start_ip = real_mode_header->trampoline_start;
981 	int ret;
982 
983 #ifdef CONFIG_X86_64
984 	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
985 	if (apic->wakeup_secondary_cpu_64)
986 		start_ip = real_mode_header->trampoline_start64;
987 #endif
988 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
989 	initial_code = (unsigned long)start_secondary;
990 
991 	if (IS_ENABLED(CONFIG_X86_32)) {
992 		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
993 		initial_stack  = idle->thread.sp;
994 	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
995 		smpboot_control = cpu;
996 	}
997 
998 	/* Enable the espfix hack for this CPU */
999 	init_espfix_ap(cpu);
1000 
1001 	/* So we see what's up */
1002 	announce_cpu(cpu, apicid);
1003 
1004 	/*
1005 	 * This grunge runs the startup process for
1006 	 * the targeted processor.
1007 	 */
1008 	if (x86_platform.legacy.warm_reset) {
1009 
1010 		pr_debug("Setting warm reset code and vector.\n");
1011 
1012 		smpboot_setup_warm_reset_vector(start_ip);
1013 		/*
1014 		 * Be paranoid about clearing APIC errors.
1015 		*/
1016 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1017 			apic_write(APIC_ESR, 0);
1018 			apic_read(APIC_ESR);
1019 		}
1020 	}
1021 
1022 	smp_mb();
1023 
1024 	/*
1025 	 * Wake up a CPU in difference cases:
1026 	 * - Use a method from the APIC driver if one defined, with wakeup
1027 	 *   straight to 64-bit mode preferred over wakeup to RM.
1028 	 * Otherwise,
1029 	 * - Use an INIT boot APIC message
1030 	 */
1031 	if (apic->wakeup_secondary_cpu_64)
1032 		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1033 	else if (apic->wakeup_secondary_cpu)
1034 		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1035 	else
1036 		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1037 
1038 	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1039 	if (ret)
1040 		arch_cpuhp_cleanup_kick_cpu(cpu);
1041 	return ret;
1042 }
1043 
native_kick_ap(unsigned int cpu,struct task_struct * tidle)1044 int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1045 {
1046 	int apicid = apic->cpu_present_to_apicid(cpu);
1047 	int err;
1048 
1049 	lockdep_assert_irqs_enabled();
1050 
1051 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1052 
1053 	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1054 	    !apic_id_valid(apicid)) {
1055 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1056 		return -EINVAL;
1057 	}
1058 
1059 	/*
1060 	 * Save current MTRR state in case it was changed since early boot
1061 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1062 	 */
1063 	mtrr_save_state();
1064 
1065 	/* the FPU context is blank, nobody can own it */
1066 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1067 
1068 	err = common_cpu_up(cpu, tidle);
1069 	if (err)
1070 		return err;
1071 
1072 	err = do_boot_cpu(apicid, cpu, tidle);
1073 	if (err)
1074 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1075 
1076 	return err;
1077 }
1078 
arch_cpuhp_kick_ap_alive(unsigned int cpu,struct task_struct * tidle)1079 int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1080 {
1081 	return smp_ops.kick_ap_alive(cpu, tidle);
1082 }
1083 
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)1084 void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1085 {
1086 	/* Cleanup possible dangling ends... */
1087 	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1088 		smpboot_restore_warm_reset_vector();
1089 }
1090 
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)1091 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1092 {
1093 	if (smp_ops.cleanup_dead_cpu)
1094 		smp_ops.cleanup_dead_cpu(cpu);
1095 
1096 	if (system_state == SYSTEM_RUNNING)
1097 		pr_info("CPU %u is now offline\n", cpu);
1098 }
1099 
arch_cpuhp_sync_state_poll(void)1100 void arch_cpuhp_sync_state_poll(void)
1101 {
1102 	if (smp_ops.poll_sync_state)
1103 		smp_ops.poll_sync_state();
1104 }
1105 
1106 /**
1107  * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1108  */
arch_disable_smp_support(void)1109 void __init arch_disable_smp_support(void)
1110 {
1111 	disable_ioapic_support();
1112 }
1113 
1114 /*
1115  * Fall back to non SMP mode after errors.
1116  *
1117  * RED-PEN audit/test this more. I bet there is more state messed up here.
1118  */
disable_smp(void)1119 static __init void disable_smp(void)
1120 {
1121 	pr_info("SMP disabled\n");
1122 
1123 	disable_ioapic_support();
1124 
1125 	init_cpu_present(cpumask_of(0));
1126 	init_cpu_possible(cpumask_of(0));
1127 
1128 	if (smp_found_config)
1129 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1130 	else
1131 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1132 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1133 	cpumask_set_cpu(0, topology_core_cpumask(0));
1134 	cpumask_set_cpu(0, topology_die_cpumask(0));
1135 }
1136 
smp_cpu_index_default(void)1137 static void __init smp_cpu_index_default(void)
1138 {
1139 	int i;
1140 	struct cpuinfo_x86 *c;
1141 
1142 	for_each_possible_cpu(i) {
1143 		c = &cpu_data(i);
1144 		/* mark all to hotplug */
1145 		c->cpu_index = nr_cpu_ids;
1146 	}
1147 }
1148 
smp_prepare_cpus_common(void)1149 void __init smp_prepare_cpus_common(void)
1150 {
1151 	unsigned int i;
1152 
1153 	smp_cpu_index_default();
1154 
1155 	/*
1156 	 * Setup boot CPU information
1157 	 */
1158 	smp_store_boot_cpu_info(); /* Final full version of the data */
1159 	mb();
1160 
1161 	for_each_possible_cpu(i) {
1162 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1163 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1164 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1165 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1166 		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1167 	}
1168 
1169 	set_cpu_sibling_map(0);
1170 }
1171 
1172 #ifdef CONFIG_X86_64
1173 /* Establish whether parallel bringup can be supported. */
arch_cpuhp_init_parallel_bringup(void)1174 bool __init arch_cpuhp_init_parallel_bringup(void)
1175 {
1176 	if (!x86_cpuinit.parallel_bringup) {
1177 		pr_info("Parallel CPU startup disabled by the platform\n");
1178 		return false;
1179 	}
1180 
1181 	smpboot_control = STARTUP_READ_APICID;
1182 	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1183 	return true;
1184 }
1185 #endif
1186 
1187 /*
1188  * Prepare for SMP bootup.
1189  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1190  *            for common interface support.
1191  */
native_smp_prepare_cpus(unsigned int max_cpus)1192 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1193 {
1194 	smp_prepare_cpus_common();
1195 
1196 	switch (apic_intr_mode) {
1197 	case APIC_PIC:
1198 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1199 		disable_smp();
1200 		return;
1201 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1202 		disable_smp();
1203 		/* Setup local timer */
1204 		x86_init.timers.setup_percpu_clockev();
1205 		return;
1206 	case APIC_VIRTUAL_WIRE:
1207 	case APIC_SYMMETRIC_IO:
1208 		break;
1209 	}
1210 
1211 	/* Setup local timer */
1212 	x86_init.timers.setup_percpu_clockev();
1213 
1214 	pr_info("CPU0: ");
1215 	print_cpu_info(&cpu_data(0));
1216 
1217 	uv_system_init();
1218 
1219 	smp_quirk_init_udelay();
1220 
1221 	speculative_store_bypass_ht_init();
1222 
1223 	snp_set_wakeup_secondary_cpu();
1224 }
1225 
arch_thaw_secondary_cpus_begin(void)1226 void arch_thaw_secondary_cpus_begin(void)
1227 {
1228 	set_cache_aps_delayed_init(true);
1229 }
1230 
arch_thaw_secondary_cpus_end(void)1231 void arch_thaw_secondary_cpus_end(void)
1232 {
1233 	cache_aps_init();
1234 }
1235 
1236 /*
1237  * Early setup to make printk work.
1238  */
native_smp_prepare_boot_cpu(void)1239 void __init native_smp_prepare_boot_cpu(void)
1240 {
1241 	int me = smp_processor_id();
1242 
1243 	/* SMP handles this from setup_per_cpu_areas() */
1244 	if (!IS_ENABLED(CONFIG_SMP))
1245 		switch_gdt_and_percpu_base(me);
1246 
1247 	native_pv_lock_init();
1248 }
1249 
calculate_max_logical_packages(void)1250 void __init calculate_max_logical_packages(void)
1251 {
1252 	int ncpus;
1253 
1254 	/*
1255 	 * Today neither Intel nor AMD support heterogeneous systems so
1256 	 * extrapolate the boot cpu's data to all packages.
1257 	 */
1258 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1259 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1260 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1261 }
1262 
native_smp_cpus_done(unsigned int max_cpus)1263 void __init native_smp_cpus_done(unsigned int max_cpus)
1264 {
1265 	pr_debug("Boot done\n");
1266 
1267 	calculate_max_logical_packages();
1268 	build_sched_topology();
1269 	nmi_selftest();
1270 	impress_friends();
1271 	cache_aps_init();
1272 }
1273 
1274 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1275 static int __init _setup_possible_cpus(char *str)
1276 {
1277 	get_option(&str, &setup_possible_cpus);
1278 	return 0;
1279 }
1280 early_param("possible_cpus", _setup_possible_cpus);
1281 
1282 
1283 /*
1284  * cpu_possible_mask should be static, it cannot change as cpu's
1285  * are onlined, or offlined. The reason is per-cpu data-structures
1286  * are allocated by some modules at init time, and don't expect to
1287  * do this dynamically on cpu arrival/departure.
1288  * cpu_present_mask on the other hand can change dynamically.
1289  * In case when cpu_hotplug is not compiled, then we resort to current
1290  * behaviour, which is cpu_possible == cpu_present.
1291  * - Ashok Raj
1292  *
1293  * Three ways to find out the number of additional hotplug CPUs:
1294  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1295  * - The user can overwrite it with possible_cpus=NUM
1296  * - Otherwise don't reserve additional CPUs.
1297  * We do this because additional CPUs waste a lot of memory.
1298  * -AK
1299  */
prefill_possible_map(void)1300 __init void prefill_possible_map(void)
1301 {
1302 	int i, possible;
1303 
1304 	i = setup_max_cpus ?: 1;
1305 	if (setup_possible_cpus == -1) {
1306 		possible = num_processors;
1307 #ifdef CONFIG_HOTPLUG_CPU
1308 		if (setup_max_cpus)
1309 			possible += disabled_cpus;
1310 #else
1311 		if (possible > i)
1312 			possible = i;
1313 #endif
1314 	} else
1315 		possible = setup_possible_cpus;
1316 
1317 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1318 
1319 	/* nr_cpu_ids could be reduced via nr_cpus= */
1320 	if (possible > nr_cpu_ids) {
1321 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1322 			possible, nr_cpu_ids);
1323 		possible = nr_cpu_ids;
1324 	}
1325 
1326 #ifdef CONFIG_HOTPLUG_CPU
1327 	if (!setup_max_cpus)
1328 #endif
1329 	if (possible > i) {
1330 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1331 			possible, setup_max_cpus);
1332 		possible = i;
1333 	}
1334 
1335 	set_nr_cpu_ids(possible);
1336 
1337 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1338 		possible, max_t(int, possible - num_processors, 0));
1339 
1340 	reset_cpu_possible_mask();
1341 
1342 	for (i = 0; i < possible; i++)
1343 		set_cpu_possible(i, true);
1344 }
1345 
1346 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)1347 void __init setup_cpu_local_masks(void)
1348 {
1349 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1350 }
1351 
1352 #ifdef CONFIG_HOTPLUG_CPU
1353 
1354 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1355 static void recompute_smt_state(void)
1356 {
1357 	int max_threads, cpu;
1358 
1359 	max_threads = 0;
1360 	for_each_online_cpu (cpu) {
1361 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1362 
1363 		if (threads > max_threads)
1364 			max_threads = threads;
1365 	}
1366 	__max_smt_threads = max_threads;
1367 }
1368 
remove_siblinginfo(int cpu)1369 static void remove_siblinginfo(int cpu)
1370 {
1371 	int sibling;
1372 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1373 
1374 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1375 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1376 		/*/
1377 		 * last thread sibling in this cpu core going down
1378 		 */
1379 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1380 			cpu_data(sibling).booted_cores--;
1381 	}
1382 
1383 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1384 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1385 
1386 	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1387 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1388 		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1389 			cpu_data(sibling).smt_active = false;
1390 	}
1391 
1392 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1393 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1394 	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1395 		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1396 	cpumask_clear(cpu_llc_shared_mask(cpu));
1397 	cpumask_clear(cpu_l2c_shared_mask(cpu));
1398 	cpumask_clear(topology_sibling_cpumask(cpu));
1399 	cpumask_clear(topology_core_cpumask(cpu));
1400 	cpumask_clear(topology_die_cpumask(cpu));
1401 	c->cpu_core_id = 0;
1402 	c->booted_cores = 0;
1403 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1404 	recompute_smt_state();
1405 }
1406 
remove_cpu_from_maps(int cpu)1407 static void remove_cpu_from_maps(int cpu)
1408 {
1409 	set_cpu_online(cpu, false);
1410 	numa_remove_cpu(cpu);
1411 }
1412 
cpu_disable_common(void)1413 void cpu_disable_common(void)
1414 {
1415 	int cpu = smp_processor_id();
1416 
1417 	remove_siblinginfo(cpu);
1418 
1419 	/* It's now safe to remove this processor from the online map */
1420 	lock_vector_lock();
1421 	remove_cpu_from_maps(cpu);
1422 	unlock_vector_lock();
1423 	fixup_irqs();
1424 	lapic_offline();
1425 }
1426 
native_cpu_disable(void)1427 int native_cpu_disable(void)
1428 {
1429 	int ret;
1430 
1431 	ret = lapic_can_unplug_cpu();
1432 	if (ret)
1433 		return ret;
1434 
1435 	cpu_disable_common();
1436 
1437         /*
1438          * Disable the local APIC. Otherwise IPI broadcasts will reach
1439          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1440          * messages.
1441          *
1442          * Disabling the APIC must happen after cpu_disable_common()
1443          * which invokes fixup_irqs().
1444          *
1445          * Disabling the APIC preserves already set bits in IRR, but
1446          * an interrupt arriving after disabling the local APIC does not
1447          * set the corresponding IRR bit.
1448          *
1449          * fixup_irqs() scans IRR for set bits so it can raise a not
1450          * yet handled interrupt on the new destination CPU via an IPI
1451          * but obviously it can't do so for IRR bits which are not set.
1452          * IOW, interrupts arriving after disabling the local APIC will
1453          * be lost.
1454          */
1455 	apic_soft_disable();
1456 
1457 	return 0;
1458 }
1459 
play_dead_common(void)1460 void play_dead_common(void)
1461 {
1462 	idle_task_exit();
1463 
1464 	cpuhp_ap_report_dead();
1465 
1466 	local_irq_disable();
1467 }
1468 
1469 /*
1470  * We need to flush the caches before going to sleep, lest we have
1471  * dirty data in our caches when we come back up.
1472  */
mwait_play_dead(void)1473 static inline void mwait_play_dead(void)
1474 {
1475 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1476 	unsigned int eax, ebx, ecx, edx;
1477 	unsigned int highest_cstate = 0;
1478 	unsigned int highest_subcstate = 0;
1479 	int i;
1480 
1481 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1482 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1483 		return;
1484 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1485 		return;
1486 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1487 		return;
1488 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1489 		return;
1490 
1491 	eax = CPUID_MWAIT_LEAF;
1492 	ecx = 0;
1493 	native_cpuid(&eax, &ebx, &ecx, &edx);
1494 
1495 	/*
1496 	 * eax will be 0 if EDX enumeration is not valid.
1497 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1498 	 */
1499 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1500 		eax = 0;
1501 	} else {
1502 		edx >>= MWAIT_SUBSTATE_SIZE;
1503 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1504 			if (edx & MWAIT_SUBSTATE_MASK) {
1505 				highest_cstate = i;
1506 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1507 			}
1508 		}
1509 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1510 			(highest_subcstate - 1);
1511 	}
1512 
1513 	/* Set up state for the kexec() hack below */
1514 	md->status = CPUDEAD_MWAIT_WAIT;
1515 	md->control = CPUDEAD_MWAIT_WAIT;
1516 
1517 	wbinvd();
1518 
1519 	while (1) {
1520 		/*
1521 		 * The CLFLUSH is a workaround for erratum AAI65 for
1522 		 * the Xeon 7400 series.  It's not clear it is actually
1523 		 * needed, but it should be harmless in either case.
1524 		 * The WBINVD is insufficient due to the spurious-wakeup
1525 		 * case where we return around the loop.
1526 		 */
1527 		mb();
1528 		clflush(md);
1529 		mb();
1530 		__monitor(md, 0, 0);
1531 		mb();
1532 		__mwait(eax, 0);
1533 
1534 		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1535 			/*
1536 			 * Kexec is about to happen. Don't go back into mwait() as
1537 			 * the kexec kernel might overwrite text and data including
1538 			 * page tables and stack. So mwait() would resume when the
1539 			 * monitor cache line is written to and then the CPU goes
1540 			 * south due to overwritten text, page tables and stack.
1541 			 *
1542 			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1543 			 * SMI. They will resume execution at the instruction
1544 			 * following the HLT instruction and run into the problem
1545 			 * which this is trying to prevent.
1546 			 */
1547 			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1548 			while(1)
1549 				native_halt();
1550 		}
1551 	}
1552 }
1553 
1554 /*
1555  * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1556  * mwait_play_dead().
1557  */
smp_kick_mwait_play_dead(void)1558 void smp_kick_mwait_play_dead(void)
1559 {
1560 	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1561 	struct mwait_cpu_dead *md;
1562 	unsigned int cpu, i;
1563 
1564 	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1565 		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1566 
1567 		/* Does it sit in mwait_play_dead() ? */
1568 		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1569 			continue;
1570 
1571 		/* Wait up to 5ms */
1572 		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1573 			/* Bring it out of mwait */
1574 			WRITE_ONCE(md->control, newstate);
1575 			udelay(5);
1576 		}
1577 
1578 		if (READ_ONCE(md->status) != newstate)
1579 			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1580 	}
1581 }
1582 
hlt_play_dead(void)1583 void __noreturn hlt_play_dead(void)
1584 {
1585 	if (__this_cpu_read(cpu_info.x86) >= 4)
1586 		wbinvd();
1587 
1588 	while (1)
1589 		native_halt();
1590 }
1591 
native_play_dead(void)1592 void native_play_dead(void)
1593 {
1594 	play_dead_common();
1595 	tboot_shutdown(TB_SHUTDOWN_WFS);
1596 
1597 	mwait_play_dead();
1598 	if (cpuidle_play_dead())
1599 		hlt_play_dead();
1600 }
1601 
1602 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1603 int native_cpu_disable(void)
1604 {
1605 	return -ENOSYS;
1606 }
1607 
native_play_dead(void)1608 void native_play_dead(void)
1609 {
1610 	BUG();
1611 }
1612 
1613 #endif
1614