1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4 * with Common Isochronous Packet (IEC 61883-1) headers
5 *
6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7 */
8
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18
19 #define TICKS_PER_CYCLE 3072
20 #define CYCLES_PER_SECOND 8000
21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22
23 #define OHCI_SECOND_MODULUS 8
24
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28
29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */
30
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT 16
33 #define TAG_NO_CIP_HEADER 0
34 #define TAG_CIP 1
35
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS 2
38 #define CIP_EOH_SHIFT 31
39 #define CIP_EOH (1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK 0x80000000
41 #define CIP_SID_SHIFT 24
42 #define CIP_SID_MASK 0x3f000000
43 #define CIP_DBS_MASK 0x00ff0000
44 #define CIP_DBS_SHIFT 16
45 #define CIP_SPH_MASK 0x00000400
46 #define CIP_SPH_SHIFT 10
47 #define CIP_DBC_MASK 0x000000ff
48 #define CIP_FMT_SHIFT 24
49 #define CIP_FMT_MASK 0x3f000000
50 #define CIP_FDF_MASK 0x00ff0000
51 #define CIP_FDF_SHIFT 16
52 #define CIP_FDF_NO_DATA 0xff
53 #define CIP_SYT_MASK 0x0000ffff
54 #define CIP_SYT_NO_INFO 0xffff
55 #define CIP_SYT_CYCLE_MODULUS 16
56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57
58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS)
59
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM 0x10
62 #define AMDTP_FDF_NO_DATA 0xff
63
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK 0x0000ffff
71
72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing.
74
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5
79
80 static void pcm_period_work(struct work_struct *work);
81
82 /**
83 * amdtp_stream_init - initialize an AMDTP stream structure
84 * @s: the AMDTP stream to initialize
85 * @unit: the target of the stream
86 * @dir: the direction of stream
87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
88 * @fmt: the value of fmt field in CIP header
89 * @process_ctx_payloads: callback handler to process payloads of isoc context
90 * @protocol_size: the size to allocate newly for protocol
91 */
amdtp_stream_init(struct amdtp_stream * s,struct fw_unit * unit,enum amdtp_stream_direction dir,unsigned int flags,unsigned int fmt,amdtp_stream_process_ctx_payloads_t process_ctx_payloads,unsigned int protocol_size)92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
93 enum amdtp_stream_direction dir, unsigned int flags,
94 unsigned int fmt,
95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
96 unsigned int protocol_size)
97 {
98 if (process_ctx_payloads == NULL)
99 return -EINVAL;
100
101 s->protocol = kzalloc(protocol_size, GFP_KERNEL);
102 if (!s->protocol)
103 return -ENOMEM;
104
105 s->unit = unit;
106 s->direction = dir;
107 s->flags = flags;
108 s->context = ERR_PTR(-1);
109 mutex_init(&s->mutex);
110 INIT_WORK(&s->period_work, pcm_period_work);
111 s->packet_index = 0;
112
113 init_waitqueue_head(&s->ready_wait);
114
115 s->fmt = fmt;
116 s->process_ctx_payloads = process_ctx_payloads;
117
118 return 0;
119 }
120 EXPORT_SYMBOL(amdtp_stream_init);
121
122 /**
123 * amdtp_stream_destroy - free stream resources
124 * @s: the AMDTP stream to destroy
125 */
amdtp_stream_destroy(struct amdtp_stream * s)126 void amdtp_stream_destroy(struct amdtp_stream *s)
127 {
128 /* Not initialized. */
129 if (s->protocol == NULL)
130 return;
131
132 WARN_ON(amdtp_stream_running(s));
133 kfree(s->protocol);
134 mutex_destroy(&s->mutex);
135 }
136 EXPORT_SYMBOL(amdtp_stream_destroy);
137
138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
139 [CIP_SFC_32000] = 8,
140 [CIP_SFC_44100] = 8,
141 [CIP_SFC_48000] = 8,
142 [CIP_SFC_88200] = 16,
143 [CIP_SFC_96000] = 16,
144 [CIP_SFC_176400] = 32,
145 [CIP_SFC_192000] = 32,
146 };
147 EXPORT_SYMBOL(amdtp_syt_intervals);
148
149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
150 [CIP_SFC_32000] = 32000,
151 [CIP_SFC_44100] = 44100,
152 [CIP_SFC_48000] = 48000,
153 [CIP_SFC_88200] = 88200,
154 [CIP_SFC_96000] = 96000,
155 [CIP_SFC_176400] = 176400,
156 [CIP_SFC_192000] = 192000,
157 };
158 EXPORT_SYMBOL(amdtp_rate_table);
159
apply_constraint_to_size(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
161 struct snd_pcm_hw_rule *rule)
162 {
163 struct snd_interval *s = hw_param_interval(params, rule->var);
164 const struct snd_interval *r =
165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
166 struct snd_interval t = {0};
167 unsigned int step = 0;
168 int i;
169
170 for (i = 0; i < CIP_SFC_COUNT; ++i) {
171 if (snd_interval_test(r, amdtp_rate_table[i]))
172 step = max(step, amdtp_syt_intervals[i]);
173 }
174
175 if (step == 0)
176 return -EINVAL;
177
178 t.min = roundup(s->min, step);
179 t.max = rounddown(s->max, step);
180 t.integer = 1;
181
182 return snd_interval_refine(s, &t);
183 }
184
185 /**
186 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
187 * @s: the AMDTP stream, which must be initialized.
188 * @runtime: the PCM substream runtime
189 */
amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream * s,struct snd_pcm_runtime * runtime)190 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
191 struct snd_pcm_runtime *runtime)
192 {
193 struct snd_pcm_hardware *hw = &runtime->hw;
194 unsigned int ctx_header_size;
195 unsigned int maximum_usec_per_period;
196 int err;
197
198 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
199 SNDRV_PCM_INFO_INTERLEAVED |
200 SNDRV_PCM_INFO_JOINT_DUPLEX |
201 SNDRV_PCM_INFO_MMAP |
202 SNDRV_PCM_INFO_MMAP_VALID |
203 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
204
205 hw->periods_min = 2;
206 hw->periods_max = UINT_MAX;
207
208 /* bytes for a frame */
209 hw->period_bytes_min = 4 * hw->channels_max;
210
211 /* Just to prevent from allocating much pages. */
212 hw->period_bytes_max = hw->period_bytes_min * 2048;
213 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
214
215 // Linux driver for 1394 OHCI controller voluntarily flushes isoc
216 // context when total size of accumulated context header reaches
217 // PAGE_SIZE. This kicks work for the isoc context and brings
218 // callback in the middle of scheduled interrupts.
219 // Although AMDTP streams in the same domain use the same events per
220 // IRQ, use the largest size of context header between IT/IR contexts.
221 // Here, use the value of context header in IR context is for both
222 // contexts.
223 if (!(s->flags & CIP_NO_HEADER))
224 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
225 else
226 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
227 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
228 CYCLES_PER_SECOND / ctx_header_size;
229
230 // In IEC 61883-6, one isoc packet can transfer events up to the value
231 // of syt interval. This comes from the interval of isoc cycle. As 1394
232 // OHCI controller can generate hardware IRQ per isoc packet, the
233 // interval is 125 usec.
234 // However, there are two ways of transmission in IEC 61883-6; blocking
235 // and non-blocking modes. In blocking mode, the sequence of isoc packet
236 // includes 'empty' or 'NODATA' packets which include no event. In
237 // non-blocking mode, the number of events per packet is variable up to
238 // the syt interval.
239 // Due to the above protocol design, the minimum PCM frames per
240 // interrupt should be double of the value of syt interval, thus it is
241 // 250 usec.
242 err = snd_pcm_hw_constraint_minmax(runtime,
243 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
244 250, maximum_usec_per_period);
245 if (err < 0)
246 goto end;
247
248 /* Non-Blocking stream has no more constraints */
249 if (!(s->flags & CIP_BLOCKING))
250 goto end;
251
252 /*
253 * One AMDTP packet can include some frames. In blocking mode, the
254 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
255 * depending on its sampling rate. For accurate period interrupt, it's
256 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
257 */
258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
259 apply_constraint_to_size, NULL,
260 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
261 SNDRV_PCM_HW_PARAM_RATE, -1);
262 if (err < 0)
263 goto end;
264 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
265 apply_constraint_to_size, NULL,
266 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
267 SNDRV_PCM_HW_PARAM_RATE, -1);
268 if (err < 0)
269 goto end;
270 end:
271 return err;
272 }
273 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
274
275 /**
276 * amdtp_stream_set_parameters - set stream parameters
277 * @s: the AMDTP stream to configure
278 * @rate: the sample rate
279 * @data_block_quadlets: the size of a data block in quadlet unit
280 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
281 * events.
282 *
283 * The parameters must be set before the stream is started, and must not be
284 * changed while the stream is running.
285 */
amdtp_stream_set_parameters(struct amdtp_stream * s,unsigned int rate,unsigned int data_block_quadlets,unsigned int pcm_frame_multiplier)286 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
287 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
288 {
289 unsigned int sfc;
290
291 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
292 if (amdtp_rate_table[sfc] == rate)
293 break;
294 }
295 if (sfc == ARRAY_SIZE(amdtp_rate_table))
296 return -EINVAL;
297
298 s->sfc = sfc;
299 s->data_block_quadlets = data_block_quadlets;
300 s->syt_interval = amdtp_syt_intervals[sfc];
301
302 // default buffering in the device.
303 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
304
305 // additional buffering needed to adjust for no-data packets.
306 if (s->flags & CIP_BLOCKING)
307 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
308
309 s->pcm_frame_multiplier = pcm_frame_multiplier;
310
311 return 0;
312 }
313 EXPORT_SYMBOL(amdtp_stream_set_parameters);
314
315 // The CIP header is processed in context header apart from context payload.
amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream * s)316 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
317 {
318 unsigned int multiplier;
319
320 if (s->flags & CIP_JUMBO_PAYLOAD)
321 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
322 else
323 multiplier = 1;
324
325 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
326 }
327
328 /**
329 * amdtp_stream_get_max_payload - get the stream's packet size
330 * @s: the AMDTP stream
331 *
332 * This function must not be called before the stream has been configured
333 * with amdtp_stream_set_parameters().
334 */
amdtp_stream_get_max_payload(struct amdtp_stream * s)335 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
336 {
337 unsigned int cip_header_size;
338
339 if (!(s->flags & CIP_NO_HEADER))
340 cip_header_size = CIP_HEADER_SIZE;
341 else
342 cip_header_size = 0;
343
344 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
345 }
346 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
347
348 /**
349 * amdtp_stream_pcm_prepare - prepare PCM device for running
350 * @s: the AMDTP stream
351 *
352 * This function should be called from the PCM device's .prepare callback.
353 */
amdtp_stream_pcm_prepare(struct amdtp_stream * s)354 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
355 {
356 cancel_work_sync(&s->period_work);
357 s->pcm_buffer_pointer = 0;
358 s->pcm_period_pointer = 0;
359 }
360 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
361
362 #define prev_packet_desc(s, desc) \
363 list_prev_entry_circular(desc, &s->packet_descs_list, link)
364
pool_blocking_data_blocks(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)365 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
366 unsigned int size, unsigned int pos, unsigned int count)
367 {
368 const unsigned int syt_interval = s->syt_interval;
369 int i;
370
371 for (i = 0; i < count; ++i) {
372 struct seq_desc *desc = descs + pos;
373
374 if (desc->syt_offset != CIP_SYT_NO_INFO)
375 desc->data_blocks = syt_interval;
376 else
377 desc->data_blocks = 0;
378
379 pos = (pos + 1) % size;
380 }
381 }
382
pool_ideal_nonblocking_data_blocks(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)383 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
384 unsigned int size, unsigned int pos,
385 unsigned int count)
386 {
387 const enum cip_sfc sfc = s->sfc;
388 unsigned int state = s->ctx_data.rx.data_block_state;
389 int i;
390
391 for (i = 0; i < count; ++i) {
392 struct seq_desc *desc = descs + pos;
393
394 if (!cip_sfc_is_base_44100(sfc)) {
395 // Sample_rate / 8000 is an integer, and precomputed.
396 desc->data_blocks = state;
397 } else {
398 unsigned int phase = state;
399
400 /*
401 * This calculates the number of data blocks per packet so that
402 * 1) the overall rate is correct and exactly synchronized to
403 * the bus clock, and
404 * 2) packets with a rounded-up number of blocks occur as early
405 * as possible in the sequence (to prevent underruns of the
406 * device's buffer).
407 */
408 if (sfc == CIP_SFC_44100)
409 /* 6 6 5 6 5 6 5 ... */
410 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
411 else
412 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
413 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
414 if (++phase >= (80 >> (sfc >> 1)))
415 phase = 0;
416 state = phase;
417 }
418
419 pos = (pos + 1) % size;
420 }
421
422 s->ctx_data.rx.data_block_state = state;
423 }
424
calculate_syt_offset(unsigned int * last_syt_offset,unsigned int * syt_offset_state,enum cip_sfc sfc)425 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
426 unsigned int *syt_offset_state, enum cip_sfc sfc)
427 {
428 unsigned int syt_offset;
429
430 if (*last_syt_offset < TICKS_PER_CYCLE) {
431 if (!cip_sfc_is_base_44100(sfc))
432 syt_offset = *last_syt_offset + *syt_offset_state;
433 else {
434 /*
435 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
436 * n * SYT_INTERVAL * 24576000 / sample_rate
437 * Modulo TICKS_PER_CYCLE, the difference between successive
438 * elements is about 1386.23. Rounding the results of this
439 * formula to the SYT precision results in a sequence of
440 * differences that begins with:
441 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
442 * This code generates _exactly_ the same sequence.
443 */
444 unsigned int phase = *syt_offset_state;
445 unsigned int index = phase % 13;
446
447 syt_offset = *last_syt_offset;
448 syt_offset += 1386 + ((index && !(index & 3)) ||
449 phase == 146);
450 if (++phase >= 147)
451 phase = 0;
452 *syt_offset_state = phase;
453 }
454 } else
455 syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
456 *last_syt_offset = syt_offset;
457
458 if (syt_offset >= TICKS_PER_CYCLE)
459 syt_offset = CIP_SYT_NO_INFO;
460
461 return syt_offset;
462 }
463
pool_ideal_syt_offsets(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)464 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
465 unsigned int size, unsigned int pos, unsigned int count)
466 {
467 const enum cip_sfc sfc = s->sfc;
468 unsigned int last = s->ctx_data.rx.last_syt_offset;
469 unsigned int state = s->ctx_data.rx.syt_offset_state;
470 int i;
471
472 for (i = 0; i < count; ++i) {
473 struct seq_desc *desc = descs + pos;
474
475 desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
476
477 pos = (pos + 1) % size;
478 }
479
480 s->ctx_data.rx.last_syt_offset = last;
481 s->ctx_data.rx.syt_offset_state = state;
482 }
483
compute_syt_offset(unsigned int syt,unsigned int cycle,unsigned int transfer_delay)484 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
485 unsigned int transfer_delay)
486 {
487 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
488 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
489 unsigned int syt_offset;
490
491 // Round up.
492 if (syt_cycle_lo < cycle_lo)
493 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
494 syt_cycle_lo -= cycle_lo;
495
496 // Subtract transfer delay so that the synchronization offset is not so large
497 // at transmission.
498 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
499 if (syt_offset < transfer_delay)
500 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
501
502 return syt_offset - transfer_delay;
503 }
504
505 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
506 // Additionally, the sequence of tx packets is severely checked against any discontinuity
507 // before filling entries in the queue. The calculation is safe even if it looks fragile by
508 // overrun.
calculate_cached_cycle_count(struct amdtp_stream * s,unsigned int head)509 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
510 {
511 const unsigned int cache_size = s->ctx_data.tx.cache.size;
512 unsigned int cycles = s->ctx_data.tx.cache.pos;
513
514 if (cycles < head)
515 cycles += cache_size;
516 cycles -= head;
517
518 return cycles;
519 }
520
cache_seq(struct amdtp_stream * s,const struct pkt_desc * src,unsigned int desc_count)521 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
522 {
523 const unsigned int transfer_delay = s->transfer_delay;
524 const unsigned int cache_size = s->ctx_data.tx.cache.size;
525 struct seq_desc *cache = s->ctx_data.tx.cache.descs;
526 unsigned int cache_pos = s->ctx_data.tx.cache.pos;
527 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
528 int i;
529
530 for (i = 0; i < desc_count; ++i) {
531 struct seq_desc *dst = cache + cache_pos;
532
533 if (aware_syt && src->syt != CIP_SYT_NO_INFO)
534 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
535 else
536 dst->syt_offset = CIP_SYT_NO_INFO;
537 dst->data_blocks = src->data_blocks;
538
539 cache_pos = (cache_pos + 1) % cache_size;
540 src = amdtp_stream_next_packet_desc(s, src);
541 }
542
543 s->ctx_data.tx.cache.pos = cache_pos;
544 }
545
pool_ideal_seq_descs(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)546 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
547 unsigned int pos, unsigned int count)
548 {
549 pool_ideal_syt_offsets(s, descs, size, pos, count);
550
551 if (s->flags & CIP_BLOCKING)
552 pool_blocking_data_blocks(s, descs, size, pos, count);
553 else
554 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
555 }
556
pool_replayed_seq(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)557 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
558 unsigned int pos, unsigned int count)
559 {
560 struct amdtp_stream *target = s->ctx_data.rx.replay_target;
561 const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
562 const unsigned int cache_size = target->ctx_data.tx.cache.size;
563 unsigned int cache_pos = s->ctx_data.rx.cache_pos;
564 int i;
565
566 for (i = 0; i < count; ++i) {
567 descs[pos] = cache[cache_pos];
568 cache_pos = (cache_pos + 1) % cache_size;
569 pos = (pos + 1) % size;
570 }
571
572 s->ctx_data.rx.cache_pos = cache_pos;
573 }
574
pool_seq_descs(struct amdtp_stream * s,struct seq_desc * descs,unsigned int size,unsigned int pos,unsigned int count)575 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
576 unsigned int pos, unsigned int count)
577 {
578 struct amdtp_domain *d = s->domain;
579 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
580 unsigned int pos, unsigned int count);
581
582 if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
583 pool_seq_descs = pool_ideal_seq_descs;
584 } else {
585 if (!d->replay.on_the_fly) {
586 pool_seq_descs = pool_replayed_seq;
587 } else {
588 struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
589 const unsigned int cache_size = tx->ctx_data.tx.cache.size;
590 const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
591 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
592
593 if (cached_cycles > count && cached_cycles > cache_size / 2)
594 pool_seq_descs = pool_replayed_seq;
595 else
596 pool_seq_descs = pool_ideal_seq_descs;
597 }
598 }
599
600 pool_seq_descs(s, descs, size, pos, count);
601 }
602
update_pcm_pointers(struct amdtp_stream * s,struct snd_pcm_substream * pcm,unsigned int frames)603 static void update_pcm_pointers(struct amdtp_stream *s,
604 struct snd_pcm_substream *pcm,
605 unsigned int frames)
606 {
607 unsigned int ptr;
608
609 ptr = s->pcm_buffer_pointer + frames;
610 if (ptr >= pcm->runtime->buffer_size)
611 ptr -= pcm->runtime->buffer_size;
612 WRITE_ONCE(s->pcm_buffer_pointer, ptr);
613
614 s->pcm_period_pointer += frames;
615 if (s->pcm_period_pointer >= pcm->runtime->period_size) {
616 s->pcm_period_pointer -= pcm->runtime->period_size;
617
618 // The program in user process should periodically check the status of intermediate
619 // buffer associated to PCM substream to process PCM frames in the buffer, instead
620 // of receiving notification of period elapsed by poll wait.
621 if (!pcm->runtime->no_period_wakeup)
622 queue_work(system_highpri_wq, &s->period_work);
623 }
624 }
625
pcm_period_work(struct work_struct * work)626 static void pcm_period_work(struct work_struct *work)
627 {
628 struct amdtp_stream *s = container_of(work, struct amdtp_stream,
629 period_work);
630 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
631
632 if (pcm)
633 snd_pcm_period_elapsed(pcm);
634 }
635
queue_packet(struct amdtp_stream * s,struct fw_iso_packet * params,bool sched_irq)636 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
637 bool sched_irq)
638 {
639 int err;
640
641 params->interrupt = sched_irq;
642 params->tag = s->tag;
643 params->sy = 0;
644
645 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
646 s->buffer.packets[s->packet_index].offset);
647 if (err < 0) {
648 dev_err(&s->unit->device, "queueing error: %d\n", err);
649 goto end;
650 }
651
652 if (++s->packet_index >= s->queue_size)
653 s->packet_index = 0;
654 end:
655 return err;
656 }
657
queue_out_packet(struct amdtp_stream * s,struct fw_iso_packet * params,bool sched_irq)658 static inline int queue_out_packet(struct amdtp_stream *s,
659 struct fw_iso_packet *params, bool sched_irq)
660 {
661 params->skip =
662 !!(params->header_length == 0 && params->payload_length == 0);
663 return queue_packet(s, params, sched_irq);
664 }
665
queue_in_packet(struct amdtp_stream * s,struct fw_iso_packet * params)666 static inline int queue_in_packet(struct amdtp_stream *s,
667 struct fw_iso_packet *params)
668 {
669 // Queue one packet for IR context.
670 params->header_length = s->ctx_data.tx.ctx_header_size;
671 params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
672 params->skip = false;
673 return queue_packet(s, params, false);
674 }
675
generate_cip_header(struct amdtp_stream * s,__be32 cip_header[2],unsigned int data_block_counter,unsigned int syt)676 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
677 unsigned int data_block_counter, unsigned int syt)
678 {
679 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
680 (s->data_block_quadlets << CIP_DBS_SHIFT) |
681 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
682 data_block_counter);
683 cip_header[1] = cpu_to_be32(CIP_EOH |
684 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
685 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
686 (syt & CIP_SYT_MASK));
687 }
688
build_it_pkt_header(struct amdtp_stream * s,unsigned int cycle,struct fw_iso_packet * params,unsigned int header_length,unsigned int data_blocks,unsigned int data_block_counter,unsigned int syt,unsigned int index,u32 curr_cycle_time)689 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
690 struct fw_iso_packet *params, unsigned int header_length,
691 unsigned int data_blocks,
692 unsigned int data_block_counter,
693 unsigned int syt, unsigned int index, u32 curr_cycle_time)
694 {
695 unsigned int payload_length;
696 __be32 *cip_header;
697
698 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
699 params->payload_length = payload_length;
700
701 if (header_length > 0) {
702 cip_header = (__be32 *)params->header;
703 generate_cip_header(s, cip_header, data_block_counter, syt);
704 params->header_length = header_length;
705 } else {
706 cip_header = NULL;
707 }
708
709 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
710 data_block_counter, s->packet_index, index, curr_cycle_time);
711 }
712
check_cip_header(struct amdtp_stream * s,const __be32 * buf,unsigned int payload_length,unsigned int * data_blocks,unsigned int * data_block_counter,unsigned int * syt)713 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
714 unsigned int payload_length,
715 unsigned int *data_blocks,
716 unsigned int *data_block_counter, unsigned int *syt)
717 {
718 u32 cip_header[2];
719 unsigned int sph;
720 unsigned int fmt;
721 unsigned int fdf;
722 unsigned int dbc;
723 bool lost;
724
725 cip_header[0] = be32_to_cpu(buf[0]);
726 cip_header[1] = be32_to_cpu(buf[1]);
727
728 /*
729 * This module supports 'Two-quadlet CIP header with SYT field'.
730 * For convenience, also check FMT field is AM824 or not.
731 */
732 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
733 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
734 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
735 dev_info_ratelimited(&s->unit->device,
736 "Invalid CIP header for AMDTP: %08X:%08X\n",
737 cip_header[0], cip_header[1]);
738 return -EAGAIN;
739 }
740
741 /* Check valid protocol or not. */
742 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
743 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
744 if (sph != s->sph || fmt != s->fmt) {
745 dev_info_ratelimited(&s->unit->device,
746 "Detect unexpected protocol: %08x %08x\n",
747 cip_header[0], cip_header[1]);
748 return -EAGAIN;
749 }
750
751 /* Calculate data blocks */
752 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
753 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
754 *data_blocks = 0;
755 } else {
756 unsigned int data_block_quadlets =
757 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
758 /* avoid division by zero */
759 if (data_block_quadlets == 0) {
760 dev_err(&s->unit->device,
761 "Detect invalid value in dbs field: %08X\n",
762 cip_header[0]);
763 return -EPROTO;
764 }
765 if (s->flags & CIP_WRONG_DBS)
766 data_block_quadlets = s->data_block_quadlets;
767
768 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
769 }
770
771 /* Check data block counter continuity */
772 dbc = cip_header[0] & CIP_DBC_MASK;
773 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
774 *data_block_counter != UINT_MAX)
775 dbc = *data_block_counter;
776
777 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
778 *data_block_counter == UINT_MAX) {
779 lost = false;
780 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
781 lost = dbc != *data_block_counter;
782 } else {
783 unsigned int dbc_interval;
784
785 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) {
786 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
787 dbc_interval = s->ctx_data.tx.dbc_interval;
788 else
789 dbc_interval = *data_blocks;
790 } else {
791 dbc_interval = payload_length / sizeof(__be32);
792 }
793
794 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
795 }
796
797 if (lost) {
798 dev_err(&s->unit->device,
799 "Detect discontinuity of CIP: %02X %02X\n",
800 *data_block_counter, dbc);
801 return -EIO;
802 }
803
804 *data_block_counter = dbc;
805
806 if (!(s->flags & CIP_UNAWARE_SYT))
807 *syt = cip_header[1] & CIP_SYT_MASK;
808
809 return 0;
810 }
811
parse_ir_ctx_header(struct amdtp_stream * s,unsigned int cycle,const __be32 * ctx_header,unsigned int * data_blocks,unsigned int * data_block_counter,unsigned int * syt,unsigned int packet_index,unsigned int index,u32 curr_cycle_time)812 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
813 const __be32 *ctx_header,
814 unsigned int *data_blocks,
815 unsigned int *data_block_counter,
816 unsigned int *syt, unsigned int packet_index, unsigned int index,
817 u32 curr_cycle_time)
818 {
819 unsigned int payload_length;
820 const __be32 *cip_header;
821 unsigned int cip_header_size;
822
823 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
824
825 if (!(s->flags & CIP_NO_HEADER))
826 cip_header_size = CIP_HEADER_SIZE;
827 else
828 cip_header_size = 0;
829
830 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
831 dev_err(&s->unit->device,
832 "Detect jumbo payload: %04x %04x\n",
833 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
834 return -EIO;
835 }
836
837 if (cip_header_size > 0) {
838 if (payload_length >= cip_header_size) {
839 int err;
840
841 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
842 err = check_cip_header(s, cip_header, payload_length - cip_header_size,
843 data_blocks, data_block_counter, syt);
844 if (err < 0)
845 return err;
846 } else {
847 // Handle the cycle so that empty packet arrives.
848 cip_header = NULL;
849 *data_blocks = 0;
850 *syt = 0;
851 }
852 } else {
853 cip_header = NULL;
854 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
855 *syt = 0;
856
857 if (*data_block_counter == UINT_MAX)
858 *data_block_counter = 0;
859 }
860
861 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
862 *data_block_counter, packet_index, index, curr_cycle_time);
863
864 return 0;
865 }
866
867 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
868 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
869 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
compute_ohci_iso_ctx_cycle_count(u32 tstamp)870 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
871 {
872 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
873 }
874
compute_ohci_cycle_count(__be32 ctx_header_tstamp)875 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
876 {
877 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
878 return compute_ohci_iso_ctx_cycle_count(tstamp);
879 }
880
increment_ohci_cycle_count(u32 cycle,unsigned int addend)881 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
882 {
883 cycle += addend;
884 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
885 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
886 return cycle;
887 }
888
decrement_ohci_cycle_count(u32 minuend,u32 subtrahend)889 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
890 {
891 if (minuend < subtrahend)
892 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
893
894 return minuend - subtrahend;
895 }
896
compare_ohci_cycle_count(u32 lval,u32 rval)897 static int compare_ohci_cycle_count(u32 lval, u32 rval)
898 {
899 if (lval == rval)
900 return 0;
901 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
902 return -1;
903 else
904 return 1;
905 }
906
907 // Align to actual cycle count for the packet which is going to be scheduled.
908 // This module queued the same number of isochronous cycle as the size of queue
909 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
910 // the size of queue for scheduled cycle.
compute_ohci_it_cycle(const __be32 ctx_header_tstamp,unsigned int queue_size)911 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
912 unsigned int queue_size)
913 {
914 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
915 return increment_ohci_cycle_count(cycle, queue_size);
916 }
917
generate_tx_packet_descs(struct amdtp_stream * s,struct pkt_desc * desc,const __be32 * ctx_header,unsigned int packet_count,unsigned int * desc_count)918 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
919 const __be32 *ctx_header, unsigned int packet_count,
920 unsigned int *desc_count)
921 {
922 unsigned int next_cycle = s->next_cycle;
923 unsigned int dbc = s->data_block_counter;
924 unsigned int packet_index = s->packet_index;
925 unsigned int queue_size = s->queue_size;
926 u32 curr_cycle_time = 0;
927 int i;
928 int err;
929
930 if (trace_amdtp_packet_enabled())
931 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
932
933 *desc_count = 0;
934 for (i = 0; i < packet_count; ++i) {
935 unsigned int cycle;
936 bool lost;
937 unsigned int data_blocks;
938 unsigned int syt;
939
940 cycle = compute_ohci_cycle_count(ctx_header[1]);
941 lost = (next_cycle != cycle);
942 if (lost) {
943 if (s->flags & CIP_NO_HEADER) {
944 // Fireface skips transmission just for an isoc cycle corresponding
945 // to empty packet.
946 unsigned int prev_cycle = next_cycle;
947
948 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
949 lost = (next_cycle != cycle);
950 if (!lost) {
951 // Prepare a description for the skipped cycle for
952 // sequence replay.
953 desc->cycle = prev_cycle;
954 desc->syt = 0;
955 desc->data_blocks = 0;
956 desc->data_block_counter = dbc;
957 desc->ctx_payload = NULL;
958 desc = amdtp_stream_next_packet_desc(s, desc);
959 ++(*desc_count);
960 }
961 } else if (s->flags & CIP_JUMBO_PAYLOAD) {
962 // OXFW970 skips transmission for several isoc cycles during
963 // asynchronous transaction. The sequence replay is impossible due
964 // to the reason.
965 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
966 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
967 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0);
968 }
969 if (lost) {
970 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
971 next_cycle, cycle);
972 return -EIO;
973 }
974 }
975
976 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
977 packet_index, i, curr_cycle_time);
978 if (err < 0)
979 return err;
980
981 desc->cycle = cycle;
982 desc->syt = syt;
983 desc->data_blocks = data_blocks;
984 desc->data_block_counter = dbc;
985 desc->ctx_payload = s->buffer.packets[packet_index].buffer;
986
987 if (!(s->flags & CIP_DBC_IS_END_EVENT))
988 dbc = (dbc + desc->data_blocks) & 0xff;
989
990 next_cycle = increment_ohci_cycle_count(next_cycle, 1);
991 desc = amdtp_stream_next_packet_desc(s, desc);
992 ++(*desc_count);
993 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
994 packet_index = (packet_index + 1) % queue_size;
995 }
996
997 s->next_cycle = next_cycle;
998 s->data_block_counter = dbc;
999
1000 return 0;
1001 }
1002
compute_syt(unsigned int syt_offset,unsigned int cycle,unsigned int transfer_delay)1003 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
1004 unsigned int transfer_delay)
1005 {
1006 unsigned int syt;
1007
1008 syt_offset += transfer_delay;
1009 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
1010 (syt_offset % TICKS_PER_CYCLE);
1011 return syt & CIP_SYT_MASK;
1012 }
1013
generate_rx_packet_descs(struct amdtp_stream * s,struct pkt_desc * desc,const __be32 * ctx_header,unsigned int packet_count)1014 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1015 const __be32 *ctx_header, unsigned int packet_count)
1016 {
1017 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1018 unsigned int seq_size = s->ctx_data.rx.seq.size;
1019 unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1020 unsigned int dbc = s->data_block_counter;
1021 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1022 int i;
1023
1024 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1025
1026 for (i = 0; i < packet_count; ++i) {
1027 unsigned int index = (s->packet_index + i) % s->queue_size;
1028 const struct seq_desc *seq = seq_descs + seq_pos;
1029
1030 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1031
1032 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1033 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1034 else
1035 desc->syt = CIP_SYT_NO_INFO;
1036
1037 desc->data_blocks = seq->data_blocks;
1038
1039 if (s->flags & CIP_DBC_IS_END_EVENT)
1040 dbc = (dbc + desc->data_blocks) & 0xff;
1041
1042 desc->data_block_counter = dbc;
1043
1044 if (!(s->flags & CIP_DBC_IS_END_EVENT))
1045 dbc = (dbc + desc->data_blocks) & 0xff;
1046
1047 desc->ctx_payload = s->buffer.packets[index].buffer;
1048
1049 seq_pos = (seq_pos + 1) % seq_size;
1050 desc = amdtp_stream_next_packet_desc(s, desc);
1051
1052 ++ctx_header;
1053 }
1054
1055 s->data_block_counter = dbc;
1056 s->ctx_data.rx.seq.pos = seq_pos;
1057 }
1058
cancel_stream(struct amdtp_stream * s)1059 static inline void cancel_stream(struct amdtp_stream *s)
1060 {
1061 s->packet_index = -1;
1062 if (in_softirq())
1063 amdtp_stream_pcm_abort(s);
1064 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1065 }
1066
compute_pcm_extra_delay(struct amdtp_stream * s,const struct pkt_desc * desc,unsigned int count)1067 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1068 const struct pkt_desc *desc, unsigned int count)
1069 {
1070 unsigned int data_block_count = 0;
1071 u32 latest_cycle;
1072 u32 cycle_time;
1073 u32 curr_cycle;
1074 u32 cycle_gap;
1075 int i, err;
1076
1077 if (count == 0)
1078 goto end;
1079
1080 // Forward to the latest record.
1081 for (i = 0; i < count - 1; ++i)
1082 desc = amdtp_stream_next_packet_desc(s, desc);
1083 latest_cycle = desc->cycle;
1084
1085 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1086 if (err < 0)
1087 goto end;
1088
1089 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1090 // format of 1394 OHCI isochronous context.
1091 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1092
1093 if (s->direction == AMDTP_IN_STREAM) {
1094 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1095 // it corresponds to arrived isochronous packet.
1096 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1097 goto end;
1098 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1099
1100 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1101 // value expectedly corresponds to a few packets (0-2) since the packet arrived at
1102 // the most recent isochronous cycle has been already processed.
1103 for (i = 0; i < cycle_gap; ++i) {
1104 desc = amdtp_stream_next_packet_desc(s, desc);
1105 data_block_count += desc->data_blocks;
1106 }
1107 } else {
1108 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1109 // since it was already scheduled.
1110 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1111 goto end;
1112 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1113
1114 // NOTE: use history of scheduled packets.
1115 for (i = 0; i < cycle_gap; ++i) {
1116 data_block_count += desc->data_blocks;
1117 desc = prev_packet_desc(s, desc);
1118 }
1119 }
1120 end:
1121 return data_block_count * s->pcm_frame_multiplier;
1122 }
1123
process_ctx_payloads(struct amdtp_stream * s,const struct pkt_desc * desc,unsigned int count)1124 static void process_ctx_payloads(struct amdtp_stream *s,
1125 const struct pkt_desc *desc,
1126 unsigned int count)
1127 {
1128 struct snd_pcm_substream *pcm;
1129 int i;
1130
1131 pcm = READ_ONCE(s->pcm);
1132 s->process_ctx_payloads(s, desc, count, pcm);
1133
1134 if (pcm) {
1135 unsigned int data_block_count = 0;
1136
1137 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1138
1139 for (i = 0; i < count; ++i) {
1140 data_block_count += desc->data_blocks;
1141 desc = amdtp_stream_next_packet_desc(s, desc);
1142 }
1143
1144 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1145 }
1146 }
1147
process_rx_packets(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1148 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149 void *header, void *private_data)
1150 {
1151 struct amdtp_stream *s = private_data;
1152 const struct amdtp_domain *d = s->domain;
1153 const __be32 *ctx_header = header;
1154 const unsigned int events_per_period = d->events_per_period;
1155 unsigned int event_count = s->ctx_data.rx.event_count;
1156 struct pkt_desc *desc = s->packet_descs_cursor;
1157 unsigned int pkt_header_length;
1158 unsigned int packets;
1159 u32 curr_cycle_time;
1160 bool need_hw_irq;
1161 int i;
1162
1163 if (s->packet_index < 0)
1164 return;
1165
1166 // Calculate the number of packets in buffer and check XRUN.
1167 packets = header_length / sizeof(*ctx_header);
1168
1169 generate_rx_packet_descs(s, desc, ctx_header, packets);
1170
1171 process_ctx_payloads(s, desc, packets);
1172
1173 if (!(s->flags & CIP_NO_HEADER))
1174 pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1175 else
1176 pkt_header_length = 0;
1177
1178 if (s == d->irq_target) {
1179 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1180 // the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1181 // with some requests, instead of scheduled hardware IRQ of an IT context.
1182 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1183 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1184 } else {
1185 need_hw_irq = false;
1186 }
1187
1188 if (trace_amdtp_packet_enabled())
1189 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1190
1191 for (i = 0; i < packets; ++i) {
1192 struct {
1193 struct fw_iso_packet params;
1194 __be32 header[CIP_HEADER_QUADLETS];
1195 } template = { {0}, {0} };
1196 bool sched_irq = false;
1197
1198 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1199 desc->data_blocks, desc->data_block_counter,
1200 desc->syt, i, curr_cycle_time);
1201
1202 if (s == s->domain->irq_target) {
1203 event_count += desc->data_blocks;
1204 if (event_count >= events_per_period) {
1205 event_count -= events_per_period;
1206 sched_irq = need_hw_irq;
1207 }
1208 }
1209
1210 if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1211 cancel_stream(s);
1212 return;
1213 }
1214
1215 desc = amdtp_stream_next_packet_desc(s, desc);
1216 }
1217
1218 s->ctx_data.rx.event_count = event_count;
1219 s->packet_descs_cursor = desc;
1220 }
1221
skip_rx_packets(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1222 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1223 void *header, void *private_data)
1224 {
1225 struct amdtp_stream *s = private_data;
1226 struct amdtp_domain *d = s->domain;
1227 const __be32 *ctx_header = header;
1228 unsigned int packets;
1229 unsigned int cycle;
1230 int i;
1231
1232 if (s->packet_index < 0)
1233 return;
1234
1235 packets = header_length / sizeof(*ctx_header);
1236
1237 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1238 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1239
1240 for (i = 0; i < packets; ++i) {
1241 struct fw_iso_packet params = {
1242 .header_length = 0,
1243 .payload_length = 0,
1244 };
1245 bool sched_irq = (s == d->irq_target && i == packets - 1);
1246
1247 if (queue_out_packet(s, ¶ms, sched_irq) < 0) {
1248 cancel_stream(s);
1249 return;
1250 }
1251 }
1252 }
1253
1254 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1255 void *header, void *private_data);
1256
process_rx_packets_intermediately(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1257 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1258 size_t header_length, void *header, void *private_data)
1259 {
1260 struct amdtp_stream *s = private_data;
1261 struct amdtp_domain *d = s->domain;
1262 __be32 *ctx_header = header;
1263 const unsigned int queue_size = s->queue_size;
1264 unsigned int packets;
1265 unsigned int offset;
1266
1267 if (s->packet_index < 0)
1268 return;
1269
1270 packets = header_length / sizeof(*ctx_header);
1271
1272 offset = 0;
1273 while (offset < packets) {
1274 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1275
1276 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1277 break;
1278
1279 ++offset;
1280 }
1281
1282 if (offset > 0) {
1283 unsigned int length = sizeof(*ctx_header) * offset;
1284
1285 skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1286 if (amdtp_streaming_error(s))
1287 return;
1288
1289 ctx_header += offset;
1290 header_length -= length;
1291 }
1292
1293 if (offset < packets) {
1294 s->ready_processing = true;
1295 wake_up(&s->ready_wait);
1296
1297 if (d->replay.enable)
1298 s->ctx_data.rx.cache_pos = 0;
1299
1300 process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1301 if (amdtp_streaming_error(s))
1302 return;
1303
1304 if (s == d->irq_target)
1305 s->context->callback.sc = irq_target_callback;
1306 else
1307 s->context->callback.sc = process_rx_packets;
1308 }
1309 }
1310
process_tx_packets(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1311 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1312 void *header, void *private_data)
1313 {
1314 struct amdtp_stream *s = private_data;
1315 __be32 *ctx_header = header;
1316 struct pkt_desc *desc = s->packet_descs_cursor;
1317 unsigned int packet_count;
1318 unsigned int desc_count;
1319 int i;
1320 int err;
1321
1322 if (s->packet_index < 0)
1323 return;
1324
1325 // Calculate the number of packets in buffer and check XRUN.
1326 packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1327
1328 desc_count = 0;
1329 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1330 if (err < 0) {
1331 if (err != -EAGAIN) {
1332 cancel_stream(s);
1333 return;
1334 }
1335 } else {
1336 struct amdtp_domain *d = s->domain;
1337
1338 process_ctx_payloads(s, desc, desc_count);
1339
1340 if (d->replay.enable)
1341 cache_seq(s, desc, desc_count);
1342
1343 for (i = 0; i < desc_count; ++i)
1344 desc = amdtp_stream_next_packet_desc(s, desc);
1345 s->packet_descs_cursor = desc;
1346 }
1347
1348 for (i = 0; i < packet_count; ++i) {
1349 struct fw_iso_packet params = {0};
1350
1351 if (queue_in_packet(s, ¶ms) < 0) {
1352 cancel_stream(s);
1353 return;
1354 }
1355 }
1356 }
1357
drop_tx_packets(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1358 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1359 void *header, void *private_data)
1360 {
1361 struct amdtp_stream *s = private_data;
1362 const __be32 *ctx_header = header;
1363 unsigned int packets;
1364 unsigned int cycle;
1365 int i;
1366
1367 if (s->packet_index < 0)
1368 return;
1369
1370 packets = header_length / s->ctx_data.tx.ctx_header_size;
1371
1372 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1373 cycle = compute_ohci_cycle_count(ctx_header[1]);
1374 s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1375
1376 for (i = 0; i < packets; ++i) {
1377 struct fw_iso_packet params = {0};
1378
1379 if (queue_in_packet(s, ¶ms) < 0) {
1380 cancel_stream(s);
1381 return;
1382 }
1383 }
1384 }
1385
process_tx_packets_intermediately(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1386 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1387 size_t header_length, void *header, void *private_data)
1388 {
1389 struct amdtp_stream *s = private_data;
1390 struct amdtp_domain *d = s->domain;
1391 __be32 *ctx_header;
1392 unsigned int packets;
1393 unsigned int offset;
1394
1395 if (s->packet_index < 0)
1396 return;
1397
1398 packets = header_length / s->ctx_data.tx.ctx_header_size;
1399
1400 offset = 0;
1401 ctx_header = header;
1402 while (offset < packets) {
1403 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1404
1405 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1406 break;
1407
1408 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1409 ++offset;
1410 }
1411
1412 ctx_header = header;
1413
1414 if (offset > 0) {
1415 size_t length = s->ctx_data.tx.ctx_header_size * offset;
1416
1417 drop_tx_packets(context, tstamp, length, ctx_header, s);
1418 if (amdtp_streaming_error(s))
1419 return;
1420
1421 ctx_header += length / sizeof(*ctx_header);
1422 header_length -= length;
1423 }
1424
1425 if (offset < packets) {
1426 s->ready_processing = true;
1427 wake_up(&s->ready_wait);
1428
1429 process_tx_packets(context, tstamp, header_length, ctx_header, s);
1430 if (amdtp_streaming_error(s))
1431 return;
1432
1433 context->callback.sc = process_tx_packets;
1434 }
1435 }
1436
drop_tx_packets_initially(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1437 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1438 size_t header_length, void *header, void *private_data)
1439 {
1440 struct amdtp_stream *s = private_data;
1441 struct amdtp_domain *d = s->domain;
1442 __be32 *ctx_header;
1443 unsigned int count;
1444 unsigned int events;
1445 int i;
1446
1447 if (s->packet_index < 0)
1448 return;
1449
1450 count = header_length / s->ctx_data.tx.ctx_header_size;
1451
1452 // Attempt to detect any event in the batch of packets.
1453 events = 0;
1454 ctx_header = header;
1455 for (i = 0; i < count; ++i) {
1456 unsigned int payload_quads =
1457 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1458 unsigned int data_blocks;
1459
1460 if (s->flags & CIP_NO_HEADER) {
1461 data_blocks = payload_quads / s->data_block_quadlets;
1462 } else {
1463 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1464
1465 if (payload_quads < CIP_HEADER_QUADLETS) {
1466 data_blocks = 0;
1467 } else {
1468 payload_quads -= CIP_HEADER_QUADLETS;
1469
1470 if (s->flags & CIP_UNAWARE_SYT) {
1471 data_blocks = payload_quads / s->data_block_quadlets;
1472 } else {
1473 u32 cip1 = be32_to_cpu(cip_headers[1]);
1474
1475 // NODATA packet can includes any data blocks but they are
1476 // not available as event.
1477 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1478 data_blocks = 0;
1479 else
1480 data_blocks = payload_quads / s->data_block_quadlets;
1481 }
1482 }
1483 }
1484
1485 events += data_blocks;
1486
1487 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1488 }
1489
1490 drop_tx_packets(context, tstamp, header_length, header, s);
1491
1492 if (events > 0)
1493 s->ctx_data.tx.event_starts = true;
1494
1495 // Decide the cycle count to begin processing content of packet in IR contexts.
1496 {
1497 unsigned int stream_count = 0;
1498 unsigned int event_starts_count = 0;
1499 unsigned int cycle = UINT_MAX;
1500
1501 list_for_each_entry(s, &d->streams, list) {
1502 if (s->direction == AMDTP_IN_STREAM) {
1503 ++stream_count;
1504 if (s->ctx_data.tx.event_starts)
1505 ++event_starts_count;
1506 }
1507 }
1508
1509 if (stream_count == event_starts_count) {
1510 unsigned int next_cycle;
1511
1512 list_for_each_entry(s, &d->streams, list) {
1513 if (s->direction != AMDTP_IN_STREAM)
1514 continue;
1515
1516 next_cycle = increment_ohci_cycle_count(s->next_cycle,
1517 d->processing_cycle.tx_init_skip);
1518 if (cycle == UINT_MAX ||
1519 compare_ohci_cycle_count(next_cycle, cycle) > 0)
1520 cycle = next_cycle;
1521
1522 s->context->callback.sc = process_tx_packets_intermediately;
1523 }
1524
1525 d->processing_cycle.tx_start = cycle;
1526 }
1527 }
1528 }
1529
process_ctxs_in_domain(struct amdtp_domain * d)1530 static void process_ctxs_in_domain(struct amdtp_domain *d)
1531 {
1532 struct amdtp_stream *s;
1533
1534 list_for_each_entry(s, &d->streams, list) {
1535 if (s != d->irq_target && amdtp_stream_running(s))
1536 fw_iso_context_flush_completions(s->context);
1537
1538 if (amdtp_streaming_error(s))
1539 goto error;
1540 }
1541
1542 return;
1543 error:
1544 if (amdtp_stream_running(d->irq_target))
1545 cancel_stream(d->irq_target);
1546
1547 list_for_each_entry(s, &d->streams, list) {
1548 if (amdtp_stream_running(s))
1549 cancel_stream(s);
1550 }
1551 }
1552
irq_target_callback(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1553 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1554 void *header, void *private_data)
1555 {
1556 struct amdtp_stream *s = private_data;
1557 struct amdtp_domain *d = s->domain;
1558
1559 process_rx_packets(context, tstamp, header_length, header, private_data);
1560 process_ctxs_in_domain(d);
1561 }
1562
irq_target_callback_intermediately(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1563 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1564 size_t header_length, void *header, void *private_data)
1565 {
1566 struct amdtp_stream *s = private_data;
1567 struct amdtp_domain *d = s->domain;
1568
1569 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1570 process_ctxs_in_domain(d);
1571 }
1572
irq_target_callback_skip(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1573 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1574 size_t header_length, void *header, void *private_data)
1575 {
1576 struct amdtp_stream *s = private_data;
1577 struct amdtp_domain *d = s->domain;
1578 bool ready_to_start;
1579
1580 skip_rx_packets(context, tstamp, header_length, header, private_data);
1581 process_ctxs_in_domain(d);
1582
1583 if (d->replay.enable && !d->replay.on_the_fly) {
1584 unsigned int rx_count = 0;
1585 unsigned int rx_ready_count = 0;
1586 struct amdtp_stream *rx;
1587
1588 list_for_each_entry(rx, &d->streams, list) {
1589 struct amdtp_stream *tx;
1590 unsigned int cached_cycles;
1591
1592 if (rx->direction != AMDTP_OUT_STREAM)
1593 continue;
1594 ++rx_count;
1595
1596 tx = rx->ctx_data.rx.replay_target;
1597 cached_cycles = calculate_cached_cycle_count(tx, 0);
1598 if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1599 ++rx_ready_count;
1600 }
1601
1602 ready_to_start = (rx_count == rx_ready_count);
1603 } else {
1604 ready_to_start = true;
1605 }
1606
1607 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1608 // contexts are expected to start and get callback when reaching here.
1609 if (ready_to_start) {
1610 unsigned int cycle = s->next_cycle;
1611 list_for_each_entry(s, &d->streams, list) {
1612 if (s->direction != AMDTP_OUT_STREAM)
1613 continue;
1614
1615 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1616 cycle = s->next_cycle;
1617
1618 if (s == d->irq_target)
1619 s->context->callback.sc = irq_target_callback_intermediately;
1620 else
1621 s->context->callback.sc = process_rx_packets_intermediately;
1622 }
1623
1624 d->processing_cycle.rx_start = cycle;
1625 }
1626 }
1627
1628 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1629 // transmit first packet.
amdtp_stream_first_callback(struct fw_iso_context * context,u32 tstamp,size_t header_length,void * header,void * private_data)1630 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1631 u32 tstamp, size_t header_length,
1632 void *header, void *private_data)
1633 {
1634 struct amdtp_stream *s = private_data;
1635 struct amdtp_domain *d = s->domain;
1636
1637 if (s->direction == AMDTP_IN_STREAM) {
1638 context->callback.sc = drop_tx_packets_initially;
1639 } else {
1640 if (s == d->irq_target)
1641 context->callback.sc = irq_target_callback_skip;
1642 else
1643 context->callback.sc = skip_rx_packets;
1644 }
1645
1646 context->callback.sc(context, tstamp, header_length, header, s);
1647 }
1648
1649 /**
1650 * amdtp_stream_start - start transferring packets
1651 * @s: the AMDTP stream to start
1652 * @channel: the isochronous channel on the bus
1653 * @speed: firewire speed code
1654 * @queue_size: The number of packets in the queue.
1655 * @idle_irq_interval: the interval to queue packet during initial state.
1656 *
1657 * The stream cannot be started until it has been configured with
1658 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1659 * device can be started.
1660 */
amdtp_stream_start(struct amdtp_stream * s,int channel,int speed,unsigned int queue_size,unsigned int idle_irq_interval)1661 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1662 unsigned int queue_size, unsigned int idle_irq_interval)
1663 {
1664 bool is_irq_target = (s == s->domain->irq_target);
1665 unsigned int ctx_header_size;
1666 unsigned int max_ctx_payload_size;
1667 enum dma_data_direction dir;
1668 struct pkt_desc *descs;
1669 int i, type, tag, err;
1670
1671 mutex_lock(&s->mutex);
1672
1673 if (WARN_ON(amdtp_stream_running(s) ||
1674 (s->data_block_quadlets < 1))) {
1675 err = -EBADFD;
1676 goto err_unlock;
1677 }
1678
1679 if (s->direction == AMDTP_IN_STREAM) {
1680 // NOTE: IT context should be used for constant IRQ.
1681 if (is_irq_target) {
1682 err = -EINVAL;
1683 goto err_unlock;
1684 }
1685
1686 s->data_block_counter = UINT_MAX;
1687 } else {
1688 s->data_block_counter = 0;
1689 }
1690
1691 // initialize packet buffer.
1692 if (s->direction == AMDTP_IN_STREAM) {
1693 dir = DMA_FROM_DEVICE;
1694 type = FW_ISO_CONTEXT_RECEIVE;
1695 if (!(s->flags & CIP_NO_HEADER))
1696 ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1697 else
1698 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1699 } else {
1700 dir = DMA_TO_DEVICE;
1701 type = FW_ISO_CONTEXT_TRANSMIT;
1702 ctx_header_size = 0; // No effect for IT context.
1703 }
1704 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1705
1706 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1707 if (err < 0)
1708 goto err_unlock;
1709 s->queue_size = queue_size;
1710
1711 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1712 type, channel, speed, ctx_header_size,
1713 amdtp_stream_first_callback, s);
1714 if (IS_ERR(s->context)) {
1715 err = PTR_ERR(s->context);
1716 if (err == -EBUSY)
1717 dev_err(&s->unit->device,
1718 "no free stream on this controller\n");
1719 goto err_buffer;
1720 }
1721
1722 amdtp_stream_update(s);
1723
1724 if (s->direction == AMDTP_IN_STREAM) {
1725 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1726 s->ctx_data.tx.ctx_header_size = ctx_header_size;
1727 s->ctx_data.tx.event_starts = false;
1728
1729 if (s->domain->replay.enable) {
1730 // struct fw_iso_context.drop_overflow_headers is false therefore it's
1731 // possible to cache much unexpectedly.
1732 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1733 queue_size * 3 / 2);
1734 s->ctx_data.tx.cache.pos = 0;
1735 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1736 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1737 if (!s->ctx_data.tx.cache.descs) {
1738 err = -ENOMEM;
1739 goto err_context;
1740 }
1741 }
1742 } else {
1743 static const struct {
1744 unsigned int data_block;
1745 unsigned int syt_offset;
1746 } *entry, initial_state[] = {
1747 [CIP_SFC_32000] = { 4, 3072 },
1748 [CIP_SFC_48000] = { 6, 1024 },
1749 [CIP_SFC_96000] = { 12, 1024 },
1750 [CIP_SFC_192000] = { 24, 1024 },
1751 [CIP_SFC_44100] = { 0, 67 },
1752 [CIP_SFC_88200] = { 0, 67 },
1753 [CIP_SFC_176400] = { 0, 67 },
1754 };
1755
1756 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1757 if (!s->ctx_data.rx.seq.descs) {
1758 err = -ENOMEM;
1759 goto err_context;
1760 }
1761 s->ctx_data.rx.seq.size = queue_size;
1762 s->ctx_data.rx.seq.pos = 0;
1763
1764 entry = &initial_state[s->sfc];
1765 s->ctx_data.rx.data_block_state = entry->data_block;
1766 s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1767 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1768
1769 s->ctx_data.rx.event_count = 0;
1770 }
1771
1772 if (s->flags & CIP_NO_HEADER)
1773 s->tag = TAG_NO_CIP_HEADER;
1774 else
1775 s->tag = TAG_CIP;
1776
1777 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1778 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1779 // could take a round over queue of AMDTP packet descriptors and small loss of history. For
1780 // safe, keep more 8 elements for the queue, equivalent to 1 ms.
1781 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1782 if (!descs) {
1783 err = -ENOMEM;
1784 goto err_context;
1785 }
1786 s->packet_descs = descs;
1787
1788 INIT_LIST_HEAD(&s->packet_descs_list);
1789 for (i = 0; i < s->queue_size; ++i) {
1790 INIT_LIST_HEAD(&descs->link);
1791 list_add_tail(&descs->link, &s->packet_descs_list);
1792 ++descs;
1793 }
1794 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1795
1796 s->packet_index = 0;
1797 do {
1798 struct fw_iso_packet params;
1799
1800 if (s->direction == AMDTP_IN_STREAM) {
1801 err = queue_in_packet(s, ¶ms);
1802 } else {
1803 bool sched_irq = false;
1804
1805 params.header_length = 0;
1806 params.payload_length = 0;
1807
1808 if (is_irq_target) {
1809 sched_irq = !((s->packet_index + 1) %
1810 idle_irq_interval);
1811 }
1812
1813 err = queue_out_packet(s, ¶ms, sched_irq);
1814 }
1815 if (err < 0)
1816 goto err_pkt_descs;
1817 } while (s->packet_index > 0);
1818
1819 /* NOTE: TAG1 matches CIP. This just affects in stream. */
1820 tag = FW_ISO_CONTEXT_MATCH_TAG1;
1821 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1822 tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1823
1824 s->ready_processing = false;
1825 err = fw_iso_context_start(s->context, -1, 0, tag);
1826 if (err < 0)
1827 goto err_pkt_descs;
1828
1829 mutex_unlock(&s->mutex);
1830
1831 return 0;
1832 err_pkt_descs:
1833 kfree(s->packet_descs);
1834 s->packet_descs = NULL;
1835 err_context:
1836 if (s->direction == AMDTP_OUT_STREAM) {
1837 kfree(s->ctx_data.rx.seq.descs);
1838 } else {
1839 if (s->domain->replay.enable)
1840 kfree(s->ctx_data.tx.cache.descs);
1841 }
1842 fw_iso_context_destroy(s->context);
1843 s->context = ERR_PTR(-1);
1844 err_buffer:
1845 iso_packets_buffer_destroy(&s->buffer, s->unit);
1846 err_unlock:
1847 mutex_unlock(&s->mutex);
1848
1849 return err;
1850 }
1851
1852 /**
1853 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1854 * @d: the AMDTP domain.
1855 * @s: the AMDTP stream that transports the PCM data
1856 *
1857 * Returns the current buffer position, in frames.
1858 */
amdtp_domain_stream_pcm_pointer(struct amdtp_domain * d,struct amdtp_stream * s)1859 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1860 struct amdtp_stream *s)
1861 {
1862 struct amdtp_stream *irq_target = d->irq_target;
1863
1864 if (irq_target && amdtp_stream_running(irq_target)) {
1865 // use wq to prevent AB/BA deadlock competition for
1866 // substream lock:
1867 // fw_iso_context_flush_completions() acquires
1868 // lock by ohci_flush_iso_completions(),
1869 // amdtp-stream process_rx_packets() attempts to
1870 // acquire same lock by snd_pcm_elapsed()
1871 if (current_work() != &s->period_work)
1872 fw_iso_context_flush_completions(irq_target->context);
1873 }
1874
1875 return READ_ONCE(s->pcm_buffer_pointer);
1876 }
1877 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1878
1879 /**
1880 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1881 * @d: the AMDTP domain.
1882 * @s: the AMDTP stream that transfers the PCM frames
1883 *
1884 * Returns zero always.
1885 */
amdtp_domain_stream_pcm_ack(struct amdtp_domain * d,struct amdtp_stream * s)1886 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1887 {
1888 struct amdtp_stream *irq_target = d->irq_target;
1889
1890 // Process isochronous packets for recent isochronous cycle to handle
1891 // queued PCM frames.
1892 if (irq_target && amdtp_stream_running(irq_target))
1893 fw_iso_context_flush_completions(irq_target->context);
1894
1895 return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1898
1899 /**
1900 * amdtp_stream_update - update the stream after a bus reset
1901 * @s: the AMDTP stream
1902 */
amdtp_stream_update(struct amdtp_stream * s)1903 void amdtp_stream_update(struct amdtp_stream *s)
1904 {
1905 /* Precomputing. */
1906 WRITE_ONCE(s->source_node_id_field,
1907 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1908 }
1909 EXPORT_SYMBOL(amdtp_stream_update);
1910
1911 /**
1912 * amdtp_stream_stop - stop sending packets
1913 * @s: the AMDTP stream to stop
1914 *
1915 * All PCM and MIDI devices of the stream must be stopped before the stream
1916 * itself can be stopped.
1917 */
amdtp_stream_stop(struct amdtp_stream * s)1918 static void amdtp_stream_stop(struct amdtp_stream *s)
1919 {
1920 mutex_lock(&s->mutex);
1921
1922 if (!amdtp_stream_running(s)) {
1923 mutex_unlock(&s->mutex);
1924 return;
1925 }
1926
1927 cancel_work_sync(&s->period_work);
1928 fw_iso_context_stop(s->context);
1929 fw_iso_context_destroy(s->context);
1930 s->context = ERR_PTR(-1);
1931 iso_packets_buffer_destroy(&s->buffer, s->unit);
1932 kfree(s->packet_descs);
1933 s->packet_descs = NULL;
1934
1935 if (s->direction == AMDTP_OUT_STREAM) {
1936 kfree(s->ctx_data.rx.seq.descs);
1937 } else {
1938 if (s->domain->replay.enable)
1939 kfree(s->ctx_data.tx.cache.descs);
1940 }
1941
1942 mutex_unlock(&s->mutex);
1943 }
1944
1945 /**
1946 * amdtp_stream_pcm_abort - abort the running PCM device
1947 * @s: the AMDTP stream about to be stopped
1948 *
1949 * If the isochronous stream needs to be stopped asynchronously, call this
1950 * function first to stop the PCM device.
1951 */
amdtp_stream_pcm_abort(struct amdtp_stream * s)1952 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1953 {
1954 struct snd_pcm_substream *pcm;
1955
1956 pcm = READ_ONCE(s->pcm);
1957 if (pcm)
1958 snd_pcm_stop_xrun(pcm);
1959 }
1960 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1961
1962 /**
1963 * amdtp_domain_init - initialize an AMDTP domain structure
1964 * @d: the AMDTP domain to initialize.
1965 */
amdtp_domain_init(struct amdtp_domain * d)1966 int amdtp_domain_init(struct amdtp_domain *d)
1967 {
1968 INIT_LIST_HEAD(&d->streams);
1969
1970 d->events_per_period = 0;
1971
1972 return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1975
1976 /**
1977 * amdtp_domain_destroy - destroy an AMDTP domain structure
1978 * @d: the AMDTP domain to destroy.
1979 */
amdtp_domain_destroy(struct amdtp_domain * d)1980 void amdtp_domain_destroy(struct amdtp_domain *d)
1981 {
1982 // At present nothing to do.
1983 return;
1984 }
1985 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1986
1987 /**
1988 * amdtp_domain_add_stream - register isoc context into the domain.
1989 * @d: the AMDTP domain.
1990 * @s: the AMDTP stream.
1991 * @channel: the isochronous channel on the bus.
1992 * @speed: firewire speed code.
1993 */
amdtp_domain_add_stream(struct amdtp_domain * d,struct amdtp_stream * s,int channel,int speed)1994 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1995 int channel, int speed)
1996 {
1997 struct amdtp_stream *tmp;
1998
1999 list_for_each_entry(tmp, &d->streams, list) {
2000 if (s == tmp)
2001 return -EBUSY;
2002 }
2003
2004 list_add(&s->list, &d->streams);
2005
2006 s->channel = channel;
2007 s->speed = speed;
2008 s->domain = d;
2009
2010 return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
2013
2014 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
2015 // is less than the number of rx streams, the first tx stream is selected.
make_association(struct amdtp_domain * d)2016 static int make_association(struct amdtp_domain *d)
2017 {
2018 unsigned int dst_index = 0;
2019 struct amdtp_stream *rx;
2020
2021 // Make association to replay target.
2022 list_for_each_entry(rx, &d->streams, list) {
2023 if (rx->direction == AMDTP_OUT_STREAM) {
2024 unsigned int src_index = 0;
2025 struct amdtp_stream *tx = NULL;
2026 struct amdtp_stream *s;
2027
2028 list_for_each_entry(s, &d->streams, list) {
2029 if (s->direction == AMDTP_IN_STREAM) {
2030 if (dst_index == src_index) {
2031 tx = s;
2032 break;
2033 }
2034
2035 ++src_index;
2036 }
2037 }
2038 if (!tx) {
2039 // Select the first entry.
2040 list_for_each_entry(s, &d->streams, list) {
2041 if (s->direction == AMDTP_IN_STREAM) {
2042 tx = s;
2043 break;
2044 }
2045 }
2046 // No target is available to replay sequence.
2047 if (!tx)
2048 return -EINVAL;
2049 }
2050
2051 rx->ctx_data.rx.replay_target = tx;
2052
2053 ++dst_index;
2054 }
2055 }
2056
2057 return 0;
2058 }
2059
2060 /**
2061 * amdtp_domain_start - start sending packets for isoc context in the domain.
2062 * @d: the AMDTP domain.
2063 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2064 * contexts.
2065 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2066 * IT context.
2067 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2068 * according to arrival of events in tx packets.
2069 */
amdtp_domain_start(struct amdtp_domain * d,unsigned int tx_init_skip_cycles,bool replay_seq,bool replay_on_the_fly)2070 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2071 bool replay_on_the_fly)
2072 {
2073 unsigned int events_per_buffer = d->events_per_buffer;
2074 unsigned int events_per_period = d->events_per_period;
2075 unsigned int queue_size;
2076 struct amdtp_stream *s;
2077 bool found = false;
2078 int err;
2079
2080 if (replay_seq) {
2081 err = make_association(d);
2082 if (err < 0)
2083 return err;
2084 }
2085 d->replay.enable = replay_seq;
2086 d->replay.on_the_fly = replay_on_the_fly;
2087
2088 // Select an IT context as IRQ target.
2089 list_for_each_entry(s, &d->streams, list) {
2090 if (s->direction == AMDTP_OUT_STREAM) {
2091 found = true;
2092 break;
2093 }
2094 }
2095 if (!found)
2096 return -ENXIO;
2097 d->irq_target = s;
2098
2099 d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2100
2101 // This is a case that AMDTP streams in domain run just for MIDI
2102 // substream. Use the number of events equivalent to 10 msec as
2103 // interval of hardware IRQ.
2104 if (events_per_period == 0)
2105 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2106 if (events_per_buffer == 0)
2107 events_per_buffer = events_per_period * 3;
2108
2109 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2110 amdtp_rate_table[d->irq_target->sfc]);
2111
2112 list_for_each_entry(s, &d->streams, list) {
2113 unsigned int idle_irq_interval = 0;
2114
2115 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2116 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2117 amdtp_rate_table[d->irq_target->sfc]);
2118 }
2119
2120 // Starts immediately but actually DMA context starts several hundred cycles later.
2121 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2122 if (err < 0)
2123 goto error;
2124 }
2125
2126 return 0;
2127 error:
2128 list_for_each_entry(s, &d->streams, list)
2129 amdtp_stream_stop(s);
2130 return err;
2131 }
2132 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2133
2134 /**
2135 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2136 * @d: the AMDTP domain to which the isoc contexts belong.
2137 */
amdtp_domain_stop(struct amdtp_domain * d)2138 void amdtp_domain_stop(struct amdtp_domain *d)
2139 {
2140 struct amdtp_stream *s, *next;
2141
2142 if (d->irq_target)
2143 amdtp_stream_stop(d->irq_target);
2144
2145 list_for_each_entry_safe(s, next, &d->streams, list) {
2146 list_del(&s->list);
2147
2148 if (s != d->irq_target)
2149 amdtp_stream_stop(s);
2150 }
2151
2152 d->events_per_period = 0;
2153 d->irq_target = NULL;
2154 }
2155 EXPORT_SYMBOL_GPL(amdtp_domain_stop);
2156