1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10 #define DISABLE_BRANCH_PROFILING
11
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/virtio_config.h>
23 #include <linux/virtio_anchor.h>
24 #include <linux/cc_platform.h>
25
26 #include <asm/tlbflush.h>
27 #include <asm/fixmap.h>
28 #include <asm/setup.h>
29 #include <asm/mem_encrypt.h>
30 #include <asm/bootparam.h>
31 #include <asm/set_memory.h>
32 #include <asm/cacheflush.h>
33 #include <asm/processor-flags.h>
34 #include <asm/msr.h>
35 #include <asm/cmdline.h>
36 #include <asm/sev.h>
37 #include <asm/ia32.h>
38
39 #include "mm_internal.h"
40
41 /*
42 * Since SME related variables are set early in the boot process they must
43 * reside in the .data section so as not to be zeroed out when the .bss
44 * section is later cleared.
45 */
46 u64 sme_me_mask __section(".data") = 0;
47 u64 sev_status __section(".data") = 0;
48 u64 sev_check_data __section(".data") = 0;
49 EXPORT_SYMBOL(sme_me_mask);
50
51 /* Buffer used for early in-place encryption by BSP, no locking needed */
52 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
53
54 /*
55 * SNP-specific routine which needs to additionally change the page state from
56 * private to shared before copying the data from the source to destination and
57 * restore after the copy.
58 */
snp_memcpy(void * dst,void * src,size_t sz,unsigned long paddr,bool decrypt)59 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
60 unsigned long paddr, bool decrypt)
61 {
62 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
63
64 if (decrypt) {
65 /*
66 * @paddr needs to be accessed decrypted, mark the page shared in
67 * the RMP table before copying it.
68 */
69 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
70
71 memcpy(dst, src, sz);
72
73 /* Restore the page state after the memcpy. */
74 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
75 } else {
76 /*
77 * @paddr need to be accessed encrypted, no need for the page state
78 * change.
79 */
80 memcpy(dst, src, sz);
81 }
82 }
83
84 /*
85 * This routine does not change the underlying encryption setting of the
86 * page(s) that map this memory. It assumes that eventually the memory is
87 * meant to be accessed as either encrypted or decrypted but the contents
88 * are currently not in the desired state.
89 *
90 * This routine follows the steps outlined in the AMD64 Architecture
91 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
92 */
__sme_early_enc_dec(resource_size_t paddr,unsigned long size,bool enc)93 static void __init __sme_early_enc_dec(resource_size_t paddr,
94 unsigned long size, bool enc)
95 {
96 void *src, *dst;
97 size_t len;
98
99 if (!sme_me_mask)
100 return;
101
102 wbinvd();
103
104 /*
105 * There are limited number of early mapping slots, so map (at most)
106 * one page at time.
107 */
108 while (size) {
109 len = min_t(size_t, sizeof(sme_early_buffer), size);
110
111 /*
112 * Create mappings for the current and desired format of
113 * the memory. Use a write-protected mapping for the source.
114 */
115 src = enc ? early_memremap_decrypted_wp(paddr, len) :
116 early_memremap_encrypted_wp(paddr, len);
117
118 dst = enc ? early_memremap_encrypted(paddr, len) :
119 early_memremap_decrypted(paddr, len);
120
121 /*
122 * If a mapping can't be obtained to perform the operation,
123 * then eventual access of that area in the desired mode
124 * will cause a crash.
125 */
126 BUG_ON(!src || !dst);
127
128 /*
129 * Use a temporary buffer, of cache-line multiple size, to
130 * avoid data corruption as documented in the APM.
131 */
132 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
133 snp_memcpy(sme_early_buffer, src, len, paddr, enc);
134 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
135 } else {
136 memcpy(sme_early_buffer, src, len);
137 memcpy(dst, sme_early_buffer, len);
138 }
139
140 early_memunmap(dst, len);
141 early_memunmap(src, len);
142
143 paddr += len;
144 size -= len;
145 }
146 }
147
sme_early_encrypt(resource_size_t paddr,unsigned long size)148 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
149 {
150 __sme_early_enc_dec(paddr, size, true);
151 }
152
sme_early_decrypt(resource_size_t paddr,unsigned long size)153 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
154 {
155 __sme_early_enc_dec(paddr, size, false);
156 }
157
__sme_early_map_unmap_mem(void * vaddr,unsigned long size,bool map)158 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
159 bool map)
160 {
161 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
162 pmdval_t pmd_flags, pmd;
163
164 /* Use early_pmd_flags but remove the encryption mask */
165 pmd_flags = __sme_clr(early_pmd_flags);
166
167 do {
168 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
169 __early_make_pgtable((unsigned long)vaddr, pmd);
170
171 vaddr += PMD_SIZE;
172 paddr += PMD_SIZE;
173 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
174 } while (size);
175
176 flush_tlb_local();
177 }
178
sme_unmap_bootdata(char * real_mode_data)179 void __init sme_unmap_bootdata(char *real_mode_data)
180 {
181 struct boot_params *boot_data;
182 unsigned long cmdline_paddr;
183
184 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
185 return;
186
187 /* Get the command line address before unmapping the real_mode_data */
188 boot_data = (struct boot_params *)real_mode_data;
189 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
190
191 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
192
193 if (!cmdline_paddr)
194 return;
195
196 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
197 }
198
sme_map_bootdata(char * real_mode_data)199 void __init sme_map_bootdata(char *real_mode_data)
200 {
201 struct boot_params *boot_data;
202 unsigned long cmdline_paddr;
203
204 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
205 return;
206
207 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
208
209 /* Get the command line address after mapping the real_mode_data */
210 boot_data = (struct boot_params *)real_mode_data;
211 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
212
213 if (!cmdline_paddr)
214 return;
215
216 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
217 }
218
sev_setup_arch(void)219 void __init sev_setup_arch(void)
220 {
221 phys_addr_t total_mem = memblock_phys_mem_size();
222 unsigned long size;
223
224 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
225 return;
226
227 /*
228 * For SEV, all DMA has to occur via shared/unencrypted pages.
229 * SEV uses SWIOTLB to make this happen without changing device
230 * drivers. However, depending on the workload being run, the
231 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
232 * run out of buffers for DMA, resulting in I/O errors and/or
233 * performance degradation especially with high I/O workloads.
234 *
235 * Adjust the default size of SWIOTLB for SEV guests using
236 * a percentage of guest memory for SWIOTLB buffers.
237 * Also, as the SWIOTLB bounce buffer memory is allocated
238 * from low memory, ensure that the adjusted size is within
239 * the limits of low available memory.
240 *
241 * The percentage of guest memory used here for SWIOTLB buffers
242 * is more of an approximation of the static adjustment which
243 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
244 */
245 size = total_mem * 6 / 100;
246 size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
247 swiotlb_adjust_size(size);
248
249 /* Set restricted memory access for virtio. */
250 virtio_set_mem_acc_cb(virtio_require_restricted_mem_acc);
251 }
252
pg_level_to_pfn(int level,pte_t * kpte,pgprot_t * ret_prot)253 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
254 {
255 unsigned long pfn = 0;
256 pgprot_t prot;
257
258 switch (level) {
259 case PG_LEVEL_4K:
260 pfn = pte_pfn(*kpte);
261 prot = pte_pgprot(*kpte);
262 break;
263 case PG_LEVEL_2M:
264 pfn = pmd_pfn(*(pmd_t *)kpte);
265 prot = pmd_pgprot(*(pmd_t *)kpte);
266 break;
267 case PG_LEVEL_1G:
268 pfn = pud_pfn(*(pud_t *)kpte);
269 prot = pud_pgprot(*(pud_t *)kpte);
270 break;
271 default:
272 WARN_ONCE(1, "Invalid level for kpte\n");
273 return 0;
274 }
275
276 if (ret_prot)
277 *ret_prot = prot;
278
279 return pfn;
280 }
281
amd_enc_tlb_flush_required(bool enc)282 static bool amd_enc_tlb_flush_required(bool enc)
283 {
284 return true;
285 }
286
amd_enc_cache_flush_required(void)287 static bool amd_enc_cache_flush_required(void)
288 {
289 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
290 }
291
enc_dec_hypercall(unsigned long vaddr,unsigned long size,bool enc)292 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
293 {
294 #ifdef CONFIG_PARAVIRT
295 unsigned long vaddr_end = vaddr + size;
296
297 while (vaddr < vaddr_end) {
298 int psize, pmask, level;
299 unsigned long pfn;
300 pte_t *kpte;
301
302 kpte = lookup_address(vaddr, &level);
303 if (!kpte || pte_none(*kpte)) {
304 WARN_ONCE(1, "kpte lookup for vaddr\n");
305 return;
306 }
307
308 pfn = pg_level_to_pfn(level, kpte, NULL);
309 if (!pfn)
310 continue;
311
312 psize = page_level_size(level);
313 pmask = page_level_mask(level);
314
315 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
316
317 vaddr = (vaddr & pmask) + psize;
318 }
319 #endif
320 }
321
amd_enc_status_change_prepare(unsigned long vaddr,int npages,bool enc)322 static bool amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
323 {
324 /*
325 * To maintain the security guarantees of SEV-SNP guests, make sure
326 * to invalidate the memory before encryption attribute is cleared.
327 */
328 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
329 snp_set_memory_shared(vaddr, npages);
330
331 return true;
332 }
333
334 /* Return true unconditionally: return value doesn't matter for the SEV side */
amd_enc_status_change_finish(unsigned long vaddr,int npages,bool enc)335 static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
336 {
337 /*
338 * After memory is mapped encrypted in the page table, validate it
339 * so that it is consistent with the page table updates.
340 */
341 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
342 snp_set_memory_private(vaddr, npages);
343
344 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
345 enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
346
347 return true;
348 }
349
__set_clr_pte_enc(pte_t * kpte,int level,bool enc)350 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
351 {
352 pgprot_t old_prot, new_prot;
353 unsigned long pfn, pa, size;
354 pte_t new_pte;
355
356 pfn = pg_level_to_pfn(level, kpte, &old_prot);
357 if (!pfn)
358 return;
359
360 new_prot = old_prot;
361 if (enc)
362 pgprot_val(new_prot) |= _PAGE_ENC;
363 else
364 pgprot_val(new_prot) &= ~_PAGE_ENC;
365
366 /* If prot is same then do nothing. */
367 if (pgprot_val(old_prot) == pgprot_val(new_prot))
368 return;
369
370 pa = pfn << PAGE_SHIFT;
371 size = page_level_size(level);
372
373 /*
374 * We are going to perform in-place en-/decryption and change the
375 * physical page attribute from C=1 to C=0 or vice versa. Flush the
376 * caches to ensure that data gets accessed with the correct C-bit.
377 */
378 clflush_cache_range(__va(pa), size);
379
380 /* Encrypt/decrypt the contents in-place */
381 if (enc) {
382 sme_early_encrypt(pa, size);
383 } else {
384 sme_early_decrypt(pa, size);
385
386 /*
387 * ON SNP, the page state in the RMP table must happen
388 * before the page table updates.
389 */
390 early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
391 }
392
393 /* Change the page encryption mask. */
394 new_pte = pfn_pte(pfn, new_prot);
395 set_pte_atomic(kpte, new_pte);
396
397 /*
398 * If page is set encrypted in the page table, then update the RMP table to
399 * add this page as private.
400 */
401 if (enc)
402 early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
403 }
404
early_set_memory_enc_dec(unsigned long vaddr,unsigned long size,bool enc)405 static int __init early_set_memory_enc_dec(unsigned long vaddr,
406 unsigned long size, bool enc)
407 {
408 unsigned long vaddr_end, vaddr_next, start;
409 unsigned long psize, pmask;
410 int split_page_size_mask;
411 int level, ret;
412 pte_t *kpte;
413
414 start = vaddr;
415 vaddr_next = vaddr;
416 vaddr_end = vaddr + size;
417
418 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
419 kpte = lookup_address(vaddr, &level);
420 if (!kpte || pte_none(*kpte)) {
421 ret = 1;
422 goto out;
423 }
424
425 if (level == PG_LEVEL_4K) {
426 __set_clr_pte_enc(kpte, level, enc);
427 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
428 continue;
429 }
430
431 psize = page_level_size(level);
432 pmask = page_level_mask(level);
433
434 /*
435 * Check whether we can change the large page in one go.
436 * We request a split when the address is not aligned and
437 * the number of pages to set/clear encryption bit is smaller
438 * than the number of pages in the large page.
439 */
440 if (vaddr == (vaddr & pmask) &&
441 ((vaddr_end - vaddr) >= psize)) {
442 __set_clr_pte_enc(kpte, level, enc);
443 vaddr_next = (vaddr & pmask) + psize;
444 continue;
445 }
446
447 /*
448 * The virtual address is part of a larger page, create the next
449 * level page table mapping (4K or 2M). If it is part of a 2M
450 * page then we request a split of the large page into 4K
451 * chunks. A 1GB large page is split into 2M pages, resp.
452 */
453 if (level == PG_LEVEL_2M)
454 split_page_size_mask = 0;
455 else
456 split_page_size_mask = 1 << PG_LEVEL_2M;
457
458 /*
459 * kernel_physical_mapping_change() does not flush the TLBs, so
460 * a TLB flush is required after we exit from the for loop.
461 */
462 kernel_physical_mapping_change(__pa(vaddr & pmask),
463 __pa((vaddr_end & pmask) + psize),
464 split_page_size_mask);
465 }
466
467 ret = 0;
468
469 early_set_mem_enc_dec_hypercall(start, size, enc);
470 out:
471 __flush_tlb_all();
472 return ret;
473 }
474
early_set_memory_decrypted(unsigned long vaddr,unsigned long size)475 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
476 {
477 return early_set_memory_enc_dec(vaddr, size, false);
478 }
479
early_set_memory_encrypted(unsigned long vaddr,unsigned long size)480 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
481 {
482 return early_set_memory_enc_dec(vaddr, size, true);
483 }
484
early_set_mem_enc_dec_hypercall(unsigned long vaddr,unsigned long size,bool enc)485 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
486 {
487 enc_dec_hypercall(vaddr, size, enc);
488 }
489
sme_early_init(void)490 void __init sme_early_init(void)
491 {
492 if (!sme_me_mask)
493 return;
494
495 early_pmd_flags = __sme_set(early_pmd_flags);
496
497 __supported_pte_mask = __sme_set(__supported_pte_mask);
498
499 /* Update the protection map with memory encryption mask */
500 add_encrypt_protection_map();
501
502 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
503 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish;
504 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required;
505 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required;
506
507 /*
508 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
509 * parallel bringup low level code. That raises #VC which cannot be
510 * handled there.
511 * It does not provide a RDMSR GHCB protocol so the early startup
512 * code cannot directly communicate with the secure firmware. The
513 * alternative solution to retrieve the APIC ID via CPUID(0xb),
514 * which is covered by the GHCB protocol, is not viable either
515 * because there is no enforcement of the CPUID(0xb) provided
516 * "initial" APIC ID to be the same as the real APIC ID.
517 * Disable parallel bootup.
518 */
519 if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
520 x86_cpuinit.parallel_bringup = false;
521
522 /*
523 * The VMM is capable of injecting interrupt 0x80 and triggering the
524 * compatibility syscall path.
525 *
526 * By default, the 32-bit emulation is disabled in order to ensure
527 * the safety of the VM.
528 */
529 if (sev_status & MSR_AMD64_SEV_ENABLED)
530 ia32_disable();
531
532 /*
533 * Override init functions that scan the ROM region in SEV-SNP guests,
534 * as this memory is not pre-validated and would thus cause a crash.
535 */
536 if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
537 x86_init.mpparse.find_smp_config = x86_init_noop;
538 x86_init.pci.init_irq = x86_init_noop;
539 x86_init.resources.probe_roms = x86_init_noop;
540
541 /*
542 * DMI setup behavior for SEV-SNP guests depends on
543 * efi_enabled(EFI_CONFIG_TABLES), which hasn't been
544 * parsed yet. snp_dmi_setup() will run after that
545 * parsing has happened.
546 */
547 x86_init.resources.dmi_setup = snp_dmi_setup;
548 }
549 }
550
mem_encrypt_free_decrypted_mem(void)551 void __init mem_encrypt_free_decrypted_mem(void)
552 {
553 unsigned long vaddr, vaddr_end, npages;
554 int r;
555
556 vaddr = (unsigned long)__start_bss_decrypted_unused;
557 vaddr_end = (unsigned long)__end_bss_decrypted;
558 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
559
560 /*
561 * If the unused memory range was mapped decrypted, change the encryption
562 * attribute from decrypted to encrypted before freeing it. Base the
563 * re-encryption on the same condition used for the decryption in
564 * sme_postprocess_startup(). Higher level abstractions, such as
565 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
566 * using vTOM, where sme_me_mask is always zero.
567 */
568 if (sme_me_mask) {
569 r = set_memory_encrypted(vaddr, npages);
570 if (r) {
571 pr_warn("failed to free unused decrypted pages\n");
572 return;
573 }
574 }
575
576 free_init_pages("unused decrypted", vaddr, vaddr_end);
577 }
578