1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31
32 /*
33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35 */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
xstate_required_size(u64 xstate_bv,bool compacted)39 u32 xstate_required_size(u64 xstate_bv, bool compacted)
40 {
41 int feature_bit = 0;
42 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44 xstate_bv &= XFEATURE_MASK_EXTEND;
45 while (xstate_bv) {
46 if (xstate_bv & 0x1) {
47 u32 eax, ebx, ecx, edx, offset;
48 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49 /* ECX[1]: 64B alignment in compacted form */
50 if (compacted)
51 offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52 else
53 offset = ebx;
54 ret = max(ret, offset + eax);
55 }
56
57 xstate_bv >>= 1;
58 feature_bit++;
59 }
60
61 return ret;
62 }
63
64 #define F feature_bit
65
66 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
67 #define SF(name) \
68 ({ \
69 BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \
70 (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \
71 })
72
73 /*
74 * Magic value used by KVM when querying userspace-provided CPUID entries and
75 * doesn't care about the CPIUD index because the index of the function in
76 * question is not significant. Note, this magic value must have at least one
77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78 * to avoid false positives when processing guest CPUID input.
79 */
80 #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
cpuid_entry2_find(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)82 static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83 struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84 {
85 struct kvm_cpuid_entry2 *e;
86 int i;
87
88 /*
89 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90 * with IRQs disabled is disallowed. The CPUID model can legitimately
91 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92 * typically disabled in KVM only when KVM is in a performance critical
93 * path, e.g. the core VM-Enter/VM-Exit run loop. Nothing will break
94 * if this rule is violated, this assertion is purely to flag potential
95 * performance issues. If this fires, consider moving the lookup out
96 * of the hotpath, e.g. by caching information during CPUID updates.
97 */
98 lockdep_assert_irqs_enabled();
99
100 for (i = 0; i < nent; i++) {
101 e = &entries[i];
102
103 if (e->function != function)
104 continue;
105
106 /*
107 * If the index isn't significant, use the first entry with a
108 * matching function. It's userspace's responsibilty to not
109 * provide "duplicate" entries in all cases.
110 */
111 if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112 return e;
113
114
115 /*
116 * Similarly, use the first matching entry if KVM is doing a
117 * lookup (as opposed to emulating CPUID) for a function that's
118 * architecturally defined as not having a significant index.
119 */
120 if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121 /*
122 * Direct lookups from KVM should not diverge from what
123 * KVM defines internally (the architectural behavior).
124 */
125 WARN_ON_ONCE(cpuid_function_is_indexed(function));
126 return e;
127 }
128 }
129
130 return NULL;
131 }
132
kvm_check_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)133 static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134 struct kvm_cpuid_entry2 *entries,
135 int nent)
136 {
137 struct kvm_cpuid_entry2 *best;
138 u64 xfeatures;
139
140 /*
141 * The existing code assumes virtual address is 48-bit or 57-bit in the
142 * canonical address checks; exit if it is ever changed.
143 */
144 best = cpuid_entry2_find(entries, nent, 0x80000008,
145 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146 if (best) {
147 int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 return -EINVAL;
151 }
152
153 /*
154 * Exposing dynamic xfeatures to the guest requires additional
155 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 */
157 best = cpuid_entry2_find(entries, nent, 0xd, 0);
158 if (!best)
159 return 0;
160
161 xfeatures = best->eax | ((u64)best->edx << 32);
162 xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 if (!xfeatures)
164 return 0;
165
166 return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168
169 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)170 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171 int nent)
172 {
173 struct kvm_cpuid_entry2 *orig;
174 int i;
175
176 if (nent != vcpu->arch.cpuid_nent)
177 return -EINVAL;
178
179 for (i = 0; i < nent; i++) {
180 orig = &vcpu->arch.cpuid_entries[i];
181 if (e2[i].function != orig->function ||
182 e2[i].index != orig->index ||
183 e2[i].flags != orig->flags ||
184 e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185 e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186 return -EINVAL;
187 }
188
189 return 0;
190 }
191
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)192 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193 const char *sig)
194 {
195 struct kvm_hypervisor_cpuid cpuid = {};
196 struct kvm_cpuid_entry2 *entry;
197 u32 base;
198
199 for_each_possible_hypervisor_cpuid_base(base) {
200 entry = kvm_find_cpuid_entry(vcpu, base);
201
202 if (entry) {
203 u32 signature[3];
204
205 signature[0] = entry->ebx;
206 signature[1] = entry->ecx;
207 signature[2] = entry->edx;
208
209 if (!memcmp(signature, sig, sizeof(signature))) {
210 cpuid.base = base;
211 cpuid.limit = entry->eax;
212 break;
213 }
214 }
215 }
216
217 return cpuid;
218 }
219
__kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)220 static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221 struct kvm_cpuid_entry2 *entries, int nent)
222 {
223 u32 base = vcpu->arch.kvm_cpuid.base;
224
225 if (!base)
226 return NULL;
227
228 return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230 }
231
kvm_find_kvm_cpuid_features(struct kvm_vcpu * vcpu)232 static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233 {
234 return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235 vcpu->arch.cpuid_nent);
236 }
237
kvm_update_pv_runtime(struct kvm_vcpu * vcpu)238 void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239 {
240 struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241
242 /*
243 * save the feature bitmap to avoid cpuid lookup for every PV
244 * operation
245 */
246 if (best)
247 vcpu->arch.pv_cpuid.features = best->eax;
248 }
249
250 /*
251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253 */
cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 * entries,int nent)254 static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255 {
256 struct kvm_cpuid_entry2 *best;
257
258 best = cpuid_entry2_find(entries, nent, 0xd, 0);
259 if (!best)
260 return 0;
261
262 return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263 }
264
__kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entries,int nent)265 static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266 int nent)
267 {
268 struct kvm_cpuid_entry2 *best;
269
270 best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271 if (best) {
272 /* Update OSXSAVE bit */
273 if (boot_cpu_has(X86_FEATURE_XSAVE))
274 cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275 kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276
277 cpuid_entry_change(best, X86_FEATURE_APIC,
278 vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279 }
280
281 best = cpuid_entry2_find(entries, nent, 7, 0);
282 if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283 cpuid_entry_change(best, X86_FEATURE_OSPKE,
284 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285
286 best = cpuid_entry2_find(entries, nent, 0xD, 0);
287 if (best)
288 best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289
290 best = cpuid_entry2_find(entries, nent, 0xD, 1);
291 if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292 cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294
295 best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299
300 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301 best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302 if (best)
303 cpuid_entry_change(best, X86_FEATURE_MWAIT,
304 vcpu->arch.ia32_misc_enable_msr &
305 MSR_IA32_MISC_ENABLE_MWAIT);
306 }
307 }
308
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)309 void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310 {
311 __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312 }
313 EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314
kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 * entries,int nent)315 static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316 {
317 struct kvm_cpuid_entry2 *entry;
318
319 entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
320 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
321 return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
322 }
323
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)324 static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
325 {
326 struct kvm_lapic *apic = vcpu->arch.apic;
327 struct kvm_cpuid_entry2 *best;
328 bool allow_gbpages;
329
330 BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
331 bitmap_zero(vcpu->arch.governed_features.enabled,
332 KVM_MAX_NR_GOVERNED_FEATURES);
333
334 /*
335 * If TDP is enabled, let the guest use GBPAGES if they're supported in
336 * hardware. The hardware page walker doesn't let KVM disable GBPAGES,
337 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
338 * walk for performance and complexity reasons. Not to mention KVM
339 * _can't_ solve the problem because GVA->GPA walks aren't visible to
340 * KVM once a TDP translation is installed. Mimic hardware behavior so
341 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
342 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
343 * and can install smaller shadow pages if the host lacks 1GiB support.
344 */
345 allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
346 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
347 if (allow_gbpages)
348 kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
349
350 best = kvm_find_cpuid_entry(vcpu, 1);
351 if (best && apic) {
352 if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
353 apic->lapic_timer.timer_mode_mask = 3 << 17;
354 else
355 apic->lapic_timer.timer_mode_mask = 1 << 17;
356
357 kvm_apic_set_version(vcpu);
358 }
359
360 vcpu->arch.guest_supported_xcr0 =
361 cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
362
363 kvm_update_pv_runtime(vcpu);
364
365 vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
366 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
367 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
368
369 kvm_pmu_refresh(vcpu);
370 vcpu->arch.cr4_guest_rsvd_bits =
371 __cr4_reserved_bits(guest_cpuid_has, vcpu);
372
373 kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
374 vcpu->arch.cpuid_nent));
375
376 /* Invoke the vendor callback only after the above state is updated. */
377 static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
378
379 /*
380 * Except for the MMU, which needs to do its thing any vendor specific
381 * adjustments to the reserved GPA bits.
382 */
383 kvm_mmu_after_set_cpuid(vcpu);
384 }
385
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)386 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
387 {
388 struct kvm_cpuid_entry2 *best;
389
390 best = kvm_find_cpuid_entry(vcpu, 0x80000000);
391 if (!best || best->eax < 0x80000008)
392 goto not_found;
393 best = kvm_find_cpuid_entry(vcpu, 0x80000008);
394 if (best)
395 return best->eax & 0xff;
396 not_found:
397 return 36;
398 }
399
400 /*
401 * This "raw" version returns the reserved GPA bits without any adjustments for
402 * encryption technologies that usurp bits. The raw mask should be used if and
403 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
404 */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)405 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
406 {
407 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
408 }
409
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)410 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
411 int nent)
412 {
413 int r;
414
415 __kvm_update_cpuid_runtime(vcpu, e2, nent);
416
417 /*
418 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
419 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
420 * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page
421 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
422 * the core vCPU model on the fly. It would've been better to forbid any
423 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
424 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
425 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
426 * whether the supplied CPUID data is equal to what's already set.
427 */
428 if (kvm_vcpu_has_run(vcpu)) {
429 r = kvm_cpuid_check_equal(vcpu, e2, nent);
430 if (r)
431 return r;
432
433 kvfree(e2);
434 return 0;
435 }
436
437 if (kvm_cpuid_has_hyperv(e2, nent)) {
438 r = kvm_hv_vcpu_init(vcpu);
439 if (r)
440 return r;
441 }
442
443 r = kvm_check_cpuid(vcpu, e2, nent);
444 if (r)
445 return r;
446
447 kvfree(vcpu->arch.cpuid_entries);
448 vcpu->arch.cpuid_entries = e2;
449 vcpu->arch.cpuid_nent = nent;
450
451 vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
452 vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
453 kvm_vcpu_after_set_cpuid(vcpu);
454
455 return 0;
456 }
457
458 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)459 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
460 struct kvm_cpuid *cpuid,
461 struct kvm_cpuid_entry __user *entries)
462 {
463 int r, i;
464 struct kvm_cpuid_entry *e = NULL;
465 struct kvm_cpuid_entry2 *e2 = NULL;
466
467 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
468 return -E2BIG;
469
470 if (cpuid->nent) {
471 e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
472 if (IS_ERR(e))
473 return PTR_ERR(e);
474
475 e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
476 if (!e2) {
477 r = -ENOMEM;
478 goto out_free_cpuid;
479 }
480 }
481 for (i = 0; i < cpuid->nent; i++) {
482 e2[i].function = e[i].function;
483 e2[i].eax = e[i].eax;
484 e2[i].ebx = e[i].ebx;
485 e2[i].ecx = e[i].ecx;
486 e2[i].edx = e[i].edx;
487 e2[i].index = 0;
488 e2[i].flags = 0;
489 e2[i].padding[0] = 0;
490 e2[i].padding[1] = 0;
491 e2[i].padding[2] = 0;
492 }
493
494 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
495 if (r)
496 kvfree(e2);
497
498 out_free_cpuid:
499 kvfree(e);
500
501 return r;
502 }
503
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)504 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
505 struct kvm_cpuid2 *cpuid,
506 struct kvm_cpuid_entry2 __user *entries)
507 {
508 struct kvm_cpuid_entry2 *e2 = NULL;
509 int r;
510
511 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
512 return -E2BIG;
513
514 if (cpuid->nent) {
515 e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
516 if (IS_ERR(e2))
517 return PTR_ERR(e2);
518 }
519
520 r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
521 if (r)
522 kvfree(e2);
523
524 return r;
525 }
526
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)527 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
528 struct kvm_cpuid2 *cpuid,
529 struct kvm_cpuid_entry2 __user *entries)
530 {
531 if (cpuid->nent < vcpu->arch.cpuid_nent)
532 return -E2BIG;
533
534 if (copy_to_user(entries, vcpu->arch.cpuid_entries,
535 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
536 return -EFAULT;
537
538 cpuid->nent = vcpu->arch.cpuid_nent;
539 return 0;
540 }
541
542 /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
__kvm_cpu_cap_mask(unsigned int leaf)543 static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
544 {
545 const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
546 struct kvm_cpuid_entry2 entry;
547
548 reverse_cpuid_check(leaf);
549
550 cpuid_count(cpuid.function, cpuid.index,
551 &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
552
553 kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
554 }
555
556 static __always_inline
kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf,u32 mask)557 void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
558 {
559 /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
560 BUILD_BUG_ON(leaf < NCAPINTS);
561
562 kvm_cpu_caps[leaf] = mask;
563
564 __kvm_cpu_cap_mask(leaf);
565 }
566
kvm_cpu_cap_mask(enum cpuid_leafs leaf,u32 mask)567 static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
568 {
569 /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
570 BUILD_BUG_ON(leaf >= NCAPINTS);
571
572 kvm_cpu_caps[leaf] &= mask;
573
574 __kvm_cpu_cap_mask(leaf);
575 }
576
kvm_set_cpu_caps(void)577 void kvm_set_cpu_caps(void)
578 {
579 #ifdef CONFIG_X86_64
580 unsigned int f_gbpages = F(GBPAGES);
581 unsigned int f_lm = F(LM);
582 unsigned int f_xfd = F(XFD);
583 #else
584 unsigned int f_gbpages = 0;
585 unsigned int f_lm = 0;
586 unsigned int f_xfd = 0;
587 #endif
588 memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
589
590 BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
591 sizeof(boot_cpu_data.x86_capability));
592
593 memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
594 sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
595
596 kvm_cpu_cap_mask(CPUID_1_ECX,
597 /*
598 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
599 * advertised to guests via CPUID!
600 */
601 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
602 0 /* DS-CPL, VMX, SMX, EST */ |
603 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
604 F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
605 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
606 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
607 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
608 F(F16C) | F(RDRAND)
609 );
610 /* KVM emulates x2apic in software irrespective of host support. */
611 kvm_cpu_cap_set(X86_FEATURE_X2APIC);
612
613 kvm_cpu_cap_mask(CPUID_1_EDX,
614 F(FPU) | F(VME) | F(DE) | F(PSE) |
615 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
616 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
617 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
618 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
619 0 /* Reserved, DS, ACPI */ | F(MMX) |
620 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
621 0 /* HTT, TM, Reserved, PBE */
622 );
623
624 kvm_cpu_cap_mask(CPUID_7_0_EBX,
625 F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
626 F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
627 F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
628 F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
629 F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
630 F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
631 F(AVX512VL));
632
633 kvm_cpu_cap_mask(CPUID_7_ECX,
634 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
635 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
636 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
637 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
638 F(SGX_LC) | F(BUS_LOCK_DETECT)
639 );
640 /* Set LA57 based on hardware capability. */
641 if (cpuid_ecx(7) & F(LA57))
642 kvm_cpu_cap_set(X86_FEATURE_LA57);
643
644 /*
645 * PKU not yet implemented for shadow paging and requires OSPKE
646 * to be set on the host. Clear it if that is not the case
647 */
648 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
649 kvm_cpu_cap_clear(X86_FEATURE_PKU);
650
651 kvm_cpu_cap_mask(CPUID_7_EDX,
652 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
653 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
654 F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
655 F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
656 F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
657 );
658
659 /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
660 kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
661 kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
662
663 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
664 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
665 if (boot_cpu_has(X86_FEATURE_STIBP))
666 kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
667 if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
668 kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
669
670 kvm_cpu_cap_mask(CPUID_7_1_EAX,
671 F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
672 F(FZRM) | F(FSRS) | F(FSRC) |
673 F(AMX_FP16) | F(AVX_IFMA)
674 );
675
676 kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
677 F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
678 F(AMX_COMPLEX)
679 );
680
681 kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
682 F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
683 F(BHI_CTRL) | F(MCDT_NO)
684 );
685
686 kvm_cpu_cap_mask(CPUID_D_1_EAX,
687 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
688 );
689
690 kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
691 SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
692 );
693
694 kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
695 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
696 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
697 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
698 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
699 F(TOPOEXT) | 0 /* PERFCTR_CORE */
700 );
701
702 kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
703 F(FPU) | F(VME) | F(DE) | F(PSE) |
704 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
705 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
706 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
707 F(PAT) | F(PSE36) | 0 /* Reserved */ |
708 F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
709 F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
710 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
711 );
712
713 if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
714 kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
715
716 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
717 SF(CONSTANT_TSC)
718 );
719
720 kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
721 F(CLZERO) | F(XSAVEERPTR) |
722 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
723 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
724 F(AMD_PSFD)
725 );
726
727 /*
728 * AMD has separate bits for each SPEC_CTRL bit.
729 * arch/x86/kernel/cpu/bugs.c is kind enough to
730 * record that in cpufeatures so use them.
731 */
732 if (boot_cpu_has(X86_FEATURE_IBPB))
733 kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
734 if (boot_cpu_has(X86_FEATURE_IBRS))
735 kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
736 if (boot_cpu_has(X86_FEATURE_STIBP))
737 kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
738 if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
739 kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
740 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
741 kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
742 /*
743 * The preference is to use SPEC CTRL MSR instead of the
744 * VIRT_SPEC MSR.
745 */
746 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
747 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
748 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
749
750 /*
751 * Hide all SVM features by default, SVM will set the cap bits for
752 * features it emulates and/or exposes for L1.
753 */
754 kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
755
756 kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
757 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
758 F(SME_COHERENT));
759
760 kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
761 F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
762 F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
763 );
764
765 if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
766 kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
767
768 kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
769 F(PERFMON_V2)
770 );
771
772 /*
773 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
774 * KVM's supported CPUID if the feature is reported as supported by the
775 * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long
776 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
777 * CPUs that support SSE2. On CPUs that don't support AMD's leaf,
778 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
779 * the mask with the raw host CPUID, and reporting support in AMD's
780 * leaf can make it easier for userspace to detect the feature.
781 */
782 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
783 kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
784 if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
785 kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
786 kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
787
788 kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
789 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
790 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
791 F(PMM) | F(PMM_EN)
792 );
793
794 /*
795 * Hide RDTSCP and RDPID if either feature is reported as supported but
796 * probing MSR_TSC_AUX failed. This is purely a sanity check and
797 * should never happen, but the guest will likely crash if RDTSCP or
798 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
799 * the past. For example, the sanity check may fire if this instance of
800 * KVM is running as L1 on top of an older, broken KVM.
801 */
802 if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
803 kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
804 !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
805 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
806 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
807 }
808 }
809 EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
810
811 struct kvm_cpuid_array {
812 struct kvm_cpuid_entry2 *entries;
813 int maxnent;
814 int nent;
815 };
816
get_next_cpuid(struct kvm_cpuid_array * array)817 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
818 {
819 if (array->nent >= array->maxnent)
820 return NULL;
821
822 return &array->entries[array->nent++];
823 }
824
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)825 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
826 u32 function, u32 index)
827 {
828 struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
829
830 if (!entry)
831 return NULL;
832
833 memset(entry, 0, sizeof(*entry));
834 entry->function = function;
835 entry->index = index;
836 switch (function & 0xC0000000) {
837 case 0x40000000:
838 /* Hypervisor leaves are always synthesized by __do_cpuid_func. */
839 return entry;
840
841 case 0x80000000:
842 /*
843 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
844 * would result in out-of-bounds calls to do_host_cpuid.
845 */
846 {
847 static int max_cpuid_80000000;
848 if (!READ_ONCE(max_cpuid_80000000))
849 WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
850 if (function > READ_ONCE(max_cpuid_80000000))
851 return entry;
852 }
853 break;
854
855 default:
856 break;
857 }
858
859 cpuid_count(entry->function, entry->index,
860 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
861
862 if (cpuid_function_is_indexed(function))
863 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
864
865 return entry;
866 }
867
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)868 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
869 {
870 struct kvm_cpuid_entry2 *entry;
871
872 if (array->nent >= array->maxnent)
873 return -E2BIG;
874
875 entry = &array->entries[array->nent];
876 entry->function = func;
877 entry->index = 0;
878 entry->flags = 0;
879
880 switch (func) {
881 case 0:
882 entry->eax = 7;
883 ++array->nent;
884 break;
885 case 1:
886 entry->ecx = F(MOVBE);
887 ++array->nent;
888 break;
889 case 7:
890 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
891 entry->eax = 0;
892 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
893 entry->ecx = F(RDPID);
894 ++array->nent;
895 break;
896 default:
897 break;
898 }
899
900 return 0;
901 }
902
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)903 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
904 {
905 struct kvm_cpuid_entry2 *entry;
906 int r, i, max_idx;
907
908 /* all calls to cpuid_count() should be made on the same cpu */
909 get_cpu();
910
911 r = -E2BIG;
912
913 entry = do_host_cpuid(array, function, 0);
914 if (!entry)
915 goto out;
916
917 switch (function) {
918 case 0:
919 /* Limited to the highest leaf implemented in KVM. */
920 entry->eax = min(entry->eax, 0x1fU);
921 break;
922 case 1:
923 cpuid_entry_override(entry, CPUID_1_EDX);
924 cpuid_entry_override(entry, CPUID_1_ECX);
925 break;
926 case 2:
927 /*
928 * On ancient CPUs, function 2 entries are STATEFUL. That is,
929 * CPUID(function=2, index=0) may return different results each
930 * time, with the least-significant byte in EAX enumerating the
931 * number of times software should do CPUID(2, 0).
932 *
933 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
934 * idiotic. Intel's SDM states that EAX & 0xff "will always
935 * return 01H. Software should ignore this value and not
936 * interpret it as an informational descriptor", while AMD's
937 * APM states that CPUID(2) is reserved.
938 *
939 * WARN if a frankenstein CPU that supports virtualization and
940 * a stateful CPUID.0x2 is encountered.
941 */
942 WARN_ON_ONCE((entry->eax & 0xff) > 1);
943 break;
944 /* functions 4 and 0x8000001d have additional index. */
945 case 4:
946 case 0x8000001d:
947 /*
948 * Read entries until the cache type in the previous entry is
949 * zero, i.e. indicates an invalid entry.
950 */
951 for (i = 1; entry->eax & 0x1f; ++i) {
952 entry = do_host_cpuid(array, function, i);
953 if (!entry)
954 goto out;
955 }
956 break;
957 case 6: /* Thermal management */
958 entry->eax = 0x4; /* allow ARAT */
959 entry->ebx = 0;
960 entry->ecx = 0;
961 entry->edx = 0;
962 break;
963 /* function 7 has additional index. */
964 case 7:
965 max_idx = entry->eax = min(entry->eax, 2u);
966 cpuid_entry_override(entry, CPUID_7_0_EBX);
967 cpuid_entry_override(entry, CPUID_7_ECX);
968 cpuid_entry_override(entry, CPUID_7_EDX);
969
970 /* KVM only supports up to 0x7.2, capped above via min(). */
971 if (max_idx >= 1) {
972 entry = do_host_cpuid(array, function, 1);
973 if (!entry)
974 goto out;
975
976 cpuid_entry_override(entry, CPUID_7_1_EAX);
977 cpuid_entry_override(entry, CPUID_7_1_EDX);
978 entry->ebx = 0;
979 entry->ecx = 0;
980 }
981 if (max_idx >= 2) {
982 entry = do_host_cpuid(array, function, 2);
983 if (!entry)
984 goto out;
985
986 cpuid_entry_override(entry, CPUID_7_2_EDX);
987 entry->ecx = 0;
988 entry->ebx = 0;
989 entry->eax = 0;
990 }
991 break;
992 case 0xa: { /* Architectural Performance Monitoring */
993 union cpuid10_eax eax;
994 union cpuid10_edx edx;
995
996 if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
997 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
998 break;
999 }
1000
1001 eax.split.version_id = kvm_pmu_cap.version;
1002 eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1003 eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1004 eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1005 edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1006 edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1007
1008 if (kvm_pmu_cap.version)
1009 edx.split.anythread_deprecated = 1;
1010 edx.split.reserved1 = 0;
1011 edx.split.reserved2 = 0;
1012
1013 entry->eax = eax.full;
1014 entry->ebx = kvm_pmu_cap.events_mask;
1015 entry->ecx = 0;
1016 entry->edx = edx.full;
1017 break;
1018 }
1019 case 0x1f:
1020 case 0xb:
1021 /*
1022 * No topology; a valid topology is indicated by the presence
1023 * of subleaf 1.
1024 */
1025 entry->eax = entry->ebx = entry->ecx = 0;
1026 break;
1027 case 0xd: {
1028 u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1029 u64 permitted_xss = kvm_caps.supported_xss;
1030
1031 entry->eax &= permitted_xcr0;
1032 entry->ebx = xstate_required_size(permitted_xcr0, false);
1033 entry->ecx = entry->ebx;
1034 entry->edx &= permitted_xcr0 >> 32;
1035 if (!permitted_xcr0)
1036 break;
1037
1038 entry = do_host_cpuid(array, function, 1);
1039 if (!entry)
1040 goto out;
1041
1042 cpuid_entry_override(entry, CPUID_D_1_EAX);
1043 if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1044 entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1045 true);
1046 else {
1047 WARN_ON_ONCE(permitted_xss != 0);
1048 entry->ebx = 0;
1049 }
1050 entry->ecx &= permitted_xss;
1051 entry->edx &= permitted_xss >> 32;
1052
1053 for (i = 2; i < 64; ++i) {
1054 bool s_state;
1055 if (permitted_xcr0 & BIT_ULL(i))
1056 s_state = false;
1057 else if (permitted_xss & BIT_ULL(i))
1058 s_state = true;
1059 else
1060 continue;
1061
1062 entry = do_host_cpuid(array, function, i);
1063 if (!entry)
1064 goto out;
1065
1066 /*
1067 * The supported check above should have filtered out
1068 * invalid sub-leafs. Only valid sub-leafs should
1069 * reach this point, and they should have a non-zero
1070 * save state size. Furthermore, check whether the
1071 * processor agrees with permitted_xcr0/permitted_xss
1072 * on whether this is an XCR0- or IA32_XSS-managed area.
1073 */
1074 if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1075 --array->nent;
1076 continue;
1077 }
1078
1079 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1080 entry->ecx &= ~BIT_ULL(2);
1081 entry->edx = 0;
1082 }
1083 break;
1084 }
1085 case 0x12:
1086 /* Intel SGX */
1087 if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1088 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1089 break;
1090 }
1091
1092 /*
1093 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1094 * and max enclave sizes. The SGX sub-features and MISCSELECT
1095 * are restricted by kernel and KVM capabilities (like most
1096 * feature flags), while enclave size is unrestricted.
1097 */
1098 cpuid_entry_override(entry, CPUID_12_EAX);
1099 entry->ebx &= SGX_MISC_EXINFO;
1100
1101 entry = do_host_cpuid(array, function, 1);
1102 if (!entry)
1103 goto out;
1104
1105 /*
1106 * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la
1107 * feature flags. Advertise all supported flags, including
1108 * privileged attributes that require explicit opt-in from
1109 * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is
1110 * expected to derive it from supported XCR0.
1111 */
1112 entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1113 entry->ebx &= 0;
1114 break;
1115 /* Intel PT */
1116 case 0x14:
1117 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1118 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1119 break;
1120 }
1121
1122 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1123 if (!do_host_cpuid(array, function, i))
1124 goto out;
1125 }
1126 break;
1127 /* Intel AMX TILE */
1128 case 0x1d:
1129 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1130 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1131 break;
1132 }
1133
1134 for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1135 if (!do_host_cpuid(array, function, i))
1136 goto out;
1137 }
1138 break;
1139 case 0x1e: /* TMUL information */
1140 if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1141 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1142 break;
1143 }
1144 break;
1145 case KVM_CPUID_SIGNATURE: {
1146 const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1147 entry->eax = KVM_CPUID_FEATURES;
1148 entry->ebx = sigptr[0];
1149 entry->ecx = sigptr[1];
1150 entry->edx = sigptr[2];
1151 break;
1152 }
1153 case KVM_CPUID_FEATURES:
1154 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1155 (1 << KVM_FEATURE_NOP_IO_DELAY) |
1156 (1 << KVM_FEATURE_CLOCKSOURCE2) |
1157 (1 << KVM_FEATURE_ASYNC_PF) |
1158 (1 << KVM_FEATURE_PV_EOI) |
1159 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1160 (1 << KVM_FEATURE_PV_UNHALT) |
1161 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1162 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1163 (1 << KVM_FEATURE_PV_SEND_IPI) |
1164 (1 << KVM_FEATURE_POLL_CONTROL) |
1165 (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1166 (1 << KVM_FEATURE_ASYNC_PF_INT);
1167
1168 if (sched_info_on())
1169 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1170
1171 entry->ebx = 0;
1172 entry->ecx = 0;
1173 entry->edx = 0;
1174 break;
1175 case 0x80000000:
1176 entry->eax = min(entry->eax, 0x80000022);
1177 /*
1178 * Serializing LFENCE is reported in a multitude of ways, and
1179 * NullSegClearsBase is not reported in CPUID on Zen2; help
1180 * userspace by providing the CPUID leaf ourselves.
1181 *
1182 * However, only do it if the host has CPUID leaf 0x8000001d.
1183 * QEMU thinks that it can query the host blindly for that
1184 * CPUID leaf if KVM reports that it supports 0x8000001d or
1185 * above. The processor merrily returns values from the
1186 * highest Intel leaf which QEMU tries to use as the guest's
1187 * 0x8000001d. Even worse, this can result in an infinite
1188 * loop if said highest leaf has no subleaves indexed by ECX.
1189 */
1190 if (entry->eax >= 0x8000001d &&
1191 (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1192 || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1193 entry->eax = max(entry->eax, 0x80000021);
1194 break;
1195 case 0x80000001:
1196 entry->ebx &= ~GENMASK(27, 16);
1197 cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1198 cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1199 break;
1200 case 0x80000005:
1201 /* Pass host L1 cache and TLB info. */
1202 break;
1203 case 0x80000006:
1204 /* Drop reserved bits, pass host L2 cache and TLB info. */
1205 entry->edx &= ~GENMASK(17, 16);
1206 break;
1207 case 0x80000007: /* Advanced power management */
1208 cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1209
1210 /* mask against host */
1211 entry->edx &= boot_cpu_data.x86_power;
1212 entry->eax = entry->ebx = entry->ecx = 0;
1213 break;
1214 case 0x80000008: {
1215 unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1216 unsigned int phys_as;
1217
1218 /*
1219 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1220 * the guest operates in the same PA space as the host, i.e.
1221 * reductions in MAXPHYADDR for memory encryption affect shadow
1222 * paging, too.
1223 *
1224 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1225 * reductions to the HPAs do not affect GPAs.
1226 */
1227 if (!tdp_enabled) {
1228 phys_as = boot_cpu_data.x86_phys_bits;
1229 } else {
1230 phys_as = entry->eax & 0xff;
1231 }
1232
1233 entry->eax = phys_as | (virt_as << 8);
1234 entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1235 entry->edx = 0;
1236 cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1237 break;
1238 }
1239 case 0x8000000A:
1240 if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1241 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1242 break;
1243 }
1244 entry->eax = 1; /* SVM revision 1 */
1245 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1246 ASID emulation to nested SVM */
1247 entry->ecx = 0; /* Reserved */
1248 cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1249 break;
1250 case 0x80000019:
1251 entry->ecx = entry->edx = 0;
1252 break;
1253 case 0x8000001a:
1254 entry->eax &= GENMASK(2, 0);
1255 entry->ebx = entry->ecx = entry->edx = 0;
1256 break;
1257 case 0x8000001e:
1258 /* Do not return host topology information. */
1259 entry->eax = entry->ebx = entry->ecx = 0;
1260 entry->edx = 0; /* reserved */
1261 break;
1262 case 0x8000001F:
1263 if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1264 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1265 } else {
1266 cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1267 /* Clear NumVMPL since KVM does not support VMPL. */
1268 entry->ebx &= ~GENMASK(31, 12);
1269 /*
1270 * Enumerate '0' for "PA bits reduction", the adjusted
1271 * MAXPHYADDR is enumerated directly (see 0x80000008).
1272 */
1273 entry->ebx &= ~GENMASK(11, 6);
1274 }
1275 break;
1276 case 0x80000020:
1277 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1278 break;
1279 case 0x80000021:
1280 entry->ebx = entry->ecx = entry->edx = 0;
1281 cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1282 break;
1283 /* AMD Extended Performance Monitoring and Debug */
1284 case 0x80000022: {
1285 union cpuid_0x80000022_ebx ebx;
1286
1287 entry->ecx = entry->edx = 0;
1288 if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1289 entry->eax = entry->ebx;
1290 break;
1291 }
1292
1293 cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1294
1295 if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1296 ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1297 else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1298 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1299 else
1300 ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1301
1302 entry->ebx = ebx.full;
1303 break;
1304 }
1305 /*Add support for Centaur's CPUID instruction*/
1306 case 0xC0000000:
1307 /*Just support up to 0xC0000004 now*/
1308 entry->eax = min(entry->eax, 0xC0000004);
1309 break;
1310 case 0xC0000001:
1311 cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1312 break;
1313 case 3: /* Processor serial number */
1314 case 5: /* MONITOR/MWAIT */
1315 case 0xC0000002:
1316 case 0xC0000003:
1317 case 0xC0000004:
1318 default:
1319 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1320 break;
1321 }
1322
1323 r = 0;
1324
1325 out:
1326 put_cpu();
1327
1328 return r;
1329 }
1330
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1331 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1332 unsigned int type)
1333 {
1334 if (type == KVM_GET_EMULATED_CPUID)
1335 return __do_cpuid_func_emulated(array, func);
1336
1337 return __do_cpuid_func(array, func);
1338 }
1339
1340 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1341
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1342 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1343 unsigned int type)
1344 {
1345 u32 limit;
1346 int r;
1347
1348 if (func == CENTAUR_CPUID_SIGNATURE &&
1349 boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1350 return 0;
1351
1352 r = do_cpuid_func(array, func, type);
1353 if (r)
1354 return r;
1355
1356 limit = array->entries[array->nent - 1].eax;
1357 for (func = func + 1; func <= limit; ++func) {
1358 r = do_cpuid_func(array, func, type);
1359 if (r)
1360 break;
1361 }
1362
1363 return r;
1364 }
1365
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1366 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1367 __u32 num_entries, unsigned int ioctl_type)
1368 {
1369 int i;
1370 __u32 pad[3];
1371
1372 if (ioctl_type != KVM_GET_EMULATED_CPUID)
1373 return false;
1374
1375 /*
1376 * We want to make sure that ->padding is being passed clean from
1377 * userspace in case we want to use it for something in the future.
1378 *
1379 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1380 * have to give ourselves satisfied only with the emulated side. /me
1381 * sheds a tear.
1382 */
1383 for (i = 0; i < num_entries; i++) {
1384 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1385 return true;
1386
1387 if (pad[0] || pad[1] || pad[2])
1388 return true;
1389 }
1390 return false;
1391 }
1392
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1393 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1394 struct kvm_cpuid_entry2 __user *entries,
1395 unsigned int type)
1396 {
1397 static const u32 funcs[] = {
1398 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1399 };
1400
1401 struct kvm_cpuid_array array = {
1402 .nent = 0,
1403 };
1404 int r, i;
1405
1406 if (cpuid->nent < 1)
1407 return -E2BIG;
1408 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1409 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1410
1411 if (sanity_check_entries(entries, cpuid->nent, type))
1412 return -EINVAL;
1413
1414 array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1415 if (!array.entries)
1416 return -ENOMEM;
1417
1418 array.maxnent = cpuid->nent;
1419
1420 for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1421 r = get_cpuid_func(&array, funcs[i], type);
1422 if (r)
1423 goto out_free;
1424 }
1425 cpuid->nent = array.nent;
1426
1427 if (copy_to_user(entries, array.entries,
1428 array.nent * sizeof(struct kvm_cpuid_entry2)))
1429 r = -EFAULT;
1430
1431 out_free:
1432 kvfree(array.entries);
1433 return r;
1434 }
1435
kvm_find_cpuid_entry_index(struct kvm_vcpu * vcpu,u32 function,u32 index)1436 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1437 u32 function, u32 index)
1438 {
1439 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1440 function, index);
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1443
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function)1444 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1445 u32 function)
1446 {
1447 return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1448 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1451
1452 /*
1453 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1454 * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics
1455 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1456 * range. Centaur/VIA follows Intel semantics.
1457 *
1458 * A leaf is considered out-of-range if its function is higher than the maximum
1459 * supported leaf of its associated class or if its associated class does not
1460 * exist.
1461 *
1462 * There are three primary classes to be considered, with their respective
1463 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary
1464 * class exists if a guest CPUID entry for its <base> leaf exists. For a given
1465 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1466 *
1467 * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1468 * - Hypervisor: 0x40000000 - 0x4fffffff
1469 * - Extended: 0x80000000 - 0xbfffffff
1470 * - Centaur: 0xc0000000 - 0xcfffffff
1471 *
1472 * The Hypervisor class is further subdivided into sub-classes that each act as
1473 * their own independent class associated with a 0x100 byte range. E.g. if Qemu
1474 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1475 * CPUID sub-classes are:
1476 *
1477 * - HyperV: 0x40000000 - 0x400000ff
1478 * - KVM: 0x40000100 - 0x400001ff
1479 */
1480 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1481 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1482 {
1483 struct kvm_cpuid_entry2 *basic, *class;
1484 u32 function = *fn_ptr;
1485
1486 basic = kvm_find_cpuid_entry(vcpu, 0);
1487 if (!basic)
1488 return NULL;
1489
1490 if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1491 is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1492 return NULL;
1493
1494 if (function >= 0x40000000 && function <= 0x4fffffff)
1495 class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1496 else if (function >= 0xc0000000)
1497 class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1498 else
1499 class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1500
1501 if (class && function <= class->eax)
1502 return NULL;
1503
1504 /*
1505 * Leaf specific adjustments are also applied when redirecting to the
1506 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1507 * entry for CPUID.0xb.index (see below), then the output value for EDX
1508 * needs to be pulled from CPUID.0xb.1.
1509 */
1510 *fn_ptr = basic->eax;
1511
1512 /*
1513 * The class does not exist or the requested function is out of range;
1514 * the effective CPUID entry is the max basic leaf. Note, the index of
1515 * the original requested leaf is observed!
1516 */
1517 return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1518 }
1519
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)1520 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1521 u32 *ecx, u32 *edx, bool exact_only)
1522 {
1523 u32 orig_function = *eax, function = *eax, index = *ecx;
1524 struct kvm_cpuid_entry2 *entry;
1525 bool exact, used_max_basic = false;
1526
1527 entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1528 exact = !!entry;
1529
1530 if (!entry && !exact_only) {
1531 entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1532 used_max_basic = !!entry;
1533 }
1534
1535 if (entry) {
1536 *eax = entry->eax;
1537 *ebx = entry->ebx;
1538 *ecx = entry->ecx;
1539 *edx = entry->edx;
1540 if (function == 7 && index == 0) {
1541 u64 data;
1542 if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1543 (data & TSX_CTRL_CPUID_CLEAR))
1544 *ebx &= ~(F(RTM) | F(HLE));
1545 } else if (function == 0x80000007) {
1546 if (kvm_hv_invtsc_suppressed(vcpu))
1547 *edx &= ~SF(CONSTANT_TSC);
1548 }
1549 } else {
1550 *eax = *ebx = *ecx = *edx = 0;
1551 /*
1552 * When leaf 0BH or 1FH is defined, CL is pass-through
1553 * and EDX is always the x2APIC ID, even for undefined
1554 * subleaves. Index 1 will exist iff the leaf is
1555 * implemented, so we pass through CL iff leaf 1
1556 * exists. EDX can be copied from any existing index.
1557 */
1558 if (function == 0xb || function == 0x1f) {
1559 entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1560 if (entry) {
1561 *ecx = index & 0xff;
1562 *edx = entry->edx;
1563 }
1564 }
1565 }
1566 trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1567 used_max_basic);
1568 return exact;
1569 }
1570 EXPORT_SYMBOL_GPL(kvm_cpuid);
1571
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)1572 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1573 {
1574 u32 eax, ebx, ecx, edx;
1575
1576 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1577 return 1;
1578
1579 eax = kvm_rax_read(vcpu);
1580 ecx = kvm_rcx_read(vcpu);
1581 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1582 kvm_rax_write(vcpu, eax);
1583 kvm_rbx_write(vcpu, ebx);
1584 kvm_rcx_write(vcpu, ecx);
1585 kvm_rdx_write(vcpu, edx);
1586 return kvm_skip_emulated_instruction(vcpu);
1587 }
1588 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1589