1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which are used on
7 * NUMA machines with contiguous memory.
8 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
9 * Populate cpu entries in sysfs for non-numa systems as well
10 * Intel Corporation - Ashok Raj
11 * 02/27/2006 Zhang, Yanmin
12 * Populate cpu cache entries in sysfs for cpu cache info
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 static struct ia64_cpu *sysfs_cpus;
30
arch_fix_phys_package_id(int num,u32 slot)31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41 #ifdef CONFIG_HOTPLUG_CPU
arch_register_cpu(int num)42 int __ref arch_register_cpu(int num)
43 {
44 /*
45 * If CPEI can be re-targeted or if this is not
46 * CPEI target, then it is hotpluggable
47 */
48 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 sysfs_cpus[num].cpu.hotpluggable = 1;
50 map_cpu_to_node(num, node_cpuid[num].nid);
51 return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53 EXPORT_SYMBOL(arch_register_cpu);
54
arch_unregister_cpu(int num)55 void __ref arch_unregister_cpu(int num)
56 {
57 unregister_cpu(&sysfs_cpus[num].cpu);
58 unmap_cpu_from_node(num, cpu_to_node(num));
59 }
60 EXPORT_SYMBOL(arch_unregister_cpu);
61 #else
arch_register_cpu(int num)62 int __init arch_register_cpu(int num)
63 {
64 return register_cpu(&sysfs_cpus[num].cpu, num);
65 }
66 #endif /*CONFIG_HOTPLUG_CPU*/
67
68
topology_init(void)69 static int __init topology_init(void)
70 {
71 int i, err = 0;
72
73 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
74 if (!sysfs_cpus)
75 panic("kzalloc in topology_init failed - NR_CPUS too big?");
76
77 for_each_present_cpu(i) {
78 if((err = arch_register_cpu(i)))
79 goto out;
80 }
81 out:
82 return err;
83 }
84
85 subsys_initcall(topology_init);
86
87
88 /*
89 * Export cpu cache information through sysfs
90 */
91
92 /*
93 * A bunch of string array to get pretty printing
94 */
95 static const char *cache_types[] = {
96 "", /* not used */
97 "Instruction",
98 "Data",
99 "Unified" /* unified */
100 };
101
102 static const char *cache_mattrib[]={
103 "WriteThrough",
104 "WriteBack",
105 "", /* reserved */
106 "" /* reserved */
107 };
108
109 struct cache_info {
110 pal_cache_config_info_t cci;
111 cpumask_t shared_cpu_map;
112 int level;
113 int type;
114 struct kobject kobj;
115 };
116
117 struct cpu_cache_info {
118 struct cache_info *cache_leaves;
119 int num_cache_leaves;
120 struct kobject kobj;
121 };
122
123 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
124 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
125
126 #ifdef CONFIG_SMP
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)127 static void cache_shared_cpu_map_setup(unsigned int cpu,
128 struct cache_info * this_leaf)
129 {
130 pal_cache_shared_info_t csi;
131 int num_shared, i = 0;
132 unsigned int j;
133
134 if (cpu_data(cpu)->threads_per_core <= 1 &&
135 cpu_data(cpu)->cores_per_socket <= 1) {
136 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
137 return;
138 }
139
140 if (ia64_pal_cache_shared_info(this_leaf->level,
141 this_leaf->type,
142 0,
143 &csi) != PAL_STATUS_SUCCESS)
144 return;
145
146 num_shared = (int) csi.num_shared;
147 do {
148 for_each_possible_cpu(j)
149 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
150 && cpu_data(j)->core_id == csi.log1_cid
151 && cpu_data(j)->thread_id == csi.log1_tid)
152 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
153
154 i++;
155 } while (i < num_shared &&
156 ia64_pal_cache_shared_info(this_leaf->level,
157 this_leaf->type,
158 i,
159 &csi) == PAL_STATUS_SUCCESS);
160 }
161 #else
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)162 static void cache_shared_cpu_map_setup(unsigned int cpu,
163 struct cache_info * this_leaf)
164 {
165 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
166 return;
167 }
168 #endif
169
show_coherency_line_size(struct cache_info * this_leaf,char * buf)170 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
171 char *buf)
172 {
173 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
174 }
175
show_ways_of_associativity(struct cache_info * this_leaf,char * buf)176 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
177 char *buf)
178 {
179 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
180 }
181
show_attributes(struct cache_info * this_leaf,char * buf)182 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
183 {
184 return sprintf(buf,
185 "%s\n",
186 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
187 }
188
show_size(struct cache_info * this_leaf,char * buf)189 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
190 {
191 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
192 }
193
show_number_of_sets(struct cache_info * this_leaf,char * buf)194 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
195 {
196 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
197 number_of_sets /= this_leaf->cci.pcci_assoc;
198 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
199
200 return sprintf(buf, "%u\n", number_of_sets);
201 }
202
show_shared_cpu_map(struct cache_info * this_leaf,char * buf)203 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
204 {
205 cpumask_t shared_cpu_map;
206
207 cpumask_and(&shared_cpu_map,
208 &this_leaf->shared_cpu_map, cpu_online_mask);
209 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
210 cpumask_pr_args(&shared_cpu_map));
211 }
212
show_type(struct cache_info * this_leaf,char * buf)213 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
214 {
215 int type = this_leaf->type + this_leaf->cci.pcci_unified;
216 return sprintf(buf, "%s\n", cache_types[type]);
217 }
218
show_level(struct cache_info * this_leaf,char * buf)219 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
220 {
221 return sprintf(buf, "%u\n", this_leaf->level);
222 }
223
224 struct cache_attr {
225 struct attribute attr;
226 ssize_t (*show)(struct cache_info *, char *);
227 ssize_t (*store)(struct cache_info *, const char *, size_t count);
228 };
229
230 #ifdef define_one_ro
231 #undef define_one_ro
232 #endif
233 #define define_one_ro(_name) \
234 static struct cache_attr _name = \
235 __ATTR(_name, 0444, show_##_name, NULL)
236
237 define_one_ro(level);
238 define_one_ro(type);
239 define_one_ro(coherency_line_size);
240 define_one_ro(ways_of_associativity);
241 define_one_ro(size);
242 define_one_ro(number_of_sets);
243 define_one_ro(shared_cpu_map);
244 define_one_ro(attributes);
245
246 static struct attribute * cache_default_attrs[] = {
247 &type.attr,
248 &level.attr,
249 &coherency_line_size.attr,
250 &ways_of_associativity.attr,
251 &attributes.attr,
252 &size.attr,
253 &number_of_sets.attr,
254 &shared_cpu_map.attr,
255 NULL
256 };
257 ATTRIBUTE_GROUPS(cache_default);
258
259 #define to_object(k) container_of(k, struct cache_info, kobj)
260 #define to_attr(a) container_of(a, struct cache_attr, attr)
261
ia64_cache_show(struct kobject * kobj,struct attribute * attr,char * buf)262 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
263 {
264 struct cache_attr *fattr = to_attr(attr);
265 struct cache_info *this_leaf = to_object(kobj);
266 ssize_t ret;
267
268 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
269 return ret;
270 }
271
272 static const struct sysfs_ops cache_sysfs_ops = {
273 .show = ia64_cache_show
274 };
275
276 static struct kobj_type cache_ktype = {
277 .sysfs_ops = &cache_sysfs_ops,
278 .default_groups = cache_default_groups,
279 };
280
281 static struct kobj_type cache_ktype_percpu_entry = {
282 .sysfs_ops = &cache_sysfs_ops,
283 };
284
cpu_cache_sysfs_exit(unsigned int cpu)285 static void cpu_cache_sysfs_exit(unsigned int cpu)
286 {
287 kfree(all_cpu_cache_info[cpu].cache_leaves);
288 all_cpu_cache_info[cpu].cache_leaves = NULL;
289 all_cpu_cache_info[cpu].num_cache_leaves = 0;
290 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
291 return;
292 }
293
cpu_cache_sysfs_init(unsigned int cpu)294 static int cpu_cache_sysfs_init(unsigned int cpu)
295 {
296 unsigned long i, levels, unique_caches;
297 pal_cache_config_info_t cci;
298 int j;
299 long status;
300 struct cache_info *this_cache;
301 int num_cache_leaves = 0;
302
303 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
304 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
305 return -1;
306 }
307
308 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
309 GFP_KERNEL);
310 if (this_cache == NULL)
311 return -ENOMEM;
312
313 for (i=0; i < levels; i++) {
314 for (j=2; j >0 ; j--) {
315 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
316 PAL_STATUS_SUCCESS)
317 continue;
318
319 this_cache[num_cache_leaves].cci = cci;
320 this_cache[num_cache_leaves].level = i + 1;
321 this_cache[num_cache_leaves].type = j;
322
323 cache_shared_cpu_map_setup(cpu,
324 &this_cache[num_cache_leaves]);
325 num_cache_leaves ++;
326 }
327 }
328
329 all_cpu_cache_info[cpu].cache_leaves = this_cache;
330 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
331
332 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
333
334 return 0;
335 }
336
337 /* Add cache interface for CPU device */
cache_add_dev(unsigned int cpu)338 static int cache_add_dev(unsigned int cpu)
339 {
340 struct device *sys_dev = get_cpu_device(cpu);
341 unsigned long i, j;
342 struct cache_info *this_object;
343 int retval = 0;
344
345 if (all_cpu_cache_info[cpu].kobj.parent)
346 return 0;
347
348
349 retval = cpu_cache_sysfs_init(cpu);
350 if (unlikely(retval < 0))
351 return retval;
352
353 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
354 &cache_ktype_percpu_entry, &sys_dev->kobj,
355 "%s", "cache");
356 if (unlikely(retval < 0)) {
357 cpu_cache_sysfs_exit(cpu);
358 return retval;
359 }
360
361 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
362 this_object = LEAF_KOBJECT_PTR(cpu,i);
363 retval = kobject_init_and_add(&(this_object->kobj),
364 &cache_ktype,
365 &all_cpu_cache_info[cpu].kobj,
366 "index%1lu", i);
367 if (unlikely(retval)) {
368 for (j = 0; j < i; j++) {
369 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370 }
371 kobject_put(&all_cpu_cache_info[cpu].kobj);
372 cpu_cache_sysfs_exit(cpu);
373 return retval;
374 }
375 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
376 }
377 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
378 return retval;
379 }
380
381 /* Remove cache interface for CPU device */
cache_remove_dev(unsigned int cpu)382 static int cache_remove_dev(unsigned int cpu)
383 {
384 unsigned long i;
385
386 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
387 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
388
389 if (all_cpu_cache_info[cpu].kobj.parent) {
390 kobject_put(&all_cpu_cache_info[cpu].kobj);
391 memset(&all_cpu_cache_info[cpu].kobj,
392 0,
393 sizeof(struct kobject));
394 }
395
396 cpu_cache_sysfs_exit(cpu);
397
398 return 0;
399 }
400
cache_sysfs_init(void)401 static int __init cache_sysfs_init(void)
402 {
403 int ret;
404
405 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
406 cache_add_dev, cache_remove_dev);
407 WARN_ON(ret < 0);
408 return 0;
409 }
410 device_initcall(cache_sysfs_init);
411