xref: /openbmc/qemu/system/memory.c (revision 2254eecf278a1c3a3fa312795e601db6d51c7363)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "system/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qemu/target-info.h"
26 #include "qom/object.h"
27 #include "trace.h"
28 #include "system/physmem.h"
29 #include "system/ram_addr.h"
30 #include "system/kvm.h"
31 #include "system/runstate.h"
32 #include "system/tcg.h"
33 #include "qemu/accel.h"
34 #include "accel/accel-ops.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
37 #include "system/address-spaces.h"
38 
39 #include "memory-internal.h"
40 
41 //#define DEBUG_UNASSIGNED
42 
43 static unsigned memory_region_transaction_depth;
44 static bool memory_region_update_pending;
45 static bool ioeventfd_update_pending;
46 unsigned int global_dirty_tracking;
47 
48 static QTAILQ_HEAD(, MemoryListener) memory_listeners
49     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
50 
51 static QTAILQ_HEAD(, AddressSpace) address_spaces
52     = QTAILQ_HEAD_INITIALIZER(address_spaces);
53 
54 static GHashTable *flat_views;
55 
56 typedef struct AddrRange AddrRange;
57 
58 /*
59  * Note that signed integers are needed for negative offsetting in aliases
60  * (large MemoryRegion::alias_offset).
61  */
62 struct AddrRange {
63     Int128 start;
64     Int128 size;
65 };
66 
67 static AddrRange addrrange_make(Int128 start, Int128 size)
68 {
69     return (AddrRange) { start, size };
70 }
71 
72 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 {
74     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 }
76 
77 static Int128 addrrange_end(AddrRange r)
78 {
79     return int128_add(r.start, r.size);
80 }
81 
82 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 {
84     int128_addto(&range.start, delta);
85     return range;
86 }
87 
88 static bool addrrange_contains(AddrRange range, Int128 addr)
89 {
90     return int128_ge(addr, range.start)
91         && int128_lt(addr, addrrange_end(range));
92 }
93 
94 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 {
96     return addrrange_contains(r1, r2.start)
97         || addrrange_contains(r2, r1.start);
98 }
99 
100 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 {
102     Int128 start = int128_max(r1.start, r2.start);
103     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
104     return addrrange_make(start, int128_sub(end, start));
105 }
106 
107 enum ListenerDirection { Forward, Reverse };
108 
109 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
110     do {                                                                \
111         MemoryListener *_listener;                                      \
112                                                                         \
113         switch (_direction) {                                           \
114         case Forward:                                                   \
115             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
116                 if (_listener->_callback) {                             \
117                     _listener->_callback(_listener, ##_args);           \
118                 }                                                       \
119             }                                                           \
120             break;                                                      \
121         case Reverse:                                                   \
122             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
123                 if (_listener->_callback) {                             \
124                     _listener->_callback(_listener, ##_args);           \
125                 }                                                       \
126             }                                                           \
127             break;                                                      \
128         default:                                                        \
129             abort();                                                    \
130         }                                                               \
131     } while (0)
132 
133 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
134     do {                                                                \
135         MemoryListener *_listener;                                      \
136                                                                         \
137         switch (_direction) {                                           \
138         case Forward:                                                   \
139             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
140                 if (_listener->_callback) {                             \
141                     _listener->_callback(_listener, _section, ##_args); \
142                 }                                                       \
143             }                                                           \
144             break;                                                      \
145         case Reverse:                                                   \
146             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
147                 if (_listener->_callback) {                             \
148                     _listener->_callback(_listener, _section, ##_args); \
149                 }                                                       \
150             }                                                           \
151             break;                                                      \
152         default:                                                        \
153             abort();                                                    \
154         }                                                               \
155     } while (0)
156 
157 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
158 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
159     do {                                                                \
160         MemoryRegionSection mrs = section_from_flat_range(fr,           \
161                 address_space_to_flatview(as));                         \
162         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
163     } while(0)
164 
165 struct CoalescedMemoryRange {
166     AddrRange addr;
167     QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169 
170 struct MemoryRegionIoeventfd {
171     AddrRange addr;
172     bool match_data;
173     uint64_t data;
174     EventNotifier *e;
175 };
176 
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
178                                            MemoryRegionIoeventfd *b)
179 {
180     if (int128_lt(a->addr.start, b->addr.start)) {
181         return true;
182     } else if (int128_gt(a->addr.start, b->addr.start)) {
183         return false;
184     } else if (int128_lt(a->addr.size, b->addr.size)) {
185         return true;
186     } else if (int128_gt(a->addr.size, b->addr.size)) {
187         return false;
188     } else if (a->match_data < b->match_data) {
189         return true;
190     } else  if (a->match_data > b->match_data) {
191         return false;
192     } else if (a->match_data) {
193         if (a->data < b->data) {
194             return true;
195         } else if (a->data > b->data) {
196             return false;
197         }
198     }
199     if (a->e < b->e) {
200         return true;
201     } else if (a->e > b->e) {
202         return false;
203     }
204     return false;
205 }
206 
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
208                                           MemoryRegionIoeventfd *b)
209 {
210     if (int128_eq(a->addr.start, b->addr.start) &&
211         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
212          (int128_eq(a->addr.size, b->addr.size) &&
213           (a->match_data == b->match_data) &&
214           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
215           (a->e == b->e))))
216         return true;
217 
218     return false;
219 }
220 
221 /* Range of memory in the global map.  Addresses are absolute. */
222 struct FlatRange {
223     MemoryRegion *mr;
224     hwaddr offset_in_region;
225     AddrRange addr;
226     uint8_t dirty_log_mask;
227     bool romd_mode;
228     bool readonly;
229     bool nonvolatile;
230     bool unmergeable;
231 };
232 
233 #define FOR_EACH_FLAT_RANGE(var, view)          \
234     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
235 
236 static inline MemoryRegionSection
237 section_from_flat_range(FlatRange *fr, FlatView *fv)
238 {
239     return (MemoryRegionSection) {
240         .mr = fr->mr,
241         .fv = fv,
242         .offset_within_region = fr->offset_in_region,
243         .size = fr->addr.size,
244         .offset_within_address_space = int128_get64(fr->addr.start),
245         .readonly = fr->readonly,
246         .nonvolatile = fr->nonvolatile,
247         .unmergeable = fr->unmergeable,
248     };
249 }
250 
251 static bool flatrange_equal(FlatRange *a, FlatRange *b)
252 {
253     return a->mr == b->mr
254         && addrrange_equal(a->addr, b->addr)
255         && a->offset_in_region == b->offset_in_region
256         && a->romd_mode == b->romd_mode
257         && a->readonly == b->readonly
258         && a->nonvolatile == b->nonvolatile
259         && a->unmergeable == b->unmergeable;
260 }
261 
262 static FlatView *flatview_new(MemoryRegion *mr_root)
263 {
264     FlatView *view;
265 
266     view = g_new0(FlatView, 1);
267     view->ref = 1;
268     view->root = mr_root;
269     memory_region_ref(mr_root);
270     trace_flatview_new(view, mr_root);
271 
272     return view;
273 }
274 
275 /* Insert a range into a given position.  Caller is responsible for maintaining
276  * sorting order.
277  */
278 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
279 {
280     if (view->nr == view->nr_allocated) {
281         view->nr_allocated = MAX(2 * view->nr, 10);
282         view->ranges = g_realloc(view->ranges,
283                                     view->nr_allocated * sizeof(*view->ranges));
284     }
285     memmove(view->ranges + pos + 1, view->ranges + pos,
286             (view->nr - pos) * sizeof(FlatRange));
287     view->ranges[pos] = *range;
288     memory_region_ref(range->mr);
289     ++view->nr;
290 }
291 
292 static void flatview_destroy(FlatView *view)
293 {
294     int i;
295 
296     trace_flatview_destroy(view, view->root);
297     if (view->dispatch) {
298         address_space_dispatch_free(view->dispatch);
299     }
300     for (i = 0; i < view->nr; i++) {
301         memory_region_unref(view->ranges[i].mr);
302     }
303     g_free(view->ranges);
304     memory_region_unref(view->root);
305     g_free(view);
306 }
307 
308 static bool flatview_ref(FlatView *view)
309 {
310     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
311 }
312 
313 void flatview_unref(FlatView *view)
314 {
315     if (qatomic_fetch_dec(&view->ref) == 1) {
316         trace_flatview_destroy_rcu(view, view->root);
317         assert(view->root);
318         call_rcu(view, flatview_destroy, rcu);
319     }
320 }
321 
322 static bool can_merge(FlatRange *r1, FlatRange *r2)
323 {
324     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
325         && r1->mr == r2->mr
326         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
327                                 r1->addr.size),
328                      int128_make64(r2->offset_in_region))
329         && r1->dirty_log_mask == r2->dirty_log_mask
330         && r1->romd_mode == r2->romd_mode
331         && r1->readonly == r2->readonly
332         && r1->nonvolatile == r2->nonvolatile
333         && !r1->unmergeable && !r2->unmergeable;
334 }
335 
336 /* Attempt to simplify a view by merging adjacent ranges */
337 static void flatview_simplify(FlatView *view)
338 {
339     unsigned i, j, k;
340 
341     i = 0;
342     while (i < view->nr) {
343         j = i + 1;
344         while (j < view->nr
345                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
346             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
347             ++j;
348         }
349         ++i;
350         for (k = i; k < j; k++) {
351             memory_region_unref(view->ranges[k].mr);
352         }
353         memmove(&view->ranges[i], &view->ranges[j],
354                 (view->nr - j) * sizeof(view->ranges[j]));
355         view->nr -= j - i;
356     }
357 }
358 
359 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
360 {
361     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
362         switch (op & MO_SIZE) {
363         case MO_8:
364             break;
365         case MO_16:
366             *data = bswap16(*data);
367             break;
368         case MO_32:
369             *data = bswap32(*data);
370             break;
371         case MO_64:
372             *data = bswap64(*data);
373             break;
374         default:
375             g_assert_not_reached();
376         }
377     }
378 }
379 
380 static inline void memory_region_shift_read_access(uint64_t *value,
381                                                    signed shift,
382                                                    uint64_t mask,
383                                                    uint64_t tmp)
384 {
385     if (shift >= 0) {
386         *value |= (tmp & mask) << shift;
387     } else {
388         *value |= (tmp & mask) >> -shift;
389     }
390 }
391 
392 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
393                                                         signed shift,
394                                                         uint64_t mask)
395 {
396     uint64_t tmp;
397 
398     if (shift >= 0) {
399         tmp = (*value >> shift) & mask;
400     } else {
401         tmp = (*value << -shift) & mask;
402     }
403 
404     return tmp;
405 }
406 
407 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
408 {
409     MemoryRegion *root;
410     hwaddr abs_addr = offset;
411 
412     abs_addr += mr->addr;
413     for (root = mr; root->container; ) {
414         root = root->container;
415         abs_addr += root->addr;
416     }
417 
418     return abs_addr;
419 }
420 
421 static int get_cpu_index(void)
422 {
423     if (current_cpu) {
424         return current_cpu->cpu_index;
425     }
426     return -1;
427 }
428 
429 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
430                                                 hwaddr addr,
431                                                 uint64_t *value,
432                                                 unsigned size,
433                                                 signed shift,
434                                                 uint64_t mask,
435                                                 MemTxAttrs attrs)
436 {
437     uint64_t tmp;
438 
439     tmp = mr->ops->read(mr->opaque, addr, size);
440     if (mr->subpage) {
441         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
442     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
443         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
444         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
445                                      memory_region_name(mr));
446     }
447     memory_region_shift_read_access(value, shift, mask, tmp);
448     return MEMTX_OK;
449 }
450 
451 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
452                                                           hwaddr addr,
453                                                           uint64_t *value,
454                                                           unsigned size,
455                                                           signed shift,
456                                                           uint64_t mask,
457                                                           MemTxAttrs attrs)
458 {
459     uint64_t tmp = 0;
460     MemTxResult r;
461 
462     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
463     if (mr->subpage) {
464         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
465     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
466         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
467         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
468                                      memory_region_name(mr));
469     }
470     memory_region_shift_read_access(value, shift, mask, tmp);
471     return r;
472 }
473 
474 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
475                                                 hwaddr addr,
476                                                 uint64_t *value,
477                                                 unsigned size,
478                                                 signed shift,
479                                                 uint64_t mask,
480                                                 MemTxAttrs attrs)
481 {
482     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
483 
484     if (mr->subpage) {
485         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
486     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
487         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
488         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
489                                       memory_region_name(mr));
490     }
491     mr->ops->write(mr->opaque, addr, tmp, size);
492     return MEMTX_OK;
493 }
494 
495 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
496                                                            hwaddr addr,
497                                                            uint64_t *value,
498                                                            unsigned size,
499                                                            signed shift,
500                                                            uint64_t mask,
501                                                            MemTxAttrs attrs)
502 {
503     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
504 
505     if (mr->subpage) {
506         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
507     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
508         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
509         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
510                                       memory_region_name(mr));
511     }
512     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
513 }
514 
515 static MemTxResult access_with_adjusted_size_aligned(hwaddr addr,
516                                       uint64_t *value,
517                                       unsigned size,
518                                       unsigned access_size_min,
519                                       unsigned access_size_max,
520                                       MemTxResult (*access_fn)
521                                                   (MemoryRegion *mr,
522                                                    hwaddr addr,
523                                                    uint64_t *value,
524                                                    unsigned size,
525                                                    signed shift,
526                                                    uint64_t mask,
527                                                    MemTxAttrs attrs),
528                                       MemoryRegion *mr,
529                                       MemTxAttrs attrs)
530 {
531     uint64_t access_mask;
532     unsigned access_size;
533     unsigned i;
534     MemTxResult r = MEMTX_OK;
535     bool reentrancy_guard_applied = false;
536 
537     if (!access_size_min) {
538         access_size_min = 1;
539     }
540     if (!access_size_max) {
541         access_size_max = 4;
542     }
543 
544     /* Do not allow more than one simultaneous access to a device's IO Regions */
545     if (mr->dev && !mr->disable_reentrancy_guard &&
546         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
547         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
548             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
549                              "%s at addr: 0x%" HWADDR_PRIX,
550                              memory_region_name(mr), addr);
551             return MEMTX_ACCESS_ERROR;
552         }
553         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
554         reentrancy_guard_applied = true;
555     }
556 
557     access_size = MAX(MIN(size, access_size_max), access_size_min);
558     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
559     if (devend_big_endian(mr->ops->endianness)) {
560         for (i = 0; i < size; i += access_size) {
561             r |= access_fn(mr, addr + i, value, access_size,
562                         (size - access_size - i) * 8, access_mask, attrs);
563         }
564     } else {
565         for (i = 0; i < size; i += access_size) {
566             r |= access_fn(mr, addr + i, value, access_size, i * 8,
567                         access_mask, attrs);
568         }
569     }
570     if (mr->dev && reentrancy_guard_applied) {
571         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
572     }
573     return r;
574 }
575 
576 /* Assume power-of-two size */
577 #define align_down(addr, size) ((addr) & ~((size) - 1))
578 #define align_up(addr, size) \
579     ({ typeof(size) __size = size;  \
580         align_down((addr) + (__size) - 1, (__size)); })
581 
582 static MemTxResult access_with_adjusted_size_unaligned(hwaddr addr,
583                                       uint64_t *value,
584                                       unsigned size,
585                                       unsigned access_size_min,
586                                       unsigned access_size_max,
587                                       bool unaligned,
588                                       MemTxResult (*access)(MemoryRegion *mr,
589                                                             hwaddr addr,
590                                                             uint64_t *value,
591                                                             unsigned size,
592                                                             signed shift,
593                                                             uint64_t mask,
594                                                             MemTxAttrs attrs),
595                                       MemoryRegion *mr,
596                                       MemTxAttrs attrs)
597 {
598     uint64_t access_value = 0;
599     MemTxResult r = MEMTX_OK;
600     hwaddr access_addr[2];
601     uint64_t access_mask;
602     unsigned access_size;
603 
604     if (unlikely(!access_size_min)) {
605         access_size_min = 1;
606     }
607     if (unlikely(!access_size_max)) {
608         access_size_max = 4;
609     }
610 
611     access_size = MAX(MIN(size, access_size_max), access_size_min);
612     access_addr[0] = align_down(addr, access_size);
613     access_addr[1] = align_up(addr + size, access_size);
614 
615     if (devend_big_endian(mr->ops->endianness)) {
616         hwaddr cur;
617 
618         /* XXX: Big-endian path is untested...  */
619 
620         for (cur = access_addr[0]; cur < access_addr[1]; cur += access_size) {
621             uint64_t mask_bounds[2];
622 
623             mask_bounds[0] = MAX(addr, cur) - cur;
624             mask_bounds[1] =
625                 MIN(addr + size, align_up(cur + 1, access_size)) - cur;
626 
627             access_mask = (-1ULL << mask_bounds[0] * 8) &
628                 (-1ULL >> (64 - mask_bounds[1] * 8));
629 
630             r |= access(mr, cur, &access_value, access_size,
631                   (size - access_size - (MAX(addr, cur) - addr)),
632                   access_mask, attrs);
633 
634             /* XXX: Can't do this hack for writes */
635             access_value >>= mask_bounds[0] * 8;
636         }
637     } else {
638         hwaddr cur;
639 
640         for (cur = access_addr[0]; cur < access_addr[1]; cur += access_size) {
641             uint64_t mask_bounds[2];
642 
643             mask_bounds[0] = MAX(addr, cur) - cur;
644             mask_bounds[1] =
645                 MIN(addr + size, align_up(cur + 1, access_size)) - cur;
646 
647             access_mask = (-1ULL << mask_bounds[0] * 8) &
648                 (-1ULL >> (64 - mask_bounds[1] * 8));
649 
650             r |= access(mr, cur, &access_value, access_size,
651                   (MAX(addr, cur) - addr), access_mask, attrs);
652 
653             /* XXX: Can't do this hack for writes */
654             access_value >>= mask_bounds[0] * 8;
655         }
656     }
657 
658     *value = access_value;
659 
660     return r;
661 }
662 
663 static inline MemTxResult access_with_adjusted_size(hwaddr addr,
664                                       uint64_t *value,
665                                       unsigned size,
666                                       unsigned access_size_min,
667                                       unsigned access_size_max,
668                                       bool unaligned,
669                                       MemTxResult (*access)(MemoryRegion *mr,
670                                                             hwaddr addr,
671                                                             uint64_t *value,
672                                                             unsigned size,
673                                                             signed shift,
674                                                             uint64_t mask,
675                                                             MemTxAttrs attrs),
676                                       MemoryRegion *mr,
677                                       MemTxAttrs attrs)
678 {
679     unsigned access_size;
680 
681     if (!access_size_min) {
682         access_size_min = 1;
683     }
684     if (!access_size_max) {
685         access_size_max = 4;
686     }
687 
688     access_size = MAX(MIN(size, access_size_max), access_size_min);
689 
690     /* Handle unaligned accesses if the model only supports natural alignment */
691     if (unlikely((addr & (access_size - 1)) && !unaligned)) {
692         return access_with_adjusted_size_unaligned(addr, value, size,
693                 access_size_min, access_size_max, unaligned, access, mr, attrs);
694     }
695 
696     /*
697      * Otherwise, if the access is aligned or the model specifies it can handle
698      * unaligned accesses, use the 'aligned' handler
699      */
700     return access_with_adjusted_size_aligned(addr, value, size,
701             access_size_min, access_size_max, access, mr, attrs);
702 }
703 
704 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
705 {
706     AddressSpace *as;
707 
708     while (mr->container) {
709         mr = mr->container;
710     }
711     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
712         if (mr == as->root) {
713             return as;
714         }
715     }
716     return NULL;
717 }
718 
719 /* Render a memory region into the global view.  Ranges in @view obscure
720  * ranges in @mr.
721  */
722 static void render_memory_region(FlatView *view,
723                                  MemoryRegion *mr,
724                                  Int128 base,
725                                  AddrRange clip,
726                                  bool readonly,
727                                  bool nonvolatile,
728                                  bool unmergeable)
729 {
730     MemoryRegion *subregion;
731     unsigned i;
732     hwaddr offset_in_region;
733     Int128 remain;
734     Int128 now;
735     FlatRange fr;
736     AddrRange tmp;
737 
738     if (!mr->enabled) {
739         return;
740     }
741 
742     int128_addto(&base, int128_make64(mr->addr));
743     readonly |= mr->readonly;
744     nonvolatile |= mr->nonvolatile;
745     unmergeable |= mr->unmergeable;
746 
747     tmp = addrrange_make(base, mr->size);
748 
749     if (!addrrange_intersects(tmp, clip)) {
750         return;
751     }
752 
753     clip = addrrange_intersection(tmp, clip);
754 
755     if (mr->alias) {
756         int128_subfrom(&base, int128_make64(mr->alias->addr));
757         int128_subfrom(&base, int128_make64(mr->alias_offset));
758         render_memory_region(view, mr->alias, base, clip,
759                              readonly, nonvolatile, unmergeable);
760         return;
761     }
762 
763     /* Render subregions in priority order. */
764     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
765         render_memory_region(view, subregion, base, clip,
766                              readonly, nonvolatile, unmergeable);
767     }
768 
769     if (!mr->terminates) {
770         return;
771     }
772 
773     offset_in_region = int128_get64(int128_sub(clip.start, base));
774     base = clip.start;
775     remain = clip.size;
776 
777     fr.mr = mr;
778     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
779     fr.romd_mode = mr->romd_mode;
780     fr.readonly = readonly;
781     fr.nonvolatile = nonvolatile;
782     fr.unmergeable = unmergeable;
783 
784     /* Render the region itself into any gaps left by the current view. */
785     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
786         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
787             continue;
788         }
789         if (int128_lt(base, view->ranges[i].addr.start)) {
790             now = int128_min(remain,
791                              int128_sub(view->ranges[i].addr.start, base));
792             fr.offset_in_region = offset_in_region;
793             fr.addr = addrrange_make(base, now);
794             flatview_insert(view, i, &fr);
795             ++i;
796             int128_addto(&base, now);
797             offset_in_region += int128_get64(now);
798             int128_subfrom(&remain, now);
799         }
800         now = int128_sub(int128_min(int128_add(base, remain),
801                                     addrrange_end(view->ranges[i].addr)),
802                          base);
803         int128_addto(&base, now);
804         offset_in_region += int128_get64(now);
805         int128_subfrom(&remain, now);
806     }
807     if (int128_nz(remain)) {
808         fr.offset_in_region = offset_in_region;
809         fr.addr = addrrange_make(base, remain);
810         flatview_insert(view, i, &fr);
811     }
812 }
813 
814 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
815 {
816     FlatRange *fr;
817 
818     assert(fv);
819     assert(cb);
820 
821     FOR_EACH_FLAT_RANGE(fr, fv) {
822         if (cb(fr->addr.start, fr->addr.size, fr->mr,
823                fr->offset_in_region, opaque)) {
824             break;
825         }
826     }
827 }
828 
829 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
830 {
831     while (mr->enabled) {
832         if (mr->alias) {
833             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
834                 /* The alias is included in its entirety.  Use it as
835                  * the "real" root, so that we can share more FlatViews.
836                  */
837                 mr = mr->alias;
838                 continue;
839             }
840         } else if (!mr->terminates) {
841             unsigned int found = 0;
842             MemoryRegion *child, *next = NULL;
843             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
844                 if (child->enabled) {
845                     if (++found > 1) {
846                         next = NULL;
847                         break;
848                     }
849                     if (!child->addr && int128_ge(mr->size, child->size)) {
850                         /* A child is included in its entirety.  If it's the only
851                          * enabled one, use it in the hope of finding an alias down the
852                          * way. This will also let us share FlatViews.
853                          */
854                         next = child;
855                     }
856                 }
857             }
858             if (found == 0) {
859                 return NULL;
860             }
861             if (next) {
862                 mr = next;
863                 continue;
864             }
865         }
866 
867         return mr;
868     }
869 
870     return NULL;
871 }
872 
873 /* Render a memory topology into a list of disjoint absolute ranges. */
874 static FlatView *generate_memory_topology(MemoryRegion *mr)
875 {
876     int i;
877     FlatView *view;
878 
879     view = flatview_new(mr);
880 
881     if (mr) {
882         render_memory_region(view, mr, int128_zero(),
883                              addrrange_make(int128_zero(), int128_2_64()),
884                              false, false, false);
885     }
886     flatview_simplify(view);
887 
888     view->dispatch = address_space_dispatch_new(view);
889     for (i = 0; i < view->nr; i++) {
890         MemoryRegionSection mrs =
891             section_from_flat_range(&view->ranges[i], view);
892         flatview_add_to_dispatch(view, &mrs);
893     }
894     address_space_dispatch_compact(view->dispatch);
895     g_hash_table_replace(flat_views, mr, view);
896 
897     return view;
898 }
899 
900 static void address_space_add_del_ioeventfds(AddressSpace *as,
901                                              MemoryRegionIoeventfd *fds_new,
902                                              unsigned fds_new_nb,
903                                              MemoryRegionIoeventfd *fds_old,
904                                              unsigned fds_old_nb)
905 {
906     unsigned iold, inew;
907     MemoryRegionIoeventfd *fd;
908     MemoryRegionSection section;
909 
910     /* Generate a symmetric difference of the old and new fd sets, adding
911      * and deleting as necessary.
912      */
913 
914     iold = inew = 0;
915     while (iold < fds_old_nb || inew < fds_new_nb) {
916         if (iold < fds_old_nb
917             && (inew == fds_new_nb
918                 || memory_region_ioeventfd_before(&fds_old[iold],
919                                                   &fds_new[inew]))) {
920             fd = &fds_old[iold];
921             section = (MemoryRegionSection) {
922                 .fv = address_space_to_flatview(as),
923                 .offset_within_address_space = int128_get64(fd->addr.start),
924                 .size = fd->addr.size,
925             };
926             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
927                                  fd->match_data, fd->data, fd->e);
928             ++iold;
929         } else if (inew < fds_new_nb
930                    && (iold == fds_old_nb
931                        || memory_region_ioeventfd_before(&fds_new[inew],
932                                                          &fds_old[iold]))) {
933             fd = &fds_new[inew];
934             section = (MemoryRegionSection) {
935                 .fv = address_space_to_flatview(as),
936                 .offset_within_address_space = int128_get64(fd->addr.start),
937                 .size = fd->addr.size,
938             };
939             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
940                                  fd->match_data, fd->data, fd->e);
941             ++inew;
942         } else {
943             ++iold;
944             ++inew;
945         }
946     }
947 }
948 
949 FlatView *address_space_get_flatview(AddressSpace *as)
950 {
951     FlatView *view;
952 
953     RCU_READ_LOCK_GUARD();
954     do {
955         view = address_space_to_flatview(as);
956         /* If somebody has replaced as->current_map concurrently,
957          * flatview_ref returns false.
958          */
959     } while (!flatview_ref(view));
960     return view;
961 }
962 
963 static void address_space_update_ioeventfds(AddressSpace *as)
964 {
965     FlatView *view;
966     FlatRange *fr;
967     unsigned ioeventfd_nb = 0;
968     unsigned ioeventfd_max;
969     MemoryRegionIoeventfd *ioeventfds;
970     AddrRange tmp;
971     unsigned i;
972 
973     if (!as->ioeventfd_notifiers) {
974         return;
975     }
976 
977     /*
978      * It is likely that the number of ioeventfds hasn't changed much, so use
979      * the previous size as the starting value, with some headroom to avoid
980      * gratuitous reallocations.
981      */
982     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
983     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
984 
985     view = address_space_get_flatview(as);
986     FOR_EACH_FLAT_RANGE(fr, view) {
987         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
988             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
989                                   int128_sub(fr->addr.start,
990                                              int128_make64(fr->offset_in_region)));
991             if (addrrange_intersects(fr->addr, tmp)) {
992                 ++ioeventfd_nb;
993                 if (ioeventfd_nb > ioeventfd_max) {
994                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
995                     ioeventfds = g_realloc(ioeventfds,
996                             ioeventfd_max * sizeof(*ioeventfds));
997                 }
998                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
999                 ioeventfds[ioeventfd_nb-1].addr = tmp;
1000             }
1001         }
1002     }
1003 
1004     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
1005                                      as->ioeventfds, as->ioeventfd_nb);
1006 
1007     g_free(as->ioeventfds);
1008     as->ioeventfds = ioeventfds;
1009     as->ioeventfd_nb = ioeventfd_nb;
1010     flatview_unref(view);
1011 }
1012 
1013 /*
1014  * Notify the memory listeners about the coalesced IO change events of
1015  * range `cmr'.  Only the part that has intersection of the specified
1016  * FlatRange will be sent.
1017  */
1018 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
1019                                            CoalescedMemoryRange *cmr, bool add)
1020 {
1021     AddrRange tmp;
1022 
1023     tmp = addrrange_shift(cmr->addr,
1024                           int128_sub(fr->addr.start,
1025                                      int128_make64(fr->offset_in_region)));
1026     if (!addrrange_intersects(tmp, fr->addr)) {
1027         return;
1028     }
1029     tmp = addrrange_intersection(tmp, fr->addr);
1030 
1031     if (add) {
1032         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
1033                                       int128_get64(tmp.start),
1034                                       int128_get64(tmp.size));
1035     } else {
1036         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
1037                                       int128_get64(tmp.start),
1038                                       int128_get64(tmp.size));
1039     }
1040 }
1041 
1042 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
1043 {
1044     CoalescedMemoryRange *cmr;
1045 
1046     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
1047         flat_range_coalesced_io_notify(fr, as, cmr, false);
1048     }
1049 }
1050 
1051 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
1052 {
1053     MemoryRegion *mr = fr->mr;
1054     CoalescedMemoryRange *cmr;
1055 
1056     if (QTAILQ_EMPTY(&mr->coalesced)) {
1057         return;
1058     }
1059 
1060     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1061         flat_range_coalesced_io_notify(fr, as, cmr, true);
1062     }
1063 }
1064 
1065 static void
1066 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
1067                                                 MemoryRegionSection *mrs,
1068                                                 MemoryListener *listener,
1069                                                 AddressSpace *as, bool add)
1070 {
1071     CoalescedMemoryRange *cmr;
1072     MemoryRegion *mr = fr->mr;
1073     AddrRange tmp;
1074 
1075     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1076         tmp = addrrange_shift(cmr->addr,
1077                               int128_sub(fr->addr.start,
1078                                          int128_make64(fr->offset_in_region)));
1079 
1080         if (!addrrange_intersects(tmp, fr->addr)) {
1081             return;
1082         }
1083         tmp = addrrange_intersection(tmp, fr->addr);
1084 
1085         if (add && listener->coalesced_io_add) {
1086             listener->coalesced_io_add(listener, mrs,
1087                                        int128_get64(tmp.start),
1088                                        int128_get64(tmp.size));
1089         } else if (!add && listener->coalesced_io_del) {
1090             listener->coalesced_io_del(listener, mrs,
1091                                        int128_get64(tmp.start),
1092                                        int128_get64(tmp.size));
1093         }
1094     }
1095 }
1096 
1097 static void address_space_update_topology_pass(AddressSpace *as,
1098                                                const FlatView *old_view,
1099                                                const FlatView *new_view,
1100                                                bool adding)
1101 {
1102     unsigned iold, inew;
1103     FlatRange *frold, *frnew;
1104 
1105     /* Generate a symmetric difference of the old and new memory maps.
1106      * Kill ranges in the old map, and instantiate ranges in the new map.
1107      */
1108     iold = inew = 0;
1109     while (iold < old_view->nr || inew < new_view->nr) {
1110         if (iold < old_view->nr) {
1111             frold = &old_view->ranges[iold];
1112         } else {
1113             frold = NULL;
1114         }
1115         if (inew < new_view->nr) {
1116             frnew = &new_view->ranges[inew];
1117         } else {
1118             frnew = NULL;
1119         }
1120 
1121         if (frold
1122             && (!frnew
1123                 || int128_lt(frold->addr.start, frnew->addr.start)
1124                 || (int128_eq(frold->addr.start, frnew->addr.start)
1125                     && !flatrange_equal(frold, frnew)))) {
1126             /* In old but not in new, or in both but attributes changed. */
1127 
1128             if (!adding) {
1129                 flat_range_coalesced_io_del(frold, as);
1130                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1131             }
1132 
1133             ++iold;
1134         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1135             /* In both and unchanged (except logging may have changed) */
1136 
1137             if (adding) {
1138                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1139                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1140                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1141                                                   frold->dirty_log_mask,
1142                                                   frnew->dirty_log_mask);
1143                 }
1144                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1145                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1146                                                   frold->dirty_log_mask,
1147                                                   frnew->dirty_log_mask);
1148                 }
1149             }
1150 
1151             ++iold;
1152             ++inew;
1153         } else {
1154             /* In new */
1155 
1156             if (adding) {
1157                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1158                 flat_range_coalesced_io_add(frnew, as);
1159             }
1160 
1161             ++inew;
1162         }
1163     }
1164 }
1165 
1166 static void flatviews_init(void)
1167 {
1168     static FlatView *empty_view;
1169 
1170     if (flat_views) {
1171         return;
1172     }
1173 
1174     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1175                                        (GDestroyNotify) flatview_unref);
1176     if (!empty_view) {
1177         empty_view = generate_memory_topology(NULL);
1178         /* We keep it alive forever in the global variable.  */
1179         flatview_ref(empty_view);
1180     } else {
1181         g_hash_table_replace(flat_views, NULL, empty_view);
1182         flatview_ref(empty_view);
1183     }
1184 }
1185 
1186 static void flatviews_reset(void)
1187 {
1188     AddressSpace *as;
1189 
1190     if (flat_views) {
1191         g_hash_table_unref(flat_views);
1192         flat_views = NULL;
1193     }
1194     flatviews_init();
1195 
1196     /* Render unique FVs */
1197     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1198         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1199 
1200         if (g_hash_table_lookup(flat_views, physmr)) {
1201             continue;
1202         }
1203 
1204         generate_memory_topology(physmr);
1205     }
1206 }
1207 
1208 static void address_space_set_flatview(AddressSpace *as)
1209 {
1210     FlatView *old_view = address_space_to_flatview(as);
1211     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1212     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1213 
1214     assert(new_view);
1215 
1216     if (old_view == new_view) {
1217         return;
1218     }
1219 
1220     if (old_view) {
1221         flatview_ref(old_view);
1222     }
1223 
1224     flatview_ref(new_view);
1225 
1226     if (!QTAILQ_EMPTY(&as->listeners)) {
1227         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1228 
1229         if (!old_view2) {
1230             old_view2 = &tmpview;
1231         }
1232         address_space_update_topology_pass(as, old_view2, new_view, false);
1233         address_space_update_topology_pass(as, old_view2, new_view, true);
1234     }
1235 
1236     /* Writes are protected by the BQL.  */
1237     qatomic_rcu_set(&as->current_map, new_view);
1238     if (old_view) {
1239         flatview_unref(old_view);
1240     }
1241 
1242     /* Note that all the old MemoryRegions are still alive up to this
1243      * point.  This relieves most MemoryListeners from the need to
1244      * ref/unref the MemoryRegions they get---unless they use them
1245      * outside the iothread mutex, in which case precise reference
1246      * counting is necessary.
1247      */
1248     if (old_view) {
1249         flatview_unref(old_view);
1250     }
1251 }
1252 
1253 static void address_space_update_topology(AddressSpace *as)
1254 {
1255     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1256 
1257     flatviews_init();
1258     if (!g_hash_table_lookup(flat_views, physmr)) {
1259         generate_memory_topology(physmr);
1260     }
1261     address_space_set_flatview(as);
1262 }
1263 
1264 void memory_region_transaction_begin(void)
1265 {
1266     qemu_flush_coalesced_mmio_buffer();
1267     ++memory_region_transaction_depth;
1268 }
1269 
1270 void memory_region_transaction_commit(void)
1271 {
1272     AddressSpace *as;
1273 
1274     assert(memory_region_transaction_depth);
1275     assert(bql_locked());
1276 
1277     --memory_region_transaction_depth;
1278     if (!memory_region_transaction_depth) {
1279         if (memory_region_update_pending) {
1280             flatviews_reset();
1281 
1282             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1283 
1284             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1285                 address_space_set_flatview(as);
1286                 address_space_update_ioeventfds(as);
1287             }
1288             memory_region_update_pending = false;
1289             ioeventfd_update_pending = false;
1290             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1291         } else if (ioeventfd_update_pending) {
1292             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1293                 address_space_update_ioeventfds(as);
1294             }
1295             ioeventfd_update_pending = false;
1296         }
1297    }
1298 }
1299 
1300 static void memory_region_destructor_none(MemoryRegion *mr)
1301 {
1302 }
1303 
1304 static void memory_region_destructor_ram(MemoryRegion *mr)
1305 {
1306     qemu_ram_free(mr->ram_block);
1307 }
1308 
1309 static bool memory_region_need_escape(char c)
1310 {
1311     return c == '/' || c == '[' || c == '\\' || c == ']';
1312 }
1313 
1314 static char *memory_region_escape_name(const char *name)
1315 {
1316     const char *p;
1317     char *escaped, *q;
1318     uint8_t c;
1319     size_t bytes = 0;
1320 
1321     for (p = name; *p; p++) {
1322         bytes += memory_region_need_escape(*p) ? 4 : 1;
1323     }
1324     if (bytes == p - name) {
1325        return g_memdup(name, bytes + 1);
1326     }
1327 
1328     escaped = g_malloc(bytes + 1);
1329     for (p = name, q = escaped; *p; p++) {
1330         c = *p;
1331         if (unlikely(memory_region_need_escape(c))) {
1332             *q++ = '\\';
1333             *q++ = 'x';
1334             *q++ = "0123456789abcdef"[c >> 4];
1335             c = "0123456789abcdef"[c & 15];
1336         }
1337         *q++ = c;
1338     }
1339     *q = 0;
1340     return escaped;
1341 }
1342 
1343 static void memory_region_do_init(MemoryRegion *mr,
1344                                   Object *owner,
1345                                   const char *name,
1346                                   uint64_t size)
1347 {
1348     mr->size = int128_make64(size);
1349     if (size == UINT64_MAX) {
1350         mr->size = int128_2_64();
1351     }
1352     mr->name = g_strdup(name);
1353     mr->owner = owner;
1354     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1355     mr->ram_block = NULL;
1356 
1357     if (name) {
1358         char *escaped_name = memory_region_escape_name(name);
1359         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1360 
1361         if (!owner) {
1362             owner = machine_get_container("unattached");
1363         }
1364 
1365         object_property_add_child(owner, name_array, OBJECT(mr));
1366         object_unref(OBJECT(mr));
1367         g_free(name_array);
1368         g_free(escaped_name);
1369     }
1370 }
1371 
1372 void memory_region_init(MemoryRegion *mr,
1373                         Object *owner,
1374                         const char *name,
1375                         uint64_t size)
1376 {
1377     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1378     memory_region_do_init(mr, owner, name, size);
1379 }
1380 
1381 static void memory_region_get_container(Object *obj, Visitor *v,
1382                                         const char *name, void *opaque,
1383                                         Error **errp)
1384 {
1385     MemoryRegion *mr = MEMORY_REGION(obj);
1386     char *path = (char *)"";
1387 
1388     if (mr->container) {
1389         path = object_get_canonical_path(OBJECT(mr->container));
1390     }
1391     visit_type_str(v, name, &path, errp);
1392     if (mr->container) {
1393         g_free(path);
1394     }
1395 }
1396 
1397 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1398                                                const char *part)
1399 {
1400     MemoryRegion *mr = MEMORY_REGION(obj);
1401 
1402     return OBJECT(mr->container);
1403 }
1404 
1405 static void memory_region_get_priority(Object *obj, Visitor *v,
1406                                        const char *name, void *opaque,
1407                                        Error **errp)
1408 {
1409     MemoryRegion *mr = MEMORY_REGION(obj);
1410     int32_t value = mr->priority;
1411 
1412     visit_type_int32(v, name, &value, errp);
1413 }
1414 
1415 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1416                                    void *opaque, Error **errp)
1417 {
1418     MemoryRegion *mr = MEMORY_REGION(obj);
1419     uint64_t value = memory_region_size(mr);
1420 
1421     visit_type_uint64(v, name, &value, errp);
1422 }
1423 
1424 static void memory_region_initfn(Object *obj)
1425 {
1426     MemoryRegion *mr = MEMORY_REGION(obj);
1427     ObjectProperty *op;
1428 
1429     mr->ops = &unassigned_mem_ops;
1430     mr->enabled = true;
1431     mr->romd_mode = true;
1432     mr->destructor = memory_region_destructor_none;
1433     QTAILQ_INIT(&mr->subregions);
1434     QTAILQ_INIT(&mr->coalesced);
1435 
1436     op = object_property_add(OBJECT(mr), "container",
1437                              "link<" TYPE_MEMORY_REGION ">",
1438                              memory_region_get_container,
1439                              NULL, /* memory_region_set_container */
1440                              NULL, NULL);
1441     op->resolve = memory_region_resolve_container;
1442 
1443     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1444                                    &mr->addr, OBJ_PROP_FLAG_READ);
1445     object_property_add(OBJECT(mr), "priority", "uint32",
1446                         memory_region_get_priority,
1447                         NULL, /* memory_region_set_priority */
1448                         NULL, NULL);
1449     object_property_add(OBJECT(mr), "size", "uint64",
1450                         memory_region_get_size,
1451                         NULL, /* memory_region_set_size, */
1452                         NULL, NULL);
1453 }
1454 
1455 static void iommu_memory_region_initfn(Object *obj)
1456 {
1457     MemoryRegion *mr = MEMORY_REGION(obj);
1458 
1459     mr->is_iommu = true;
1460 }
1461 
1462 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1463                                     unsigned size)
1464 {
1465 #ifdef DEBUG_UNASSIGNED
1466     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1467 #endif
1468     return 0;
1469 }
1470 
1471 static void unassigned_mem_write(void *opaque, hwaddr addr,
1472                                  uint64_t val, unsigned size)
1473 {
1474 #ifdef DEBUG_UNASSIGNED
1475     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1476 #endif
1477 }
1478 
1479 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1480                                    unsigned size, bool is_write,
1481                                    MemTxAttrs attrs)
1482 {
1483     return false;
1484 }
1485 
1486 const MemoryRegionOps unassigned_mem_ops = {
1487     .valid.accepts = unassigned_mem_accepts,
1488     .endianness = DEVICE_NATIVE_ENDIAN,
1489 };
1490 
1491 static uint64_t memory_region_ram_device_read(void *opaque,
1492                                               hwaddr addr, unsigned size)
1493 {
1494     MemoryRegion *mr = opaque;
1495     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1496 
1497     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1498 
1499     return data;
1500 }
1501 
1502 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1503                                            uint64_t data, unsigned size)
1504 {
1505     MemoryRegion *mr = opaque;
1506 
1507     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1508 
1509     stn_he_p(mr->ram_block->host + addr, size, data);
1510 }
1511 
1512 static const MemoryRegionOps ram_device_mem_ops = {
1513     .read = memory_region_ram_device_read,
1514     .write = memory_region_ram_device_write,
1515     .endianness = HOST_BIG_ENDIAN ? DEVICE_BIG_ENDIAN : DEVICE_LITTLE_ENDIAN,
1516     .valid = {
1517         .min_access_size = 1,
1518         .max_access_size = 8,
1519         .unaligned = true,
1520     },
1521     .impl = {
1522         .min_access_size = 1,
1523         .max_access_size = 8,
1524         .unaligned = true,
1525     },
1526 };
1527 
1528 bool memory_region_access_valid(MemoryRegion *mr,
1529                                 hwaddr addr,
1530                                 unsigned size,
1531                                 bool is_write,
1532                                 MemTxAttrs attrs)
1533 {
1534     if (mr->ops->valid.accepts
1535         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1536         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1537                       ", size %u, region '%s', reason: rejected\n",
1538                       is_write ? "write" : "read",
1539                       addr, size, memory_region_name(mr));
1540         return false;
1541     }
1542 
1543     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1544         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1545                       ", size %u, region '%s', reason: unaligned\n",
1546                       is_write ? "write" : "read",
1547                       addr, size, memory_region_name(mr));
1548         return false;
1549     }
1550 
1551     /* Treat zero as compatibility all valid */
1552     if (!mr->ops->valid.max_access_size) {
1553         return true;
1554     }
1555 
1556     if (size > mr->ops->valid.max_access_size
1557         || size < mr->ops->valid.min_access_size) {
1558         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1559                       ", size %u, region '%s', reason: invalid size "
1560                       "(min:%u max:%u)\n",
1561                       is_write ? "write" : "read",
1562                       addr, size, memory_region_name(mr),
1563                       mr->ops->valid.min_access_size,
1564                       mr->ops->valid.max_access_size);
1565         return false;
1566     }
1567     return true;
1568 }
1569 
1570 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1571                                                 hwaddr addr,
1572                                                 uint64_t *pval,
1573                                                 unsigned size,
1574                                                 MemTxAttrs attrs)
1575 {
1576     *pval = 0;
1577 
1578     if (mr->ops->read) {
1579         return access_with_adjusted_size(addr, pval, size,
1580                                          mr->ops->impl.min_access_size,
1581                                          mr->ops->impl.max_access_size,
1582                                          mr->ops->impl.unaligned,
1583                                          memory_region_read_accessor,
1584                                          mr, attrs);
1585     } else {
1586         return access_with_adjusted_size(addr, pval, size,
1587                                          mr->ops->impl.min_access_size,
1588                                          mr->ops->impl.max_access_size,
1589                                          mr->ops->impl.unaligned,
1590                                          memory_region_read_with_attrs_accessor,
1591                                          mr, attrs);
1592     }
1593 }
1594 
1595 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1596                                         hwaddr addr,
1597                                         uint64_t *pval,
1598                                         MemOp op,
1599                                         MemTxAttrs attrs)
1600 {
1601     unsigned size = memop_size(op);
1602     MemTxResult r;
1603 
1604     if (mr->alias) {
1605         return memory_region_dispatch_read(mr->alias,
1606                                            mr->alias_offset + addr,
1607                                            pval, op, attrs);
1608     }
1609     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1610         *pval = unassigned_mem_read(mr, addr, size);
1611         return MEMTX_DECODE_ERROR;
1612     }
1613 
1614     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1615     adjust_endianness(mr, pval, op);
1616     return r;
1617 }
1618 
1619 /* Return true if an eventfd was signalled */
1620 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1621                                                     hwaddr addr,
1622                                                     uint64_t data,
1623                                                     unsigned size,
1624                                                     MemTxAttrs attrs)
1625 {
1626     MemoryRegionIoeventfd ioeventfd = {
1627         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1628         .data = data,
1629     };
1630     unsigned i;
1631 
1632     for (i = 0; i < mr->ioeventfd_nb; i++) {
1633         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1634         ioeventfd.e = mr->ioeventfds[i].e;
1635 
1636         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1637             event_notifier_set(ioeventfd.e);
1638             return true;
1639         }
1640     }
1641 
1642     return false;
1643 }
1644 
1645 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1646                                          hwaddr addr,
1647                                          uint64_t data,
1648                                          MemOp op,
1649                                          MemTxAttrs attrs)
1650 {
1651     unsigned size = memop_size(op);
1652 
1653     if (mr->alias) {
1654         return memory_region_dispatch_write(mr->alias,
1655                                             mr->alias_offset + addr,
1656                                             data, op, attrs);
1657     }
1658     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1659         unassigned_mem_write(mr, addr, data, size);
1660         return MEMTX_DECODE_ERROR;
1661     }
1662 
1663     adjust_endianness(mr, &data, op);
1664 
1665     /*
1666      * FIXME: it's not clear why under KVM the write would be processed
1667      * directly, instead of going through eventfd.  This probably should
1668      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1669      */
1670     if (!kvm_enabled() &&
1671         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1672         return MEMTX_OK;
1673     }
1674 
1675     if (mr->ops->write) {
1676         return access_with_adjusted_size_aligned(addr, &data, size,
1677                                          mr->ops->impl.min_access_size,
1678                                          mr->ops->impl.max_access_size,
1679                                          memory_region_write_accessor, mr,
1680                                          attrs);
1681     } else {
1682         return
1683             access_with_adjusted_size_aligned(addr, &data, size,
1684                                       mr->ops->impl.min_access_size,
1685                                       mr->ops->impl.max_access_size,
1686                                       memory_region_write_with_attrs_accessor,
1687                                       mr, attrs);
1688     }
1689 }
1690 
1691 void memory_region_init_io(MemoryRegion *mr,
1692                            Object *owner,
1693                            const MemoryRegionOps *ops,
1694                            void *opaque,
1695                            const char *name,
1696                            uint64_t size)
1697 {
1698     memory_region_init(mr, owner, name, size);
1699     mr->ops = ops ? ops : &unassigned_mem_ops;
1700     mr->opaque = opaque;
1701     mr->terminates = true;
1702 }
1703 
1704 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1705                                       Object *owner,
1706                                       const char *name,
1707                                       uint64_t size,
1708                                       Error **errp)
1709 {
1710     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1711                                                   size, 0, errp);
1712 }
1713 
1714 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1715                                             Object *owner,
1716                                             const char *name,
1717                                             uint64_t size,
1718                                             uint32_t ram_flags,
1719                                             Error **errp)
1720 {
1721     Error *err = NULL;
1722     memory_region_init(mr, owner, name, size);
1723     mr->ram = true;
1724     mr->terminates = true;
1725     mr->destructor = memory_region_destructor_ram;
1726     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1727     if (err) {
1728         mr->size = int128_zero();
1729         object_unparent(OBJECT(mr));
1730         error_propagate(errp, err);
1731         return false;
1732     }
1733     return true;
1734 }
1735 
1736 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1737                                        Object *owner,
1738                                        const char *name,
1739                                        uint64_t size,
1740                                        uint64_t max_size,
1741                                        void (*resized)(const char*,
1742                                                        uint64_t length,
1743                                                        void *host),
1744                                        Error **errp)
1745 {
1746     Error *err = NULL;
1747     memory_region_init(mr, owner, name, size);
1748     mr->ram = true;
1749     mr->terminates = true;
1750     mr->destructor = memory_region_destructor_ram;
1751     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1752                                               mr, &err);
1753     if (err) {
1754         mr->size = int128_zero();
1755         object_unparent(OBJECT(mr));
1756         error_propagate(errp, err);
1757         return false;
1758     }
1759     return true;
1760 }
1761 
1762 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
1763 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1764                                       Object *owner,
1765                                       const char *name,
1766                                       uint64_t size,
1767                                       uint64_t align,
1768                                       uint32_t ram_flags,
1769                                       const char *path,
1770                                       ram_addr_t offset,
1771                                       Error **errp)
1772 {
1773     Error *err = NULL;
1774     memory_region_init(mr, owner, name, size);
1775     mr->ram = true;
1776     mr->readonly = !!(ram_flags & RAM_READONLY);
1777     mr->terminates = true;
1778     mr->destructor = memory_region_destructor_ram;
1779     mr->align = align;
1780     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1781                                              offset, &err);
1782     if (err) {
1783         mr->size = int128_zero();
1784         object_unparent(OBJECT(mr));
1785         error_propagate(errp, err);
1786         return false;
1787     }
1788     return true;
1789 }
1790 
1791 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1792                                     Object *owner,
1793                                     const char *name,
1794                                     uint64_t size,
1795                                     uint32_t ram_flags,
1796                                     int fd,
1797                                     ram_addr_t offset,
1798                                     Error **errp)
1799 {
1800     Error *err = NULL;
1801     memory_region_init(mr, owner, name, size);
1802     mr->ram = true;
1803     mr->readonly = !!(ram_flags & RAM_READONLY);
1804     mr->terminates = true;
1805     mr->destructor = memory_region_destructor_ram;
1806     mr->ram_block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd,
1807                                            offset, false, &err);
1808     if (err) {
1809         mr->size = int128_zero();
1810         object_unparent(OBJECT(mr));
1811         error_propagate(errp, err);
1812         return false;
1813     }
1814     return true;
1815 }
1816 #endif
1817 
1818 void memory_region_init_ram_ptr(MemoryRegion *mr,
1819                                 Object *owner,
1820                                 const char *name,
1821                                 uint64_t size,
1822                                 void *ptr)
1823 {
1824     memory_region_init(mr, owner, name, size);
1825     mr->ram = true;
1826     mr->terminates = true;
1827     mr->destructor = memory_region_destructor_ram;
1828 
1829     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1830     assert(ptr != NULL);
1831     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1832 }
1833 
1834 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1835                                        Object *owner,
1836                                        const char *name,
1837                                        uint64_t size,
1838                                        void *ptr)
1839 {
1840     memory_region_init(mr, owner, name, size);
1841     mr->ram = true;
1842     mr->terminates = true;
1843     mr->ram_device = true;
1844     mr->ops = &ram_device_mem_ops;
1845     mr->opaque = mr;
1846     mr->destructor = memory_region_destructor_ram;
1847 
1848     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1849     assert(ptr != NULL);
1850     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1851 }
1852 
1853 void memory_region_init_alias(MemoryRegion *mr,
1854                               Object *owner,
1855                               const char *name,
1856                               MemoryRegion *orig,
1857                               hwaddr offset,
1858                               uint64_t size)
1859 {
1860     memory_region_init(mr, owner, name, size);
1861     mr->alias = orig;
1862     mr->alias_offset = offset;
1863 }
1864 
1865 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1866                                       Object *owner,
1867                                       const char *name,
1868                                       uint64_t size,
1869                                       Error **errp)
1870 {
1871     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1872                                                 size, 0, errp)) {
1873          return false;
1874     }
1875     mr->readonly = true;
1876 
1877     return true;
1878 }
1879 
1880 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1881                                              Object *owner,
1882                                              const MemoryRegionOps *ops,
1883                                              void *opaque,
1884                                              const char *name,
1885                                              uint64_t size,
1886                                              Error **errp)
1887 {
1888     Error *err = NULL;
1889     assert(ops);
1890     memory_region_init(mr, owner, name, size);
1891     mr->ops = ops;
1892     mr->opaque = opaque;
1893     mr->terminates = true;
1894     mr->rom_device = true;
1895     mr->destructor = memory_region_destructor_ram;
1896     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1897     if (err) {
1898         mr->size = int128_zero();
1899         object_unparent(OBJECT(mr));
1900         error_propagate(errp, err);
1901         return false;
1902     }
1903     return true;
1904 }
1905 
1906 void memory_region_init_iommu(void *_iommu_mr,
1907                               size_t instance_size,
1908                               const char *mrtypename,
1909                               Object *owner,
1910                               const char *name,
1911                               uint64_t size)
1912 {
1913     struct IOMMUMemoryRegion *iommu_mr;
1914     struct MemoryRegion *mr;
1915 
1916     object_initialize(_iommu_mr, instance_size, mrtypename);
1917     mr = MEMORY_REGION(_iommu_mr);
1918     memory_region_do_init(mr, owner, name, size);
1919     iommu_mr = IOMMU_MEMORY_REGION(mr);
1920     mr->terminates = true;  /* then re-forwards */
1921     QLIST_INIT(&iommu_mr->iommu_notify);
1922     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1923 }
1924 
1925 static void memory_region_finalize(Object *obj)
1926 {
1927     MemoryRegion *mr = MEMORY_REGION(obj);
1928 
1929     /*
1930      * Each memory region (that can be freed) must have an owner, and it
1931      * always has the same lifecycle of its owner.  It means when reaching
1932      * here, the memory region's owner's refcount is zero.
1933      *
1934      * Here it is possible that the MR has:
1935      *
1936      * (1) mr->container set, which means this MR is a subregion of a
1937      *     container MR. In this case they must share the same owner as the
1938      *     container (otherwise the container should have kept a refcount
1939      *     of this MR's owner).
1940      *
1941      * (2) mr->subregions non-empty, which means this MR is a container of
1942      *     one or more other MRs (which might have the the owner as this
1943      *     MR, or a different owner).
1944      *
1945      * We know the MR, or any MR that is attached to this one as either
1946      * container or children, is not visible in any address space, because
1947      * otherwise the address space should have taken at least one refcount
1948      * of this MR's owner.  So we can blindly clear mr->enabled.
1949      *
1950      * memory_region_set_enabled instead could trigger a transaction and
1951      * cause an infinite loop.
1952      */
1953     mr->enabled = false;
1954     memory_region_transaction_begin();
1955     if (mr->container) {
1956         /* Must share the owner; see above comments */
1957         assert(mr->container->owner == mr->owner);
1958         memory_region_del_subregion(mr->container, mr);
1959     }
1960     while (!QTAILQ_EMPTY(&mr->subregions)) {
1961         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1962         memory_region_del_subregion(mr, subregion);
1963     }
1964     memory_region_transaction_commit();
1965 
1966     mr->destructor(mr);
1967     memory_region_clear_coalescing(mr);
1968     g_free((char *)mr->name);
1969     g_free(mr->ioeventfds);
1970 }
1971 
1972 Object *memory_region_owner(MemoryRegion *mr)
1973 {
1974     Object *obj = OBJECT(mr);
1975     return obj->parent;
1976 }
1977 
1978 void memory_region_ref(MemoryRegion *mr)
1979 {
1980     /* MMIO callbacks most likely will access data that belongs
1981      * to the owner, hence the need to ref/unref the owner whenever
1982      * the memory region is in use.
1983      *
1984      * The memory region is a child of its owner.  As long as the
1985      * owner doesn't call unparent itself on the memory region,
1986      * ref-ing the owner will also keep the memory region alive.
1987      * Memory regions without an owner are supposed to never go away;
1988      * we do not ref/unref them because it slows down DMA sensibly.
1989      */
1990     if (mr && mr->owner) {
1991         object_ref(mr->owner);
1992     }
1993 }
1994 
1995 void memory_region_unref(MemoryRegion *mr)
1996 {
1997     if (mr && mr->owner) {
1998         object_unref(mr->owner);
1999     }
2000 }
2001 
2002 uint64_t memory_region_size(MemoryRegion *mr)
2003 {
2004     if (int128_eq(mr->size, int128_2_64())) {
2005         return UINT64_MAX;
2006     }
2007     return int128_get64(mr->size);
2008 }
2009 
2010 const char *memory_region_name(const MemoryRegion *mr)
2011 {
2012     if (!mr->name) {
2013         ((MemoryRegion *)mr)->name =
2014             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
2015     }
2016     return mr->name;
2017 }
2018 
2019 bool memory_region_is_ram_device(MemoryRegion *mr)
2020 {
2021     return mr->ram_device;
2022 }
2023 
2024 bool memory_region_is_protected(MemoryRegion *mr)
2025 {
2026     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
2027 }
2028 
2029 bool memory_region_has_guest_memfd(MemoryRegion *mr)
2030 {
2031     return mr->ram_block && mr->ram_block->guest_memfd >= 0;
2032 }
2033 
2034 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
2035 {
2036     uint8_t mask = mr->dirty_log_mask;
2037     RAMBlock *rb = mr->ram_block;
2038 
2039     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
2040                              memory_region_is_iommu(mr))) {
2041         mask |= (1 << DIRTY_MEMORY_MIGRATION);
2042     }
2043 
2044     if (tcg_enabled() && rb) {
2045         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
2046         mask |= (1 << DIRTY_MEMORY_CODE);
2047     }
2048     return mask;
2049 }
2050 
2051 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
2052 {
2053     return memory_region_get_dirty_log_mask(mr) & (1 << client);
2054 }
2055 
2056 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
2057                                                    Error **errp)
2058 {
2059     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
2060     IOMMUNotifier *iommu_notifier;
2061     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2062     int ret = 0;
2063 
2064     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2065         flags |= iommu_notifier->notifier_flags;
2066     }
2067 
2068     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
2069         ret = imrc->notify_flag_changed(iommu_mr,
2070                                         iommu_mr->iommu_notify_flags,
2071                                         flags, errp);
2072     }
2073 
2074     if (!ret) {
2075         iommu_mr->iommu_notify_flags = flags;
2076     }
2077     return ret;
2078 }
2079 
2080 int memory_region_register_iommu_notifier(MemoryRegion *mr,
2081                                           IOMMUNotifier *n, Error **errp)
2082 {
2083     IOMMUMemoryRegion *iommu_mr;
2084     int ret;
2085 
2086     if (mr->alias) {
2087         return memory_region_register_iommu_notifier(mr->alias, n, errp);
2088     }
2089 
2090     /* We need to register for at least one bitfield */
2091     iommu_mr = IOMMU_MEMORY_REGION(mr);
2092     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
2093     assert(n->start <= n->end);
2094     assert(n->iommu_idx >= 0 &&
2095            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
2096 
2097     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
2098     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
2099     if (ret) {
2100         QLIST_REMOVE(n, node);
2101     }
2102     return ret;
2103 }
2104 
2105 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
2106 {
2107     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2108 
2109     if (imrc->get_min_page_size) {
2110         return imrc->get_min_page_size(iommu_mr);
2111     }
2112     return TARGET_PAGE_SIZE;
2113 }
2114 
2115 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2116 {
2117     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
2118     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2119     hwaddr addr, granularity;
2120     IOMMUTLBEntry iotlb;
2121 
2122     /* If the IOMMU has its own replay callback, override */
2123     if (imrc->replay) {
2124         imrc->replay(iommu_mr, n);
2125         return;
2126     }
2127 
2128     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
2129 
2130     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
2131         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
2132         if (iotlb.perm != IOMMU_NONE) {
2133             n->notify(n, &iotlb);
2134         }
2135 
2136         /* if (2^64 - MR size) < granularity, it's possible to get an
2137          * infinite loop here.  This should catch such a wraparound */
2138         if ((addr + granularity) < addr) {
2139             break;
2140         }
2141     }
2142 }
2143 
2144 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
2145                                              IOMMUNotifier *n)
2146 {
2147     IOMMUMemoryRegion *iommu_mr;
2148 
2149     if (mr->alias) {
2150         memory_region_unregister_iommu_notifier(mr->alias, n);
2151         return;
2152     }
2153     QLIST_REMOVE(n, node);
2154     iommu_mr = IOMMU_MEMORY_REGION(mr);
2155     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2156 }
2157 
2158 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2159                                     const IOMMUTLBEvent *event)
2160 {
2161     const IOMMUTLBEntry *entry = &event->entry;
2162     hwaddr entry_end = entry->iova + entry->addr_mask;
2163     IOMMUTLBEntry tmp = *entry;
2164 
2165     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2166         assert(entry->perm == IOMMU_NONE);
2167     }
2168 
2169     /*
2170      * Skip the notification if the notification does not overlap
2171      * with registered range.
2172      */
2173     if (notifier->start > entry_end || notifier->end < entry->iova) {
2174         return;
2175     }
2176 
2177     /* Crop (iova, addr_mask) to range */
2178     tmp.iova = MAX(tmp.iova, notifier->start);
2179     tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2180 
2181     if (event->type & notifier->notifier_flags) {
2182         notifier->notify(notifier, &tmp);
2183     }
2184 }
2185 
2186 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2187 {
2188     IOMMUTLBEvent event;
2189 
2190     event.type = IOMMU_NOTIFIER_UNMAP;
2191     event.entry.target_as = &address_space_memory;
2192     event.entry.iova = notifier->start;
2193     event.entry.perm = IOMMU_NONE;
2194     event.entry.addr_mask = notifier->end - notifier->start;
2195 
2196     memory_region_notify_iommu_one(notifier, &event);
2197 }
2198 
2199 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2200                                 int iommu_idx,
2201                                 const IOMMUTLBEvent event)
2202 {
2203     IOMMUNotifier *iommu_notifier;
2204 
2205     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2206 
2207     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2208         if (iommu_notifier->iommu_idx == iommu_idx) {
2209             memory_region_notify_iommu_one(iommu_notifier, &event);
2210         }
2211     }
2212 }
2213 
2214 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2215                                  enum IOMMUMemoryRegionAttr attr,
2216                                  void *data)
2217 {
2218     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2219 
2220     if (!imrc->get_attr) {
2221         return -EINVAL;
2222     }
2223 
2224     return imrc->get_attr(iommu_mr, attr, data);
2225 }
2226 
2227 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2228                                        MemTxAttrs attrs)
2229 {
2230     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2231 
2232     if (!imrc->attrs_to_index) {
2233         return 0;
2234     }
2235 
2236     return imrc->attrs_to_index(iommu_mr, attrs);
2237 }
2238 
2239 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2240 {
2241     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2242 
2243     if (!imrc->num_indexes) {
2244         return 1;
2245     }
2246 
2247     return imrc->num_indexes(iommu_mr);
2248 }
2249 
2250 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2251 {
2252     if (!memory_region_is_ram(mr)) {
2253         return NULL;
2254     }
2255     return mr->rdm;
2256 }
2257 
2258 int memory_region_set_ram_discard_manager(MemoryRegion *mr,
2259                                           RamDiscardManager *rdm)
2260 {
2261     g_assert(memory_region_is_ram(mr));
2262     if (mr->rdm && rdm) {
2263         return -EBUSY;
2264     }
2265 
2266     mr->rdm = rdm;
2267     return 0;
2268 }
2269 
2270 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2271                                                  const MemoryRegion *mr)
2272 {
2273     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2274 
2275     g_assert(rdmc->get_min_granularity);
2276     return rdmc->get_min_granularity(rdm, mr);
2277 }
2278 
2279 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2280                                       const MemoryRegionSection *section)
2281 {
2282     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2283 
2284     g_assert(rdmc->is_populated);
2285     return rdmc->is_populated(rdm, section);
2286 }
2287 
2288 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2289                                          MemoryRegionSection *section,
2290                                          ReplayRamDiscardState replay_fn,
2291                                          void *opaque)
2292 {
2293     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2294 
2295     g_assert(rdmc->replay_populated);
2296     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2297 }
2298 
2299 int ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2300                                          MemoryRegionSection *section,
2301                                          ReplayRamDiscardState replay_fn,
2302                                          void *opaque)
2303 {
2304     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2305 
2306     g_assert(rdmc->replay_discarded);
2307     return rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2308 }
2309 
2310 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2311                                            RamDiscardListener *rdl,
2312                                            MemoryRegionSection *section)
2313 {
2314     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2315 
2316     g_assert(rdmc->register_listener);
2317     rdmc->register_listener(rdm, rdl, section);
2318 }
2319 
2320 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2321                                              RamDiscardListener *rdl)
2322 {
2323     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2324 
2325     g_assert(rdmc->unregister_listener);
2326     rdmc->unregister_listener(rdm, rdl);
2327 }
2328 
2329 /* Called with rcu_read_lock held.  */
2330 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
2331                                      Error **errp)
2332 {
2333     MemoryRegion *mr;
2334     hwaddr xlat;
2335     hwaddr len = iotlb->addr_mask + 1;
2336     bool writable = iotlb->perm & IOMMU_WO;
2337 
2338     /*
2339      * The IOMMU TLB entry we have just covers translation through
2340      * this IOMMU to its immediate target.  We need to translate
2341      * it the rest of the way through to memory.
2342      */
2343     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2344                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2345     if (!memory_region_is_ram(mr)) {
2346         error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2347         return NULL;
2348     } else if (memory_region_has_ram_discard_manager(mr)) {
2349         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2350         MemoryRegionSection tmp = {
2351             .mr = mr,
2352             .offset_within_region = xlat,
2353             .size = int128_make64(len),
2354         };
2355         /*
2356          * Malicious VMs can map memory into the IOMMU, which is expected
2357          * to remain discarded. vfio will pin all pages, populating memory.
2358          * Disallow that. vmstate priorities make sure any RamDiscardManager
2359          * were already restored before IOMMUs are restored.
2360          */
2361         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2362             error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2363                          " via virtio-mem): %" HWADDR_PRIx "",
2364                          iotlb->translated_addr);
2365             return NULL;
2366         }
2367     }
2368 
2369     /*
2370      * Translation truncates length to the IOMMU page size,
2371      * check that it did not truncate too much.
2372      */
2373     if (len & iotlb->addr_mask) {
2374         error_setg(errp, "iommu has granularity incompatible with target AS");
2375         return NULL;
2376     }
2377 
2378     *xlat_p = xlat;
2379     return mr;
2380 }
2381 
2382 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2383 {
2384     uint8_t mask = 1 << client;
2385     uint8_t old_logging;
2386 
2387     assert(client == DIRTY_MEMORY_VGA);
2388     old_logging = mr->vga_logging_count;
2389     mr->vga_logging_count += log ? 1 : -1;
2390     if (!!old_logging == !!mr->vga_logging_count) {
2391         return;
2392     }
2393 
2394     memory_region_transaction_begin();
2395     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2396     memory_region_update_pending |= mr->enabled;
2397     memory_region_transaction_commit();
2398 }
2399 
2400 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2401                              hwaddr size)
2402 {
2403     assert(mr->ram_block);
2404     physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2405                                         size,
2406                                         memory_region_get_dirty_log_mask(mr));
2407 }
2408 
2409 /*
2410  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2411  * dirty bitmap for the specified memory region.
2412  */
2413 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2414 {
2415     MemoryListener *listener;
2416     AddressSpace *as;
2417     FlatView *view;
2418     FlatRange *fr;
2419 
2420     /* If the same address space has multiple log_sync listeners, we
2421      * visit that address space's FlatView multiple times.  But because
2422      * log_sync listeners are rare, it's still cheaper than walking each
2423      * address space once.
2424      */
2425     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2426         if (listener->log_sync) {
2427             as = listener->address_space;
2428             view = address_space_get_flatview(as);
2429             FOR_EACH_FLAT_RANGE(fr, view) {
2430                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2431                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2432                     listener->log_sync(listener, &mrs);
2433                 }
2434             }
2435             flatview_unref(view);
2436             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2437         } else if (listener->log_sync_global) {
2438             /*
2439              * No matter whether MR is specified, what we can do here
2440              * is to do a global sync, because we are not capable to
2441              * sync in a finer granularity.
2442              */
2443             listener->log_sync_global(listener, last_stage);
2444             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2445         }
2446     }
2447 }
2448 
2449 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2450                                       hwaddr len)
2451 {
2452     MemoryRegionSection mrs;
2453     MemoryListener *listener;
2454     AddressSpace *as;
2455     FlatView *view;
2456     FlatRange *fr;
2457     hwaddr sec_start, sec_end, sec_size;
2458 
2459     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2460         if (!listener->log_clear) {
2461             continue;
2462         }
2463         as = listener->address_space;
2464         view = address_space_get_flatview(as);
2465         FOR_EACH_FLAT_RANGE(fr, view) {
2466             if (!fr->dirty_log_mask || fr->mr != mr) {
2467                 /*
2468                  * Clear dirty bitmap operation only applies to those
2469                  * regions whose dirty logging is at least enabled
2470                  */
2471                 continue;
2472             }
2473 
2474             mrs = section_from_flat_range(fr, view);
2475 
2476             sec_start = MAX(mrs.offset_within_region, start);
2477             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2478             sec_end = MIN(sec_end, start + len);
2479 
2480             if (sec_start >= sec_end) {
2481                 /*
2482                  * If this memory region section has no intersection
2483                  * with the requested range, skip.
2484                  */
2485                 continue;
2486             }
2487 
2488             /* Valid case; shrink the section if needed */
2489             mrs.offset_within_address_space +=
2490                 sec_start - mrs.offset_within_region;
2491             mrs.offset_within_region = sec_start;
2492             sec_size = sec_end - sec_start;
2493             mrs.size = int128_make64(sec_size);
2494             listener->log_clear(listener, &mrs);
2495         }
2496         flatview_unref(view);
2497     }
2498 }
2499 
2500 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2501                                                             hwaddr addr,
2502                                                             hwaddr size,
2503                                                             unsigned client)
2504 {
2505     DirtyBitmapSnapshot *snapshot;
2506     assert(mr->ram_block);
2507     memory_region_sync_dirty_bitmap(mr, false);
2508     snapshot = physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2509     memory_global_after_dirty_log_sync();
2510     return snapshot;
2511 }
2512 
2513 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2514                                       hwaddr addr, hwaddr size)
2515 {
2516     assert(mr->ram_block);
2517     return physical_memory_snapshot_get_dirty(snap,
2518                 memory_region_get_ram_addr(mr) + addr, size);
2519 }
2520 
2521 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2522 {
2523     if (mr->readonly != readonly) {
2524         memory_region_transaction_begin();
2525         mr->readonly = readonly;
2526         memory_region_update_pending |= mr->enabled;
2527         memory_region_transaction_commit();
2528     }
2529 }
2530 
2531 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2532 {
2533     if (mr->nonvolatile != nonvolatile) {
2534         memory_region_transaction_begin();
2535         mr->nonvolatile = nonvolatile;
2536         memory_region_update_pending |= mr->enabled;
2537         memory_region_transaction_commit();
2538     }
2539 }
2540 
2541 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2542 {
2543     if (mr->romd_mode != romd_mode) {
2544         memory_region_transaction_begin();
2545         mr->romd_mode = romd_mode;
2546         memory_region_update_pending |= mr->enabled;
2547         memory_region_transaction_commit();
2548     }
2549 }
2550 
2551 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2552                                hwaddr size, unsigned client)
2553 {
2554     assert(mr->ram_block);
2555     physical_memory_test_and_clear_dirty(
2556         memory_region_get_ram_addr(mr) + addr, size, client);
2557 }
2558 
2559 int memory_region_get_fd(MemoryRegion *mr)
2560 {
2561     RCU_READ_LOCK_GUARD();
2562     while (mr->alias) {
2563         mr = mr->alias;
2564     }
2565     return mr->ram_block->fd;
2566 }
2567 
2568 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2569 {
2570     uint64_t offset = 0;
2571 
2572     RCU_READ_LOCK_GUARD();
2573     while (mr->alias) {
2574         offset += mr->alias_offset;
2575         mr = mr->alias;
2576     }
2577     assert(mr->ram_block);
2578     return qemu_map_ram_ptr(mr->ram_block, offset);
2579 }
2580 
2581 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2582 {
2583     RAMBlock *block;
2584 
2585     block = qemu_ram_block_from_host(ptr, false, offset);
2586     if (!block) {
2587         return NULL;
2588     }
2589 
2590     return block->mr;
2591 }
2592 
2593 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2594 {
2595     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2596 }
2597 
2598 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2599 {
2600     assert(mr->ram_block);
2601 
2602     qemu_ram_resize(mr->ram_block, newsize, errp);
2603 }
2604 
2605 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2606 {
2607     if (mr->ram_block) {
2608         qemu_ram_msync(mr->ram_block, addr, size);
2609     }
2610 }
2611 
2612 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2613 {
2614     /*
2615      * Might be extended case needed to cover
2616      * different types of memory regions
2617      */
2618     if (mr->dirty_log_mask) {
2619         memory_region_msync(mr, addr, size);
2620     }
2621 }
2622 
2623 /*
2624  * Call proper memory listeners about the change on the newly
2625  * added/removed CoalescedMemoryRange.
2626  */
2627 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2628                                                  CoalescedMemoryRange *cmr,
2629                                                  bool add)
2630 {
2631     AddressSpace *as;
2632     FlatView *view;
2633     FlatRange *fr;
2634 
2635     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2636         view = address_space_get_flatview(as);
2637         FOR_EACH_FLAT_RANGE(fr, view) {
2638             if (fr->mr == mr) {
2639                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2640             }
2641         }
2642         flatview_unref(view);
2643     }
2644 }
2645 
2646 void memory_region_set_coalescing(MemoryRegion *mr)
2647 {
2648     memory_region_clear_coalescing(mr);
2649     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2650 }
2651 
2652 void memory_region_add_coalescing(MemoryRegion *mr,
2653                                   hwaddr offset,
2654                                   uint64_t size)
2655 {
2656     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2657 
2658     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2659     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2660     memory_region_update_coalesced_range(mr, cmr, true);
2661     memory_region_set_flush_coalesced(mr);
2662 }
2663 
2664 void memory_region_clear_coalescing(MemoryRegion *mr)
2665 {
2666     CoalescedMemoryRange *cmr;
2667 
2668     if (QTAILQ_EMPTY(&mr->coalesced)) {
2669         return;
2670     }
2671 
2672     qemu_flush_coalesced_mmio_buffer();
2673     mr->flush_coalesced_mmio = false;
2674 
2675     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2676         cmr = QTAILQ_FIRST(&mr->coalesced);
2677         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2678         memory_region_update_coalesced_range(mr, cmr, false);
2679         g_free(cmr);
2680     }
2681 }
2682 
2683 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2684 {
2685     mr->flush_coalesced_mmio = true;
2686 }
2687 
2688 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2689 {
2690     qemu_flush_coalesced_mmio_buffer();
2691     if (QTAILQ_EMPTY(&mr->coalesced)) {
2692         mr->flush_coalesced_mmio = false;
2693     }
2694 }
2695 
2696 void memory_region_enable_lockless_io(MemoryRegion *mr)
2697 {
2698     mr->lockless_io = true;
2699     /*
2700      * reentrancy_guard has per device scope, that when enabled
2701      * will effectively prevent concurrent access to device's IO
2702      * MemoryRegion(s) by not calling accessor callback.
2703      *
2704      * Turn it off for lock-less IO enabled devices, to allow
2705      * concurrent IO.
2706      * TODO: remove this when reentrancy_guard becomes per transaction.
2707      */
2708     mr->disable_reentrancy_guard = true;
2709 }
2710 
2711 void memory_region_add_eventfd(MemoryRegion *mr,
2712                                hwaddr addr,
2713                                unsigned size,
2714                                bool match_data,
2715                                uint64_t data,
2716                                EventNotifier *e)
2717 {
2718     MemoryRegionIoeventfd mrfd = {
2719         .addr.start = int128_make64(addr),
2720         .addr.size = int128_make64(size),
2721         .match_data = match_data,
2722         .data = data,
2723         .e = e,
2724     };
2725     unsigned i;
2726 
2727     if (size) {
2728         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2729         adjust_endianness(mr, &mrfd.data, mop);
2730     }
2731     memory_region_transaction_begin();
2732     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2733         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2734             break;
2735         }
2736     }
2737     ++mr->ioeventfd_nb;
2738     mr->ioeventfds = g_realloc(mr->ioeventfds,
2739                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2740     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2741             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2742     mr->ioeventfds[i] = mrfd;
2743     ioeventfd_update_pending |= mr->enabled;
2744     memory_region_transaction_commit();
2745 }
2746 
2747 void memory_region_del_eventfd(MemoryRegion *mr,
2748                                hwaddr addr,
2749                                unsigned size,
2750                                bool match_data,
2751                                uint64_t data,
2752                                EventNotifier *e)
2753 {
2754     MemoryRegionIoeventfd mrfd = {
2755         .addr.start = int128_make64(addr),
2756         .addr.size = int128_make64(size),
2757         .match_data = match_data,
2758         .data = data,
2759         .e = e,
2760     };
2761     unsigned i;
2762 
2763     if (size) {
2764         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2765         adjust_endianness(mr, &mrfd.data, mop);
2766     }
2767     memory_region_transaction_begin();
2768     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2769         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2770             break;
2771         }
2772     }
2773     assert(i != mr->ioeventfd_nb);
2774     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2775             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2776     --mr->ioeventfd_nb;
2777     mr->ioeventfds = g_realloc(mr->ioeventfds,
2778                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2779     ioeventfd_update_pending |= mr->enabled;
2780     memory_region_transaction_commit();
2781 }
2782 
2783 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2784 {
2785     MemoryRegion *mr = subregion->container;
2786     MemoryRegion *other;
2787 
2788     memory_region_transaction_begin();
2789 
2790     if (mr->owner != subregion->owner) {
2791         memory_region_ref(subregion);
2792     }
2793 
2794     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2795         if (subregion->priority >= other->priority) {
2796             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2797             goto done;
2798         }
2799     }
2800     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2801 done:
2802     memory_region_update_pending |= mr->enabled && subregion->enabled;
2803     memory_region_transaction_commit();
2804 }
2805 
2806 static void memory_region_add_subregion_common(MemoryRegion *mr,
2807                                                hwaddr offset,
2808                                                MemoryRegion *subregion)
2809 {
2810     MemoryRegion *alias;
2811 
2812     assert(!subregion->container);
2813     subregion->container = mr;
2814     for (alias = subregion->alias; alias; alias = alias->alias) {
2815         alias->mapped_via_alias++;
2816     }
2817     subregion->addr = offset;
2818     memory_region_update_container_subregions(subregion);
2819 }
2820 
2821 void memory_region_add_subregion(MemoryRegion *mr,
2822                                  hwaddr offset,
2823                                  MemoryRegion *subregion)
2824 {
2825     subregion->priority = 0;
2826     memory_region_add_subregion_common(mr, offset, subregion);
2827 }
2828 
2829 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2830                                          hwaddr offset,
2831                                          MemoryRegion *subregion,
2832                                          int priority)
2833 {
2834     subregion->priority = priority;
2835     memory_region_add_subregion_common(mr, offset, subregion);
2836 }
2837 
2838 void memory_region_del_subregion(MemoryRegion *mr,
2839                                  MemoryRegion *subregion)
2840 {
2841     MemoryRegion *alias;
2842 
2843     memory_region_transaction_begin();
2844     assert(subregion->container == mr);
2845     subregion->container = NULL;
2846     for (alias = subregion->alias; alias; alias = alias->alias) {
2847         alias->mapped_via_alias--;
2848         assert(alias->mapped_via_alias >= 0);
2849     }
2850     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2851 
2852     if (mr->owner != subregion->owner) {
2853         memory_region_unref(subregion);
2854     }
2855 
2856     memory_region_update_pending |= mr->enabled && subregion->enabled;
2857     memory_region_transaction_commit();
2858 }
2859 
2860 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2861 {
2862     if (enabled == mr->enabled) {
2863         return;
2864     }
2865     memory_region_transaction_begin();
2866     mr->enabled = enabled;
2867     memory_region_update_pending = true;
2868     memory_region_transaction_commit();
2869 }
2870 
2871 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2872 {
2873     Int128 s = int128_make64(size);
2874 
2875     if (size == UINT64_MAX) {
2876         s = int128_2_64();
2877     }
2878     if (int128_eq(s, mr->size)) {
2879         return;
2880     }
2881     memory_region_transaction_begin();
2882     mr->size = s;
2883     memory_region_update_pending = true;
2884     memory_region_transaction_commit();
2885 }
2886 
2887 static void memory_region_readd_subregion(MemoryRegion *mr)
2888 {
2889     MemoryRegion *container = mr->container;
2890 
2891     if (container) {
2892         memory_region_transaction_begin();
2893         memory_region_ref(mr);
2894         memory_region_del_subregion(container, mr);
2895         memory_region_add_subregion_common(container, mr->addr, mr);
2896         memory_region_unref(mr);
2897         memory_region_transaction_commit();
2898     }
2899 }
2900 
2901 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2902 {
2903     if (addr != mr->addr) {
2904         mr->addr = addr;
2905         memory_region_readd_subregion(mr);
2906     }
2907 }
2908 
2909 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2910 {
2911     assert(mr->alias);
2912 
2913     if (offset == mr->alias_offset) {
2914         return;
2915     }
2916 
2917     memory_region_transaction_begin();
2918     mr->alias_offset = offset;
2919     memory_region_update_pending |= mr->enabled;
2920     memory_region_transaction_commit();
2921 }
2922 
2923 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2924 {
2925     if (unmergeable == mr->unmergeable) {
2926         return;
2927     }
2928 
2929     memory_region_transaction_begin();
2930     mr->unmergeable = unmergeable;
2931     memory_region_update_pending |= mr->enabled;
2932     memory_region_transaction_commit();
2933 }
2934 
2935 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2936 {
2937     return mr->align;
2938 }
2939 
2940 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2941 {
2942     const AddrRange *addr = addr_;
2943     const FlatRange *fr = fr_;
2944 
2945     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2946         return -1;
2947     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2948         return 1;
2949     }
2950     return 0;
2951 }
2952 
2953 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2954 {
2955     return bsearch(&addr, view->ranges, view->nr,
2956                    sizeof(FlatRange), cmp_flatrange_addr);
2957 }
2958 
2959 bool memory_region_is_mapped(MemoryRegion *mr)
2960 {
2961     return !!mr->container || mr->mapped_via_alias;
2962 }
2963 
2964 /* Same as memory_region_find, but it does not add a reference to the
2965  * returned region.  It must be called from an RCU critical section.
2966  */
2967 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2968                                                   hwaddr addr, uint64_t size)
2969 {
2970     MemoryRegionSection ret = { .mr = NULL };
2971     MemoryRegion *root;
2972     AddressSpace *as;
2973     AddrRange range;
2974     FlatView *view;
2975     FlatRange *fr;
2976 
2977     addr += mr->addr;
2978     for (root = mr; root->container; ) {
2979         root = root->container;
2980         addr += root->addr;
2981     }
2982 
2983     as = memory_region_to_address_space(root);
2984     if (!as) {
2985         return ret;
2986     }
2987     range = addrrange_make(int128_make64(addr), int128_make64(size));
2988 
2989     view = address_space_to_flatview(as);
2990     fr = flatview_lookup(view, range);
2991     if (!fr) {
2992         return ret;
2993     }
2994 
2995     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2996         --fr;
2997     }
2998 
2999     ret.mr = fr->mr;
3000     ret.fv = view;
3001     range = addrrange_intersection(range, fr->addr);
3002     ret.offset_within_region = fr->offset_in_region;
3003     ret.offset_within_region += int128_get64(int128_sub(range.start,
3004                                                         fr->addr.start));
3005     ret.size = range.size;
3006     ret.offset_within_address_space = int128_get64(range.start);
3007     ret.readonly = fr->readonly;
3008     ret.nonvolatile = fr->nonvolatile;
3009     return ret;
3010 }
3011 
3012 MemoryRegionSection memory_region_find(MemoryRegion *mr,
3013                                        hwaddr addr, uint64_t size)
3014 {
3015     MemoryRegionSection ret;
3016     RCU_READ_LOCK_GUARD();
3017     ret = memory_region_find_rcu(mr, addr, size);
3018     if (ret.mr) {
3019         memory_region_ref(ret.mr);
3020     }
3021     return ret;
3022 }
3023 
3024 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
3025 {
3026     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
3027 
3028     *tmp = *s;
3029     if (tmp->mr) {
3030         memory_region_ref(tmp->mr);
3031     }
3032     if (tmp->fv) {
3033         bool ret  = flatview_ref(tmp->fv);
3034 
3035         g_assert(ret);
3036     }
3037     return tmp;
3038 }
3039 
3040 void memory_region_section_free_copy(MemoryRegionSection *s)
3041 {
3042     if (s->fv) {
3043         flatview_unref(s->fv);
3044     }
3045     if (s->mr) {
3046         memory_region_unref(s->mr);
3047     }
3048     g_free(s);
3049 }
3050 
3051 bool memory_region_present(MemoryRegion *container, hwaddr addr)
3052 {
3053     MemoryRegion *mr;
3054 
3055     RCU_READ_LOCK_GUARD();
3056     mr = memory_region_find_rcu(container, addr, 1).mr;
3057     return mr && mr != container;
3058 }
3059 
3060 void memory_global_dirty_log_sync(bool last_stage)
3061 {
3062     memory_region_sync_dirty_bitmap(NULL, last_stage);
3063 }
3064 
3065 void memory_global_after_dirty_log_sync(void)
3066 {
3067     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
3068 }
3069 
3070 /*
3071  * Dirty track stop flags that are postponed due to VM being stopped.  Should
3072  * only be used within vmstate_change hook.
3073  */
3074 static unsigned int postponed_stop_flags;
3075 static VMChangeStateEntry *vmstate_change;
3076 static void memory_global_dirty_log_stop_postponed_run(void);
3077 
3078 static bool memory_global_dirty_log_do_start(Error **errp)
3079 {
3080     MemoryListener *listener;
3081 
3082     QTAILQ_FOREACH(listener, &memory_listeners, link) {
3083         if (listener->log_global_start) {
3084             if (!listener->log_global_start(listener, errp)) {
3085                 goto err;
3086             }
3087         }
3088     }
3089     return true;
3090 
3091 err:
3092     while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
3093         if (listener->log_global_stop) {
3094             listener->log_global_stop(listener);
3095         }
3096     }
3097 
3098     return false;
3099 }
3100 
3101 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
3102 {
3103     unsigned int old_flags;
3104 
3105     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
3106 
3107     if (vmstate_change) {
3108         /* If there is postponed stop(), operate on it first */
3109         postponed_stop_flags &= ~flags;
3110         memory_global_dirty_log_stop_postponed_run();
3111     }
3112 
3113     flags &= ~global_dirty_tracking;
3114     if (!flags) {
3115         return true;
3116     }
3117 
3118     old_flags = global_dirty_tracking;
3119     global_dirty_tracking |= flags;
3120     trace_global_dirty_changed(global_dirty_tracking);
3121 
3122     if (!old_flags) {
3123         if (!memory_global_dirty_log_do_start(errp)) {
3124             global_dirty_tracking &= ~flags;
3125             trace_global_dirty_changed(global_dirty_tracking);
3126             return false;
3127         }
3128 
3129         memory_region_transaction_begin();
3130         memory_region_update_pending = true;
3131         memory_region_transaction_commit();
3132     }
3133     return true;
3134 }
3135 
3136 static void memory_global_dirty_log_do_stop(unsigned int flags)
3137 {
3138     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
3139     assert((global_dirty_tracking & flags) == flags);
3140     global_dirty_tracking &= ~flags;
3141 
3142     trace_global_dirty_changed(global_dirty_tracking);
3143 
3144     if (!global_dirty_tracking) {
3145         memory_region_transaction_begin();
3146         memory_region_update_pending = true;
3147         memory_region_transaction_commit();
3148         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
3149     }
3150 }
3151 
3152 /*
3153  * Execute the postponed dirty log stop operations if there is, then reset
3154  * everything (including the flags and the vmstate change hook).
3155  */
3156 static void memory_global_dirty_log_stop_postponed_run(void)
3157 {
3158     /* This must be called with the vmstate handler registered */
3159     assert(vmstate_change);
3160 
3161     /* Note: postponed_stop_flags can be cleared in log start routine */
3162     if (postponed_stop_flags) {
3163         memory_global_dirty_log_do_stop(postponed_stop_flags);
3164         postponed_stop_flags = 0;
3165     }
3166 
3167     qemu_del_vm_change_state_handler(vmstate_change);
3168     vmstate_change = NULL;
3169 }
3170 
3171 static void memory_vm_change_state_handler(void *opaque, bool running,
3172                                            RunState state)
3173 {
3174     if (running) {
3175         memory_global_dirty_log_stop_postponed_run();
3176     }
3177 }
3178 
3179 void memory_global_dirty_log_stop(unsigned int flags)
3180 {
3181     if (!runstate_is_running()) {
3182         /* Postpone the dirty log stop, e.g., to when VM starts again */
3183         if (vmstate_change) {
3184             /* Batch with previous postponed flags */
3185             postponed_stop_flags |= flags;
3186         } else {
3187             postponed_stop_flags = flags;
3188             vmstate_change = qemu_add_vm_change_state_handler(
3189                 memory_vm_change_state_handler, NULL);
3190         }
3191         return;
3192     }
3193 
3194     memory_global_dirty_log_do_stop(flags);
3195 }
3196 
3197 static void listener_add_address_space(MemoryListener *listener,
3198                                        AddressSpace *as)
3199 {
3200     unsigned i;
3201     FlatView *view;
3202     FlatRange *fr;
3203     MemoryRegionIoeventfd *fd;
3204 
3205     if (listener->begin) {
3206         listener->begin(listener);
3207     }
3208     if (global_dirty_tracking) {
3209         /*
3210          * Currently only VFIO can fail log_global_start(), and it's not
3211          * yet allowed to hotplug any PCI device during migration. So this
3212          * should never fail when invoked, guard it with error_abort.  If
3213          * it can start to fail in the future, we need to be able to fail
3214          * the whole listener_add_address_space() and its callers.
3215          */
3216         if (listener->log_global_start) {
3217             listener->log_global_start(listener, &error_abort);
3218         }
3219     }
3220 
3221     view = address_space_get_flatview(as);
3222     FOR_EACH_FLAT_RANGE(fr, view) {
3223         MemoryRegionSection section = section_from_flat_range(fr, view);
3224 
3225         if (listener->region_add) {
3226             listener->region_add(listener, &section);
3227         }
3228 
3229         /* send coalesced io add notifications */
3230         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3231                                                         listener, as, true);
3232 
3233         if (fr->dirty_log_mask && listener->log_start) {
3234             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3235         }
3236     }
3237 
3238     /*
3239      * register all eventfds for this address space for the newly registered
3240      * listener.
3241      */
3242     for (i = 0; i < as->ioeventfd_nb; i++) {
3243         fd = &as->ioeventfds[i];
3244         MemoryRegionSection section = (MemoryRegionSection) {
3245             .fv = view,
3246             .offset_within_address_space = int128_get64(fd->addr.start),
3247             .size = fd->addr.size,
3248         };
3249 
3250         if (listener->eventfd_add) {
3251             listener->eventfd_add(listener, &section,
3252                                   fd->match_data, fd->data, fd->e);
3253         }
3254     }
3255 
3256     if (listener->commit) {
3257         listener->commit(listener);
3258     }
3259     flatview_unref(view);
3260 }
3261 
3262 static void listener_del_address_space(MemoryListener *listener,
3263                                        AddressSpace *as)
3264 {
3265     unsigned i;
3266     FlatView *view;
3267     FlatRange *fr;
3268     MemoryRegionIoeventfd *fd;
3269 
3270     if (listener->begin) {
3271         listener->begin(listener);
3272     }
3273     view = address_space_get_flatview(as);
3274     FOR_EACH_FLAT_RANGE(fr, view) {
3275         MemoryRegionSection section = section_from_flat_range(fr, view);
3276 
3277         if (fr->dirty_log_mask && listener->log_stop) {
3278             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3279         }
3280 
3281         /* send coalesced io del notifications */
3282         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3283                                                         listener, as, false);
3284         if (listener->region_del) {
3285             listener->region_del(listener, &section);
3286         }
3287     }
3288 
3289     /*
3290      * de-register all eventfds for this address space for the current
3291      * listener.
3292      */
3293     for (i = 0; i < as->ioeventfd_nb; i++) {
3294         fd = &as->ioeventfds[i];
3295         MemoryRegionSection section = (MemoryRegionSection) {
3296             .fv = view,
3297             .offset_within_address_space = int128_get64(fd->addr.start),
3298             .size = fd->addr.size,
3299         };
3300 
3301         if (listener->eventfd_del) {
3302             listener->eventfd_del(listener, &section,
3303                                   fd->match_data, fd->data, fd->e);
3304         }
3305     }
3306 
3307     if (listener->commit) {
3308         listener->commit(listener);
3309     }
3310     flatview_unref(view);
3311 }
3312 
3313 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3314 {
3315     MemoryListener *other = NULL;
3316 
3317     /* Only one of them can be defined for a listener */
3318     assert(!(listener->log_sync && listener->log_sync_global));
3319 
3320     listener->address_space = as;
3321     if (QTAILQ_EMPTY(&memory_listeners)
3322         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3323         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3324     } else {
3325         QTAILQ_FOREACH(other, &memory_listeners, link) {
3326             if (listener->priority < other->priority) {
3327                 break;
3328             }
3329         }
3330         QTAILQ_INSERT_BEFORE(other, listener, link);
3331     }
3332 
3333     if (QTAILQ_EMPTY(&as->listeners)
3334         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3335         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3336     } else {
3337         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3338             if (listener->priority < other->priority) {
3339                 break;
3340             }
3341         }
3342         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3343     }
3344 
3345     listener_add_address_space(listener, as);
3346 
3347     if (listener->eventfd_add || listener->eventfd_del) {
3348         as->ioeventfd_notifiers++;
3349     }
3350 }
3351 
3352 void memory_listener_unregister(MemoryListener *listener)
3353 {
3354     if (!listener->address_space) {
3355         return;
3356     }
3357 
3358     if (listener->eventfd_add || listener->eventfd_del) {
3359         listener->address_space->ioeventfd_notifiers--;
3360     }
3361 
3362     listener_del_address_space(listener, listener->address_space);
3363     QTAILQ_REMOVE(&memory_listeners, listener, link);
3364     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3365     listener->address_space = NULL;
3366 }
3367 
3368 void address_space_remove_listeners(AddressSpace *as)
3369 {
3370     while (!QTAILQ_EMPTY(&as->listeners)) {
3371         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3372     }
3373 }
3374 
3375 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3376 {
3377     memory_region_ref(root);
3378     as->root = root;
3379     as->current_map = NULL;
3380     as->ioeventfd_nb = 0;
3381     as->ioeventfds = NULL;
3382     QTAILQ_INIT(&as->listeners);
3383     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3384     as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3385     as->bounce_buffer_size = 0;
3386     qemu_mutex_init(&as->map_client_list_lock);
3387     QLIST_INIT(&as->map_client_list);
3388     as->name = g_strdup(name ? name : "anonymous");
3389     address_space_update_topology(as);
3390     address_space_update_ioeventfds(as);
3391 }
3392 
3393 static void do_address_space_destroy(AddressSpace *as)
3394 {
3395     assert(qatomic_read(&as->bounce_buffer_size) == 0);
3396     assert(QLIST_EMPTY(&as->map_client_list));
3397     qemu_mutex_destroy(&as->map_client_list_lock);
3398 
3399     assert(QTAILQ_EMPTY(&as->listeners));
3400 
3401     flatview_unref(as->current_map);
3402     g_free(as->name);
3403     g_free(as->ioeventfds);
3404     memory_region_unref(as->root);
3405 }
3406 
3407 static void do_address_space_destroy_free(AddressSpace *as)
3408 {
3409     do_address_space_destroy(as);
3410     g_free(as);
3411 }
3412 
3413 /* Detach address space from global view, notify all listeners */
3414 static void address_space_detach(AddressSpace *as)
3415 {
3416     MemoryRegion *root = as->root;
3417 
3418     /* Flush out anything from MemoryListeners listening in on this */
3419     memory_region_transaction_begin();
3420     as->root = NULL;
3421     memory_region_transaction_commit();
3422     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3423 
3424     /* At this point, as->dispatch and as->current_map are dummy
3425      * entries that the guest should never use.  Wait for the old
3426      * values to expire before freeing the data.
3427      */
3428     as->root = root;
3429 }
3430 
3431 void address_space_destroy(AddressSpace *as)
3432 {
3433     address_space_detach(as);
3434     call_rcu(as, do_address_space_destroy, rcu);
3435 }
3436 
3437 void address_space_destroy_free(AddressSpace *as)
3438 {
3439     address_space_detach(as);
3440     call_rcu(as, do_address_space_destroy_free, rcu);
3441 }
3442 
3443 static const char *memory_region_type(MemoryRegion *mr)
3444 {
3445     if (mr->alias) {
3446         return memory_region_type(mr->alias);
3447     }
3448     if (memory_region_is_ram_device(mr)) {
3449         return "ramd";
3450     } else if (memory_region_is_romd(mr)) {
3451         return "romd";
3452     } else if (memory_region_is_rom(mr)) {
3453         return "rom";
3454     } else if (memory_region_is_ram(mr)) {
3455         return "ram";
3456     } else {
3457         return "i/o";
3458     }
3459 }
3460 
3461 typedef struct MemoryRegionList MemoryRegionList;
3462 
3463 struct MemoryRegionList {
3464     const MemoryRegion *mr;
3465     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3466 };
3467 
3468 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3469 
3470 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3471                            int128_sub((size), int128_one())) : 0)
3472 #define MTREE_INDENT "  "
3473 
3474 static void mtree_expand_owner(const char *label, Object *obj)
3475 {
3476     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3477 
3478     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3479     if (dev && dev->id) {
3480         qemu_printf(" id=%s", dev->id);
3481     } else {
3482         char *canonical_path = object_get_canonical_path(obj);
3483         if (canonical_path) {
3484             qemu_printf(" path=%s", canonical_path);
3485             g_free(canonical_path);
3486         } else {
3487             qemu_printf(" type=%s", object_get_typename(obj));
3488         }
3489     }
3490     qemu_printf("}");
3491 }
3492 
3493 static void mtree_print_mr_owner(const MemoryRegion *mr)
3494 {
3495     Object *owner = mr->owner;
3496     Object *parent = memory_region_owner((MemoryRegion *)mr);
3497 
3498     if (!owner && !parent) {
3499         qemu_printf(" orphan");
3500         return;
3501     }
3502     if (owner) {
3503         mtree_expand_owner("owner", owner);
3504     }
3505     if (parent && parent != owner) {
3506         mtree_expand_owner("parent", parent);
3507     }
3508 }
3509 
3510 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3511                            hwaddr base,
3512                            MemoryRegionListHead *alias_print_queue,
3513                            bool owner, bool display_disabled)
3514 {
3515     MemoryRegionList *new_ml, *ml, *next_ml;
3516     MemoryRegionListHead submr_print_queue;
3517     const MemoryRegion *submr;
3518     unsigned int i;
3519     hwaddr cur_start, cur_end;
3520 
3521     if (!mr) {
3522         return;
3523     }
3524 
3525     cur_start = base + mr->addr;
3526     cur_end = cur_start + MR_SIZE(mr->size);
3527 
3528     /*
3529      * Try to detect overflow of memory region. This should never
3530      * happen normally. When it happens, we dump something to warn the
3531      * user who is observing this.
3532      */
3533     if (cur_start < base || cur_end < cur_start) {
3534         qemu_printf("[DETECTED OVERFLOW!] ");
3535     }
3536 
3537     if (mr->alias) {
3538         bool found = false;
3539 
3540         /* check if the alias is already in the queue */
3541         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3542             if (ml->mr == mr->alias) {
3543                 found = true;
3544             }
3545         }
3546 
3547         if (!found) {
3548             ml = g_new(MemoryRegionList, 1);
3549             ml->mr = mr->alias;
3550             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3551         }
3552         if (mr->enabled || display_disabled) {
3553             for (i = 0; i < level; i++) {
3554                 qemu_printf(MTREE_INDENT);
3555             }
3556             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3557                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3558                         "-" HWADDR_FMT_plx "%s",
3559                         cur_start, cur_end,
3560                         mr->priority,
3561                         mr->nonvolatile ? "nv-" : "",
3562                         memory_region_type((MemoryRegion *)mr),
3563                         memory_region_name(mr),
3564                         memory_region_name(mr->alias),
3565                         mr->alias_offset,
3566                         mr->alias_offset + MR_SIZE(mr->size),
3567                         mr->enabled ? "" : " [disabled]");
3568             if (owner) {
3569                 mtree_print_mr_owner(mr);
3570             }
3571             qemu_printf("\n");
3572         }
3573     } else {
3574         if (mr->enabled || display_disabled) {
3575             for (i = 0; i < level; i++) {
3576                 qemu_printf(MTREE_INDENT);
3577             }
3578             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3579                         " (prio %d, %s%s): %s%s",
3580                         cur_start, cur_end,
3581                         mr->priority,
3582                         mr->nonvolatile ? "nv-" : "",
3583                         memory_region_type((MemoryRegion *)mr),
3584                         memory_region_name(mr),
3585                         mr->enabled ? "" : " [disabled]");
3586             if (owner) {
3587                 mtree_print_mr_owner(mr);
3588             }
3589             qemu_printf("\n");
3590         }
3591     }
3592 
3593     QTAILQ_INIT(&submr_print_queue);
3594 
3595     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3596         new_ml = g_new(MemoryRegionList, 1);
3597         new_ml->mr = submr;
3598         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3599             if (new_ml->mr->addr < ml->mr->addr ||
3600                 (new_ml->mr->addr == ml->mr->addr &&
3601                  new_ml->mr->priority > ml->mr->priority)) {
3602                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3603                 new_ml = NULL;
3604                 break;
3605             }
3606         }
3607         if (new_ml) {
3608             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3609         }
3610     }
3611 
3612     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3613         mtree_print_mr(ml->mr, level + 1, cur_start,
3614                        alias_print_queue, owner, display_disabled);
3615     }
3616 
3617     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3618         g_free(ml);
3619     }
3620 }
3621 
3622 struct FlatViewInfo {
3623     int counter;
3624     bool dispatch_tree;
3625     bool owner;
3626     AccelClass *ac;
3627 };
3628 
3629 static void mtree_print_flatview(gpointer key, gpointer value,
3630                                  gpointer user_data)
3631 {
3632     FlatView *view = key;
3633     GArray *fv_address_spaces = value;
3634     struct FlatViewInfo *fvi = user_data;
3635     FlatRange *range = &view->ranges[0];
3636     MemoryRegion *mr;
3637     int n = view->nr;
3638     int i;
3639     AddressSpace *as;
3640 
3641     qemu_printf("FlatView #%d\n", fvi->counter);
3642     ++fvi->counter;
3643 
3644     for (i = 0; i < fv_address_spaces->len; ++i) {
3645         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3646         qemu_printf(" AS \"%s\", root: %s",
3647                     as->name, memory_region_name(as->root));
3648         if (as->root->alias) {
3649             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3650         }
3651         qemu_printf("\n");
3652     }
3653 
3654     qemu_printf(" Root memory region: %s\n",
3655       view->root ? memory_region_name(view->root) : "(none)");
3656 
3657     if (n <= 0) {
3658         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3659         return;
3660     }
3661 
3662     while (n--) {
3663         mr = range->mr;
3664         if (range->offset_in_region) {
3665             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3666                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3667                         int128_get64(range->addr.start),
3668                         int128_get64(range->addr.start)
3669                         + MR_SIZE(range->addr.size),
3670                         mr->priority,
3671                         range->nonvolatile ? "nv-" : "",
3672                         range->readonly ? "rom" : memory_region_type(mr),
3673                         memory_region_name(mr),
3674                         range->offset_in_region);
3675         } else {
3676             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3677                         " (prio %d, %s%s): %s",
3678                         int128_get64(range->addr.start),
3679                         int128_get64(range->addr.start)
3680                         + MR_SIZE(range->addr.size),
3681                         mr->priority,
3682                         range->nonvolatile ? "nv-" : "",
3683                         range->readonly ? "rom" : memory_region_type(mr),
3684                         memory_region_name(mr));
3685         }
3686         if (fvi->owner) {
3687             mtree_print_mr_owner(mr);
3688         }
3689 
3690         if (fvi->ac) {
3691             for (i = 0; i < fv_address_spaces->len; ++i) {
3692                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3693                 if (fvi->ac->has_memory(current_machine->accelerator, as,
3694                                         int128_get64(range->addr.start),
3695                                         MR_SIZE(range->addr.size) + 1)) {
3696                     qemu_printf(" %s", fvi->ac->name);
3697                 }
3698             }
3699         }
3700         qemu_printf("\n");
3701         range++;
3702     }
3703 
3704 #if !defined(CONFIG_USER_ONLY)
3705     if (fvi->dispatch_tree && view->root) {
3706         mtree_print_dispatch(view->dispatch, view->root);
3707     }
3708 #endif
3709 
3710     qemu_printf("\n");
3711 }
3712 
3713 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3714                                       gpointer user_data)
3715 {
3716     FlatView *view = key;
3717     GArray *fv_address_spaces = value;
3718 
3719     g_array_unref(fv_address_spaces);
3720     flatview_unref(view);
3721 
3722     return true;
3723 }
3724 
3725 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3726 {
3727     struct FlatViewInfo fvi = {
3728         .counter = 0,
3729         .dispatch_tree = dispatch_tree,
3730         .owner = owner,
3731     };
3732     AddressSpace *as;
3733     FlatView *view;
3734     GArray *fv_address_spaces;
3735     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3736     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3737 
3738     if (ac->has_memory) {
3739         fvi.ac = ac;
3740     }
3741 
3742     /* Gather all FVs in one table */
3743     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3744         view = address_space_get_flatview(as);
3745 
3746         fv_address_spaces = g_hash_table_lookup(views, view);
3747         if (!fv_address_spaces) {
3748             fv_address_spaces = g_array_new(false, false, sizeof(as));
3749             g_hash_table_insert(views, view, fv_address_spaces);
3750         }
3751 
3752         g_array_append_val(fv_address_spaces, as);
3753     }
3754 
3755     /* Print */
3756     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3757 
3758     /* Free */
3759     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3760     g_hash_table_unref(views);
3761 }
3762 
3763 struct AddressSpaceInfo {
3764     MemoryRegionListHead *ml_head;
3765     bool owner;
3766     bool disabled;
3767 };
3768 
3769 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3770 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3771 {
3772     const AddressSpace *as_a = a;
3773     const AddressSpace *as_b = b;
3774 
3775     return g_strcmp0(as_a->name, as_b->name);
3776 }
3777 
3778 static void mtree_print_as_name(gpointer data, gpointer user_data)
3779 {
3780     AddressSpace *as = data;
3781 
3782     qemu_printf("address-space: %s\n", as->name);
3783 }
3784 
3785 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3786 {
3787     MemoryRegion *mr = key;
3788     GSList *as_same_root_mr_list = value;
3789     struct AddressSpaceInfo *asi = user_data;
3790 
3791     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3792     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3793     qemu_printf("\n");
3794 }
3795 
3796 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3797                                    gpointer user_data)
3798 {
3799     GSList *as_same_root_mr_list = value;
3800 
3801     g_slist_free(as_same_root_mr_list);
3802 
3803     return true;
3804 }
3805 
3806 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3807 {
3808     MemoryRegionListHead ml_head;
3809     MemoryRegionList *ml, *ml2;
3810     AddressSpace *as;
3811     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3812     GSList *as_same_root_mr_list;
3813     struct AddressSpaceInfo asi = {
3814         .ml_head = &ml_head,
3815         .owner = owner,
3816         .disabled = disabled,
3817     };
3818 
3819     QTAILQ_INIT(&ml_head);
3820 
3821     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3822         /* Create hashtable, key=AS root MR, value = list of AS */
3823         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3824         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3825                                                      address_space_compare_name);
3826         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3827     }
3828 
3829     /* print address spaces */
3830     g_hash_table_foreach(views, mtree_print_as, &asi);
3831     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3832     g_hash_table_unref(views);
3833 
3834     /* print aliased regions */
3835     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3836         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3837         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3838         qemu_printf("\n");
3839     }
3840 
3841     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3842         g_free(ml);
3843     }
3844 }
3845 
3846 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3847 {
3848     if (flatview) {
3849         mtree_info_flatview(dispatch_tree, owner);
3850     } else {
3851         mtree_info_as(dispatch_tree, owner, disabled);
3852     }
3853 }
3854 
3855 bool memory_region_init_ram(MemoryRegion *mr,
3856                             Object *owner,
3857                             const char *name,
3858                             uint64_t size,
3859                             Error **errp)
3860 {
3861     DeviceState *owner_dev;
3862 
3863     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3864         return false;
3865     }
3866     /* This will assert if owner is neither NULL nor a DeviceState.
3867      * We only want the owner here for the purposes of defining a
3868      * unique name for migration. TODO: Ideally we should implement
3869      * a naming scheme for Objects which are not DeviceStates, in
3870      * which case we can relax this restriction.
3871      */
3872     owner_dev = DEVICE(owner);
3873     vmstate_register_ram(mr, owner_dev);
3874 
3875     return true;
3876 }
3877 
3878 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3879                                         Object *owner,
3880                                         const char *name,
3881                                         uint64_t size,
3882                                         Error **errp)
3883 {
3884     DeviceState *owner_dev;
3885 
3886     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3887                                                 RAM_GUEST_MEMFD, errp)) {
3888         return false;
3889     }
3890     /* This will assert if owner is neither NULL nor a DeviceState.
3891      * We only want the owner here for the purposes of defining a
3892      * unique name for migration. TODO: Ideally we should implement
3893      * a naming scheme for Objects which are not DeviceStates, in
3894      * which case we can relax this restriction.
3895      */
3896     owner_dev = DEVICE(owner);
3897     vmstate_register_ram(mr, owner_dev);
3898 
3899     return true;
3900 }
3901 
3902 bool memory_region_init_rom(MemoryRegion *mr,
3903                             Object *owner,
3904                             const char *name,
3905                             uint64_t size,
3906                             Error **errp)
3907 {
3908     DeviceState *owner_dev;
3909 
3910     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3911         return false;
3912     }
3913     /* This will assert if owner is neither NULL nor a DeviceState.
3914      * We only want the owner here for the purposes of defining a
3915      * unique name for migration. TODO: Ideally we should implement
3916      * a naming scheme for Objects which are not DeviceStates, in
3917      * which case we can relax this restriction.
3918      */
3919     owner_dev = DEVICE(owner);
3920     vmstate_register_ram(mr, owner_dev);
3921 
3922     return true;
3923 }
3924 
3925 bool memory_region_init_rom_device(MemoryRegion *mr,
3926                                    Object *owner,
3927                                    const MemoryRegionOps *ops,
3928                                    void *opaque,
3929                                    const char *name,
3930                                    uint64_t size,
3931                                    Error **errp)
3932 {
3933     DeviceState *owner_dev;
3934 
3935     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3936                                                  name, size, errp)) {
3937         return false;
3938     }
3939     /* This will assert if owner is neither NULL nor a DeviceState.
3940      * We only want the owner here for the purposes of defining a
3941      * unique name for migration. TODO: Ideally we should implement
3942      * a naming scheme for Objects which are not DeviceStates, in
3943      * which case we can relax this restriction.
3944      */
3945     owner_dev = DEVICE(owner);
3946     vmstate_register_ram(mr, owner_dev);
3947 
3948     return true;
3949 }
3950 
3951 /*
3952  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3953  * the fuzz_dma_read_cb callback
3954  */
3955 #ifdef CONFIG_FUZZ
3956 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3957                       size_t len,
3958                       MemoryRegion *mr)
3959 {
3960 }
3961 #endif
3962 
3963 static const TypeInfo memory_region_info = {
3964     .parent             = TYPE_OBJECT,
3965     .name               = TYPE_MEMORY_REGION,
3966     .class_size         = sizeof(MemoryRegionClass),
3967     .instance_size      = sizeof(MemoryRegion),
3968     .instance_init      = memory_region_initfn,
3969     .instance_finalize  = memory_region_finalize,
3970 };
3971 
3972 static const TypeInfo iommu_memory_region_info = {
3973     .parent             = TYPE_MEMORY_REGION,
3974     .name               = TYPE_IOMMU_MEMORY_REGION,
3975     .class_size         = sizeof(IOMMUMemoryRegionClass),
3976     .instance_size      = sizeof(IOMMUMemoryRegion),
3977     .instance_init      = iommu_memory_region_initfn,
3978     .abstract           = true,
3979 };
3980 
3981 static const TypeInfo ram_discard_manager_info = {
3982     .parent             = TYPE_INTERFACE,
3983     .name               = TYPE_RAM_DISCARD_MANAGER,
3984     .class_size         = sizeof(RamDiscardManagerClass),
3985 };
3986 
3987 static void memory_register_types(void)
3988 {
3989     type_register_static(&memory_region_info);
3990     type_register_static(&iommu_memory_region_info);
3991     type_register_static(&ram_discard_manager_info);
3992 }
3993 
3994 type_init(memory_register_types)
3995