xref: /openbmc/linux/drivers/acpi/processor_idle.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *  			- Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11  *  			- Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26 
27 /*
28  * Include the apic definitions for x86 to have the APIC timer related defines
29  * available also for UP (on SMP it gets magically included via linux/smp.h).
30  * asm/acpi.h is not an option, as it would require more include magic. Also
31  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
32  */
33 #ifdef CONFIG_X86
34 #include <asm/apic.h>
35 #include <asm/cpu.h>
36 #endif
37 
38 #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39 
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0400);
42 static bool nocst __read_mostly;
43 module_param(nocst, bool, 0400);
44 static bool bm_check_disable __read_mostly;
45 module_param(bm_check_disable, bool, 0400);
46 
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49 
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51 
52 struct cpuidle_driver acpi_idle_driver = {
53 	.name =		"acpi_idle",
54 	.owner =	THIS_MODULE,
55 };
56 
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60 
disabled_by_idle_boot_param(void)61 static int disabled_by_idle_boot_param(void)
62 {
63 	return boot_option_idle_override == IDLE_POLL ||
64 		boot_option_idle_override == IDLE_HALT;
65 }
66 
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
set_max_cstate(const struct dmi_system_id * id)73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 		return 0;
77 
78 	pr_notice("%s detected - limiting to C%ld max_cstate."
79 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81 
82 	max_cstate = (long)id->driver_data;
83 
84 	return 0;
85 }
86 
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 	{ set_max_cstate, "Clevo 5600D", {
89 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 	 (void *)2},
92 	{ set_max_cstate, "Pavilion zv5000", {
93 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 	 (void *)1},
96 	{ set_max_cstate, "Asus L8400B", {
97 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 	 (void *)1},
100 	{},
101 };
102 
103 
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
acpi_safe_halt(void)108 static void __cpuidle acpi_safe_halt(void)
109 {
110 	if (!tif_need_resched()) {
111 		raw_safe_halt();
112 		raw_local_irq_disable();
113 	}
114 }
115 
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117 
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cx)124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 				   struct acpi_processor_cx *cx)
126 {
127 	struct acpi_processor_power *pwr = &pr->power;
128 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129 
130 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 		return;
132 
133 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 		type = ACPI_STATE_C1;
135 
136 	/*
137 	 * Check, if one of the previous states already marked the lapic
138 	 * unstable
139 	 */
140 	if (pwr->timer_broadcast_on_state < state)
141 		return;
142 
143 	if (cx->type >= type)
144 		pr->power.timer_broadcast_on_state = state;
145 }
146 
__lapic_timer_propagate_broadcast(void * arg)147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149 	struct acpi_processor *pr = arg;
150 
151 	if (pr->power.timer_broadcast_on_state < INT_MAX)
152 		tick_broadcast_enable();
153 	else
154 		tick_broadcast_disable();
155 }
156 
lapic_timer_propagate_broadcast(struct acpi_processor * pr)157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 				 (void *)pr, 1);
161 }
162 
163 /* Power(C) State timer broadcast control */
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165 					struct acpi_processor_cx *cx)
166 {
167 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169 
170 #else
171 
lapic_timer_check_state(int state,struct acpi_processor * pr,struct acpi_processor_cx * cstate)172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173 				   struct acpi_processor_cx *cstate) { }
lapic_timer_propagate_broadcast(struct acpi_processor * pr)174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175 
lapic_timer_needs_broadcast(struct acpi_processor * pr,struct acpi_processor_cx * cx)176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177 					struct acpi_processor_cx *cx)
178 {
179 	return false;
180 }
181 
182 #endif
183 
184 #if defined(CONFIG_X86)
tsc_check_state(int state)185 static void tsc_check_state(int state)
186 {
187 	switch (boot_cpu_data.x86_vendor) {
188 	case X86_VENDOR_HYGON:
189 	case X86_VENDOR_AMD:
190 	case X86_VENDOR_INTEL:
191 	case X86_VENDOR_CENTAUR:
192 	case X86_VENDOR_ZHAOXIN:
193 		/*
194 		 * AMD Fam10h TSC will tick in all
195 		 * C/P/S0/S1 states when this bit is set.
196 		 */
197 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198 			return;
199 		fallthrough;
200 	default:
201 		/* TSC could halt in idle, so notify users */
202 		if (state > ACPI_STATE_C1)
203 			mark_tsc_unstable("TSC halts in idle");
204 	}
205 }
206 #else
tsc_check_state(int state)207 static void tsc_check_state(int state) { return; }
208 #endif
209 
acpi_processor_get_power_info_fadt(struct acpi_processor * pr)210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212 
213 	if (!pr->pblk)
214 		return -ENODEV;
215 
216 	/* if info is obtained from pblk/fadt, type equals state */
217 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219 
220 #ifndef CONFIG_HOTPLUG_CPU
221 	/*
222 	 * Check for P_LVL2_UP flag before entering C2 and above on
223 	 * an SMP system.
224 	 */
225 	if ((num_online_cpus() > 1) &&
226 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227 		return -ENODEV;
228 #endif
229 
230 	/* determine C2 and C3 address from pblk */
231 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233 
234 	/* determine latencies from FADT */
235 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237 
238 	/*
239 	 * FADT specified C2 latency must be less than or equal to
240 	 * 100 microseconds.
241 	 */
242 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243 		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
244 				  acpi_gbl_FADT.c2_latency);
245 		/* invalidate C2 */
246 		pr->power.states[ACPI_STATE_C2].address = 0;
247 	}
248 
249 	/*
250 	 * FADT supplied C3 latency must be less than or equal to
251 	 * 1000 microseconds.
252 	 */
253 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254 		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
255 				  acpi_gbl_FADT.c3_latency);
256 		/* invalidate C3 */
257 		pr->power.states[ACPI_STATE_C3].address = 0;
258 	}
259 
260 	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
261 			  pr->power.states[ACPI_STATE_C2].address,
262 			  pr->power.states[ACPI_STATE_C3].address);
263 
264 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
265 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266 			 pr->power.states[ACPI_STATE_C2].address);
267 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
268 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269 			 pr->power.states[ACPI_STATE_C3].address);
270 
271 	if (!pr->power.states[ACPI_STATE_C2].address &&
272 	    !pr->power.states[ACPI_STATE_C3].address)
273 		return -ENODEV;
274 
275 	return 0;
276 }
277 
acpi_processor_get_power_info_default(struct acpi_processor * pr)278 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 {
280 	if (!pr->power.states[ACPI_STATE_C1].valid) {
281 		/* set the first C-State to C1 */
282 		/* all processors need to support C1 */
283 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
284 		pr->power.states[ACPI_STATE_C1].valid = 1;
285 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286 
287 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
288 			 ACPI_CX_DESC_LEN, "ACPI HLT");
289 	}
290 	/* the C0 state only exists as a filler in our array */
291 	pr->power.states[ACPI_STATE_C0].valid = 1;
292 	return 0;
293 }
294 
acpi_processor_get_power_info_cst(struct acpi_processor * pr)295 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
296 {
297 	int ret;
298 
299 	if (nocst)
300 		return -ENODEV;
301 
302 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
303 	if (ret)
304 		return ret;
305 
306 	if (!pr->power.count)
307 		return -EFAULT;
308 
309 	pr->flags.has_cst = 1;
310 	return 0;
311 }
312 
acpi_processor_power_verify_c3(struct acpi_processor * pr,struct acpi_processor_cx * cx)313 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
314 					   struct acpi_processor_cx *cx)
315 {
316 	static int bm_check_flag = -1;
317 	static int bm_control_flag = -1;
318 
319 
320 	if (!cx->address)
321 		return;
322 
323 	/*
324 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
325 	 * DMA transfers are used by any ISA device to avoid livelock.
326 	 * Note that we could disable Type-F DMA (as recommended by
327 	 * the erratum), but this is known to disrupt certain ISA
328 	 * devices thus we take the conservative approach.
329 	 */
330 	if (errata.piix4.fdma) {
331 		acpi_handle_debug(pr->handle,
332 				  "C3 not supported on PIIX4 with Type-F DMA\n");
333 		return;
334 	}
335 
336 	/* All the logic here assumes flags.bm_check is same across all CPUs */
337 	if (bm_check_flag == -1) {
338 		/* Determine whether bm_check is needed based on CPU  */
339 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
340 		bm_check_flag = pr->flags.bm_check;
341 		bm_control_flag = pr->flags.bm_control;
342 	} else {
343 		pr->flags.bm_check = bm_check_flag;
344 		pr->flags.bm_control = bm_control_flag;
345 	}
346 
347 	if (pr->flags.bm_check) {
348 		if (!pr->flags.bm_control) {
349 			if (pr->flags.has_cst != 1) {
350 				/* bus mastering control is necessary */
351 				acpi_handle_debug(pr->handle,
352 						  "C3 support requires BM control\n");
353 				return;
354 			} else {
355 				/* Here we enter C3 without bus mastering */
356 				acpi_handle_debug(pr->handle,
357 						  "C3 support without BM control\n");
358 			}
359 		}
360 	} else {
361 		/*
362 		 * WBINVD should be set in fadt, for C3 state to be
363 		 * supported on when bm_check is not required.
364 		 */
365 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
366 			acpi_handle_debug(pr->handle,
367 					  "Cache invalidation should work properly"
368 					  " for C3 to be enabled on SMP systems\n");
369 			return;
370 		}
371 	}
372 
373 	/*
374 	 * Otherwise we've met all of our C3 requirements.
375 	 * Normalize the C3 latency to expidite policy.  Enable
376 	 * checking of bus mastering status (bm_check) so we can
377 	 * use this in our C3 policy
378 	 */
379 	cx->valid = 1;
380 
381 	/*
382 	 * On older chipsets, BM_RLD needs to be set
383 	 * in order for Bus Master activity to wake the
384 	 * system from C3.  Newer chipsets handle DMA
385 	 * during C3 automatically and BM_RLD is a NOP.
386 	 * In either case, the proper way to
387 	 * handle BM_RLD is to set it and leave it set.
388 	 */
389 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
390 }
391 
acpi_cst_latency_sort(struct acpi_processor_cx * states,size_t length)392 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
393 {
394 	int i, j, k;
395 
396 	for (i = 1; i < length; i++) {
397 		if (!states[i].valid)
398 			continue;
399 
400 		for (j = i - 1, k = i; j >= 0; j--) {
401 			if (!states[j].valid)
402 				continue;
403 
404 			if (states[j].latency > states[k].latency)
405 				swap(states[j].latency, states[k].latency);
406 
407 			k = j;
408 		}
409 	}
410 }
411 
acpi_processor_power_verify(struct acpi_processor * pr)412 static int acpi_processor_power_verify(struct acpi_processor *pr)
413 {
414 	unsigned int i;
415 	unsigned int working = 0;
416 	unsigned int last_latency = 0;
417 	unsigned int last_type = 0;
418 	bool buggy_latency = false;
419 
420 	pr->power.timer_broadcast_on_state = INT_MAX;
421 
422 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
423 		struct acpi_processor_cx *cx = &pr->power.states[i];
424 
425 		switch (cx->type) {
426 		case ACPI_STATE_C1:
427 			cx->valid = 1;
428 			break;
429 
430 		case ACPI_STATE_C2:
431 			if (!cx->address)
432 				break;
433 			cx->valid = 1;
434 			break;
435 
436 		case ACPI_STATE_C3:
437 			acpi_processor_power_verify_c3(pr, cx);
438 			break;
439 		}
440 		if (!cx->valid)
441 			continue;
442 		if (cx->type >= last_type && cx->latency < last_latency)
443 			buggy_latency = true;
444 		last_latency = cx->latency;
445 		last_type = cx->type;
446 
447 		lapic_timer_check_state(i, pr, cx);
448 		tsc_check_state(cx->type);
449 		working++;
450 	}
451 
452 	if (buggy_latency) {
453 		pr_notice("FW issue: working around C-state latencies out of order\n");
454 		acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
455 	}
456 
457 	lapic_timer_propagate_broadcast(pr);
458 
459 	return working;
460 }
461 
acpi_processor_get_cstate_info(struct acpi_processor * pr)462 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
463 {
464 	unsigned int i;
465 	int result;
466 
467 
468 	/* NOTE: the idle thread may not be running while calling
469 	 * this function */
470 
471 	/* Zero initialize all the C-states info. */
472 	memset(pr->power.states, 0, sizeof(pr->power.states));
473 
474 	result = acpi_processor_get_power_info_cst(pr);
475 	if (result == -ENODEV)
476 		result = acpi_processor_get_power_info_fadt(pr);
477 
478 	if (result)
479 		return result;
480 
481 	acpi_processor_get_power_info_default(pr);
482 
483 	pr->power.count = acpi_processor_power_verify(pr);
484 
485 	/*
486 	 * if one state of type C2 or C3 is available, mark this
487 	 * CPU as being "idle manageable"
488 	 */
489 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
490 		if (pr->power.states[i].valid) {
491 			pr->power.count = i;
492 			pr->flags.power = 1;
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 /**
500  * acpi_idle_bm_check - checks if bus master activity was detected
501  */
acpi_idle_bm_check(void)502 static int acpi_idle_bm_check(void)
503 {
504 	u32 bm_status = 0;
505 
506 	if (bm_check_disable)
507 		return 0;
508 
509 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
510 	if (bm_status)
511 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
512 	/*
513 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
514 	 * the true state of bus mastering activity; forcing us to
515 	 * manually check the BMIDEA bit of each IDE channel.
516 	 */
517 	else if (errata.piix4.bmisx) {
518 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
519 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
520 			bm_status = 1;
521 	}
522 	return bm_status;
523 }
524 
io_idle(unsigned long addr)525 static __cpuidle void io_idle(unsigned long addr)
526 {
527 	/* IO port based C-state */
528 	inb(addr);
529 
530 #ifdef	CONFIG_X86
531 	/* No delay is needed if we are in guest */
532 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
533 		return;
534 	/*
535 	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
536 	 * not this code.  Assume that any Intel systems using this
537 	 * are ancient and may need the dummy wait.  This also assumes
538 	 * that the motivating chipset issue was Intel-only.
539 	 */
540 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
541 		return;
542 #endif
543 	/*
544 	 * Dummy wait op - must do something useless after P_LVL2 read
545 	 * because chipsets cannot guarantee that STPCLK# signal gets
546 	 * asserted in time to freeze execution properly
547 	 *
548 	 * This workaround has been in place since the original ACPI
549 	 * implementation was merged, circa 2002.
550 	 *
551 	 * If a profile is pointing to this instruction, please first
552 	 * consider moving your system to a more modern idle
553 	 * mechanism.
554 	 */
555 	inl(acpi_gbl_FADT.xpm_timer_block.address);
556 }
557 
558 /**
559  * acpi_idle_do_entry - enter idle state using the appropriate method
560  * @cx: cstate data
561  *
562  * Caller disables interrupt before call and enables interrupt after return.
563  */
acpi_idle_do_entry(struct acpi_processor_cx * cx)564 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
565 {
566 	perf_lopwr_cb(true);
567 
568 	if (cx->entry_method == ACPI_CSTATE_FFH) {
569 		/* Call into architectural FFH based C-state */
570 		acpi_processor_ffh_cstate_enter(cx);
571 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
572 		acpi_safe_halt();
573 	} else {
574 		io_idle(cx->address);
575 	}
576 
577 	perf_lopwr_cb(false);
578 }
579 
580 /**
581  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
582  * @dev: the target CPU
583  * @index: the index of suggested state
584  */
acpi_idle_play_dead(struct cpuidle_device * dev,int index)585 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
586 {
587 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
588 
589 	ACPI_FLUSH_CPU_CACHE();
590 
591 	while (1) {
592 
593 		if (cx->entry_method == ACPI_CSTATE_HALT)
594 			raw_safe_halt();
595 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
596 			io_idle(cx->address);
597 		} else
598 			return -ENODEV;
599 	}
600 
601 	/* Never reached */
602 	return 0;
603 }
604 
acpi_idle_fallback_to_c1(struct acpi_processor * pr)605 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
606 {
607 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
608 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
609 }
610 
611 static int c3_cpu_count;
612 static DEFINE_RAW_SPINLOCK(c3_lock);
613 
614 /**
615  * acpi_idle_enter_bm - enters C3 with proper BM handling
616  * @drv: cpuidle driver
617  * @pr: Target processor
618  * @cx: Target state context
619  * @index: index of target state
620  */
acpi_idle_enter_bm(struct cpuidle_driver * drv,struct acpi_processor * pr,struct acpi_processor_cx * cx,int index)621 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
622 			       struct acpi_processor *pr,
623 			       struct acpi_processor_cx *cx,
624 			       int index)
625 {
626 	static struct acpi_processor_cx safe_cx = {
627 		.entry_method = ACPI_CSTATE_HALT,
628 	};
629 
630 	/*
631 	 * disable bus master
632 	 * bm_check implies we need ARB_DIS
633 	 * bm_control implies whether we can do ARB_DIS
634 	 *
635 	 * That leaves a case where bm_check is set and bm_control is not set.
636 	 * In that case we cannot do much, we enter C3 without doing anything.
637 	 */
638 	bool dis_bm = pr->flags.bm_control;
639 
640 	instrumentation_begin();
641 
642 	/* If we can skip BM, demote to a safe state. */
643 	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
644 		dis_bm = false;
645 		index = drv->safe_state_index;
646 		if (index >= 0) {
647 			cx = this_cpu_read(acpi_cstate[index]);
648 		} else {
649 			cx = &safe_cx;
650 			index = -EBUSY;
651 		}
652 	}
653 
654 	if (dis_bm) {
655 		raw_spin_lock(&c3_lock);
656 		c3_cpu_count++;
657 		/* Disable bus master arbitration when all CPUs are in C3 */
658 		if (c3_cpu_count == num_online_cpus())
659 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
660 		raw_spin_unlock(&c3_lock);
661 	}
662 
663 	ct_cpuidle_enter();
664 
665 	acpi_idle_do_entry(cx);
666 
667 	ct_cpuidle_exit();
668 
669 	/* Re-enable bus master arbitration */
670 	if (dis_bm) {
671 		raw_spin_lock(&c3_lock);
672 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
673 		c3_cpu_count--;
674 		raw_spin_unlock(&c3_lock);
675 	}
676 
677 	instrumentation_end();
678 
679 	return index;
680 }
681 
acpi_idle_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)682 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
683 			   struct cpuidle_driver *drv, int index)
684 {
685 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
686 	struct acpi_processor *pr;
687 
688 	pr = __this_cpu_read(processors);
689 	if (unlikely(!pr))
690 		return -EINVAL;
691 
692 	if (cx->type != ACPI_STATE_C1) {
693 		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
694 			return acpi_idle_enter_bm(drv, pr, cx, index);
695 
696 		/* C2 to C1 demotion. */
697 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
698 			index = ACPI_IDLE_STATE_START;
699 			cx = per_cpu(acpi_cstate[index], dev->cpu);
700 		}
701 	}
702 
703 	if (cx->type == ACPI_STATE_C3)
704 		ACPI_FLUSH_CPU_CACHE();
705 
706 	acpi_idle_do_entry(cx);
707 
708 	return index;
709 }
710 
acpi_idle_enter_s2idle(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)711 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
712 				  struct cpuidle_driver *drv, int index)
713 {
714 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
715 
716 	if (cx->type == ACPI_STATE_C3) {
717 		struct acpi_processor *pr = __this_cpu_read(processors);
718 
719 		if (unlikely(!pr))
720 			return 0;
721 
722 		if (pr->flags.bm_check) {
723 			u8 bm_sts_skip = cx->bm_sts_skip;
724 
725 			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
726 			cx->bm_sts_skip = 1;
727 			acpi_idle_enter_bm(drv, pr, cx, index);
728 			cx->bm_sts_skip = bm_sts_skip;
729 
730 			return 0;
731 		} else {
732 			ACPI_FLUSH_CPU_CACHE();
733 		}
734 	}
735 	acpi_idle_do_entry(cx);
736 
737 	return 0;
738 }
739 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)740 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
741 					   struct cpuidle_device *dev)
742 {
743 	int i, count = ACPI_IDLE_STATE_START;
744 	struct acpi_processor_cx *cx;
745 	struct cpuidle_state *state;
746 
747 	if (max_cstate == 0)
748 		max_cstate = 1;
749 
750 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
751 		state = &acpi_idle_driver.states[count];
752 		cx = &pr->power.states[i];
753 
754 		if (!cx->valid)
755 			continue;
756 
757 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
758 
759 		if (lapic_timer_needs_broadcast(pr, cx))
760 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
761 
762 		if (cx->type == ACPI_STATE_C3) {
763 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
764 			if (pr->flags.bm_check)
765 				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
766 		}
767 
768 		count++;
769 		if (count == CPUIDLE_STATE_MAX)
770 			break;
771 	}
772 
773 	if (!count)
774 		return -EINVAL;
775 
776 	return 0;
777 }
778 
acpi_processor_setup_cstates(struct acpi_processor * pr)779 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
780 {
781 	int i, count;
782 	struct acpi_processor_cx *cx;
783 	struct cpuidle_state *state;
784 	struct cpuidle_driver *drv = &acpi_idle_driver;
785 
786 	if (max_cstate == 0)
787 		max_cstate = 1;
788 
789 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
790 		cpuidle_poll_state_init(drv);
791 		count = 1;
792 	} else {
793 		count = 0;
794 	}
795 
796 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
797 		cx = &pr->power.states[i];
798 
799 		if (!cx->valid)
800 			continue;
801 
802 		state = &drv->states[count];
803 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
804 		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
805 		state->exit_latency = cx->latency;
806 		state->target_residency = cx->latency * latency_factor;
807 		state->enter = acpi_idle_enter;
808 
809 		state->flags = 0;
810 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
811 		    cx->type == ACPI_STATE_C3) {
812 			state->enter_dead = acpi_idle_play_dead;
813 			if (cx->type != ACPI_STATE_C3)
814 				drv->safe_state_index = count;
815 		}
816 		/*
817 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
818 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
819 		 * particularly interesting from the suspend-to-idle angle, so
820 		 * avoid C1 and the situations in which we may need to fall back
821 		 * to it altogether.
822 		 */
823 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
824 			state->enter_s2idle = acpi_idle_enter_s2idle;
825 
826 		count++;
827 		if (count == CPUIDLE_STATE_MAX)
828 			break;
829 	}
830 
831 	drv->state_count = count;
832 
833 	if (!count)
834 		return -EINVAL;
835 
836 	return 0;
837 }
838 
acpi_processor_cstate_first_run_checks(void)839 static inline void acpi_processor_cstate_first_run_checks(void)
840 {
841 	static int first_run;
842 
843 	if (first_run)
844 		return;
845 	dmi_check_system(processor_power_dmi_table);
846 	max_cstate = acpi_processor_cstate_check(max_cstate);
847 	if (max_cstate < ACPI_C_STATES_MAX)
848 		pr_notice("processor limited to max C-state %d\n", max_cstate);
849 
850 	first_run++;
851 
852 	if (nocst)
853 		return;
854 
855 	acpi_processor_claim_cst_control();
856 }
857 #else
858 
disabled_by_idle_boot_param(void)859 static inline int disabled_by_idle_boot_param(void) { return 0; }
acpi_processor_cstate_first_run_checks(void)860 static inline void acpi_processor_cstate_first_run_checks(void) { }
acpi_processor_get_cstate_info(struct acpi_processor * pr)861 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
862 {
863 	return -ENODEV;
864 }
865 
acpi_processor_setup_cpuidle_cx(struct acpi_processor * pr,struct cpuidle_device * dev)866 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
867 					   struct cpuidle_device *dev)
868 {
869 	return -EINVAL;
870 }
871 
acpi_processor_setup_cstates(struct acpi_processor * pr)872 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
873 {
874 	return -EINVAL;
875 }
876 
877 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
878 
879 struct acpi_lpi_states_array {
880 	unsigned int size;
881 	unsigned int composite_states_size;
882 	struct acpi_lpi_state *entries;
883 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
884 };
885 
obj_get_integer(union acpi_object * obj,u32 * value)886 static int obj_get_integer(union acpi_object *obj, u32 *value)
887 {
888 	if (obj->type != ACPI_TYPE_INTEGER)
889 		return -EINVAL;
890 
891 	*value = obj->integer.value;
892 	return 0;
893 }
894 
acpi_processor_evaluate_lpi(acpi_handle handle,struct acpi_lpi_states_array * info)895 static int acpi_processor_evaluate_lpi(acpi_handle handle,
896 				       struct acpi_lpi_states_array *info)
897 {
898 	acpi_status status;
899 	int ret = 0;
900 	int pkg_count, state_idx = 1, loop;
901 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
902 	union acpi_object *lpi_data;
903 	struct acpi_lpi_state *lpi_state;
904 
905 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
906 	if (ACPI_FAILURE(status)) {
907 		acpi_handle_debug(handle, "No _LPI, giving up\n");
908 		return -ENODEV;
909 	}
910 
911 	lpi_data = buffer.pointer;
912 
913 	/* There must be at least 4 elements = 3 elements + 1 package */
914 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
915 	    lpi_data->package.count < 4) {
916 		pr_debug("not enough elements in _LPI\n");
917 		ret = -ENODATA;
918 		goto end;
919 	}
920 
921 	pkg_count = lpi_data->package.elements[2].integer.value;
922 
923 	/* Validate number of power states. */
924 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
925 		pr_debug("count given by _LPI is not valid\n");
926 		ret = -ENODATA;
927 		goto end;
928 	}
929 
930 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
931 	if (!lpi_state) {
932 		ret = -ENOMEM;
933 		goto end;
934 	}
935 
936 	info->size = pkg_count;
937 	info->entries = lpi_state;
938 
939 	/* LPI States start at index 3 */
940 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
941 		union acpi_object *element, *pkg_elem, *obj;
942 
943 		element = &lpi_data->package.elements[loop];
944 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
945 			continue;
946 
947 		pkg_elem = element->package.elements;
948 
949 		obj = pkg_elem + 6;
950 		if (obj->type == ACPI_TYPE_BUFFER) {
951 			struct acpi_power_register *reg;
952 
953 			reg = (struct acpi_power_register *)obj->buffer.pointer;
954 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
955 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
956 				continue;
957 
958 			lpi_state->address = reg->address;
959 			lpi_state->entry_method =
960 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
961 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
962 		} else if (obj->type == ACPI_TYPE_INTEGER) {
963 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
964 			lpi_state->address = obj->integer.value;
965 		} else {
966 			continue;
967 		}
968 
969 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
970 
971 		obj = pkg_elem + 9;
972 		if (obj->type == ACPI_TYPE_STRING)
973 			strscpy(lpi_state->desc, obj->string.pointer,
974 				ACPI_CX_DESC_LEN);
975 
976 		lpi_state->index = state_idx;
977 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
978 			pr_debug("No min. residency found, assuming 10 us\n");
979 			lpi_state->min_residency = 10;
980 		}
981 
982 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
983 			pr_debug("No wakeup residency found, assuming 10 us\n");
984 			lpi_state->wake_latency = 10;
985 		}
986 
987 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
988 			lpi_state->flags = 0;
989 
990 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
991 			lpi_state->arch_flags = 0;
992 
993 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
994 			lpi_state->res_cnt_freq = 1;
995 
996 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
997 			lpi_state->enable_parent_state = 0;
998 	}
999 
1000 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1001 end:
1002 	kfree(buffer.pointer);
1003 	return ret;
1004 }
1005 
1006 /*
1007  * flat_state_cnt - the number of composite LPI states after the process of flattening
1008  */
1009 static int flat_state_cnt;
1010 
1011 /**
1012  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1013  *
1014  * @local: local LPI state
1015  * @parent: parent LPI state
1016  * @result: composite LPI state
1017  */
combine_lpi_states(struct acpi_lpi_state * local,struct acpi_lpi_state * parent,struct acpi_lpi_state * result)1018 static bool combine_lpi_states(struct acpi_lpi_state *local,
1019 			       struct acpi_lpi_state *parent,
1020 			       struct acpi_lpi_state *result)
1021 {
1022 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1023 		if (!parent->address) /* 0 means autopromotable */
1024 			return false;
1025 		result->address = local->address + parent->address;
1026 	} else {
1027 		result->address = parent->address;
1028 	}
1029 
1030 	result->min_residency = max(local->min_residency, parent->min_residency);
1031 	result->wake_latency = local->wake_latency + parent->wake_latency;
1032 	result->enable_parent_state = parent->enable_parent_state;
1033 	result->entry_method = local->entry_method;
1034 
1035 	result->flags = parent->flags;
1036 	result->arch_flags = parent->arch_flags;
1037 	result->index = parent->index;
1038 
1039 	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1040 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1041 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1042 	return true;
1043 }
1044 
1045 #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1046 
stash_composite_state(struct acpi_lpi_states_array * curr_level,struct acpi_lpi_state * t)1047 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1048 				  struct acpi_lpi_state *t)
1049 {
1050 	curr_level->composite_states[curr_level->composite_states_size++] = t;
1051 }
1052 
flatten_lpi_states(struct acpi_processor * pr,struct acpi_lpi_states_array * curr_level,struct acpi_lpi_states_array * prev_level)1053 static int flatten_lpi_states(struct acpi_processor *pr,
1054 			      struct acpi_lpi_states_array *curr_level,
1055 			      struct acpi_lpi_states_array *prev_level)
1056 {
1057 	int i, j, state_count = curr_level->size;
1058 	struct acpi_lpi_state *p, *t = curr_level->entries;
1059 
1060 	curr_level->composite_states_size = 0;
1061 	for (j = 0; j < state_count; j++, t++) {
1062 		struct acpi_lpi_state *flpi;
1063 
1064 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1065 			continue;
1066 
1067 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1068 			pr_warn("Limiting number of LPI states to max (%d)\n",
1069 				ACPI_PROCESSOR_MAX_POWER);
1070 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1071 			break;
1072 		}
1073 
1074 		flpi = &pr->power.lpi_states[flat_state_cnt];
1075 
1076 		if (!prev_level) { /* leaf/processor node */
1077 			memcpy(flpi, t, sizeof(*t));
1078 			stash_composite_state(curr_level, flpi);
1079 			flat_state_cnt++;
1080 			continue;
1081 		}
1082 
1083 		for (i = 0; i < prev_level->composite_states_size; i++) {
1084 			p = prev_level->composite_states[i];
1085 			if (t->index <= p->enable_parent_state &&
1086 			    combine_lpi_states(p, t, flpi)) {
1087 				stash_composite_state(curr_level, flpi);
1088 				flat_state_cnt++;
1089 				flpi++;
1090 			}
1091 		}
1092 	}
1093 
1094 	kfree(curr_level->entries);
1095 	return 0;
1096 }
1097 
acpi_processor_ffh_lpi_probe(unsigned int cpu)1098 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1099 {
1100 	return -EOPNOTSUPP;
1101 }
1102 
acpi_processor_get_lpi_info(struct acpi_processor * pr)1103 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1104 {
1105 	int ret, i;
1106 	acpi_status status;
1107 	acpi_handle handle = pr->handle, pr_ahandle;
1108 	struct acpi_device *d = NULL;
1109 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1110 
1111 	/* make sure our architecture has support */
1112 	ret = acpi_processor_ffh_lpi_probe(pr->id);
1113 	if (ret == -EOPNOTSUPP)
1114 		return ret;
1115 
1116 	if (!osc_pc_lpi_support_confirmed)
1117 		return -EOPNOTSUPP;
1118 
1119 	if (!acpi_has_method(handle, "_LPI"))
1120 		return -EINVAL;
1121 
1122 	flat_state_cnt = 0;
1123 	prev = &info[0];
1124 	curr = &info[1];
1125 	handle = pr->handle;
1126 	ret = acpi_processor_evaluate_lpi(handle, prev);
1127 	if (ret)
1128 		return ret;
1129 	flatten_lpi_states(pr, prev, NULL);
1130 
1131 	status = acpi_get_parent(handle, &pr_ahandle);
1132 	while (ACPI_SUCCESS(status)) {
1133 		d = acpi_fetch_acpi_dev(pr_ahandle);
1134 		if (!d)
1135 			break;
1136 
1137 		handle = pr_ahandle;
1138 
1139 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1140 			break;
1141 
1142 		/* can be optional ? */
1143 		if (!acpi_has_method(handle, "_LPI"))
1144 			break;
1145 
1146 		ret = acpi_processor_evaluate_lpi(handle, curr);
1147 		if (ret)
1148 			break;
1149 
1150 		/* flatten all the LPI states in this level of hierarchy */
1151 		flatten_lpi_states(pr, curr, prev);
1152 
1153 		tmp = prev, prev = curr, curr = tmp;
1154 
1155 		status = acpi_get_parent(handle, &pr_ahandle);
1156 	}
1157 
1158 	pr->power.count = flat_state_cnt;
1159 	/* reset the index after flattening */
1160 	for (i = 0; i < pr->power.count; i++)
1161 		pr->power.lpi_states[i].index = i;
1162 
1163 	/* Tell driver that _LPI is supported. */
1164 	pr->flags.has_lpi = 1;
1165 	pr->flags.power = 1;
1166 
1167 	return 0;
1168 }
1169 
acpi_processor_ffh_lpi_enter(struct acpi_lpi_state * lpi)1170 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1171 {
1172 	return -ENODEV;
1173 }
1174 
1175 /**
1176  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1177  * @dev: the target CPU
1178  * @drv: cpuidle driver containing cpuidle state info
1179  * @index: index of target state
1180  *
1181  * Return: 0 for success or negative value for error
1182  */
acpi_idle_lpi_enter(struct cpuidle_device * dev,struct cpuidle_driver * drv,int index)1183 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1184 			       struct cpuidle_driver *drv, int index)
1185 {
1186 	struct acpi_processor *pr;
1187 	struct acpi_lpi_state *lpi;
1188 
1189 	pr = __this_cpu_read(processors);
1190 
1191 	if (unlikely(!pr))
1192 		return -EINVAL;
1193 
1194 	lpi = &pr->power.lpi_states[index];
1195 	if (lpi->entry_method == ACPI_CSTATE_FFH)
1196 		return acpi_processor_ffh_lpi_enter(lpi);
1197 
1198 	return -EINVAL;
1199 }
1200 
acpi_processor_setup_lpi_states(struct acpi_processor * pr)1201 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1202 {
1203 	int i;
1204 	struct acpi_lpi_state *lpi;
1205 	struct cpuidle_state *state;
1206 	struct cpuidle_driver *drv = &acpi_idle_driver;
1207 
1208 	if (!pr->flags.has_lpi)
1209 		return -EOPNOTSUPP;
1210 
1211 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1212 		lpi = &pr->power.lpi_states[i];
1213 
1214 		state = &drv->states[i];
1215 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1216 		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1217 		state->exit_latency = lpi->wake_latency;
1218 		state->target_residency = lpi->min_residency;
1219 		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1220 		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1221 			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1222 		state->enter = acpi_idle_lpi_enter;
1223 		drv->safe_state_index = i;
1224 	}
1225 
1226 	drv->state_count = i;
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1233  * global state data i.e. idle routines
1234  *
1235  * @pr: the ACPI processor
1236  */
acpi_processor_setup_cpuidle_states(struct acpi_processor * pr)1237 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1238 {
1239 	int i;
1240 	struct cpuidle_driver *drv = &acpi_idle_driver;
1241 
1242 	if (!pr->flags.power_setup_done || !pr->flags.power)
1243 		return -EINVAL;
1244 
1245 	drv->safe_state_index = -1;
1246 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1247 		drv->states[i].name[0] = '\0';
1248 		drv->states[i].desc[0] = '\0';
1249 	}
1250 
1251 	if (pr->flags.has_lpi)
1252 		return acpi_processor_setup_lpi_states(pr);
1253 
1254 	return acpi_processor_setup_cstates(pr);
1255 }
1256 
1257 /**
1258  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1259  * device i.e. per-cpu data
1260  *
1261  * @pr: the ACPI processor
1262  * @dev : the cpuidle device
1263  */
acpi_processor_setup_cpuidle_dev(struct acpi_processor * pr,struct cpuidle_device * dev)1264 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1265 					    struct cpuidle_device *dev)
1266 {
1267 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1268 		return -EINVAL;
1269 
1270 	dev->cpu = pr->id;
1271 	if (pr->flags.has_lpi)
1272 		return acpi_processor_ffh_lpi_probe(pr->id);
1273 
1274 	return acpi_processor_setup_cpuidle_cx(pr, dev);
1275 }
1276 
acpi_processor_get_power_info(struct acpi_processor * pr)1277 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1278 {
1279 	int ret;
1280 
1281 	ret = acpi_processor_get_lpi_info(pr);
1282 	if (ret)
1283 		ret = acpi_processor_get_cstate_info(pr);
1284 
1285 	return ret;
1286 }
1287 
acpi_processor_hotplug(struct acpi_processor * pr)1288 int acpi_processor_hotplug(struct acpi_processor *pr)
1289 {
1290 	int ret = 0;
1291 	struct cpuidle_device *dev;
1292 
1293 	if (disabled_by_idle_boot_param())
1294 		return 0;
1295 
1296 	if (!pr->flags.power_setup_done)
1297 		return -ENODEV;
1298 
1299 	dev = per_cpu(acpi_cpuidle_device, pr->id);
1300 	cpuidle_pause_and_lock();
1301 	cpuidle_disable_device(dev);
1302 	ret = acpi_processor_get_power_info(pr);
1303 	if (!ret && pr->flags.power) {
1304 		acpi_processor_setup_cpuidle_dev(pr, dev);
1305 		ret = cpuidle_enable_device(dev);
1306 	}
1307 	cpuidle_resume_and_unlock();
1308 
1309 	return ret;
1310 }
1311 
acpi_processor_power_state_has_changed(struct acpi_processor * pr)1312 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1313 {
1314 	int cpu;
1315 	struct acpi_processor *_pr;
1316 	struct cpuidle_device *dev;
1317 
1318 	if (disabled_by_idle_boot_param())
1319 		return 0;
1320 
1321 	if (!pr->flags.power_setup_done)
1322 		return -ENODEV;
1323 
1324 	/*
1325 	 * FIXME:  Design the ACPI notification to make it once per
1326 	 * system instead of once per-cpu.  This condition is a hack
1327 	 * to make the code that updates C-States be called once.
1328 	 */
1329 
1330 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1331 
1332 		/* Protect against cpu-hotplug */
1333 		cpus_read_lock();
1334 		cpuidle_pause_and_lock();
1335 
1336 		/* Disable all cpuidle devices */
1337 		for_each_online_cpu(cpu) {
1338 			_pr = per_cpu(processors, cpu);
1339 			if (!_pr || !_pr->flags.power_setup_done)
1340 				continue;
1341 			dev = per_cpu(acpi_cpuidle_device, cpu);
1342 			cpuidle_disable_device(dev);
1343 		}
1344 
1345 		/* Populate Updated C-state information */
1346 		acpi_processor_get_power_info(pr);
1347 		acpi_processor_setup_cpuidle_states(pr);
1348 
1349 		/* Enable all cpuidle devices */
1350 		for_each_online_cpu(cpu) {
1351 			_pr = per_cpu(processors, cpu);
1352 			if (!_pr || !_pr->flags.power_setup_done)
1353 				continue;
1354 			acpi_processor_get_power_info(_pr);
1355 			if (_pr->flags.power) {
1356 				dev = per_cpu(acpi_cpuidle_device, cpu);
1357 				acpi_processor_setup_cpuidle_dev(_pr, dev);
1358 				cpuidle_enable_device(dev);
1359 			}
1360 		}
1361 		cpuidle_resume_and_unlock();
1362 		cpus_read_unlock();
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 static int acpi_processor_registered;
1369 
acpi_processor_power_init(struct acpi_processor * pr)1370 int acpi_processor_power_init(struct acpi_processor *pr)
1371 {
1372 	int retval;
1373 	struct cpuidle_device *dev;
1374 
1375 	if (disabled_by_idle_boot_param())
1376 		return 0;
1377 
1378 	acpi_processor_cstate_first_run_checks();
1379 
1380 	if (!acpi_processor_get_power_info(pr))
1381 		pr->flags.power_setup_done = 1;
1382 
1383 	/*
1384 	 * Install the idle handler if processor power management is supported.
1385 	 * Note that we use previously set idle handler will be used on
1386 	 * platforms that only support C1.
1387 	 */
1388 	if (pr->flags.power) {
1389 		/* Register acpi_idle_driver if not already registered */
1390 		if (!acpi_processor_registered) {
1391 			acpi_processor_setup_cpuidle_states(pr);
1392 			retval = cpuidle_register_driver(&acpi_idle_driver);
1393 			if (retval)
1394 				return retval;
1395 			pr_debug("%s registered with cpuidle\n",
1396 				 acpi_idle_driver.name);
1397 		}
1398 
1399 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1400 		if (!dev)
1401 			return -ENOMEM;
1402 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1403 
1404 		acpi_processor_setup_cpuidle_dev(pr, dev);
1405 
1406 		/* Register per-cpu cpuidle_device. Cpuidle driver
1407 		 * must already be registered before registering device
1408 		 */
1409 		retval = cpuidle_register_device(dev);
1410 		if (retval) {
1411 			if (acpi_processor_registered == 0)
1412 				cpuidle_unregister_driver(&acpi_idle_driver);
1413 			return retval;
1414 		}
1415 		acpi_processor_registered++;
1416 	}
1417 	return 0;
1418 }
1419 
acpi_processor_power_exit(struct acpi_processor * pr)1420 int acpi_processor_power_exit(struct acpi_processor *pr)
1421 {
1422 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1423 
1424 	if (disabled_by_idle_boot_param())
1425 		return 0;
1426 
1427 	if (pr->flags.power) {
1428 		cpuidle_unregister_device(dev);
1429 		acpi_processor_registered--;
1430 		if (acpi_processor_registered == 0)
1431 			cpuidle_unregister_driver(&acpi_idle_driver);
1432 
1433 		kfree(dev);
1434 	}
1435 
1436 	pr->flags.power_setup_done = 0;
1437 	return 0;
1438 }
1439